create and use symbol_set_language.
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "d-lang.h"
43 #include "ada-lang.h"
44 #include "p-lang.h"
45 #include "addrmap.h"
46
47 #include "hashtab.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include "gdb_string.h"
56 #include "gdb_stat.h"
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observer.h"
61 #include "gdb_assert.h"
62 #include "solist.h"
63 #include "macrotab.h"
64 #include "macroscope.h"
65
66 #include "psymtab.h"
67
68 /* Prototypes for local functions */
69
70 static void completion_list_add_name (char *, char *, int, char *, char *);
71
72 static void rbreak_command (char *, int);
73
74 static void types_info (char *, int);
75
76 static void functions_info (char *, int);
77
78 static void variables_info (char *, int);
79
80 static void sources_info (char *, int);
81
82 static void output_source_filename (const char *, int *);
83
84 static int find_line_common (struct linetable *, int, int *);
85
86 /* This one is used by linespec.c */
87
88 char *operator_chars (char *p, char **end);
89
90 static struct symbol *lookup_symbol_aux (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language,
94 int *is_a_field_of_this);
95
96 static
97 struct symbol *lookup_symbol_aux_local (const char *name,
98 const struct block *block,
99 const domain_enum domain,
100 enum language language);
101
102 static
103 struct symbol *lookup_symbol_aux_symtabs (int block_index,
104 const char *name,
105 const domain_enum domain);
106
107 static
108 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
109 int block_index,
110 const char *name,
111 const domain_enum domain);
112
113 static void print_symbol_info (domain_enum,
114 struct symtab *, struct symbol *, int, char *);
115
116 static void print_msymbol_info (struct minimal_symbol *);
117
118 static void symtab_symbol_info (char *, domain_enum, int);
119
120 void _initialize_symtab (void);
121
122 /* */
123
124 /* Allow the user to configure the debugger behavior with respect
125 to multiple-choice menus when more than one symbol matches during
126 a symbol lookup. */
127
128 const char multiple_symbols_ask[] = "ask";
129 const char multiple_symbols_all[] = "all";
130 const char multiple_symbols_cancel[] = "cancel";
131 static const char *multiple_symbols_modes[] =
132 {
133 multiple_symbols_ask,
134 multiple_symbols_all,
135 multiple_symbols_cancel,
136 NULL
137 };
138 static const char *multiple_symbols_mode = multiple_symbols_all;
139
140 /* Read-only accessor to AUTO_SELECT_MODE. */
141
142 const char *
143 multiple_symbols_select_mode (void)
144 {
145 return multiple_symbols_mode;
146 }
147
148 /* Block in which the most recently searched-for symbol was found.
149 Might be better to make this a parameter to lookup_symbol and
150 value_of_this. */
151
152 const struct block *block_found;
153
154 /* Check for a symtab of a specific name; first in symtabs, then in
155 psymtabs. *If* there is no '/' in the name, a match after a '/'
156 in the symtab filename will also work. */
157
158 struct symtab *
159 lookup_symtab (const char *name)
160 {
161 int found;
162 struct symtab *s = NULL;
163 struct objfile *objfile;
164 char *real_path = NULL;
165 char *full_path = NULL;
166
167 /* Here we are interested in canonicalizing an absolute path, not
168 absolutizing a relative path. */
169 if (IS_ABSOLUTE_PATH (name))
170 {
171 full_path = xfullpath (name);
172 make_cleanup (xfree, full_path);
173 real_path = gdb_realpath (name);
174 make_cleanup (xfree, real_path);
175 }
176
177 got_symtab:
178
179 /* First, search for an exact match */
180
181 ALL_SYMTABS (objfile, s)
182 {
183 if (FILENAME_CMP (name, s->filename) == 0)
184 {
185 return s;
186 }
187
188 /* If the user gave us an absolute path, try to find the file in
189 this symtab and use its absolute path. */
190
191 if (full_path != NULL)
192 {
193 const char *fp = symtab_to_fullname (s);
194
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204
205 if (fullname != NULL)
206 {
207 char *rp = gdb_realpath (fullname);
208
209 make_cleanup (xfree, rp);
210 if (FILENAME_CMP (real_path, rp) == 0)
211 {
212 return s;
213 }
214 }
215 }
216 }
217
218 /* Now, search for a matching tail (only if name doesn't have any dirs) */
219
220 if (lbasename (name) == name)
221 ALL_SYMTABS (objfile, s)
222 {
223 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
224 return s;
225 }
226
227 /* Same search rules as above apply here, but now we look thru the
228 psymtabs. */
229
230 found = 0;
231 ALL_OBJFILES (objfile)
232 {
233 if (objfile->sf
234 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
235 &s))
236 {
237 found = 1;
238 break;
239 }
240 }
241
242 if (s != NULL)
243 return s;
244 if (!found)
245 return NULL;
246
247 /* At this point, we have located the psymtab for this file, but
248 the conversion to a symtab has failed. This usually happens
249 when we are looking up an include file. In this case,
250 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
251 been created. So, we need to run through the symtabs again in
252 order to find the file.
253 XXX - This is a crock, and should be fixed inside of the the
254 symbol parsing routines. */
255 goto got_symtab;
256 }
257 \f
258 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
259 full method name, which consist of the class name (from T), the unadorned
260 method name from METHOD_ID, and the signature for the specific overload,
261 specified by SIGNATURE_ID. Note that this function is g++ specific. */
262
263 char *
264 gdb_mangle_name (struct type *type, int method_id, int signature_id)
265 {
266 int mangled_name_len;
267 char *mangled_name;
268 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
269 struct fn_field *method = &f[signature_id];
270 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
271 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
272 char *newname = type_name_no_tag (type);
273
274 /* Does the form of physname indicate that it is the full mangled name
275 of a constructor (not just the args)? */
276 int is_full_physname_constructor;
277
278 int is_constructor;
279 int is_destructor = is_destructor_name (physname);
280 /* Need a new type prefix. */
281 char *const_prefix = method->is_const ? "C" : "";
282 char *volatile_prefix = method->is_volatile ? "V" : "";
283 char buf[20];
284 int len = (newname == NULL ? 0 : strlen (newname));
285
286 /* Nothing to do if physname already contains a fully mangled v3 abi name
287 or an operator name. */
288 if ((physname[0] == '_' && physname[1] == 'Z')
289 || is_operator_name (field_name))
290 return xstrdup (physname);
291
292 is_full_physname_constructor = is_constructor_name (physname);
293
294 is_constructor =
295 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
296
297 if (!is_destructor)
298 is_destructor = (strncmp (physname, "__dt", 4) == 0);
299
300 if (is_destructor || is_full_physname_constructor)
301 {
302 mangled_name = (char *) xmalloc (strlen (physname) + 1);
303 strcpy (mangled_name, physname);
304 return mangled_name;
305 }
306
307 if (len == 0)
308 {
309 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
310 }
311 else if (physname[0] == 't' || physname[0] == 'Q')
312 {
313 /* The physname for template and qualified methods already includes
314 the class name. */
315 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
316 newname = NULL;
317 len = 0;
318 }
319 else
320 {
321 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
322 }
323 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
324 + strlen (buf) + len + strlen (physname) + 1);
325
326 mangled_name = (char *) xmalloc (mangled_name_len);
327 if (is_constructor)
328 mangled_name[0] = '\0';
329 else
330 strcpy (mangled_name, field_name);
331
332 strcat (mangled_name, buf);
333 /* If the class doesn't have a name, i.e. newname NULL, then we just
334 mangle it using 0 for the length of the class. Thus it gets mangled
335 as something starting with `::' rather than `classname::'. */
336 if (newname != NULL)
337 strcat (mangled_name, newname);
338
339 strcat (mangled_name, physname);
340 return (mangled_name);
341 }
342
343 /* Initialize the cplus_specific structure. 'cplus_specific' should
344 only be allocated for use with cplus symbols. */
345
346 static void
347 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
348 struct objfile *objfile)
349 {
350 /* A language_specific structure should not have been previously
351 initialized. */
352 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
353 gdb_assert (objfile != NULL);
354
355 gsymbol->language_specific.cplus_specific =
356 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
357 }
358
359 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
360 correctly allocated. For C++ symbols a cplus_specific struct is
361 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
362 OBJFILE can be NULL. */
363 void
364 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
365 char *name,
366 struct objfile *objfile)
367 {
368 if (gsymbol->language == language_cplus)
369 {
370 if (gsymbol->language_specific.cplus_specific == NULL)
371 symbol_init_cplus_specific (gsymbol, objfile);
372
373 gsymbol->language_specific.cplus_specific->demangled_name = name;
374 }
375 else
376 gsymbol->language_specific.mangled_lang.demangled_name = name;
377 }
378
379 /* Return the demangled name of GSYMBOL. */
380 char *
381 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
382 {
383 if (gsymbol->language == language_cplus)
384 {
385 gdb_assert (gsymbol->language_specific.cplus_specific != NULL);
386 return gsymbol->language_specific.cplus_specific->demangled_name;
387 }
388 else
389 return gsymbol->language_specific.mangled_lang.demangled_name;
390 }
391
392 \f
393 /* Initialize the language dependent portion of a symbol
394 depending upon the language for the symbol. */
395 void
396 symbol_set_language (struct general_symbol_info *gsymbol,
397 enum language language)
398 {
399 gsymbol->language = language;
400 if (gsymbol->language == language_d
401 || gsymbol->language == language_java
402 || gsymbol->language == language_objc
403 || gsymbol->language == language_fortran)
404 {
405 symbol_set_demangled_name (gsymbol, NULL, NULL);
406 }
407 else if (gsymbol->language == language_cplus)
408 gsymbol->language_specific.cplus_specific = NULL;
409 else
410 {
411 memset (&gsymbol->language_specific, 0,
412 sizeof (gsymbol->language_specific));
413 }
414 }
415
416 /* Functions to initialize a symbol's mangled name. */
417
418 /* Objects of this type are stored in the demangled name hash table. */
419 struct demangled_name_entry
420 {
421 char *mangled;
422 char demangled[1];
423 };
424
425 /* Hash function for the demangled name hash. */
426 static hashval_t
427 hash_demangled_name_entry (const void *data)
428 {
429 const struct demangled_name_entry *e = data;
430
431 return htab_hash_string (e->mangled);
432 }
433
434 /* Equality function for the demangled name hash. */
435 static int
436 eq_demangled_name_entry (const void *a, const void *b)
437 {
438 const struct demangled_name_entry *da = a;
439 const struct demangled_name_entry *db = b;
440
441 return strcmp (da->mangled, db->mangled) == 0;
442 }
443
444 /* Create the hash table used for demangled names. Each hash entry is
445 a pair of strings; one for the mangled name and one for the demangled
446 name. The entry is hashed via just the mangled name. */
447
448 static void
449 create_demangled_names_hash (struct objfile *objfile)
450 {
451 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
452 The hash table code will round this up to the next prime number.
453 Choosing a much larger table size wastes memory, and saves only about
454 1% in symbol reading. */
455
456 objfile->demangled_names_hash = htab_create_alloc
457 (256, hash_demangled_name_entry, eq_demangled_name_entry,
458 NULL, xcalloc, xfree);
459 }
460
461 /* Try to determine the demangled name for a symbol, based on the
462 language of that symbol. If the language is set to language_auto,
463 it will attempt to find any demangling algorithm that works and
464 then set the language appropriately. The returned name is allocated
465 by the demangler and should be xfree'd. */
466
467 static char *
468 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
469 const char *mangled)
470 {
471 char *demangled = NULL;
472
473 if (gsymbol->language == language_unknown)
474 gsymbol->language = language_auto;
475
476 if (gsymbol->language == language_objc
477 || gsymbol->language == language_auto)
478 {
479 demangled =
480 objc_demangle (mangled, 0);
481 if (demangled != NULL)
482 {
483 gsymbol->language = language_objc;
484 return demangled;
485 }
486 }
487 if (gsymbol->language == language_cplus
488 || gsymbol->language == language_auto)
489 {
490 demangled =
491 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
492 if (demangled != NULL)
493 {
494 gsymbol->language = language_cplus;
495 return demangled;
496 }
497 }
498 if (gsymbol->language == language_java)
499 {
500 demangled =
501 cplus_demangle (mangled,
502 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
503 if (demangled != NULL)
504 {
505 gsymbol->language = language_java;
506 return demangled;
507 }
508 }
509 if (gsymbol->language == language_d
510 || gsymbol->language == language_auto)
511 {
512 demangled = d_demangle(mangled, 0);
513 if (demangled != NULL)
514 {
515 gsymbol->language = language_d;
516 return demangled;
517 }
518 }
519 /* We could support `gsymbol->language == language_fortran' here to provide
520 module namespaces also for inferiors with only minimal symbol table (ELF
521 symbols). Just the mangling standard is not standardized across compilers
522 and there is no DW_AT_producer available for inferiors with only the ELF
523 symbols to check the mangling kind. */
524 return NULL;
525 }
526
527 /* Set both the mangled and demangled (if any) names for GSYMBOL based
528 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
529 objfile's obstack; but if COPY_NAME is 0 and if NAME is
530 NUL-terminated, then this function assumes that NAME is already
531 correctly saved (either permanently or with a lifetime tied to the
532 objfile), and it will not be copied.
533
534 The hash table corresponding to OBJFILE is used, and the memory
535 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
536 so the pointer can be discarded after calling this function. */
537
538 /* We have to be careful when dealing with Java names: when we run
539 into a Java minimal symbol, we don't know it's a Java symbol, so it
540 gets demangled as a C++ name. This is unfortunate, but there's not
541 much we can do about it: but when demangling partial symbols and
542 regular symbols, we'd better not reuse the wrong demangled name.
543 (See PR gdb/1039.) We solve this by putting a distinctive prefix
544 on Java names when storing them in the hash table. */
545
546 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
547 don't mind the Java prefix so much: different languages have
548 different demangling requirements, so it's only natural that we
549 need to keep language data around in our demangling cache. But
550 it's not good that the minimal symbol has the wrong demangled name.
551 Unfortunately, I can't think of any easy solution to that
552 problem. */
553
554 #define JAVA_PREFIX "##JAVA$$"
555 #define JAVA_PREFIX_LEN 8
556
557 void
558 symbol_set_names (struct general_symbol_info *gsymbol,
559 const char *linkage_name, int len, int copy_name,
560 struct objfile *objfile)
561 {
562 struct demangled_name_entry **slot;
563 /* A 0-terminated copy of the linkage name. */
564 const char *linkage_name_copy;
565 /* A copy of the linkage name that might have a special Java prefix
566 added to it, for use when looking names up in the hash table. */
567 const char *lookup_name;
568 /* The length of lookup_name. */
569 int lookup_len;
570 struct demangled_name_entry entry;
571
572 if (gsymbol->language == language_ada)
573 {
574 /* In Ada, we do the symbol lookups using the mangled name, so
575 we can save some space by not storing the demangled name.
576
577 As a side note, we have also observed some overlap between
578 the C++ mangling and Ada mangling, similarly to what has
579 been observed with Java. Because we don't store the demangled
580 name with the symbol, we don't need to use the same trick
581 as Java. */
582 if (!copy_name)
583 gsymbol->name = (char *) linkage_name;
584 else
585 {
586 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
587 memcpy (gsymbol->name, linkage_name, len);
588 gsymbol->name[len] = '\0';
589 }
590 symbol_set_demangled_name (gsymbol, NULL, NULL);
591
592 return;
593 }
594
595 if (objfile->demangled_names_hash == NULL)
596 create_demangled_names_hash (objfile);
597
598 /* The stabs reader generally provides names that are not
599 NUL-terminated; most of the other readers don't do this, so we
600 can just use the given copy, unless we're in the Java case. */
601 if (gsymbol->language == language_java)
602 {
603 char *alloc_name;
604
605 lookup_len = len + JAVA_PREFIX_LEN;
606 alloc_name = alloca (lookup_len + 1);
607 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
608 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
609 alloc_name[lookup_len] = '\0';
610
611 lookup_name = alloc_name;
612 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
613 }
614 else if (linkage_name[len] != '\0')
615 {
616 char *alloc_name;
617
618 lookup_len = len;
619 alloc_name = alloca (lookup_len + 1);
620 memcpy (alloc_name, linkage_name, len);
621 alloc_name[lookup_len] = '\0';
622
623 lookup_name = alloc_name;
624 linkage_name_copy = alloc_name;
625 }
626 else
627 {
628 lookup_len = len;
629 lookup_name = linkage_name;
630 linkage_name_copy = linkage_name;
631 }
632
633 entry.mangled = (char *) lookup_name;
634 slot = ((struct demangled_name_entry **)
635 htab_find_slot (objfile->demangled_names_hash,
636 &entry, INSERT));
637
638 /* If this name is not in the hash table, add it. */
639 if (*slot == NULL)
640 {
641 char *demangled_name = symbol_find_demangled_name (gsymbol,
642 linkage_name_copy);
643 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
644
645 /* Suppose we have demangled_name==NULL, copy_name==0, and
646 lookup_name==linkage_name. In this case, we already have the
647 mangled name saved, and we don't have a demangled name. So,
648 you might think we could save a little space by not recording
649 this in the hash table at all.
