PR symtab/17559
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63
64 /* Forward declarations for local functions. */
65
66 static void rbreak_command (char *, int);
67
68 static int find_line_common (struct linetable *, int, int *, int);
69
70 static struct symbol *lookup_symbol_aux (const char *name,
71 const struct block *block,
72 const domain_enum domain,
73 enum language language,
74 struct field_of_this_result *);
75
76 static
77 struct symbol *lookup_local_symbol (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language);
81
82 static
83 struct symbol *lookup_symbol_via_quick_fns (struct objfile *objfile,
84 int block_index,
85 const char *name,
86 const domain_enum domain);
87
88 extern initialize_file_ftype _initialize_symtab;
89
90 /* Program space key for finding name and language of "main". */
91
92 static const struct program_space_data *main_progspace_key;
93
94 /* Type of the data stored on the program space. */
95
96 struct main_info
97 {
98 /* Name of "main". */
99
100 char *name_of_main;
101
102 /* Language of "main". */
103
104 enum language language_of_main;
105 };
106
107 /* When non-zero, print debugging messages related to symtab creation. */
108 unsigned int symtab_create_debug = 0;
109
110 /* Non-zero if a file may be known by two different basenames.
111 This is the uncommon case, and significantly slows down gdb.
112 Default set to "off" to not slow down the common case. */
113 int basenames_may_differ = 0;
114
115 /* Allow the user to configure the debugger behavior with respect
116 to multiple-choice menus when more than one symbol matches during
117 a symbol lookup. */
118
119 const char multiple_symbols_ask[] = "ask";
120 const char multiple_symbols_all[] = "all";
121 const char multiple_symbols_cancel[] = "cancel";
122 static const char *const multiple_symbols_modes[] =
123 {
124 multiple_symbols_ask,
125 multiple_symbols_all,
126 multiple_symbols_cancel,
127 NULL
128 };
129 static const char *multiple_symbols_mode = multiple_symbols_all;
130
131 /* Read-only accessor to AUTO_SELECT_MODE. */
132
133 const char *
134 multiple_symbols_select_mode (void)
135 {
136 return multiple_symbols_mode;
137 }
138
139 /* Block in which the most recently searched-for symbol was found.
140 Might be better to make this a parameter to lookup_symbol and
141 value_of_this. */
142
143 const struct block *block_found;
144
145 /* Return the name of a domain_enum. */
146
147 const char *
148 domain_name (domain_enum e)
149 {
150 switch (e)
151 {
152 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
153 case VAR_DOMAIN: return "VAR_DOMAIN";
154 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
155 case LABEL_DOMAIN: return "LABEL_DOMAIN";
156 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
157 default: gdb_assert_not_reached ("bad domain_enum");
158 }
159 }
160
161 /* Return the name of a search_domain . */
162
163 const char *
164 search_domain_name (enum search_domain e)
165 {
166 switch (e)
167 {
168 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
169 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
170 case TYPES_DOMAIN: return "TYPES_DOMAIN";
171 case ALL_DOMAIN: return "ALL_DOMAIN";
172 default: gdb_assert_not_reached ("bad search_domain");
173 }
174 }
175
176 /* Set the primary field in SYMTAB. */
177
178 void
179 set_symtab_primary (struct symtab *symtab, int primary)
180 {
181 symtab->primary = primary;
182
183 if (symtab_create_debug && primary)
184 {
185 fprintf_unfiltered (gdb_stdlog,
186 "Created primary symtab %s for %s.\n",
187 host_address_to_string (symtab),
188 symtab_to_filename_for_display (symtab));
189 }
190 }
191
192 /* See whether FILENAME matches SEARCH_NAME using the rule that we
193 advertise to the user. (The manual's description of linespecs
194 describes what we advertise). Returns true if they match, false
195 otherwise. */
196
197 int
198 compare_filenames_for_search (const char *filename, const char *search_name)
199 {
200 int len = strlen (filename);
201 size_t search_len = strlen (search_name);
202
203 if (len < search_len)
204 return 0;
205
206 /* The tail of FILENAME must match. */
207 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
208 return 0;
209
210 /* Either the names must completely match, or the character
211 preceding the trailing SEARCH_NAME segment of FILENAME must be a
212 directory separator.
213
214 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
215 cannot match FILENAME "/path//dir/file.c" - as user has requested
216 absolute path. The sama applies for "c:\file.c" possibly
217 incorrectly hypothetically matching "d:\dir\c:\file.c".
218
219 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
220 compatible with SEARCH_NAME "file.c". In such case a compiler had
221 to put the "c:file.c" name into debug info. Such compatibility
222 works only on GDB built for DOS host. */
223 return (len == search_len
224 || (!IS_ABSOLUTE_PATH (search_name)
225 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
226 || (HAS_DRIVE_SPEC (filename)
227 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
228 }
229
230 /* Check for a symtab of a specific name by searching some symtabs.
231 This is a helper function for callbacks of iterate_over_symtabs.
232
233 If NAME is not absolute, then REAL_PATH is NULL
234 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
235
236 The return value, NAME, REAL_PATH, CALLBACK, and DATA
237 are identical to the `map_symtabs_matching_filename' method of
238 quick_symbol_functions.
239
240 FIRST and AFTER_LAST indicate the range of symtabs to search.
241 AFTER_LAST is one past the last symtab to search; NULL means to
242 search until the end of the list. */
243
244 int
245 iterate_over_some_symtabs (const char *name,
246 const char *real_path,
247 int (*callback) (struct symtab *symtab,
248 void *data),
249 void *data,
250 struct symtab *first,
251 struct symtab *after_last)
252 {
253 struct symtab *s = NULL;
254 const char* base_name = lbasename (name);
255
256 for (s = first; s != NULL && s != after_last; s = s->next)
257 {
258 if (compare_filenames_for_search (s->filename, name))
259 {
260 if (callback (s, data))
261 return 1;
262 continue;
263 }
264
265 /* Before we invoke realpath, which can get expensive when many
266 files are involved, do a quick comparison of the basenames. */
267 if (! basenames_may_differ
268 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
269 continue;
270
271 if (compare_filenames_for_search (symtab_to_fullname (s), name))
272 {
273 if (callback (s, data))
274 return 1;
275 continue;
276 }
277
278 /* If the user gave us an absolute path, try to find the file in
279 this symtab and use its absolute path. */
280 if (real_path != NULL)
281 {
282 const char *fullname = symtab_to_fullname (s);
283
284 gdb_assert (IS_ABSOLUTE_PATH (real_path));
285 gdb_assert (IS_ABSOLUTE_PATH (name));
286 if (FILENAME_CMP (real_path, fullname) == 0)
287 {
288 if (callback (s, data))
289 return 1;
290 continue;
291 }
292 }
293 }
294
295 return 0;
296 }
297
298 /* Check for a symtab of a specific name; first in symtabs, then in
299 psymtabs. *If* there is no '/' in the name, a match after a '/'
300 in the symtab filename will also work.
301
302 Calls CALLBACK with each symtab that is found and with the supplied
303 DATA. If CALLBACK returns true, the search stops. */
304
305 void
306 iterate_over_symtabs (const char *name,
307 int (*callback) (struct symtab *symtab,
308 void *data),
309 void *data)
310 {
311 struct objfile *objfile;
312 char *real_path = NULL;
313 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
314
315 /* Here we are interested in canonicalizing an absolute path, not
316 absolutizing a relative path. */
317 if (IS_ABSOLUTE_PATH (name))
318 {
319 real_path = gdb_realpath (name);
320 make_cleanup (xfree, real_path);
321 gdb_assert (IS_ABSOLUTE_PATH (real_path));
322 }
323
324 ALL_OBJFILES (objfile)
325 {
326 if (iterate_over_some_symtabs (name, real_path, callback, data,
327 objfile->symtabs, NULL))
328 {
329 do_cleanups (cleanups);
330 return;
331 }
332 }
333
334 /* Same search rules as above apply here, but now we look thru the
335 psymtabs. */
336
337 ALL_OBJFILES (objfile)
338 {
339 if (objfile->sf
340 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
341 name,
342 real_path,
343 callback,
344 data))
345 {
346 do_cleanups (cleanups);
347 return;
348 }
349 }
350
351 do_cleanups (cleanups);
352 }
353
354 /* The callback function used by lookup_symtab. */
355
356 static int
357 lookup_symtab_callback (struct symtab *symtab, void *data)
358 {
359 struct symtab **result_ptr = data;
360
361 *result_ptr = symtab;
362 return 1;
363 }
364
365 /* A wrapper for iterate_over_symtabs that returns the first matching
366 symtab, or NULL. */
367
368 struct symtab *
369 lookup_symtab (const char *name)
370 {
371 struct symtab *result = NULL;
372
373 iterate_over_symtabs (name, lookup_symtab_callback, &result);
374 return result;
375 }
376
377 \f
378 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
379 full method name, which consist of the class name (from T), the unadorned
380 method name from METHOD_ID, and the signature for the specific overload,
381 specified by SIGNATURE_ID. Note that this function is g++ specific. */
382
383 char *
384 gdb_mangle_name (struct type *type, int method_id, int signature_id)
385 {
386 int mangled_name_len;
387 char *mangled_name;
388 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
389 struct fn_field *method = &f[signature_id];
390 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
391 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
392 const char *newname = type_name_no_tag (type);
393
394 /* Does the form of physname indicate that it is the full mangled name
395 of a constructor (not just the args)? */
396 int is_full_physname_constructor;
397
398 int is_constructor;
399 int is_destructor = is_destructor_name (physname);
400 /* Need a new type prefix. */
401 char *const_prefix = method->is_const ? "C" : "";
402 char *volatile_prefix = method->is_volatile ? "V" : "";
403 char buf[20];
404 int len = (newname == NULL ? 0 : strlen (newname));
405
406 /* Nothing to do if physname already contains a fully mangled v3 abi name
407 or an operator name. */
408 if ((physname[0] == '_' && physname[1] == 'Z')
409 || is_operator_name (field_name))
410 return xstrdup (physname);
411
412 is_full_physname_constructor = is_constructor_name (physname);
413
414 is_constructor = is_full_physname_constructor
415 || (newname && strcmp (field_name, newname) == 0);
416
417 if (!is_destructor)
418 is_destructor = (strncmp (physname, "__dt", 4) == 0);
419
420 if (is_destructor || is_full_physname_constructor)
421 {
422 mangled_name = (char *) xmalloc (strlen (physname) + 1);
423 strcpy (mangled_name, physname);
424 return mangled_name;
425 }
426
427 if (len == 0)
428 {
429 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
430 }
431 else if (physname[0] == 't' || physname[0] == 'Q')
432 {
433 /* The physname for template and qualified methods already includes
434 the class name. */
435 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
436 newname = NULL;
437 len = 0;
438 }
439 else
440 {
441 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
442 volatile_prefix, len);
443 }
444 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
445 + strlen (buf) + len + strlen (physname) + 1);
446
447 mangled_name = (char *) xmalloc (mangled_name_len);
448 if (is_constructor)
449 mangled_name[0] = '\0';
450 else
451 strcpy (mangled_name, field_name);
452
453 strcat (mangled_name, buf);
454 /* If the class doesn't have a name, i.e. newname NULL, then we just
455 mangle it using 0 for the length of the class. Thus it gets mangled
456 as something starting with `::' rather than `classname::'. */
457 if (newname != NULL)
458 strcat (mangled_name, newname);
459
460 strcat (mangled_name, physname);
461 return (mangled_name);
462 }
463
464 /* Initialize the cplus_specific structure. 'cplus_specific' should
465 only be allocated for use with cplus symbols. */
466
467 static void
468 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
469 struct obstack *obstack)
470 {
471 /* A language_specific structure should not have been previously
472 initialized. */
473 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
474 gdb_assert (obstack != NULL);
475
476 gsymbol->language_specific.cplus_specific =
477 OBSTACK_ZALLOC (obstack, struct cplus_specific);
478 }
479
480 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
481 correctly allocated. For C++ symbols a cplus_specific struct is
482 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
483 OBJFILE can be NULL. */
484
485 void
486 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
487 const char *name,
488 struct obstack *obstack)
489 {
490 if (gsymbol->language == language_cplus)
491 {
492 if (gsymbol->language_specific.cplus_specific == NULL)
493 symbol_init_cplus_specific (gsymbol, obstack);
494
495 gsymbol->language_specific.cplus_specific->demangled_name = name;
496 }
497 else if (gsymbol->language == language_ada)
498 {
499 if (name == NULL)
500 {
501 gsymbol->ada_mangled = 0;
502 gsymbol->language_specific.obstack = obstack;
503 }
504 else
505 {
506 gsymbol->ada_mangled = 1;
507 gsymbol->language_specific.mangled_lang.demangled_name = name;
508 }
509 }
510 else
511 gsymbol->language_specific.mangled_lang.demangled_name = name;
512 }
513
514 /* Return the demangled name of GSYMBOL. */
515
516 const char *
517 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
518 {
519 if (gsymbol->language == language_cplus)
520 {
521 if (gsymbol->language_specific.cplus_specific != NULL)
522 return gsymbol->language_specific.cplus_specific->demangled_name;
523 else
524 return NULL;
525 }
526 else if (gsymbol->language == language_ada)
527 {
528 if (!gsymbol->ada_mangled)
529 return NULL;
530 /* Fall through. */
531 }
532
533 return gsymbol->language_specific.mangled_lang.demangled_name;
534 }
535
536 \f
537 /* Initialize the language dependent portion of a symbol
538 depending upon the language for the symbol. */
539
540 void
541 symbol_set_language (struct general_symbol_info *gsymbol,
542 enum language language,
543 struct obstack *obstack)
544 {
545 gsymbol->language = language;
546 if (gsymbol->language == language_d
547 || gsymbol->language == language_go
548 || gsymbol->language == language_java
549 || gsymbol->language == language_objc
550 || gsymbol->language == language_fortran)
551 {
552 symbol_set_demangled_name (gsymbol, NULL, obstack);
553 }
554 else if (gsymbol->language == language_ada)
555 {
556 gdb_assert (gsymbol->ada_mangled == 0);
557 gsymbol->language_specific.obstack = obstack;
558 }
559 else if (gsymbol->language == language_cplus)
560 gsymbol->language_specific.cplus_specific = NULL;
561 else
562 {
563 memset (&gsymbol->language_specific, 0,
564 sizeof (gsymbol->language_specific));
565 }
566 }
567
568 /* Functions to initialize a symbol's mangled name. */
569
570 /* Objects of this type are stored in the demangled name hash table. */
571 struct demangled_name_entry
572 {
573 const char *mangled;
574 char demangled[1];
575 };
576
577 /* Hash function for the demangled name hash. */
578
579 static hashval_t
580 hash_demangled_name_entry (const void *data)
581 {
582 const struct demangled_name_entry *e = data;
583
584 return htab_hash_string (e->mangled);
585 }
586
587 /* Equality function for the demangled name hash. */
588
589 static int
590 eq_demangled_name_entry (const void *a, const void *b)
591 {
592 const struct demangled_name_entry *da = a;
593 const struct demangled_name_entry *db = b;
594
595 return strcmp (da->mangled, db->mangled) == 0;
596 }
597
598 /* Create the hash table used for demangled names. Each hash entry is
599 a pair of strings; one for the mangled name and one for the demangled
600 name. The entry is hashed via just the mangled name. */
601
602 static void
603 create_demangled_names_hash (struct objfile *objfile)
604 {
605 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
606 The hash table code will round this up to the next prime number.
607 Choosing a much larger table size wastes memory, and saves only about
608 1% in symbol reading. */
609
610 objfile->per_bfd->demangled_names_hash = htab_create_alloc
611 (256, hash_demangled_name_entry, eq_demangled_name_entry,
612 NULL, xcalloc, xfree);
613 }
614
615 /* Try to determine the demangled name for a symbol, based on the
616 language of that symbol. If the language is set to language_auto,
617 it will attempt to find any demangling algorithm that works and
618 then set the language appropriately. The returned name is allocated
619 by the demangler and should be xfree'd. */
620
621 static char *
622 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
623 const char *mangled)
624 {
625 char *demangled = NULL;
626
627 if (gsymbol->language == language_unknown)
628 gsymbol->language = language_auto;
629
630 if (gsymbol->language == language_objc
631 || gsymbol->language == language_auto)
632 {
633 demangled =
634 objc_demangle (mangled, 0);
635 if (demangled != NULL)
636 {
637 gsymbol->language = language_objc;
638 return demangled;
639 }
640 }
641 if (gsymbol->language == language_cplus
642 || gsymbol->language == language_auto)
643 {
644 demangled =
645 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
646 if (demangled != NULL)
647 {
648 gsymbol->language = language_cplus;
649 return demangled;
650 }
651 }
652 if (gsymbol->language == language_java)
653 {
654 demangled =
655 gdb_demangle (mangled,
656 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
657 if (demangled != NULL)
658 {
659 gsymbol->language = language_java;
660 return demangled;
661 }
662 }
663 if (gsymbol->language == language_d
664 || gsymbol->language == language_auto)
665 {
666 demangled = d_demangle(mangled, 0);
667 if (demangled != NULL)
668 {
669 gsymbol->language = language_d;
670 return demangled;
671 }
672 }
673 /* FIXME(dje): Continually adding languages here is clumsy.
674 Better to just call la_demangle if !auto, and if auto then call
675 a utility routine that tries successive languages in turn and reports
676 which one it finds. I realize the la_demangle options may be different
677 for different languages but there's already a FIXME for that. */
678 if (gsymbol->language == language_go
679 || gsymbol->language == language_auto)
680 {
681 demangled = go_demangle (mangled, 0);
682 if (demangled != NULL)
683 {
684 gsymbol->language = language_go;
685 return demangled;
686 }
687 }
688
689 /* We could support `gsymbol->language == language_fortran' here to provide
690 module namespaces also for inferiors with only minimal symbol table (ELF
691 symbols). Just the mangling standard is not standardized across compilers
692 and there is no DW_AT_producer available for inferiors with only the ELF
693 symbols to check the mangling kind. */
694
695 /* Check for Ada symbols last. See comment below explaining why. */
696
697 if (gsymbol->language == language_auto)
698 {
699 const char *demangled = ada_decode (mangled);
700
701 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
702 {
703 /* Set the gsymbol language to Ada, but still return NULL.
704 Two reasons for that:
705
706 1. For Ada, we prefer computing the symbol's decoded name
707 on the fly rather than pre-compute it, in order to save
708 memory (Ada projects are typically very large).
709
710 2. There are some areas in the definition of the GNAT
711 encoding where, with a bit of bad luck, we might be able
712 to decode a non-Ada symbol, generating an incorrect
713 demangled name (Eg: names ending with "TB" for instance
714 are identified as task bodies and so stripped from
715 the decoded name returned).
716
717 Returning NULL, here, helps us get a little bit of
718 the best of both worlds. Because we're last, we should
719 not affect any of the other languages that were able to
720 demangle the symbol before us; we get to correctly tag
721 Ada symbols as such; and even if we incorrectly tagged
722 a non-Ada symbol, which should be rare, any routing
723 through the Ada language should be transparent (Ada
724 tries to behave much like C/C++ with non-Ada symbols). */
725 gsymbol->language = language_ada;
726 return NULL;
727 }
728 }
729
730 return NULL;
731 }
732
733 /* Set both the mangled and demangled (if any) names for GSYMBOL based
734 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
735 objfile's obstack; but if COPY_NAME is 0 and if NAME is
736 NUL-terminated, then this function assumes that NAME is already
737 correctly saved (either permanently or with a lifetime tied to the
738 objfile), and it will not be copied.
