Use ALL_PRIMARY_SYMTABS instead of ALL_SYMTABS in some places.
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63
64 /* Forward declarations for local functions. */
65
66 static void rbreak_command (char *, int);
67
68 static int find_line_common (struct linetable *, int, int *, int);
69
70 static struct symbol *lookup_symbol_aux (const char *name,
71 const struct block *block,
72 const domain_enum domain,
73 enum language language,
74 struct field_of_this_result *);
75
76 static
77 struct symbol *lookup_symbol_aux_local (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language);
81
82 static
83 struct symbol *lookup_symbol_aux_symtabs (int block_index,
84 const char *name,
85 const domain_enum domain);
86
87 static
88 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
89 int block_index,
90 const char *name,
91 const domain_enum domain);
92
93 extern initialize_file_ftype _initialize_symtab;
94
95 /* Program space key for finding name and language of "main". */
96
97 static const struct program_space_data *main_progspace_key;
98
99 /* Type of the data stored on the program space. */
100
101 struct main_info
102 {
103 /* Name of "main". */
104
105 char *name_of_main;
106
107 /* Language of "main". */
108
109 enum language language_of_main;
110 };
111
112 /* When non-zero, print debugging messages related to symtab creation. */
113 unsigned int symtab_create_debug = 0;
114
115 /* Non-zero if a file may be known by two different basenames.
116 This is the uncommon case, and significantly slows down gdb.
117 Default set to "off" to not slow down the common case. */
118 int basenames_may_differ = 0;
119
120 /* Allow the user to configure the debugger behavior with respect
121 to multiple-choice menus when more than one symbol matches during
122 a symbol lookup. */
123
124 const char multiple_symbols_ask[] = "ask";
125 const char multiple_symbols_all[] = "all";
126 const char multiple_symbols_cancel[] = "cancel";
127 static const char *const multiple_symbols_modes[] =
128 {
129 multiple_symbols_ask,
130 multiple_symbols_all,
131 multiple_symbols_cancel,
132 NULL
133 };
134 static const char *multiple_symbols_mode = multiple_symbols_all;
135
136 /* Read-only accessor to AUTO_SELECT_MODE. */
137
138 const char *
139 multiple_symbols_select_mode (void)
140 {
141 return multiple_symbols_mode;
142 }
143
144 /* Block in which the most recently searched-for symbol was found.
145 Might be better to make this a parameter to lookup_symbol and
146 value_of_this. */
147
148 const struct block *block_found;
149
150 /* Return the name of a domain_enum. */
151
152 const char *
153 domain_name (domain_enum e)
154 {
155 switch (e)
156 {
157 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
158 case VAR_DOMAIN: return "VAR_DOMAIN";
159 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
160 case LABEL_DOMAIN: return "LABEL_DOMAIN";
161 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
162 default: gdb_assert_not_reached ("bad domain_enum");
163 }
164 }
165
166 /* Return the name of a search_domain . */
167
168 const char *
169 search_domain_name (enum search_domain e)
170 {
171 switch (e)
172 {
173 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
174 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
175 case TYPES_DOMAIN: return "TYPES_DOMAIN";
176 case ALL_DOMAIN: return "ALL_DOMAIN";
177 default: gdb_assert_not_reached ("bad search_domain");
178 }
179 }
180
181 /* Set the primary field in SYMTAB. */
182
183 void
184 set_symtab_primary (struct symtab *symtab, int primary)
185 {
186 symtab->primary = primary;
187
188 if (symtab_create_debug && primary)
189 {
190 fprintf_unfiltered (gdb_stdlog,
191 "Created primary symtab %s for %s.\n",
192 host_address_to_string (symtab),
193 symtab_to_filename_for_display (symtab));
194 }
195 }
196
197 /* See whether FILENAME matches SEARCH_NAME using the rule that we
198 advertise to the user. (The manual's description of linespecs
199 describes what we advertise). Returns true if they match, false
200 otherwise. */
201
202 int
203 compare_filenames_for_search (const char *filename, const char *search_name)
204 {
205 int len = strlen (filename);
206 size_t search_len = strlen (search_name);
207
208 if (len < search_len)
209 return 0;
210
211 /* The tail of FILENAME must match. */
212 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
213 return 0;
214
215 /* Either the names must completely match, or the character
216 preceding the trailing SEARCH_NAME segment of FILENAME must be a
217 directory separator.
218
219 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
220 cannot match FILENAME "/path//dir/file.c" - as user has requested
221 absolute path. The sama applies for "c:\file.c" possibly
222 incorrectly hypothetically matching "d:\dir\c:\file.c".
223
224 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
225 compatible with SEARCH_NAME "file.c". In such case a compiler had
226 to put the "c:file.c" name into debug info. Such compatibility
227 works only on GDB built for DOS host. */
228 return (len == search_len
229 || (!IS_ABSOLUTE_PATH (search_name)
230 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
231 || (HAS_DRIVE_SPEC (filename)
232 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
233 }
234
235 /* Check for a symtab of a specific name by searching some symtabs.
236 This is a helper function for callbacks of iterate_over_symtabs.
237
238 If NAME is not absolute, then REAL_PATH is NULL
239 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
240
241 The return value, NAME, REAL_PATH, CALLBACK, and DATA
242 are identical to the `map_symtabs_matching_filename' method of
243 quick_symbol_functions.
244
245 FIRST and AFTER_LAST indicate the range of symtabs to search.
246 AFTER_LAST is one past the last symtab to search; NULL means to
247 search until the end of the list. */
248
249 int
250 iterate_over_some_symtabs (const char *name,
251 const char *real_path,
252 int (*callback) (struct symtab *symtab,
253 void *data),
254 void *data,
255 struct symtab *first,
256 struct symtab *after_last)
257 {
258 struct symtab *s = NULL;
259 const char* base_name = lbasename (name);
260
261 for (s = first; s != NULL && s != after_last; s = s->next)
262 {
263 if (compare_filenames_for_search (s->filename, name))
264 {
265 if (callback (s, data))
266 return 1;
267 continue;
268 }
269
270 /* Before we invoke realpath, which can get expensive when many
271 files are involved, do a quick comparison of the basenames. */
272 if (! basenames_may_differ
273 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
274 continue;
275
276 if (compare_filenames_for_search (symtab_to_fullname (s), name))
277 {
278 if (callback (s, data))
279 return 1;
280 continue;
281 }
282
283 /* If the user gave us an absolute path, try to find the file in
284 this symtab and use its absolute path. */
285 if (real_path != NULL)
286 {
287 const char *fullname = symtab_to_fullname (s);
288
289 gdb_assert (IS_ABSOLUTE_PATH (real_path));
290 gdb_assert (IS_ABSOLUTE_PATH (name));
291 if (FILENAME_CMP (real_path, fullname) == 0)
292 {
293 if (callback (s, data))
294 return 1;
295 continue;
296 }
297 }
298 }
299
300 return 0;
301 }
302
303 /* Check for a symtab of a specific name; first in symtabs, then in
304 psymtabs. *If* there is no '/' in the name, a match after a '/'
305 in the symtab filename will also work.
306
307 Calls CALLBACK with each symtab that is found and with the supplied
308 DATA. If CALLBACK returns true, the search stops. */
309
310 void
311 iterate_over_symtabs (const char *name,
312 int (*callback) (struct symtab *symtab,
313 void *data),
314 void *data)
315 {
316 struct objfile *objfile;
317 char *real_path = NULL;
318 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
319
320 /* Here we are interested in canonicalizing an absolute path, not
321 absolutizing a relative path. */
322 if (IS_ABSOLUTE_PATH (name))
323 {
324 real_path = gdb_realpath (name);
325 make_cleanup (xfree, real_path);
326 gdb_assert (IS_ABSOLUTE_PATH (real_path));
327 }
328
329 ALL_OBJFILES (objfile)
330 {
331 if (iterate_over_some_symtabs (name, real_path, callback, data,
332 objfile->symtabs, NULL))
333 {
334 do_cleanups (cleanups);
335 return;
336 }
337 }
338
339 /* Same search rules as above apply here, but now we look thru the
340 psymtabs. */
341
342 ALL_OBJFILES (objfile)
343 {
344 if (objfile->sf
345 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
346 name,
347 real_path,
348 callback,
349 data))
350 {
351 do_cleanups (cleanups);
352 return;
353 }
354 }
355
356 do_cleanups (cleanups);
357 }
358
359 /* The callback function used by lookup_symtab. */
360
361 static int
362 lookup_symtab_callback (struct symtab *symtab, void *data)
363 {
364 struct symtab **result_ptr = data;
365
366 *result_ptr = symtab;
367 return 1;
368 }
369
370 /* A wrapper for iterate_over_symtabs that returns the first matching
371 symtab, or NULL. */
372
373 struct symtab *
374 lookup_symtab (const char *name)
375 {
376 struct symtab *result = NULL;
377
378 iterate_over_symtabs (name, lookup_symtab_callback, &result);
379 return result;
380 }
381
382 \f
383 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
384 full method name, which consist of the class name (from T), the unadorned
385 method name from METHOD_ID, and the signature for the specific overload,
386 specified by SIGNATURE_ID. Note that this function is g++ specific. */
387
388 char *
389 gdb_mangle_name (struct type *type, int method_id, int signature_id)
390 {
391 int mangled_name_len;
392 char *mangled_name;
393 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
394 struct fn_field *method = &f[signature_id];
395 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
396 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
397 const char *newname = type_name_no_tag (type);
398
399 /* Does the form of physname indicate that it is the full mangled name
400 of a constructor (not just the args)? */
401 int is_full_physname_constructor;
402
403 int is_constructor;
404 int is_destructor = is_destructor_name (physname);
405 /* Need a new type prefix. */
406 char *const_prefix = method->is_const ? "C" : "";
407 char *volatile_prefix = method->is_volatile ? "V" : "";
408 char buf[20];
409 int len = (newname == NULL ? 0 : strlen (newname));
410
411 /* Nothing to do if physname already contains a fully mangled v3 abi name
412 or an operator name. */
413 if ((physname[0] == '_' && physname[1] == 'Z')
414 || is_operator_name (field_name))
415 return xstrdup (physname);
416
417 is_full_physname_constructor = is_constructor_name (physname);
418
419 is_constructor = is_full_physname_constructor
420 || (newname && strcmp (field_name, newname) == 0);
421
422 if (!is_destructor)
423 is_destructor = (strncmp (physname, "__dt", 4) == 0);
424
425 if (is_destructor || is_full_physname_constructor)
426 {
427 mangled_name = (char *) xmalloc (strlen (physname) + 1);
428 strcpy (mangled_name, physname);
429 return mangled_name;
430 }
431
432 if (len == 0)
433 {
434 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
435 }
436 else if (physname[0] == 't' || physname[0] == 'Q')
437 {
438 /* The physname for template and qualified methods already includes
439 the class name. */
440 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
441 newname = NULL;
442 len = 0;
443 }
444 else
445 {
446 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
447 volatile_prefix, len);
448 }
449 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
450 + strlen (buf) + len + strlen (physname) + 1);
451
452 mangled_name = (char *) xmalloc (mangled_name_len);
453 if (is_constructor)
454 mangled_name[0] = '\0';
455 else
456 strcpy (mangled_name, field_name);
457
458 strcat (mangled_name, buf);
459 /* If the class doesn't have a name, i.e. newname NULL, then we just
460 mangle it using 0 for the length of the class. Thus it gets mangled
461 as something starting with `::' rather than `classname::'. */
462 if (newname != NULL)
463 strcat (mangled_name, newname);
464
465 strcat (mangled_name, physname);
466 return (mangled_name);
467 }
468
469 /* Initialize the cplus_specific structure. 'cplus_specific' should
470 only be allocated for use with cplus symbols. */
471
472 static void
473 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
474 struct obstack *obstack)
475 {
476 /* A language_specific structure should not have been previously
477 initialized. */
478 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
479 gdb_assert (obstack != NULL);
480
481 gsymbol->language_specific.cplus_specific =
482 OBSTACK_ZALLOC (obstack, struct cplus_specific);
483 }
484
485 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
486 correctly allocated. For C++ symbols a cplus_specific struct is
487 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
488 OBJFILE can be NULL. */
489
490 void
491 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
492 const char *name,
493 struct obstack *obstack)
494 {
495 if (gsymbol->language == language_cplus)
496 {
497 if (gsymbol->language_specific.cplus_specific == NULL)
498 symbol_init_cplus_specific (gsymbol, obstack);
499
500 gsymbol->language_specific.cplus_specific->demangled_name = name;
501 }
502 else if (gsymbol->language == language_ada)
503 {
504 if (name == NULL)
505 {
506 gsymbol->ada_mangled = 0;
507 gsymbol->language_specific.obstack = obstack;
508 }
509 else
510 {
511 gsymbol->ada_mangled = 1;
512 gsymbol->language_specific.mangled_lang.demangled_name = name;
513 }
514 }
515 else
516 gsymbol->language_specific.mangled_lang.demangled_name = name;
517 }
518
519 /* Return the demangled name of GSYMBOL. */
520
521 const char *
522 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
523 {
524 if (gsymbol->language == language_cplus)
525 {
526 if (gsymbol->language_specific.cplus_specific != NULL)
527 return gsymbol->language_specific.cplus_specific->demangled_name;
528 else
529 return NULL;
530 }
531 else if (gsymbol->language == language_ada)
532 {
533 if (!gsymbol->ada_mangled)
534 return NULL;
535 /* Fall through. */
536 }
537
538 return gsymbol->language_specific.mangled_lang.demangled_name;
539 }
540
541 \f
542 /* Initialize the language dependent portion of a symbol
543 depending upon the language for the symbol. */
544
545 void
546 symbol_set_language (struct general_symbol_info *gsymbol,
547 enum language language,
548 struct obstack *obstack)
549 {
550 gsymbol->language = language;
551 if (gsymbol->language == language_d
552 || gsymbol->language == language_go
553 || gsymbol->language == language_java
554 || gsymbol->language == language_objc
555 || gsymbol->language == language_fortran)
556 {
557 symbol_set_demangled_name (gsymbol, NULL, obstack);
558 }
559 else if (gsymbol->language == language_ada)
560 {
561 gdb_assert (gsymbol->ada_mangled == 0);
562 gsymbol->language_specific.obstack = obstack;
563 }
564 else if (gsymbol->language == language_cplus)
565 gsymbol->language_specific.cplus_specific = NULL;
566 else
567 {
568 memset (&gsymbol->language_specific, 0,
569 sizeof (gsymbol->language_specific));
570 }
571 }
572
573 /* Functions to initialize a symbol's mangled name. */
574
575 /* Objects of this type are stored in the demangled name hash table. */
576 struct demangled_name_entry
577 {
578 const char *mangled;
579 char demangled[1];
580 };
581
582 /* Hash function for the demangled name hash. */
583
584 static hashval_t
585 hash_demangled_name_entry (const void *data)
586 {
587 const struct demangled_name_entry *e = data;
588
589 return htab_hash_string (e->mangled);
590 }
591
592 /* Equality function for the demangled name hash. */
593
594 static int
595 eq_demangled_name_entry (const void *a, const void *b)
596 {
597 const struct demangled_name_entry *da = a;
598 const struct demangled_name_entry *db = b;
599
600 return strcmp (da->mangled, db->mangled) == 0;
601 }
602
603 /* Create the hash table used for demangled names. Each hash entry is
604 a pair of strings; one for the mangled name and one for the demangled
605 name. The entry is hashed via just the mangled name. */
606
607 static void
608 create_demangled_names_hash (struct objfile *objfile)
609 {
610 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
611 The hash table code will round this up to the next prime number.
612 Choosing a much larger table size wastes memory, and saves only about
613 1% in symbol reading. */
614
615 objfile->per_bfd->demangled_names_hash = htab_create_alloc
616 (256, hash_demangled_name_entry, eq_demangled_name_entry,
617 NULL, xcalloc, xfree);
618 }
619
620 /* Try to determine the demangled name for a symbol, based on the
621 language of that symbol. If the language is set to language_auto,
622 it will attempt to find any demangling algorithm that works and
623 then set the language appropriately. The returned name is allocated
624 by the demangler and should be xfree'd. */
625
626 static char *
627 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
628 const char *mangled)
629 {
630 char *demangled = NULL;
631
632 if (gsymbol->language == language_unknown)
633 gsymbol->language = language_auto;
634
635 if (gsymbol->language == language_objc
636 || gsymbol->language == language_auto)
637 {
638 demangled =
639 objc_demangle (mangled, 0);
640 if (demangled != NULL)
641 {
642 gsymbol->language = language_objc;
643 return demangled;
644 }
645 }
646 if (gsymbol->language == language_cplus
647 || gsymbol->language == language_auto)
648 {
649 demangled =
650 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
651 if (demangled != NULL)
652 {
653 gsymbol->language = language_cplus;
654 return demangled;
655 }
656 }
657 if (gsymbol->language == language_java)
658 {
659 demangled =
660 gdb_demangle (mangled,
661 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
662 if (demangled != NULL)
663 {
664 gsymbol->language = language_java;
665 return demangled;
666 }
667 }
668 if (gsymbol->language == language_d
669 || gsymbol->language == language_auto)
670 {
671 demangled = d_demangle(mangled, 0);
672 if (demangled != NULL)
673 {
674 gsymbol->language = language_d;
675 return demangled;
676 }
677 }
678 /* FIXME(dje): Continually adding languages here is clumsy.
679 Better to just call la_demangle if !auto, and if auto then call
680 a utility routine that tries successive languages in turn and reports
681 which one it finds. I realize the la_demangle options may be different
682 for different languages but there's already a FIXME for that. */
683 if (gsymbol->language == language_go
684 || gsymbol->language == language_auto)
685 {
686 demangled = go_demangle (mangled, 0);
687 if (demangled != NULL)
688 {
689 gsymbol->language = language_go;
690 return demangled;
691 }
692 }
693
694 /* We could support `gsymbol->language == language_fortran' here to provide
695 module namespaces also for inferiors with only minimal symbol table (ELF
696 symbols). Just the mangling standard is not standardized across compilers
697 and there is no DW_AT_producer available for inferiors with only the ELF
698 symbols to check the mangling kind. */
699
700 /* Check for Ada symbols last. See comment below explaining why. */
701
702 if (gsymbol->language == language_auto)
703 {
704 const char *demangled = ada_decode (mangled);
705
706 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
707 {
708 /* Set the gsymbol language to Ada, but still return NULL.
709 Two reasons for that:
710
711 1. For Ada, we prefer computing the symbol's decoded name
712 on the fly rather than pre-compute it, in order to save
713 memory (Ada projects are typically very large).
714
715 2. There are some areas in the definition of the GNAT
716 encoding where, with a bit of bad luck, we might be able
717 to decode a non-Ada symbol, generating an incorrect
718 demangled name (Eg: names ending with "TB" for instance
719 are identified as task bodies and so stripped from
720 the decoded name returned).
721
722 Returning NULL, here, helps us get a little bit of
723 the best of both worlds. Because we're last, we should
724 not affect any of the other languages that were able to
725 demangle the symbol before us; we get to correctly tag
726 Ada symbols as such; and even if we incorrectly tagged
727 a non-Ada symbol, which should be rare, any routing
728 through the Ada language should be transparent (Ada
729 tries to behave much like C/C++ with non-Ada symbols). */
730 gsymbol->language = language_ada;
731 return NULL;
732 }
733 }
734
735 return NULL;
736 }
737
738 /* Set both the mangled and demangled (if any) names for GSYMBOL based
739 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
740 objfile's obstack; but if COPY_NAME is 0 and if NAME is
741 NUL-terminated, then this function assumes that NAME is already
742 correctly saved (either permanently or with a lifetime tied to the
743 objfile), and it will not be copied.