650
651 It turns out that it is actually important to still save such
652 an entry in the hash table, because storing this name gives
653 us better bcache hit rates for partial symbols. */
654 if (!copy_name && lookup_name == linkage_name)
655 {
656 *slot = obstack_alloc (&objfile->objfile_obstack,
657 offsetof (struct demangled_name_entry,
658 demangled)
659 + demangled_len + 1);
660 (*slot)->mangled = (char *) lookup_name;
661 }
662 else
663 {
664 /* If we must copy the mangled name, put it directly after
665 the demangled name so we can have a single
666 allocation. */
667 *slot = obstack_alloc (&objfile->objfile_obstack,
668 offsetof (struct demangled_name_entry,
669 demangled)
670 + lookup_len + demangled_len + 2);
671 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
672 strcpy ((*slot)->mangled, lookup_name);
673 }
674
675 if (demangled_name != NULL)
676 {
677 strcpy ((*slot)->demangled, demangled_name);
678 xfree (demangled_name);
679 }
680 else
681 (*slot)->demangled[0] = '\0';
682 }
683
684 gsymbol->name = (*slot)->mangled + lookup_len - len;
685 if ((*slot)->demangled[0] != '\0')
686 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
687 else
688 symbol_set_demangled_name (gsymbol, NULL, objfile);
689 }
690
691 /* Return the source code name of a symbol. In languages where
692 demangling is necessary, this is the demangled name. */
693
694 char *
695 symbol_natural_name (const struct general_symbol_info *gsymbol)
696 {
697 switch (gsymbol->language)
698 {
699 case language_cplus:
700 case language_d:
701 case language_java:
702 case language_objc:
703 case language_fortran:
704 if (symbol_get_demangled_name (gsymbol) != NULL)
705 return symbol_get_demangled_name (gsymbol);
706 break;
707 case language_ada:
708 if (symbol_get_demangled_name (gsymbol) != NULL)
709 return symbol_get_demangled_name (gsymbol);
710 else
711 return ada_decode_symbol (gsymbol);
712 break;
713 default:
714 break;
715 }
716 return gsymbol->name;
717 }
718
719 /* Return the demangled name for a symbol based on the language for
720 that symbol. If no demangled name exists, return NULL. */
721 char *
722 symbol_demangled_name (const struct general_symbol_info *gsymbol)
723 {
724 switch (gsymbol->language)
725 {
726 case language_cplus:
727 case language_d:
728 case language_java:
729 case language_objc:
730 case language_fortran:
731 if (symbol_get_demangled_name (gsymbol) != NULL)
732 return symbol_get_demangled_name (gsymbol);
733 break;
734 case language_ada:
735 if (symbol_get_demangled_name (gsymbol) != NULL)
736 return symbol_get_demangled_name (gsymbol);
737 else
738 return ada_decode_symbol (gsymbol);
739 break;
740 default:
741 break;
742 }
743 return NULL;
744 }
745
746 /* Return the search name of a symbol---generally the demangled or
747 linkage name of the symbol, depending on how it will be searched for.
748 If there is no distinct demangled name, then returns the same value
749 (same pointer) as SYMBOL_LINKAGE_NAME. */
750 char *
751 symbol_search_name (const struct general_symbol_info *gsymbol)
752 {
753 if (gsymbol->language == language_ada)
754 return gsymbol->name;
755 else
756 return symbol_natural_name (gsymbol);
757 }
758
759 /* Initialize the structure fields to zero values. */
760 void
761 init_sal (struct symtab_and_line *sal)
762 {
763 sal->pspace = NULL;
764 sal->symtab = 0;
765 sal->section = 0;
766 sal->line = 0;
767 sal->pc = 0;
768 sal->end = 0;
769 sal->explicit_pc = 0;
770 sal->explicit_line = 0;
771 }
772 \f
773
774 /* Return 1 if the two sections are the same, or if they could
775 plausibly be copies of each other, one in an original object
776 file and another in a separated debug file. */
777
778 int
779 matching_obj_sections (struct obj_section *obj_first,
780 struct obj_section *obj_second)
781 {
782 asection *first = obj_first? obj_first->the_bfd_section : NULL;
783 asection *second = obj_second? obj_second->the_bfd_section : NULL;
784 struct objfile *obj;
785
786 /* If they're the same section, then they match. */
787 if (first == second)
788 return 1;
789
790 /* If either is NULL, give up. */
791 if (first == NULL || second == NULL)
792 return 0;
793
794 /* This doesn't apply to absolute symbols. */
795 if (first->owner == NULL || second->owner == NULL)
796 return 0;
797
798 /* If they're in the same object file, they must be different sections. */
799 if (first->owner == second->owner)
800 return 0;
801
802 /* Check whether the two sections are potentially corresponding. They must
803 have the same size, address, and name. We can't compare section indexes,
804 which would be more reliable, because some sections may have been
805 stripped. */
806 if (bfd_get_section_size (first) != bfd_get_section_size (second))
807 return 0;
808
809 /* In-memory addresses may start at a different offset, relativize them. */
810 if (bfd_get_section_vma (first->owner, first)
811 - bfd_get_start_address (first->owner)
812 != bfd_get_section_vma (second->owner, second)
813 - bfd_get_start_address (second->owner))
814 return 0;
815
816 if (bfd_get_section_name (first->owner, first) == NULL
817 || bfd_get_section_name (second->owner, second) == NULL
818 || strcmp (bfd_get_section_name (first->owner, first),
819 bfd_get_section_name (second->owner, second)) != 0)
820 return 0;
821
822 /* Otherwise check that they are in corresponding objfiles. */
823
824 ALL_OBJFILES (obj)
825 if (obj->obfd == first->owner)
826 break;
827 gdb_assert (obj != NULL);
828
829 if (obj->separate_debug_objfile != NULL
830 && obj->separate_debug_objfile->obfd == second->owner)
831 return 1;
832 if (obj->separate_debug_objfile_backlink != NULL
833 && obj->separate_debug_objfile_backlink->obfd == second->owner)
834 return 1;
835
836 return 0;
837 }
838
839 struct symtab *
840 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
841 {
842 struct objfile *objfile;
843 struct minimal_symbol *msymbol;
844
845 /* If we know that this is not a text address, return failure. This is
846 necessary because we loop based on texthigh and textlow, which do
847 not include the data ranges. */
848 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
849 if (msymbol
850 && (MSYMBOL_TYPE (msymbol) == mst_data
851 || MSYMBOL_TYPE (msymbol) == mst_bss
852 || MSYMBOL_TYPE (msymbol) == mst_abs
853 || MSYMBOL_TYPE (msymbol) == mst_file_data
854 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
855 return NULL;
856
857 ALL_OBJFILES (objfile)
858 {
859 struct symtab *result = NULL;
860
861 if (objfile->sf)
862 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
863 pc, section, 0);
864 if (result)
865 return result;
866 }
867
868 return NULL;
869 }
870 \f
871 /* Debug symbols usually don't have section information. We need to dig that
872 out of the minimal symbols and stash that in the debug symbol. */
873
874 void
875 fixup_section (struct general_symbol_info *ginfo,
876 CORE_ADDR addr, struct objfile *objfile)
877 {
878 struct minimal_symbol *msym;
879
880 /* First, check whether a minimal symbol with the same name exists
881 and points to the same address. The address check is required
882 e.g. on PowerPC64, where the minimal symbol for a function will
883 point to the function descriptor, while the debug symbol will
884 point to the actual function code. */
885 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
886 if (msym)
887 {
888 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
889 ginfo->section = SYMBOL_SECTION (msym);
890 }
891 else
892 {
893 /* Static, function-local variables do appear in the linker
894 (minimal) symbols, but are frequently given names that won't
895 be found via lookup_minimal_symbol(). E.g., it has been
896 observed in frv-uclinux (ELF) executables that a static,
897 function-local variable named "foo" might appear in the
898 linker symbols as "foo.6" or "foo.3". Thus, there is no
899 point in attempting to extend the lookup-by-name mechanism to
900 handle this case due to the fact that there can be multiple
901 names.
902
903 So, instead, search the section table when lookup by name has
904 failed. The ``addr'' and ``endaddr'' fields may have already
905 been relocated. If so, the relocation offset (i.e. the
906 ANOFFSET value) needs to be subtracted from these values when
907 performing the comparison. We unconditionally subtract it,
908 because, when no relocation has been performed, the ANOFFSET
909 value will simply be zero.
910
911 The address of the symbol whose section we're fixing up HAS
912 NOT BEEN adjusted (relocated) yet. It can't have been since
913 the section isn't yet known and knowing the section is
914 necessary in order to add the correct relocation value. In
915 other words, we wouldn't even be in this function (attempting
916 to compute the section) if it were already known.
917
918 Note that it is possible to search the minimal symbols
919 (subtracting the relocation value if necessary) to find the
920 matching minimal symbol, but this is overkill and much less
921 efficient. It is not necessary to find the matching minimal
922 symbol, only its section.
923
924 Note that this technique (of doing a section table search)
925 can fail when unrelocated section addresses overlap. For
926 this reason, we still attempt a lookup by name prior to doing
927 a search of the section table. */
928
929 struct obj_section *s;
930
931 ALL_OBJFILE_OSECTIONS (objfile, s)
932 {
933 int idx = s->the_bfd_section->index;
934 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
935
936 if (obj_section_addr (s) - offset <= addr
937 && addr < obj_section_endaddr (s) - offset)
938 {
939 ginfo->obj_section = s;
940 ginfo->section = idx;
941 return;
942 }
943 }
944 }
945 }
946
947 struct symbol *
948 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
949 {
950 CORE_ADDR addr;
951
952 if (!sym)
953 return NULL;
954
955 if (SYMBOL_OBJ_SECTION (sym))
956 return sym;
957
958 /* We either have an OBJFILE, or we can get at it from the sym's
959 symtab. Anything else is a bug. */
960 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
961
962 if (objfile == NULL)
963 objfile = SYMBOL_SYMTAB (sym)->objfile;
964
965 /* We should have an objfile by now. */
966 gdb_assert (objfile);
967
968 switch (SYMBOL_CLASS (sym))
969 {
970 case LOC_STATIC:
971 case LOC_LABEL:
972 addr = SYMBOL_VALUE_ADDRESS (sym);
973 break;
974 case LOC_BLOCK:
975 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
976 break;
977
978 default:
979 /* Nothing else will be listed in the minsyms -- no use looking
980 it up. */
981 return sym;
982 }
983
984 fixup_section (&sym->ginfo, addr, objfile);
985
986 return sym;
987 }
988
989 /* Find the definition for a specified symbol name NAME
990 in domain DOMAIN, visible from lexical block BLOCK.
991 Returns the struct symbol pointer, or zero if no symbol is found.
992 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
993 NAME is a field of the current implied argument `this'. If so set
994 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
995 BLOCK_FOUND is set to the block in which NAME is found (in the case of
996 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
997
998 /* This function has a bunch of loops in it and it would seem to be
999 attractive to put in some QUIT's (though I'm not really sure
1000 whether it can run long enough to be really important). But there
1001 are a few calls for which it would appear to be bad news to quit
1002 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1003 that there is C++ code below which can error(), but that probably
1004 doesn't affect these calls since they are looking for a known
1005 variable and thus can probably assume it will never hit the C++
1006 code). */
1007
1008 struct symbol *
1009 lookup_symbol_in_language (const char *name, const struct block *block,
1010 const domain_enum domain, enum language lang,
1011 int *is_a_field_of_this)
1012 {
1013 char *demangled_name = NULL;
1014 const char *modified_name = NULL;
1015 struct symbol *returnval;
1016 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1017
1018 modified_name = name;
1019
1020 /* If we are using C++, D, or Java, demangle the name before doing a
1021 lookup, so we can always binary search. */
1022 if (lang == language_cplus)
1023 {
1024 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1025 if (demangled_name)
1026 {
1027 modified_name = demangled_name;
1028 make_cleanup (xfree, demangled_name);
1029 }
1030 else
1031 {
1032 /* If we were given a non-mangled name, canonicalize it
1033 according to the language (so far only for C++). */
1034 demangled_name = cp_canonicalize_string (name);
1035 if (demangled_name)
1036 {
1037 modified_name = demangled_name;
1038 make_cleanup (xfree, demangled_name);
1039 }
1040 }
1041 }
1042 else if (lang == language_java)
1043 {
1044 demangled_name = cplus_demangle (name,
1045 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1046 if (demangled_name)
1047 {
1048 modified_name = demangled_name;
1049 make_cleanup (xfree, demangled_name);
1050 }
1051 }
1052 else if (lang == language_d)
1053 {
1054 demangled_name = d_demangle (name, 0);
1055 if (demangled_name)
1056 {
1057 modified_name = demangled_name;
1058 make_cleanup (xfree, demangled_name);
1059 }
1060 }
1061
1062 if (case_sensitivity == case_sensitive_off)
1063 {
1064 char *copy;
1065 int len, i;
1066
1067 len = strlen (name);
1068 copy = (char *) alloca (len + 1);
1069 for (i= 0; i < len; i++)
1070 copy[i] = tolower (name[i]);
1071 copy[len] = 0;
1072 modified_name = copy;
1073 }
1074
1075 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1076 is_a_field_of_this);
1077 do_cleanups (cleanup);
1078
1079 return returnval;
1080 }
1081
1082 /* Behave like lookup_symbol_in_language, but performed with the
1083 current language. */
1084
1085 struct symbol *
1086 lookup_symbol (const char *name, const struct block *block,
1087 domain_enum domain, int *is_a_field_of_this)
1088 {
1089 return lookup_symbol_in_language (name, block, domain,
1090 current_language->la_language,
1091 is_a_field_of_this);
1092 }
1093
1094 /* Behave like lookup_symbol except that NAME is the natural name
1095 of the symbol that we're looking for and, if LINKAGE_NAME is
1096 non-NULL, ensure that the symbol's linkage name matches as
1097 well. */
1098
1099 static struct symbol *
1100 lookup_symbol_aux (const char *name, const struct block *block,
1101 const domain_enum domain, enum language language,
1102 int *is_a_field_of_this)
1103 {
1104 struct symbol *sym;
1105 const struct language_defn *langdef;
1106
1107 /* Make sure we do something sensible with is_a_field_of_this, since
1108 the callers that set this parameter to some non-null value will
1109 certainly use it later and expect it to be either 0 or 1.
1110 If we don't set it, the contents of is_a_field_of_this are
1111 undefined. */
1112 if (is_a_field_of_this != NULL)
1113 *is_a_field_of_this = 0;
1114
1115 /* Search specified block and its superiors. Don't search
1116 STATIC_BLOCK or GLOBAL_BLOCK. */
1117
1118 sym = lookup_symbol_aux_local (name, block, domain, language);
1119 if (sym != NULL)
1120 return sym;
1121
1122 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1123 check to see if NAME is a field of `this'. */
1124
1125 langdef = language_def (language);
1126
1127 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1128 && block != NULL)
1129 {
1130 struct symbol *sym = NULL;
1131 const struct block *function_block = block;
1132
1133 /* 'this' is only defined in the function's block, so find the
1134 enclosing function block. */
1135 for (; function_block && !BLOCK_FUNCTION (function_block);
1136 function_block = BLOCK_SUPERBLOCK (function_block));
1137
1138 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1139 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1140 VAR_DOMAIN);
1141 if (sym)
1142 {
1143 struct type *t = sym->type;
1144
1145 /* I'm not really sure that type of this can ever
1146 be typedefed; just be safe. */
1147 CHECK_TYPEDEF (t);
1148 if (TYPE_CODE (t) == TYPE_CODE_PTR
1149 || TYPE_CODE (t) == TYPE_CODE_REF)
1150 t = TYPE_TARGET_TYPE (t);
1151
1152 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1153 && TYPE_CODE (t) != TYPE_CODE_UNION)
1154 error (_("Internal error: `%s' is not an aggregate"),
1155 langdef->la_name_of_this);
1156
1157 if (check_field (t, name))
1158 {
1159 *is_a_field_of_this = 1;
1160 return NULL;
1161 }
1162 }
1163 }
1164
1165 /* Now do whatever is appropriate for LANGUAGE to look
1166 up static and global variables. */
1167
1168 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1169 if (sym != NULL)
1170 return sym;
1171
1172 /* Now search all static file-level symbols. Not strictly correct,
1173 but more useful than an error. */
1174
1175 return lookup_static_symbol_aux (name, domain);
1176 }
1177
1178 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1179 first, then check the psymtabs. If a psymtab indicates the existence of the
1180 desired name as a file-level static, then do psymtab-to-symtab conversion on
1181 the fly and return the found symbol. */
1182
1183 struct symbol *
1184 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1185 {
1186 struct objfile *objfile;
1187 struct symbol *sym;
1188
1189 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1190 if (sym != NULL)
1191 return sym;
1192
1193 ALL_OBJFILES (objfile)
1194 {
1195 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1196 if (sym != NULL)
1197 return sym;
1198 }
1199
1200 return NULL;
1201 }
1202
1203 /* Check to see if the symbol is defined in BLOCK or its superiors.
