* layout.cc (Layout::layout): If the output section flags change,
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "d-lang.h"
43 #include "ada-lang.h"
44 #include "p-lang.h"
45 #include "addrmap.h"
46
47 #include "hashtab.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include "gdb_string.h"
56 #include "gdb_stat.h"
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observer.h"
61 #include "gdb_assert.h"
62 #include "solist.h"
63 #include "macrotab.h"
64 #include "macroscope.h"
65
66 #include "psymtab.h"
67
68 /* Prototypes for local functions */
69
70 static void completion_list_add_name (char *, char *, int, char *, char *);
71
72 static void rbreak_command (char *, int);
73
74 static void types_info (char *, int);
75
76 static void functions_info (char *, int);
77
78 static void variables_info (char *, int);
79
80 static void sources_info (char *, int);
81
82 static void output_source_filename (const char *, int *);
83
84 static int find_line_common (struct linetable *, int, int *);
85
86 /* This one is used by linespec.c */
87
88 char *operator_chars (char *p, char **end);
89
90 static struct symbol *lookup_symbol_aux (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language,
94 int *is_a_field_of_this);
95
96 static
97 struct symbol *lookup_symbol_aux_local (const char *name,
98 const struct block *block,
99 const domain_enum domain,
100 enum language language);
101
102 static
103 struct symbol *lookup_symbol_aux_symtabs (int block_index,
104 const char *name,
105 const domain_enum domain);
106
107 static
108 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
109 int block_index,
110 const char *name,
111 const domain_enum domain);
112
113 static void print_msymbol_info (struct minimal_symbol *);
114
115 void _initialize_symtab (void);
116
117 /* */
118
119 /* Allow the user to configure the debugger behavior with respect
120 to multiple-choice menus when more than one symbol matches during
121 a symbol lookup. */
122
123 const char multiple_symbols_ask[] = "ask";
124 const char multiple_symbols_all[] = "all";
125 const char multiple_symbols_cancel[] = "cancel";
126 static const char *multiple_symbols_modes[] =
127 {
128 multiple_symbols_ask,
129 multiple_symbols_all,
130 multiple_symbols_cancel,
131 NULL
132 };
133 static const char *multiple_symbols_mode = multiple_symbols_all;
134
135 /* Read-only accessor to AUTO_SELECT_MODE. */
136
137 const char *
138 multiple_symbols_select_mode (void)
139 {
140 return multiple_symbols_mode;
141 }
142
143 /* Block in which the most recently searched-for symbol was found.
144 Might be better to make this a parameter to lookup_symbol and
145 value_of_this. */
146
147 const struct block *block_found;
148
149 /* Check for a symtab of a specific name; first in symtabs, then in
150 psymtabs. *If* there is no '/' in the name, a match after a '/'
151 in the symtab filename will also work. */
152
153 struct symtab *
154 lookup_symtab (const char *name)
155 {
156 int found;
157 struct symtab *s = NULL;
158 struct objfile *objfile;
159 char *real_path = NULL;
160 char *full_path = NULL;
161
162 /* Here we are interested in canonicalizing an absolute path, not
163 absolutizing a relative path. */
164 if (IS_ABSOLUTE_PATH (name))
165 {
166 full_path = xfullpath (name);
167 make_cleanup (xfree, full_path);
168 real_path = gdb_realpath (name);
169 make_cleanup (xfree, real_path);
170 }
171
172 got_symtab:
173
174 /* First, search for an exact match. */
175
176 ALL_SYMTABS (objfile, s)
177 {
178 if (FILENAME_CMP (name, s->filename) == 0)
179 {
180 return s;
181 }
182
183 /* If the user gave us an absolute path, try to find the file in
184 this symtab and use its absolute path. */
185
186 if (full_path != NULL)
187 {
188 const char *fp = symtab_to_fullname (s);
189
190 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
191 {
192 return s;
193 }
194 }
195
196 if (real_path != NULL)
197 {
198 char *fullname = symtab_to_fullname (s);
199
200 if (fullname != NULL)
201 {
202 char *rp = gdb_realpath (fullname);
203
204 make_cleanup (xfree, rp);
205 if (FILENAME_CMP (real_path, rp) == 0)
206 {
207 return s;
208 }
209 }
210 }
211 }
212
213 /* Now, search for a matching tail (only if name doesn't have any dirs). */
214
215 if (lbasename (name) == name)
216 ALL_SYMTABS (objfile, s)
217 {
218 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
219 return s;
220 }
221
222 /* Same search rules as above apply here, but now we look thru the
223 psymtabs. */
224
225 found = 0;
226 ALL_OBJFILES (objfile)
227 {
228 if (objfile->sf
229 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
230 &s))
231 {
232 found = 1;
233 break;
234 }
235 }
236
237 if (s != NULL)
238 return s;
239 if (!found)
240 return NULL;
241
242 /* At this point, we have located the psymtab for this file, but
243 the conversion to a symtab has failed. This usually happens
244 when we are looking up an include file. In this case,
245 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
246 been created. So, we need to run through the symtabs again in
247 order to find the file.