739
740 The hash table corresponding to OBJFILE is used, and the memory
741 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
742 so the pointer can be discarded after calling this function. */
743
744 /* We have to be careful when dealing with Java names: when we run
745 into a Java minimal symbol, we don't know it's a Java symbol, so it
746 gets demangled as a C++ name. This is unfortunate, but there's not
747 much we can do about it: but when demangling partial symbols and
748 regular symbols, we'd better not reuse the wrong demangled name.
749 (See PR gdb/1039.) We solve this by putting a distinctive prefix
750 on Java names when storing them in the hash table. */
751
752 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
753 don't mind the Java prefix so much: different languages have
754 different demangling requirements, so it's only natural that we
755 need to keep language data around in our demangling cache. But
756 it's not good that the minimal symbol has the wrong demangled name.
757 Unfortunately, I can't think of any easy solution to that
758 problem. */
759
760 #define JAVA_PREFIX "##JAVA$$"
761 #define JAVA_PREFIX_LEN 8
762
763 void
764 symbol_set_names (struct general_symbol_info *gsymbol,
765 const char *linkage_name, int len, int copy_name,
766 struct objfile *objfile)
767 {
768 struct demangled_name_entry **slot;
769 /* A 0-terminated copy of the linkage name. */
770 const char *linkage_name_copy;
771 /* A copy of the linkage name that might have a special Java prefix
772 added to it, for use when looking names up in the hash table. */
773 const char *lookup_name;
774 /* The length of lookup_name. */
775 int lookup_len;
776 struct demangled_name_entry entry;
777 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
778
779 if (gsymbol->language == language_ada)
780 {
781 /* In Ada, we do the symbol lookups using the mangled name, so
782 we can save some space by not storing the demangled name.
783
784 As a side note, we have also observed some overlap between
785 the C++ mangling and Ada mangling, similarly to what has
786 been observed with Java. Because we don't store the demangled
787 name with the symbol, we don't need to use the same trick
788 as Java. */
789 if (!copy_name)
790 gsymbol->name = linkage_name;
791 else
792 {
793 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
794
795 memcpy (name, linkage_name, len);
796 name[len] = '\0';
797 gsymbol->name = name;
798 }
799 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
800
801 return;
802 }
803
804 if (per_bfd->demangled_names_hash == NULL)
805 create_demangled_names_hash (objfile);
806
807 /* The stabs reader generally provides names that are not
808 NUL-terminated; most of the other readers don't do this, so we
809 can just use the given copy, unless we're in the Java case. */
810 if (gsymbol->language == language_java)
811 {
812 char *alloc_name;
813
814 lookup_len = len + JAVA_PREFIX_LEN;
815 alloc_name = alloca (lookup_len + 1);
816 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
817 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
818 alloc_name[lookup_len] = '\0';
819
820 lookup_name = alloc_name;
821 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
822 }
823 else if (linkage_name[len] != '\0')
824 {
825 char *alloc_name;
826
827 lookup_len = len;
828 alloc_name = alloca (lookup_len + 1);
829 memcpy (alloc_name, linkage_name, len);
830 alloc_name[lookup_len] = '\0';
831
832 lookup_name = alloc_name;
833 linkage_name_copy = alloc_name;
834 }
835 else
836 {
837 lookup_len = len;
838 lookup_name = linkage_name;
839 linkage_name_copy = linkage_name;
840 }
841
842 entry.mangled = lookup_name;
843 slot = ((struct demangled_name_entry **)
844 htab_find_slot (per_bfd->demangled_names_hash,
845 &entry, INSERT));
846
847 /* If this name is not in the hash table, add it. */
848 if (*slot == NULL
849 /* A C version of the symbol may have already snuck into the table.
850 This happens to, e.g., main.init (__go_init_main). Cope. */
851 || (gsymbol->language == language_go
852 && (*slot)->demangled[0] == '\0'))
853 {
854 char *demangled_name = symbol_find_demangled_name (gsymbol,
855 linkage_name_copy);
856 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
857
858 /* Suppose we have demangled_name==NULL, copy_name==0, and
859 lookup_name==linkage_name. In this case, we already have the
860 mangled name saved, and we don't have a demangled name. So,
861 you might think we could save a little space by not recording
862 this in the hash table at all.
863
864 It turns out that it is actually important to still save such
865 an entry in the hash table, because storing this name gives
866 us better bcache hit rates for partial symbols. */
867 if (!copy_name && lookup_name == linkage_name)
868 {
869 *slot = obstack_alloc (&per_bfd->storage_obstack,
870 offsetof (struct demangled_name_entry,
871 demangled)
872 + demangled_len + 1);
873 (*slot)->mangled = lookup_name;
874 }
875 else
876 {
877 char *mangled_ptr;
878
879 /* If we must copy the mangled name, put it directly after
880 the demangled name so we can have a single
881 allocation. */
882 *slot = obstack_alloc (&per_bfd->storage_obstack,
883 offsetof (struct demangled_name_entry,
884 demangled)
885 + lookup_len + demangled_len + 2);
886 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
887 strcpy (mangled_ptr, lookup_name);
888 (*slot)->mangled = mangled_ptr;
889 }
890
891 if (demangled_name != NULL)
892 {
893 strcpy ((*slot)->demangled, demangled_name);
894 xfree (demangled_name);
895 }
896 else
897 (*slot)->demangled[0] = '\0';
898 }
899
900 gsymbol->name = (*slot)->mangled + lookup_len - len;
901 if ((*slot)->demangled[0] != '\0')
902 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
903 &per_bfd->storage_obstack);
904 else
905 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
906 }
907
908 /* Return the source code name of a symbol. In languages where
909 demangling is necessary, this is the demangled name. */
910
911 const char *
912 symbol_natural_name (const struct general_symbol_info *gsymbol)
913 {
914 switch (gsymbol->language)
915 {
916 case language_cplus:
917 case language_d:
918 case language_go:
919 case language_java:
920 case language_objc:
921 case language_fortran:
922 if (symbol_get_demangled_name (gsymbol) != NULL)
923 return symbol_get_demangled_name (gsymbol);
924 break;
925 case language_ada:
926 return ada_decode_symbol (gsymbol);
927 default:
928 break;
929 }
930 return gsymbol->name;
931 }
932
933 /* Return the demangled name for a symbol based on the language for
934 that symbol. If no demangled name exists, return NULL. */
935
936 const char *
937 symbol_demangled_name (const struct general_symbol_info *gsymbol)
938 {
939 const char *dem_name = NULL;
940
941 switch (gsymbol->language)
942 {
943 case language_cplus:
944 case language_d:
945 case language_go:
946 case language_java:
947 case language_objc:
948 case language_fortran:
949 dem_name = symbol_get_demangled_name (gsymbol);
950 break;
951 case language_ada:
952 dem_name = ada_decode_symbol (gsymbol);
953 break;
954 default:
955 break;
956 }
957 return dem_name;
958 }
959
960 /* Return the search name of a symbol---generally the demangled or
961 linkage name of the symbol, depending on how it will be searched for.
962 If there is no distinct demangled name, then returns the same value
963 (same pointer) as SYMBOL_LINKAGE_NAME. */
964
965 const char *
966 symbol_search_name (const struct general_symbol_info *gsymbol)
967 {
968 if (gsymbol->language == language_ada)
969 return gsymbol->name;
970 else
971 return symbol_natural_name (gsymbol);
972 }
973
974 /* Initialize the structure fields to zero values. */
975
976 void
977 init_sal (struct symtab_and_line *sal)
978 {
979 memset (sal, 0, sizeof (*sal));
980 }
981 \f
982
983 /* Return 1 if the two sections are the same, or if they could
984 plausibly be copies of each other, one in an original object
985 file and another in a separated debug file. */
986
987 int
988 matching_obj_sections (struct obj_section *obj_first,
989 struct obj_section *obj_second)
990 {
991 asection *first = obj_first? obj_first->the_bfd_section : NULL;
992 asection *second = obj_second? obj_second->the_bfd_section : NULL;
993 struct objfile *obj;
994
995 /* If they're the same section, then they match. */
996 if (first == second)
997 return 1;
998
999 /* If either is NULL, give up. */
1000 if (first == NULL || second == NULL)
1001 return 0;
1002
1003 /* This doesn't apply to absolute symbols. */
1004 if (first->owner == NULL || second->owner == NULL)
1005 return 0;
1006
1007 /* If they're in the same object file, they must be different sections. */
1008 if (first->owner == second->owner)
1009 return 0;
1010
1011 /* Check whether the two sections are potentially corresponding. They must
1012 have the same size, address, and name. We can't compare section indexes,
1013 which would be more reliable, because some sections may have been
1014 stripped. */
1015 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1016 return 0;
1017
1018 /* In-memory addresses may start at a different offset, relativize them. */
1019 if (bfd_get_section_vma (first->owner, first)
1020 - bfd_get_start_address (first->owner)
1021 != bfd_get_section_vma (second->owner, second)
1022 - bfd_get_start_address (second->owner))
1023 return 0;
1024
1025 if (bfd_get_section_name (first->owner, first) == NULL
1026 || bfd_get_section_name (second->owner, second) == NULL
1027 || strcmp (bfd_get_section_name (first->owner, first),
1028 bfd_get_section_name (second->owner, second)) != 0)
1029 return 0;
1030
1031 /* Otherwise check that they are in corresponding objfiles. */
1032
1033 ALL_OBJFILES (obj)
1034 if (obj->obfd == first->owner)
1035 break;
1036 gdb_assert (obj != NULL);
1037
1038 if (obj->separate_debug_objfile != NULL
1039 && obj->separate_debug_objfile->obfd == second->owner)
1040 return 1;
1041 if (obj->separate_debug_objfile_backlink != NULL
1042 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1043 return 1;
1044
1045 return 0;
1046 }
1047
1048 /* See symtab.h. */
1049
1050 void
1051 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1052 {
1053 struct objfile *objfile;
1054 struct bound_minimal_symbol msymbol;
1055
1056 /* If we know that this is not a text address, return failure. This is
1057 necessary because we loop based on texthigh and textlow, which do
1058 not include the data ranges. */
1059 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1060 if (msymbol.minsym
1061 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1062 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1063 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1064 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1065 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1066 return;
1067
1068 ALL_OBJFILES (objfile)
1069 {
1070 struct symtab *s = NULL;
1071
1072 if (objfile->sf)
1073 s = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1074 pc, section, 0);
1075 if (s != NULL)
1076 return;
1077 }
1078 }
1079 \f
1080 /* Debug symbols usually don't have section information. We need to dig that
1081 out of the minimal symbols and stash that in the debug symbol. */
1082
1083 void
1084 fixup_section (struct general_symbol_info *ginfo,
1085 CORE_ADDR addr, struct objfile *objfile)
1086 {
1087 struct minimal_symbol *msym;
1088
1089 /* First, check whether a minimal symbol with the same name exists
1090 and points to the same address. The address check is required
1091 e.g. on PowerPC64, where the minimal symbol for a function will
1092 point to the function descriptor, while the debug symbol will
1093 point to the actual function code. */
1094 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1095 if (msym)
1096 ginfo->section = MSYMBOL_SECTION (msym);
1097 else
1098 {
1099 /* Static, function-local variables do appear in the linker
1100 (minimal) symbols, but are frequently given names that won't
1101 be found via lookup_minimal_symbol(). E.g., it has been
1102 observed in frv-uclinux (ELF) executables that a static,
1103 function-local variable named "foo" might appear in the
1104 linker symbols as "foo.6" or "foo.3". Thus, there is no
1105 point in attempting to extend the lookup-by-name mechanism to
1106 handle this case due to the fact that there can be multiple
1107 names.
1108
1109 So, instead, search the section table when lookup by name has
1110 failed. The ``addr'' and ``endaddr'' fields may have already
1111 been relocated. If so, the relocation offset (i.e. the
1112 ANOFFSET value) needs to be subtracted from these values when
1113 performing the comparison. We unconditionally subtract it,
1114 because, when no relocation has been performed, the ANOFFSET
1115 value will simply be zero.
1116
1117 The address of the symbol whose section we're fixing up HAS
1118 NOT BEEN adjusted (relocated) yet. It can't have been since
1119 the section isn't yet known and knowing the section is
1120 necessary in order to add the correct relocation value. In
1121 other words, we wouldn't even be in this function (attempting
1122 to compute the section) if it were already known.
1123
1124 Note that it is possible to search the minimal symbols
1125 (subtracting the relocation value if necessary) to find the
1126 matching minimal symbol, but this is overkill and much less
1127 efficient. It is not necessary to find the matching minimal
1128 symbol, only its section.
1129
1130 Note that this technique (of doing a section table search)
1131 can fail when unrelocated section addresses overlap. For
1132 this reason, we still attempt a lookup by name prior to doing
1133 a search of the section table. */
1134
1135 struct obj_section *s;
1136 int fallback = -1;
1137
1138 ALL_OBJFILE_OSECTIONS (objfile, s)
1139 {
1140 int idx = s - objfile->sections;
1141 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1142
1143 if (fallback == -1)
1144 fallback = idx;
1145
1146 if (obj_section_addr (s) - offset <= addr
1147 && addr < obj_section_endaddr (s) - offset)
1148 {
1149 ginfo->section = idx;
1150 return;
1151 }
1152 }
1153
1154 /* If we didn't find the section, assume it is in the first
1155 section. If there is no allocated section, then it hardly
1156 matters what we pick, so just pick zero. */
1157 if (fallback == -1)
1158 ginfo->section = 0;
1159 else
1160 ginfo->section = fallback;
1161 }
1162 }
1163
1164 struct symbol *
1165 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1166 {
1167 CORE_ADDR addr;
1168
1169 if (!sym)
1170 return NULL;
1171
1172 /* We either have an OBJFILE, or we can get at it from the sym's
1173 symtab. Anything else is a bug. */
1174 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1175
1176 if (objfile == NULL)
1177 objfile = SYMBOL_SYMTAB (sym)->objfile;
1178
1179 if (SYMBOL_OBJ_SECTION (objfile, sym))
1180 return sym;
1181
1182 /* We should have an objfile by now. */
1183 gdb_assert (objfile);
1184
1185 switch (SYMBOL_CLASS (sym))
1186 {
1187 case LOC_STATIC:
1188 case LOC_LABEL:
1189 addr = SYMBOL_VALUE_ADDRESS (sym);
1190 break;
1191 case LOC_BLOCK:
1192 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1193 break;
1194
1195 default:
1196 /* Nothing else will be listed in the minsyms -- no use looking
1197 it up. */
1198 return sym;
1199 }
1200
1201 fixup_section (&sym->ginfo, addr, objfile);
1202
1203 return sym;
1204 }
1205
1206 /* Compute the demangled form of NAME as used by the various symbol
1207 lookup functions. The result is stored in *RESULT_NAME. Returns a
1208 cleanup which can be used to clean up the result.
1209
1210 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1211 Normally, Ada symbol lookups are performed using the encoded name
1212 rather than the demangled name, and so it might seem to make sense
1213 for this function to return an encoded version of NAME.
1214 Unfortunately, we cannot do this, because this function is used in
1215 circumstances where it is not appropriate to try to encode NAME.
1216 For instance, when displaying the frame info, we demangle the name
1217 of each parameter, and then perform a symbol lookup inside our
1218 function using that demangled name. In Ada, certain functions
1219 have internally-generated parameters whose name contain uppercase
1220 characters. Encoding those name would result in those uppercase
1221 characters to become lowercase, and thus cause the symbol lookup
1222 to fail. */
1223
1224 struct cleanup *
1225 demangle_for_lookup (const char *name, enum language lang,
1226 const char **result_name)
1227 {
1228 char *demangled_name = NULL;
1229 const char *modified_name = NULL;
1230 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1231
1232 modified_name = name;
1233
1234 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1235 lookup, so we can always binary search. */
1236 if (lang == language_cplus)
1237 {
1238 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1239 if (demangled_name)
1240 {
1241 modified_name = demangled_name;
1242 make_cleanup (xfree, demangled_name);
1243 }
1244 else
1245 {
1246 /* If we were given a non-mangled name, canonicalize it
1247 according to the language (so far only for C++). */
1248 demangled_name = cp_canonicalize_string (name);
1249 if (demangled_name)
1250 {
1251 modified_name = demangled_name;
1252 make_cleanup (xfree, demangled_name);
1253 }
1254 }
1255 }
1256 else if (lang == language_java)
1257 {
1258 demangled_name = gdb_demangle (name,
1259 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1260 if (demangled_name)
1261 {
1262 modified_name = demangled_name;
1263 make_cleanup (xfree, demangled_name);
1264 }
1265 }
1266 else if (lang == language_d)
1267 {
1268 demangled_name = d_demangle (name, 0);
1269 if (demangled_name)
1270 {
1271 modified_name = demangled_name;
1272 make_cleanup (xfree, demangled_name);
1273 }
1274 }
1275 else if (lang == language_go)
1276 {
1277 demangled_name = go_demangle (name, 0);
1278 if (demangled_name)
1279 {
1280 modified_name = demangled_name;
1281 make_cleanup (xfree, demangled_name);
1282 }
1283 }
1284
1285 *result_name = modified_name;
1286 return cleanup;
1287 }
1288
1289 /* See symtab.h.