1204 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1205
1206 static struct symbol *
1207 lookup_symbol_aux_local (const char *name, const struct block *block,
1208 const domain_enum domain,
1209 enum language language)
1210 {
1211 struct symbol *sym;
1212 const struct block *static_block = block_static_block (block);
1213 const char *scope = block_scope (block);
1214
1215 /* Check if either no block is specified or it's a global block. */
1216
1217 if (static_block == NULL)
1218 return NULL;
1219
1220 while (block != static_block)
1221 {
1222 sym = lookup_symbol_aux_block (name, block, domain);
1223 if (sym != NULL)
1224 return sym;
1225
1226 if (language == language_cplus || language == language_fortran)
1227 {
1228 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1229 domain);
1230 if (sym != NULL)
1231 return sym;
1232 }
1233
1234 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1235 break;
1236 block = BLOCK_SUPERBLOCK (block);
1237 }
1238
1239 /* We've reached the edge of the function without finding a result. */
1240
1241 return NULL;
1242 }
1243
1244 /* Look up OBJFILE to BLOCK. */
1245
1246 struct objfile *
1247 lookup_objfile_from_block (const struct block *block)
1248 {
1249 struct objfile *obj;
1250 struct symtab *s;
1251
1252 if (block == NULL)
1253 return NULL;
1254
1255 block = block_global_block (block);
1256 /* Go through SYMTABS. */
1257 ALL_SYMTABS (obj, s)
1258 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1259 {
1260 if (obj->separate_debug_objfile_backlink)
1261 obj = obj->separate_debug_objfile_backlink;
1262
1263 return obj;
1264 }
1265
1266 return NULL;
1267 }
1268
1269 /* Look up a symbol in a block; if found, fixup the symbol, and set
1270 block_found appropriately. */
1271
1272 struct symbol *
1273 lookup_symbol_aux_block (const char *name, const struct block *block,
1274 const domain_enum domain)
1275 {
1276 struct symbol *sym;
1277
1278 sym = lookup_block_symbol (block, name, domain);
1279 if (sym)
1280 {
1281 block_found = block;
1282 return fixup_symbol_section (sym, NULL);
1283 }
1284
1285 return NULL;
1286 }
1287
1288 /* Check all global symbols in OBJFILE in symtabs and
1289 psymtabs. */
1290
1291 struct symbol *
1292 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1293 const char *name,
1294 const domain_enum domain)
1295 {
1296 const struct objfile *objfile;
1297 struct symbol *sym;
1298 struct blockvector *bv;
1299 const struct block *block;
1300 struct symtab *s;
1301
1302 for (objfile = main_objfile;
1303 objfile;
1304 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1305 {
1306 /* Go through symtabs. */
1307 ALL_OBJFILE_SYMTABS (objfile, s)
1308 {
1309 bv = BLOCKVECTOR (s);
1310 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1311 sym = lookup_block_symbol (block, name, domain);
1312 if (sym)
1313 {
1314 block_found = block;
1315 return fixup_symbol_section (sym, (struct objfile *)objfile);
1316 }
1317 }
1318
1319 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1320 name, domain);
1321 if (sym)
1322 return sym;
1323 }
1324
1325 return NULL;
1326 }
1327
1328 /* Check to see if the symbol is defined in one of the symtabs.
1329 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1330 depending on whether or not we want to search global symbols or
1331 static symbols. */
1332
1333 static struct symbol *
1334 lookup_symbol_aux_symtabs (int block_index, const char *name,
1335 const domain_enum domain)
1336 {
1337 struct symbol *sym;
1338 struct objfile *objfile;
1339 struct blockvector *bv;
1340 const struct block *block;
1341 struct symtab *s;
1342
1343 ALL_OBJFILES (objfile)
1344 {
1345 if (objfile->sf)
1346 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1347 block_index,
1348 name, domain);
1349
1350 ALL_OBJFILE_SYMTABS (objfile, s)
1351 if (s->primary)
1352 {
1353 bv = BLOCKVECTOR (s);
1354 block = BLOCKVECTOR_BLOCK (bv, block_index);
1355 sym = lookup_block_symbol (block, name, domain);
1356 if (sym)
1357 {
1358 block_found = block;
1359 return fixup_symbol_section (sym, objfile);
1360 }
1361 }
1362 }
1363
1364 return NULL;
1365 }
1366
1367 /* A helper function for lookup_symbol_aux that interfaces with the
1368 "quick" symbol table functions. */
1369
1370 static struct symbol *
1371 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1372 const char *name, const domain_enum domain)
1373 {
1374 struct symtab *symtab;
1375 struct blockvector *bv;
1376 const struct block *block;
1377 struct symbol *sym;
1378
1379 if (!objfile->sf)
1380 return NULL;
1381 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1382 if (!symtab)
1383 return NULL;
1384
1385 bv = BLOCKVECTOR (symtab);
1386 block = BLOCKVECTOR_BLOCK (bv, kind);
1387 sym = lookup_block_symbol (block, name, domain);
1388 if (!sym)
1389 {
1390 /* This shouldn't be necessary, but as a last resort try
1391 looking in the statics even though the psymtab claimed
1392 the symbol was global, or vice-versa. It's possible
1393 that the psymtab gets it wrong in some cases. */
1394
1395 /* FIXME: carlton/2002-09-30: Should we really do that?
1396 If that happens, isn't it likely to be a GDB error, in
1397 which case we should fix the GDB error rather than
1398 silently dealing with it here? So I'd vote for
1399 removing the check for the symbol in the other
1400 block. */
1401 block = BLOCKVECTOR_BLOCK (bv,
1402 kind == GLOBAL_BLOCK ?
1403 STATIC_BLOCK : GLOBAL_BLOCK);
1404 sym = lookup_block_symbol (block, name, domain);
1405 if (!sym)
1406 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1407 kind == GLOBAL_BLOCK ? "global" : "static",
1408 name, symtab->filename, name, name);
1409 }
1410 return fixup_symbol_section (sym, objfile);
1411 }
1412
1413 /* A default version of lookup_symbol_nonlocal for use by languages
1414 that can't think of anything better to do. This implements the C
1415 lookup rules. */
1416
1417 struct symbol *
1418 basic_lookup_symbol_nonlocal (const char *name,
1419 const struct block *block,
1420 const domain_enum domain)
1421 {
1422 struct symbol *sym;
1423
1424 /* NOTE: carlton/2003-05-19: The comments below were written when
1425 this (or what turned into this) was part of lookup_symbol_aux;
1426 I'm much less worried about these questions now, since these
1427 decisions have turned out well, but I leave these comments here
1428 for posterity. */
1429
1430 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1431 not it would be appropriate to search the current global block
1432 here as well. (That's what this code used to do before the
1433 is_a_field_of_this check was moved up.) On the one hand, it's
1434 redundant with the lookup_symbol_aux_symtabs search that happens
1435 next. On the other hand, if decode_line_1 is passed an argument
1436 like filename:var, then the user presumably wants 'var' to be
1437 searched for in filename. On the third hand, there shouldn't be
1438 multiple global variables all of which are named 'var', and it's
1439 not like decode_line_1 has ever restricted its search to only
1440 global variables in a single filename. All in all, only
1441 searching the static block here seems best: it's correct and it's
1442 cleanest. */
1443
1444 /* NOTE: carlton/2002-12-05: There's also a possible performance
1445 issue here: if you usually search for global symbols in the
1446 current file, then it would be slightly better to search the
1447 current global block before searching all the symtabs. But there
1448 are other factors that have a much greater effect on performance
1449 than that one, so I don't think we should worry about that for
1450 now. */
1451
1452 sym = lookup_symbol_static (name, block, domain);
1453 if (sym != NULL)
1454 return sym;
1455
1456 return lookup_symbol_global (name, block, domain);
1457 }
1458
1459 /* Lookup a symbol in the static block associated to BLOCK, if there
1460 is one; do nothing if BLOCK is NULL or a global block. */
1461
1462 struct symbol *
1463 lookup_symbol_static (const char *name,
1464 const struct block *block,
1465 const domain_enum domain)
1466 {
1467 const struct block *static_block = block_static_block (block);
1468
1469 if (static_block != NULL)
1470 return lookup_symbol_aux_block (name, static_block, domain);
1471 else
1472 return NULL;
1473 }
1474
1475 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1476 necessary). */
1477
1478 struct symbol *
1479 lookup_symbol_global (const char *name,
1480 const struct block *block,
1481 const domain_enum domain)
1482 {
1483 struct symbol *sym = NULL;
1484 struct objfile *objfile = NULL;
1485
1486 /* Call library-specific lookup procedure. */
1487 objfile = lookup_objfile_from_block (block);
1488 if (objfile != NULL)
1489 sym = solib_global_lookup (objfile, name, domain);
1490 if (sym != NULL)
1491 return sym;
1492
1493 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1494 if (sym != NULL)
1495 return sym;
1496
1497 ALL_OBJFILES (objfile)
1498 {
1499 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1500 if (sym)
1501 return sym;
1502 }
1503
1504 return NULL;
1505 }
1506
1507 int
1508 symbol_matches_domain (enum language symbol_language,
1509 domain_enum symbol_domain,
1510 domain_enum domain)
1511 {
1512 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1513 A Java class declaration also defines a typedef for the class.
1514 Similarly, any Ada type declaration implicitly defines a typedef. */
1515 if (symbol_language == language_cplus
1516 || symbol_language == language_d
1517 || symbol_language == language_java
1518 || symbol_language == language_ada)
1519 {
1520 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1521 && symbol_domain == STRUCT_DOMAIN)
1522 return 1;
1523 }
1524 /* For all other languages, strict match is required. */
1525 return (symbol_domain == domain);
1526 }
1527
1528 /* Look up a type named NAME in the struct_domain. The type returned
1529 must not be opaque -- i.e., must have at least one field
1530 defined. */
1531
1532 struct type *
1533 lookup_transparent_type (const char *name)
1534 {
1535 return current_language->la_lookup_transparent_type (name);
1536 }
1537
1538 /* A helper for basic_lookup_transparent_type that interfaces with the
1539 "quick" symbol table functions. */
1540
1541 static struct type *
1542 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1543 const char *name)
1544 {
1545 struct symtab *symtab;
1546 struct blockvector *bv;
1547 struct block *block;
1548 struct symbol *sym;
1549
1550 if (!objfile->sf)
1551 return NULL;
1552 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1553 if (!symtab)
1554 return NULL;
1555
1556 bv = BLOCKVECTOR (symtab);
1557 block = BLOCKVECTOR_BLOCK (bv, kind);
1558 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1559 if (!sym)
1560 {
1561 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1562
1563 /* This shouldn't be necessary, but as a last resort
1564 * try looking in the 'other kind' even though the psymtab
1565 * claimed the symbol was one thing. It's possible that
1566 * the psymtab gets it wrong in some cases.
1567 */
1568 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1569 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1570 if (!sym)
1571 /* FIXME; error is wrong in one case */
1572 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1573 %s may be an inlined function, or may be a template function\n\
1574 (if a template, try specifying an instantiation: %s<type>)."),
1575 name, symtab->filename, name, name);
1576 }
1577 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1578 return SYMBOL_TYPE (sym);
1579
1580 return NULL;
1581 }
1582
1583 /* The standard implementation of lookup_transparent_type. This code
1584 was modeled on lookup_symbol -- the parts not relevant to looking
1585 up types were just left out. In particular it's assumed here that
1586 types are available in struct_domain and only at file-static or
1587 global blocks. */
1588
1589 struct type *
1590 basic_lookup_transparent_type (const char *name)
1591 {
1592 struct symbol *sym;
1593 struct symtab *s = NULL;
1594 struct blockvector *bv;
1595 struct objfile *objfile;
1596 struct block *block;
1597 struct type *t;
1598
1599 /* Now search all the global symbols. Do the symtab's first, then
1600 check the psymtab's. If a psymtab indicates the existence
1601 of the desired name as a global, then do psymtab-to-symtab
1602 conversion on the fly and return the found symbol. */
1603
1604 ALL_OBJFILES (objfile)
1605 {
1606 if (objfile->sf)
1607 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1608 GLOBAL_BLOCK,
1609 name, STRUCT_DOMAIN);
1610
1611 ALL_OBJFILE_SYMTABS (objfile, s)
1612 if (s->primary)
1613 {
1614 bv = BLOCKVECTOR (s);
1615 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1616 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1617 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1618 {
1619 return SYMBOL_TYPE (sym);
1620 }
1621 }
1622 }
1623
1624 ALL_OBJFILES (objfile)
1625 {
1626 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1627 if (t)
1628 return t;
1629 }
1630
1631 /* Now search the static file-level symbols.
1632 Not strictly correct, but more useful than an error.
1633 Do the symtab's first, then
1634 check the psymtab's. If a psymtab indicates the existence
1635 of the desired name as a file-level static, then do psymtab-to-symtab
1636 conversion on the fly and return the found symbol.
1637 */
1638
1639 ALL_OBJFILES (objfile)
1640 {
1641 if (objfile->sf)
1642 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1643 name, STRUCT_DOMAIN);
1644
1645 ALL_OBJFILE_SYMTABS (objfile, s)
1646 {
1647 bv = BLOCKVECTOR (s);
1648 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1649 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1650 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1651 {
1652 return SYMBOL_TYPE (sym);
1653 }
1654 }
1655 }
1656
1657 ALL_OBJFILES (objfile)
1658 {
1659 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1660 if (t)
1661 return t;
1662 }
1663
1664 return (struct type *) 0;
1665 }
1666
1667
1668 /* Find the name of the file containing main(). */
1669 /* FIXME: What about languages without main() or specially linked
1670 executables that have no main() ? */
1671
1672 const char *
1673 find_main_filename (void)
1674 {
1675 struct objfile *objfile;
1676 char *name = main_name ();
1677
1678 ALL_OBJFILES (objfile)
1679 {
1680 const char *result;
1681
1682 if (!objfile->sf)
1683 continue;
1684 result = objfile->sf->qf->find_symbol_file (objfile, name);
1685 if (result)
1686 return result;
1687 }
1688 return (NULL);
1689 }
1690
1691 /* Search BLOCK for symbol NAME in DOMAIN.
1692
1693 Note that if NAME is the demangled form of a C++ symbol, we will fail
1694 to find a match during the binary search of the non-encoded names, but
1695 for now we don't worry about the slight inefficiency of looking for
1696 a match we'll never find, since it will go pretty quick. Once the
1697 binary search terminates, we drop through and do a straight linear
1698 search on the symbols. Each symbol which is marked as being a ObjC/C++
1699 symbol (language_cplus or language_objc set) has both the encoded and
1700 non-encoded names tested for a match.
1701 */
1702
1703 struct symbol *
1704 lookup_block_symbol (const struct block *block, const char *name,
1705 const domain_enum domain)
1706 {
1707 struct dict_iterator iter;
1708 struct symbol *sym;
1709
1710 if (!BLOCK_FUNCTION (block))
1711 {
1712 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1713 sym != NULL;
1714 sym = dict_iter_name_next (name, &iter))
1715 {
1716 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1717 SYMBOL_DOMAIN (sym), domain))
1718 return sym;
1719 }
1720 return NULL;
1721 }
1722 else
1723 {
1724 /* Note that parameter symbols do not always show up last in the
1725 list; this loop makes sure to take anything else other than
1726 parameter symbols first; it only uses parameter symbols as a
1727 last resort. Note that this only takes up extra computation
1728 time on a match. */
1729
1730 struct symbol *sym_found = NULL;
1731
1732 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1733 sym != NULL;
1734 sym = dict_iter_name_next (name, &iter))
1735 {
1736 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1737 SYMBOL_DOMAIN (sym), domain))
1738 {
1739 sym_found = sym;
1740 if (!SYMBOL_IS_ARGUMENT (sym))
1741 {
1742 break;
1743 }
1744 }
1745 }
1746 return (sym_found); /* Will be NULL if not found. */
1747 }
1748 }
1749
1750 /* Find the symtab associated with PC and SECTION. Look through the
1751 psymtabs and read in another symtab if necessary. */
1752
1753 struct symtab *
1754 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1755 {
1756 struct block *b;
1757 struct blockvector *bv;
1758 struct symtab *s = NULL;
1759 struct symtab *best_s = NULL;
1760 struct objfile *objfile;
1761 struct program_space *pspace;
1762 CORE_ADDR distance = 0;
1763 struct minimal_symbol *msymbol;
1764
1765 pspace = current_program_space;
1766
1767 /* If we know that this is not a text address, return failure. This is
1768 necessary because we loop based on the block's high and low code
1769 addresses, which do not include the data ranges, and because
1770 we call find_pc_sect_psymtab which has a similar restriction based
1771 on the partial_symtab's texthigh and textlow. */
1772 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1773 if (msymbol
1774 && (MSYMBOL_TYPE (msymbol) == mst_data
1775 || MSYMBOL_TYPE (msymbol) == mst_bss
1776 || MSYMBOL_TYPE (msymbol) == mst_abs
1777 || MSYMBOL_TYPE (msymbol) == mst_file_data
1778 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1779 return NULL;
1780
1781 /* Search all symtabs for the one whose file contains our address, and which
1782 is the smallest of all the ones containing the address. This is designed
1783 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1784 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1785 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1786
1787 This happens for native ecoff format, where code from included files
1788 gets its own symtab. The symtab for the included file should have
1789 been read in already via the dependency mechanism.
1790 It might be swifter to create several symtabs with the same name
1791 like xcoff does (I'm not sure).