248 XXX - This is a crock, and should be fixed inside of the
249 symbol parsing routines. */
250 goto got_symtab;
251 }
252 \f
253 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
254 full method name, which consist of the class name (from T), the unadorned
255 method name from METHOD_ID, and the signature for the specific overload,
256 specified by SIGNATURE_ID. Note that this function is g++ specific. */
257
258 char *
259 gdb_mangle_name (struct type *type, int method_id, int signature_id)
260 {
261 int mangled_name_len;
262 char *mangled_name;
263 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
264 struct fn_field *method = &f[signature_id];
265 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
266 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
267 char *newname = type_name_no_tag (type);
268
269 /* Does the form of physname indicate that it is the full mangled name
270 of a constructor (not just the args)? */
271 int is_full_physname_constructor;
272
273 int is_constructor;
274 int is_destructor = is_destructor_name (physname);
275 /* Need a new type prefix. */
276 char *const_prefix = method->is_const ? "C" : "";
277 char *volatile_prefix = method->is_volatile ? "V" : "";
278 char buf[20];
279 int len = (newname == NULL ? 0 : strlen (newname));
280
281 /* Nothing to do if physname already contains a fully mangled v3 abi name
282 or an operator name. */
283 if ((physname[0] == '_' && physname[1] == 'Z')
284 || is_operator_name (field_name))
285 return xstrdup (physname);
286
287 is_full_physname_constructor = is_constructor_name (physname);
288
289 is_constructor = is_full_physname_constructor
290 || (newname && strcmp (field_name, newname) == 0);
291
292 if (!is_destructor)
293 is_destructor = (strncmp (physname, "__dt", 4) == 0);
294
295 if (is_destructor || is_full_physname_constructor)
296 {
297 mangled_name = (char *) xmalloc (strlen (physname) + 1);
298 strcpy (mangled_name, physname);
299 return mangled_name;
300 }
301
302 if (len == 0)
303 {
304 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
305 }
306 else if (physname[0] == 't' || physname[0] == 'Q')
307 {
308 /* The physname for template and qualified methods already includes
309 the class name. */
310 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
311 newname = NULL;
312 len = 0;
313 }
314 else
315 {
316 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
317 }
318 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
319 + strlen (buf) + len + strlen (physname) + 1);
320
321 mangled_name = (char *) xmalloc (mangled_name_len);
322 if (is_constructor)
323 mangled_name[0] = '\0';
324 else
325 strcpy (mangled_name, field_name);
326
327 strcat (mangled_name, buf);
328 /* If the class doesn't have a name, i.e. newname NULL, then we just
329 mangle it using 0 for the length of the class. Thus it gets mangled
330 as something starting with `::' rather than `classname::'. */
331 if (newname != NULL)
332 strcat (mangled_name, newname);
333
334 strcat (mangled_name, physname);
335 return (mangled_name);
336 }
337
338 /* Initialize the cplus_specific structure. 'cplus_specific' should
339 only be allocated for use with cplus symbols. */
340
341 static void
342 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
343 struct objfile *objfile)
344 {
345 /* A language_specific structure should not have been previously
346 initialized. */
347 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
348 gdb_assert (objfile != NULL);
349
350 gsymbol->language_specific.cplus_specific =
351 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
352 }
353
354 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
355 correctly allocated. For C++ symbols a cplus_specific struct is
356 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
357 OBJFILE can be NULL. */
358 void
359 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
360 char *name,
361 struct objfile *objfile)
362 {
363 if (gsymbol->language == language_cplus)
364 {
365 if (gsymbol->language_specific.cplus_specific == NULL)
366 symbol_init_cplus_specific (gsymbol, objfile);
367
368 gsymbol->language_specific.cplus_specific->demangled_name = name;
369 }
370 else
371 gsymbol->language_specific.mangled_lang.demangled_name = name;
372 }
373
374 /* Return the demangled name of GSYMBOL. */
375 char *
376 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
377 {
378 if (gsymbol->language == language_cplus)
379 {
380 if (gsymbol->language_specific.cplus_specific != NULL)
381 return gsymbol->language_specific.cplus_specific->demangled_name;
382 else
383 return NULL;