1290
1291 This function (or rather its subordinates) have a bunch of loops and
1292 it would seem to be attractive to put in some QUIT's (though I'm not really
1293 sure whether it can run long enough to be really important). But there
1294 are a few calls for which it would appear to be bad news to quit
1295 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1296 that there is C++ code below which can error(), but that probably
1297 doesn't affect these calls since they are looking for a known
1298 variable and thus can probably assume it will never hit the C++
1299 code). */
1300
1301 struct symbol *
1302 lookup_symbol_in_language (const char *name, const struct block *block,
1303 const domain_enum domain, enum language lang,
1304 struct field_of_this_result *is_a_field_of_this)
1305 {
1306 const char *modified_name;
1307 struct symbol *returnval;
1308 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1309
1310 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1311 is_a_field_of_this);
1312 do_cleanups (cleanup);
1313
1314 return returnval;
1315 }
1316
1317 /* See symtab.h. */
1318
1319 struct symbol *
1320 lookup_symbol (const char *name, const struct block *block,
1321 domain_enum domain,
1322 struct field_of_this_result *is_a_field_of_this)
1323 {
1324 return lookup_symbol_in_language (name, block, domain,
1325 current_language->la_language,
1326 is_a_field_of_this);
1327 }
1328
1329 /* See symtab.h. */
1330
1331 struct symbol *
1332 lookup_language_this (const struct language_defn *lang,
1333 const struct block *block)
1334 {
1335 if (lang->la_name_of_this == NULL || block == NULL)
1336 return NULL;
1337
1338 while (block)
1339 {
1340 struct symbol *sym;
1341
1342 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1343 if (sym != NULL)
1344 {
1345 block_found = block;
1346 return sym;
1347 }
1348 if (BLOCK_FUNCTION (block))
1349 break;
1350 block = BLOCK_SUPERBLOCK (block);
1351 }
1352
1353 return NULL;
1354 }
1355
1356 /* Given TYPE, a structure/union,
1357 return 1 if the component named NAME from the ultimate target
1358 structure/union is defined, otherwise, return 0. */
1359
1360 static int
1361 check_field (struct type *type, const char *name,
1362 struct field_of_this_result *is_a_field_of_this)
1363 {
1364 int i;
1365
1366 /* The type may be a stub. */
1367 CHECK_TYPEDEF (type);
1368
1369 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1370 {
1371 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1372
1373 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1374 {
1375 is_a_field_of_this->type = type;
1376 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1377 return 1;
1378 }
1379 }
1380
1381 /* C++: If it was not found as a data field, then try to return it
1382 as a pointer to a method. */
1383
1384 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1385 {
1386 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1387 {
1388 is_a_field_of_this->type = type;
1389 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1390 return 1;
1391 }
1392 }
1393
1394 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1395 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1396 return 1;
1397
1398 return 0;
1399 }
1400
1401 /* Behave like lookup_symbol except that NAME is the natural name
1402 (e.g., demangled name) of the symbol that we're looking for. */
1403
1404 static struct symbol *
1405 lookup_symbol_aux (const char *name, const struct block *block,
1406 const domain_enum domain, enum language language,
1407 struct field_of_this_result *is_a_field_of_this)
1408 {
1409 struct symbol *sym;
1410 const struct language_defn *langdef;
1411
1412 /* Make sure we do something sensible with is_a_field_of_this, since
1413 the callers that set this parameter to some non-null value will
1414 certainly use it later. If we don't set it, the contents of
1415 is_a_field_of_this are undefined. */
1416 if (is_a_field_of_this != NULL)
1417 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1418
1419 /* Search specified block and its superiors. Don't search
1420 STATIC_BLOCK or GLOBAL_BLOCK. */
1421
1422 sym = lookup_local_symbol (name, block, domain, language);
1423 if (sym != NULL)
1424 return sym;
1425
1426 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1427 check to see if NAME is a field of `this'. */
1428
1429 langdef = language_def (language);
1430
1431 /* Don't do this check if we are searching for a struct. It will
1432 not be found by check_field, but will be found by other
1433 means. */
1434 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1435 {
1436 struct symbol *sym = lookup_language_this (langdef, block);
1437
1438 if (sym)
1439 {
1440 struct type *t = sym->type;
1441
1442 /* I'm not really sure that type of this can ever
1443 be typedefed; just be safe. */
1444 CHECK_TYPEDEF (t);
1445 if (TYPE_CODE (t) == TYPE_CODE_PTR
1446 || TYPE_CODE (t) == TYPE_CODE_REF)
1447 t = TYPE_TARGET_TYPE (t);
1448
1449 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1450 && TYPE_CODE (t) != TYPE_CODE_UNION)
1451 error (_("Internal error: `%s' is not an aggregate"),
1452 langdef->la_name_of_this);
1453
1454 if (check_field (t, name, is_a_field_of_this))
1455 return NULL;
1456 }
1457 }
1458
1459 /* Now do whatever is appropriate for LANGUAGE to look
1460 up static and global variables. */
1461
1462 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1463 if (sym != NULL)
1464 return sym;
1465
1466 /* Now search all static file-level symbols. Not strictly correct,
1467 but more useful than an error. */
1468
1469 return lookup_static_symbol (name, domain);
1470 }
1471
1472 /* Check to see if the symbol is defined in BLOCK or its superiors.
1473 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1474
1475 static struct symbol *
1476 lookup_local_symbol (const char *name, const struct block *block,
1477 const domain_enum domain,
1478 enum language language)
1479 {
1480 struct symbol *sym;
1481 const struct block *static_block = block_static_block (block);
1482 const char *scope = block_scope (block);
1483
1484 /* Check if either no block is specified or it's a global block. */
1485
1486 if (static_block == NULL)
1487 return NULL;
1488
1489 while (block != static_block)
1490 {
1491 sym = lookup_symbol_in_block (name, block, domain);
1492 if (sym != NULL)
1493 return sym;
1494
1495 if (language == language_cplus || language == language_fortran)
1496 {
1497 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1498 domain);
1499 if (sym != NULL)
1500 return sym;
1501 }
1502
1503 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1504 break;
1505 block = BLOCK_SUPERBLOCK (block);
1506 }
1507
1508 /* We've reached the end of the function without finding a result. */
1509
1510 return NULL;
1511 }
1512
1513 /* See symtab.h. */
1514
1515 struct objfile *
1516 lookup_objfile_from_block (const struct block *block)
1517 {
1518 struct objfile *obj;
1519 struct symtab *s;
1520
1521 if (block == NULL)
1522 return NULL;
1523
1524 block = block_global_block (block);
1525 /* Go through SYMTABS.
1526 Non-primary symtabs share the block vector with their primary symtabs
1527 so we use ALL_PRIMARY_SYMTABS here instead of ALL_SYMTABS. */
1528 ALL_PRIMARY_SYMTABS (obj, s)
1529 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1530 {
1531 if (obj->separate_debug_objfile_backlink)
1532 obj = obj->separate_debug_objfile_backlink;
1533
1534 return obj;
1535 }
1536
1537 return NULL;
1538 }
1539
1540 /* See symtab.h. */
1541
1542 struct symbol *
1543 lookup_symbol_in_block (const char *name, const struct block *block,
1544 const domain_enum domain)
1545 {
1546 struct symbol *sym;
1547
1548 sym = block_lookup_symbol (block, name, domain);
1549 if (sym)
1550 {
1551 block_found = block;
1552 return fixup_symbol_section (sym, NULL);
1553 }
1554
1555 return NULL;
1556 }
1557
1558 /* See symtab.h. */
1559
1560 struct symbol *
1561 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1562 const char *name,
1563 const domain_enum domain)
1564 {
1565 const struct objfile *objfile;
1566 struct symbol *sym;
1567 const struct blockvector *bv;
1568 const struct block *block;
1569 struct symtab *s;
1570
1571 for (objfile = main_objfile;
1572 objfile;
1573 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1574 {
1575 /* Go through symtabs. */
1576 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1577 {
1578 bv = BLOCKVECTOR (s);
1579 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1580 sym = block_lookup_symbol (block, name, domain);
1581 if (sym)
1582 {
1583 block_found = block;
1584 return fixup_symbol_section (sym, (struct objfile *)objfile);
1585 }
1586 }
1587
1588 sym = lookup_symbol_via_quick_fns ((struct objfile *) objfile,
1589 GLOBAL_BLOCK, name, domain);
1590 if (sym)
1591 return sym;
1592 }
1593
1594 return NULL;
1595 }
1596
1597 /* Check to see if the symbol is defined in one of the OBJFILE's
1598 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1599 depending on whether or not we want to search global symbols or
1600 static symbols. */
1601
1602 static struct symbol *
1603 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
1604 const char *name, const domain_enum domain)
1605 {
1606 struct symbol *sym = NULL;
1607 const struct blockvector *bv;
1608 const struct block *block;
1609 struct symtab *s;
1610
1611 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1612 {
1613 bv = BLOCKVECTOR (s);
1614 block = BLOCKVECTOR_BLOCK (bv, block_index);
1615 sym = block_lookup_symbol (block, name, domain);
1616 if (sym)
1617 {
1618 block_found = block;
1619 return fixup_symbol_section (sym, objfile);
1620 }
1621 }
1622
1623 return NULL;
1624 }
1625
1626 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
1627 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1628 and all related objfiles. */
1629
1630 static struct symbol *
1631 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1632 const char *linkage_name,
1633 domain_enum domain)
1634 {
1635 enum language lang = current_language->la_language;
1636 const char *modified_name;
1637 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1638 &modified_name);
1639 struct objfile *main_objfile, *cur_objfile;
1640
1641 if (objfile->separate_debug_objfile_backlink)
1642 main_objfile = objfile->separate_debug_objfile_backlink;
1643 else
1644 main_objfile = objfile;
1645
1646 for (cur_objfile = main_objfile;
1647 cur_objfile;
1648 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1649 {
1650 struct symbol *sym;
1651
1652 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
1653 modified_name, domain);
1654 if (sym == NULL)
1655 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
1656 modified_name, domain);
1657 if (sym != NULL)
1658 {
1659 do_cleanups (cleanup);
1660 return sym;
1661 }
1662 }
1663
1664 do_cleanups (cleanup);
1665 return NULL;
1666 }
1667
1668 /* A helper function that throws an exception when a symbol was found
1669 in a psymtab but not in a symtab. */
1670
1671 static void ATTRIBUTE_NORETURN
1672 error_in_psymtab_expansion (int block_index, const char *name,
1673 struct symtab *symtab)
1674 {
1675 error (_("\
1676 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1677 %s may be an inlined function, or may be a template function\n \
1678 (if a template, try specifying an instantiation: %s<type>)."),
1679 block_index == GLOBAL_BLOCK ? "global" : "static",
1680 name, symtab_to_filename_for_display (symtab), name, name);
1681 }
1682
1683 /* A helper function for various lookup routines that interfaces with
1684 the "quick" symbol table functions. */
1685
1686 static struct symbol *
1687 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
1688 const char *name, const domain_enum domain)
1689 {
1690 struct symtab *symtab;
1691 const struct blockvector *bv;
1692 const struct block *block;
1693 struct symbol *sym;
1694
1695 if (!objfile->sf)
1696 return NULL;
1697 symtab = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
1698 if (!symtab)
1699 return NULL;
1700
1701 bv = BLOCKVECTOR (symtab);
1702 block = BLOCKVECTOR_BLOCK (bv, block_index);
1703 sym = block_lookup_symbol (block, name, domain);
1704 if (!sym)
1705 error_in_psymtab_expansion (block_index, name, symtab);
1706 block_found = block;
1707 return fixup_symbol_section (sym, objfile);
1708 }
1709
1710 /* See symtab.h. */
1711
1712 struct symbol *
1713 basic_lookup_symbol_nonlocal (const char *name,
1714 const struct block *block,
1715 const domain_enum domain)
1716 {
1717 struct symbol *sym;
1718
1719 /* NOTE: carlton/2003-05-19: The comments below were written when
1720 this (or what turned into this) was part of lookup_symbol_aux;
1721 I'm much less worried about these questions now, since these
1722 decisions have turned out well, but I leave these comments here
1723 for posterity. */
1724
1725 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1726 not it would be appropriate to search the current global block
1727 here as well. (That's what this code used to do before the
1728 is_a_field_of_this check was moved up.) On the one hand, it's
1729 redundant with the lookup in all objfiles search that happens
1730 next. On the other hand, if decode_line_1 is passed an argument
1731 like filename:var, then the user presumably wants 'var' to be
1732 searched for in filename. On the third hand, there shouldn't be
1733 multiple global variables all of which are named 'var', and it's
1734 not like decode_line_1 has ever restricted its search to only
1735 global variables in a single filename. All in all, only
1736 searching the static block here seems best: it's correct and it's
1737 cleanest. */
1738
1739 /* NOTE: carlton/2002-12-05: There's also a possible performance
1740 issue here: if you usually search for global symbols in the
1741 current file, then it would be slightly better to search the
1742 current global block before searching all the symtabs. But there
1743 are other factors that have a much greater effect on performance
1744 than that one, so I don't think we should worry about that for
1745 now. */
1746
1747 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
1748 the current objfile. Searching the current objfile first is useful
1749 for both matching user expectations as well as performance. */
1750
1751 sym = lookup_symbol_in_static_block (name, block, domain);
1752 if (sym != NULL)
1753 return sym;
1754
1755 return lookup_global_symbol (name, block, domain);
1756 }
1757
1758 /* See symtab.h. */
1759
1760 struct symbol *
1761 lookup_symbol_in_static_block (const char *name,
1762 const struct block *block,
1763 const domain_enum domain)
1764 {
1765 const struct block *static_block = block_static_block (block);
1766
1767 if (static_block != NULL)
1768 return lookup_symbol_in_block (name, static_block, domain);
1769 else
1770 return NULL;
1771 }
1772
1773 /* Perform the standard symbol lookup of NAME in OBJFILE:
1774 1) First search expanded symtabs, and if not found
1775 2) Search the "quick" symtabs (partial or .gdb_index).
1776 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
1777
1778 static struct symbol *
1779 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
1780 const char *name, const domain_enum domain)
1781 {
1782 struct symbol *result;
1783
1784 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
1785 name, domain);
1786 if (result == NULL)
1787 {
1788 result = lookup_symbol_via_quick_fns (objfile, block_index,
1789 name, domain);
1790 }
1791
1792 return result;
1793 }
1794
1795 /* See symtab.h. */
1796
1797 struct symbol *
1798 lookup_static_symbol (const char *name, const domain_enum domain)
1799 {
1800 struct objfile *objfile;
1801 struct symbol *result;
1802
1803 ALL_OBJFILES (objfile)
1804 {
1805 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
1806 if (result != NULL)
1807 return result;
1808 }
1809
1810 return NULL;
1811 }
1812
1813 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1814
1815 struct global_sym_lookup_data
1816 {
1817 /* The name of the symbol we are searching for. */
1818 const char *name;
1819
1820 /* The domain to use for our search. */
1821 domain_enum domain;
1822
1823 /* The field where the callback should store the symbol if found.
1824 It should be initialized to NULL before the search is started. */
1825 struct symbol *result;
1826 };
1827
1828 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1829 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1830 OBJFILE. The arguments for the search are passed via CB_DATA,
1831 which in reality is a pointer to struct global_sym_lookup_data. */
1832
1833 static int
1834 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1835 void *cb_data)
1836 {
1837 struct global_sym_lookup_data *data =
1838 (struct global_sym_lookup_data *) cb_data;
1839
1840 gdb_assert (data->result == NULL);
1841
1842 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
1843 data->name, data->domain);
1844
1845 /* If we found a match, tell the iterator to stop. Otherwise,
1846 keep going. */
1847 return (data->result != NULL);
1848 }
1849
1850 /* See symtab.h. */
1851
1852 struct symbol *
1853 lookup_global_symbol (const char *name,
1854 const struct block *block,
1855 const domain_enum domain)
1856 {
1857 struct symbol *sym = NULL;
1858 struct objfile *objfile = NULL;
1859 struct global_sym_lookup_data lookup_data;
1860
1861 /* Call library-specific lookup procedure. */
1862 objfile = lookup_objfile_from_block (block);
1863 if (objfile != NULL)
1864 sym = solib_global_lookup (objfile, name, domain);
1865 if (sym != NULL)
1866 return sym;
1867
1868 memset (&lookup_data, 0, sizeof (lookup_data));
1869 lookup_data.name = name;
1870 lookup_data.domain = domain;
1871 gdbarch_iterate_over_objfiles_in_search_order
1872 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1873 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1874
1875 return lookup_data.result;
1876 }
1877
1878 int
1879 symbol_matches_domain (enum language symbol_language,
1880 domain_enum symbol_domain,
1881 domain_enum domain)
1882 {
1883 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1884 A Java class declaration also defines a typedef for the class.
1885 Similarly, any Ada type declaration implicitly defines a typedef. */
1886 if (symbol_language == language_cplus
1887 || symbol_language == language_d
1888 || symbol_language == language_java
1889 || symbol_language == language_ada)
1890 {
1891 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1892 && symbol_domain == STRUCT_DOMAIN)
1893 return 1;
1894 }
1895 /* For all other languages, strict match is required. */
1896 return (symbol_domain == domain);
1897 }
1898
1899 /* See symtab.h. */
1900
1901 struct type *
1902 lookup_transparent_type (const char *name)
1903 {
1904 return current_language->la_lookup_transparent_type (name);
1905 }
1906
1907 /* A helper for basic_lookup_transparent_type that interfaces with the
1908 "quick" symbol table functions. */
1909
1910 static struct type *
1911 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
1912 const char *name)
1913 {
1914 struct symtab *symtab;
1915 const struct blockvector *bv;
1916 struct block *block;
1917 struct symbol *sym;
1918
1919 if (!objfile->sf)
1920 return NULL;
1921 symtab = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
1922 STRUCT_DOMAIN);
1923 if (!symtab)
1924 return NULL;
1925
1926 bv = BLOCKVECTOR (symtab);
1927 block = BLOCKVECTOR_BLOCK (bv, block_index);
1928 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1929 if (!sym)
1930 error_in_psymtab_expansion (block_index, name, symtab);
1931
1932 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1933 return SYMBOL_TYPE (sym);
1934
1935 return NULL;
1936 }
1937
1938 /* The standard implementation of lookup_transparent_type. This code
1939 was modeled on lookup_symbol -- the parts not relevant to looking
1940 up types were just left out. In particular it's assumed here that
1941 types are available in STRUCT_DOMAIN and only in file-static or
1942 global blocks. */
1943
1944 struct type *
1945 basic_lookup_transparent_type (const char *name)
1946 {
1947 struct symbol *sym;
1948 struct symtab *s = NULL;
1949 const struct blockvector *bv;
1950 struct objfile *objfile;
1951 struct block *block;
1952 struct type *t;
1953
1954 /* Now search all the global symbols. Do the symtab's first, then
1955 check the psymtab's. If a psymtab indicates the existence
1956 of the desired name as a global, then do psymtab-to-symtab
1957 conversion on the fly and return the found symbol. */
1958
1959 ALL_OBJFILES (objfile)
1960 {
1961 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1962 {
1963 bv = BLOCKVECTOR (s);
1964 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1965 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1966 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1967 {
1968 return SYMBOL_TYPE (sym);
1969 }
1970 }
1971 }
1972
1973 ALL_OBJFILES (objfile)
1974 {
1975 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1976 if (t)
1977 return t;
1978 }
1979
1980 /* Now search the static file-level symbols.
1981 Not strictly correct, but more useful than an error.
1982 Do the symtab's first, then
1983 check the psymtab's. If a psymtab indicates the existence
1984 of the desired name as a file-level static, then do psymtab-to-symtab
1985 conversion on the fly and return the found symbol. */
1986
1987 ALL_OBJFILES (objfile)
1988 {
1989 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1990 {
1991 bv = BLOCKVECTOR (s);
1992 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1993 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1994 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1995 {
1996 return SYMBOL_TYPE (sym);
1997 }
1998 }
1999 }
2000
2001 ALL_OBJFILES (objfile)
2002 {
2003 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2004 if (t)
2005 return t;
2006 }
2007
2008 return (struct type *) 0;
2009 }
2010
2011 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2012
2013 For each symbol that matches, CALLBACK is called. The symbol and
2014 DATA are passed to the callback.
2015
2016 If CALLBACK returns zero, the iteration ends. Otherwise, the
2017 search continues. */
2018
2019 void
2020 iterate_over_symbols (const struct block *block, const char *name,
2021 const domain_enum domain,
2022 symbol_found_callback_ftype *callback,
2023 void *data)
2024 {
2025 struct block_iterator iter;
2026 struct symbol *sym;
2027
2028 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2029 {
2030 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2031 SYMBOL_DOMAIN (sym), domain))
2032 {
2033 if (!callback (sym, data))
2034 return;
2035 }
2036 }
2037 }
2038
2039 /* Find the symtab associated with PC and SECTION. Look through the
2040 psymtabs and read in another symtab if necessary. */
2041
2042 struct symtab *
2043 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2044 {
2045 struct block *b;
2046 const struct blockvector *bv;
2047 struct symtab *s = NULL;
2048 struct symtab *best_s = NULL;
2049 struct objfile *objfile;
2050 CORE_ADDR distance = 0;
2051 struct bound_minimal_symbol msymbol;
2052
2053 /* If we know that this is not a text address, return failure. This is
2054 necessary because we loop based on the block's high and low code
2055 addresses, which do not include the data ranges, and because
2056 we call find_pc_sect_psymtab which has a similar restriction based
2057 on the partial_symtab's texthigh and textlow. */
2058 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2059 if (msymbol.minsym
2060 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2061 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2062 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2063 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2064 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2065 return NULL;
2066
2067 /* Search all symtabs for the one whose file contains our address, and which
2068 is the smallest of all the ones containing the address. This is designed
2069 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2070 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2071 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2072
2073 This happens for native ecoff format, where code from included files
2074 gets its own symtab. The symtab for the included file should have
2075 been read in already via the dependency mechanism.