1792
1793 It also happens for objfiles that have their functions reordered.
1794 For these, the symtab we are looking for is not necessarily read in. */
1795
1796 ALL_PRIMARY_SYMTABS (objfile, s)
1797 {
1798 bv = BLOCKVECTOR (s);
1799 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1800
1801 if (BLOCK_START (b) <= pc
1802 && BLOCK_END (b) > pc
1803 && (distance == 0
1804 || BLOCK_END (b) - BLOCK_START (b) < distance))
1805 {
1806 /* For an objfile that has its functions reordered,
1807 find_pc_psymtab will find the proper partial symbol table
1808 and we simply return its corresponding symtab. */
1809 /* In order to better support objfiles that contain both
1810 stabs and coff debugging info, we continue on if a psymtab
1811 can't be found. */
1812 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1813 {
1814 struct symtab *result;
1815
1816 result
1817 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1818 msymbol,
1819 pc, section,
1820 0);
1821 if (result)
1822 return result;
1823 }
1824 if (section != 0)
1825 {
1826 struct dict_iterator iter;
1827 struct symbol *sym = NULL;
1828
1829 ALL_BLOCK_SYMBOLS (b, iter, sym)
1830 {
1831 fixup_symbol_section (sym, objfile);
1832 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1833 break;
1834 }
1835 if (sym == NULL)
1836 continue; /* no symbol in this symtab matches section */
1837 }
1838 distance = BLOCK_END (b) - BLOCK_START (b);
1839 best_s = s;
1840 }
1841 }
1842
1843 if (best_s != NULL)
1844 return (best_s);
1845
1846 ALL_OBJFILES (objfile)
1847 {
1848 struct symtab *result;
1849
1850 if (!objfile->sf)
1851 continue;
1852 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1853 msymbol,
1854 pc, section,
1855 1);
1856 if (result)
1857 return result;
1858 }
1859
1860 return NULL;
1861 }
1862
1863 /* Find the symtab associated with PC. Look through the psymtabs and
1864 read in another symtab if necessary. Backward compatibility, no section */
1865
1866 struct symtab *
1867 find_pc_symtab (CORE_ADDR pc)
1868 {
1869 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1870 }
1871 \f
1872
1873 /* Find the source file and line number for a given PC value and SECTION.
1874 Return a structure containing a symtab pointer, a line number,
1875 and a pc range for the entire source line.
1876 The value's .pc field is NOT the specified pc.
1877 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1878 use the line that ends there. Otherwise, in that case, the line
1879 that begins there is used. */
1880
1881 /* The big complication here is that a line may start in one file, and end just
1882 before the start of another file. This usually occurs when you #include
1883 code in the middle of a subroutine. To properly find the end of a line's PC
1884 range, we must search all symtabs associated with this compilation unit, and
1885 find the one whose first PC is closer than that of the next line in this
1886 symtab. */
1887
1888 /* If it's worth the effort, we could be using a binary search. */
1889
1890 struct symtab_and_line
1891 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1892 {
1893 struct symtab *s;
1894 struct linetable *l;
1895 int len;
1896 int i;
1897 struct linetable_entry *item;
1898 struct symtab_and_line val;
1899 struct blockvector *bv;
1900 struct minimal_symbol *msymbol;
1901 struct minimal_symbol *mfunsym;
1902
1903 /* Info on best line seen so far, and where it starts, and its file. */
1904
1905 struct linetable_entry *best = NULL;
1906 CORE_ADDR best_end = 0;
1907 struct symtab *best_symtab = 0;
1908
1909 /* Store here the first line number
1910 of a file which contains the line at the smallest pc after PC.
1911 If we don't find a line whose range contains PC,
1912 we will use a line one less than this,
1913 with a range from the start of that file to the first line's pc. */
1914 struct linetable_entry *alt = NULL;
1915 struct symtab *alt_symtab = 0;
1916
1917 /* Info on best line seen in this file. */
1918
1919 struct linetable_entry *prev;
1920
1921 /* If this pc is not from the current frame,
1922 it is the address of the end of a call instruction.
1923 Quite likely that is the start of the following statement.
1924 But what we want is the statement containing the instruction.
1925 Fudge the pc to make sure we get that. */
1926
1927 init_sal (&val); /* initialize to zeroes */
1928
1929 val.pspace = current_program_space;
1930
1931 /* It's tempting to assume that, if we can't find debugging info for
1932 any function enclosing PC, that we shouldn't search for line
1933 number info, either. However, GAS can emit line number info for
1934 assembly files --- very helpful when debugging hand-written
1935 assembly code. In such a case, we'd have no debug info for the
1936 function, but we would have line info. */
1937
1938 if (notcurrent)
1939 pc -= 1;
1940
1941 /* elz: added this because this function returned the wrong
1942 information if the pc belongs to a stub (import/export)
1943 to call a shlib function. This stub would be anywhere between
1944 two functions in the target, and the line info was erroneously
1945 taken to be the one of the line before the pc.
1946 */
1947 /* RT: Further explanation:
1948
1949 * We have stubs (trampolines) inserted between procedures.
1950 *
1951 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1952 * exists in the main image.
1953 *
1954 * In the minimal symbol table, we have a bunch of symbols
1955 * sorted by start address. The stubs are marked as "trampoline",
1956 * the others appear as text. E.g.:
1957 *
1958 * Minimal symbol table for main image
1959 * main: code for main (text symbol)
1960 * shr1: stub (trampoline symbol)
1961 * foo: code for foo (text symbol)
1962 * ...
1963 * Minimal symbol table for "shr1" image:
1964 * ...
1965 * shr1: code for shr1 (text symbol)
1966 * ...
1967 *
1968 * So the code below is trying to detect if we are in the stub
1969 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1970 * and if found, do the symbolization from the real-code address
1971 * rather than the stub address.
1972 *
1973 * Assumptions being made about the minimal symbol table:
1974 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1975 * if we're really in the trampoline. If we're beyond it (say
1976 * we're in "foo" in the above example), it'll have a closer
1977 * symbol (the "foo" text symbol for example) and will not
1978 * return the trampoline.
1979 * 2. lookup_minimal_symbol_text() will find a real text symbol
1980 * corresponding to the trampoline, and whose address will
1981 * be different than the trampoline address. I put in a sanity
1982 * check for the address being the same, to avoid an
1983 * infinite recursion.
1984 */
1985 msymbol = lookup_minimal_symbol_by_pc (pc);
1986 if (msymbol != NULL)
1987 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1988 {
1989 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
1990 NULL);
1991 if (mfunsym == NULL)
1992 /* I eliminated this warning since it is coming out
1993 * in the following situation:
1994 * gdb shmain // test program with shared libraries
1995 * (gdb) break shr1 // function in shared lib
1996 * Warning: In stub for ...
1997 * In the above situation, the shared lib is not loaded yet,
1998 * so of course we can't find the real func/line info,
1999 * but the "break" still works, and the warning is annoying.
2000 * So I commented out the warning. RT */
2001 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2002 /* fall through */
2003 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2004 /* Avoid infinite recursion */
2005 /* See above comment about why warning is commented out */
2006 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2007 /* fall through */
2008 else
2009 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2010 }
2011
2012
2013 s = find_pc_sect_symtab (pc, section);
2014 if (!s)
2015 {
2016 /* if no symbol information, return previous pc */
2017 if (notcurrent)
2018 pc++;
2019 val.pc = pc;
2020 return val;
2021 }
2022
2023 bv = BLOCKVECTOR (s);
2024
2025 /* Look at all the symtabs that share this blockvector.
2026 They all have the same apriori range, that we found was right;
2027 but they have different line tables. */
2028
2029 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2030 {
2031 /* Find the best line in this symtab. */
2032 l = LINETABLE (s);
2033 if (!l)
2034 continue;
2035 len = l->nitems;
2036 if (len <= 0)
2037 {
2038 /* I think len can be zero if the symtab lacks line numbers
2039 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2040 I'm not sure which, and maybe it depends on the symbol
2041 reader). */
2042 continue;
2043 }
2044
2045 prev = NULL;
2046 item = l->item; /* Get first line info */
2047
2048 /* Is this file's first line closer than the first lines of other files?
2049 If so, record this file, and its first line, as best alternate. */
2050 if (item->pc > pc && (!alt || item->pc < alt->pc))
2051 {
2052 alt = item;
2053 alt_symtab = s;
2054 }
2055
2056 for (i = 0; i < len; i++, item++)
2057 {
2058 /* Leave prev pointing to the linetable entry for the last line
2059 that started at or before PC. */
2060 if (item->pc > pc)
2061 break;
2062
2063 prev = item;
2064 }
2065
2066 /* At this point, prev points at the line whose start addr is <= pc, and
2067 item points at the next line. If we ran off the end of the linetable
2068 (pc >= start of the last line), then prev == item. If pc < start of
2069 the first line, prev will not be set. */
2070
2071 /* Is this file's best line closer than the best in the other files?
2072 If so, record this file, and its best line, as best so far. Don't
2073 save prev if it represents the end of a function (i.e. line number
2074 0) instead of a real line. */
2075
2076 if (prev && prev->line && (!best || prev->pc > best->pc))
2077 {
2078 best = prev;
2079 best_symtab = s;
2080
2081 /* Discard BEST_END if it's before the PC of the current BEST. */
2082 if (best_end <= best->pc)
2083 best_end = 0;
2084 }
2085
2086 /* If another line (denoted by ITEM) is in the linetable and its
2087 PC is after BEST's PC, but before the current BEST_END, then
2088 use ITEM's PC as the new best_end. */
2089 if (best && i < len && item->pc > best->pc
2090 && (best_end == 0 || best_end > item->pc))
2091 best_end = item->pc;
2092 }
2093
2094 if (!best_symtab)
2095 {
2096 /* If we didn't find any line number info, just return zeros.
2097 We used to return alt->line - 1 here, but that could be
2098 anywhere; if we don't have line number info for this PC,
2099 don't make some up. */
2100 val.pc = pc;
2101 }
2102 else if (best->line == 0)
2103 {
2104 /* If our best fit is in a range of PC's for which no line
2105 number info is available (line number is zero) then we didn't
2106 find any valid line information. */
2107 val.pc = pc;
2108 }
2109 else
2110 {
2111 val.symtab = best_symtab;
2112 val.line = best->line;
2113 val.pc = best->pc;
2114 if (best_end && (!alt || best_end < alt->pc))
2115 val.end = best_end;
2116 else if (alt)
2117 val.end = alt->pc;
2118 else
2119 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2120 }
2121 val.section = section;
2122 return val;
2123 }
2124
2125 /* Backward compatibility (no section) */
2126
2127 struct symtab_and_line
2128 find_pc_line (CORE_ADDR pc, int notcurrent)
2129 {
2130 struct obj_section *section;
2131
2132 section = find_pc_overlay (pc);
2133 if (pc_in_unmapped_range (pc, section))
2134 pc = overlay_mapped_address (pc, section);
2135 return find_pc_sect_line (pc, section, notcurrent);
2136 }
2137 \f
2138 /* Find line number LINE in any symtab whose name is the same as
2139 SYMTAB.
2140
2141 If found, return the symtab that contains the linetable in which it was
2142 found, set *INDEX to the index in the linetable of the best entry
2143 found, and set *EXACT_MATCH nonzero if the value returned is an
2144 exact match.
2145
2146 If not found, return NULL. */
2147
2148 struct symtab *
2149 find_line_symtab (struct symtab *symtab, int line,
2150 int *index, int *exact_match)
2151 {
2152 int exact = 0; /* Initialized here to avoid a compiler warning. */
2153
2154 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2155 so far seen. */
2156
2157 int best_index;
2158 struct linetable *best_linetable;
2159 struct symtab *best_symtab;
2160
2161 /* First try looking it up in the given symtab. */
2162 best_linetable = LINETABLE (symtab);
2163 best_symtab = symtab;
2164 best_index = find_line_common (best_linetable, line, &exact);
2165 if (best_index < 0 || !exact)
2166 {
2167 /* Didn't find an exact match. So we better keep looking for
2168 another symtab with the same name. In the case of xcoff,
2169 multiple csects for one source file (produced by IBM's FORTRAN
2170 compiler) produce multiple symtabs (this is unavoidable
2171 assuming csects can be at arbitrary places in memory and that
2172 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2173
2174 /* BEST is the smallest linenumber > LINE so far seen,
2175 or 0 if none has been seen so far.
2176 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2177 int best;
2178
2179 struct objfile *objfile;
2180 struct symtab *s;
2181
2182 if (best_index >= 0)
2183 best = best_linetable->item[best_index].line;
2184 else
2185 best = 0;
2186
2187 ALL_OBJFILES (objfile)
2188 {
2189 if (objfile->sf)
2190 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2191 symtab->filename);
2192 }
2193
2194 /* Get symbol full file name if possible. */
2195 symtab_to_fullname (symtab);
2196
2197 ALL_SYMTABS (objfile, s)
2198 {
2199 struct linetable *l;
2200 int ind;
2201
2202 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2203 continue;
2204 if (symtab->fullname != NULL
2205 && symtab_to_fullname (s) != NULL
2206 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2207 continue;
2208 l = LINETABLE (s);
2209 ind = find_line_common (l, line, &exact);
2210 if (ind >= 0)
2211 {
2212 if (exact)
2213 {
2214 best_index = ind;
2215 best_linetable = l;
2216 best_symtab = s;
2217 goto done;
2218 }
2219 if (best == 0 || l->item[ind].line < best)
2220 {
2221 best = l->item[ind].line;
2222 best_index = ind;
2223 best_linetable = l;
2224 best_symtab = s;
2225 }
2226 }
2227 }
2228 }
2229 done:
2230 if (best_index < 0)
2231 return NULL;
2232
2233 if (index)
2234 *index = best_index;
2235 if (exact_match)
2236 *exact_match = exact;
2237
2238 return best_symtab;
2239 }
2240 \f
2241 /* Set the PC value for a given source file and line number and return true.
2242 Returns zero for invalid line number (and sets the PC to 0).
2243 The source file is specified with a struct symtab. */
2244
2245 int
2246 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2247 {
2248 struct linetable *l;
2249 int ind;
2250
2251 *pc = 0;
2252 if (symtab == 0)
2253 return 0;
2254
2255 symtab = find_line_symtab (symtab, line, &ind, NULL);
2256 if (symtab != NULL)
2257 {
2258 l = LINETABLE (symtab);
2259 *pc = l->item[ind].pc;
2260 return 1;
2261 }
2262 else
2263 return 0;
2264 }
2265
2266 /* Find the range of pc values in a line.
2267 Store the starting pc of the line into *STARTPTR
2268 and the ending pc (start of next line) into *ENDPTR.
2269 Returns 1 to indicate success.
2270 Returns 0 if could not find the specified line. */
2271
2272 int
2273 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2274 CORE_ADDR *endptr)
2275 {
2276 CORE_ADDR startaddr;
2277 struct symtab_and_line found_sal;
2278
2279 startaddr = sal.pc;
2280 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2281 return 0;
2282
2283 /* This whole function is based on address. For example, if line 10 has
2284 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2285 "info line *0x123" should say the line goes from 0x100 to 0x200
2286 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2287 This also insures that we never give a range like "starts at 0x134
2288 and ends at 0x12c". */
2289
2290 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2291 if (found_sal.line != sal.line)
2292 {
2293 /* The specified line (sal) has zero bytes. */
2294 *startptr = found_sal.pc;
2295 *endptr = found_sal.pc;
2296 }
2297 else
2298 {
2299 *startptr = found_sal.pc;
2300 *endptr = found_sal.end;
2301 }
2302 return 1;
2303 }
2304
2305 /* Given a line table and a line number, return the index into the line
2306 table for the pc of the nearest line whose number is >= the specified one.
2307 Return -1 if none is found. The value is >= 0 if it is an index.
2308
2309 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2310
2311 static int
2312 find_line_common (struct linetable *l, int lineno,
2313 int *exact_match)
2314 {
2315 int i;
2316 int len;
2317
2318 /* BEST is the smallest linenumber > LINENO so far seen,
2319 or 0 if none has been seen so far.
2320 BEST_INDEX identifies the item for it. */
2321
2322 int best_index = -1;
2323 int best = 0;
2324
2325 *exact_match = 0;
2326
2327 if (lineno <= 0)
2328 return -1;
2329 if (l == 0)
2330 return -1;
2331
2332 len = l->nitems;
2333 for (i = 0; i < len; i++)
2334 {
2335 struct linetable_entry *item = &(l->item[i]);
2336
2337 if (item->line == lineno)
2338 {
2339 /* Return the first (lowest address) entry which matches. */
2340 *exact_match = 1;
2341 return i;
2342 }
2343
2344 if (item->line > lineno && (best == 0 || item->line < best))
2345 {
2346 best = item->line;
2347 best_index = i;
2348 }
2349 }
2350
2351 /* If we got here, we didn't get an exact match. */
2352 return best_index;
2353 }
2354
2355 int
2356 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2357 {
2358 struct symtab_and_line sal;
2359
2360 sal = find_pc_line (pc, 0);
2361 *startptr = sal.pc;
2362 *endptr = sal.end;
2363 return sal.symtab != 0;
2364 }
2365
2366 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2367 address for that function that has an entry in SYMTAB's line info
2368 table. If such an entry cannot be found, return FUNC_ADDR
2369 unaltered. */
2370 CORE_ADDR
2371 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2372 {
2373 CORE_ADDR func_start, func_end;
2374 struct linetable *l;
2375 int i;
2376
2377 /* Give up if this symbol has no lineinfo table. */
2378 l = LINETABLE (symtab);
2379 if (l == NULL)
2380 return func_addr;
2381
2382 /* Get the range for the function's PC values, or give up if we
2383 cannot, for some reason. */
2384 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2385 return func_addr;
2386
2387 /* Linetable entries are ordered by PC values, see the commentary in
2388 symtab.h where `struct linetable' is defined. Thus, the first
2389 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2390 address we are looking for. */
2391 for (i = 0; i < l->nitems; i++)
2392 {
2393 struct linetable_entry *item = &(l->item[i]);
2394
2395 /* Don't use line numbers of zero, they mark special entries in
2396 the table. See the commentary on symtab.h before the
2397 definition of struct linetable. */
2398 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2399 return item->pc;
2400 }
2401
2402 return func_addr;
2403 }
2404
2405 /* Given a function symbol SYM, find the symtab and line for the start
2406 of the function.