744
745 The hash table corresponding to OBJFILE is used, and the memory
746 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
747 so the pointer can be discarded after calling this function. */
748
749 /* We have to be careful when dealing with Java names: when we run
750 into a Java minimal symbol, we don't know it's a Java symbol, so it
751 gets demangled as a C++ name. This is unfortunate, but there's not
752 much we can do about it: but when demangling partial symbols and
753 regular symbols, we'd better not reuse the wrong demangled name.
754 (See PR gdb/1039.) We solve this by putting a distinctive prefix
755 on Java names when storing them in the hash table. */
756
757 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
758 don't mind the Java prefix so much: different languages have
759 different demangling requirements, so it's only natural that we
760 need to keep language data around in our demangling cache. But
761 it's not good that the minimal symbol has the wrong demangled name.
762 Unfortunately, I can't think of any easy solution to that
763 problem. */
764
765 #define JAVA_PREFIX "##JAVA$$"
766 #define JAVA_PREFIX_LEN 8
767
768 void
769 symbol_set_names (struct general_symbol_info *gsymbol,
770 const char *linkage_name, int len, int copy_name,
771 struct objfile *objfile)
772 {
773 struct demangled_name_entry **slot;
774 /* A 0-terminated copy of the linkage name. */
775 const char *linkage_name_copy;
776 /* A copy of the linkage name that might have a special Java prefix
777 added to it, for use when looking names up in the hash table. */
778 const char *lookup_name;
779 /* The length of lookup_name. */
780 int lookup_len;
781 struct demangled_name_entry entry;
782 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
783
784 if (gsymbol->language == language_ada)
785 {
786 /* In Ada, we do the symbol lookups using the mangled name, so
787 we can save some space by not storing the demangled name.
788
789 As a side note, we have also observed some overlap between
790 the C++ mangling and Ada mangling, similarly to what has
791 been observed with Java. Because we don't store the demangled
792 name with the symbol, we don't need to use the same trick
793 as Java. */
794 if (!copy_name)
795 gsymbol->name = linkage_name;
796 else
797 {
798 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
799
800 memcpy (name, linkage_name, len);
801 name[len] = '\0';
802 gsymbol->name = name;
803 }
804 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
805
806 return;
807 }
808
809 if (per_bfd->demangled_names_hash == NULL)
810 create_demangled_names_hash (objfile);
811
812 /* The stabs reader generally provides names that are not
813 NUL-terminated; most of the other readers don't do this, so we
814 can just use the given copy, unless we're in the Java case. */
815 if (gsymbol->language == language_java)
816 {
817 char *alloc_name;
818
819 lookup_len = len + JAVA_PREFIX_LEN;
820 alloc_name = alloca (lookup_len + 1);
821 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
822 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
823 alloc_name[lookup_len] = '\0';
824
825 lookup_name = alloc_name;
826 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
827 }
828 else if (linkage_name[len] != '\0')
829 {
830 char *alloc_name;
831
832 lookup_len = len;
833 alloc_name = alloca (lookup_len + 1);
834 memcpy (alloc_name, linkage_name, len);
835 alloc_name[lookup_len] = '\0';
836
837 lookup_name = alloc_name;
838 linkage_name_copy = alloc_name;
839 }
840 else
841 {
842 lookup_len = len;
843 lookup_name = linkage_name;
844 linkage_name_copy = linkage_name;
845 }
846
847 entry.mangled = lookup_name;
848 slot = ((struct demangled_name_entry **)
849 htab_find_slot (per_bfd->demangled_names_hash,
850 &entry, INSERT));
851
852 /* If this name is not in the hash table, add it. */
853 if (*slot == NULL
854 /* A C version of the symbol may have already snuck into the table.
855 This happens to, e.g., main.init (__go_init_main). Cope. */
856 || (gsymbol->language == language_go
857 && (*slot)->demangled[0] == '\0'))
858 {
859 char *demangled_name = symbol_find_demangled_name (gsymbol,
860 linkage_name_copy);
861 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
862
863 /* Suppose we have demangled_name==NULL, copy_name==0, and
864 lookup_name==linkage_name. In this case, we already have the
865 mangled name saved, and we don't have a demangled name. So,
866 you might think we could save a little space by not recording
867 this in the hash table at all.
868
869 It turns out that it is actually important to still save such
870 an entry in the hash table, because storing this name gives
871 us better bcache hit rates for partial symbols. */
872 if (!copy_name && lookup_name == linkage_name)
873 {
874 *slot = obstack_alloc (&per_bfd->storage_obstack,
875 offsetof (struct demangled_name_entry,
876 demangled)
877 + demangled_len + 1);
878 (*slot)->mangled = lookup_name;
879 }
880 else
881 {
882 char *mangled_ptr;
883
884 /* If we must copy the mangled name, put it directly after
885 the demangled name so we can have a single
886 allocation. */
887 *slot = obstack_alloc (&per_bfd->storage_obstack,
888 offsetof (struct demangled_name_entry,
889 demangled)
890 + lookup_len + demangled_len + 2);
891 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
892 strcpy (mangled_ptr, lookup_name);
893 (*slot)->mangled = mangled_ptr;
894 }
895
896 if (demangled_name != NULL)
897 {
898 strcpy ((*slot)->demangled, demangled_name);
899 xfree (demangled_name);
900 }
901 else
902 (*slot)->demangled[0] = '\0';
903 }
904
905 gsymbol->name = (*slot)->mangled + lookup_len - len;
906 if ((*slot)->demangled[0] != '\0')
907 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
908 &per_bfd->storage_obstack);
909 else
910 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
911 }
912
913 /* Return the source code name of a symbol. In languages where
914 demangling is necessary, this is the demangled name. */
915
916 const char *
917 symbol_natural_name (const struct general_symbol_info *gsymbol)
918 {
919 switch (gsymbol->language)
920 {
921 case language_cplus:
922 case language_d:
923 case language_go:
924 case language_java:
925 case language_objc:
926 case language_fortran:
927 if (symbol_get_demangled_name (gsymbol) != NULL)
928 return symbol_get_demangled_name (gsymbol);
929 break;
930 case language_ada:
931 return ada_decode_symbol (gsymbol);
932 default:
933 break;
934 }
935 return gsymbol->name;
936 }
937
938 /* Return the demangled name for a symbol based on the language for
939 that symbol. If no demangled name exists, return NULL. */
940
941 const char *
942 symbol_demangled_name (const struct general_symbol_info *gsymbol)
943 {
944 const char *dem_name = NULL;
945
946 switch (gsymbol->language)
947 {
948 case language_cplus:
949 case language_d:
950 case language_go:
951 case language_java:
952 case language_objc:
953 case language_fortran:
954 dem_name = symbol_get_demangled_name (gsymbol);
955 break;
956 case language_ada:
957 dem_name = ada_decode_symbol (gsymbol);
958 break;
959 default:
960 break;
961 }
962 return dem_name;
963 }
964
965 /* Return the search name of a symbol---generally the demangled or
966 linkage name of the symbol, depending on how it will be searched for.
967 If there is no distinct demangled name, then returns the same value
968 (same pointer) as SYMBOL_LINKAGE_NAME. */
969
970 const char *
971 symbol_search_name (const struct general_symbol_info *gsymbol)
972 {
973 if (gsymbol->language == language_ada)
974 return gsymbol->name;
975 else
976 return symbol_natural_name (gsymbol);
977 }
978
979 /* Initialize the structure fields to zero values. */
980
981 void
982 init_sal (struct symtab_and_line *sal)
983 {
984 memset (sal, 0, sizeof (*sal));
985 }
986 \f
987
988 /* Return 1 if the two sections are the same, or if they could
989 plausibly be copies of each other, one in an original object
990 file and another in a separated debug file. */
991
992 int
993 matching_obj_sections (struct obj_section *obj_first,
994 struct obj_section *obj_second)
995 {
996 asection *first = obj_first? obj_first->the_bfd_section : NULL;
997 asection *second = obj_second? obj_second->the_bfd_section : NULL;
998 struct objfile *obj;
999
1000 /* If they're the same section, then they match. */
1001 if (first == second)
1002 return 1;
1003
1004 /* If either is NULL, give up. */
1005 if (first == NULL || second == NULL)
1006 return 0;
1007
1008 /* This doesn't apply to absolute symbols. */
1009 if (first->owner == NULL || second->owner == NULL)
1010 return 0;
1011
1012 /* If they're in the same object file, they must be different sections. */
1013 if (first->owner == second->owner)
1014 return 0;
1015
1016 /* Check whether the two sections are potentially corresponding. They must
1017 have the same size, address, and name. We can't compare section indexes,
1018 which would be more reliable, because some sections may have been
1019 stripped. */
1020 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1021 return 0;
1022
1023 /* In-memory addresses may start at a different offset, relativize them. */
1024 if (bfd_get_section_vma (first->owner, first)
1025 - bfd_get_start_address (first->owner)
1026 != bfd_get_section_vma (second->owner, second)
1027 - bfd_get_start_address (second->owner))
1028 return 0;
1029
1030 if (bfd_get_section_name (first->owner, first) == NULL
1031 || bfd_get_section_name (second->owner, second) == NULL
1032 || strcmp (bfd_get_section_name (first->owner, first),
1033 bfd_get_section_name (second->owner, second)) != 0)
1034 return 0;
1035
1036 /* Otherwise check that they are in corresponding objfiles. */
1037
1038 ALL_OBJFILES (obj)
1039 if (obj->obfd == first->owner)
1040 break;
1041 gdb_assert (obj != NULL);
1042
1043 if (obj->separate_debug_objfile != NULL
1044 && obj->separate_debug_objfile->obfd == second->owner)
1045 return 1;
1046 if (obj->separate_debug_objfile_backlink != NULL
1047 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1048 return 1;
1049
1050 return 0;
1051 }
1052
1053 struct symtab *
1054 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
1055 {
1056 struct objfile *objfile;
1057 struct bound_minimal_symbol msymbol;
1058
1059 /* If we know that this is not a text address, return failure. This is
1060 necessary because we loop based on texthigh and textlow, which do
1061 not include the data ranges. */
1062 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1063 if (msymbol.minsym
1064 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1065 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1066 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1067 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1068 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1069 return NULL;
1070
1071 ALL_OBJFILES (objfile)
1072 {
1073 struct symtab *result = NULL;
1074
1075 if (objfile->sf)
1076 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1077 pc, section, 0);
1078 if (result)
1079 return result;
1080 }
1081
1082 return NULL;
1083 }
1084 \f
1085 /* Debug symbols usually don't have section information. We need to dig that
1086 out of the minimal symbols and stash that in the debug symbol. */
1087
1088 void
1089 fixup_section (struct general_symbol_info *ginfo,
1090 CORE_ADDR addr, struct objfile *objfile)
1091 {
1092 struct minimal_symbol *msym;
1093
1094 /* First, check whether a minimal symbol with the same name exists
1095 and points to the same address. The address check is required
1096 e.g. on PowerPC64, where the minimal symbol for a function will
1097 point to the function descriptor, while the debug symbol will
1098 point to the actual function code. */
1099 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1100 if (msym)
1101 ginfo->section = MSYMBOL_SECTION (msym);
1102 else
1103 {
1104 /* Static, function-local variables do appear in the linker
1105 (minimal) symbols, but are frequently given names that won't
1106 be found via lookup_minimal_symbol(). E.g., it has been
1107 observed in frv-uclinux (ELF) executables that a static,
1108 function-local variable named "foo" might appear in the
1109 linker symbols as "foo.6" or "foo.3". Thus, there is no
1110 point in attempting to extend the lookup-by-name mechanism to
1111 handle this case due to the fact that there can be multiple
1112 names.
1113
1114 So, instead, search the section table when lookup by name has
1115 failed. The ``addr'' and ``endaddr'' fields may have already
1116 been relocated. If so, the relocation offset (i.e. the
1117 ANOFFSET value) needs to be subtracted from these values when
1118 performing the comparison. We unconditionally subtract it,
1119 because, when no relocation has been performed, the ANOFFSET
1120 value will simply be zero.
1121
1122 The address of the symbol whose section we're fixing up HAS
1123 NOT BEEN adjusted (relocated) yet. It can't have been since
1124 the section isn't yet known and knowing the section is
1125 necessary in order to add the correct relocation value. In
1126 other words, we wouldn't even be in this function (attempting
1127 to compute the section) if it were already known.
1128
1129 Note that it is possible to search the minimal symbols
1130 (subtracting the relocation value if necessary) to find the
1131 matching minimal symbol, but this is overkill and much less
1132 efficient. It is not necessary to find the matching minimal
1133 symbol, only its section.
1134
1135 Note that this technique (of doing a section table search)
1136 can fail when unrelocated section addresses overlap. For
1137 this reason, we still attempt a lookup by name prior to doing
1138 a search of the section table. */
1139
1140 struct obj_section *s;
1141 int fallback = -1;
1142
1143 ALL_OBJFILE_OSECTIONS (objfile, s)
1144 {
1145 int idx = s - objfile->sections;
1146 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1147
1148 if (fallback == -1)
1149 fallback = idx;
1150
1151 if (obj_section_addr (s) - offset <= addr
1152 && addr < obj_section_endaddr (s) - offset)
1153 {
1154 ginfo->section = idx;
1155 return;
1156 }
1157 }
1158
1159 /* If we didn't find the section, assume it is in the first
1160 section. If there is no allocated section, then it hardly
1161 matters what we pick, so just pick zero. */
1162 if (fallback == -1)
1163 ginfo->section = 0;
1164 else
1165 ginfo->section = fallback;
1166 }
1167 }
1168
1169 struct symbol *
1170 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1171 {
1172 CORE_ADDR addr;
1173
1174 if (!sym)
1175 return NULL;
1176
1177 /* We either have an OBJFILE, or we can get at it from the sym's
1178 symtab. Anything else is a bug. */
1179 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1180
1181 if (objfile == NULL)
1182 objfile = SYMBOL_SYMTAB (sym)->objfile;
1183
1184 if (SYMBOL_OBJ_SECTION (objfile, sym))
1185 return sym;
1186
1187 /* We should have an objfile by now. */
1188 gdb_assert (objfile);
1189
1190 switch (SYMBOL_CLASS (sym))
1191 {
1192 case LOC_STATIC:
1193 case LOC_LABEL:
1194 addr = SYMBOL_VALUE_ADDRESS (sym);
1195 break;
1196 case LOC_BLOCK:
1197 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1198 break;
1199
1200 default:
1201 /* Nothing else will be listed in the minsyms -- no use looking
1202 it up. */
1203 return sym;
1204 }
1205
1206 fixup_section (&sym->ginfo, addr, objfile);
1207
1208 return sym;
1209 }
1210
1211 /* Compute the demangled form of NAME as used by the various symbol
1212 lookup functions. The result is stored in *RESULT_NAME. Returns a
1213 cleanup which can be used to clean up the result.
1214
1215 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1216 Normally, Ada symbol lookups are performed using the encoded name
1217 rather than the demangled name, and so it might seem to make sense
1218 for this function to return an encoded version of NAME.
1219 Unfortunately, we cannot do this, because this function is used in
1220 circumstances where it is not appropriate to try to encode NAME.
1221 For instance, when displaying the frame info, we demangle the name
1222 of each parameter, and then perform a symbol lookup inside our
1223 function using that demangled name. In Ada, certain functions
1224 have internally-generated parameters whose name contain uppercase
1225 characters. Encoding those name would result in those uppercase
1226 characters to become lowercase, and thus cause the symbol lookup
1227 to fail. */
1228
1229 struct cleanup *
1230 demangle_for_lookup (const char *name, enum language lang,
1231 const char **result_name)
1232 {
1233 char *demangled_name = NULL;
1234 const char *modified_name = NULL;
1235 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1236
1237 modified_name = name;
1238
1239 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1240 lookup, so we can always binary search. */
1241 if (lang == language_cplus)
1242 {
1243 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1244 if (demangled_name)
1245 {
1246 modified_name = demangled_name;
1247 make_cleanup (xfree, demangled_name);
1248 }
1249 else
1250 {
1251 /* If we were given a non-mangled name, canonicalize it
1252 according to the language (so far only for C++). */
1253 demangled_name = cp_canonicalize_string (name);
1254 if (demangled_name)
1255 {
1256 modified_name = demangled_name;
1257 make_cleanup (xfree, demangled_name);
1258 }
1259 }
1260 }
1261 else if (lang == language_java)
1262 {
1263 demangled_name = gdb_demangle (name,
1264 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1265 if (demangled_name)
1266 {
1267 modified_name = demangled_name;
1268 make_cleanup (xfree, demangled_name);
1269 }
1270 }
1271 else if (lang == language_d)
1272 {
1273 demangled_name = d_demangle (name, 0);
1274 if (demangled_name)
1275 {
1276 modified_name = demangled_name;
1277 make_cleanup (xfree, demangled_name);
1278 }
1279 }
1280 else if (lang == language_go)
1281 {
1282 demangled_name = go_demangle (name, 0);
1283 if (demangled_name)
1284 {
1285 modified_name = demangled_name;
1286 make_cleanup (xfree, demangled_name);
1287 }
1288 }
1289
1290 *result_name = modified_name;
1291 return cleanup;
1292 }
1293
1294 /* See symtab.h.