2076 It might be swifter to create several symtabs with the same name
2077 like xcoff does (I'm not sure).
2078
2079 It also happens for objfiles that have their functions reordered.
2080 For these, the symtab we are looking for is not necessarily read in. */
2081
2082 ALL_PRIMARY_SYMTABS (objfile, s)
2083 {
2084 bv = BLOCKVECTOR (s);
2085 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2086
2087 if (BLOCK_START (b) <= pc
2088 && BLOCK_END (b) > pc
2089 && (distance == 0
2090 || BLOCK_END (b) - BLOCK_START (b) < distance))
2091 {
2092 /* For an objfile that has its functions reordered,
2093 find_pc_psymtab will find the proper partial symbol table
2094 and we simply return its corresponding symtab. */
2095 /* In order to better support objfiles that contain both
2096 stabs and coff debugging info, we continue on if a psymtab
2097 can't be found. */
2098 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2099 {
2100 struct symtab *result;
2101
2102 result
2103 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2104 msymbol,
2105 pc, section,
2106 0);
2107 if (result)
2108 return result;
2109 }
2110 if (section != 0)
2111 {
2112 struct block_iterator iter;
2113 struct symbol *sym = NULL;
2114
2115 ALL_BLOCK_SYMBOLS (b, iter, sym)
2116 {
2117 fixup_symbol_section (sym, objfile);
2118 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2119 section))
2120 break;
2121 }
2122 if (sym == NULL)
2123 continue; /* No symbol in this symtab matches
2124 section. */
2125 }
2126 distance = BLOCK_END (b) - BLOCK_START (b);
2127 best_s = s;
2128 }
2129 }
2130
2131 if (best_s != NULL)
2132 return (best_s);
2133
2134 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2135
2136 ALL_OBJFILES (objfile)
2137 {
2138 struct symtab *result;
2139
2140 if (!objfile->sf)
2141 continue;
2142 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2143 msymbol,
2144 pc, section,
2145 1);
2146 if (result)
2147 return result;
2148 }
2149
2150 return NULL;
2151 }
2152
2153 /* Find the symtab associated with PC. Look through the psymtabs and read
2154 in another symtab if necessary. Backward compatibility, no section. */
2155
2156 struct symtab *
2157 find_pc_symtab (CORE_ADDR pc)
2158 {
2159 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2160 }
2161 \f
2162
2163 /* Find the source file and line number for a given PC value and SECTION.
2164 Return a structure containing a symtab pointer, a line number,
2165 and a pc range for the entire source line.
2166 The value's .pc field is NOT the specified pc.
2167 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2168 use the line that ends there. Otherwise, in that case, the line
2169 that begins there is used. */
2170
2171 /* The big complication here is that a line may start in one file, and end just
2172 before the start of another file. This usually occurs when you #include
2173 code in the middle of a subroutine. To properly find the end of a line's PC
2174 range, we must search all symtabs associated with this compilation unit, and
2175 find the one whose first PC is closer than that of the next line in this
2176 symtab. */
2177
2178 /* If it's worth the effort, we could be using a binary search. */
2179
2180 struct symtab_and_line
2181 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2182 {
2183 struct symtab *s;
2184 struct linetable *l;
2185 int len;
2186 int i;
2187 struct linetable_entry *item;
2188 struct symtab_and_line val;
2189 const struct blockvector *bv;
2190 struct bound_minimal_symbol msymbol;
2191 struct objfile *objfile;
2192
2193 /* Info on best line seen so far, and where it starts, and its file. */
2194
2195 struct linetable_entry *best = NULL;
2196 CORE_ADDR best_end = 0;
2197 struct symtab *best_symtab = 0;
2198
2199 /* Store here the first line number
2200 of a file which contains the line at the smallest pc after PC.
2201 If we don't find a line whose range contains PC,
2202 we will use a line one less than this,
2203 with a range from the start of that file to the first line's pc. */
2204 struct linetable_entry *alt = NULL;
2205
2206 /* Info on best line seen in this file. */
2207
2208 struct linetable_entry *prev;
2209
2210 /* If this pc is not from the current frame,
2211 it is the address of the end of a call instruction.
2212 Quite likely that is the start of the following statement.
2213 But what we want is the statement containing the instruction.
2214 Fudge the pc to make sure we get that. */
2215
2216 init_sal (&val); /* initialize to zeroes */
2217
2218 val.pspace = current_program_space;
2219
2220 /* It's tempting to assume that, if we can't find debugging info for
2221 any function enclosing PC, that we shouldn't search for line
2222 number info, either. However, GAS can emit line number info for
2223 assembly files --- very helpful when debugging hand-written
2224 assembly code. In such a case, we'd have no debug info for the
2225 function, but we would have line info. */
2226
2227 if (notcurrent)
2228 pc -= 1;
2229
2230 /* elz: added this because this function returned the wrong
2231 information if the pc belongs to a stub (import/export)
2232 to call a shlib function. This stub would be anywhere between
2233 two functions in the target, and the line info was erroneously
2234 taken to be the one of the line before the pc. */
2235
2236 /* RT: Further explanation:
2237
2238 * We have stubs (trampolines) inserted between procedures.
2239 *
2240 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2241 * exists in the main image.
2242 *
2243 * In the minimal symbol table, we have a bunch of symbols
2244 * sorted by start address. The stubs are marked as "trampoline",
2245 * the others appear as text. E.g.:
2246 *
2247 * Minimal symbol table for main image
2248 * main: code for main (text symbol)
2249 * shr1: stub (trampoline symbol)
2250 * foo: code for foo (text symbol)
2251 * ...
2252 * Minimal symbol table for "shr1" image:
2253 * ...
2254 * shr1: code for shr1 (text symbol)
2255 * ...
2256 *
2257 * So the code below is trying to detect if we are in the stub
2258 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2259 * and if found, do the symbolization from the real-code address
2260 * rather than the stub address.
2261 *
2262 * Assumptions being made about the minimal symbol table:
2263 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2264 * if we're really in the trampoline.s If we're beyond it (say
2265 * we're in "foo" in the above example), it'll have a closer
2266 * symbol (the "foo" text symbol for example) and will not
2267 * return the trampoline.
2268 * 2. lookup_minimal_symbol_text() will find a real text symbol
2269 * corresponding to the trampoline, and whose address will
2270 * be different than the trampoline address. I put in a sanity
2271 * check for the address being the same, to avoid an
2272 * infinite recursion.
2273 */
2274 msymbol = lookup_minimal_symbol_by_pc (pc);
2275 if (msymbol.minsym != NULL)
2276 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2277 {
2278 struct bound_minimal_symbol mfunsym
2279 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2280 NULL);
2281
2282 if (mfunsym.minsym == NULL)
2283 /* I eliminated this warning since it is coming out
2284 * in the following situation:
2285 * gdb shmain // test program with shared libraries
2286 * (gdb) break shr1 // function in shared lib
2287 * Warning: In stub for ...
2288 * In the above situation, the shared lib is not loaded yet,
2289 * so of course we can't find the real func/line info,
2290 * but the "break" still works, and the warning is annoying.
2291 * So I commented out the warning. RT */
2292 /* warning ("In stub for %s; unable to find real function/line info",
2293 SYMBOL_LINKAGE_NAME (msymbol)); */
2294 ;
2295 /* fall through */
2296 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2297 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2298 /* Avoid infinite recursion */
2299 /* See above comment about why warning is commented out. */
2300 /* warning ("In stub for %s; unable to find real function/line info",
2301 SYMBOL_LINKAGE_NAME (msymbol)); */
2302 ;
2303 /* fall through */
2304 else
2305 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2306 }
2307
2308
2309 s = find_pc_sect_symtab (pc, section);
2310 if (!s)
2311 {
2312 /* If no symbol information, return previous pc. */
2313 if (notcurrent)
2314 pc++;
2315 val.pc = pc;
2316 return val;
2317 }
2318
2319 bv = BLOCKVECTOR (s);
2320 objfile = s->objfile;
2321
2322 /* Look at all the symtabs that share this blockvector.
2323 They all have the same apriori range, that we found was right;
2324 but they have different line tables. */
2325
2326 ALL_OBJFILE_SYMTABS (objfile, s)
2327 {
2328 if (BLOCKVECTOR (s) != bv)
2329 continue;
2330
2331 /* Find the best line in this symtab. */
2332 l = LINETABLE (s);
2333 if (!l)
2334 continue;
2335 len = l->nitems;
2336 if (len <= 0)
2337 {
2338 /* I think len can be zero if the symtab lacks line numbers
2339 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2340 I'm not sure which, and maybe it depends on the symbol
2341 reader). */
2342 continue;
2343 }
2344
2345 prev = NULL;
2346 item = l->item; /* Get first line info. */
2347
2348 /* Is this file's first line closer than the first lines of other files?
2349 If so, record this file, and its first line, as best alternate. */
2350 if (item->pc > pc && (!alt || item->pc < alt->pc))
2351 alt = item;
2352
2353 for (i = 0; i < len; i++, item++)
2354 {
2355 /* Leave prev pointing to the linetable entry for the last line
2356 that started at or before PC. */
2357 if (item->pc > pc)
2358 break;
2359
2360 prev = item;
2361 }
2362
2363 /* At this point, prev points at the line whose start addr is <= pc, and
2364 item points at the next line. If we ran off the end of the linetable
2365 (pc >= start of the last line), then prev == item. If pc < start of
2366 the first line, prev will not be set. */
2367
2368 /* Is this file's best line closer than the best in the other files?
2369 If so, record this file, and its best line, as best so far. Don't
2370 save prev if it represents the end of a function (i.e. line number
2371 0) instead of a real line. */
2372
2373 if (prev && prev->line && (!best || prev->pc > best->pc))
2374 {
2375 best = prev;
2376 best_symtab = s;
2377
2378 /* Discard BEST_END if it's before the PC of the current BEST. */
2379 if (best_end <= best->pc)
2380 best_end = 0;
2381 }
2382
2383 /* If another line (denoted by ITEM) is in the linetable and its
2384 PC is after BEST's PC, but before the current BEST_END, then
2385 use ITEM's PC as the new best_end. */
2386 if (best && i < len && item->pc > best->pc
2387 && (best_end == 0 || best_end > item->pc))
2388 best_end = item->pc;
2389 }
2390
2391 if (!best_symtab)
2392 {
2393 /* If we didn't find any line number info, just return zeros.
2394 We used to return alt->line - 1 here, but that could be
2395 anywhere; if we don't have line number info for this PC,
2396 don't make some up. */
2397 val.pc = pc;
2398 }
2399 else if (best->line == 0)
2400 {
2401 /* If our best fit is in a range of PC's for which no line
2402 number info is available (line number is zero) then we didn't
2403 find any valid line information. */
2404 val.pc = pc;
2405 }
2406 else
2407 {
2408 val.symtab = best_symtab;
2409 val.line = best->line;
2410 val.pc = best->pc;
2411 if (best_end && (!alt || best_end < alt->pc))
2412 val.end = best_end;
2413 else if (alt)
2414 val.end = alt->pc;
2415 else
2416 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2417 }
2418 val.section = section;
2419 return val;
2420 }
2421
2422 /* Backward compatibility (no section). */
2423
2424 struct symtab_and_line
2425 find_pc_line (CORE_ADDR pc, int notcurrent)
2426 {
2427 struct obj_section *section;
2428
2429 section = find_pc_overlay (pc);
2430 if (pc_in_unmapped_range (pc, section))
2431 pc = overlay_mapped_address (pc, section);
2432 return find_pc_sect_line (pc, section, notcurrent);
2433 }
2434
2435 /* See symtab.h. */
2436
2437 struct symtab *
2438 find_pc_line_symtab (CORE_ADDR pc)
2439 {
2440 struct symtab_and_line sal;
2441
2442 /* This always passes zero for NOTCURRENT to find_pc_line.
2443 There are currently no callers that ever pass non-zero. */
2444 sal = find_pc_line (pc, 0);
2445 return sal.symtab;
2446 }
2447 \f
2448 /* Find line number LINE in any symtab whose name is the same as
2449 SYMTAB.
2450
2451 If found, return the symtab that contains the linetable in which it was
2452 found, set *INDEX to the index in the linetable of the best entry
2453 found, and set *EXACT_MATCH nonzero if the value returned is an
2454 exact match.
2455
2456 If not found, return NULL. */
2457
2458 struct symtab *
2459 find_line_symtab (struct symtab *symtab, int line,
2460 int *index, int *exact_match)
2461 {
2462 int exact = 0; /* Initialized here to avoid a compiler warning. */
2463
2464 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2465 so far seen. */
2466
2467 int best_index;
2468 struct linetable *best_linetable;
2469 struct symtab *best_symtab;
2470
2471 /* First try looking it up in the given symtab. */
2472 best_linetable = LINETABLE (symtab);
2473 best_symtab = symtab;
2474 best_index = find_line_common (best_linetable, line, &exact, 0);
2475 if (best_index < 0 || !exact)
2476 {
2477 /* Didn't find an exact match. So we better keep looking for
2478 another symtab with the same name. In the case of xcoff,
2479 multiple csects for one source file (produced by IBM's FORTRAN
2480 compiler) produce multiple symtabs (this is unavoidable
2481 assuming csects can be at arbitrary places in memory and that
2482 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2483
2484 /* BEST is the smallest linenumber > LINE so far seen,
2485 or 0 if none has been seen so far.
2486 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2487 int best;
2488
2489 struct objfile *objfile;
2490 struct symtab *s;
2491
2492 if (best_index >= 0)
2493 best = best_linetable->item[best_index].line;
2494 else
2495 best = 0;
2496
2497 ALL_OBJFILES (objfile)
2498 {
2499 if (objfile->sf)
2500 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2501 symtab_to_fullname (symtab));
2502 }
2503
2504 ALL_SYMTABS (objfile, s)
2505 {
2506 struct linetable *l;
2507 int ind;
2508
2509 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2510 continue;
2511 if (FILENAME_CMP (symtab_to_fullname (symtab),
2512 symtab_to_fullname (s)) != 0)
2513 continue;
2514 l = LINETABLE (s);
2515 ind = find_line_common (l, line, &exact, 0);
2516 if (ind >= 0)
2517 {
2518 if (exact)
2519 {
2520 best_index = ind;
2521 best_linetable = l;
2522 best_symtab = s;
2523 goto done;
2524 }
2525 if (best == 0 || l->item[ind].line < best)
2526 {
2527 best = l->item[ind].line;
2528 best_index = ind;
2529 best_linetable = l;
2530 best_symtab = s;
2531 }
2532 }
2533 }
2534 }
2535 done:
2536 if (best_index < 0)
2537 return NULL;
2538
2539 if (index)
2540 *index = best_index;
2541 if (exact_match)
2542 *exact_match = exact;
2543
2544 return best_symtab;
2545 }
2546
2547 /* Given SYMTAB, returns all the PCs function in the symtab that
2548 exactly match LINE. Returns NULL if there are no exact matches,
2549 but updates BEST_ITEM in this case. */
2550
2551 VEC (CORE_ADDR) *
2552 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2553 struct linetable_entry **best_item)
2554 {
2555 int start = 0;
2556 VEC (CORE_ADDR) *result = NULL;
2557
2558 /* First, collect all the PCs that are at this line. */
2559 while (1)
2560 {
2561 int was_exact;
2562 int idx;
2563
2564 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2565 if (idx < 0)
2566 break;
2567
2568 if (!was_exact)
2569 {
2570 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2571
2572 if (*best_item == NULL || item->line < (*best_item)->line)
2573 *best_item = item;
2574
2575 break;
2576 }
2577
2578 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2579 start = idx + 1;
2580 }
2581
2582 return result;
2583 }
2584
2585 \f
2586 /* Set the PC value for a given source file and line number and return true.
2587 Returns zero for invalid line number (and sets the PC to 0).
2588 The source file is specified with a struct symtab. */
2589
2590 int
2591 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2592 {
2593 struct linetable *l;
2594 int ind;
2595
2596 *pc = 0;
2597 if (symtab == 0)
2598 return 0;
2599
2600 symtab = find_line_symtab (symtab, line, &ind, NULL);
2601 if (symtab != NULL)
2602 {
2603 l = LINETABLE (symtab);
2604 *pc = l->item[ind].pc;
2605 return 1;
2606 }
2607 else
2608 return 0;
2609 }
2610
2611 /* Find the range of pc values in a line.
2612 Store the starting pc of the line into *STARTPTR
2613 and the ending pc (start of next line) into *ENDPTR.
2614 Returns 1 to indicate success.
2615 Returns 0 if could not find the specified line. */
2616
2617 int
2618 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2619 CORE_ADDR *endptr)
2620 {
2621 CORE_ADDR startaddr;
2622 struct symtab_and_line found_sal;
2623
2624 startaddr = sal.pc;
2625 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2626 return 0;
2627
2628 /* This whole function is based on address. For example, if line 10 has
2629 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2630 "info line *0x123" should say the line goes from 0x100 to 0x200
2631 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2632 This also insures that we never give a range like "starts at 0x134
2633 and ends at 0x12c". */
2634
2635 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2636 if (found_sal.line != sal.line)
2637 {
2638 /* The specified line (sal) has zero bytes. */
2639 *startptr = found_sal.pc;
2640 *endptr = found_sal.pc;
2641 }
2642 else
2643 {
2644 *startptr = found_sal.pc;
2645 *endptr = found_sal.end;
2646 }
2647 return 1;
2648 }
2649
2650 /* Given a line table and a line number, return the index into the line
2651 table for the pc of the nearest line whose number is >= the specified one.
2652 Return -1 if none is found. The value is >= 0 if it is an index.
2653 START is the index at which to start searching the line table.
2654
2655 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2656
2657 static int
2658 find_line_common (struct linetable *l, int lineno,
2659 int *exact_match, int start)
2660 {
2661 int i;
2662 int len;
2663
2664 /* BEST is the smallest linenumber > LINENO so far seen,
2665 or 0 if none has been seen so far.