2407 If the argument FUNFIRSTLINE is nonzero, we want the first line
2408 of real code inside the function. */
2409
2410 struct symtab_and_line
2411 find_function_start_sal (struct symbol *sym, int funfirstline)
2412 {
2413 struct symtab_and_line sal;
2414
2415 fixup_symbol_section (sym, NULL);
2416 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2417 SYMBOL_OBJ_SECTION (sym), 0);
2418
2419 /* We always should have a line for the function start address.
2420 If we don't, something is odd. Create a plain SAL refering
2421 just the PC and hope that skip_prologue_sal (if requested)
2422 can find a line number for after the prologue. */
2423 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2424 {
2425 init_sal (&sal);
2426 sal.pspace = current_program_space;
2427 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2428 sal.section = SYMBOL_OBJ_SECTION (sym);
2429 }
2430
2431 if (funfirstline)
2432 skip_prologue_sal (&sal);
2433
2434 return sal;
2435 }
2436
2437 /* Adjust SAL to the first instruction past the function prologue.
2438 If the PC was explicitly specified, the SAL is not changed.
2439 If the line number was explicitly specified, at most the SAL's PC
2440 is updated. If SAL is already past the prologue, then do nothing. */
2441 void
2442 skip_prologue_sal (struct symtab_and_line *sal)
2443 {
2444 struct symbol *sym;
2445 struct symtab_and_line start_sal;
2446 struct cleanup *old_chain;
2447 CORE_ADDR pc;
2448 struct obj_section *section;
2449 const char *name;
2450 struct objfile *objfile;
2451 struct gdbarch *gdbarch;
2452 struct block *b, *function_block;
2453
2454 /* Do not change the SAL is PC was specified explicitly. */
2455 if (sal->explicit_pc)
2456 return;
2457
2458 old_chain = save_current_space_and_thread ();
2459 switch_to_program_space_and_thread (sal->pspace);
2460
2461 sym = find_pc_sect_function (sal->pc, sal->section);
2462 if (sym != NULL)
2463 {
2464 fixup_symbol_section (sym, NULL);
2465
2466 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2467 section = SYMBOL_OBJ_SECTION (sym);
2468 name = SYMBOL_LINKAGE_NAME (sym);
2469 objfile = SYMBOL_SYMTAB (sym)->objfile;
2470 }
2471 else
2472 {
2473 struct minimal_symbol *msymbol
2474 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2475
2476 if (msymbol == NULL)
2477 {
2478 do_cleanups (old_chain);
2479 return;
2480 }
2481
2482 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2483 section = SYMBOL_OBJ_SECTION (msymbol);
2484 name = SYMBOL_LINKAGE_NAME (msymbol);
2485 objfile = msymbol_objfile (msymbol);
2486 }
2487
2488 gdbarch = get_objfile_arch (objfile);
2489
2490 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2491 so that gdbarch_skip_prologue has something unique to work on. */
2492 if (section_is_overlay (section) && !section_is_mapped (section))
2493 pc = overlay_unmapped_address (pc, section);
2494
2495 /* Skip "first line" of function (which is actually its prologue). */
2496 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2497 pc = gdbarch_skip_prologue (gdbarch, pc);
2498
2499 /* For overlays, map pc back into its mapped VMA range. */
2500 pc = overlay_mapped_address (pc, section);
2501
2502 /* Calculate line number. */
2503 start_sal = find_pc_sect_line (pc, section, 0);
2504
2505 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2506 line is still part of the same function. */
2507 if (start_sal.pc != pc
2508 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2509 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2510 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2511 == lookup_minimal_symbol_by_pc_section (pc, section))))
2512 {
2513 /* First pc of next line */
2514 pc = start_sal.end;
2515 /* Recalculate the line number (might not be N+1). */
2516 start_sal = find_pc_sect_line (pc, section, 0);
2517 }
2518
2519 /* On targets with executable formats that don't have a concept of
2520 constructors (ELF with .init has, PE doesn't), gcc emits a call
2521 to `__main' in `main' between the prologue and before user
2522 code. */
2523 if (gdbarch_skip_main_prologue_p (gdbarch)
2524 && name && strcmp (name, "main") == 0)
2525 {
2526 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2527 /* Recalculate the line number (might not be N+1). */
2528 start_sal = find_pc_sect_line (pc, section, 0);
2529 }
2530
2531 /* If we still don't have a valid source line, try to find the first
2532 PC in the lineinfo table that belongs to the same function. This
2533 happens with COFF debug info, which does not seem to have an
2534 entry in lineinfo table for the code after the prologue which has
2535 no direct relation to source. For example, this was found to be
2536 the case with the DJGPP target using "gcc -gcoff" when the
2537 compiler inserted code after the prologue to make sure the stack
2538 is aligned. */
2539 if (sym && start_sal.symtab == NULL)
2540 {
2541 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2542 /* Recalculate the line number. */
2543 start_sal = find_pc_sect_line (pc, section, 0);
2544 }
2545
2546 do_cleanups (old_chain);
2547
2548 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2549 forward SAL to the end of the prologue. */
2550 if (sal->pc >= pc)
2551 return;
2552
2553 sal->pc = pc;
2554 sal->section = section;
2555
2556 /* Unless the explicit_line flag was set, update the SAL line
2557 and symtab to correspond to the modified PC location. */
2558 if (sal->explicit_line)
2559 return;
2560
2561 sal->symtab = start_sal.symtab;
2562 sal->line = start_sal.line;
2563 sal->end = start_sal.end;
2564
2565 /* Check if we are now inside an inlined function. If we can,
2566 use the call site of the function instead. */
2567 b = block_for_pc_sect (sal->pc, sal->section);
2568 function_block = NULL;
2569 while (b != NULL)
2570 {
2571 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2572 function_block = b;
2573 else if (BLOCK_FUNCTION (b) != NULL)
2574 break;
2575 b = BLOCK_SUPERBLOCK (b);
2576 }
2577 if (function_block != NULL
2578 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2579 {
2580 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2581 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2582 }
2583 }
2584
2585 /* If P is of the form "operator[ \t]+..." where `...' is
2586 some legitimate operator text, return a pointer to the
2587 beginning of the substring of the operator text.
2588 Otherwise, return "". */
2589 char *
2590 operator_chars (char *p, char **end)
2591 {
2592 *end = "";
2593 if (strncmp (p, "operator", 8))
2594 return *end;
2595 p += 8;
2596
2597 /* Don't get faked out by `operator' being part of a longer
2598 identifier. */
2599 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2600 return *end;
2601
2602 /* Allow some whitespace between `operator' and the operator symbol. */
2603 while (*p == ' ' || *p == '\t')
2604 p++;
2605
2606 /* Recognize 'operator TYPENAME'. */
2607
2608 if (isalpha (*p) || *p == '_' || *p == '$')
2609 {
2610 char *q = p + 1;
2611
2612 while (isalnum (*q) || *q == '_' || *q == '$')
2613 q++;
2614 *end = q;
2615 return p;
2616 }
2617
2618 while (*p)
2619 switch (*p)
2620 {
2621 case '\\': /* regexp quoting */
2622 if (p[1] == '*')
2623 {
2624 if (p[2] == '=') /* 'operator\*=' */
2625 *end = p + 3;
2626 else /* 'operator\*' */
2627 *end = p + 2;
2628 return p;
2629 }
2630 else if (p[1] == '[')
2631 {
2632 if (p[2] == ']')
2633 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2634 else if (p[2] == '\\' && p[3] == ']')
2635 {
2636 *end = p + 4; /* 'operator\[\]' */
2637 return p;
2638 }
2639 else
2640 error (_("nothing is allowed between '[' and ']'"));
2641 }
2642 else
2643 {
2644 /* Gratuitous qoute: skip it and move on. */
2645 p++;
2646 continue;
2647 }
2648 break;
2649 case '!':
2650 case '=':
2651 case '*':
2652 case '/':
2653 case '%':
2654 case '^':
2655 if (p[1] == '=')
2656 *end = p + 2;
2657 else
2658 *end = p + 1;
2659 return p;
2660 case '<':
2661 case '>':
2662 case '+':
2663 case '-':
2664 case '&':
2665 case '|':
2666 if (p[0] == '-' && p[1] == '>')
2667 {
2668 /* Struct pointer member operator 'operator->'. */
2669 if (p[2] == '*')
2670 {
2671 *end = p + 3; /* 'operator->*' */
2672 return p;
2673 }
2674 else if (p[2] == '\\')
2675 {
2676 *end = p + 4; /* Hopefully 'operator->\*' */
2677 return p;
2678 }
2679 else
2680 {
2681 *end = p + 2; /* 'operator->' */
2682 return p;
2683 }
2684 }
2685 if (p[1] == '=' || p[1] == p[0])
2686 *end = p + 2;
2687 else
2688 *end = p + 1;
2689 return p;
2690 case '~':
2691 case ',':
2692 *end = p + 1;
2693 return p;
2694 case '(':
2695 if (p[1] != ')')
2696 error (_("`operator ()' must be specified without whitespace in `()'"));
2697 *end = p + 2;
2698 return p;
2699 case '?':
2700 if (p[1] != ':')
2701 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2702 *end = p + 2;
2703 return p;
2704 case '[':
2705 if (p[1] != ']')
2706 error (_("`operator []' must be specified without whitespace in `[]'"));
2707 *end = p + 2;
2708 return p;
2709 default:
2710 error (_("`operator %s' not supported"), p);
2711 break;
2712 }
2713
2714 *end = "";
2715 return *end;
2716 }
2717 \f
2718
2719 /* If FILE is not already in the table of files, return zero;
2720 otherwise return non-zero. Optionally add FILE to the table if ADD
2721 is non-zero. If *FIRST is non-zero, forget the old table
2722 contents. */
2723 static int
2724 filename_seen (const char *file, int add, int *first)
2725 {
2726 /* Table of files seen so far. */
2727 static const char **tab = NULL;
2728 /* Allocated size of tab in elements.
2729 Start with one 256-byte block (when using GNU malloc.c).
2730 24 is the malloc overhead when range checking is in effect. */
2731 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2732 /* Current size of tab in elements. */
2733 static int tab_cur_size;
2734 const char **p;
2735
2736 if (*first)
2737 {
2738 if (tab == NULL)
2739 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2740 tab_cur_size = 0;
2741 }
2742
2743 /* Is FILE in tab? */
2744 for (p = tab; p < tab + tab_cur_size; p++)
2745 if (strcmp (*p, file) == 0)
2746 return 1;
2747
2748 /* No; maybe add it to tab. */
2749 if (add)
2750 {
2751 if (tab_cur_size == tab_alloc_size)
2752 {
2753 tab_alloc_size *= 2;
2754 tab = (const char **) xrealloc ((char *) tab,
2755 tab_alloc_size * sizeof (*tab));
2756 }
2757 tab[tab_cur_size++] = file;
2758 }
2759
2760 return 0;
2761 }
2762
2763 /* Slave routine for sources_info. Force line breaks at ,'s.
2764 NAME is the name to print and *FIRST is nonzero if this is the first
2765 name printed. Set *FIRST to zero. */
2766 static void
2767 output_source_filename (const char *name, int *first)
2768 {
2769 /* Since a single source file can result in several partial symbol
2770 tables, we need to avoid printing it more than once. Note: if
2771 some of the psymtabs are read in and some are not, it gets
2772 printed both under "Source files for which symbols have been
2773 read" and "Source files for which symbols will be read in on
2774 demand". I consider this a reasonable way to deal with the
2775 situation. I'm not sure whether this can also happen for
2776 symtabs; it doesn't hurt to check. */
2777
2778 /* Was NAME already seen? */
2779 if (filename_seen (name, 1, first))
2780 {
2781 /* Yes; don't print it again. */
2782 return;
2783 }
2784 /* No; print it and reset *FIRST. */
2785 if (*first)
2786 {
2787 *first = 0;
2788 }
2789 else
2790 {
2791 printf_filtered (", ");
2792 }
2793
2794 wrap_here ("");
2795 fputs_filtered (name, gdb_stdout);
2796 }
2797
2798 /* A callback for map_partial_symbol_filenames. */
2799 static void
2800 output_partial_symbol_filename (const char *fullname, const char *filename,
2801 void *data)
2802 {
2803 output_source_filename (fullname ? fullname : filename, data);
2804 }
2805
2806 static void
2807 sources_info (char *ignore, int from_tty)
2808 {
2809 struct symtab *s;
2810 struct objfile *objfile;
2811 int first;
2812
2813 if (!have_full_symbols () && !have_partial_symbols ())
2814 {
2815 error (_("No symbol table is loaded. Use the \"file\" command."));
2816 }
2817
2818 printf_filtered ("Source files for which symbols have been read in:\n\n");
2819
2820 first = 1;
2821 ALL_SYMTABS (objfile, s)
2822 {
2823 const char *fullname = symtab_to_fullname (s);
2824
2825 output_source_filename (fullname ? fullname : s->filename, &first);
2826 }
2827 printf_filtered ("\n\n");
2828
2829 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2830
2831 first = 1;
2832 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2833 printf_filtered ("\n");
2834 }
2835
2836 static int
2837 file_matches (const char *file, char *files[], int nfiles)
2838 {
2839 int i;
2840
2841 if (file != NULL && nfiles != 0)
2842 {
2843 for (i = 0; i < nfiles; i++)
2844 {
2845 if (strcmp (files[i], lbasename (file)) == 0)
2846 return 1;
2847 }
2848 }
2849 else if (nfiles == 0)
2850 return 1;
2851 return 0;
2852 }
2853
2854 /* Free any memory associated with a search. */
2855 void
2856 free_search_symbols (struct symbol_search *symbols)
2857 {
2858 struct symbol_search *p;
2859 struct symbol_search *next;
2860
2861 for (p = symbols; p != NULL; p = next)
2862 {
2863 next = p->next;
2864 xfree (p);
2865 }
2866 }
2867
2868 static void
2869 do_free_search_symbols_cleanup (void *symbols)
2870 {
2871 free_search_symbols (symbols);
2872 }
2873
2874 struct cleanup *
2875 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2876 {
2877 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2878 }
2879
2880 /* Helper function for sort_search_symbols and qsort. Can only
2881 sort symbols, not minimal symbols. */
2882 static int
2883 compare_search_syms (const void *sa, const void *sb)
2884 {
2885 struct symbol_search **sym_a = (struct symbol_search **) sa;
2886 struct symbol_search **sym_b = (struct symbol_search **) sb;
2887
2888 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2889 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2890 }
2891
2892 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2893 prevtail where it is, but update its next pointer to point to
2894 the first of the sorted symbols. */
2895 static struct symbol_search *
2896 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2897 {
2898 struct symbol_search **symbols, *symp, *old_next;
2899 int i;
2900
2901 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2902 * nfound);
2903 symp = prevtail->next;
2904 for (i = 0; i < nfound; i++)
2905 {
2906 symbols[i] = symp;
2907 symp = symp->next;
2908 }
2909 /* Generally NULL. */
2910 old_next = symp;
2911
2912 qsort (symbols, nfound, sizeof (struct symbol_search *),
2913 compare_search_syms);
2914
2915 symp = prevtail;
2916 for (i = 0; i < nfound; i++)
2917 {
2918 symp->next = symbols[i];
2919 symp = symp->next;
2920 }
2921 symp->next = old_next;
2922
2923 xfree (symbols);
2924 return symp;
2925 }
2926
2927 /* An object of this type is passed as the user_data to the
2928 expand_symtabs_matching method. */
2929 struct search_symbols_data
2930 {
2931 int nfiles;
2932 char **files;
2933 char *regexp;
2934 };
2935
2936 /* A callback for expand_symtabs_matching. */
2937 static int
2938 search_symbols_file_matches (const char *filename, void *user_data)
2939 {
2940 struct search_symbols_data *data = user_data;
2941
2942 return file_matches (filename, data->files, data->nfiles);
2943 }
2944
2945 /* A callback for expand_symtabs_matching. */
2946 static int
2947 search_symbols_name_matches (const char *symname, void *user_data)
2948 {
2949 struct search_symbols_data *data = user_data;
2950
2951 return data->regexp == NULL || re_exec (symname);
2952 }
2953
2954 /* Search the symbol table for matches to the regular expression REGEXP,
2955 returning the results in *MATCHES.
2956
2957 Only symbols of KIND are searched:
2958 FUNCTIONS_DOMAIN - search all functions
2959 TYPES_DOMAIN - search all type names
2960 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2961 and constants (enums)
2962
2963 free_search_symbols should be called when *MATCHES is no longer needed.
2964
2965 The results are sorted locally; each symtab's global and static blocks are
2966 separately alphabetized.
2967 */
2968 void
2969 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2970 struct symbol_search **matches)
2971 {
2972 struct symtab *s;
2973 struct blockvector *bv;
2974 struct block *b;
2975 int i = 0;
2976 struct dict_iterator iter;
2977 struct symbol *sym;
2978 struct objfile *objfile;
2979 struct minimal_symbol *msymbol;
2980 char *val;
2981 int found_misc = 0;
2982 static const enum minimal_symbol_type types[]
2983 = {mst_data, mst_text, mst_abs, mst_unknown};
2984 static const enum minimal_symbol_type types2[]
2985 = {mst_bss, mst_file_text, mst_abs, mst_unknown};
2986 static const enum minimal_symbol_type types3[]
2987 = {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2988 static const enum minimal_symbol_type types4[]
2989 = {mst_file_bss, mst_text, mst_abs, mst_unknown};
2990 enum minimal_symbol_type ourtype;
2991 enum minimal_symbol_type ourtype2;
2992 enum minimal_symbol_type ourtype3;
2993 enum minimal_symbol_type ourtype4;
2994 struct symbol_search *sr;
2995 struct symbol_search *psr;
2996 struct symbol_search *tail;
2997 struct cleanup *old_chain = NULL;
2998 struct search_symbols_data datum;
2999
3000 if (kind < VARIABLES_DOMAIN)
3001 error (_("must search on specific domain"));
3002
3003 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3004 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3005 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3006 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3007
3008 sr = *matches = NULL;
3009 tail = NULL;
3010
3011 if (regexp != NULL)
3012 {
3013 /* Make sure spacing is right for C++ operators.