1295
1296 This function (or rather its subordinates) have a bunch of loops and
1297 it would seem to be attractive to put in some QUIT's (though I'm not really
1298 sure whether it can run long enough to be really important). But there
1299 are a few calls for which it would appear to be bad news to quit
1300 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1301 that there is C++ code below which can error(), but that probably
1302 doesn't affect these calls since they are looking for a known
1303 variable and thus can probably assume it will never hit the C++
1304 code). */
1305
1306 struct symbol *
1307 lookup_symbol_in_language (const char *name, const struct block *block,
1308 const domain_enum domain, enum language lang,
1309 struct field_of_this_result *is_a_field_of_this)
1310 {
1311 const char *modified_name;
1312 struct symbol *returnval;
1313 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1314
1315 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1316 is_a_field_of_this);
1317 do_cleanups (cleanup);
1318
1319 return returnval;
1320 }
1321
1322 /* See symtab.h. */
1323
1324 struct symbol *
1325 lookup_symbol (const char *name, const struct block *block,
1326 domain_enum domain,
1327 struct field_of_this_result *is_a_field_of_this)
1328 {
1329 return lookup_symbol_in_language (name, block, domain,
1330 current_language->la_language,
1331 is_a_field_of_this);
1332 }
1333
1334 /* See symtab.h. */
1335
1336 struct symbol *
1337 lookup_language_this (const struct language_defn *lang,
1338 const struct block *block)
1339 {
1340 if (lang->la_name_of_this == NULL || block == NULL)
1341 return NULL;
1342
1343 while (block)
1344 {
1345 struct symbol *sym;
1346
1347 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1348 if (sym != NULL)
1349 {
1350 block_found = block;
1351 return sym;
1352 }
1353 if (BLOCK_FUNCTION (block))
1354 break;
1355 block = BLOCK_SUPERBLOCK (block);
1356 }
1357
1358 return NULL;
1359 }
1360
1361 /* Given TYPE, a structure/union,
1362 return 1 if the component named NAME from the ultimate target
1363 structure/union is defined, otherwise, return 0. */
1364
1365 static int
1366 check_field (struct type *type, const char *name,
1367 struct field_of_this_result *is_a_field_of_this)
1368 {
1369 int i;
1370
1371 /* The type may be a stub. */
1372 CHECK_TYPEDEF (type);
1373
1374 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1375 {
1376 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1377
1378 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1379 {
1380 is_a_field_of_this->type = type;
1381 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1382 return 1;
1383 }
1384 }
1385
1386 /* C++: If it was not found as a data field, then try to return it
1387 as a pointer to a method. */
1388
1389 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1390 {
1391 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1392 {
1393 is_a_field_of_this->type = type;
1394 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1395 return 1;
1396 }
1397 }
1398
1399 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1400 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1401 return 1;
1402
1403 return 0;
1404 }
1405
1406 /* Behave like lookup_symbol except that NAME is the natural name
1407 (e.g., demangled name) of the symbol that we're looking for. */
1408
1409 static struct symbol *
1410 lookup_symbol_aux (const char *name, const struct block *block,
1411 const domain_enum domain, enum language language,
1412 struct field_of_this_result *is_a_field_of_this)
1413 {
1414 struct symbol *sym;
1415 const struct language_defn *langdef;
1416
1417 /* Make sure we do something sensible with is_a_field_of_this, since
1418 the callers that set this parameter to some non-null value will
1419 certainly use it later. If we don't set it, the contents of
1420 is_a_field_of_this are undefined. */
1421 if (is_a_field_of_this != NULL)
1422 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1423
1424 /* Search specified block and its superiors. Don't search
1425 STATIC_BLOCK or GLOBAL_BLOCK. */
1426
1427 sym = lookup_symbol_aux_local (name, block, domain, language);
1428 if (sym != NULL)
1429 return sym;
1430
1431 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1432 check to see if NAME is a field of `this'. */
1433
1434 langdef = language_def (language);
1435
1436 /* Don't do this check if we are searching for a struct. It will
1437 not be found by check_field, but will be found by other
1438 means. */
1439 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1440 {
1441 struct symbol *sym = lookup_language_this (langdef, block);
1442
1443 if (sym)
1444 {
1445 struct type *t = sym->type;
1446
1447 /* I'm not really sure that type of this can ever
1448 be typedefed; just be safe. */
1449 CHECK_TYPEDEF (t);
1450 if (TYPE_CODE (t) == TYPE_CODE_PTR
1451 || TYPE_CODE (t) == TYPE_CODE_REF)
1452 t = TYPE_TARGET_TYPE (t);
1453
1454 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1455 && TYPE_CODE (t) != TYPE_CODE_UNION)
1456 error (_("Internal error: `%s' is not an aggregate"),
1457 langdef->la_name_of_this);
1458
1459 if (check_field (t, name, is_a_field_of_this))
1460 return NULL;
1461 }
1462 }
1463
1464 /* Now do whatever is appropriate for LANGUAGE to look
1465 up static and global variables. */
1466
1467 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1468 if (sym != NULL)
1469 return sym;
1470
1471 /* Now search all static file-level symbols. Not strictly correct,
1472 but more useful than an error. */
1473
1474 return lookup_static_symbol_aux (name, domain);
1475 }
1476
1477 /* See symtab.h. */
1478
1479 struct symbol *
1480 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1481 {
1482 struct objfile *objfile;
1483 struct symbol *sym;
1484
1485 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1486 if (sym != NULL)
1487 return sym;
1488
1489 ALL_OBJFILES (objfile)
1490 {
1491 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1492 if (sym != NULL)
1493 return sym;
1494 }
1495
1496 return NULL;
1497 }
1498
1499 /* Check to see if the symbol is defined in BLOCK or its superiors.
1500 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1501
1502 static struct symbol *
1503 lookup_symbol_aux_local (const char *name, const struct block *block,
1504 const domain_enum domain,
1505 enum language language)
1506 {
1507 struct symbol *sym;
1508 const struct block *static_block = block_static_block (block);
1509 const char *scope = block_scope (block);
1510
1511 /* Check if either no block is specified or it's a global block. */
1512
1513 if (static_block == NULL)
1514 return NULL;
1515
1516 while (block != static_block)
1517 {
1518 sym = lookup_symbol_aux_block (name, block, domain);
1519 if (sym != NULL)
1520 return sym;
1521
1522 if (language == language_cplus || language == language_fortran)
1523 {
1524 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1525 domain);
1526 if (sym != NULL)
1527 return sym;
1528 }
1529
1530 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1531 break;
1532 block = BLOCK_SUPERBLOCK (block);
1533 }
1534
1535 /* We've reached the end of the function without finding a result. */
1536
1537 return NULL;
1538 }
1539
1540 /* See symtab.h. */
1541
1542 struct objfile *
1543 lookup_objfile_from_block (const struct block *block)
1544 {
1545 struct objfile *obj;
1546 struct symtab *s;
1547
1548 if (block == NULL)
1549 return NULL;
1550
1551 block = block_global_block (block);
1552 /* Go through SYMTABS.
1553 Non-primary symtabs share the block vector with their primary symtabs
1554 so we use ALL_PRIMARY_SYMTABS here instead of ALL_SYMTABS. */
1555 ALL_PRIMARY_SYMTABS (obj, s)
1556 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1557 {
1558 if (obj->separate_debug_objfile_backlink)
1559 obj = obj->separate_debug_objfile_backlink;
1560
1561 return obj;
1562 }
1563
1564 return NULL;
1565 }
1566
1567 /* See symtab.h. */
1568
1569 struct symbol *
1570 lookup_symbol_aux_block (const char *name, const struct block *block,
1571 const domain_enum domain)
1572 {
1573 struct symbol *sym;
1574
1575 sym = lookup_block_symbol (block, name, domain);
1576 if (sym)
1577 {
1578 block_found = block;
1579 return fixup_symbol_section (sym, NULL);
1580 }
1581
1582 return NULL;
1583 }
1584
1585 /* See symtab.h. */
1586
1587 struct symbol *
1588 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1589 const char *name,
1590 const domain_enum domain)
1591 {
1592 const struct objfile *objfile;
1593 struct symbol *sym;
1594 const struct blockvector *bv;
1595 const struct block *block;
1596 struct symtab *s;
1597
1598 for (objfile = main_objfile;
1599 objfile;
1600 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1601 {
1602 /* Go through symtabs. */
1603 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1604 {
1605 bv = BLOCKVECTOR (s);
1606 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1607 sym = lookup_block_symbol (block, name, domain);
1608 if (sym)
1609 {
1610 block_found = block;
1611 return fixup_symbol_section (sym, (struct objfile *)objfile);
1612 }
1613 }
1614
1615 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1616 name, domain);
1617 if (sym)
1618 return sym;
1619 }
1620
1621 return NULL;
1622 }
1623
1624 /* Check to see if the symbol is defined in one of the OBJFILE's
1625 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1626 depending on whether or not we want to search global symbols or
1627 static symbols. */
1628
1629 static struct symbol *
1630 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1631 const char *name, const domain_enum domain)
1632 {
1633 struct symbol *sym = NULL;
1634 const struct blockvector *bv;
1635 const struct block *block;
1636 struct symtab *s;
1637
1638 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1639 {
1640 bv = BLOCKVECTOR (s);
1641 block = BLOCKVECTOR_BLOCK (bv, block_index);
1642 sym = lookup_block_symbol (block, name, domain);
1643 if (sym)
1644 {
1645 block_found = block;
1646 return fixup_symbol_section (sym, objfile);
1647 }
1648 }
1649
1650 return NULL;
1651 }
1652
1653 /* Same as lookup_symbol_aux_objfile, except that it searches all
1654 objfiles. Return the first match found. */
1655
1656 static struct symbol *
1657 lookup_symbol_aux_symtabs (int block_index, const char *name,
1658 const domain_enum domain)
1659 {
1660 struct symbol *sym;
1661 struct objfile *objfile;
1662
1663 ALL_OBJFILES (objfile)
1664 {
1665 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1666 if (sym)
1667 return sym;
1668 }
1669
1670 return NULL;
1671 }
1672
1673 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1674 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1675 and all related objfiles. */
1676
1677 static struct symbol *
1678 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1679 const char *linkage_name,
1680 domain_enum domain)
1681 {
1682 enum language lang = current_language->la_language;
1683 const char *modified_name;
1684 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1685 &modified_name);
1686 struct objfile *main_objfile, *cur_objfile;
1687
1688 if (objfile->separate_debug_objfile_backlink)
1689 main_objfile = objfile->separate_debug_objfile_backlink;
1690 else
1691 main_objfile = objfile;
1692
1693 for (cur_objfile = main_objfile;
1694 cur_objfile;
1695 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1696 {
1697 struct symbol *sym;
1698
1699 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1700 modified_name, domain);
1701 if (sym == NULL)
1702 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1703 modified_name, domain);
1704 if (sym != NULL)
1705 {
1706 do_cleanups (cleanup);
1707 return sym;
1708 }
1709 }
1710
1711 do_cleanups (cleanup);
1712 return NULL;
1713 }
1714
1715 /* A helper function that throws an exception when a symbol was found
1716 in a psymtab but not in a symtab. */
1717
1718 static void ATTRIBUTE_NORETURN
1719 error_in_psymtab_expansion (int block_index, const char *name,
1720 struct symtab *symtab)
1721 {
1722 error (_("\
1723 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1724 %s may be an inlined function, or may be a template function\n \
1725 (if a template, try specifying an instantiation: %s<type>)."),
1726 block_index == GLOBAL_BLOCK ? "global" : "static",
1727 name, symtab_to_filename_for_display (symtab), name, name);
1728 }
1729
1730 /* A helper function for lookup_symbol_aux that interfaces with the
1731 "quick" symbol table functions. */
1732
1733 static struct symbol *
1734 lookup_symbol_aux_quick (struct objfile *objfile, int block_index,
1735 const char *name, const domain_enum domain)
1736 {
1737 struct symtab *symtab;
1738 const struct blockvector *bv;
1739 const struct block *block;
1740 struct symbol *sym;
1741
1742 if (!objfile->sf)
1743 return NULL;
1744 symtab = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
1745 if (!symtab)
1746 return NULL;
1747
1748 bv = BLOCKVECTOR (symtab);
1749 block = BLOCKVECTOR_BLOCK (bv, block_index);
1750 sym = lookup_block_symbol (block, name, domain);
1751 if (!sym)
1752 error_in_psymtab_expansion (block_index, name, symtab);
1753 block_found = block;
1754 return fixup_symbol_section (sym, objfile);
1755 }
1756
1757 /* See symtab.h. */
1758
1759 struct symbol *
1760 basic_lookup_symbol_nonlocal (const char *name,
1761 const struct block *block,
1762 const domain_enum domain)
1763 {
1764 struct symbol *sym;
1765
1766 /* NOTE: carlton/2003-05-19: The comments below were written when
1767 this (or what turned into this) was part of lookup_symbol_aux;
1768 I'm much less worried about these questions now, since these
1769 decisions have turned out well, but I leave these comments here
1770 for posterity. */
1771
1772 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1773 not it would be appropriate to search the current global block
1774 here as well. (That's what this code used to do before the
1775 is_a_field_of_this check was moved up.) On the one hand, it's
1776 redundant with the lookup_symbol_aux_symtabs search that happens
1777 next. On the other hand, if decode_line_1 is passed an argument
1778 like filename:var, then the user presumably wants 'var' to be
1779 searched for in filename. On the third hand, there shouldn't be
1780 multiple global variables all of which are named 'var', and it's
1781 not like decode_line_1 has ever restricted its search to only
1782 global variables in a single filename. All in all, only
1783 searching the static block here seems best: it's correct and it's
1784 cleanest. */
1785
1786 /* NOTE: carlton/2002-12-05: There's also a possible performance
1787 issue here: if you usually search for global symbols in the
1788 current file, then it would be slightly better to search the
1789 current global block before searching all the symtabs. But there
1790 are other factors that have a much greater effect on performance
1791 than that one, so I don't think we should worry about that for
1792 now. */
1793
1794 sym = lookup_symbol_static (name, block, domain);
1795 if (sym != NULL)
1796 return sym;
1797
1798 return lookup_symbol_global (name, block, domain);
1799 }
1800
1801 /* See symtab.h. */
1802
1803 struct symbol *
1804 lookup_symbol_static (const char *name,
1805 const struct block *block,
1806 const domain_enum domain)
1807 {
1808 const struct block *static_block = block_static_block (block);
1809
1810 if (static_block != NULL)
1811 return lookup_symbol_aux_block (name, static_block, domain);
1812 else
1813 return NULL;
1814 }
1815
1816 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1817
1818 struct global_sym_lookup_data
1819 {
1820 /* The name of the symbol we are searching for. */
1821 const char *name;
1822
1823 /* The domain to use for our search. */
1824 domain_enum domain;
1825
1826 /* The field where the callback should store the symbol if found.
1827 It should be initialized to NULL before the search is started. */
1828 struct symbol *result;
1829 };
1830
1831 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1832 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1833 OBJFILE. The arguments for the search are passed via CB_DATA,
1834 which in reality is a pointer to struct global_sym_lookup_data. */
1835
1836 static int
1837 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1838 void *cb_data)
1839 {
1840 struct global_sym_lookup_data *data =
1841 (struct global_sym_lookup_data *) cb_data;
1842
1843 gdb_assert (data->result == NULL);
1844
1845 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1846 data->name, data->domain);
1847 if (data->result == NULL)
1848 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1849 data->name, data->domain);
1850
1851 /* If we found a match, tell the iterator to stop. Otherwise,
1852 keep going. */
1853 return (data->result != NULL);
1854 }
1855
1856 /* See symtab.h. */
1857
1858 struct symbol *
1859 lookup_symbol_global (const char *name,
1860 const struct block *block,
1861 const domain_enum domain)
1862 {
1863 struct symbol *sym = NULL;
1864 struct objfile *objfile = NULL;
1865 struct global_sym_lookup_data lookup_data;
1866
1867 /* Call library-specific lookup procedure. */
1868 objfile = lookup_objfile_from_block (block);
1869 if (objfile != NULL)
1870 sym = solib_global_lookup (objfile, name, domain);
1871 if (sym != NULL)
1872 return sym;
1873
1874 memset (&lookup_data, 0, sizeof (lookup_data));
1875 lookup_data.name = name;
1876 lookup_data.domain = domain;
1877 gdbarch_iterate_over_objfiles_in_search_order
1878 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1879 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1880
1881 return lookup_data.result;
1882 }
1883
1884 int
1885 symbol_matches_domain (enum language symbol_language,
1886 domain_enum symbol_domain,
1887 domain_enum domain)
1888 {
1889 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1890 A Java class declaration also defines a typedef for the class.
1891 Similarly, any Ada type declaration implicitly defines a typedef. */
1892 if (symbol_language == language_cplus
1893 || symbol_language == language_d
1894 || symbol_language == language_java
1895 || symbol_language == language_ada)
1896 {
1897 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1898 && symbol_domain == STRUCT_DOMAIN)
1899 return 1;
1900 }
1901 /* For all other languages, strict match is required. */
1902 return (symbol_domain == domain);
1903 }
1904
1905 /* See symtab.h. */
1906
1907 struct type *
1908 lookup_transparent_type (const char *name)
1909 {
1910 return current_language->la_lookup_transparent_type (name);
1911 }
1912
1913 /* A helper for basic_lookup_transparent_type that interfaces with the
1914 "quick" symbol table functions. */
1915
1916 static struct type *
1917 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
1918 const char *name)
1919 {
1920 struct symtab *symtab;
1921 const struct blockvector *bv;
1922 struct block *block;
1923 struct symbol *sym;
1924
1925 if (!objfile->sf)
1926 return NULL;
1927 symtab = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
1928 STRUCT_DOMAIN);
1929 if (!symtab)
1930 return NULL;
1931
1932 bv = BLOCKVECTOR (symtab);
1933 block = BLOCKVECTOR_BLOCK (bv, block_index);
1934 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1935 if (!sym)
1936 error_in_psymtab_expansion (block_index, name, symtab);
1937
1938 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1939 return SYMBOL_TYPE (sym);
1940
1941 return NULL;
1942 }
1943
1944 /* The standard implementation of lookup_transparent_type. This code
1945 was modeled on lookup_symbol -- the parts not relevant to looking
1946 up types were just left out. In particular it's assumed here that
1947 types are available in STRUCT_DOMAIN and only in file-static or
1948 global blocks. */
1949
1950 struct type *
1951 basic_lookup_transparent_type (const char *name)
1952 {
1953 struct symbol *sym;
1954 struct symtab *s = NULL;
1955 const struct blockvector *bv;
1956 struct objfile *objfile;
1957 struct block *block;
1958 struct type *t;
1959
1960 /* Now search all the global symbols. Do the symtab's first, then
1961 check the psymtab's. If a psymtab indicates the existence
1962 of the desired name as a global, then do psymtab-to-symtab
1963 conversion on the fly and return the found symbol. */
1964
1965 ALL_OBJFILES (objfile)
1966 {
1967 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1968 {
1969 bv = BLOCKVECTOR (s);
1970 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1971 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1972 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1973 {
1974 return SYMBOL_TYPE (sym);
1975 }
1976 }
1977 }
1978
1979 ALL_OBJFILES (objfile)
1980 {
1981 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1982 if (t)
1983 return t;
1984 }
1985
1986 /* Now search the static file-level symbols.
1987 Not strictly correct, but more useful than an error.
1988 Do the symtab's first, then
1989 check the psymtab's. If a psymtab indicates the existence
1990 of the desired name as a file-level static, then do psymtab-to-symtab
1991 conversion on the fly and return the found symbol. */
1992
1993 ALL_OBJFILES (objfile)
1994 {
1995 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1996 {
1997 bv = BLOCKVECTOR (s);
1998 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1999 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
2000 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2001 {
2002 return SYMBOL_TYPE (sym);
2003 }
2004 }
2005 }
2006
2007 ALL_OBJFILES (objfile)
2008 {
2009 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2010 if (t)
2011 return t;
2012 }
2013
2014 return (struct type *) 0;
2015 }
2016
2017 /* See symtab.h.
2018
2019 Note that if NAME is the demangled form of a C++ symbol, we will fail
2020 to find a match during the binary search of the non-encoded names, but
2021 for now we don't worry about the slight inefficiency of looking for
2022 a match we'll never find, since it will go pretty quick. Once the
2023 binary search terminates, we drop through and do a straight linear
2024 search on the symbols. Each symbol which is marked as being a ObjC/C++
2025 symbol (language_cplus or language_objc set) has both the encoded and
2026 non-encoded names tested for a match. */
2027
2028 struct symbol *
2029 lookup_block_symbol (const struct block *block, const char *name,
2030 const domain_enum domain)
2031 {
2032 struct block_iterator iter;
2033 struct symbol *sym;
2034
2035 if (!BLOCK_FUNCTION (block))
2036 {
2037 for (sym = block_iter_name_first (block, name, &iter);
2038 sym != NULL;
2039 sym = block_iter_name_next (name, &iter))
2040 {
2041 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2042 SYMBOL_DOMAIN (sym), domain))
2043 return sym;
2044 }
2045 return NULL;
2046 }
2047 else
2048 {
2049 /* Note that parameter symbols do not always show up last in the
2050 list; this loop makes sure to take anything else other than
2051 parameter symbols first; it only uses parameter symbols as a
2052 last resort. Note that this only takes up extra computation
2053 time on a match. */
2054
2055 struct symbol *sym_found = NULL;
2056
2057 for (sym = block_iter_name_first (block, name, &iter);
2058 sym != NULL;
2059 sym = block_iter_name_next (name, &iter))
2060 {
2061 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2062 SYMBOL_DOMAIN (sym), domain))
2063 {
2064 sym_found = sym;
2065 if (!SYMBOL_IS_ARGUMENT (sym))
2066 {
2067 break;
2068 }
2069 }
2070 }
2071 return (sym_found); /* Will be NULL if not found. */
2072 }
2073 }
2074
2075 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2076
2077 For each symbol that matches, CALLBACK is called. The symbol and
2078 DATA are passed to the callback.
2079
2080 If CALLBACK returns zero, the iteration ends. Otherwise, the
2081 search continues. */
2082
2083 void
2084 iterate_over_symbols (const struct block *block, const char *name,
2085 const domain_enum domain,
2086 symbol_found_callback_ftype *callback,
2087 void *data)
2088 {
2089 struct block_iterator iter;
2090 struct symbol *sym;
2091
2092 for (sym = block_iter_name_first (block, name, &iter);
2093 sym != NULL;
2094 sym = block_iter_name_next (name, &iter))
2095 {
2096 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2097 SYMBOL_DOMAIN (sym), domain))
2098 {
2099 if (!callback (sym, data))
2100 return;
2101 }
2102 }
2103 }
2104
2105 /* Find the symtab associated with PC and SECTION. Look through the
2106 psymtabs and read in another symtab if necessary. */
2107
2108 struct symtab *
2109 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2110 {
2111 struct block *b;
2112 const struct blockvector *bv;
2113 struct symtab *s = NULL;
2114 struct symtab *best_s = NULL;
2115 struct objfile *objfile;
2116 CORE_ADDR distance = 0;
2117 struct bound_minimal_symbol msymbol;
2118
2119 /* If we know that this is not a text address, return failure. This is
2120 necessary because we loop based on the block's high and low code
2121 addresses, which do not include the data ranges, and because
2122 we call find_pc_sect_psymtab which has a similar restriction based
2123 on the partial_symtab's texthigh and textlow. */
2124 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2125 if (msymbol.minsym
2126 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2127 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2128 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2129 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2130 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2131 return NULL;
2132
2133 /* Search all symtabs for the one whose file contains our address, and which
2134 is the smallest of all the ones containing the address. This is designed
2135 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2136 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2137 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2138
2139 This happens for native ecoff format, where code from included files
2140 gets its own symtab. The symtab for the included file should have
2141 been read in already via the dependency mechanism.