2666 BEST_INDEX identifies the item for it. */
2667
2668 int best_index = -1;
2669 int best = 0;
2670
2671 *exact_match = 0;
2672
2673 if (lineno <= 0)
2674 return -1;
2675 if (l == 0)
2676 return -1;
2677
2678 len = l->nitems;
2679 for (i = start; i < len; i++)
2680 {
2681 struct linetable_entry *item = &(l->item[i]);
2682
2683 if (item->line == lineno)
2684 {
2685 /* Return the first (lowest address) entry which matches. */
2686 *exact_match = 1;
2687 return i;
2688 }
2689
2690 if (item->line > lineno && (best == 0 || item->line < best))
2691 {
2692 best = item->line;
2693 best_index = i;
2694 }
2695 }
2696
2697 /* If we got here, we didn't get an exact match. */
2698 return best_index;
2699 }
2700
2701 int
2702 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2703 {
2704 struct symtab_and_line sal;
2705
2706 sal = find_pc_line (pc, 0);
2707 *startptr = sal.pc;
2708 *endptr = sal.end;
2709 return sal.symtab != 0;
2710 }
2711
2712 /* Given a function symbol SYM, find the symtab and line for the start
2713 of the function.
2714 If the argument FUNFIRSTLINE is nonzero, we want the first line
2715 of real code inside the function. */
2716
2717 struct symtab_and_line
2718 find_function_start_sal (struct symbol *sym, int funfirstline)
2719 {
2720 struct symtab_and_line sal;
2721
2722 fixup_symbol_section (sym, NULL);
2723 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2724 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2725
2726 /* We always should have a line for the function start address.
2727 If we don't, something is odd. Create a plain SAL refering
2728 just the PC and hope that skip_prologue_sal (if requested)
2729 can find a line number for after the prologue. */
2730 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2731 {
2732 init_sal (&sal);
2733 sal.pspace = current_program_space;
2734 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2735 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2736 }
2737
2738 if (funfirstline)
2739 skip_prologue_sal (&sal);
2740
2741 return sal;
2742 }
2743
2744 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2745 address for that function that has an entry in SYMTAB's line info
2746 table. If such an entry cannot be found, return FUNC_ADDR
2747 unaltered. */
2748
2749 static CORE_ADDR
2750 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2751 {
2752 CORE_ADDR func_start, func_end;
2753 struct linetable *l;
2754 int i;
2755
2756 /* Give up if this symbol has no lineinfo table. */
2757 l = LINETABLE (symtab);
2758 if (l == NULL)
2759 return func_addr;
2760
2761 /* Get the range for the function's PC values, or give up if we
2762 cannot, for some reason. */
2763 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2764 return func_addr;
2765
2766 /* Linetable entries are ordered by PC values, see the commentary in
2767 symtab.h where `struct linetable' is defined. Thus, the first
2768 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2769 address we are looking for. */
2770 for (i = 0; i < l->nitems; i++)
2771 {
2772 struct linetable_entry *item = &(l->item[i]);
2773
2774 /* Don't use line numbers of zero, they mark special entries in
2775 the table. See the commentary on symtab.h before the
2776 definition of struct linetable. */
2777 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2778 return item->pc;
2779 }
2780
2781 return func_addr;
2782 }
2783
2784 /* Adjust SAL to the first instruction past the function prologue.
2785 If the PC was explicitly specified, the SAL is not changed.
2786 If the line number was explicitly specified, at most the SAL's PC
2787 is updated. If SAL is already past the prologue, then do nothing. */
2788
2789 void
2790 skip_prologue_sal (struct symtab_and_line *sal)
2791 {
2792 struct symbol *sym;
2793 struct symtab_and_line start_sal;
2794 struct cleanup *old_chain;
2795 CORE_ADDR pc, saved_pc;
2796 struct obj_section *section;
2797 const char *name;
2798 struct objfile *objfile;
2799 struct gdbarch *gdbarch;
2800 const struct block *b, *function_block;
2801 int force_skip, skip;
2802
2803 /* Do not change the SAL if PC was specified explicitly. */
2804 if (sal->explicit_pc)
2805 return;
2806
2807 old_chain = save_current_space_and_thread ();
2808 switch_to_program_space_and_thread (sal->pspace);
2809
2810 sym = find_pc_sect_function (sal->pc, sal->section);
2811 if (sym != NULL)
2812 {
2813 fixup_symbol_section (sym, NULL);
2814
2815 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2816 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2817 name = SYMBOL_LINKAGE_NAME (sym);
2818 objfile = SYMBOL_SYMTAB (sym)->objfile;
2819 }
2820 else
2821 {
2822 struct bound_minimal_symbol msymbol
2823 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2824
2825 if (msymbol.minsym == NULL)
2826 {
2827 do_cleanups (old_chain);
2828 return;
2829 }
2830
2831 objfile = msymbol.objfile;
2832 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2833 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2834 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2835 }
2836
2837 gdbarch = get_objfile_arch (objfile);
2838
2839 /* Process the prologue in two passes. In the first pass try to skip the
2840 prologue (SKIP is true) and verify there is a real need for it (indicated
2841 by FORCE_SKIP). If no such reason was found run a second pass where the
2842 prologue is not skipped (SKIP is false). */
2843
2844 skip = 1;
2845 force_skip = 1;
2846
2847 /* Be conservative - allow direct PC (without skipping prologue) only if we
2848 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2849 have to be set by the caller so we use SYM instead. */
2850 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2851 force_skip = 0;
2852
2853 saved_pc = pc;
2854 do
2855 {
2856 pc = saved_pc;
2857
2858 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2859 so that gdbarch_skip_prologue has something unique to work on. */
2860 if (section_is_overlay (section) && !section_is_mapped (section))
2861 pc = overlay_unmapped_address (pc, section);
2862
2863 /* Skip "first line" of function (which is actually its prologue). */
2864 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2865 if (gdbarch_skip_entrypoint_p (gdbarch))
2866 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2867 if (skip)
2868 pc = gdbarch_skip_prologue (gdbarch, pc);
2869
2870 /* For overlays, map pc back into its mapped VMA range. */
2871 pc = overlay_mapped_address (pc, section);
2872
2873 /* Calculate line number. */
2874 start_sal = find_pc_sect_line (pc, section, 0);
2875
2876 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2877 line is still part of the same function. */
2878 if (skip && start_sal.pc != pc
2879 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2880 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2881 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2882 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2883 {
2884 /* First pc of next line */
2885 pc = start_sal.end;
2886 /* Recalculate the line number (might not be N+1). */
2887 start_sal = find_pc_sect_line (pc, section, 0);
2888 }
2889
2890 /* On targets with executable formats that don't have a concept of
2891 constructors (ELF with .init has, PE doesn't), gcc emits a call
2892 to `__main' in `main' between the prologue and before user
2893 code. */
2894 if (gdbarch_skip_main_prologue_p (gdbarch)
2895 && name && strcmp_iw (name, "main") == 0)
2896 {
2897 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2898 /* Recalculate the line number (might not be N+1). */
2899 start_sal = find_pc_sect_line (pc, section, 0);
2900 force_skip = 1;
2901 }
2902 }
2903 while (!force_skip && skip--);
2904
2905 /* If we still don't have a valid source line, try to find the first
2906 PC in the lineinfo table that belongs to the same function. This
2907 happens with COFF debug info, which does not seem to have an
2908 entry in lineinfo table for the code after the prologue which has
2909 no direct relation to source. For example, this was found to be
2910 the case with the DJGPP target using "gcc -gcoff" when the
2911 compiler inserted code after the prologue to make sure the stack
2912 is aligned. */
2913 if (!force_skip && sym && start_sal.symtab == NULL)
2914 {
2915 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2916 /* Recalculate the line number. */
2917 start_sal = find_pc_sect_line (pc, section, 0);
2918 }
2919
2920 do_cleanups (old_chain);
2921
2922 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2923 forward SAL to the end of the prologue. */
2924 if (sal->pc >= pc)
2925 return;
2926
2927 sal->pc = pc;
2928 sal->section = section;
2929
2930 /* Unless the explicit_line flag was set, update the SAL line
2931 and symtab to correspond to the modified PC location. */
2932 if (sal->explicit_line)
2933 return;
2934
2935 sal->symtab = start_sal.symtab;
2936 sal->line = start_sal.line;
2937 sal->end = start_sal.end;
2938
2939 /* Check if we are now inside an inlined function. If we can,
2940 use the call site of the function instead. */
2941 b = block_for_pc_sect (sal->pc, sal->section);
2942 function_block = NULL;
2943 while (b != NULL)
2944 {
2945 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2946 function_block = b;
2947 else if (BLOCK_FUNCTION (b) != NULL)
2948 break;
2949 b = BLOCK_SUPERBLOCK (b);
2950 }
2951 if (function_block != NULL
2952 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2953 {
2954 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2955 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2956 }
2957 }
2958
2959 /* Given PC at the function's start address, attempt to find the
2960 prologue end using SAL information. Return zero if the skip fails.
2961
2962 A non-optimized prologue traditionally has one SAL for the function
2963 and a second for the function body. A single line function has
2964 them both pointing at the same line.
2965
2966 An optimized prologue is similar but the prologue may contain
2967 instructions (SALs) from the instruction body. Need to skip those
2968 while not getting into the function body.
2969
2970 The functions end point and an increasing SAL line are used as
2971 indicators of the prologue's endpoint.
2972
2973 This code is based on the function refine_prologue_limit
2974 (found in ia64). */
2975
2976 CORE_ADDR
2977 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
2978 {
2979 struct symtab_and_line prologue_sal;
2980 CORE_ADDR start_pc;
2981 CORE_ADDR end_pc;
2982 const struct block *bl;
2983
2984 /* Get an initial range for the function. */
2985 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
2986 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
2987
2988 prologue_sal = find_pc_line (start_pc, 0);
2989 if (prologue_sal.line != 0)
2990 {
2991 /* For languages other than assembly, treat two consecutive line
2992 entries at the same address as a zero-instruction prologue.
2993 The GNU assembler emits separate line notes for each instruction
2994 in a multi-instruction macro, but compilers generally will not
2995 do this. */
2996 if (prologue_sal.symtab->language != language_asm)
2997 {
2998 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
2999 int idx = 0;
3000
3001 /* Skip any earlier lines, and any end-of-sequence marker
3002 from a previous function. */
3003 while (linetable->item[idx].pc != prologue_sal.pc
3004 || linetable->item[idx].line == 0)
3005 idx++;
3006
3007 if (idx+1 < linetable->nitems
3008 && linetable->item[idx+1].line != 0
3009 && linetable->item[idx+1].pc == start_pc)
3010 return start_pc;
3011 }
3012
3013 /* If there is only one sal that covers the entire function,
3014 then it is probably a single line function, like
3015 "foo(){}". */
3016 if (prologue_sal.end >= end_pc)
3017 return 0;
3018
3019 while (prologue_sal.end < end_pc)
3020 {
3021 struct symtab_and_line sal;
3022
3023 sal = find_pc_line (prologue_sal.end, 0);
3024 if (sal.line == 0)
3025 break;
3026 /* Assume that a consecutive SAL for the same (or larger)
3027 line mark the prologue -> body transition. */
3028 if (sal.line >= prologue_sal.line)
3029 break;
3030 /* Likewise if we are in a different symtab altogether
3031 (e.g. within a file included via #include).  */
3032 if (sal.symtab != prologue_sal.symtab)
3033 break;
3034
3035 /* The line number is smaller. Check that it's from the
3036 same function, not something inlined. If it's inlined,
3037 then there is no point comparing the line numbers. */
3038 bl = block_for_pc (prologue_sal.end);
3039 while (bl)
3040 {
3041 if (block_inlined_p (bl))
3042 break;
3043 if (BLOCK_FUNCTION (bl))
3044 {
3045 bl = NULL;
3046 break;
3047 }
3048 bl = BLOCK_SUPERBLOCK (bl);
3049 }
3050 if (bl != NULL)
3051 break;
3052
3053 /* The case in which compiler's optimizer/scheduler has
3054 moved instructions into the prologue. We look ahead in
3055 the function looking for address ranges whose
3056 corresponding line number is less the first one that we
3057 found for the function. This is more conservative then
3058 refine_prologue_limit which scans a large number of SALs
3059 looking for any in the prologue. */
3060 prologue_sal = sal;
3061 }
3062 }
3063
3064 if (prologue_sal.end < end_pc)
3065 /* Return the end of this line, or zero if we could not find a
3066 line. */
3067 return prologue_sal.end;
3068 else
3069 /* Don't return END_PC, which is past the end of the function. */
3070 return prologue_sal.pc;
3071 }
3072 \f
3073 /* If P is of the form "operator[ \t]+..." where `...' is
3074 some legitimate operator text, return a pointer to the
3075 beginning of the substring of the operator text.
3076 Otherwise, return "". */
3077
3078 static const char *
3079 operator_chars (const char *p, const char **end)
3080 {
3081 *end = "";
3082 if (strncmp (p, "operator", 8))
3083 return *end;
3084 p += 8;
3085
3086 /* Don't get faked out by `operator' being part of a longer
3087 identifier. */
3088 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3089 return *end;
3090
3091 /* Allow some whitespace between `operator' and the operator symbol. */
3092 while (*p == ' ' || *p == '\t')
3093 p++;
3094
3095 /* Recognize 'operator TYPENAME'. */
3096
3097 if (isalpha (*p) || *p == '_' || *p == '$')
3098 {
3099 const char *q = p + 1;
3100
3101 while (isalnum (*q) || *q == '_' || *q == '$')
3102 q++;
3103 *end = q;
3104 return p;
3105 }
3106
3107 while (*p)
3108 switch (*p)
3109 {
3110 case '\\': /* regexp quoting */
3111 if (p[1] == '*')
3112 {
3113 if (p[2] == '=') /* 'operator\*=' */
3114 *end = p + 3;
3115 else /* 'operator\*' */
3116 *end = p + 2;
3117 return p;
3118 }
3119 else if (p[1] == '[')
3120 {
3121 if (p[2] == ']')
3122 error (_("mismatched quoting on brackets, "
3123 "try 'operator\\[\\]'"));
3124 else if (p[2] == '\\' && p[3] == ']')
3125 {
3126 *end = p + 4; /* 'operator\[\]' */
3127 return p;
3128 }
3129 else
3130 error (_("nothing is allowed between '[' and ']'"));
3131 }
3132 else
3133 {
3134 /* Gratuitous qoute: skip it and move on. */
3135 p++;
3136 continue;
3137 }
3138 break;
3139 case '!':
3140 case '=':
3141 case '*':
3142 case '/':
3143 case '%':
3144 case '^':
3145 if (p[1] == '=')
3146 *end = p + 2;
3147 else
3148 *end = p + 1;
3149 return p;
3150 case '<':
3151 case '>':
3152 case '+':
3153 case '-':
3154 case '&':
3155 case '|':
3156 if (p[0] == '-' && p[1] == '>')
3157 {
3158 /* Struct pointer member operator 'operator->'. */
3159 if (p[2] == '*')
3160 {
3161 *end = p + 3; /* 'operator->*' */
3162 return p;
3163 }
3164 else if (p[2] == '\\')
3165 {
3166 *end = p + 4; /* Hopefully 'operator->\*' */
3167 return p;
3168 }
3169 else
3170 {
3171 *end = p + 2; /* 'operator->' */
3172 return p;
3173 }
3174 }
3175 if (p[1] == '=' || p[1] == p[0])
3176 *end = p + 2;
3177 else
3178 *end = p + 1;
3179 return p;
3180 case '~':
3181 case ',':
3182 *end = p + 1;
3183 return p;
3184 case '(':
3185 if (p[1] != ')')
3186 error (_("`operator ()' must be specified "
3187 "without whitespace in `()'"));
3188 *end = p + 2;
3189 return p;
3190 case '?':
3191 if (p[1] != ':')
3192 error (_("`operator ?:' must be specified "
3193 "without whitespace in `?:'"));
3194 *end = p + 2;
3195 return p;
3196 case '[':
3197 if (p[1] != ']')
3198 error (_("`operator []' must be specified "
3199 "without whitespace in `[]'"));
3200 *end = p + 2;
3201 return p;
3202 default:
3203 error (_("`operator %s' not supported"), p);
3204 break;
3205 }
3206
3207 *end = "";
3208 return *end;
3209 }
3210 \f
3211
3212 /* Cache to watch for file names already seen by filename_seen. */
3213
3214 struct filename_seen_cache
3215 {
3216 /* Table of files seen so far. */
3217 htab_t tab;
3218 /* Initial size of the table. It automagically grows from here. */
3219 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3220 };
3221
3222 /* filename_seen_cache constructor. */
3223
3224 static struct filename_seen_cache *
3225 create_filename_seen_cache (void)
3226 {
3227 struct filename_seen_cache *cache;
3228
3229 cache = XNEW (struct filename_seen_cache);
3230 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3231 filename_hash, filename_eq,
3232 NULL, xcalloc, xfree);
3233
3234 return cache;
3235 }
3236
3237 /* Empty the cache, but do not delete it. */
3238
3239 static void
3240 clear_filename_seen_cache (struct filename_seen_cache *cache)
3241 {
3242 htab_empty (cache->tab);
3243 }
3244
3245 /* filename_seen_cache destructor.
3246 This takes a void * argument as it is generally used as a cleanup. */
3247
3248 static void
3249 delete_filename_seen_cache (void *ptr)
3250 {
3251 struct filename_seen_cache *cache = ptr;
3252
3253 htab_delete (cache->tab);
3254 xfree (cache);
3255 }
3256
3257 /* If FILE is not already in the table of files in CACHE, return zero;
3258 otherwise return non-zero. Optionally add FILE to the table if ADD
3259 is non-zero.
3260
3261 NOTE: We don't manage space for FILE, we assume FILE lives as long
3262 as the caller needs. */
3263
3264 static int
3265 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3266 {
3267 void **slot;
3268
3269 /* Is FILE in tab? */
3270 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3271 if (*slot != NULL)
3272 return 1;
3273
3274 /* No; maybe add it to tab. */
3275 if (add)
3276 *slot = (char *) file;
3277
3278 return 0;
3279 }
3280
3281 /* Data structure to maintain printing state for output_source_filename. */
3282
3283 struct output_source_filename_data
3284 {
3285 /* Cache of what we've seen so far. */
3286 struct filename_seen_cache *filename_seen_cache;
3287
3288 /* Flag of whether we're printing the first one. */
3289 int first;
3290 };
3291
3292 /* Slave routine for sources_info. Force line breaks at ,'s.