3014 This is just a courtesy to make the matching less sensitive
3015 to how many spaces the user leaves between 'operator'
3016 and <TYPENAME> or <OPERATOR>. */
3017 char *opend;
3018 char *opname = operator_chars (regexp, &opend);
3019
3020 if (*opname)
3021 {
3022 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3023
3024 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3025 {
3026 /* There should 1 space between 'operator' and 'TYPENAME'. */
3027 if (opname[-1] != ' ' || opname[-2] == ' ')
3028 fix = 1;
3029 }
3030 else
3031 {
3032 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3033 if (opname[-1] == ' ')
3034 fix = 0;
3035 }
3036 /* If wrong number of spaces, fix it. */
3037 if (fix >= 0)
3038 {
3039 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3040
3041 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3042 regexp = tmp;
3043 }
3044 }
3045
3046 if (0 != (val = re_comp (regexp)))
3047 error (_("Invalid regexp (%s): %s"), val, regexp);
3048 }
3049
3050 /* Search through the partial symtabs *first* for all symbols
3051 matching the regexp. That way we don't have to reproduce all of
3052 the machinery below. */
3053
3054 datum.nfiles = nfiles;
3055 datum.files = files;
3056 datum.regexp = regexp;
3057 ALL_OBJFILES (objfile)
3058 {
3059 if (objfile->sf)
3060 objfile->sf->qf->expand_symtabs_matching (objfile,
3061 search_symbols_file_matches,
3062 search_symbols_name_matches,
3063 kind,
3064 &datum);
3065 }
3066
3067 /* Here, we search through the minimal symbol tables for functions
3068 and variables that match, and force their symbols to be read.
3069 This is in particular necessary for demangled variable names,
3070 which are no longer put into the partial symbol tables.
3071 The symbol will then be found during the scan of symtabs below.
3072
3073 For functions, find_pc_symtab should succeed if we have debug info
3074 for the function, for variables we have to call lookup_symbol
3075 to determine if the variable has debug info.
3076 If the lookup fails, set found_misc so that we will rescan to print
3077 any matching symbols without debug info.
3078 */
3079
3080 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3081 {
3082 ALL_MSYMBOLS (objfile, msymbol)
3083 {
3084 QUIT;
3085
3086 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3087 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3088 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3089 MSYMBOL_TYPE (msymbol) == ourtype4)
3090 {
3091 if (regexp == NULL
3092 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3093 {
3094 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3095 {
3096 /* FIXME: carlton/2003-02-04: Given that the
3097 semantics of lookup_symbol keeps on changing
3098 slightly, it would be a nice idea if we had a
3099 function lookup_symbol_minsym that found the
3100 symbol associated to a given minimal symbol (if
3101 any). */
3102 if (kind == FUNCTIONS_DOMAIN
3103 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3104 (struct block *) NULL,
3105 VAR_DOMAIN, 0)
3106 == NULL)
3107 found_misc = 1;
3108 }
3109 }
3110 }
3111 }
3112 }
3113
3114 ALL_PRIMARY_SYMTABS (objfile, s)
3115 {
3116 bv = BLOCKVECTOR (s);
3117 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3118 {
3119 struct symbol_search *prevtail = tail;
3120 int nfound = 0;
3121
3122 b = BLOCKVECTOR_BLOCK (bv, i);
3123 ALL_BLOCK_SYMBOLS (b, iter, sym)
3124 {
3125 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3126
3127 QUIT;
3128
3129 if (file_matches (real_symtab->filename, files, nfiles)
3130 && ((regexp == NULL
3131 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3132 && ((kind == VARIABLES_DOMAIN
3133 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3134 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3135 && SYMBOL_CLASS (sym) != LOC_BLOCK
3136 /* LOC_CONST can be used for more than just enums,
3137 e.g., c++ static const members.
3138 We only want to skip enums here. */
3139 && !(SYMBOL_CLASS (sym) == LOC_CONST
3140 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM))
3141 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3142 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3143 {
3144 /* match */
3145 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3146 psr->block = i;
3147 psr->symtab = real_symtab;
3148 psr->symbol = sym;
3149 psr->msymbol = NULL;
3150 psr->next = NULL;
3151 if (tail == NULL)
3152 sr = psr;
3153 else
3154 tail->next = psr;
3155 tail = psr;
3156 nfound ++;
3157 }
3158 }
3159 if (nfound > 0)
3160 {
3161 if (prevtail == NULL)
3162 {
3163 struct symbol_search dummy;
3164
3165 dummy.next = sr;
3166 tail = sort_search_symbols (&dummy, nfound);
3167 sr = dummy.next;
3168
3169 old_chain = make_cleanup_free_search_symbols (sr);
3170 }
3171 else
3172 tail = sort_search_symbols (prevtail, nfound);
3173 }
3174 }
3175 }
3176
3177 /* If there are no eyes, avoid all contact. I mean, if there are
3178 no debug symbols, then print directly from the msymbol_vector. */
3179
3180 if (found_misc || kind != FUNCTIONS_DOMAIN)
3181 {
3182 ALL_MSYMBOLS (objfile, msymbol)
3183 {
3184 QUIT;
3185
3186 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3187 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3188 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3189 MSYMBOL_TYPE (msymbol) == ourtype4)
3190 {
3191 if (regexp == NULL
3192 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3193 {
3194 /* Functions: Look up by address. */
3195 if (kind != FUNCTIONS_DOMAIN ||
3196 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3197 {
3198 /* Variables/Absolutes: Look up by name */
3199 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3200 (struct block *) NULL, VAR_DOMAIN, 0)
3201 == NULL)
3202 {
3203 /* match */
3204 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3205 psr->block = i;
3206 psr->msymbol = msymbol;
3207 psr->symtab = NULL;
3208 psr->symbol = NULL;
3209 psr->next = NULL;
3210 if (tail == NULL)
3211 {
3212 sr = psr;
3213 old_chain = make_cleanup_free_search_symbols (sr);
3214 }
3215 else
3216 tail->next = psr;
3217 tail = psr;
3218 }
3219 }
3220 }
3221 }
3222 }
3223 }
3224
3225 *matches = sr;
3226 if (sr != NULL)
3227 discard_cleanups (old_chain);
3228 }
3229
3230 /* Helper function for symtab_symbol_info, this function uses
3231 the data returned from search_symbols() to print information
3232 regarding the match to gdb_stdout.
3233 */
3234 static void
3235 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3236 int block, char *last)
3237 {
3238 if (last == NULL || strcmp (last, s->filename) != 0)
3239 {
3240 fputs_filtered ("\nFile ", gdb_stdout);
3241 fputs_filtered (s->filename, gdb_stdout);
3242 fputs_filtered (":\n", gdb_stdout);
3243 }
3244
3245 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3246 printf_filtered ("static ");
3247
3248 /* Typedef that is not a C++ class */
3249 if (kind == TYPES_DOMAIN
3250 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3251 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3252 /* variable, func, or typedef-that-is-c++-class */
3253 else if (kind < TYPES_DOMAIN ||
3254 (kind == TYPES_DOMAIN &&
3255 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3256 {
3257 type_print (SYMBOL_TYPE (sym),
3258 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3259 ? "" : SYMBOL_PRINT_NAME (sym)),
3260 gdb_stdout, 0);
3261
3262 printf_filtered (";\n");
3263 }
3264 }
3265
3266 /* This help function for symtab_symbol_info() prints information
3267 for non-debugging symbols to gdb_stdout.
3268 */
3269 static void
3270 print_msymbol_info (struct minimal_symbol *msymbol)
3271 {
3272 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3273 char *tmp;
3274
3275 if (gdbarch_addr_bit (gdbarch) <= 32)
3276 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3277 & (CORE_ADDR) 0xffffffff,
3278 8);
3279 else
3280 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3281 16);
3282 printf_filtered ("%s %s\n",
3283 tmp, SYMBOL_PRINT_NAME (msymbol));
3284 }
3285
3286 /* This is the guts of the commands "info functions", "info types", and
3287 "info variables". It calls search_symbols to find all matches and then
3288 print_[m]symbol_info to print out some useful information about the
3289 matches.
3290 */
3291 static void
3292 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3293 {
3294 static const char * const classnames[] =
3295 {"variable", "function", "type", "method"};
3296 struct symbol_search *symbols;
3297 struct symbol_search *p;
3298 struct cleanup *old_chain;
3299 char *last_filename = NULL;
3300 int first = 1;
3301
3302 /* must make sure that if we're interrupted, symbols gets freed */
3303 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3304 old_chain = make_cleanup_free_search_symbols (symbols);
3305
3306 printf_filtered (regexp
3307 ? "All %ss matching regular expression \"%s\":\n"
3308 : "All defined %ss:\n",
3309 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3310
3311 for (p = symbols; p != NULL; p = p->next)
3312 {
3313 QUIT;
3314
3315 if (p->msymbol != NULL)
3316 {
3317 if (first)
3318 {
3319 printf_filtered ("\nNon-debugging symbols:\n");
3320 first = 0;
3321 }
3322 print_msymbol_info (p->msymbol);
3323 }
3324 else
3325 {
3326 print_symbol_info (kind,
3327 p->symtab,
3328 p->symbol,
3329 p->block,
3330 last_filename);
3331 last_filename = p->symtab->filename;
3332 }
3333 }
3334
3335 do_cleanups (old_chain);
3336 }
3337
3338 static void
3339 variables_info (char *regexp, int from_tty)
3340 {
3341 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3342 }
3343
3344 static void
3345 functions_info (char *regexp, int from_tty)
3346 {
3347 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3348 }
3349
3350
3351 static void
3352 types_info (char *regexp, int from_tty)
3353 {
3354 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3355 }
3356
3357 /* Breakpoint all functions matching regular expression. */
3358
3359 void
3360 rbreak_command_wrapper (char *regexp, int from_tty)
3361 {
3362 rbreak_command (regexp, from_tty);
3363 }
3364
3365 /* A cleanup function that calls end_rbreak_breakpoints. */
3366
3367 static void
3368 do_end_rbreak_breakpoints (void *ignore)
3369 {
3370 end_rbreak_breakpoints ();
3371 }
3372
3373 static void
3374 rbreak_command (char *regexp, int from_tty)
3375 {
3376 struct symbol_search *ss;
3377 struct symbol_search *p;
3378 struct cleanup *old_chain;
3379 char *string = NULL;
3380 int len = 0;
3381 char **files = NULL;
3382 int nfiles = 0;
3383
3384 if (regexp)
3385 {
3386 char *colon = strchr (regexp, ':');
3387
3388 if (colon && *(colon + 1) != ':')
3389 {
3390 int colon_index;
3391 char * file_name;
3392
3393 colon_index = colon - regexp;
3394 file_name = alloca (colon_index + 1);
3395 memcpy (file_name, regexp, colon_index);
3396 file_name[colon_index--] = 0;
3397 while (isspace (file_name[colon_index]))
3398 file_name[colon_index--] = 0;
3399 files = &file_name;
3400 nfiles = 1;
3401 regexp = colon + 1;
3402 while (isspace (*regexp)) regexp++;
3403 }
3404 }
3405
3406 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3407 old_chain = make_cleanup_free_search_symbols (ss);
3408 make_cleanup (free_current_contents, &string);
3409
3410 start_rbreak_breakpoints ();
3411 make_cleanup (do_end_rbreak_breakpoints, NULL);
3412 for (p = ss; p != NULL; p = p->next)
3413 {
3414 if (p->msymbol == NULL)
3415 {
3416 int newlen = (strlen (p->symtab->filename)
3417 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3418 + 4);
3419
3420 if (newlen > len)
3421 {
3422 string = xrealloc (string, newlen);
3423 len = newlen;
3424 }
3425 strcpy (string, p->symtab->filename);
3426 strcat (string, ":'");
3427 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3428 strcat (string, "'");
3429 break_command (string, from_tty);
3430 print_symbol_info (FUNCTIONS_DOMAIN,
3431 p->symtab,
3432 p->symbol,
3433 p->block,
3434 p->symtab->filename);
3435 }
3436 else
3437 {
3438 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3439
3440 if (newlen > len)
3441 {
3442 string = xrealloc (string, newlen);
3443 len = newlen;
3444 }
3445 strcpy (string, "'");
3446 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3447 strcat (string, "'");
3448
3449 break_command (string, from_tty);
3450 printf_filtered ("<function, no debug info> %s;\n",
3451 SYMBOL_PRINT_NAME (p->msymbol));
3452 }
3453 }
3454
3455 do_cleanups (old_chain);
3456 }
3457 \f
3458
3459 /* Helper routine for make_symbol_completion_list. */
3460
3461 static int return_val_size;
3462 static int return_val_index;
3463 static char **return_val;
3464
3465 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3466 completion_list_add_name \
3467 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3468
3469 /* Test to see if the symbol specified by SYMNAME (which is already
3470 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3471 characters. If so, add it to the current completion list. */
3472
3473 static void
3474 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3475 char *text, char *word)
3476 {
3477 int newsize;
3478
3479 /* clip symbols that cannot match */
3480
3481 if (strncmp (symname, sym_text, sym_text_len) != 0)
3482 {
3483 return;
3484 }
3485
3486 /* We have a match for a completion, so add SYMNAME to the current list
3487 of matches. Note that the name is moved to freshly malloc'd space. */
3488
3489 {
3490 char *new;
3491
3492 if (word == sym_text)
3493 {
3494 new = xmalloc (strlen (symname) + 5);
3495 strcpy (new, symname);
3496 }
3497 else if (word > sym_text)
3498 {
3499 /* Return some portion of symname. */
3500 new = xmalloc (strlen (symname) + 5);
3501 strcpy (new, symname + (word - sym_text));
3502 }
3503 else
3504 {
3505 /* Return some of SYM_TEXT plus symname. */
3506 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3507 strncpy (new, word, sym_text - word);
3508 new[sym_text - word] = '\0';
3509 strcat (new, symname);
3510 }
3511
3512 if (return_val_index + 3 > return_val_size)
3513 {
3514 newsize = (return_val_size *= 2) * sizeof (char *);
3515 return_val = (char **) xrealloc ((char *) return_val, newsize);
3516 }
3517 return_val[return_val_index++] = new;
3518 return_val[return_val_index] = NULL;
3519 }
3520 }
3521
3522 /* ObjC: In case we are completing on a selector, look as the msymbol
3523 again and feed all the selectors into the mill. */
3524
3525 static void
3526 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3527 int sym_text_len, char *text, char *word)
3528 {
3529 static char *tmp = NULL;
3530 static unsigned int tmplen = 0;
3531
3532 char *method, *category, *selector;
3533 char *tmp2 = NULL;
3534
3535 method = SYMBOL_NATURAL_NAME (msymbol);
3536
3537 /* Is it a method? */
3538 if ((method[0] != '-') && (method[0] != '+'))
3539 return;
3540
3541 if (sym_text[0] == '[')
3542 /* Complete on shortened method method. */
3543 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3544
3545 while ((strlen (method) + 1) >= tmplen)
3546 {
3547 if (tmplen == 0)
3548 tmplen = 1024;
3549 else
3550 tmplen *= 2;
3551 tmp = xrealloc (tmp, tmplen);
3552 }
3553 selector = strchr (method, ' ');
3554 if (selector != NULL)
3555 selector++;
3556
3557 category = strchr (method, '(');
3558
3559 if ((category != NULL) && (selector != NULL))
3560 {
3561 memcpy (tmp, method, (category - method));
3562 tmp[category - method] = ' ';
3563 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3564 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3565 if (sym_text[0] == '[')
3566 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3567 }
3568
3569 if (selector != NULL)
3570 {
3571 /* Complete on selector only. */
3572 strcpy (tmp, selector);
3573 tmp2 = strchr (tmp, ']');
3574 if (tmp2 != NULL)
3575 *tmp2 = '\0';
3576
3577 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3578 }
3579 }
3580
3581 /* Break the non-quoted text based on the characters which are in
3582 symbols. FIXME: This should probably be language-specific. */
3583
3584 static char *
3585 language_search_unquoted_string (char *text, char *p)
3586 {
3587 for (; p > text; --p)
3588 {
3589 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3590 continue;
3591 else
3592 {
3593 if ((current_language->la_language == language_objc))
3594 {
3595 if (p[-1] == ':') /* might be part of a method name */
3596 continue;
3597 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3598 p -= 2; /* beginning of a method name */
3599 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3600 { /* might be part of a method name */
3601 char *t = p;
3602
3603 /* Seeing a ' ' or a '(' is not conclusive evidence
3604 that we are in the middle of a method name. However,
3605 finding "-[" or "+[" should be pretty un-ambiguous.