384 }
385 else
386 return gsymbol->language_specific.mangled_lang.demangled_name;
387 }
388
389 \f
390 /* Initialize the language dependent portion of a symbol
391 depending upon the language for the symbol. */
392 void
393 symbol_set_language (struct general_symbol_info *gsymbol,
394 enum language language)
395 {
396 gsymbol->language = language;
397 if (gsymbol->language == language_d
398 || gsymbol->language == language_java
399 || gsymbol->language == language_objc
400 || gsymbol->language == language_fortran)
401 {
402 symbol_set_demangled_name (gsymbol, NULL, NULL);
403 }
404 else if (gsymbol->language == language_cplus)
405 gsymbol->language_specific.cplus_specific = NULL;
406 else
407 {
408 memset (&gsymbol->language_specific, 0,
409 sizeof (gsymbol->language_specific));
410 }
411 }
412
413 /* Functions to initialize a symbol's mangled name. */
414
415 /* Objects of this type are stored in the demangled name hash table. */
416 struct demangled_name_entry
417 {
418 char *mangled;
419 char demangled[1];
420 };
421
422 /* Hash function for the demangled name hash. */
423 static hashval_t
424 hash_demangled_name_entry (const void *data)
425 {
426 const struct demangled_name_entry *e = data;
427
428 return htab_hash_string (e->mangled);
429 }
430
431 /* Equality function for the demangled name hash. */
432 static int
433 eq_demangled_name_entry (const void *a, const void *b)
434 {
435 const struct demangled_name_entry *da = a;
436 const struct demangled_name_entry *db = b;
437
438 return strcmp (da->mangled, db->mangled) == 0;
439 }
440
441 /* Create the hash table used for demangled names. Each hash entry is
442 a pair of strings; one for the mangled name and one for the demangled
443 name. The entry is hashed via just the mangled name. */
444
445 static void
446 create_demangled_names_hash (struct objfile *objfile)
447 {
448 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
449 The hash table code will round this up to the next prime number.
450 Choosing a much larger table size wastes memory, and saves only about
451 1% in symbol reading. */
452
453 objfile->demangled_names_hash = htab_create_alloc
454 (256, hash_demangled_name_entry, eq_demangled_name_entry,
455 NULL, xcalloc, xfree);
456 }
457
458 /* Try to determine the demangled name for a symbol, based on the
459 language of that symbol. If the language is set to language_auto,
460 it will attempt to find any demangling algorithm that works and
461 then set the language appropriately. The returned name is allocated
462 by the demangler and should be xfree'd. */
463
464 static char *
465 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
466 const char *mangled)
467 {
468 char *demangled = NULL;
469
470 if (gsymbol->language == language_unknown)
471 gsymbol->language = language_auto;
472
473 if (gsymbol->language == language_objc
474 || gsymbol->language == language_auto)
475 {
476 demangled =
477 objc_demangle (mangled, 0);
478 if (demangled != NULL)
479 {
480 gsymbol->language = language_objc;
481 return demangled;
482 }
483 }
484 if (gsymbol->language == language_cplus
485 || gsymbol->language == language_auto)
486 {
487 demangled =
488 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
489 if (demangled != NULL)
490 {
491 gsymbol->language = language_cplus;
492 return demangled;
493 }
494 }
495 if (gsymbol->language == language_java)
496 {
497 demangled =
498 cplus_demangle (mangled,
499 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
500 if (demangled != NULL)
501 {
502 gsymbol->language = language_java;
503 return demangled;
504 }
505 }
506 if (gsymbol->language == language_d
507 || gsymbol->language == language_auto)
508 {
509 demangled = d_demangle(mangled, 0);
510 if (demangled != NULL)
511 {
512 gsymbol->language = language_d;
513 return demangled;
514 }
515 }
516 /* We could support `gsymbol->language == language_fortran' here to provide
517 module namespaces also for inferiors with only minimal symbol table (ELF
518 symbols). Just the mangling standard is not standardized across compilers
519 and there is no DW_AT_producer available for inferiors with only the ELF
520 symbols to check the mangling kind. */
521 return NULL;
522 }
523
524 /* Set both the mangled and demangled (if any) names for GSYMBOL based
525 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
526 objfile's obstack; but if COPY_NAME is 0 and if NAME is
527 NUL-terminated, then this function assumes that NAME is already
528 correctly saved (either permanently or with a lifetime tied to the
529 objfile), and it will not be copied.