3293 NAME is the name to print.
3294 DATA contains the state for printing and watching for duplicates. */
3295
3296 static void
3297 output_source_filename (const char *name,
3298 struct output_source_filename_data *data)
3299 {
3300 /* Since a single source file can result in several partial symbol
3301 tables, we need to avoid printing it more than once. Note: if
3302 some of the psymtabs are read in and some are not, it gets
3303 printed both under "Source files for which symbols have been
3304 read" and "Source files for which symbols will be read in on
3305 demand". I consider this a reasonable way to deal with the
3306 situation. I'm not sure whether this can also happen for
3307 symtabs; it doesn't hurt to check. */
3308
3309 /* Was NAME already seen? */
3310 if (filename_seen (data->filename_seen_cache, name, 1))
3311 {
3312 /* Yes; don't print it again. */
3313 return;
3314 }
3315
3316 /* No; print it and reset *FIRST. */
3317 if (! data->first)
3318 printf_filtered (", ");
3319 data->first = 0;
3320
3321 wrap_here ("");
3322 fputs_filtered (name, gdb_stdout);
3323 }
3324
3325 /* A callback for map_partial_symbol_filenames. */
3326
3327 static void
3328 output_partial_symbol_filename (const char *filename, const char *fullname,
3329 void *data)
3330 {
3331 output_source_filename (fullname ? fullname : filename, data);
3332 }
3333
3334 static void
3335 sources_info (char *ignore, int from_tty)
3336 {
3337 struct symtab *s;
3338 struct objfile *objfile;
3339 struct output_source_filename_data data;
3340 struct cleanup *cleanups;
3341
3342 if (!have_full_symbols () && !have_partial_symbols ())
3343 {
3344 error (_("No symbol table is loaded. Use the \"file\" command."));
3345 }
3346
3347 data.filename_seen_cache = create_filename_seen_cache ();
3348 cleanups = make_cleanup (delete_filename_seen_cache,
3349 data.filename_seen_cache);
3350
3351 printf_filtered ("Source files for which symbols have been read in:\n\n");
3352
3353 data.first = 1;
3354 ALL_SYMTABS (objfile, s)
3355 {
3356 const char *fullname = symtab_to_fullname (s);
3357
3358 output_source_filename (fullname, &data);
3359 }
3360 printf_filtered ("\n\n");
3361
3362 printf_filtered ("Source files for which symbols "
3363 "will be read in on demand:\n\n");
3364
3365 clear_filename_seen_cache (data.filename_seen_cache);
3366 data.first = 1;
3367 map_symbol_filenames (output_partial_symbol_filename, &data,
3368 1 /*need_fullname*/);
3369 printf_filtered ("\n");
3370
3371 do_cleanups (cleanups);
3372 }
3373
3374 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3375 non-zero compare only lbasename of FILES. */
3376
3377 static int
3378 file_matches (const char *file, const char *files[], int nfiles, int basenames)
3379 {
3380 int i;
3381
3382 if (file != NULL && nfiles != 0)
3383 {
3384 for (i = 0; i < nfiles; i++)
3385 {
3386 if (compare_filenames_for_search (file, (basenames
3387 ? lbasename (files[i])
3388 : files[i])))
3389 return 1;
3390 }
3391 }
3392 else if (nfiles == 0)
3393 return 1;
3394 return 0;
3395 }
3396
3397 /* Free any memory associated with a search. */
3398
3399 void
3400 free_search_symbols (struct symbol_search *symbols)
3401 {
3402 struct symbol_search *p;
3403 struct symbol_search *next;
3404
3405 for (p = symbols; p != NULL; p = next)
3406 {
3407 next = p->next;
3408 xfree (p);
3409 }
3410 }
3411
3412 static void
3413 do_free_search_symbols_cleanup (void *symbolsp)
3414 {
3415 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3416
3417 free_search_symbols (symbols);
3418 }
3419
3420 struct cleanup *
3421 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3422 {
3423 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3424 }
3425
3426 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3427 sort symbols, not minimal symbols. */
3428
3429 static int
3430 compare_search_syms (const void *sa, const void *sb)
3431 {
3432 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3433 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3434 int c;
3435
3436 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3437 if (c != 0)
3438 return c;
3439
3440 if (sym_a->block != sym_b->block)
3441 return sym_a->block - sym_b->block;
3442
3443 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3444 SYMBOL_PRINT_NAME (sym_b->symbol));
3445 }
3446
3447 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3448 The duplicates are freed, and the new list is returned in
3449 *NEW_HEAD, *NEW_TAIL. */
3450
3451 static void
3452 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3453 struct symbol_search **new_head,
3454 struct symbol_search **new_tail)
3455 {
3456 struct symbol_search **symbols, *symp, *old_next;
3457 int i, j, nunique;
3458
3459 gdb_assert (found != NULL && nfound > 0);
3460
3461 /* Build an array out of the list so we can easily sort them. */
3462 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3463 * nfound);
3464 symp = found;
3465 for (i = 0; i < nfound; i++)
3466 {
3467 gdb_assert (symp != NULL);
3468 gdb_assert (symp->block >= 0 && symp->block <= 1);
3469 symbols[i] = symp;
3470 symp = symp->next;
3471 }
3472 gdb_assert (symp == NULL);
3473
3474 qsort (symbols, nfound, sizeof (struct symbol_search *),
3475 compare_search_syms);
3476
3477 /* Collapse out the dups. */
3478 for (i = 1, j = 1; i < nfound; ++i)
3479 {
3480 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3481 symbols[j++] = symbols[i];
3482 else
3483 xfree (symbols[i]);
3484 }
3485 nunique = j;
3486 symbols[j - 1]->next = NULL;
3487
3488 /* Rebuild the linked list. */
3489 for (i = 0; i < nunique - 1; i++)
3490 symbols[i]->next = symbols[i + 1];
3491 symbols[nunique - 1]->next = NULL;
3492
3493 *new_head = symbols[0];
3494 *new_tail = symbols[nunique - 1];
3495 xfree (symbols);
3496 }
3497
3498 /* An object of this type is passed as the user_data to the
3499 expand_symtabs_matching method. */
3500 struct search_symbols_data
3501 {
3502 int nfiles;
3503 const char **files;
3504
3505 /* It is true if PREG contains valid data, false otherwise. */
3506 unsigned preg_p : 1;
3507 regex_t preg;
3508 };
3509
3510 /* A callback for expand_symtabs_matching. */
3511
3512 static int
3513 search_symbols_file_matches (const char *filename, void *user_data,
3514 int basenames)
3515 {
3516 struct search_symbols_data *data = user_data;
3517
3518 return file_matches (filename, data->files, data->nfiles, basenames);
3519 }
3520
3521 /* A callback for expand_symtabs_matching. */
3522
3523 static int
3524 search_symbols_name_matches (const char *symname, void *user_data)
3525 {
3526 struct search_symbols_data *data = user_data;
3527
3528 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3529 }
3530
3531 /* Search the symbol table for matches to the regular expression REGEXP,
3532 returning the results in *MATCHES.
3533
3534 Only symbols of KIND are searched:
3535 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3536 and constants (enums)
3537 FUNCTIONS_DOMAIN - search all functions
3538 TYPES_DOMAIN - search all type names
3539 ALL_DOMAIN - an internal error for this function
3540
3541 free_search_symbols should be called when *MATCHES is no longer needed.
3542
3543 Within each file the results are sorted locally; each symtab's global and
3544 static blocks are separately alphabetized.
3545 Duplicate entries are removed. */
3546
3547 void
3548 search_symbols (const char *regexp, enum search_domain kind,
3549 int nfiles, const char *files[],
3550 struct symbol_search **matches)
3551 {
3552 struct symtab *s;
3553 const struct blockvector *bv;
3554 struct block *b;
3555 int i = 0;
3556 struct block_iterator iter;
3557 struct symbol *sym;
3558 struct objfile *objfile;
3559 struct minimal_symbol *msymbol;
3560 int found_misc = 0;
3561 static const enum minimal_symbol_type types[]
3562 = {mst_data, mst_text, mst_abs};
3563 static const enum minimal_symbol_type types2[]
3564 = {mst_bss, mst_file_text, mst_abs};
3565 static const enum minimal_symbol_type types3[]
3566 = {mst_file_data, mst_solib_trampoline, mst_abs};
3567 static const enum minimal_symbol_type types4[]
3568 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3569 enum minimal_symbol_type ourtype;
3570 enum minimal_symbol_type ourtype2;
3571 enum minimal_symbol_type ourtype3;
3572 enum minimal_symbol_type ourtype4;
3573 struct symbol_search *found;
3574 struct symbol_search *tail;
3575 struct search_symbols_data datum;
3576 int nfound;
3577
3578 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3579 CLEANUP_CHAIN is freed only in the case of an error. */
3580 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3581 struct cleanup *retval_chain;
3582
3583 gdb_assert (kind <= TYPES_DOMAIN);
3584
3585 ourtype = types[kind];
3586 ourtype2 = types2[kind];
3587 ourtype3 = types3[kind];
3588 ourtype4 = types4[kind];
3589
3590 *matches = NULL;
3591 datum.preg_p = 0;
3592
3593 if (regexp != NULL)
3594 {
3595 /* Make sure spacing is right for C++ operators.
3596 This is just a courtesy to make the matching less sensitive
3597 to how many spaces the user leaves between 'operator'
3598 and <TYPENAME> or <OPERATOR>. */
3599 const char *opend;
3600 const char *opname = operator_chars (regexp, &opend);
3601 int errcode;
3602
3603 if (*opname)
3604 {
3605 int fix = -1; /* -1 means ok; otherwise number of
3606 spaces needed. */
3607
3608 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3609 {
3610 /* There should 1 space between 'operator' and 'TYPENAME'. */
3611 if (opname[-1] != ' ' || opname[-2] == ' ')
3612 fix = 1;
3613 }
3614 else
3615 {
3616 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3617 if (opname[-1] == ' ')
3618 fix = 0;
3619 }
3620 /* If wrong number of spaces, fix it. */
3621 if (fix >= 0)
3622 {
3623 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3624
3625 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3626 regexp = tmp;
3627 }
3628 }
3629
3630 errcode = regcomp (&datum.preg, regexp,
3631 REG_NOSUB | (case_sensitivity == case_sensitive_off
3632 ? REG_ICASE : 0));
3633 if (errcode != 0)
3634 {
3635 char *err = get_regcomp_error (errcode, &datum.preg);
3636
3637 make_cleanup (xfree, err);
3638 error (_("Invalid regexp (%s): %s"), err, regexp);
3639 }
3640 datum.preg_p = 1;
3641 make_regfree_cleanup (&datum.preg);
3642 }
3643
3644 /* Search through the partial symtabs *first* for all symbols
3645 matching the regexp. That way we don't have to reproduce all of
3646 the machinery below. */
3647
3648 datum.nfiles = nfiles;
3649 datum.files = files;
3650 expand_symtabs_matching ((nfiles == 0
3651 ? NULL
3652 : search_symbols_file_matches),
3653 search_symbols_name_matches,
3654 kind, &datum);
3655
3656 /* Here, we search through the minimal symbol tables for functions
3657 and variables that match, and force their symbols to be read.
3658 This is in particular necessary for demangled variable names,
3659 which are no longer put into the partial symbol tables.
3660 The symbol will then be found during the scan of symtabs below.
3661
3662 For functions, find_pc_symtab should succeed if we have debug info
3663 for the function, for variables we have to call
3664 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3665 has debug info.
3666 If the lookup fails, set found_misc so that we will rescan to print
3667 any matching symbols without debug info.
3668 We only search the objfile the msymbol came from, we no longer search
3669 all objfiles. In large programs (1000s of shared libs) searching all
3670 objfiles is not worth the pain. */
3671
3672 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3673 {
3674 ALL_MSYMBOLS (objfile, msymbol)
3675 {
3676 QUIT;
3677
3678 if (msymbol->created_by_gdb)
3679 continue;
3680
3681 if (MSYMBOL_TYPE (msymbol) == ourtype
3682 || MSYMBOL_TYPE (msymbol) == ourtype2
3683 || MSYMBOL_TYPE (msymbol) == ourtype3
3684 || MSYMBOL_TYPE (msymbol) == ourtype4)
3685 {
3686 if (!datum.preg_p
3687 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3688 NULL, 0) == 0)
3689 {
3690 /* Note: An important side-effect of these lookup functions
3691 is to expand the symbol table if msymbol is found, for the
3692 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3693 if (kind == FUNCTIONS_DOMAIN
3694 ? find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3695 msymbol)) == NULL
3696 : (lookup_symbol_in_objfile_from_linkage_name
3697 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3698 == NULL))
3699 found_misc = 1;
3700 }
3701 }
3702 }
3703 }
3704
3705 found = NULL;
3706 tail = NULL;
3707 nfound = 0;
3708 retval_chain = make_cleanup_free_search_symbols (&found);
3709
3710 ALL_PRIMARY_SYMTABS (objfile, s)
3711 {
3712 bv = BLOCKVECTOR (s);
3713 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3714 {
3715 b = BLOCKVECTOR_BLOCK (bv, i);
3716 ALL_BLOCK_SYMBOLS (b, iter, sym)
3717 {
3718 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3719
3720 QUIT;
3721
3722 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3723 a substring of symtab_to_fullname as it may contain "./" etc. */
3724 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3725 || ((basenames_may_differ
3726 || file_matches (lbasename (real_symtab->filename),
3727 files, nfiles, 1))
3728 && file_matches (symtab_to_fullname (real_symtab),
3729 files, nfiles, 0)))
3730 && ((!datum.preg_p
3731 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3732 NULL, 0) == 0)
3733 && ((kind == VARIABLES_DOMAIN
3734 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3735 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3736 && SYMBOL_CLASS (sym) != LOC_BLOCK
3737 /* LOC_CONST can be used for more than just enums,
3738 e.g., c++ static const members.
3739 We only want to skip enums here. */
3740 && !(SYMBOL_CLASS (sym) == LOC_CONST
3741 && TYPE_CODE (SYMBOL_TYPE (sym))
3742 == TYPE_CODE_ENUM))
3743 || (kind == FUNCTIONS_DOMAIN
3744 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3745 || (kind == TYPES_DOMAIN
3746 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3747 {
3748 /* match */
3749 struct symbol_search *psr = (struct symbol_search *)
3750 xmalloc (sizeof (struct symbol_search));
3751 psr->block = i;
3752 psr->symtab = real_symtab;
3753 psr->symbol = sym;
3754 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3755 psr->next = NULL;
3756 if (tail == NULL)
3757 found = psr;
3758 else
3759 tail->next = psr;
3760 tail = psr;
3761 nfound ++;
3762 }
3763 }
3764 }
3765 }
3766
3767 if (found != NULL)
3768 {
3769 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3770 /* Note: nfound is no longer useful beyond this point. */
3771 }
3772
3773 /* If there are no eyes, avoid all contact. I mean, if there are
3774 no debug symbols, then print directly from the msymbol_vector. */
3775
3776 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3777 {
3778 ALL_MSYMBOLS (objfile, msymbol)
3779 {
3780 QUIT;
3781
3782 if (msymbol->created_by_gdb)
3783 continue;
3784
3785 if (MSYMBOL_TYPE (msymbol) == ourtype
3786 || MSYMBOL_TYPE (msymbol) == ourtype2
3787 || MSYMBOL_TYPE (msymbol) == ourtype3
3788 || MSYMBOL_TYPE (msymbol) == ourtype4)
3789 {
3790 if (!datum.preg_p
3791 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3792 NULL, 0) == 0)
3793 {
3794 /* For functions we can do a quick check of whether the
3795 symbol might be found via find_pc_symtab. */
3796 if (kind != FUNCTIONS_DOMAIN
3797 || find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3798 msymbol)) == NULL)
3799 {
3800 if (lookup_symbol_in_objfile_from_linkage_name
3801 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3802 == NULL)
3803 {
3804 /* match */
3805 struct symbol_search *psr = (struct symbol_search *)
3806 xmalloc (sizeof (struct symbol_search));
3807 psr->block = i;
3808 psr->msymbol.minsym = msymbol;
3809 psr->msymbol.objfile = objfile;
3810 psr->symtab = NULL;
3811 psr->symbol = NULL;
3812 psr->next = NULL;
3813 if (tail == NULL)
3814 found = psr;
3815 else
3816 tail->next = psr;
3817 tail = psr;
3818 }
3819 }
3820 }
3821 }
3822 }
3823 }
3824
3825 discard_cleanups (retval_chain);
3826 do_cleanups (old_chain);
3827 *matches = found;
3828 }
3829
3830 /* Helper function for symtab_symbol_info, this function uses
3831 the data returned from search_symbols() to print information
3832 regarding the match to gdb_stdout. */
3833
3834 static void
3835 print_symbol_info (enum search_domain kind,
3836 struct symtab *s, struct symbol *sym,
3837 int block, const char *last)
3838 {
3839 const char *s_filename = symtab_to_filename_for_display (s);
3840
3841 if (last == NULL || filename_cmp (last, s_filename) != 0)
3842 {
3843 fputs_filtered ("\nFile ", gdb_stdout);
3844 fputs_filtered (s_filename, gdb_stdout);
3845 fputs_filtered (":\n", gdb_stdout);
3846 }
3847
3848 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3849 printf_filtered ("static ");
3850
3851 /* Typedef that is not a C++ class. */
3852 if (kind == TYPES_DOMAIN
3853 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3854 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3855 /* variable, func, or typedef-that-is-c++-class. */
3856 else if (kind < TYPES_DOMAIN
3857 || (kind == TYPES_DOMAIN
3858 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3859 {
3860 type_print (SYMBOL_TYPE (sym),
3861 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3862 ? "" : SYMBOL_PRINT_NAME (sym)),
3863 gdb_stdout, 0);
3864
3865 printf_filtered (";\n");
3866 }
3867 }
3868
3869 /* This help function for symtab_symbol_info() prints information
3870 for non-debugging symbols to gdb_stdout. */
3871
3872 static void
3873 print_msymbol_info (struct bound_minimal_symbol msymbol)
3874 {
3875 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3876 char *tmp;
3877
3878 if (gdbarch_addr_bit (gdbarch) <= 32)
3879 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
3880 & (CORE_ADDR) 0xffffffff,
3881 8);
3882 else
3883 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
3884 16);
3885 printf_filtered ("%s %s\n",
3886 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
3887 }
3888
3889 /* This is the guts of the commands "info functions", "info types", and
3890 "info variables". It calls search_symbols to find all matches and then
3891 print_[m]symbol_info to print out some useful information about the
3892 matches. */
3893
3894 static void
3895 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3896 {
3897 static const char * const classnames[] =
3898 {"variable", "function", "type"};
3899 struct symbol_search *symbols;
3900 struct symbol_search *p;
3901 struct cleanup *old_chain;
3902 const char *last_filename = NULL;
3903 int first = 1;
3904
3905 gdb_assert (kind <= TYPES_DOMAIN);
3906
3907 /* Must make sure that if we're interrupted, symbols gets freed. */
3908 search_symbols (regexp, kind, 0, NULL, &symbols);
3909 old_chain = make_cleanup_free_search_symbols (&symbols);
3910
3911 if (regexp != NULL)
3912 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3913 classnames[kind], regexp);
3914 else
3915 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3916
3917 for (p = symbols; p != NULL; p = p->next)
3918 {
3919 QUIT;
3920
3921 if (p->msymbol.minsym != NULL)
3922 {
3923 if (first)
3924 {
3925 printf_filtered (_("\nNon-debugging symbols:\n"));
3926 first = 0;
3927 }
3928 print_msymbol_info (p->msymbol);
3929 }
3930 else
3931 {
3932 print_symbol_info (kind,
3933 p->symtab,
3934 p->symbol,
3935 p->block,
3936 last_filename);
3937 last_filename = symtab_to_filename_for_display (p->symtab);
3938 }
3939 }
3940
3941 do_cleanups (old_chain);
3942 }
3943
3944 static void
3945 variables_info (char *regexp, int from_tty)
3946 {
3947 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3948 }
3949
3950 static void
3951 functions_info (char *regexp, int from_tty)
3952 {
3953 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3954 }
3955
3956
3957 static void
3958 types_info (char *regexp, int from_tty)
3959 {
3960 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3961 }
3962
3963 /* Breakpoint all functions matching regular expression. */
3964
3965 void
3966 rbreak_command_wrapper (char *regexp, int from_tty)
3967 {
3968 rbreak_command (regexp, from_tty);
3969 }
3970
3971 /* A cleanup function that calls end_rbreak_breakpoints. */
3972
3973 static void
3974 do_end_rbreak_breakpoints (void *ignore)
3975 {
3976 end_rbreak_breakpoints ();
3977 }
3978
3979 static void
3980 rbreak_command (char *regexp, int from_tty)
3981 {
3982 struct symbol_search *ss;
3983 struct symbol_search *p;
3984 struct cleanup *old_chain;
3985 char *string = NULL;
3986 int len = 0;
3987 const char **files = NULL;
3988 const char *file_name;
3989 int nfiles = 0;
3990
3991 if (regexp)
3992 {
3993 char *colon = strchr (regexp, ':');
3994
3995 if (colon && *(colon + 1) != ':')
3996 {
3997 int colon_index;
3998 char *local_name;
3999
4000 colon_index = colon - regexp;
4001 local_name = alloca (colon_index + 1);
4002 memcpy (local_name, regexp, colon_index);
4003 local_name[colon_index--] = 0;
4004 while (isspace (local_name[colon_index]))
4005 local_name[colon_index--] = 0;
4006 file_name = local_name;
4007 files = &file_name;
4008 nfiles = 1;
4009 regexp = skip_spaces (colon + 1);
4010 }
4011 }
4012
4013 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4014 old_chain = make_cleanup_free_search_symbols (&ss);
4015 make_cleanup (free_current_contents, &string);
4016
4017 start_rbreak_breakpoints ();
4018 make_cleanup (do_end_rbreak_breakpoints, NULL);
4019 for (p = ss; p != NULL; p = p->next)
4020 {
4021 if (p->msymbol.minsym == NULL)
4022 {
4023 const char *fullname = symtab_to_fullname (p->symtab);
4024
4025 int newlen = (strlen (fullname)
4026 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4027 + 4);
4028
4029 if (newlen > len)
4030 {
4031 string = xrealloc (string, newlen);
4032 len = newlen;
4033 }
4034 strcpy (string, fullname);
4035 strcat (string, ":'");
4036 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4037 strcat (string, "'");
4038 break_command (string, from_tty);
4039 print_symbol_info (FUNCTIONS_DOMAIN,
4040 p->symtab,
4041 p->symbol,
4042 p->block,
4043 symtab_to_filename_for_display (p->symtab));
4044 }
4045 else
4046 {
4047 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4048
4049 if (newlen > len)
4050 {
4051 string = xrealloc (string, newlen);
4052 len = newlen;
4053 }
4054 strcpy (string, "'");
4055 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4056 strcat (string, "'");
4057
4058 break_command (string, from_tty);
4059 printf_filtered ("<function, no debug info> %s;\n",
4060 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4061 }
4062 }
4063
4064 do_cleanups (old_chain);
4065 }
4066 \f
4067
4068 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4069
4070 Either sym_text[sym_text_len] != '(' and then we search for any
4071 symbol starting with SYM_TEXT text.