3606 Unfortunately we have to find it now to decide. */
3607
3608 while (t > text)
3609 if (isalnum (t[-1]) || t[-1] == '_' ||
3610 t[-1] == ' ' || t[-1] == ':' ||
3611 t[-1] == '(' || t[-1] == ')')
3612 --t;
3613 else
3614 break;
3615
3616 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3617 p = t - 2; /* method name detected */
3618 /* else we leave with p unchanged */
3619 }
3620 }
3621 break;
3622 }
3623 }
3624 return p;
3625 }
3626
3627 static void
3628 completion_list_add_fields (struct symbol *sym, char *sym_text,
3629 int sym_text_len, char *text, char *word)
3630 {
3631 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3632 {
3633 struct type *t = SYMBOL_TYPE (sym);
3634 enum type_code c = TYPE_CODE (t);
3635 int j;
3636
3637 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3638 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3639 if (TYPE_FIELD_NAME (t, j))
3640 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3641 sym_text, sym_text_len, text, word);
3642 }
3643 }
3644
3645 /* Type of the user_data argument passed to add_macro_name or
3646 add_partial_symbol_name. The contents are simply whatever is
3647 needed by completion_list_add_name. */
3648 struct add_name_data
3649 {
3650 char *sym_text;
3651 int sym_text_len;
3652 char *text;
3653 char *word;
3654 };
3655
3656 /* A callback used with macro_for_each and macro_for_each_in_scope.
3657 This adds a macro's name to the current completion list. */
3658 static void
3659 add_macro_name (const char *name, const struct macro_definition *ignore,
3660 void *user_data)
3661 {
3662 struct add_name_data *datum = (struct add_name_data *) user_data;
3663
3664 completion_list_add_name ((char *) name,
3665 datum->sym_text, datum->sym_text_len,
3666 datum->text, datum->word);
3667 }
3668
3669 /* A callback for map_partial_symbol_names. */
3670 static void
3671 add_partial_symbol_name (const char *name, void *user_data)
3672 {
3673 struct add_name_data *datum = (struct add_name_data *) user_data;
3674
3675 completion_list_add_name ((char *) name,
3676 datum->sym_text, datum->sym_text_len,
3677 datum->text, datum->word);
3678 }
3679
3680 char **
3681 default_make_symbol_completion_list_break_on (char *text, char *word,
3682 const char *break_on)
3683 {
3684 /* Problem: All of the symbols have to be copied because readline
3685 frees them. I'm not going to worry about this; hopefully there
3686 won't be that many. */
3687
3688 struct symbol *sym;
3689 struct symtab *s;
3690 struct minimal_symbol *msymbol;
3691 struct objfile *objfile;
3692 struct block *b;
3693 const struct block *surrounding_static_block, *surrounding_global_block;
3694 struct dict_iterator iter;
3695 /* The symbol we are completing on. Points in same buffer as text. */
3696 char *sym_text;
3697 /* Length of sym_text. */
3698 int sym_text_len;
3699 struct add_name_data datum;
3700
3701 /* Now look for the symbol we are supposed to complete on. */
3702 {
3703 char *p;
3704 char quote_found;
3705 char *quote_pos = NULL;
3706
3707 /* First see if this is a quoted string. */
3708 quote_found = '\0';
3709 for (p = text; *p != '\0'; ++p)
3710 {
3711 if (quote_found != '\0')
3712 {
3713 if (*p == quote_found)
3714 /* Found close quote. */
3715 quote_found = '\0';
3716 else if (*p == '\\' && p[1] == quote_found)
3717 /* A backslash followed by the quote character
3718 doesn't end the string. */
3719 ++p;
3720 }
3721 else if (*p == '\'' || *p == '"')
3722 {
3723 quote_found = *p;
3724 quote_pos = p;
3725 }
3726 }
3727 if (quote_found == '\'')
3728 /* A string within single quotes can be a symbol, so complete on it. */
3729 sym_text = quote_pos + 1;
3730 else if (quote_found == '"')
3731 /* A double-quoted string is never a symbol, nor does it make sense
3732 to complete it any other way. */
3733 {
3734 return_val = (char **) xmalloc (sizeof (char *));
3735 return_val[0] = NULL;
3736 return return_val;
3737 }
3738 else
3739 {
3740 /* It is not a quoted string. Break it based on the characters
3741 which are in symbols. */
3742 while (p > text)
3743 {
3744 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3745 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3746 --p;
3747 else
3748 break;
3749 }
3750 sym_text = p;
3751 }
3752 }
3753
3754 sym_text_len = strlen (sym_text);
3755
3756 return_val_size = 100;
3757 return_val_index = 0;
3758 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3759 return_val[0] = NULL;
3760
3761 datum.sym_text = sym_text;
3762 datum.sym_text_len = sym_text_len;
3763 datum.text = text;
3764 datum.word = word;
3765
3766 /* Look through the partial symtabs for all symbols which begin
3767 by matching SYM_TEXT. Add each one that you find to the list. */
3768 map_partial_symbol_names (add_partial_symbol_name, &datum);
3769
3770 /* At this point scan through the misc symbol vectors and add each
3771 symbol you find to the list. Eventually we want to ignore
3772 anything that isn't a text symbol (everything else will be
3773 handled by the psymtab code above). */
3774
3775 ALL_MSYMBOLS (objfile, msymbol)
3776 {
3777 QUIT;
3778 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3779
3780 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3781 }
3782
3783 /* Search upwards from currently selected frame (so that we can
3784 complete on local vars). Also catch fields of types defined in
3785 this places which match our text string. Only complete on types
3786 visible from current context. */
3787
3788 b = get_selected_block (0);
3789 surrounding_static_block = block_static_block (b);
3790 surrounding_global_block = block_global_block (b);
3791 if (surrounding_static_block != NULL)
3792 while (b != surrounding_static_block)
3793 {
3794 QUIT;
3795
3796 ALL_BLOCK_SYMBOLS (b, iter, sym)
3797 {
3798 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3799 word);
3800 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3801 word);
3802 }
3803
3804 /* Stop when we encounter an enclosing function. Do not stop for
3805 non-inlined functions - the locals of the enclosing function
3806 are in scope for a nested function. */
3807 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3808 break;
3809 b = BLOCK_SUPERBLOCK (b);
3810 }
3811
3812 /* Add fields from the file's types; symbols will be added below. */
3813
3814 if (surrounding_static_block != NULL)
3815 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3816 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3817
3818 if (surrounding_global_block != NULL)
3819 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3820 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3821
3822 /* Go through the symtabs and check the externs and statics for
3823 symbols which match. */
3824
3825 ALL_PRIMARY_SYMTABS (objfile, s)
3826 {
3827 QUIT;
3828 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3829 ALL_BLOCK_SYMBOLS (b, iter, sym)
3830 {
3831 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3832 }
3833 }
3834
3835 ALL_PRIMARY_SYMTABS (objfile, s)
3836 {
3837 QUIT;
3838 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3839 ALL_BLOCK_SYMBOLS (b, iter, sym)
3840 {
3841 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3842 }
3843 }
3844
3845 if (current_language->la_macro_expansion == macro_expansion_c)
3846 {
3847 struct macro_scope *scope;
3848
3849 /* Add any macros visible in the default scope. Note that this
3850 may yield the occasional wrong result, because an expression
3851 might be evaluated in a scope other than the default. For
3852 example, if the user types "break file:line if <TAB>", the
3853 resulting expression will be evaluated at "file:line" -- but
3854 at there does not seem to be a way to detect this at
3855 completion time. */
3856 scope = default_macro_scope ();
3857 if (scope)
3858 {
3859 macro_for_each_in_scope (scope->file, scope->line,
3860 add_macro_name, &datum);
3861 xfree (scope);
3862 }
3863
3864 /* User-defined macros are always visible. */
3865 macro_for_each (macro_user_macros, add_macro_name, &datum);
3866 }
3867
3868 return (return_val);
3869 }
3870
3871 char **
3872 default_make_symbol_completion_list (char *text, char *word)
3873 {
3874 return default_make_symbol_completion_list_break_on (text, word, "");
3875 }
3876
3877 /* Return a NULL terminated array of all symbols (regardless of class)
3878 which begin by matching TEXT. If the answer is no symbols, then
3879 the return value is an array which contains only a NULL pointer. */
3880
3881 char **
3882 make_symbol_completion_list (char *text, char *word)
3883 {
3884 return current_language->la_make_symbol_completion_list (text, word);
3885 }
3886
3887 /* Like make_symbol_completion_list, but suitable for use as a
3888 completion function. */
3889
3890 char **
3891 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3892 char *text, char *word)
3893 {
3894 return make_symbol_completion_list (text, word);
3895 }
3896
3897 /* Like make_symbol_completion_list, but returns a list of symbols
3898 defined in a source file FILE. */
3899
3900 char **
3901 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3902 {
3903 struct symbol *sym;
3904 struct symtab *s;
3905 struct block *b;
3906 struct dict_iterator iter;
3907 /* The symbol we are completing on. Points in same buffer as text. */
3908 char *sym_text;
3909 /* Length of sym_text. */
3910 int sym_text_len;
3911
3912 /* Now look for the symbol we are supposed to complete on.
3913 FIXME: This should be language-specific. */
3914 {
3915 char *p;
3916 char quote_found;
3917 char *quote_pos = NULL;
3918
3919 /* First see if this is a quoted string. */
3920 quote_found = '\0';
3921 for (p = text; *p != '\0'; ++p)
3922 {
3923 if (quote_found != '\0')
3924 {
3925 if (*p == quote_found)
3926 /* Found close quote. */
3927 quote_found = '\0';
3928 else if (*p == '\\' && p[1] == quote_found)
3929 /* A backslash followed by the quote character
3930 doesn't end the string. */
3931 ++p;
3932 }
3933 else if (*p == '\'' || *p == '"')
3934 {
3935 quote_found = *p;
3936 quote_pos = p;
3937 }
3938 }
3939 if (quote_found == '\'')
3940 /* A string within single quotes can be a symbol, so complete on it. */
3941 sym_text = quote_pos + 1;
3942 else if (quote_found == '"')
3943 /* A double-quoted string is never a symbol, nor does it make sense
3944 to complete it any other way. */
3945 {
3946 return_val = (char **) xmalloc (sizeof (char *));
3947 return_val[0] = NULL;
3948 return return_val;
3949 }
3950 else
3951 {
3952 /* Not a quoted string. */
3953 sym_text = language_search_unquoted_string (text, p);
3954 }
3955 }
3956
3957 sym_text_len = strlen (sym_text);
3958
3959 return_val_size = 10;
3960 return_val_index = 0;
3961 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3962 return_val[0] = NULL;
3963
3964 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3965 in). */
3966 s = lookup_symtab (srcfile);
3967 if (s == NULL)
3968 {
3969 /* Maybe they typed the file with leading directories, while the
3970 symbol tables record only its basename. */
3971 const char *tail = lbasename (srcfile);
3972
3973 if (tail > srcfile)
3974 s = lookup_symtab (tail);
3975 }
3976
3977 /* If we have no symtab for that file, return an empty list. */
3978 if (s == NULL)
3979 return (return_val);
3980
3981 /* Go through this symtab and check the externs and statics for
3982 symbols which match. */
3983
3984 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3985 ALL_BLOCK_SYMBOLS (b, iter, sym)
3986 {
3987 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3988 }
3989
3990 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3991 ALL_BLOCK_SYMBOLS (b, iter, sym)
3992 {
3993 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3994 }
3995
3996 return (return_val);
3997 }
3998
3999 /* A helper function for make_source_files_completion_list. It adds
4000 another file name to a list of possible completions, growing the
4001 list as necessary. */
4002
4003 static void
4004 add_filename_to_list (const char *fname, char *text, char *word,
4005 char ***list, int *list_used, int *list_alloced)
4006 {
4007 char *new;
4008 size_t fnlen = strlen (fname);
4009
4010 if (*list_used + 1 >= *list_alloced)
4011 {
4012 *list_alloced *= 2;
4013 *list = (char **) xrealloc ((char *) *list,
4014 *list_alloced * sizeof (char *));
4015 }
4016
4017 if (word == text)
4018 {
4019 /* Return exactly fname. */
4020 new = xmalloc (fnlen + 5);
4021 strcpy (new, fname);
4022 }
4023 else if (word > text)
4024 {
4025 /* Return some portion of fname. */
4026 new = xmalloc (fnlen + 5);
4027 strcpy (new, fname + (word - text));
4028 }
4029 else
4030 {
4031 /* Return some of TEXT plus fname. */
4032 new = xmalloc (fnlen + (text - word) + 5);
4033 strncpy (new, word, text - word);
4034 new[text - word] = '\0';
4035 strcat (new, fname);
4036 }
4037 (*list)[*list_used] = new;
4038 (*list)[++*list_used] = NULL;
4039 }
4040
4041 static int
4042 not_interesting_fname (const char *fname)
4043 {
4044 static const char *illegal_aliens[] = {
4045 "_globals_", /* inserted by coff_symtab_read */
4046 NULL
4047 };
4048 int i;
4049
4050 for (i = 0; illegal_aliens[i]; i++)
4051 {
4052 if (strcmp (fname, illegal_aliens[i]) == 0)
4053 return 1;
4054 }
4055 return 0;
4056 }
4057
4058 /* An object of this type is passed as the user_data argument to
4059 map_partial_symbol_filenames. */
4060 struct add_partial_filename_data
4061 {
4062 int *first;
4063 char *text;
4064 char *word;
4065 int text_len;
4066 char ***list;
4067 int *list_used;
4068 int *list_alloced;
4069 };
4070
4071 /* A callback for map_partial_symbol_filenames. */
4072 static void
4073 maybe_add_partial_symtab_filename (const char *fullname, const char *filename,
4074 void *user_data)
4075 {
4076 struct add_partial_filename_data *data = user_data;
4077
4078 if (not_interesting_fname (filename))
4079 return;
4080 if (!filename_seen (filename, 1, data->first)
4081 #if HAVE_DOS_BASED_FILE_SYSTEM
4082 && strncasecmp (filename, data->text, data->text_len) == 0
4083 #else
4084 && strncmp (filename, data->text, data->text_len) == 0
4085 #endif
4086 )
4087 {
4088 /* This file matches for a completion; add it to the
4089 current list of matches. */
4090 add_filename_to_list (filename, data->text, data->word,
4091 data->list, data->list_used, data->list_alloced);
4092 }
4093 else
4094 {
4095 const char *base_name = lbasename (filename);
4096
4097 if (base_name != filename
4098 && !filename_seen (base_name, 1, data->first)
4099 #if HAVE_DOS_BASED_FILE_SYSTEM
4100 && strncasecmp (base_name, data->text, data->text_len) == 0
4101 #else
4102 && strncmp (base_name, data->text, data->text_len) == 0
4103 #endif
4104 )
4105 add_filename_to_list (base_name, data->text, data->word,
4106 data->list, data->list_used, data->list_alloced);
4107 }
4108 }
4109
4110 /* Return a NULL terminated array of all source files whose names
4111 begin with matching TEXT. The file names are looked up in the
4112 symbol tables of this program. If the answer is no matchess, then
4113 the return value is an array which contains only a NULL pointer. */
4114
4115 char **
4116 make_source_files_completion_list (char *text, char *word)
4117 {
4118 struct symtab *s;
4119 struct objfile *objfile;
4120 int first = 1;
4121 int list_alloced = 1;
4122 int list_used = 0;
4123 size_t text_len = strlen (text);
4124 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4125 const char *base_name;
4126 struct add_partial_filename_data datum;
4127
4128 list[0] = NULL;
4129
4130 if (!have_full_symbols () && !have_partial_symbols ())
4131 return list;
4132
4133 ALL_SYMTABS (objfile, s)
4134 {
4135 if (not_interesting_fname (s->filename))
4136 continue;
4137 if (!filename_seen (s->filename, 1, &first)
4138 #if HAVE_DOS_BASED_FILE_SYSTEM
4139 && strncasecmp (s->filename, text, text_len) == 0
4140 #else
4141 && strncmp (s->filename, text, text_len) == 0
4142 #endif
4143 )
4144 {
4145 /* This file matches for a completion; add it to the current
4146 list of matches. */
4147 add_filename_to_list (s->filename, text, word,
4148 &list, &list_used, &list_alloced);
4149 }
4150 else
4151 {
4152 /* NOTE: We allow the user to type a base name when the
4153 debug info records leading directories, but not the other
4154 way around. This is what subroutines of breakpoint
4155 command do when they parse file names. */
4156 base_name = lbasename (s->filename);
4157 if (base_name != s->filename
4158 && !filename_seen (base_name, 1, &first)
4159 #if HAVE_DOS_BASED_FILE_SYSTEM
4160 && strncasecmp (base_name, text, text_len) == 0
4161 #else
4162 && strncmp (base_name, text, text_len) == 0
4163 #endif
4164 )
4165 add_filename_to_list (base_name, text, word,
4166 &list, &list_used, &list_alloced);
4167 }
4168 }
4169
4170 datum.first = &first;
4171 datum.text = text;
4172 datum.word = word;
4173 datum.text_len = text_len;
4174 datum.list = &list;
4175 datum.list_used = &list_used;
4176 datum.list_alloced = &list_alloced;
4177 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4178
4179 return list;
4180 }
4181
4182 /* Determine if PC is in the prologue of a function. The prologue is the area
4183 between the first instruction of a function, and the first executable line.
4184 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4185
4186 If non-zero, func_start is where we think the prologue starts, possibly
4187 by previous examination of symbol table information.
4188 */
4189
4190 int
4191 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4192 {
4193 struct symtab_and_line sal;
4194 CORE_ADDR func_addr, func_end;
4195
4196 /* We have several sources of information we can consult to figure
4197 this out.
4198 - Compilers usually emit line number info that marks the prologue
4199 as its own "source line". So the ending address of that "line"
4200 is the end of the prologue. If available, this is the most
4201 reliable method.
4202 - The minimal symbols and partial symbols, which can usually tell
4203 us the starting and ending addresses of a function.