530
531 The hash table corresponding to OBJFILE is used, and the memory
532 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
533 so the pointer can be discarded after calling this function. */
534
535 /* We have to be careful when dealing with Java names: when we run
536 into a Java minimal symbol, we don't know it's a Java symbol, so it
537 gets demangled as a C++ name. This is unfortunate, but there's not
538 much we can do about it: but when demangling partial symbols and
539 regular symbols, we'd better not reuse the wrong demangled name.
540 (See PR gdb/1039.) We solve this by putting a distinctive prefix
541 on Java names when storing them in the hash table. */
542
543 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
544 don't mind the Java prefix so much: different languages have
545 different demangling requirements, so it's only natural that we
546 need to keep language data around in our demangling cache. But
547 it's not good that the minimal symbol has the wrong demangled name.
548 Unfortunately, I can't think of any easy solution to that
549 problem. */
550
551 #define JAVA_PREFIX "##JAVA$$"
552 #define JAVA_PREFIX_LEN 8
553
554 void
555 symbol_set_names (struct general_symbol_info *gsymbol,
556 const char *linkage_name, int len, int copy_name,
557 struct objfile *objfile)
558 {
559 struct demangled_name_entry **slot;
560 /* A 0-terminated copy of the linkage name. */
561 const char *linkage_name_copy;
562 /* A copy of the linkage name that might have a special Java prefix
563 added to it, for use when looking names up in the hash table. */
564 const char *lookup_name;
565 /* The length of lookup_name. */
566 int lookup_len;
567 struct demangled_name_entry entry;
568
569 if (gsymbol->language == language_ada)
570 {
571 /* In Ada, we do the symbol lookups using the mangled name, so
572 we can save some space by not storing the demangled name.
573
574 As a side note, we have also observed some overlap between
575 the C++ mangling and Ada mangling, similarly to what has
576 been observed with Java. Because we don't store the demangled
577 name with the symbol, we don't need to use the same trick
578 as Java. */
579 if (!copy_name)
580 gsymbol->name = (char *) linkage_name;
581 else
582 {
583 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
584 memcpy (gsymbol->name, linkage_name, len);
585 gsymbol->name[len] = '\0';
586 }
587 symbol_set_demangled_name (gsymbol, NULL, NULL);
588
589 return;
590 }
591
592 if (objfile->demangled_names_hash == NULL)
593 create_demangled_names_hash (objfile);
594
595 /* The stabs reader generally provides names that are not
596 NUL-terminated; most of the other readers don't do this, so we
597 can just use the given copy, unless we're in the Java case. */
598 if (gsymbol->language == language_java)
599 {
600 char *alloc_name;
601
602 lookup_len = len + JAVA_PREFIX_LEN;
603 alloc_name = alloca (lookup_len + 1);
604 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
605 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
606 alloc_name[lookup_len] = '\0';
607
608 lookup_name = alloc_name;
609 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
610 }
611 else if (linkage_name[len] != '\0')
612 {
613 char *alloc_name;
614
615 lookup_len = len;
616 alloc_name = alloca (lookup_len + 1);
617 memcpy (alloc_name, linkage_name, len);
618 alloc_name[lookup_len] = '\0';
619
620 lookup_name = alloc_name;
621 linkage_name_copy = alloc_name;
622 }
623 else
624 {
625 lookup_len = len;
626 lookup_name = linkage_name;
627 linkage_name_copy = linkage_name;
628 }
629
630 entry.mangled = (char *) lookup_name;
631 slot = ((struct demangled_name_entry **)
632 htab_find_slot (objfile->demangled_names_hash,
633 &entry, INSERT));
634
635 /* If this name is not in the hash table, add it. */
636 if (*slot == NULL)
637 {
638 char *demangled_name = symbol_find_demangled_name (gsymbol,
639 linkage_name_copy);
640 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
641
642 /* Suppose we have demangled_name==NULL, copy_name==0, and
643 lookup_name==linkage_name. In this case, we already have the
644 mangled name saved, and we don't have a demangled name. So,
645 you might think we could save a little space by not recording
646 this in the hash table at all.