4072
4073 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4074 be terminated at that point. Partial symbol tables do not have parameters
4075 information. */
4076
4077 static int
4078 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4079 {
4080 int (*ncmp) (const char *, const char *, size_t);
4081
4082 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4083
4084 if (ncmp (name, sym_text, sym_text_len) != 0)
4085 return 0;
4086
4087 if (sym_text[sym_text_len] == '(')
4088 {
4089 /* User searches for `name(someth...'. Require NAME to be terminated.
4090 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4091 present but accept even parameters presence. In this case this
4092 function is in fact strcmp_iw but whitespace skipping is not supported
4093 for tab completion. */
4094
4095 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4096 return 0;
4097 }
4098
4099 return 1;
4100 }
4101
4102 /* Free any memory associated with a completion list. */
4103
4104 static void
4105 free_completion_list (VEC (char_ptr) **list_ptr)
4106 {
4107 int i;
4108 char *p;
4109
4110 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4111 xfree (p);
4112 VEC_free (char_ptr, *list_ptr);
4113 }
4114
4115 /* Callback for make_cleanup. */
4116
4117 static void
4118 do_free_completion_list (void *list)
4119 {
4120 free_completion_list (list);
4121 }
4122
4123 /* Helper routine for make_symbol_completion_list. */
4124
4125 static VEC (char_ptr) *return_val;
4126
4127 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4128 completion_list_add_name \
4129 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4130
4131 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4132 completion_list_add_name \
4133 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4134
4135 /* Test to see if the symbol specified by SYMNAME (which is already
4136 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4137 characters. If so, add it to the current completion list. */
4138
4139 static void
4140 completion_list_add_name (const char *symname,
4141 const char *sym_text, int sym_text_len,
4142 const char *text, const char *word)
4143 {
4144 /* Clip symbols that cannot match. */
4145 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4146 return;
4147
4148 /* We have a match for a completion, so add SYMNAME to the current list
4149 of matches. Note that the name is moved to freshly malloc'd space. */
4150
4151 {
4152 char *new;
4153
4154 if (word == sym_text)
4155 {
4156 new = xmalloc (strlen (symname) + 5);
4157 strcpy (new, symname);
4158 }
4159 else if (word > sym_text)
4160 {
4161 /* Return some portion of symname. */
4162 new = xmalloc (strlen (symname) + 5);
4163 strcpy (new, symname + (word - sym_text));
4164 }
4165 else
4166 {
4167 /* Return some of SYM_TEXT plus symname. */
4168 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4169 strncpy (new, word, sym_text - word);
4170 new[sym_text - word] = '\0';
4171 strcat (new, symname);
4172 }
4173
4174 VEC_safe_push (char_ptr, return_val, new);
4175 }
4176 }
4177
4178 /* ObjC: In case we are completing on a selector, look as the msymbol
4179 again and feed all the selectors into the mill. */
4180
4181 static void
4182 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4183 const char *sym_text, int sym_text_len,
4184 const char *text, const char *word)
4185 {
4186 static char *tmp = NULL;
4187 static unsigned int tmplen = 0;
4188
4189 const char *method, *category, *selector;
4190 char *tmp2 = NULL;
4191
4192 method = MSYMBOL_NATURAL_NAME (msymbol);
4193
4194 /* Is it a method? */
4195 if ((method[0] != '-') && (method[0] != '+'))
4196 return;
4197
4198 if (sym_text[0] == '[')
4199 /* Complete on shortened method method. */
4200 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4201
4202 while ((strlen (method) + 1) >= tmplen)
4203 {
4204 if (tmplen == 0)
4205 tmplen = 1024;
4206 else
4207 tmplen *= 2;
4208 tmp = xrealloc (tmp, tmplen);
4209 }
4210 selector = strchr (method, ' ');
4211 if (selector != NULL)
4212 selector++;
4213
4214 category = strchr (method, '(');
4215
4216 if ((category != NULL) && (selector != NULL))
4217 {
4218 memcpy (tmp, method, (category - method));
4219 tmp[category - method] = ' ';
4220 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4221 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4222 if (sym_text[0] == '[')
4223 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4224 }
4225
4226 if (selector != NULL)
4227 {
4228 /* Complete on selector only. */
4229 strcpy (tmp, selector);
4230 tmp2 = strchr (tmp, ']');
4231 if (tmp2 != NULL)
4232 *tmp2 = '\0';
4233
4234 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4235 }
4236 }
4237
4238 /* Break the non-quoted text based on the characters which are in
4239 symbols. FIXME: This should probably be language-specific. */
4240
4241 static const char *
4242 language_search_unquoted_string (const char *text, const char *p)
4243 {
4244 for (; p > text; --p)
4245 {
4246 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4247 continue;
4248 else
4249 {
4250 if ((current_language->la_language == language_objc))
4251 {
4252 if (p[-1] == ':') /* Might be part of a method name. */
4253 continue;
4254 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4255 p -= 2; /* Beginning of a method name. */
4256 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4257 { /* Might be part of a method name. */
4258 const char *t = p;
4259
4260 /* Seeing a ' ' or a '(' is not conclusive evidence
4261 that we are in the middle of a method name. However,
4262 finding "-[" or "+[" should be pretty un-ambiguous.
4263 Unfortunately we have to find it now to decide. */
4264
4265 while (t > text)
4266 if (isalnum (t[-1]) || t[-1] == '_' ||
4267 t[-1] == ' ' || t[-1] == ':' ||
4268 t[-1] == '(' || t[-1] == ')')
4269 --t;
4270 else
4271 break;
4272
4273 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4274 p = t - 2; /* Method name detected. */
4275 /* Else we leave with p unchanged. */
4276 }
4277 }
4278 break;
4279 }
4280 }
4281 return p;
4282 }
4283
4284 static void
4285 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4286 int sym_text_len, const char *text,
4287 const char *word)
4288 {
4289 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4290 {
4291 struct type *t = SYMBOL_TYPE (sym);
4292 enum type_code c = TYPE_CODE (t);
4293 int j;
4294
4295 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4296 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4297 if (TYPE_FIELD_NAME (t, j))
4298 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4299 sym_text, sym_text_len, text, word);
4300 }
4301 }
4302
4303 /* Type of the user_data argument passed to add_macro_name or
4304 symbol_completion_matcher. The contents are simply whatever is
4305 needed by completion_list_add_name. */
4306 struct add_name_data
4307 {
4308 const char *sym_text;
4309 int sym_text_len;
4310 const char *text;
4311 const char *word;
4312 };
4313
4314 /* A callback used with macro_for_each and macro_for_each_in_scope.
4315 This adds a macro's name to the current completion list. */
4316
4317 static void
4318 add_macro_name (const char *name, const struct macro_definition *ignore,
4319 struct macro_source_file *ignore2, int ignore3,
4320 void *user_data)
4321 {
4322 struct add_name_data *datum = (struct add_name_data *) user_data;
4323
4324 completion_list_add_name (name,
4325 datum->sym_text, datum->sym_text_len,
4326 datum->text, datum->word);
4327 }
4328
4329 /* A callback for expand_symtabs_matching. */
4330
4331 static int
4332 symbol_completion_matcher (const char *name, void *user_data)
4333 {
4334 struct add_name_data *datum = (struct add_name_data *) user_data;
4335
4336 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4337 }
4338
4339 VEC (char_ptr) *
4340 default_make_symbol_completion_list_break_on (const char *text,
4341 const char *word,
4342 const char *break_on,
4343 enum type_code code)
4344 {
4345 /* Problem: All of the symbols have to be copied because readline
4346 frees them. I'm not going to worry about this; hopefully there
4347 won't be that many. */
4348
4349 struct symbol *sym;
4350 struct symtab *s;
4351 struct minimal_symbol *msymbol;
4352 struct objfile *objfile;
4353 const struct block *b;
4354 const struct block *surrounding_static_block, *surrounding_global_block;
4355 struct block_iterator iter;
4356 /* The symbol we are completing on. Points in same buffer as text. */
4357 const char *sym_text;
4358 /* Length of sym_text. */
4359 int sym_text_len;
4360 struct add_name_data datum;
4361 struct cleanup *back_to;
4362
4363 /* Now look for the symbol we are supposed to complete on. */
4364 {
4365 const char *p;
4366 char quote_found;
4367 const char *quote_pos = NULL;
4368
4369 /* First see if this is a quoted string. */
4370 quote_found = '\0';
4371 for (p = text; *p != '\0'; ++p)
4372 {
4373 if (quote_found != '\0')
4374 {
4375 if (*p == quote_found)
4376 /* Found close quote. */
4377 quote_found = '\0';
4378 else if (*p == '\\' && p[1] == quote_found)
4379 /* A backslash followed by the quote character
4380 doesn't end the string. */
4381 ++p;
4382 }
4383 else if (*p == '\'' || *p == '"')
4384 {
4385 quote_found = *p;
4386 quote_pos = p;
4387 }
4388 }
4389 if (quote_found == '\'')
4390 /* A string within single quotes can be a symbol, so complete on it. */
4391 sym_text = quote_pos + 1;
4392 else if (quote_found == '"')
4393 /* A double-quoted string is never a symbol, nor does it make sense
4394 to complete it any other way. */
4395 {
4396 return NULL;
4397 }
4398 else
4399 {
4400 /* It is not a quoted string. Break it based on the characters
4401 which are in symbols. */
4402 while (p > text)
4403 {
4404 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4405 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4406 --p;
4407 else
4408 break;
4409 }
4410 sym_text = p;
4411 }
4412 }
4413
4414 sym_text_len = strlen (sym_text);
4415
4416 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4417
4418 if (current_language->la_language == language_cplus
4419 || current_language->la_language == language_java
4420 || current_language->la_language == language_fortran)
4421 {
4422 /* These languages may have parameters entered by user but they are never
4423 present in the partial symbol tables. */
4424
4425 const char *cs = memchr (sym_text, '(', sym_text_len);
4426
4427 if (cs)
4428 sym_text_len = cs - sym_text;
4429 }
4430 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4431
4432 return_val = NULL;
4433 back_to = make_cleanup (do_free_completion_list, &return_val);
4434
4435 datum.sym_text = sym_text;
4436 datum.sym_text_len = sym_text_len;
4437 datum.text = text;
4438 datum.word = word;
4439
4440 /* Look through the partial symtabs for all symbols which begin
4441 by matching SYM_TEXT. Expand all CUs that you find to the list.
4442 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4443 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4444 &datum);
4445
4446 /* At this point scan through the misc symbol vectors and add each
4447 symbol you find to the list. Eventually we want to ignore
4448 anything that isn't a text symbol (everything else will be
4449 handled by the psymtab code above). */
4450
4451 if (code == TYPE_CODE_UNDEF)
4452 {
4453 ALL_MSYMBOLS (objfile, msymbol)
4454 {
4455 QUIT;
4456 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4457 word);
4458
4459 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4460 word);
4461 }
4462 }
4463
4464 /* Search upwards from currently selected frame (so that we can
4465 complete on local vars). Also catch fields of types defined in
4466 this places which match our text string. Only complete on types
4467 visible from current context. */
4468
4469 b = get_selected_block (0);
4470 surrounding_static_block = block_static_block (b);
4471 surrounding_global_block = block_global_block (b);
4472 if (surrounding_static_block != NULL)
4473 while (b != surrounding_static_block)
4474 {
4475 QUIT;
4476
4477 ALL_BLOCK_SYMBOLS (b, iter, sym)
4478 {
4479 if (code == TYPE_CODE_UNDEF)
4480 {
4481 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4482 word);
4483 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4484 word);
4485 }
4486 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4487 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4488 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4489 word);
4490 }
4491
4492 /* Stop when we encounter an enclosing function. Do not stop for
4493 non-inlined functions - the locals of the enclosing function
4494 are in scope for a nested function. */
4495 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4496 break;
4497 b = BLOCK_SUPERBLOCK (b);
4498 }
4499
4500 /* Add fields from the file's types; symbols will be added below. */
4501
4502 if (code == TYPE_CODE_UNDEF)
4503 {
4504 if (surrounding_static_block != NULL)
4505 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4506 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4507
4508 if (surrounding_global_block != NULL)
4509 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4510 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4511 }
4512
4513 /* Go through the symtabs and check the externs and statics for
4514 symbols which match. */
4515
4516 ALL_PRIMARY_SYMTABS (objfile, s)
4517 {
4518 QUIT;
4519 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4520 ALL_BLOCK_SYMBOLS (b, iter, sym)
4521 {
4522 if (code == TYPE_CODE_UNDEF
4523 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4524 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4525 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4526 }
4527 }
4528
4529 ALL_PRIMARY_SYMTABS (objfile, s)
4530 {
4531 QUIT;
4532 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4533 ALL_BLOCK_SYMBOLS (b, iter, sym)
4534 {
4535 if (code == TYPE_CODE_UNDEF
4536 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4537 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4538 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4539 }
4540 }
4541
4542 /* Skip macros if we are completing a struct tag -- arguable but
4543 usually what is expected. */
4544 if (current_language->la_macro_expansion == macro_expansion_c
4545 && code == TYPE_CODE_UNDEF)
4546 {
4547 struct macro_scope *scope;
4548
4549 /* Add any macros visible in the default scope. Note that this
4550 may yield the occasional wrong result, because an expression
4551 might be evaluated in a scope other than the default. For
4552 example, if the user types "break file:line if <TAB>", the
4553 resulting expression will be evaluated at "file:line" -- but
4554 at there does not seem to be a way to detect this at
4555 completion time. */
4556 scope = default_macro_scope ();
4557 if (scope)
4558 {
4559 macro_for_each_in_scope (scope->file, scope->line,
4560 add_macro_name, &datum);
4561 xfree (scope);
4562 }
4563
4564 /* User-defined macros are always visible. */
4565 macro_for_each (macro_user_macros, add_macro_name, &datum);
4566 }
4567
4568 discard_cleanups (back_to);
4569 return (return_val);
4570 }
4571
4572 VEC (char_ptr) *
4573 default_make_symbol_completion_list (const char *text, const char *word,
4574 enum type_code code)
4575 {
4576 return default_make_symbol_completion_list_break_on (text, word, "", code);
4577 }
4578
4579 /* Return a vector of all symbols (regardless of class) which begin by
4580 matching TEXT. If the answer is no symbols, then the return value
4581 is NULL. */
4582
4583 VEC (char_ptr) *
4584 make_symbol_completion_list (const char *text, const char *word)
4585 {
4586 return current_language->la_make_symbol_completion_list (text, word,
4587 TYPE_CODE_UNDEF);
4588 }
4589
4590 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4591 symbols whose type code is CODE. */
4592
4593 VEC (char_ptr) *
4594 make_symbol_completion_type (const char *text, const char *word,
4595 enum type_code code)
4596 {
4597 gdb_assert (code == TYPE_CODE_UNION
4598 || code == TYPE_CODE_STRUCT
4599 || code == TYPE_CODE_ENUM);
4600 return current_language->la_make_symbol_completion_list (text, word, code);
4601 }
4602
4603 /* Like make_symbol_completion_list, but suitable for use as a
4604 completion function. */
4605
4606 VEC (char_ptr) *
4607 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4608 const char *text, const char *word)
4609 {
4610 return make_symbol_completion_list (text, word);
4611 }
4612
4613 /* Like make_symbol_completion_list, but returns a list of symbols
4614 defined in a source file FILE. */
4615
4616 VEC (char_ptr) *
4617 make_file_symbol_completion_list (const char *text, const char *word,
4618 const char *srcfile)
4619 {
4620 struct symbol *sym;
4621 struct symtab *s;
4622 struct block *b;
4623 struct block_iterator iter;
4624 /* The symbol we are completing on. Points in same buffer as text. */
4625 const char *sym_text;
4626 /* Length of sym_text. */
4627 int sym_text_len;
4628
4629 /* Now look for the symbol we are supposed to complete on.