4204 - If we know the function's start address, we can call the
4205 architecture-defined gdbarch_skip_prologue function to analyze the
4206 instruction stream and guess where the prologue ends.
4207 - Our `func_start' argument; if non-zero, this is the caller's
4208 best guess as to the function's entry point. At the time of
4209 this writing, handle_inferior_event doesn't get this right, so
4210 it should be our last resort. */
4211
4212 /* Consult the partial symbol table, to find which function
4213 the PC is in. */
4214 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4215 {
4216 CORE_ADDR prologue_end;
4217
4218 /* We don't even have minsym information, so fall back to using
4219 func_start, if given. */
4220 if (! func_start)
4221 return 1; /* We *might* be in a prologue. */
4222
4223 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4224
4225 return func_start <= pc && pc < prologue_end;
4226 }
4227
4228 /* If we have line number information for the function, that's
4229 usually pretty reliable. */
4230 sal = find_pc_line (func_addr, 0);
4231
4232 /* Now sal describes the source line at the function's entry point,
4233 which (by convention) is the prologue. The end of that "line",
4234 sal.end, is the end of the prologue.
4235
4236 Note that, for functions whose source code is all on a single
4237 line, the line number information doesn't always end up this way.
4238 So we must verify that our purported end-of-prologue address is
4239 *within* the function, not at its start or end. */
4240 if (sal.line == 0
4241 || sal.end <= func_addr
4242 || func_end <= sal.end)
4243 {
4244 /* We don't have any good line number info, so use the minsym
4245 information, together with the architecture-specific prologue
4246 scanning code. */
4247 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4248
4249 return func_addr <= pc && pc < prologue_end;
4250 }
4251
4252 /* We have line number info, and it looks good. */
4253 return func_addr <= pc && pc < sal.end;
4254 }
4255
4256 /* Given PC at the function's start address, attempt to find the
4257 prologue end using SAL information. Return zero if the skip fails.
4258
4259 A non-optimized prologue traditionally has one SAL for the function
4260 and a second for the function body. A single line function has
4261 them both pointing at the same line.
4262
4263 An optimized prologue is similar but the prologue may contain
4264 instructions (SALs) from the instruction body. Need to skip those
4265 while not getting into the function body.
4266
4267 The functions end point and an increasing SAL line are used as
4268 indicators of the prologue's endpoint.
4269
4270 This code is based on the function refine_prologue_limit (versions
4271 found in both ia64 and ppc). */
4272
4273 CORE_ADDR
4274 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4275 {
4276 struct symtab_and_line prologue_sal;
4277 CORE_ADDR start_pc;
4278 CORE_ADDR end_pc;
4279 struct block *bl;
4280
4281 /* Get an initial range for the function. */
4282 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4283 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4284
4285 prologue_sal = find_pc_line (start_pc, 0);
4286 if (prologue_sal.line != 0)
4287 {
4288 /* For langauges other than assembly, treat two consecutive line
4289 entries at the same address as a zero-instruction prologue.
4290 The GNU assembler emits separate line notes for each instruction
4291 in a multi-instruction macro, but compilers generally will not
4292 do this. */
4293 if (prologue_sal.symtab->language != language_asm)
4294 {
4295 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4296 int idx = 0;
4297
4298 /* Skip any earlier lines, and any end-of-sequence marker
4299 from a previous function. */
4300 while (linetable->item[idx].pc != prologue_sal.pc
4301 || linetable->item[idx].line == 0)
4302 idx++;
4303
4304 if (idx+1 < linetable->nitems
4305 && linetable->item[idx+1].line != 0
4306 && linetable->item[idx+1].pc == start_pc)
4307 return start_pc;
4308 }
4309
4310 /* If there is only one sal that covers the entire function,
4311 then it is probably a single line function, like
4312 "foo(){}". */
4313 if (prologue_sal.end >= end_pc)
4314 return 0;
4315
4316 while (prologue_sal.end < end_pc)
4317 {
4318 struct symtab_and_line sal;
4319
4320 sal = find_pc_line (prologue_sal.end, 0);
4321 if (sal.line == 0)
4322 break;
4323 /* Assume that a consecutive SAL for the same (or larger)
4324 line mark the prologue -> body transition. */
4325 if (sal.line >= prologue_sal.line)
4326 break;
4327
4328 /* The line number is smaller. Check that it's from the
4329 same function, not something inlined. If it's inlined,
4330 then there is no point comparing the line numbers. */
4331 bl = block_for_pc (prologue_sal.end);
4332 while (bl)
4333 {
4334 if (block_inlined_p (bl))
4335 break;
4336 if (BLOCK_FUNCTION (bl))
4337 {
4338 bl = NULL;
4339 break;
4340 }
4341 bl = BLOCK_SUPERBLOCK (bl);
4342 }
4343 if (bl != NULL)
4344 break;
4345
4346 /* The case in which compiler's optimizer/scheduler has
4347 moved instructions into the prologue. We look ahead in
4348 the function looking for address ranges whose
4349 corresponding line number is less the first one that we
4350 found for the function. This is more conservative then
4351 refine_prologue_limit which scans a large number of SALs
4352 looking for any in the prologue */
4353 prologue_sal = sal;
4354 }
4355 }
4356
4357 if (prologue_sal.end < end_pc)
4358 /* Return the end of this line, or zero if we could not find a
4359 line. */
4360 return prologue_sal.end;
4361 else
4362 /* Don't return END_PC, which is past the end of the function. */
4363 return prologue_sal.pc;
4364 }
4365 \f
4366 struct symtabs_and_lines
4367 decode_line_spec (char *string, int funfirstline)
4368 {
4369 struct symtabs_and_lines sals;
4370 struct symtab_and_line cursal;
4371
4372 if (string == 0)
4373 error (_("Empty line specification."));
4374
4375 /* We use whatever is set as the current source line. We do not try
4376 and get a default or it will recursively call us! */
4377 cursal = get_current_source_symtab_and_line ();
4378
4379 sals = decode_line_1 (&string, funfirstline,
4380 cursal.symtab, cursal.line,
4381 (char ***) NULL, NULL);
4382
4383 if (*string)
4384 error (_("Junk at end of line specification: %s"), string);
4385 return sals;
4386 }
4387
4388 /* Track MAIN */
4389 static char *name_of_main;
4390
4391 void
4392 set_main_name (const char *name)
4393 {
4394 if (name_of_main != NULL)
4395 {
4396 xfree (name_of_main);
4397 name_of_main = NULL;
4398 }
4399 if (name != NULL)
4400 {
4401 name_of_main = xstrdup (name);
4402 }
4403 }
4404
4405 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4406 accordingly. */
4407
4408 static void
4409 find_main_name (void)
4410 {
4411 const char *new_main_name;
4412
4413 /* Try to see if the main procedure is in Ada. */
4414 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4415 be to add a new method in the language vector, and call this
4416 method for each language until one of them returns a non-empty
4417 name. This would allow us to remove this hard-coded call to
4418 an Ada function. It is not clear that this is a better approach
4419 at this point, because all methods need to be written in a way
4420 such that false positives never be returned. For instance, it is
4421 important that a method does not return a wrong name for the main
4422 procedure if the main procedure is actually written in a different
4423 language. It is easy to guaranty this with Ada, since we use a
4424 special symbol generated only when the main in Ada to find the name
4425 of the main procedure. It is difficult however to see how this can
4426 be guarantied for languages such as C, for instance. This suggests
4427 that order of call for these methods becomes important, which means
4428 a more complicated approach. */
4429 new_main_name = ada_main_name ();
4430 if (new_main_name != NULL)
4431 {
4432 set_main_name (new_main_name);
4433 return;
4434 }
4435
4436 new_main_name = pascal_main_name ();
4437 if (new_main_name != NULL)
4438 {
4439 set_main_name (new_main_name);
4440 return;
4441 }
4442
4443 /* The languages above didn't identify the name of the main procedure.
4444 Fallback to "main". */
4445 set_main_name ("main");
4446 }
4447
4448 char *
4449 main_name (void)
4450 {
4451 if (name_of_main == NULL)
4452 find_main_name ();
4453
4454 return name_of_main;
4455 }
4456
4457 /* Handle ``executable_changed'' events for the symtab module. */
4458
4459 static void
4460 symtab_observer_executable_changed (void)
4461 {
4462 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4463 set_main_name (NULL);
4464 }
4465
4466 /* Helper to expand_line_sal below. Appends new sal to SAL,
4467 initializing it from SYMTAB, LINENO and PC. */
4468 static void
4469 append_expanded_sal (struct symtabs_and_lines *sal,
4470 struct program_space *pspace,
4471 struct symtab *symtab,
4472 int lineno, CORE_ADDR pc)
4473 {
4474 sal->sals = xrealloc (sal->sals,
4475 sizeof (sal->sals[0])
4476 * (sal->nelts + 1));
4477 init_sal (sal->sals + sal->nelts);
4478 sal->sals[sal->nelts].pspace = pspace;
4479 sal->sals[sal->nelts].symtab = symtab;
4480 sal->sals[sal->nelts].section = NULL;
4481 sal->sals[sal->nelts].end = 0;
4482 sal->sals[sal->nelts].line = lineno;
4483 sal->sals[sal->nelts].pc = pc;
4484 ++sal->nelts;
4485 }
4486
4487 /* Helper to expand_line_sal below. Search in the symtabs for any
4488 linetable entry that exactly matches FULLNAME and LINENO and append
4489 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4490 use FILENAME and LINENO instead. If there is at least one match,
4491 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4492 and BEST_SYMTAB. */
4493
4494 static int
4495 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4496 struct symtabs_and_lines *ret,
4497 struct linetable_entry **best_item,
4498 struct symtab **best_symtab)
4499 {
4500 struct program_space *pspace;
4501 struct objfile *objfile;
4502 struct symtab *symtab;
4503 int exact = 0;
4504 int j;
4505 *best_item = 0;
4506 *best_symtab = 0;
4507
4508 ALL_PSPACES (pspace)
4509 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4510 {
4511 if (FILENAME_CMP (filename, symtab->filename) == 0)
4512 {
4513 struct linetable *l;
4514 int len;
4515
4516 if (fullname != NULL
4517 && symtab_to_fullname (symtab) != NULL
4518 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4519 continue;
4520 l = LINETABLE (symtab);
4521 if (!l)
4522 continue;
4523 len = l->nitems;
4524
4525 for (j = 0; j < len; j++)
4526 {
4527 struct linetable_entry *item = &(l->item[j]);
4528
4529 if (item->line == lineno)
4530 {
4531 exact = 1;
4532 append_expanded_sal (ret, objfile->pspace,
4533 symtab, lineno, item->pc);
4534 }
4535 else if (!exact && item->line > lineno
4536 && (*best_item == NULL
4537 || item->line < (*best_item)->line))
4538 {
4539 *best_item = item;
4540 *best_symtab = symtab;
4541 }
4542 }
4543 }
4544 }
4545 return exact;
4546 }
4547
4548 /* Compute a set of all sals in all program spaces that correspond to
4549 same file and line as SAL and return those. If there are several
4550 sals that belong to the same block, only one sal for the block is
4551 included in results. */
4552
4553 struct symtabs_and_lines
4554 expand_line_sal (struct symtab_and_line sal)
4555 {
4556 struct symtabs_and_lines ret;
4557 int i, j;
4558 struct objfile *objfile;
4559 int lineno;
4560 int deleted = 0;
4561 struct block **blocks = NULL;
4562 int *filter;
4563 struct cleanup *old_chain;
4564
4565 ret.nelts = 0;
4566 ret.sals = NULL;
4567
4568 /* Only expand sals that represent file.c:line. */
4569 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4570 {
4571 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4572 ret.sals[0] = sal;
4573 ret.nelts = 1;
4574 return ret;
4575 }
4576 else
4577 {
4578 struct program_space *pspace;
4579 struct linetable_entry *best_item = 0;
4580 struct symtab *best_symtab = 0;
4581 int exact = 0;
4582 char *match_filename;
4583
4584 lineno = sal.line;
4585 match_filename = sal.symtab->filename;
4586
4587 /* We need to find all symtabs for a file which name
4588 is described by sal. We cannot just directly
4589 iterate over symtabs, since a symtab might not be
4590 yet created. We also cannot iterate over psymtabs,
4591 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4592 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4593 corresponding to an included file. Therefore, we do
4594 first pass over psymtabs, reading in those with
4595 the right name. Then, we iterate over symtabs, knowing
4596 that all symtabs we're interested in are loaded. */
4597
4598 old_chain = save_current_program_space ();
4599 ALL_PSPACES (pspace)
4600 {
4601 set_current_program_space (pspace);
4602 ALL_PSPACE_OBJFILES (pspace, objfile)
4603 {
4604 if (objfile->sf)
4605 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4606 sal.symtab->filename);
4607 }
4608 }
4609 do_cleanups (old_chain);
4610
4611 /* Now search the symtab for exact matches and append them. If
4612 none is found, append the best_item and all its exact
4613 matches. */
4614 symtab_to_fullname (sal.symtab);
4615 exact = append_exact_match_to_sals (sal.symtab->filename,
4616 sal.symtab->fullname, lineno,
4617 &ret, &best_item, &best_symtab);
4618 if (!exact && best_item)
4619 append_exact_match_to_sals (best_symtab->filename,
4620 best_symtab->fullname, best_item->line,
4621 &ret, &best_item, &best_symtab);
4622 }
4623
4624 /* For optimized code, compiler can scatter one source line accross
4625 disjoint ranges of PC values, even when no duplicate functions
4626 or inline functions are involved. For example, 'for (;;)' inside
4627 non-template non-inline non-ctor-or-dtor function can result
4628 in two PC ranges. In this case, we don't want to set breakpoint
4629 on first PC of each range. To filter such cases, we use containing
4630 blocks -- for each PC found above we see if there are other PCs
4631 that are in the same block. If yes, the other PCs are filtered out. */
4632
4633 old_chain = save_current_program_space ();
4634 filter = alloca (ret.nelts * sizeof (int));
4635 blocks = alloca (ret.nelts * sizeof (struct block *));
4636 for (i = 0; i < ret.nelts; ++i)
4637 {
4638 set_current_program_space (ret.sals[i].pspace);
4639
4640 filter[i] = 1;
4641 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4642
4643 }
4644 do_cleanups (old_chain);
4645
4646 for (i = 0; i < ret.nelts; ++i)
4647 if (blocks[i] != NULL)
4648 for (j = i+1; j < ret.nelts; ++j)
4649 if (blocks[j] == blocks[i])
4650 {
4651 filter[j] = 0;
4652 ++deleted;
4653 break;
4654 }
4655
4656 {
4657 struct symtab_and_line *final =
4658 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4659
4660 for (i = 0, j = 0; i < ret.nelts; ++i)
4661 if (filter[i])
4662 final[j++] = ret.sals[i];
4663
4664 ret.nelts -= deleted;
4665 xfree (ret.sals);
4666 ret.sals = final;
4667 }
4668
4669 return ret;
4670 }
4671
4672 /* Return 1 if the supplied producer string matches the ARM RealView
4673 compiler (armcc). */
4674
4675 int
4676 producer_is_realview (const char *producer)
4677 {
4678 static const char *const arm_idents[] = {
4679 "ARM C Compiler, ADS",
4680 "Thumb C Compiler, ADS",
4681 "ARM C++ Compiler, ADS",
4682 "Thumb C++ Compiler, ADS",
4683 "ARM/Thumb C/C++ Compiler, RVCT",
4684 "ARM C/C++ Compiler, RVCT"
4685 };
4686 int i;
4687
4688 if (producer == NULL)
4689 return 0;
4690
4691 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4692 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4693 return 1;
4694
4695 return 0;
4696 }
4697
4698 void
4699 _initialize_symtab (void)
4700 {
4701 add_info ("variables", variables_info, _("\
4702 All global and static variable names, or those matching REGEXP."));
4703 if (dbx_commands)
4704 add_com ("whereis", class_info, variables_info, _("\
4705 All global and static variable names, or those matching REGEXP."));
4706
4707 add_info ("functions", functions_info,
4708 _("All function names, or those matching REGEXP."));
4709
4710 /* FIXME: This command has at least the following problems:
4711 1. It prints builtin types (in a very strange and confusing fashion).
4712 2. It doesn't print right, e.g. with
4713 typedef struct foo *FOO
4714 type_print prints "FOO" when we want to make it (in this situation)
4715 print "struct foo *".
4716 I also think "ptype" or "whatis" is more likely to be useful (but if
4717 there is much disagreement "info types" can be fixed). */
4718 add_info ("types", types_info,
4719 _("All type names, or those matching REGEXP."));
4720
4721 add_info ("sources", sources_info,
4722 _("Source files in the program."));
4723
4724 add_com ("rbreak", class_breakpoint, rbreak_command,
4725 _("Set a breakpoint for all functions matching REGEXP."));
4726
4727 if (xdb_commands)
4728 {
4729 add_com ("lf", class_info, sources_info,
4730 _("Source files in the program"));
4731 add_com ("lg", class_info, variables_info, _("\
4732 All global and static variable names, or those matching REGEXP."));
4733 }
4734
4735 add_setshow_enum_cmd ("multiple-symbols", no_class,
4736 multiple_symbols_modes, &multiple_symbols_mode,
4737 _("\
4738 Set the debugger behavior when more than one symbol are possible matches\n\
4739 in an expression."), _("\
4740 Show how the debugger handles ambiguities in expressions."), _("\
4741 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4742 NULL, NULL, &setlist, &showlist);
4743
4744 observer_attach_executable_changed (symtab_observer_executable_changed);
4745 }
This page took 0.132171 seconds and 5 git commands to generate.