2142 It might be swifter to create several symtabs with the same name
2143 like xcoff does (I'm not sure).
2144
2145 It also happens for objfiles that have their functions reordered.
2146 For these, the symtab we are looking for is not necessarily read in. */
2147
2148 ALL_PRIMARY_SYMTABS (objfile, s)
2149 {
2150 bv = BLOCKVECTOR (s);
2151 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2152
2153 if (BLOCK_START (b) <= pc
2154 && BLOCK_END (b) > pc
2155 && (distance == 0
2156 || BLOCK_END (b) - BLOCK_START (b) < distance))
2157 {
2158 /* For an objfile that has its functions reordered,
2159 find_pc_psymtab will find the proper partial symbol table
2160 and we simply return its corresponding symtab. */
2161 /* In order to better support objfiles that contain both
2162 stabs and coff debugging info, we continue on if a psymtab
2163 can't be found. */
2164 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2165 {
2166 struct symtab *result;
2167
2168 result
2169 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2170 msymbol,
2171 pc, section,
2172 0);
2173 if (result)
2174 return result;
2175 }
2176 if (section != 0)
2177 {
2178 struct block_iterator iter;
2179 struct symbol *sym = NULL;
2180
2181 ALL_BLOCK_SYMBOLS (b, iter, sym)
2182 {
2183 fixup_symbol_section (sym, objfile);
2184 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2185 section))
2186 break;
2187 }
2188 if (sym == NULL)
2189 continue; /* No symbol in this symtab matches
2190 section. */
2191 }
2192 distance = BLOCK_END (b) - BLOCK_START (b);
2193 best_s = s;
2194 }
2195 }
2196
2197 if (best_s != NULL)
2198 return (best_s);
2199
2200 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2201
2202 ALL_OBJFILES (objfile)
2203 {
2204 struct symtab *result;
2205
2206 if (!objfile->sf)
2207 continue;
2208 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2209 msymbol,
2210 pc, section,
2211 1);
2212 if (result)
2213 return result;
2214 }
2215
2216 return NULL;
2217 }
2218
2219 /* Find the symtab associated with PC. Look through the psymtabs and read
2220 in another symtab if necessary. Backward compatibility, no section. */
2221
2222 struct symtab *
2223 find_pc_symtab (CORE_ADDR pc)
2224 {
2225 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2226 }
2227 \f
2228
2229 /* Find the source file and line number for a given PC value and SECTION.
2230 Return a structure containing a symtab pointer, a line number,
2231 and a pc range for the entire source line.
2232 The value's .pc field is NOT the specified pc.
2233 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2234 use the line that ends there. Otherwise, in that case, the line
2235 that begins there is used. */
2236
2237 /* The big complication here is that a line may start in one file, and end just
2238 before the start of another file. This usually occurs when you #include
2239 code in the middle of a subroutine. To properly find the end of a line's PC
2240 range, we must search all symtabs associated with this compilation unit, and
2241 find the one whose first PC is closer than that of the next line in this
2242 symtab. */
2243
2244 /* If it's worth the effort, we could be using a binary search. */
2245
2246 struct symtab_and_line
2247 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2248 {
2249 struct symtab *s;
2250 struct linetable *l;
2251 int len;
2252 int i;
2253 struct linetable_entry *item;
2254 struct symtab_and_line val;
2255 const struct blockvector *bv;
2256 struct bound_minimal_symbol msymbol;
2257 struct objfile *objfile;
2258
2259 /* Info on best line seen so far, and where it starts, and its file. */
2260
2261 struct linetable_entry *best = NULL;
2262 CORE_ADDR best_end = 0;
2263 struct symtab *best_symtab = 0;
2264
2265 /* Store here the first line number
2266 of a file which contains the line at the smallest pc after PC.
2267 If we don't find a line whose range contains PC,
2268 we will use a line one less than this,
2269 with a range from the start of that file to the first line's pc. */
2270 struct linetable_entry *alt = NULL;
2271
2272 /* Info on best line seen in this file. */
2273
2274 struct linetable_entry *prev;
2275
2276 /* If this pc is not from the current frame,
2277 it is the address of the end of a call instruction.
2278 Quite likely that is the start of the following statement.
2279 But what we want is the statement containing the instruction.
2280 Fudge the pc to make sure we get that. */
2281
2282 init_sal (&val); /* initialize to zeroes */
2283
2284 val.pspace = current_program_space;
2285
2286 /* It's tempting to assume that, if we can't find debugging info for
2287 any function enclosing PC, that we shouldn't search for line
2288 number info, either. However, GAS can emit line number info for
2289 assembly files --- very helpful when debugging hand-written
2290 assembly code. In such a case, we'd have no debug info for the
2291 function, but we would have line info. */
2292
2293 if (notcurrent)
2294 pc -= 1;
2295
2296 /* elz: added this because this function returned the wrong
2297 information if the pc belongs to a stub (import/export)
2298 to call a shlib function. This stub would be anywhere between
2299 two functions in the target, and the line info was erroneously
2300 taken to be the one of the line before the pc. */
2301
2302 /* RT: Further explanation:
2303
2304 * We have stubs (trampolines) inserted between procedures.
2305 *
2306 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2307 * exists in the main image.
2308 *
2309 * In the minimal symbol table, we have a bunch of symbols
2310 * sorted by start address. The stubs are marked as "trampoline",
2311 * the others appear as text. E.g.:
2312 *
2313 * Minimal symbol table for main image
2314 * main: code for main (text symbol)
2315 * shr1: stub (trampoline symbol)
2316 * foo: code for foo (text symbol)
2317 * ...
2318 * Minimal symbol table for "shr1" image:
2319 * ...
2320 * shr1: code for shr1 (text symbol)
2321 * ...
2322 *
2323 * So the code below is trying to detect if we are in the stub
2324 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2325 * and if found, do the symbolization from the real-code address
2326 * rather than the stub address.
2327 *
2328 * Assumptions being made about the minimal symbol table:
2329 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2330 * if we're really in the trampoline.s If we're beyond it (say
2331 * we're in "foo" in the above example), it'll have a closer
2332 * symbol (the "foo" text symbol for example) and will not
2333 * return the trampoline.
2334 * 2. lookup_minimal_symbol_text() will find a real text symbol
2335 * corresponding to the trampoline, and whose address will
2336 * be different than the trampoline address. I put in a sanity
2337 * check for the address being the same, to avoid an
2338 * infinite recursion.
2339 */
2340 msymbol = lookup_minimal_symbol_by_pc (pc);
2341 if (msymbol.minsym != NULL)
2342 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2343 {
2344 struct bound_minimal_symbol mfunsym
2345 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2346 NULL);
2347
2348 if (mfunsym.minsym == NULL)
2349 /* I eliminated this warning since it is coming out
2350 * in the following situation:
2351 * gdb shmain // test program with shared libraries
2352 * (gdb) break shr1 // function in shared lib
2353 * Warning: In stub for ...
2354 * In the above situation, the shared lib is not loaded yet,
2355 * so of course we can't find the real func/line info,
2356 * but the "break" still works, and the warning is annoying.
2357 * So I commented out the warning. RT */
2358 /* warning ("In stub for %s; unable to find real function/line info",
2359 SYMBOL_LINKAGE_NAME (msymbol)); */
2360 ;
2361 /* fall through */
2362 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2363 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2364 /* Avoid infinite recursion */
2365 /* See above comment about why warning is commented out. */
2366 /* warning ("In stub for %s; unable to find real function/line info",
2367 SYMBOL_LINKAGE_NAME (msymbol)); */
2368 ;
2369 /* fall through */
2370 else
2371 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2372 }
2373
2374
2375 s = find_pc_sect_symtab (pc, section);
2376 if (!s)
2377 {
2378 /* If no symbol information, return previous pc. */
2379 if (notcurrent)
2380 pc++;
2381 val.pc = pc;
2382 return val;
2383 }
2384
2385 bv = BLOCKVECTOR (s);
2386 objfile = s->objfile;
2387
2388 /* Look at all the symtabs that share this blockvector.
2389 They all have the same apriori range, that we found was right;
2390 but they have different line tables. */
2391
2392 ALL_OBJFILE_SYMTABS (objfile, s)
2393 {
2394 if (BLOCKVECTOR (s) != bv)
2395 continue;
2396
2397 /* Find the best line in this symtab. */
2398 l = LINETABLE (s);
2399 if (!l)
2400 continue;
2401 len = l->nitems;
2402 if (len <= 0)
2403 {
2404 /* I think len can be zero if the symtab lacks line numbers
2405 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2406 I'm not sure which, and maybe it depends on the symbol
2407 reader). */
2408 continue;
2409 }
2410
2411 prev = NULL;
2412 item = l->item; /* Get first line info. */
2413
2414 /* Is this file's first line closer than the first lines of other files?
2415 If so, record this file, and its first line, as best alternate. */
2416 if (item->pc > pc && (!alt || item->pc < alt->pc))
2417 alt = item;
2418
2419 for (i = 0; i < len; i++, item++)
2420 {
2421 /* Leave prev pointing to the linetable entry for the last line
2422 that started at or before PC. */
2423 if (item->pc > pc)
2424 break;
2425
2426 prev = item;
2427 }
2428
2429 /* At this point, prev points at the line whose start addr is <= pc, and
2430 item points at the next line. If we ran off the end of the linetable
2431 (pc >= start of the last line), then prev == item. If pc < start of
2432 the first line, prev will not be set. */
2433
2434 /* Is this file's best line closer than the best in the other files?
2435 If so, record this file, and its best line, as best so far. Don't
2436 save prev if it represents the end of a function (i.e. line number
2437 0) instead of a real line. */
2438
2439 if (prev && prev->line && (!best || prev->pc > best->pc))
2440 {
2441 best = prev;
2442 best_symtab = s;
2443
2444 /* Discard BEST_END if it's before the PC of the current BEST. */
2445 if (best_end <= best->pc)
2446 best_end = 0;
2447 }
2448
2449 /* If another line (denoted by ITEM) is in the linetable and its
2450 PC is after BEST's PC, but before the current BEST_END, then
2451 use ITEM's PC as the new best_end. */
2452 if (best && i < len && item->pc > best->pc
2453 && (best_end == 0 || best_end > item->pc))
2454 best_end = item->pc;
2455 }
2456
2457 if (!best_symtab)
2458 {
2459 /* If we didn't find any line number info, just return zeros.
2460 We used to return alt->line - 1 here, but that could be
2461 anywhere; if we don't have line number info for this PC,
2462 don't make some up. */
2463 val.pc = pc;
2464 }
2465 else if (best->line == 0)
2466 {
2467 /* If our best fit is in a range of PC's for which no line
2468 number info is available (line number is zero) then we didn't
2469 find any valid line information. */
2470 val.pc = pc;
2471 }
2472 else
2473 {
2474 val.symtab = best_symtab;
2475 val.line = best->line;
2476 val.pc = best->pc;
2477 if (best_end && (!alt || best_end < alt->pc))
2478 val.end = best_end;
2479 else if (alt)
2480 val.end = alt->pc;
2481 else
2482 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2483 }
2484 val.section = section;
2485 return val;
2486 }
2487
2488 /* Backward compatibility (no section). */
2489
2490 struct symtab_and_line
2491 find_pc_line (CORE_ADDR pc, int notcurrent)
2492 {
2493 struct obj_section *section;
2494
2495 section = find_pc_overlay (pc);
2496 if (pc_in_unmapped_range (pc, section))
2497 pc = overlay_mapped_address (pc, section);
2498 return find_pc_sect_line (pc, section, notcurrent);
2499 }
2500 \f
2501 /* Find line number LINE in any symtab whose name is the same as
2502 SYMTAB.
2503
2504 If found, return the symtab that contains the linetable in which it was
2505 found, set *INDEX to the index in the linetable of the best entry
2506 found, and set *EXACT_MATCH nonzero if the value returned is an
2507 exact match.
2508
2509 If not found, return NULL. */
2510
2511 struct symtab *
2512 find_line_symtab (struct symtab *symtab, int line,
2513 int *index, int *exact_match)
2514 {
2515 int exact = 0; /* Initialized here to avoid a compiler warning. */
2516
2517 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2518 so far seen. */
2519
2520 int best_index;
2521 struct linetable *best_linetable;
2522 struct symtab *best_symtab;
2523
2524 /* First try looking it up in the given symtab. */
2525 best_linetable = LINETABLE (symtab);
2526 best_symtab = symtab;
2527 best_index = find_line_common (best_linetable, line, &exact, 0);
2528 if (best_index < 0 || !exact)
2529 {
2530 /* Didn't find an exact match. So we better keep looking for
2531 another symtab with the same name. In the case of xcoff,
2532 multiple csects for one source file (produced by IBM's FORTRAN
2533 compiler) produce multiple symtabs (this is unavoidable
2534 assuming csects can be at arbitrary places in memory and that
2535 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2536
2537 /* BEST is the smallest linenumber > LINE so far seen,
2538 or 0 if none has been seen so far.
2539 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2540 int best;
2541
2542 struct objfile *objfile;
2543 struct symtab *s;
2544
2545 if (best_index >= 0)
2546 best = best_linetable->item[best_index].line;
2547 else
2548 best = 0;
2549
2550 ALL_OBJFILES (objfile)
2551 {
2552 if (objfile->sf)
2553 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2554 symtab_to_fullname (symtab));
2555 }
2556
2557 ALL_SYMTABS (objfile, s)
2558 {
2559 struct linetable *l;
2560 int ind;
2561
2562 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2563 continue;
2564 if (FILENAME_CMP (symtab_to_fullname (symtab),
2565 symtab_to_fullname (s)) != 0)
2566 continue;
2567 l = LINETABLE (s);
2568 ind = find_line_common (l, line, &exact, 0);
2569 if (ind >= 0)
2570 {
2571 if (exact)
2572 {
2573 best_index = ind;
2574 best_linetable = l;
2575 best_symtab = s;
2576 goto done;
2577 }
2578 if (best == 0 || l->item[ind].line < best)
2579 {
2580 best = l->item[ind].line;
2581 best_index = ind;
2582 best_linetable = l;
2583 best_symtab = s;
2584 }
2585 }
2586 }
2587 }
2588 done:
2589 if (best_index < 0)
2590 return NULL;
2591
2592 if (index)
2593 *index = best_index;
2594 if (exact_match)
2595 *exact_match = exact;
2596
2597 return best_symtab;
2598 }
2599
2600 /* Given SYMTAB, returns all the PCs function in the symtab that
2601 exactly match LINE. Returns NULL if there are no exact matches,
2602 but updates BEST_ITEM in this case. */
2603
2604 VEC (CORE_ADDR) *
2605 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2606 struct linetable_entry **best_item)
2607 {
2608 int start = 0;
2609 VEC (CORE_ADDR) *result = NULL;
2610
2611 /* First, collect all the PCs that are at this line. */
2612 while (1)
2613 {
2614 int was_exact;
2615 int idx;
2616
2617 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2618 if (idx < 0)
2619 break;
2620
2621 if (!was_exact)
2622 {
2623 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2624
2625 if (*best_item == NULL || item->line < (*best_item)->line)
2626 *best_item = item;
2627
2628 break;
2629 }
2630
2631 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2632 start = idx + 1;
2633 }
2634
2635 return result;
2636 }
2637
2638 \f
2639 /* Set the PC value for a given source file and line number and return true.
2640 Returns zero for invalid line number (and sets the PC to 0).
2641 The source file is specified with a struct symtab. */
2642
2643 int
2644 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2645 {
2646 struct linetable *l;
2647 int ind;
2648
2649 *pc = 0;
2650 if (symtab == 0)
2651 return 0;
2652
2653 symtab = find_line_symtab (symtab, line, &ind, NULL);
2654 if (symtab != NULL)
2655 {
2656 l = LINETABLE (symtab);
2657 *pc = l->item[ind].pc;
2658 return 1;
2659 }
2660 else
2661 return 0;
2662 }
2663
2664 /* Find the range of pc values in a line.
2665 Store the starting pc of the line into *STARTPTR
2666 and the ending pc (start of next line) into *ENDPTR.
2667 Returns 1 to indicate success.
2668 Returns 0 if could not find the specified line. */
2669
2670 int
2671 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2672 CORE_ADDR *endptr)
2673 {
2674 CORE_ADDR startaddr;
2675 struct symtab_and_line found_sal;
2676
2677 startaddr = sal.pc;
2678 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2679 return 0;
2680
2681 /* This whole function is based on address. For example, if line 10 has
2682 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2683 "info line *0x123" should say the line goes from 0x100 to 0x200
2684 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2685 This also insures that we never give a range like "starts at 0x134
2686 and ends at 0x12c". */
2687
2688 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2689 if (found_sal.line != sal.line)
2690 {
2691 /* The specified line (sal) has zero bytes. */
2692 *startptr = found_sal.pc;
2693 *endptr = found_sal.pc;
2694 }
2695 else
2696 {
2697 *startptr = found_sal.pc;
2698 *endptr = found_sal.end;
2699 }
2700 return 1;
2701 }
2702
2703 /* Given a line table and a line number, return the index into the line
2704 table for the pc of the nearest line whose number is >= the specified one.
2705 Return -1 if none is found. The value is >= 0 if it is an index.
2706 START is the index at which to start searching the line table.
2707
2708 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2709
2710 static int
2711 find_line_common (struct linetable *l, int lineno,
2712 int *exact_match, int start)
2713 {
2714 int i;
2715 int len;
2716
2717 /* BEST is the smallest linenumber > LINENO so far seen,
2718 or 0 if none has been seen so far.
2719 BEST_INDEX identifies the item for it. */
2720
2721 int best_index = -1;
2722 int best = 0;
2723
2724 *exact_match = 0;
2725
2726 if (lineno <= 0)
2727 return -1;
2728 if (l == 0)
2729 return -1;
2730
2731 len = l->nitems;
2732 for (i = start; i < len; i++)
2733 {
2734 struct linetable_entry *item = &(l->item[i]);
2735
2736 if (item->line == lineno)
2737 {
2738 /* Return the first (lowest address) entry which matches. */
2739 *exact_match = 1;
2740 return i;
2741 }
2742
2743 if (item->line > lineno && (best == 0 || item->line < best))
2744 {
2745 best = item->line;
2746 best_index = i;
2747 }
2748 }
2749
2750 /* If we got here, we didn't get an exact match. */
2751 return best_index;
2752 }
2753
2754 int
2755 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2756 {
2757 struct symtab_and_line sal;
2758
2759 sal = find_pc_line (pc, 0);
2760 *startptr = sal.pc;
2761 *endptr = sal.end;
2762 return sal.symtab != 0;
2763 }
2764
2765 /* Given a function symbol SYM, find the symtab and line for the start
2766 of the function.