4630 FIXME: This should be language-specific. */
4631 {
4632 const char *p;
4633 char quote_found;
4634 const char *quote_pos = NULL;
4635
4636 /* First see if this is a quoted string. */
4637 quote_found = '\0';
4638 for (p = text; *p != '\0'; ++p)
4639 {
4640 if (quote_found != '\0')
4641 {
4642 if (*p == quote_found)
4643 /* Found close quote. */
4644 quote_found = '\0';
4645 else if (*p == '\\' && p[1] == quote_found)
4646 /* A backslash followed by the quote character
4647 doesn't end the string. */
4648 ++p;
4649 }
4650 else if (*p == '\'' || *p == '"')
4651 {
4652 quote_found = *p;
4653 quote_pos = p;
4654 }
4655 }
4656 if (quote_found == '\'')
4657 /* A string within single quotes can be a symbol, so complete on it. */
4658 sym_text = quote_pos + 1;
4659 else if (quote_found == '"')
4660 /* A double-quoted string is never a symbol, nor does it make sense
4661 to complete it any other way. */
4662 {
4663 return NULL;
4664 }
4665 else
4666 {
4667 /* Not a quoted string. */
4668 sym_text = language_search_unquoted_string (text, p);
4669 }
4670 }
4671
4672 sym_text_len = strlen (sym_text);
4673
4674 return_val = NULL;
4675
4676 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4677 in). */
4678 s = lookup_symtab (srcfile);
4679 if (s == NULL)
4680 {
4681 /* Maybe they typed the file with leading directories, while the
4682 symbol tables record only its basename. */
4683 const char *tail = lbasename (srcfile);
4684
4685 if (tail > srcfile)
4686 s = lookup_symtab (tail);
4687 }
4688
4689 /* If we have no symtab for that file, return an empty list. */
4690 if (s == NULL)
4691 return (return_val);
4692
4693 /* Go through this symtab and check the externs and statics for
4694 symbols which match. */
4695
4696 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4697 ALL_BLOCK_SYMBOLS (b, iter, sym)
4698 {
4699 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4700 }
4701
4702 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4703 ALL_BLOCK_SYMBOLS (b, iter, sym)
4704 {
4705 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4706 }
4707
4708 return (return_val);
4709 }
4710
4711 /* A helper function for make_source_files_completion_list. It adds
4712 another file name to a list of possible completions, growing the
4713 list as necessary. */
4714
4715 static void
4716 add_filename_to_list (const char *fname, const char *text, const char *word,
4717 VEC (char_ptr) **list)
4718 {
4719 char *new;
4720 size_t fnlen = strlen (fname);
4721
4722 if (word == text)
4723 {
4724 /* Return exactly fname. */
4725 new = xmalloc (fnlen + 5);
4726 strcpy (new, fname);
4727 }
4728 else if (word > text)
4729 {
4730 /* Return some portion of fname. */
4731 new = xmalloc (fnlen + 5);
4732 strcpy (new, fname + (word - text));
4733 }
4734 else
4735 {
4736 /* Return some of TEXT plus fname. */
4737 new = xmalloc (fnlen + (text - word) + 5);
4738 strncpy (new, word, text - word);
4739 new[text - word] = '\0';
4740 strcat (new, fname);
4741 }
4742 VEC_safe_push (char_ptr, *list, new);
4743 }
4744
4745 static int
4746 not_interesting_fname (const char *fname)
4747 {
4748 static const char *illegal_aliens[] = {
4749 "_globals_", /* inserted by coff_symtab_read */
4750 NULL
4751 };
4752 int i;
4753
4754 for (i = 0; illegal_aliens[i]; i++)
4755 {
4756 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4757 return 1;
4758 }
4759 return 0;
4760 }
4761
4762 /* An object of this type is passed as the user_data argument to
4763 map_partial_symbol_filenames. */
4764 struct add_partial_filename_data
4765 {
4766 struct filename_seen_cache *filename_seen_cache;
4767 const char *text;
4768 const char *word;
4769 int text_len;
4770 VEC (char_ptr) **list;
4771 };
4772
4773 /* A callback for map_partial_symbol_filenames. */
4774
4775 static void
4776 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4777 void *user_data)
4778 {
4779 struct add_partial_filename_data *data = user_data;
4780
4781 if (not_interesting_fname (filename))
4782 return;
4783 if (!filename_seen (data->filename_seen_cache, filename, 1)
4784 && filename_ncmp (filename, data->text, data->text_len) == 0)
4785 {
4786 /* This file matches for a completion; add it to the
4787 current list of matches. */
4788 add_filename_to_list (filename, data->text, data->word, data->list);
4789 }
4790 else
4791 {
4792 const char *base_name = lbasename (filename);
4793
4794 if (base_name != filename
4795 && !filename_seen (data->filename_seen_cache, base_name, 1)
4796 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4797 add_filename_to_list (base_name, data->text, data->word, data->list);
4798 }
4799 }
4800
4801 /* Return a vector of all source files whose names begin with matching
4802 TEXT. The file names are looked up in the symbol tables of this
4803 program. If the answer is no matchess, then the return value is
4804 NULL. */
4805
4806 VEC (char_ptr) *
4807 make_source_files_completion_list (const char *text, const char *word)
4808 {
4809 struct symtab *s;
4810 struct objfile *objfile;
4811 size_t text_len = strlen (text);
4812 VEC (char_ptr) *list = NULL;
4813 const char *base_name;
4814 struct add_partial_filename_data datum;
4815 struct filename_seen_cache *filename_seen_cache;
4816 struct cleanup *back_to, *cache_cleanup;
4817
4818 if (!have_full_symbols () && !have_partial_symbols ())
4819 return list;
4820
4821 back_to = make_cleanup (do_free_completion_list, &list);
4822
4823 filename_seen_cache = create_filename_seen_cache ();
4824 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4825 filename_seen_cache);
4826
4827 ALL_SYMTABS (objfile, s)
4828 {
4829 if (not_interesting_fname (s->filename))
4830 continue;
4831 if (!filename_seen (filename_seen_cache, s->filename, 1)
4832 && filename_ncmp (s->filename, text, text_len) == 0)
4833 {
4834 /* This file matches for a completion; add it to the current
4835 list of matches. */
4836 add_filename_to_list (s->filename, text, word, &list);
4837 }
4838 else
4839 {
4840 /* NOTE: We allow the user to type a base name when the
4841 debug info records leading directories, but not the other
4842 way around. This is what subroutines of breakpoint
4843 command do when they parse file names. */
4844 base_name = lbasename (s->filename);
4845 if (base_name != s->filename
4846 && !filename_seen (filename_seen_cache, base_name, 1)
4847 && filename_ncmp (base_name, text, text_len) == 0)
4848 add_filename_to_list (base_name, text, word, &list);
4849 }
4850 }
4851
4852 datum.filename_seen_cache = filename_seen_cache;
4853 datum.text = text;
4854 datum.word = word;
4855 datum.text_len = text_len;
4856 datum.list = &list;
4857 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4858 0 /*need_fullname*/);
4859
4860 do_cleanups (cache_cleanup);
4861 discard_cleanups (back_to);
4862
4863 return list;
4864 }
4865 \f
4866 /* Track MAIN */
4867
4868 /* Return the "main_info" object for the current program space. If
4869 the object has not yet been created, create it and fill in some
4870 default values. */
4871
4872 static struct main_info *
4873 get_main_info (void)
4874 {
4875 struct main_info *info = program_space_data (current_program_space,
4876 main_progspace_key);
4877
4878 if (info == NULL)
4879 {
4880 /* It may seem strange to store the main name in the progspace
4881 and also in whatever objfile happens to see a main name in
4882 its debug info. The reason for this is mainly historical:
4883 gdb returned "main" as the name even if no function named
4884 "main" was defined the program; and this approach lets us
4885 keep compatibility. */
4886 info = XCNEW (struct main_info);
4887 info->language_of_main = language_unknown;
4888 set_program_space_data (current_program_space, main_progspace_key,
4889 info);
4890 }
4891
4892 return info;
4893 }
4894
4895 /* A cleanup to destroy a struct main_info when a progspace is
4896 destroyed. */
4897
4898 static void
4899 main_info_cleanup (struct program_space *pspace, void *data)
4900 {
4901 struct main_info *info = data;
4902
4903 if (info != NULL)
4904 xfree (info->name_of_main);
4905 xfree (info);
4906 }
4907
4908 static void
4909 set_main_name (const char *name, enum language lang)
4910 {
4911 struct main_info *info = get_main_info ();
4912
4913 if (info->name_of_main != NULL)
4914 {
4915 xfree (info->name_of_main);
4916 info->name_of_main = NULL;
4917 info->language_of_main = language_unknown;
4918 }
4919 if (name != NULL)
4920 {
4921 info->name_of_main = xstrdup (name);
4922 info->language_of_main = lang;
4923 }
4924 }
4925
4926 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4927 accordingly. */
4928
4929 static void
4930 find_main_name (void)
4931 {
4932 const char *new_main_name;
4933 struct objfile *objfile;
4934
4935 /* First check the objfiles to see whether a debuginfo reader has
4936 picked up the appropriate main name. Historically the main name
4937 was found in a more or less random way; this approach instead
4938 relies on the order of objfile creation -- which still isn't
4939 guaranteed to get the correct answer, but is just probably more
4940 accurate. */
4941 ALL_OBJFILES (objfile)
4942 {
4943 if (objfile->per_bfd->name_of_main != NULL)
4944 {
4945 set_main_name (objfile->per_bfd->name_of_main,
4946 objfile->per_bfd->language_of_main);
4947 return;
4948 }
4949 }
4950
4951 /* Try to see if the main procedure is in Ada. */
4952 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4953 be to add a new method in the language vector, and call this
4954 method for each language until one of them returns a non-empty
4955 name. This would allow us to remove this hard-coded call to
4956 an Ada function. It is not clear that this is a better approach
4957 at this point, because all methods need to be written in a way
4958 such that false positives never be returned. For instance, it is
4959 important that a method does not return a wrong name for the main
4960 procedure if the main procedure is actually written in a different
4961 language. It is easy to guaranty this with Ada, since we use a
4962 special symbol generated only when the main in Ada to find the name
4963 of the main procedure. It is difficult however to see how this can
4964 be guarantied for languages such as C, for instance. This suggests
4965 that order of call for these methods becomes important, which means
4966 a more complicated approach. */
4967 new_main_name = ada_main_name ();
4968 if (new_main_name != NULL)
4969 {
4970 set_main_name (new_main_name, language_ada);
4971 return;
4972 }
4973
4974 new_main_name = d_main_name ();
4975 if (new_main_name != NULL)
4976 {
4977 set_main_name (new_main_name, language_d);
4978 return;
4979 }
4980
4981 new_main_name = go_main_name ();
4982 if (new_main_name != NULL)
4983 {
4984 set_main_name (new_main_name, language_go);
4985 return;
4986 }
4987
4988 new_main_name = pascal_main_name ();
4989 if (new_main_name != NULL)
4990 {
4991 set_main_name (new_main_name, language_pascal);
4992 return;
4993 }
4994
4995 /* The languages above didn't identify the name of the main procedure.
4996 Fallback to "main". */
4997 set_main_name ("main", language_unknown);
4998 }
4999
5000 char *
5001 main_name (void)
5002 {
5003 struct main_info *info = get_main_info ();
5004
5005 if (info->name_of_main == NULL)
5006 find_main_name ();
5007
5008 return info->name_of_main;
5009 }
5010
5011 /* Return the language of the main function. If it is not known,
5012 return language_unknown. */
5013
5014 enum language
5015 main_language (void)
5016 {
5017 struct main_info *info = get_main_info ();
5018
5019 if (info->name_of_main == NULL)
5020 find_main_name ();
5021
5022 return info->language_of_main;
5023 }
5024
5025 /* Handle ``executable_changed'' events for the symtab module. */
5026
5027 static void
5028 symtab_observer_executable_changed (void)
5029 {
5030 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5031 set_main_name (NULL, language_unknown);
5032 }
5033
5034 /* Return 1 if the supplied producer string matches the ARM RealView
5035 compiler (armcc). */
5036
5037 int
5038 producer_is_realview (const char *producer)
5039 {
5040 static const char *const arm_idents[] = {
5041 "ARM C Compiler, ADS",
5042 "Thumb C Compiler, ADS",
5043 "ARM C++ Compiler, ADS",
5044 "Thumb C++ Compiler, ADS",
5045 "ARM/Thumb C/C++ Compiler, RVCT",
5046 "ARM C/C++ Compiler, RVCT"
5047 };
5048 int i;
5049
5050 if (producer == NULL)
5051 return 0;
5052
5053 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5054 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5055 return 1;
5056
5057 return 0;
5058 }
5059
5060 \f
5061
5062 /* The next index to hand out in response to a registration request. */
5063
5064 static int next_aclass_value = LOC_FINAL_VALUE;
5065
5066 /* The maximum number of "aclass" registrations we support. This is
5067 constant for convenience. */
5068 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5069
5070 /* The objects representing the various "aclass" values. The elements
5071 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5072 elements are those registered at gdb initialization time. */
5073
5074 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5075
5076 /* The globally visible pointer. This is separate from 'symbol_impl'
5077 so that it can be const. */
5078
5079 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5080
5081 /* Make sure we saved enough room in struct symbol. */
5082
5083 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5084
5085 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5086 is the ops vector associated with this index. This returns the new
5087 index, which should be used as the aclass_index field for symbols
5088 of this type. */
5089
5090 int
5091 register_symbol_computed_impl (enum address_class aclass,
5092 const struct symbol_computed_ops *ops)
5093 {
5094 int result = next_aclass_value++;
5095
5096 gdb_assert (aclass == LOC_COMPUTED);
5097 gdb_assert (result < MAX_SYMBOL_IMPLS);
5098 symbol_impl[result].aclass = aclass;
5099 symbol_impl[result].ops_computed = ops;
5100
5101 /* Sanity check OPS. */
5102 gdb_assert (ops != NULL);
5103 gdb_assert (ops->tracepoint_var_ref != NULL);
5104 gdb_assert (ops->describe_location != NULL);
5105 gdb_assert (ops->read_needs_frame != NULL);
5106 gdb_assert (ops->read_variable != NULL);
5107
5108 return result;
5109 }
5110
5111 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5112 OPS is the ops vector associated with this index. This returns the
5113 new index, which should be used as the aclass_index field for symbols
5114 of this type. */
5115
5116 int
5117 register_symbol_block_impl (enum address_class aclass,
5118 const struct symbol_block_ops *ops)
5119 {
5120 int result = next_aclass_value++;
5121
5122 gdb_assert (aclass == LOC_BLOCK);
5123 gdb_assert (result < MAX_SYMBOL_IMPLS);
5124 symbol_impl[result].aclass = aclass;
5125 symbol_impl[result].ops_block = ops;
5126
5127 /* Sanity check OPS. */
5128 gdb_assert (ops != NULL);
5129 gdb_assert (ops->find_frame_base_location != NULL);
5130
5131 return result;
5132 }
5133
5134 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5135 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5136 this index. This returns the new index, which should be used as
5137 the aclass_index field for symbols of this type. */
5138
5139 int
5140 register_symbol_register_impl (enum address_class aclass,
5141 const struct symbol_register_ops *ops)
5142 {
5143 int result = next_aclass_value++;
5144
5145 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5146 gdb_assert (result < MAX_SYMBOL_IMPLS);
5147 symbol_impl[result].aclass = aclass;
5148 symbol_impl[result].ops_register = ops;
5149
5150 return result;
5151 }
5152
5153 /* Initialize elements of 'symbol_impl' for the constants in enum
5154 address_class. */
5155
5156 static void
5157 initialize_ordinary_address_classes (void)
5158 {
5159 int i;
5160
5161 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5162 symbol_impl[i].aclass = i;
5163 }
5164
5165 \f
5166
5167 /* Initialize the symbol SYM. */
5168
5169 void
5170 initialize_symbol (struct symbol *sym)
5171 {
5172 memset (sym, 0, sizeof (*sym));
5173 SYMBOL_SECTION (sym) = -1;
5174 }
5175
5176 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5177 obstack. */
5178
5179 struct symbol *
5180 allocate_symbol (struct objfile *objfile)
5181 {
5182 struct symbol *result;
5183
5184 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5185 SYMBOL_SECTION (result) = -1;
5186
5187 return result;
5188 }
5189
5190 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5191 obstack. */
5192
5193 struct template_symbol *
5194 allocate_template_symbol (struct objfile *objfile)
5195 {
5196 struct template_symbol *result;
5197
5198 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5199 SYMBOL_SECTION (&result->base) = -1;
5200
5201 return result;
5202 }
5203
5204 \f
5205
5206 void
5207 _initialize_symtab (void)
5208 {
5209 initialize_ordinary_address_classes ();
5210
5211 main_progspace_key
5212 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5213
5214 add_info ("variables", variables_info, _("\
5215 All global and static variable names, or those matching REGEXP."));
5216 if (dbx_commands)
5217 add_com ("whereis", class_info, variables_info, _("\
5218 All global and static variable names, or those matching REGEXP."));
5219
5220 add_info ("functions", functions_info,
5221 _("All function names, or those matching REGEXP."));
5222
5223 /* FIXME: This command has at least the following problems:
5224 1. It prints builtin types (in a very strange and confusing fashion).
5225 2. It doesn't print right, e.g. with
5226 typedef struct foo *FOO
5227 type_print prints "FOO" when we want to make it (in this situation)
5228 print "struct foo *".
5229 I also think "ptype" or "whatis" is more likely to be useful (but if
5230 there is much disagreement "info types" can be fixed). */
5231 add_info ("types", types_info,
5232 _("All type names, or those matching REGEXP."));
5233
5234 add_info ("sources", sources_info,
5235 _("Source files in the program."));
5236
5237 add_com ("rbreak", class_breakpoint, rbreak_command,
5238 _("Set a breakpoint for all functions matching REGEXP."));
5239
5240 if (xdb_commands)
5241 {
5242 add_com ("lf", class_info, sources_info,
5243 _("Source files in the program"));
5244 add_com ("lg", class_info, variables_info, _("\
5245 All global and static variable names, or those matching REGEXP."));
5246 }
5247
5248 add_setshow_enum_cmd ("multiple-symbols", no_class,
5249 multiple_symbols_modes, &multiple_symbols_mode,
5250 _("\
5251 Set the debugger behavior when more than one symbol are possible matches\n\
5252 in an expression."), _("\
5253 Show how the debugger handles ambiguities in expressions."), _("\
5254 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5255 NULL, NULL, &setlist, &showlist);
5256
5257 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5258 &basenames_may_differ, _("\
5259 Set whether a source file may have multiple base names."), _("\
5260 Show whether a source file may have multiple base names."), _("\
5261 (A \"base name\" is the name of a file with the directory part removed.\n\
5262 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5263 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5264 before comparing them. Canonicalization is an expensive operation,\n\
5265 but it allows the same file be known by more than one base name.\n\
5266 If not set (the default), all source files are assumed to have just\n\
5267 one base name, and gdb will do file name comparisons more efficiently."),
5268 NULL, NULL,
5269 &setlist, &showlist);
5270
5271 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5272 _("Set debugging of symbol table creation."),
5273 _("Show debugging of symbol table creation."), _("\
5274 When enabled (non-zero), debugging messages are printed when building\n\
5275 symbol tables. A value of 1 (one) normally provides enough information.\n\
5276 A value greater than 1 provides more verbose information."),
5277 NULL,
5278 NULL,
5279 &setdebuglist, &showdebuglist);
5280
5281 observer_attach_executable_changed (symtab_observer_executable_changed);
5282 }
This page took 0.146139 seconds and 5 git commands to generate.