2767 If the argument FUNFIRSTLINE is nonzero, we want the first line
2768 of real code inside the function. */
2769
2770 struct symtab_and_line
2771 find_function_start_sal (struct symbol *sym, int funfirstline)
2772 {
2773 struct symtab_and_line sal;
2774
2775 fixup_symbol_section (sym, NULL);
2776 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2777 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2778
2779 /* We always should have a line for the function start address.
2780 If we don't, something is odd. Create a plain SAL refering
2781 just the PC and hope that skip_prologue_sal (if requested)
2782 can find a line number for after the prologue. */
2783 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2784 {
2785 init_sal (&sal);
2786 sal.pspace = current_program_space;
2787 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2788 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2789 }
2790
2791 if (funfirstline)
2792 skip_prologue_sal (&sal);
2793
2794 return sal;
2795 }
2796
2797 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2798 address for that function that has an entry in SYMTAB's line info
2799 table. If such an entry cannot be found, return FUNC_ADDR
2800 unaltered. */
2801
2802 static CORE_ADDR
2803 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2804 {
2805 CORE_ADDR func_start, func_end;
2806 struct linetable *l;
2807 int i;
2808
2809 /* Give up if this symbol has no lineinfo table. */
2810 l = LINETABLE (symtab);
2811 if (l == NULL)
2812 return func_addr;
2813
2814 /* Get the range for the function's PC values, or give up if we
2815 cannot, for some reason. */
2816 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2817 return func_addr;
2818
2819 /* Linetable entries are ordered by PC values, see the commentary in
2820 symtab.h where `struct linetable' is defined. Thus, the first
2821 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2822 address we are looking for. */
2823 for (i = 0; i < l->nitems; i++)
2824 {
2825 struct linetable_entry *item = &(l->item[i]);
2826
2827 /* Don't use line numbers of zero, they mark special entries in
2828 the table. See the commentary on symtab.h before the
2829 definition of struct linetable. */
2830 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2831 return item->pc;
2832 }
2833
2834 return func_addr;
2835 }
2836
2837 /* Adjust SAL to the first instruction past the function prologue.
2838 If the PC was explicitly specified, the SAL is not changed.
2839 If the line number was explicitly specified, at most the SAL's PC
2840 is updated. If SAL is already past the prologue, then do nothing. */
2841
2842 void
2843 skip_prologue_sal (struct symtab_and_line *sal)
2844 {
2845 struct symbol *sym;
2846 struct symtab_and_line start_sal;
2847 struct cleanup *old_chain;
2848 CORE_ADDR pc, saved_pc;
2849 struct obj_section *section;
2850 const char *name;
2851 struct objfile *objfile;
2852 struct gdbarch *gdbarch;
2853 const struct block *b, *function_block;
2854 int force_skip, skip;
2855
2856 /* Do not change the SAL if PC was specified explicitly. */
2857 if (sal->explicit_pc)
2858 return;
2859
2860 old_chain = save_current_space_and_thread ();
2861 switch_to_program_space_and_thread (sal->pspace);
2862
2863 sym = find_pc_sect_function (sal->pc, sal->section);
2864 if (sym != NULL)
2865 {
2866 fixup_symbol_section (sym, NULL);
2867
2868 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2869 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2870 name = SYMBOL_LINKAGE_NAME (sym);
2871 objfile = SYMBOL_SYMTAB (sym)->objfile;
2872 }
2873 else
2874 {
2875 struct bound_minimal_symbol msymbol
2876 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2877
2878 if (msymbol.minsym == NULL)
2879 {
2880 do_cleanups (old_chain);
2881 return;
2882 }
2883
2884 objfile = msymbol.objfile;
2885 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2886 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2887 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2888 }
2889
2890 gdbarch = get_objfile_arch (objfile);
2891
2892 /* Process the prologue in two passes. In the first pass try to skip the
2893 prologue (SKIP is true) and verify there is a real need for it (indicated
2894 by FORCE_SKIP). If no such reason was found run a second pass where the
2895 prologue is not skipped (SKIP is false). */
2896
2897 skip = 1;
2898 force_skip = 1;
2899
2900 /* Be conservative - allow direct PC (without skipping prologue) only if we
2901 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2902 have to be set by the caller so we use SYM instead. */
2903 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2904 force_skip = 0;
2905
2906 saved_pc = pc;
2907 do
2908 {
2909 pc = saved_pc;
2910
2911 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2912 so that gdbarch_skip_prologue has something unique to work on. */
2913 if (section_is_overlay (section) && !section_is_mapped (section))
2914 pc = overlay_unmapped_address (pc, section);
2915
2916 /* Skip "first line" of function (which is actually its prologue). */
2917 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2918 if (gdbarch_skip_entrypoint_p (gdbarch))
2919 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2920 if (skip)
2921 pc = gdbarch_skip_prologue (gdbarch, pc);
2922
2923 /* For overlays, map pc back into its mapped VMA range. */
2924 pc = overlay_mapped_address (pc, section);
2925
2926 /* Calculate line number. */
2927 start_sal = find_pc_sect_line (pc, section, 0);
2928
2929 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2930 line is still part of the same function. */
2931 if (skip && start_sal.pc != pc
2932 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2933 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2934 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2935 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2936 {
2937 /* First pc of next line */
2938 pc = start_sal.end;
2939 /* Recalculate the line number (might not be N+1). */
2940 start_sal = find_pc_sect_line (pc, section, 0);
2941 }
2942
2943 /* On targets with executable formats that don't have a concept of
2944 constructors (ELF with .init has, PE doesn't), gcc emits a call
2945 to `__main' in `main' between the prologue and before user
2946 code. */
2947 if (gdbarch_skip_main_prologue_p (gdbarch)
2948 && name && strcmp_iw (name, "main") == 0)
2949 {
2950 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2951 /* Recalculate the line number (might not be N+1). */
2952 start_sal = find_pc_sect_line (pc, section, 0);
2953 force_skip = 1;
2954 }
2955 }
2956 while (!force_skip && skip--);
2957
2958 /* If we still don't have a valid source line, try to find the first
2959 PC in the lineinfo table that belongs to the same function. This
2960 happens with COFF debug info, which does not seem to have an
2961 entry in lineinfo table for the code after the prologue which has
2962 no direct relation to source. For example, this was found to be
2963 the case with the DJGPP target using "gcc -gcoff" when the
2964 compiler inserted code after the prologue to make sure the stack
2965 is aligned. */
2966 if (!force_skip && sym && start_sal.symtab == NULL)
2967 {
2968 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2969 /* Recalculate the line number. */
2970 start_sal = find_pc_sect_line (pc, section, 0);
2971 }
2972
2973 do_cleanups (old_chain);
2974
2975 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2976 forward SAL to the end of the prologue. */
2977 if (sal->pc >= pc)
2978 return;
2979
2980 sal->pc = pc;
2981 sal->section = section;
2982
2983 /* Unless the explicit_line flag was set, update the SAL line
2984 and symtab to correspond to the modified PC location. */
2985 if (sal->explicit_line)
2986 return;
2987
2988 sal->symtab = start_sal.symtab;
2989 sal->line = start_sal.line;
2990 sal->end = start_sal.end;
2991
2992 /* Check if we are now inside an inlined function. If we can,
2993 use the call site of the function instead. */
2994 b = block_for_pc_sect (sal->pc, sal->section);
2995 function_block = NULL;
2996 while (b != NULL)
2997 {
2998 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2999 function_block = b;
3000 else if (BLOCK_FUNCTION (b) != NULL)
3001 break;
3002 b = BLOCK_SUPERBLOCK (b);
3003 }
3004 if (function_block != NULL
3005 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3006 {
3007 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3008 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
3009 }
3010 }
3011
3012 /* Determine if PC is in the prologue of a function. The prologue is the area
3013 between the first instruction of a function, and the first executable line.
3014 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
3015
3016 If non-zero, func_start is where we think the prologue starts, possibly
3017 by previous examination of symbol table information. */
3018
3019 int
3020 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
3021 {
3022 struct symtab_and_line sal;
3023 CORE_ADDR func_addr, func_end;
3024
3025 /* We have several sources of information we can consult to figure
3026 this out.
3027 - Compilers usually emit line number info that marks the prologue
3028 as its own "source line". So the ending address of that "line"
3029 is the end of the prologue. If available, this is the most
3030 reliable method.
3031 - The minimal symbols and partial symbols, which can usually tell
3032 us the starting and ending addresses of a function.
3033 - If we know the function's start address, we can call the
3034 architecture-defined gdbarch_skip_prologue function to analyze the
3035 instruction stream and guess where the prologue ends.
3036 - Our `func_start' argument; if non-zero, this is the caller's
3037 best guess as to the function's entry point. At the time of
3038 this writing, handle_inferior_event doesn't get this right, so
3039 it should be our last resort. */
3040
3041 /* Consult the partial symbol table, to find which function
3042 the PC is in. */
3043 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3044 {
3045 CORE_ADDR prologue_end;
3046
3047 /* We don't even have minsym information, so fall back to using
3048 func_start, if given. */
3049 if (! func_start)
3050 return 1; /* We *might* be in a prologue. */
3051
3052 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
3053
3054 return func_start <= pc && pc < prologue_end;
3055 }
3056
3057 /* If we have line number information for the function, that's
3058 usually pretty reliable. */
3059 sal = find_pc_line (func_addr, 0);
3060
3061 /* Now sal describes the source line at the function's entry point,
3062 which (by convention) is the prologue. The end of that "line",
3063 sal.end, is the end of the prologue.
3064
3065 Note that, for functions whose source code is all on a single
3066 line, the line number information doesn't always end up this way.
3067 So we must verify that our purported end-of-prologue address is
3068 *within* the function, not at its start or end. */
3069 if (sal.line == 0
3070 || sal.end <= func_addr
3071 || func_end <= sal.end)
3072 {
3073 /* We don't have any good line number info, so use the minsym
3074 information, together with the architecture-specific prologue
3075 scanning code. */
3076 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
3077
3078 return func_addr <= pc && pc < prologue_end;
3079 }
3080
3081 /* We have line number info, and it looks good. */
3082 return func_addr <= pc && pc < sal.end;
3083 }
3084
3085 /* Given PC at the function's start address, attempt to find the
3086 prologue end using SAL information. Return zero if the skip fails.
3087
3088 A non-optimized prologue traditionally has one SAL for the function
3089 and a second for the function body. A single line function has
3090 them both pointing at the same line.
3091
3092 An optimized prologue is similar but the prologue may contain
3093 instructions (SALs) from the instruction body. Need to skip those
3094 while not getting into the function body.
3095
3096 The functions end point and an increasing SAL line are used as
3097 indicators of the prologue's endpoint.
3098
3099 This code is based on the function refine_prologue_limit
3100 (found in ia64). */
3101
3102 CORE_ADDR
3103 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3104 {
3105 struct symtab_and_line prologue_sal;
3106 CORE_ADDR start_pc;
3107 CORE_ADDR end_pc;
3108 const struct block *bl;
3109
3110 /* Get an initial range for the function. */
3111 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3112 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3113
3114 prologue_sal = find_pc_line (start_pc, 0);
3115 if (prologue_sal.line != 0)
3116 {
3117 /* For languages other than assembly, treat two consecutive line
3118 entries at the same address as a zero-instruction prologue.
3119 The GNU assembler emits separate line notes for each instruction
3120 in a multi-instruction macro, but compilers generally will not
3121 do this. */
3122 if (prologue_sal.symtab->language != language_asm)
3123 {
3124 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
3125 int idx = 0;
3126
3127 /* Skip any earlier lines, and any end-of-sequence marker
3128 from a previous function. */
3129 while (linetable->item[idx].pc != prologue_sal.pc
3130 || linetable->item[idx].line == 0)
3131 idx++;
3132
3133 if (idx+1 < linetable->nitems
3134 && linetable->item[idx+1].line != 0
3135 && linetable->item[idx+1].pc == start_pc)
3136 return start_pc;
3137 }
3138
3139 /* If there is only one sal that covers the entire function,
3140 then it is probably a single line function, like
3141 "foo(){}". */
3142 if (prologue_sal.end >= end_pc)
3143 return 0;
3144
3145 while (prologue_sal.end < end_pc)
3146 {
3147 struct symtab_and_line sal;
3148
3149 sal = find_pc_line (prologue_sal.end, 0);
3150 if (sal.line == 0)
3151 break;
3152 /* Assume that a consecutive SAL for the same (or larger)
3153 line mark the prologue -> body transition. */
3154 if (sal.line >= prologue_sal.line)
3155 break;
3156 /* Likewise if we are in a different symtab altogether
3157 (e.g. within a file included via #include).  */
3158 if (sal.symtab != prologue_sal.symtab)
3159 break;
3160
3161 /* The line number is smaller. Check that it's from the
3162 same function, not something inlined. If it's inlined,
3163 then there is no point comparing the line numbers. */
3164 bl = block_for_pc (prologue_sal.end);
3165 while (bl)
3166 {
3167 if (block_inlined_p (bl))
3168 break;
3169 if (BLOCK_FUNCTION (bl))
3170 {
3171 bl = NULL;
3172 break;
3173 }
3174 bl = BLOCK_SUPERBLOCK (bl);
3175 }
3176 if (bl != NULL)
3177 break;
3178
3179 /* The case in which compiler's optimizer/scheduler has
3180 moved instructions into the prologue. We look ahead in
3181 the function looking for address ranges whose
3182 corresponding line number is less the first one that we
3183 found for the function. This is more conservative then
3184 refine_prologue_limit which scans a large number of SALs
3185 looking for any in the prologue. */
3186 prologue_sal = sal;
3187 }
3188 }
3189
3190 if (prologue_sal.end < end_pc)
3191 /* Return the end of this line, or zero if we could not find a
3192 line. */
3193 return prologue_sal.end;
3194 else
3195 /* Don't return END_PC, which is past the end of the function. */
3196 return prologue_sal.pc;
3197 }
3198 \f
3199 /* If P is of the form "operator[ \t]+..." where `...' is
3200 some legitimate operator text, return a pointer to the
3201 beginning of the substring of the operator text.
3202 Otherwise, return "". */
3203
3204 static const char *
3205 operator_chars (const char *p, const char **end)
3206 {
3207 *end = "";
3208 if (strncmp (p, "operator", 8))
3209 return *end;
3210 p += 8;
3211
3212 /* Don't get faked out by `operator' being part of a longer
3213 identifier. */
3214 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3215 return *end;
3216
3217 /* Allow some whitespace between `operator' and the operator symbol. */
3218 while (*p == ' ' || *p == '\t')
3219 p++;
3220
3221 /* Recognize 'operator TYPENAME'. */
3222
3223 if (isalpha (*p) || *p == '_' || *p == '$')
3224 {
3225 const char *q = p + 1;
3226
3227 while (isalnum (*q) || *q == '_' || *q == '$')
3228 q++;
3229 *end = q;
3230 return p;
3231 }
3232
3233 while (*p)
3234 switch (*p)
3235 {
3236 case '\\': /* regexp quoting */
3237 if (p[1] == '*')
3238 {
3239 if (p[2] == '=') /* 'operator\*=' */
3240 *end = p + 3;
3241 else /* 'operator\*' */
3242 *end = p + 2;
3243 return p;
3244 }
3245 else if (p[1] == '[')
3246 {
3247 if (p[2] == ']')
3248 error (_("mismatched quoting on brackets, "
3249 "try 'operator\\[\\]'"));
3250 else if (p[2] == '\\' && p[3] == ']')
3251 {
3252 *end = p + 4; /* 'operator\[\]' */
3253 return p;
3254 }
3255 else
3256 error (_("nothing is allowed between '[' and ']'"));
3257 }
3258 else
3259 {
3260 /* Gratuitous qoute: skip it and move on. */
3261 p++;
3262 continue;
3263 }
3264 break;
3265 case '!':
3266 case '=':
3267 case '*':
3268 case '/':
3269 case '%':
3270 case '^':
3271 if (p[1] == '=')
3272 *end = p + 2;
3273 else
3274 *end = p + 1;
3275 return p;
3276 case '<':
3277 case '>':
3278 case '+':
3279 case '-':
3280 case '&':
3281 case '|':
3282 if (p[0] == '-' && p[1] == '>')
3283 {
3284 /* Struct pointer member operator 'operator->'. */
3285 if (p[2] == '*')
3286 {
3287 *end = p + 3; /* 'operator->*' */
3288 return p;
3289 }
3290 else if (p[2] == '\\')
3291 {
3292 *end = p + 4; /* Hopefully 'operator->\*' */
3293 return p;
3294 }
3295 else
3296 {
3297 *end = p + 2; /* 'operator->' */
3298 return p;
3299 }
3300 }
3301 if (p[1] == '=' || p[1] == p[0])
3302 *end = p + 2;
3303 else
3304 *end = p + 1;
3305 return p;
3306 case '~':
3307 case ',':
3308 *end = p + 1;
3309 return p;
3310 case '(':
3311 if (p[1] != ')')
3312 error (_("`operator ()' must be specified "
3313 "without whitespace in `()'"));
3314 *end = p + 2;
3315 return p;
3316 case '?':
3317 if (p[1] != ':')
3318 error (_("`operator ?:' must be specified "
3319 "without whitespace in `?:'"));
3320 *end = p + 2;
3321 return p;
3322 case '[':
3323 if (p[1] != ']')
3324 error (_("`operator []' must be specified "
3325 "without whitespace in `[]'"));
3326 *end = p + 2;
3327 return p;
3328 default:
3329 error (_("`operator %s' not supported"), p);
3330 break;
3331 }
3332
3333 *end = "";
3334 return *end;
3335 }
3336 \f
3337
3338 /* Cache to watch for file names already seen by filename_seen. */
3339
3340 struct filename_seen_cache
3341 {
3342 /* Table of files seen so far. */
3343 htab_t tab;
3344 /* Initial size of the table. It automagically grows from here. */
3345 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3346 };
3347
3348 /* filename_seen_cache constructor. */
3349
3350 static struct filename_seen_cache *
3351 create_filename_seen_cache (void)
3352 {
3353 struct filename_seen_cache *cache;
3354
3355 cache = XNEW (struct filename_seen_cache);
3356 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3357 filename_hash, filename_eq,
3358 NULL, xcalloc, xfree);
3359
3360 return cache;
3361 }
3362
3363 /* Empty the cache, but do not delete it. */
3364
3365 static void
3366 clear_filename_seen_cache (struct filename_seen_cache *cache)
3367 {
3368 htab_empty (cache->tab);
3369 }
3370
3371 /* filename_seen_cache destructor.
3372 This takes a void * argument as it is generally used as a cleanup. */
3373
3374 static void
3375 delete_filename_seen_cache (void *ptr)
3376 {
3377 struct filename_seen_cache *cache = ptr;
3378
3379 htab_delete (cache->tab);
3380 xfree (cache);
3381 }
3382
3383 /* If FILE is not already in the table of files in CACHE, return zero;
3384 otherwise return non-zero. Optionally add FILE to the table if ADD
3385 is non-zero.
3386
3387 NOTE: We don't manage space for FILE, we assume FILE lives as long
3388 as the caller needs. */
3389
3390 static int
3391 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3392 {
3393 void **slot;
3394
3395 /* Is FILE in tab? */
3396 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3397 if (*slot != NULL)
3398 return 1;
3399
3400 /* No; maybe add it to tab. */
3401 if (add)
3402 *slot = (char *) file;
3403
3404 return 0;
3405 }
3406
3407 /* Data structure to maintain printing state for output_source_filename. */
3408
3409 struct output_source_filename_data
3410 {
3411 /* Cache of what we've seen so far. */
3412 struct filename_seen_cache *filename_seen_cache;
3413
3414 /* Flag of whether we're printing the first one. */
3415 int first;
3416 };
3417
3418 /* Slave routine for sources_info. Force line breaks at ,'s.
3419 NAME is the name to print.
3420 DATA contains the state for printing and watching for duplicates. */
3421
3422 static void
3423 output_source_filename (const char *name,
3424 struct output_source_filename_data *data)
3425 {
3426 /* Since a single source file can result in several partial symbol
3427 tables, we need to avoid printing it more than once. Note: if
3428 some of the psymtabs are read in and some are not, it gets
3429 printed both under "Source files for which symbols have been
3430 read" and "Source files for which symbols will be read in on
3431 demand". I consider this a reasonable way to deal with the
3432 situation. I'm not sure whether this can also happen for
3433 symtabs; it doesn't hurt to check. */
3434
3435 /* Was NAME already seen? */
3436 if (filename_seen (data->filename_seen_cache, name, 1))
3437 {
3438 /* Yes; don't print it again. */
3439 return;
3440 }
3441
3442 /* No; print it and reset *FIRST. */
3443 if (! data->first)
3444 printf_filtered (", ");
3445 data->first = 0;
3446
3447 wrap_here ("");
3448 fputs_filtered (name, gdb_stdout);
3449 }
3450
3451 /* A callback for map_partial_symbol_filenames. */
3452
3453 static void
3454 output_partial_symbol_filename (const char *filename, const char *fullname,
3455 void *data)
3456 {
3457 output_source_filename (fullname ? fullname : filename, data);
3458 }
3459
3460 static void
3461 sources_info (char *ignore, int from_tty)
3462 {
3463 struct symtab *s;
3464 struct objfile *objfile;
3465 struct output_source_filename_data data;
3466 struct cleanup *cleanups;
3467
3468 if (!have_full_symbols () && !have_partial_symbols ())
3469 {
3470 error (_("No symbol table is loaded. Use the \"file\" command."));
3471 }
3472
3473 data.filename_seen_cache = create_filename_seen_cache ();
3474 cleanups = make_cleanup (delete_filename_seen_cache,
3475 data.filename_seen_cache);
3476
3477 printf_filtered ("Source files for which symbols have been read in:\n\n");
3478
3479 data.first = 1;
3480 ALL_SYMTABS (objfile, s)
3481 {
3482 const char *fullname = symtab_to_fullname (s);
3483
3484 output_source_filename (fullname, &data);
3485 }
3486 printf_filtered ("\n\n");
3487
3488 printf_filtered ("Source files for which symbols "
3489 "will be read in on demand:\n\n");
3490
3491 clear_filename_seen_cache (data.filename_seen_cache);
3492 data.first = 1;
3493 map_symbol_filenames (output_partial_symbol_filename, &data,
3494 1 /*need_fullname*/);
3495 printf_filtered ("\n");
3496
3497 do_cleanups (cleanups);
3498 }
3499
3500 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3501 non-zero compare only lbasename of FILES. */
3502
3503 static int
3504 file_matches (const char *file, const char *files[], int nfiles, int basenames)
3505 {
3506 int i;
3507
3508 if (file != NULL && nfiles != 0)
3509 {
3510 for (i = 0; i < nfiles; i++)
3511 {
3512 if (compare_filenames_for_search (file, (basenames
3513 ? lbasename (files[i])
3514 : files[i])))
3515 return 1;
3516 }
3517 }
3518 else if (nfiles == 0)
3519 return 1;
3520 return 0;
3521 }
3522
3523 /* Free any memory associated with a search. */
3524
3525 void
3526 free_search_symbols (struct symbol_search *symbols)
3527 {
3528 struct symbol_search *p;
3529 struct symbol_search *next;
3530
3531 for (p = symbols; p != NULL; p = next)
3532 {
3533 next = p->next;
3534 xfree (p);
3535 }
3536 }
3537
3538 static void
3539 do_free_search_symbols_cleanup (void *symbolsp)
3540 {
3541 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3542
3543 free_search_symbols (symbols);
3544 }
3545
3546 struct cleanup *
3547 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3548 {
3549 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3550 }
3551
3552 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3553 sort symbols, not minimal symbols. */
3554
3555 static int
3556 compare_search_syms (const void *sa, const void *sb)
3557 {
3558 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3559 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3560 int c;
3561
3562 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3563 if (c != 0)
3564 return c;
3565
3566 if (sym_a->block != sym_b->block)
3567 return sym_a->block - sym_b->block;
3568
3569 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3570 SYMBOL_PRINT_NAME (sym_b->symbol));
3571 }
3572
3573 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3574 The duplicates are freed, and the new list is returned in
3575 *NEW_HEAD, *NEW_TAIL. */
3576
3577 static void
3578 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3579 struct symbol_search **new_head,
3580 struct symbol_search **new_tail)
3581 {
3582 struct symbol_search **symbols, *symp, *old_next;
3583 int i, j, nunique;
3584
3585 gdb_assert (found != NULL && nfound > 0);
3586
3587 /* Build an array out of the list so we can easily sort them. */
3588 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3589 * nfound);
3590 symp = found;
3591 for (i = 0; i < nfound; i++)
3592 {
3593 gdb_assert (symp != NULL);
3594 gdb_assert (symp->block >= 0 && symp->block <= 1);
3595 symbols[i] = symp;
3596 symp = symp->next;
3597 }
3598 gdb_assert (symp == NULL);
3599
3600 qsort (symbols, nfound, sizeof (struct symbol_search *),
3601 compare_search_syms);
3602
3603 /* Collapse out the dups. */
3604 for (i = 1, j = 1; i < nfound; ++i)
3605 {
3606 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3607 symbols[j++] = symbols[i];
3608 else
3609 xfree (symbols[i]);
3610 }
3611 nunique = j;
3612 symbols[j - 1]->next = NULL;
3613
3614 /* Rebuild the linked list. */
3615 for (i = 0; i < nunique - 1; i++)
3616 symbols[i]->next = symbols[i + 1];
3617 symbols[nunique - 1]->next = NULL;
3618
3619 *new_head = symbols[0];
3620 *new_tail = symbols[nunique - 1];
3621 xfree (symbols);
3622 }
3623
3624 /* An object of this type is passed as the user_data to the
3625 expand_symtabs_matching method. */
3626 struct search_symbols_data
3627 {
3628 int nfiles;
3629 const char **files;
3630
3631 /* It is true if PREG contains valid data, false otherwise. */
3632 unsigned preg_p : 1;
3633 regex_t preg;
3634 };
3635
3636 /* A callback for expand_symtabs_matching. */
3637
3638 static int
3639 search_symbols_file_matches (const char *filename, void *user_data,
3640 int basenames)
3641 {
3642 struct search_symbols_data *data = user_data;
3643
3644 return file_matches (filename, data->files, data->nfiles, basenames);
3645 }
3646
3647 /* A callback for expand_symtabs_matching. */
3648
3649 static int
3650 search_symbols_name_matches (const char *symname, void *user_data)
3651 {
3652 struct search_symbols_data *data = user_data;
3653
3654 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3655 }
3656
3657 /* Search the symbol table for matches to the regular expression REGEXP,
3658 returning the results in *MATCHES.
3659
3660 Only symbols of KIND are searched:
3661 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3662 and constants (enums)
3663 FUNCTIONS_DOMAIN - search all functions
3664 TYPES_DOMAIN - search all type names
3665 ALL_DOMAIN - an internal error for this function
3666
3667 free_search_symbols should be called when *MATCHES is no longer needed.
3668
3669 Within each file the results are sorted locally; each symtab's global and
3670 static blocks are separately alphabetized.
3671 Duplicate entries are removed. */
3672
3673 void
3674 search_symbols (const char *regexp, enum search_domain kind,
3675 int nfiles, const char *files[],
3676 struct symbol_search **matches)
3677 {
3678 struct symtab *s;
3679 const struct blockvector *bv;
3680 struct block *b;
3681 int i = 0;
3682 struct block_iterator iter;
3683 struct symbol *sym;
3684 struct objfile *objfile;
3685 struct minimal_symbol *msymbol;
3686 int found_misc = 0;
3687 static const enum minimal_symbol_type types[]
3688 = {mst_data, mst_text, mst_abs};
3689 static const enum minimal_symbol_type types2[]
3690 = {mst_bss, mst_file_text, mst_abs};
3691 static const enum minimal_symbol_type types3[]
3692 = {mst_file_data, mst_solib_trampoline, mst_abs};
3693 static const enum minimal_symbol_type types4[]
3694 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3695 enum minimal_symbol_type ourtype;
3696 enum minimal_symbol_type ourtype2;
3697 enum minimal_symbol_type ourtype3;
3698 enum minimal_symbol_type ourtype4;
3699 struct symbol_search *found;
3700 struct symbol_search *tail;
3701 struct search_symbols_data datum;
3702 int nfound;
3703
3704 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3705 CLEANUP_CHAIN is freed only in the case of an error. */
3706 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3707 struct cleanup *retval_chain;
3708
3709 gdb_assert (kind <= TYPES_DOMAIN);
3710
3711 ourtype = types[kind];
3712 ourtype2 = types2[kind];
3713 ourtype3 = types3[kind];
3714 ourtype4 = types4[kind];
3715
3716 *matches = NULL;
3717 datum.preg_p = 0;
3718
3719 if (regexp != NULL)
3720 {
3721 /* Make sure spacing is right for C++ operators.
3722 This is just a courtesy to make the matching less sensitive
3723 to how many spaces the user leaves between 'operator'
3724 and <TYPENAME> or <OPERATOR>. */
3725 const char *opend;
3726 const char *opname = operator_chars (regexp, &opend);
3727 int errcode;
3728
3729 if (*opname)
3730 {
3731 int fix = -1; /* -1 means ok; otherwise number of
3732 spaces needed. */
3733
3734 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3735 {
3736 /* There should 1 space between 'operator' and 'TYPENAME'. */
3737 if (opname[-1] != ' ' || opname[-2] == ' ')
3738 fix = 1;
3739 }
3740 else
3741 {
3742 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3743 if (opname[-1] == ' ')
3744 fix = 0;
3745 }
3746 /* If wrong number of spaces, fix it. */
3747 if (fix >= 0)
3748 {
3749 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3750
3751 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3752 regexp = tmp;
3753 }
3754 }
3755
3756 errcode = regcomp (&datum.preg, regexp,
3757 REG_NOSUB | (case_sensitivity == case_sensitive_off
3758 ? REG_ICASE : 0));
3759 if (errcode != 0)
3760 {
3761 char *err = get_regcomp_error (errcode, &datum.preg);
3762
3763 make_cleanup (xfree, err);
3764 error (_("Invalid regexp (%s): %s"), err, regexp);
3765 }
3766 datum.preg_p = 1;
3767 make_regfree_cleanup (&datum.preg);
3768 }
3769
3770 /* Search through the partial symtabs *first* for all symbols
3771 matching the regexp. That way we don't have to reproduce all of
3772 the machinery below. */
3773
3774 datum.nfiles = nfiles;
3775 datum.files = files;
3776 expand_symtabs_matching ((nfiles == 0
3777 ? NULL
3778 : search_symbols_file_matches),
3779 search_symbols_name_matches,
3780 kind, &datum);
3781
3782 /* Here, we search through the minimal symbol tables for functions
3783 and variables that match, and force their symbols to be read.
3784 This is in particular necessary for demangled variable names,
3785 which are no longer put into the partial symbol tables.
3786 The symbol will then be found during the scan of symtabs below.
3787
3788 For functions, find_pc_symtab should succeed if we have debug info
3789 for the function, for variables we have to call
3790 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3791 has debug info.
3792 If the lookup fails, set found_misc so that we will rescan to print
3793 any matching symbols without debug info.
3794 We only search the objfile the msymbol came from, we no longer search
3795 all objfiles. In large programs (1000s of shared libs) searching all
3796 objfiles is not worth the pain. */
3797
3798 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3799 {
3800 ALL_MSYMBOLS (objfile, msymbol)
3801 {
3802 QUIT;
3803
3804 if (msymbol->created_by_gdb)
3805 continue;
3806
3807 if (MSYMBOL_TYPE (msymbol) == ourtype
3808 || MSYMBOL_TYPE (msymbol) == ourtype2
3809 || MSYMBOL_TYPE (msymbol) == ourtype3
3810 || MSYMBOL_TYPE (msymbol) == ourtype4)
3811 {
3812 if (!datum.preg_p
3813 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3814 NULL, 0) == 0)
3815 {
3816 /* Note: An important side-effect of these lookup functions
3817 is to expand the symbol table if msymbol is found, for the
3818 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3819 if (kind == FUNCTIONS_DOMAIN
3820 ? find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3821 msymbol)) == NULL
3822 : (lookup_symbol_in_objfile_from_linkage_name
3823 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3824 == NULL))
3825 found_misc = 1;
3826 }
3827 }
3828 }
3829 }
3830
3831 found = NULL;
3832 tail = NULL;
3833 nfound = 0;
3834 retval_chain = make_cleanup_free_search_symbols (&found);
3835
3836 ALL_PRIMARY_SYMTABS (objfile, s)
3837 {
3838 bv = BLOCKVECTOR (s);
3839 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3840 {
3841 b = BLOCKVECTOR_BLOCK (bv, i);
3842 ALL_BLOCK_SYMBOLS (b, iter, sym)
3843 {
3844 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3845
3846 QUIT;
3847
3848 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3849 a substring of symtab_to_fullname as it may contain "./" etc. */
3850 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3851 || ((basenames_may_differ
3852 || file_matches (lbasename (real_symtab->filename),
3853 files, nfiles, 1))
3854 && file_matches (symtab_to_fullname (real_symtab),
3855 files, nfiles, 0)))
3856 && ((!datum.preg_p
3857 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3858 NULL, 0) == 0)
3859 && ((kind == VARIABLES_DOMAIN
3860 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3861 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3862 && SYMBOL_CLASS (sym) != LOC_BLOCK
3863 /* LOC_CONST can be used for more than just enums,
3864 e.g., c++ static const members.
3865 We only want to skip enums here. */
3866 && !(SYMBOL_CLASS (sym) == LOC_CONST
3867 && TYPE_CODE (SYMBOL_TYPE (sym))
3868 == TYPE_CODE_ENUM))
3869 || (kind == FUNCTIONS_DOMAIN
3870 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3871 || (kind == TYPES_DOMAIN
3872 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3873 {
3874 /* match */
3875 struct symbol_search *psr = (struct symbol_search *)
3876 xmalloc (sizeof (struct symbol_search));
3877 psr->block = i;
3878 psr->symtab = real_symtab;
3879 psr->symbol = sym;
3880 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3881 psr->next = NULL;
3882 if (tail == NULL)
3883 found = psr;
3884 else
3885 tail->next = psr;
3886 tail = psr;
3887 nfound ++;
3888 }
3889 }
3890 }
3891 }
3892
3893 if (found != NULL)
3894 {
3895 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3896 /* Note: nfound is no longer useful beyond this point. */
3897 }
3898
3899 /* If there are no eyes, avoid all contact. I mean, if there are
3900 no debug symbols, then print directly from the msymbol_vector. */
3901
3902 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3903 {
3904 ALL_MSYMBOLS (objfile, msymbol)
3905 {
3906 QUIT;
3907
3908 if (msymbol->created_by_gdb)
3909 continue;
3910
3911 if (MSYMBOL_TYPE (msymbol) == ourtype
3912 || MSYMBOL_TYPE (msymbol) == ourtype2
3913 || MSYMBOL_TYPE (msymbol) == ourtype3
3914 || MSYMBOL_TYPE (msymbol) == ourtype4)
3915 {
3916 if (!datum.preg_p
3917 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3918 NULL, 0) == 0)
3919 {
3920 /* For functions we can do a quick check of whether the
3921 symbol might be found via find_pc_symtab. */
3922 if (kind != FUNCTIONS_DOMAIN
3923 || find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3924 msymbol)) == NULL)
3925 {
3926 if (lookup_symbol_in_objfile_from_linkage_name
3927 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3928 == NULL)
3929 {
3930 /* match */
3931 struct symbol_search *psr = (struct symbol_search *)
3932 xmalloc (sizeof (struct symbol_search));
3933 psr->block = i;
3934 psr->msymbol.minsym = msymbol;
3935 psr->msymbol.objfile = objfile;
3936 psr->symtab = NULL;
3937 psr->symbol = NULL;
3938 psr->next = NULL;
3939 if (tail == NULL)
3940 found = psr;
3941 else
3942 tail->next = psr;
3943 tail = psr;
3944 }
3945 }
3946 }
3947 }
3948 }
3949 }
3950
3951 discard_cleanups (retval_chain);
3952 do_cleanups (old_chain);
3953 *matches = found;
3954 }
3955
3956 /* Helper function for symtab_symbol_info, this function uses
3957 the data returned from search_symbols() to print information
3958 regarding the match to gdb_stdout. */
3959
3960 static void
3961 print_symbol_info (enum search_domain kind,
3962 struct symtab *s, struct symbol *sym,
3963 int block, const char *last)
3964 {
3965 const char *s_filename = symtab_to_filename_for_display (s);
3966
3967 if (last == NULL || filename_cmp (last, s_filename) != 0)
3968 {
3969 fputs_filtered ("\nFile ", gdb_stdout);
3970 fputs_filtered (s_filename, gdb_stdout);
3971 fputs_filtered (":\n", gdb_stdout);
3972 }
3973
3974 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3975 printf_filtered ("static ");
3976
3977 /* Typedef that is not a C++ class. */
3978 if (kind == TYPES_DOMAIN
3979 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3980 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3981 /* variable, func, or typedef-that-is-c++-class. */
3982 else if (kind < TYPES_DOMAIN
3983 || (kind == TYPES_DOMAIN
3984 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3985 {
3986 type_print (SYMBOL_TYPE (sym),
3987 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3988 ? "" : SYMBOL_PRINT_NAME (sym)),
3989 gdb_stdout, 0);
3990
3991 printf_filtered (";\n");
3992 }
3993 }
3994
3995 /* This help function for symtab_symbol_info() prints information
3996 for non-debugging symbols to gdb_stdout. */
3997
3998 static void
3999 print_msymbol_info (struct bound_minimal_symbol msymbol)
4000 {
4001 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4002 char *tmp;
4003
4004 if (gdbarch_addr_bit (gdbarch) <= 32)
4005 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4006 & (CORE_ADDR) 0xffffffff,
4007 8);
4008 else
4009 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4010 16);
4011 printf_filtered ("%s %s\n",
4012 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4013 }
4014
4015 /* This is the guts of the commands "info functions", "info types", and
4016 "info variables". It calls search_symbols to find all matches and then
4017 print_[m]symbol_info to print out some useful information about the
4018 matches. */
4019
4020 static void
4021 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4022 {
4023 static const char * const classnames[] =
4024 {"variable", "function", "type"};
4025 struct symbol_search *symbols;
4026 struct symbol_search *p;
4027 struct cleanup *old_chain;
4028 const char *last_filename = NULL;
4029 int first = 1;
4030
4031 gdb_assert (kind <= TYPES_DOMAIN);
4032
4033 /* Must make sure that if we're interrupted, symbols gets freed. */
4034 search_symbols (regexp, kind, 0, NULL, &symbols);
4035 old_chain = make_cleanup_free_search_symbols (&symbols);
4036
4037 if (regexp != NULL)
4038 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4039 classnames[kind], regexp);
4040 else
4041 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4042
4043 for (p = symbols; p != NULL; p = p->next)
4044 {
4045 QUIT;
4046
4047 if (p->msymbol.minsym != NULL)
4048 {
4049 if (first)
4050 {
4051 printf_filtered (_("\nNon-debugging symbols:\n"));
4052 first = 0;
4053 }
4054 print_msymbol_info (p->msymbol);
4055 }
4056 else
4057 {
4058 print_symbol_info (kind,
4059 p->symtab,
4060 p->symbol,
4061 p->block,
4062 last_filename);
4063 last_filename = symtab_to_filename_for_display (p->symtab);
4064 }
4065 }
4066
4067 do_cleanups (old_chain);
4068 }
4069
4070 static void
4071 variables_info (char *regexp, int from_tty)
4072 {
4073 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4074 }
4075
4076 static void
4077 functions_info (char *regexp, int from_tty)
4078 {
4079 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4080 }
4081
4082
4083 static void
4084 types_info (char *regexp, int from_tty)
4085 {
4086 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4087 }
4088
4089 /* Breakpoint all functions matching regular expression. */
4090
4091 void
4092 rbreak_command_wrapper (char *regexp, int from_tty)
4093 {
4094 rbreak_command (regexp, from_tty);
4095 }
4096
4097 /* A cleanup function that calls end_rbreak_breakpoints. */
4098
4099 static void
4100 do_end_rbreak_breakpoints (void *ignore)
4101 {
4102 end_rbreak_breakpoints ();
4103 }
4104
4105 static void
4106 rbreak_command (char *regexp, int from_tty)
4107 {
4108 struct symbol_search *ss;
4109 struct symbol_search *p;
4110 struct cleanup *old_chain;
4111 char *string = NULL;
4112 int len = 0;
4113 const char **files = NULL;
4114 const char *file_name;
4115 int nfiles = 0;
4116
4117 if (regexp)
4118 {
4119 char *colon = strchr (regexp, ':');
4120
4121 if (colon && *(colon + 1) != ':')
4122 {
4123 int colon_index;
4124 char *local_name;
4125
4126 colon_index = colon - regexp;
4127 local_name = alloca (colon_index + 1);
4128 memcpy (local_name, regexp, colon_index);
4129 local_name[colon_index--] = 0;
4130 while (isspace (local_name[colon_index]))
4131 local_name[colon_index--] = 0;
4132 file_name = local_name;
4133 files = &file_name;
4134 nfiles = 1;
4135 regexp = skip_spaces (colon + 1);
4136 }
4137 }
4138
4139 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4140 old_chain = make_cleanup_free_search_symbols (&ss);
4141 make_cleanup (free_current_contents, &string);
4142
4143 start_rbreak_breakpoints ();
4144 make_cleanup (do_end_rbreak_breakpoints, NULL);
4145 for (p = ss; p != NULL; p = p->next)
4146 {
4147 if (p->msymbol.minsym == NULL)
4148 {
4149 const char *fullname = symtab_to_fullname (p->symtab);
4150
4151 int newlen = (strlen (fullname)
4152 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4153 + 4);
4154
4155 if (newlen > len)
4156 {
4157 string = xrealloc (string, newlen);
4158 len = newlen;
4159 }
4160 strcpy (string, fullname);
4161 strcat (string, ":'");
4162 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4163 strcat (string, "'");
4164 break_command (string, from_tty);
4165 print_symbol_info (FUNCTIONS_DOMAIN,
4166 p->symtab,
4167 p->symbol,
4168 p->block,
4169 symtab_to_filename_for_display (p->symtab));
4170 }
4171 else
4172 {
4173 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4174
4175 if (newlen > len)
4176 {
4177 string = xrealloc (string, newlen);
4178 len = newlen;
4179 }
4180 strcpy (string, "'");
4181 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4182 strcat (string, "'");
4183
4184 break_command (string, from_tty);
4185 printf_filtered ("<function, no debug info> %s;\n",
4186 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4187 }
4188 }
4189
4190 do_cleanups (old_chain);
4191 }
4192 \f
4193
4194 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4195
4196 Either sym_text[sym_text_len] != '(' and then we search for any
4197 symbol starting with SYM_TEXT text.
4198
4199 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4200 be terminated at that point. Partial symbol tables do not have parameters
4201 information. */
4202
4203 static int
4204 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4205 {
4206 int (*ncmp) (const char *, const char *, size_t);
4207
4208 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4209
4210 if (ncmp (name, sym_text, sym_text_len) != 0)
4211 return 0;
4212
4213 if (sym_text[sym_text_len] == '(')
4214 {
4215 /* User searches for `name(someth...'. Require NAME to be terminated.
4216 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4217 present but accept even parameters presence. In this case this
4218 function is in fact strcmp_iw but whitespace skipping is not supported
4219 for tab completion. */
4220
4221 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4222 return 0;
4223 }
4224
4225 return 1;
4226 }
4227
4228 /* Free any memory associated with a completion list. */
4229
4230 static void
4231 free_completion_list (VEC (char_ptr) **list_ptr)
4232 {
4233 int i;
4234 char *p;
4235
4236 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4237 xfree (p);
4238 VEC_free (char_ptr, *list_ptr);
4239 }
4240
4241 /* Callback for make_cleanup. */
4242
4243 static void
4244 do_free_completion_list (void *list)
4245 {
4246 free_completion_list (list);
4247 }
4248
4249 /* Helper routine for make_symbol_completion_list. */
4250
4251 static VEC (char_ptr) *return_val;
4252
4253 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4254 completion_list_add_name \
4255 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4256
4257 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4258 completion_list_add_name \
4259 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4260
4261 /* Test to see if the symbol specified by SYMNAME (which is already
4262 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4263 characters. If so, add it to the current completion list. */
4264
4265 static void
4266 completion_list_add_name (const char *symname,
4267 const char *sym_text, int sym_text_len,
4268 const char *text, const char *word)
4269 {
4270 /* Clip symbols that cannot match. */
4271 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4272 return;
4273
4274 /* We have a match for a completion, so add SYMNAME to the current list
4275 of matches. Note that the name is moved to freshly malloc'd space. */
4276
4277 {
4278 char *new;
4279
4280 if (word == sym_text)
4281 {
4282 new = xmalloc (strlen (symname) + 5);
4283 strcpy (new, symname);
4284 }
4285 else if (word > sym_text)
4286 {
4287 /* Return some portion of symname. */
4288 new = xmalloc (strlen (symname) + 5);
4289 strcpy (new, symname + (word - sym_text));
4290 }
4291 else
4292 {
4293 /* Return some of SYM_TEXT plus symname. */
4294 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4295 strncpy (new, word, sym_text - word);
4296 new[sym_text - word] = '\0';
4297 strcat (new, symname);
4298 }
4299
4300 VEC_safe_push (char_ptr, return_val, new);
4301 }
4302 }
4303
4304 /* ObjC: In case we are completing on a selector, look as the msymbol
4305 again and feed all the selectors into the mill. */
4306
4307 static void
4308 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4309 const char *sym_text, int sym_text_len,
4310 const char *text, const char *word)
4311 {
4312 static char *tmp = NULL;
4313 static unsigned int tmplen = 0;
4314
4315 const char *method, *category, *selector;
4316 char *tmp2 = NULL;
4317
4318 method = MSYMBOL_NATURAL_NAME (msymbol);
4319
4320 /* Is it a method? */
4321 if ((method[0] != '-') && (method[0] != '+'))
4322 return;
4323
4324 if (sym_text[0] == '[')
4325 /* Complete on shortened method method. */
4326 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4327
4328 while ((strlen (method) + 1) >= tmplen)
4329 {
4330 if (tmplen == 0)
4331 tmplen = 1024;
4332 else
4333 tmplen *= 2;
4334 tmp = xrealloc (tmp, tmplen);
4335 }
4336 selector = strchr (method, ' ');
4337 if (selector != NULL)
4338 selector++;
4339
4340 category = strchr (method, '(');
4341
4342 if ((category != NULL) && (selector != NULL))
4343 {
4344 memcpy (tmp, method, (category - method));
4345 tmp[category - method] = ' ';
4346 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4347 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4348 if (sym_text[0] == '[')
4349 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4350 }
4351
4352 if (selector != NULL)
4353 {
4354 /* Complete on selector only. */
4355 strcpy (tmp, selector);
4356 tmp2 = strchr (tmp, ']');
4357 if (tmp2 != NULL)
4358 *tmp2 = '\0';
4359
4360 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4361 }
4362 }
4363
4364 /* Break the non-quoted text based on the characters which are in
4365 symbols. FIXME: This should probably be language-specific. */
4366
4367 static const char *
4368 language_search_unquoted_string (const char *text, const char *p)
4369 {
4370 for (; p > text; --p)
4371 {
4372 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4373 continue;
4374 else
4375 {
4376 if ((current_language->la_language == language_objc))
4377 {
4378 if (p[-1] == ':') /* Might be part of a method name. */
4379 continue;
4380 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4381 p -= 2; /* Beginning of a method name. */
4382 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4383 { /* Might be part of a method name. */
4384 const char *t = p;
4385
4386 /* Seeing a ' ' or a '(' is not conclusive evidence
4387 that we are in the middle of a method name. However,
4388 finding "-[" or "+[" should be pretty un-ambiguous.
4389 Unfortunately we have to find it now to decide. */
4390
4391 while (t > text)
4392 if (isalnum (t[-1]) || t[-1] == '_' ||
4393 t[-1] == ' ' || t[-1] == ':' ||
4394 t[-1] == '(' || t[-1] == ')')
4395 --t;
4396 else
4397 break;
4398
4399 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4400 p = t - 2; /* Method name detected. */
4401 /* Else we leave with p unchanged. */
4402 }
4403 }
4404 break;
4405 }
4406 }
4407 return p;
4408 }
4409
4410 static void
4411 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4412 int sym_text_len, const char *text,
4413 const char *word)
4414 {
4415 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4416 {
4417 struct type *t = SYMBOL_TYPE (sym);
4418 enum type_code c = TYPE_CODE (t);
4419 int j;
4420
4421 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4422 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4423 if (TYPE_FIELD_NAME (t, j))
4424 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4425 sym_text, sym_text_len, text, word);
4426 }
4427 }
4428
4429 /* Type of the user_data argument passed to add_macro_name or
4430 symbol_completion_matcher. The contents are simply whatever is
4431 needed by completion_list_add_name. */
4432 struct add_name_data
4433 {
4434 const char *sym_text;
4435 int sym_text_len;
4436 const char *text;
4437 const char *word;
4438 };
4439
4440 /* A callback used with macro_for_each and macro_for_each_in_scope.
4441 This adds a macro's name to the current completion list. */
4442
4443 static void
4444 add_macro_name (const char *name, const struct macro_definition *ignore,
4445 struct macro_source_file *ignore2, int ignore3,
4446 void *user_data)
4447 {
4448 struct add_name_data *datum = (struct add_name_data *) user_data;
4449
4450 completion_list_add_name (name,
4451 datum->sym_text, datum->sym_text_len,
4452 datum->text, datum->word);
4453 }
4454
4455 /* A callback for expand_symtabs_matching. */
4456
4457 static int
4458 symbol_completion_matcher (const char *name, void *user_data)
4459 {
4460 struct add_name_data *datum = (struct add_name_data *) user_data;
4461
4462 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4463 }
4464
4465 VEC (char_ptr) *
4466 default_make_symbol_completion_list_break_on (const char *text,
4467 const char *word,
4468 const char *break_on,
4469 enum type_code code)
4470 {
4471 /* Problem: All of the symbols have to be copied because readline
4472 frees them. I'm not going to worry about this; hopefully there
4473 won't be that many. */
4474
4475 struct symbol *sym;
4476 struct symtab *s;
4477 struct minimal_symbol *msymbol;
4478 struct objfile *objfile;
4479 const struct block *b;
4480 const struct block *surrounding_static_block, *surrounding_global_block;
4481 struct block_iterator iter;
4482 /* The symbol we are completing on. Points in same buffer as text. */
4483 const char *sym_text;
4484 /* Length of sym_text. */
4485 int sym_text_len;
4486 struct add_name_data datum;
4487 struct cleanup *back_to;
4488
4489 /* Now look for the symbol we are supposed to complete on. */
4490 {
4491 const char *p;
4492 char quote_found;
4493 const char *quote_pos = NULL;
4494
4495 /* First see if this is a quoted string. */
4496 quote_found = '\0';
4497 for (p = text; *p != '\0'; ++p)
4498 {
4499 if (quote_found != '\0')
4500 {
4501 if (*p == quote_found)
4502 /* Found close quote. */
4503 quote_found = '\0';
4504 else if (*p == '\\' && p[1] == quote_found)
4505 /* A backslash followed by the quote character
4506 doesn't end the string. */
4507 ++p;
4508 }
4509 else if (*p == '\'' || *p == '"')
4510 {
4511 quote_found = *p;
4512 quote_pos = p;
4513 }
4514 }
4515 if (quote_found == '\'')
4516 /* A string within single quotes can be a symbol, so complete on it. */
4517 sym_text = quote_pos + 1;
4518 else if (quote_found == '"')
4519 /* A double-quoted string is never a symbol, nor does it make sense
4520 to complete it any other way. */
4521 {
4522 return NULL;
4523 }
4524 else
4525 {
4526 /* It is not a quoted string. Break it based on the characters
4527 which are in symbols. */
4528 while (p > text)
4529 {
4530 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4531 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4532 --p;
4533 else
4534 break;
4535 }
4536 sym_text = p;
4537 }
4538 }
4539
4540 sym_text_len = strlen (sym_text);
4541
4542 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4543
4544 if (current_language->la_language == language_cplus
4545 || current_language->la_language == language_java
4546 || current_language->la_language == language_fortran)
4547 {
4548 /* These languages may have parameters entered by user but they are never
4549 present in the partial symbol tables. */
4550
4551 const char *cs = memchr (sym_text, '(', sym_text_len);
4552
4553 if (cs)
4554 sym_text_len = cs - sym_text;
4555 }
4556 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4557
4558 return_val = NULL;
4559 back_to = make_cleanup (do_free_completion_list, &return_val);
4560
4561 datum.sym_text = sym_text;
4562 datum.sym_text_len = sym_text_len;
4563 datum.text = text;
4564 datum.word = word;
4565
4566 /* Look through the partial symtabs for all symbols which begin
4567 by matching SYM_TEXT. Expand all CUs that you find to the list.
4568 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4569 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4570 &datum);
4571
4572 /* At this point scan through the misc symbol vectors and add each
4573 symbol you find to the list. Eventually we want to ignore
4574 anything that isn't a text symbol (everything else will be
4575 handled by the psymtab code above). */
4576
4577 if (code == TYPE_CODE_UNDEF)
4578 {
4579 ALL_MSYMBOLS (objfile, msymbol)
4580 {
4581 QUIT;
4582 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4583 word);
4584
4585 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4586 word);
4587 }
4588 }
4589
4590 /* Search upwards from currently selected frame (so that we can
4591 complete on local vars). Also catch fields of types defined in
4592 this places which match our text string. Only complete on types
4593 visible from current context. */
4594
4595 b = get_selected_block (0);
4596 surrounding_static_block = block_static_block (b);
4597 surrounding_global_block = block_global_block (b);
4598 if (surrounding_static_block != NULL)
4599 while (b != surrounding_static_block)
4600 {
4601 QUIT;
4602
4603 ALL_BLOCK_SYMBOLS (b, iter, sym)
4604 {
4605 if (code == TYPE_CODE_UNDEF)
4606 {
4607 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4608 word);
4609 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4610 word);
4611 }
4612 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4613 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4614 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4615 word);
4616 }
4617
4618 /* Stop when we encounter an enclosing function. Do not stop for
4619 non-inlined functions - the locals of the enclosing function
4620 are in scope for a nested function. */
4621 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4622 break;
4623 b = BLOCK_SUPERBLOCK (b);
4624 }
4625
4626 /* Add fields from the file's types; symbols will be added below. */
4627
4628 if (code == TYPE_CODE_UNDEF)
4629 {
4630 if (surrounding_static_block != NULL)
4631 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4632 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4633
4634 if (surrounding_global_block != NULL)
4635 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4636 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4637 }
4638
4639 /* Go through the symtabs and check the externs and statics for
4640 symbols which match. */
4641
4642 ALL_PRIMARY_SYMTABS (objfile, s)
4643 {
4644 QUIT;
4645 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4646 ALL_BLOCK_SYMBOLS (b, iter, sym)
4647 {
4648 if (code == TYPE_CODE_UNDEF
4649 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4650 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4651 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4652 }
4653 }
4654
4655 ALL_PRIMARY_SYMTABS (objfile, s)
4656 {
4657 QUIT;
4658 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4659 ALL_BLOCK_SYMBOLS (b, iter, sym)
4660 {
4661 if (code == TYPE_CODE_UNDEF
4662 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4663 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4664 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4665 }
4666 }
4667
4668 /* Skip macros if we are completing a struct tag -- arguable but
4669 usually what is expected. */
4670 if (current_language->la_macro_expansion == macro_expansion_c
4671 && code == TYPE_CODE_UNDEF)
4672 {
4673 struct macro_scope *scope;
4674
4675 /* Add any macros visible in the default scope. Note that this
4676 may yield the occasional wrong result, because an expression
4677 might be evaluated in a scope other than the default. For
4678 example, if the user types "break file:line if <TAB>", the
4679 resulting expression will be evaluated at "file:line" -- but
4680 at there does not seem to be a way to detect this at
4681 completion time. */
4682 scope = default_macro_scope ();
4683 if (scope)
4684 {
4685 macro_for_each_in_scope (scope->file, scope->line,
4686 add_macro_name, &datum);
4687 xfree (scope);
4688 }
4689
4690 /* User-defined macros are always visible. */
4691 macro_for_each (macro_user_macros, add_macro_name, &datum);
4692 }
4693
4694 discard_cleanups (back_to);
4695 return (return_val);
4696 }
4697
4698 VEC (char_ptr) *
4699 default_make_symbol_completion_list (const char *text, const char *word,
4700 enum type_code code)
4701 {
4702 return default_make_symbol_completion_list_break_on (text, word, "", code);
4703 }
4704
4705 /* Return a vector of all symbols (regardless of class) which begin by
4706 matching TEXT. If the answer is no symbols, then the return value
4707 is NULL. */
4708
4709 VEC (char_ptr) *
4710 make_symbol_completion_list (const char *text, const char *word)
4711 {
4712 return current_language->la_make_symbol_completion_list (text, word,
4713 TYPE_CODE_UNDEF);
4714 }
4715
4716 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4717 symbols whose type code is CODE. */
4718
4719 VEC (char_ptr) *
4720 make_symbol_completion_type (const char *text, const char *word,
4721 enum type_code code)
4722 {
4723 gdb_assert (code == TYPE_CODE_UNION
4724 || code == TYPE_CODE_STRUCT
4725 || code == TYPE_CODE_ENUM);
4726 return current_language->la_make_symbol_completion_list (text, word, code);
4727 }
4728
4729 /* Like make_symbol_completion_list, but suitable for use as a
4730 completion function. */
4731
4732 VEC (char_ptr) *
4733 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4734 const char *text, const char *word)
4735 {
4736 return make_symbol_completion_list (text, word);
4737 }
4738
4739 /* Like make_symbol_completion_list, but returns a list of symbols
4740 defined in a source file FILE. */
4741
4742 VEC (char_ptr) *
4743 make_file_symbol_completion_list (const char *text, const char *word,
4744 const char *srcfile)
4745 {
4746 struct symbol *sym;
4747 struct symtab *s;
4748 struct block *b;
4749 struct block_iterator iter;
4750 /* The symbol we are completing on. Points in same buffer as text. */
4751 const char *sym_text;
4752 /* Length of sym_text. */
4753 int sym_text_len;
4754
4755 /* Now look for the symbol we are supposed to complete on.
4756 FIXME: This should be language-specific. */
4757 {
4758 const char *p;
4759 char quote_found;
4760 const char *quote_pos = NULL;
4761
4762 /* First see if this is a quoted string. */
4763 quote_found = '\0';
4764 for (p = text; *p != '\0'; ++p)
4765 {
4766 if (quote_found != '\0')
4767 {
4768 if (*p == quote_found)
4769 /* Found close quote. */
4770 quote_found = '\0';
4771 else if (*p == '\\' && p[1] == quote_found)
4772 /* A backslash followed by the quote character
4773 doesn't end the string. */
4774 ++p;
4775 }
4776 else if (*p == '\'' || *p == '"')
4777 {
4778 quote_found = *p;
4779 quote_pos = p;
4780 }
4781 }
4782 if (quote_found == '\'')
4783 /* A string within single quotes can be a symbol, so complete on it. */
4784 sym_text = quote_pos + 1;
4785 else if (quote_found == '"')
4786 /* A double-quoted string is never a symbol, nor does it make sense
4787 to complete it any other way. */
4788 {
4789 return NULL;
4790 }
4791 else
4792 {
4793 /* Not a quoted string. */
4794 sym_text = language_search_unquoted_string (text, p);
4795 }
4796 }
4797
4798 sym_text_len = strlen (sym_text);
4799
4800 return_val = NULL;
4801
4802 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4803 in). */
4804 s = lookup_symtab (srcfile);
4805 if (s == NULL)
4806 {
4807 /* Maybe they typed the file with leading directories, while the
4808 symbol tables record only its basename. */
4809 const char *tail = lbasename (srcfile);
4810
4811 if (tail > srcfile)
4812 s = lookup_symtab (tail);
4813 }
4814
4815 /* If we have no symtab for that file, return an empty list. */
4816 if (s == NULL)
4817 return (return_val);
4818
4819 /* Go through this symtab and check the externs and statics for
4820 symbols which match. */
4821
4822 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4823 ALL_BLOCK_SYMBOLS (b, iter, sym)
4824 {
4825 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4826 }
4827
4828 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4829 ALL_BLOCK_SYMBOLS (b, iter, sym)
4830 {
4831 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4832 }
4833
4834 return (return_val);
4835 }
4836
4837 /* A helper function for make_source_files_completion_list. It adds
4838 another file name to a list of possible completions, growing the
4839 list as necessary. */
4840
4841 static void
4842 add_filename_to_list (const char *fname, const char *text, const char *word,
4843 VEC (char_ptr) **list)
4844 {
4845 char *new;
4846 size_t fnlen = strlen (fname);
4847
4848 if (word == text)
4849 {
4850 /* Return exactly fname. */
4851 new = xmalloc (fnlen + 5);
4852 strcpy (new, fname);
4853 }
4854 else if (word > text)
4855 {
4856 /* Return some portion of fname. */
4857 new = xmalloc (fnlen + 5);
4858 strcpy (new, fname + (word - text));
4859 }
4860 else
4861 {
4862 /* Return some of TEXT plus fname. */
4863 new = xmalloc (fnlen + (text - word) + 5);
4864 strncpy (new, word, text - word);
4865 new[text - word] = '\0';
4866 strcat (new, fname);
4867 }
4868 VEC_safe_push (char_ptr, *list, new);
4869 }
4870
4871 static int
4872 not_interesting_fname (const char *fname)
4873 {
4874 static const char *illegal_aliens[] = {
4875 "_globals_", /* inserted by coff_symtab_read */
4876 NULL
4877 };
4878 int i;
4879
4880 for (i = 0; illegal_aliens[i]; i++)
4881 {
4882 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4883 return 1;
4884 }
4885 return 0;
4886 }
4887
4888 /* An object of this type is passed as the user_data argument to
4889 map_partial_symbol_filenames. */
4890 struct add_partial_filename_data
4891 {
4892 struct filename_seen_cache *filename_seen_cache;
4893 const char *text;
4894 const char *word;
4895 int text_len;
4896 VEC (char_ptr) **list;
4897 };
4898
4899 /* A callback for map_partial_symbol_filenames. */
4900
4901 static void
4902 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4903 void *user_data)
4904 {
4905 struct add_partial_filename_data *data = user_data;
4906
4907 if (not_interesting_fname (filename))
4908 return;
4909 if (!filename_seen (data->filename_seen_cache, filename, 1)
4910 && filename_ncmp (filename, data->text, data->text_len) == 0)
4911 {
4912 /* This file matches for a completion; add it to the
4913 current list of matches. */
4914 add_filename_to_list (filename, data->text, data->word, data->list);
4915 }
4916 else
4917 {
4918 const char *base_name = lbasename (filename);
4919
4920 if (base_name != filename
4921 && !filename_seen (data->filename_seen_cache, base_name, 1)
4922 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4923 add_filename_to_list (base_name, data->text, data->word, data->list);
4924 }
4925 }
4926
4927 /* Return a vector of all source files whose names begin with matching
4928 TEXT. The file names are looked up in the symbol tables of this
4929 program. If the answer is no matchess, then the return value is
4930 NULL. */
4931
4932 VEC (char_ptr) *
4933 make_source_files_completion_list (const char *text, const char *word)
4934 {
4935 struct symtab *s;
4936 struct objfile *objfile;
4937 size_t text_len = strlen (text);
4938 VEC (char_ptr) *list = NULL;
4939 const char *base_name;
4940 struct add_partial_filename_data datum;
4941 struct filename_seen_cache *filename_seen_cache;
4942 struct cleanup *back_to, *cache_cleanup;
4943
4944 if (!have_full_symbols () && !have_partial_symbols ())
4945 return list;
4946
4947 back_to = make_cleanup (do_free_completion_list, &list);
4948
4949 filename_seen_cache = create_filename_seen_cache ();
4950 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4951 filename_seen_cache);
4952
4953 ALL_SYMTABS (objfile, s)
4954 {
4955 if (not_interesting_fname (s->filename))
4956 continue;
4957 if (!filename_seen (filename_seen_cache, s->filename, 1)
4958 && filename_ncmp (s->filename, text, text_len) == 0)
4959 {
4960 /* This file matches for a completion; add it to the current
4961 list of matches. */
4962 add_filename_to_list (s->filename, text, word, &list);
4963 }
4964 else
4965 {
4966 /* NOTE: We allow the user to type a base name when the
4967 debug info records leading directories, but not the other
4968 way around. This is what subroutines of breakpoint
4969 command do when they parse file names. */
4970 base_name = lbasename (s->filename);
4971 if (base_name != s->filename
4972 && !filename_seen (filename_seen_cache, base_name, 1)
4973 && filename_ncmp (base_name, text, text_len) == 0)
4974 add_filename_to_list (base_name, text, word, &list);
4975 }
4976 }
4977
4978 datum.filename_seen_cache = filename_seen_cache;
4979 datum.text = text;
4980 datum.word = word;
4981 datum.text_len = text_len;
4982 datum.list = &list;
4983 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4984 0 /*need_fullname*/);
4985
4986 do_cleanups (cache_cleanup);
4987 discard_cleanups (back_to);
4988
4989 return list;
4990 }
4991 \f
4992 /* Track MAIN */
4993
4994 /* Return the "main_info" object for the current program space. If
4995 the object has not yet been created, create it and fill in some
4996 default values. */
4997
4998 static struct main_info *
4999 get_main_info (void)
5000 {
5001 struct main_info *info = program_space_data (current_program_space,
5002 main_progspace_key);
5003
5004 if (info == NULL)
5005 {
5006 /* It may seem strange to store the main name in the progspace
5007 and also in whatever objfile happens to see a main name in
5008 its debug info. The reason for this is mainly historical:
5009 gdb returned "main" as the name even if no function named
5010 "main" was defined the program; and this approach lets us
5011 keep compatibility. */
5012 info = XCNEW (struct main_info);
5013 info->language_of_main = language_unknown;
5014 set_program_space_data (current_program_space, main_progspace_key,
5015 info);
5016 }
5017
5018 return info;
5019 }
5020
5021 /* A cleanup to destroy a struct main_info when a progspace is
5022 destroyed. */
5023
5024 static void
5025 main_info_cleanup (struct program_space *pspace, void *data)
5026 {
5027 struct main_info *info = data;
5028
5029 if (info != NULL)
5030 xfree (info->name_of_main);
5031 xfree (info);
5032 }
5033
5034 static void
5035 set_main_name (const char *name, enum language lang)
5036 {
5037 struct main_info *info = get_main_info ();
5038
5039 if (info->name_of_main != NULL)
5040 {
5041 xfree (info->name_of_main);
5042 info->name_of_main = NULL;
5043 info->language_of_main = language_unknown;
5044 }
5045 if (name != NULL)
5046 {
5047 info->name_of_main = xstrdup (name);
5048 info->language_of_main = lang;
5049 }
5050 }
5051
5052 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5053 accordingly. */
5054
5055 static void
5056 find_main_name (void)
5057 {
5058 const char *new_main_name;
5059 struct objfile *objfile;
5060
5061 /* First check the objfiles to see whether a debuginfo reader has
5062 picked up the appropriate main name. Historically the main name
5063 was found in a more or less random way; this approach instead
5064 relies on the order of objfile creation -- which still isn't
5065 guaranteed to get the correct answer, but is just probably more
5066 accurate. */
5067 ALL_OBJFILES (objfile)
5068 {
5069 if (objfile->per_bfd->name_of_main != NULL)
5070 {
5071 set_main_name (objfile->per_bfd->name_of_main,
5072 objfile->per_bfd->language_of_main);
5073 return;
5074 }
5075 }
5076
5077 /* Try to see if the main procedure is in Ada. */
5078 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5079 be to add a new method in the language vector, and call this
5080 method for each language until one of them returns a non-empty
5081 name. This would allow us to remove this hard-coded call to
5082 an Ada function. It is not clear that this is a better approach
5083 at this point, because all methods need to be written in a way
5084 such that false positives never be returned. For instance, it is
5085 important that a method does not return a wrong name for the main
5086 procedure if the main procedure is actually written in a different
5087 language. It is easy to guaranty this with Ada, since we use a
5088 special symbol generated only when the main in Ada to find the name
5089 of the main procedure. It is difficult however to see how this can
5090 be guarantied for languages such as C, for instance. This suggests
5091 that order of call for these methods becomes important, which means
5092 a more complicated approach. */
5093 new_main_name = ada_main_name ();
5094 if (new_main_name != NULL)
5095 {
5096 set_main_name (new_main_name, language_ada);
5097 return;
5098 }
5099
5100 new_main_name = d_main_name ();
5101 if (new_main_name != NULL)
5102 {
5103 set_main_name (new_main_name, language_d);
5104 return;
5105 }
5106
5107 new_main_name = go_main_name ();
5108 if (new_main_name != NULL)
5109 {
5110 set_main_name (new_main_name, language_go);
5111 return;
5112 }
5113
5114 new_main_name = pascal_main_name ();
5115 if (new_main_name != NULL)
5116 {
5117 set_main_name (new_main_name, language_pascal);
5118 return;
5119 }
5120
5121 /* The languages above didn't identify the name of the main procedure.
5122 Fallback to "main". */
5123 set_main_name ("main", language_unknown);
5124 }
5125
5126 char *
5127 main_name (void)
5128 {
5129 struct main_info *info = get_main_info ();
5130
5131 if (info->name_of_main == NULL)
5132 find_main_name ();
5133
5134 return info->name_of_main;
5135 }
5136
5137 /* Return the language of the main function. If it is not known,
5138 return language_unknown. */
5139
5140 enum language
5141 main_language (void)
5142 {
5143 struct main_info *info = get_main_info ();
5144
5145 if (info->name_of_main == NULL)
5146 find_main_name ();
5147
5148 return info->language_of_main;
5149 }
5150
5151 /* Handle ``executable_changed'' events for the symtab module. */
5152
5153 static void
5154 symtab_observer_executable_changed (void)
5155 {
5156 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5157 set_main_name (NULL, language_unknown);
5158 }
5159
5160 /* Return 1 if the supplied producer string matches the ARM RealView
5161 compiler (armcc). */
5162
5163 int
5164 producer_is_realview (const char *producer)
5165 {
5166 static const char *const arm_idents[] = {
5167 "ARM C Compiler, ADS",
5168 "Thumb C Compiler, ADS",
5169 "ARM C++ Compiler, ADS",
5170 "Thumb C++ Compiler, ADS",
5171 "ARM/Thumb C/C++ Compiler, RVCT",
5172 "ARM C/C++ Compiler, RVCT"
5173 };
5174 int i;
5175
5176 if (producer == NULL)
5177 return 0;
5178
5179 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5180 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5181 return 1;
5182
5183 return 0;
5184 }
5185
5186 \f
5187
5188 /* The next index to hand out in response to a registration request. */
5189
5190 static int next_aclass_value = LOC_FINAL_VALUE;
5191
5192 /* The maximum number of "aclass" registrations we support. This is
5193 constant for convenience. */
5194 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5195
5196 /* The objects representing the various "aclass" values. The elements
5197 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5198 elements are those registered at gdb initialization time. */
5199
5200 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5201
5202 /* The globally visible pointer. This is separate from 'symbol_impl'
5203 so that it can be const. */
5204
5205 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5206
5207 /* Make sure we saved enough room in struct symbol. */
5208
5209 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5210
5211 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5212 is the ops vector associated with this index. This returns the new
5213 index, which should be used as the aclass_index field for symbols
5214 of this type. */
5215
5216 int
5217 register_symbol_computed_impl (enum address_class aclass,
5218 const struct symbol_computed_ops *ops)
5219 {
5220 int result = next_aclass_value++;
5221
5222 gdb_assert (aclass == LOC_COMPUTED);
5223 gdb_assert (result < MAX_SYMBOL_IMPLS);
5224 symbol_impl[result].aclass = aclass;
5225 symbol_impl[result].ops_computed = ops;
5226
5227 /* Sanity check OPS. */
5228 gdb_assert (ops != NULL);
5229 gdb_assert (ops->tracepoint_var_ref != NULL);
5230 gdb_assert (ops->describe_location != NULL);
5231 gdb_assert (ops->read_needs_frame != NULL);
5232 gdb_assert (ops->read_variable != NULL);
5233
5234 return result;
5235 }
5236
5237 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5238 OPS is the ops vector associated with this index. This returns the
5239 new index, which should be used as the aclass_index field for symbols
5240 of this type. */
5241
5242 int
5243 register_symbol_block_impl (enum address_class aclass,
5244 const struct symbol_block_ops *ops)
5245 {
5246 int result = next_aclass_value++;
5247
5248 gdb_assert (aclass == LOC_BLOCK);
5249 gdb_assert (result < MAX_SYMBOL_IMPLS);
5250 symbol_impl[result].aclass = aclass;
5251 symbol_impl[result].ops_block = ops;
5252
5253 /* Sanity check OPS. */
5254 gdb_assert (ops != NULL);
5255 gdb_assert (ops->find_frame_base_location != NULL);
5256
5257 return result;
5258 }
5259
5260 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5261 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5262 this index. This returns the new index, which should be used as
5263 the aclass_index field for symbols of this type. */
5264
5265 int
5266 register_symbol_register_impl (enum address_class aclass,
5267 const struct symbol_register_ops *ops)
5268 {
5269 int result = next_aclass_value++;
5270
5271 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5272 gdb_assert (result < MAX_SYMBOL_IMPLS);
5273 symbol_impl[result].aclass = aclass;
5274 symbol_impl[result].ops_register = ops;
5275
5276 return result;
5277 }
5278
5279 /* Initialize elements of 'symbol_impl' for the constants in enum
5280 address_class. */
5281
5282 static void
5283 initialize_ordinary_address_classes (void)
5284 {
5285 int i;
5286
5287 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5288 symbol_impl[i].aclass = i;
5289 }
5290
5291 \f
5292
5293 /* Initialize the symbol SYM. */
5294
5295 void
5296 initialize_symbol (struct symbol *sym)
5297 {
5298 memset (sym, 0, sizeof (*sym));
5299 SYMBOL_SECTION (sym) = -1;
5300 }
5301
5302 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5303 obstack. */
5304
5305 struct symbol *
5306 allocate_symbol (struct objfile *objfile)
5307 {
5308 struct symbol *result;
5309
5310 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5311 SYMBOL_SECTION (result) = -1;
5312
5313 return result;
5314 }
5315
5316 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5317 obstack. */
5318
5319 struct template_symbol *
5320 allocate_template_symbol (struct objfile *objfile)
5321 {
5322 struct template_symbol *result;
5323
5324 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5325 SYMBOL_SECTION (&result->base) = -1;
5326
5327 return result;
5328 }
5329
5330 \f
5331
5332 void
5333 _initialize_symtab (void)
5334 {
5335 initialize_ordinary_address_classes ();
5336
5337 main_progspace_key
5338 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5339
5340 add_info ("variables", variables_info, _("\
5341 All global and static variable names, or those matching REGEXP."));
5342 if (dbx_commands)
5343 add_com ("whereis", class_info, variables_info, _("\
5344 All global and static variable names, or those matching REGEXP."));
5345
5346 add_info ("functions", functions_info,
5347 _("All function names, or those matching REGEXP."));
5348
5349 /* FIXME: This command has at least the following problems:
5350 1. It prints builtin types (in a very strange and confusing fashion).
5351 2. It doesn't print right, e.g. with
5352 typedef struct foo *FOO
5353 type_print prints "FOO" when we want to make it (in this situation)
5354 print "struct foo *".
5355 I also think "ptype" or "whatis" is more likely to be useful (but if
5356 there is much disagreement "info types" can be fixed). */
5357 add_info ("types", types_info,
5358 _("All type names, or those matching REGEXP."));
5359
5360 add_info ("sources", sources_info,
5361 _("Source files in the program."));
5362
5363 add_com ("rbreak", class_breakpoint, rbreak_command,
5364 _("Set a breakpoint for all functions matching REGEXP."));
5365
5366 if (xdb_commands)
5367 {
5368 add_com ("lf", class_info, sources_info,
5369 _("Source files in the program"));
5370 add_com ("lg", class_info, variables_info, _("\
5371 All global and static variable names, or those matching REGEXP."));
5372 }
5373
5374 add_setshow_enum_cmd ("multiple-symbols", no_class,
5375 multiple_symbols_modes, &multiple_symbols_mode,
5376 _("\
5377 Set the debugger behavior when more than one symbol are possible matches\n\
5378 in an expression."), _("\
5379 Show how the debugger handles ambiguities in expressions."), _("\
5380 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5381 NULL, NULL, &setlist, &showlist);
5382
5383 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5384 &basenames_may_differ, _("\
5385 Set whether a source file may have multiple base names."), _("\
5386 Show whether a source file may have multiple base names."), _("\
5387 (A \"base name\" is the name of a file with the directory part removed.\n\
5388 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5389 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5390 before comparing them. Canonicalization is an expensive operation,\n\
5391 but it allows the same file be known by more than one base name.\n\
5392 If not set (the default), all source files are assumed to have just\n\
5393 one base name, and gdb will do file name comparisons more efficiently."),
5394 NULL, NULL,
5395 &setlist, &showlist);
5396
5397 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5398 _("Set debugging of symbol table creation."),
5399 _("Show debugging of symbol table creation."), _("\
5400 When enabled (non-zero), debugging messages are printed when building\n\
5401 symbol tables. A value of 1 (one) normally provides enough information.\n\
5402 A value greater than 1 provides more verbose information."),
5403 NULL,
5404 NULL,
5405 &setdebuglist, &showdebuglist);
5406
5407 observer_attach_executable_changed (symtab_observer_executable_changed);
5408 }
This page took 0.134019 seconds and 5 git commands to generate.