647
648 It turns out that it is actually important to still save such
649 an entry in the hash table, because storing this name gives
650 us better bcache hit rates for partial symbols. */
651 if (!copy_name && lookup_name == linkage_name)
652 {
653 *slot = obstack_alloc (&objfile->objfile_obstack,
654 offsetof (struct demangled_name_entry,
655 demangled)
656 + demangled_len + 1);
657 (*slot)->mangled = (char *) lookup_name;
658 }
659 else
660 {
661 /* If we must copy the mangled name, put it directly after
662 the demangled name so we can have a single
663 allocation. */
664 *slot = obstack_alloc (&objfile->objfile_obstack,
665 offsetof (struct demangled_name_entry,
666 demangled)
667 + lookup_len + demangled_len + 2);
668 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
669 strcpy ((*slot)->mangled, lookup_name);
670 }
671
672 if (demangled_name != NULL)
673 {
674 strcpy ((*slot)->demangled, demangled_name);
675 xfree (demangled_name);
676 }
677 else
678 (*slot)->demangled[0] = '\0';
679 }
680
681 gsymbol->name = (*slot)->mangled + lookup_len - len;
682 if ((*slot)->demangled[0] != '\0')
683 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
684 else
685 symbol_set_demangled_name (gsymbol, NULL, objfile);
686 }
687
688 /* Return the source code name of a symbol. In languages where
689 demangling is necessary, this is the demangled name. */
690
691 char *
692 symbol_natural_name (const struct general_symbol_info *gsymbol)
693 {
694 switch (gsymbol->language)
695 {
696 case language_cplus:
697 case language_d:
698 case language_java:
699 case language_objc:
700 case language_fortran:
701 if (symbol_get_demangled_name (gsymbol) != NULL)
702 return symbol_get_demangled_name (gsymbol);
703 break;
704 case language_ada:
705 if (symbol_get_demangled_name (gsymbol) != NULL)
706 return symbol_get_demangled_name (gsymbol);
707 else
708 return ada_decode_symbol (gsymbol);
709 break;
710 default:
711 break;
712 }
713 return gsymbol->name;
714 }
715
716 /* Return the demangled name for a symbol based on the language for
717 that symbol. If no demangled name exists, return NULL. */
718 char *
719 symbol_demangled_name (const struct general_symbol_info *gsymbol)
720 {
721 switch (gsymbol->language)
722 {
723 case language_cplus:
724 case language_d:
725 case language_java:
726 case language_objc:
727 case language_fortran:
728 if (symbol_get_demangled_name (gsymbol) != NULL)
729 return symbol_get_demangled_name (gsymbol);
730 break;
731 case language_ada:
732 if (symbol_get_demangled_name (gsymbol) != NULL)
733 return symbol_get_demangled_name (gsymbol);
734 else
735 return ada_decode_symbol (gsymbol);
736 break;
737 default:
738 break;
739 }
740 return NULL;
741 }
742
743 /* Return the search name of a symbol---generally the demangled or
744 linkage name of the symbol, depending on how it will be searched for.
745 If there is no distinct demangled name, then returns the same value
746 (same pointer) as SYMBOL_LINKAGE_NAME. */
747 char *
748 symbol_search_name (const struct general_symbol_info *gsymbol)
749 {
750 if (gsymbol->language == language_ada)
751 return gsymbol->name;
752 else
753 return symbol_natural_name (gsymbol);
754 }
755
756 /* Initialize the structure fields to zero values. */
757 void
758 init_sal (struct symtab_and_line *sal)
759 {
760 sal->pspace = NULL;
761 sal->symtab = 0;
762 sal->section = 0;
763 sal->line = 0;
764 sal->pc = 0;
765 sal->end = 0;
766 sal->explicit_pc = 0;
767 sal->explicit_line = 0;
768 }
769 \f
770
771 /* Return 1 if the two sections are the same, or if they could
772 plausibly be copies of each other, one in an original object
773 file and another in a separated debug file. */
774
775 int
776 matching_obj_sections (struct obj_section *obj_first,
777 struct obj_section *obj_second)
778 {
779 asection *first = obj_first? obj_first->the_bfd_section : NULL;
780 asection *second = obj_second? obj_second->the_bfd_section : NULL;
781 struct objfile *obj;
782
783 /* If they're the same section, then they match. */
784 if (first == second)
785 return 1;
786
787 /* If either is NULL, give up. */
788 if (first == NULL || second == NULL)
789 return 0;
790
791 /* This doesn't apply to absolute symbols. */
792 if (first->owner == NULL || second->owner == NULL)
793 return 0;
794
795 /* If they're in the same object file, they must be different sections. */
796 if (first->owner == second->owner)
797 return 0;
798
799 /* Check whether the two sections are potentially corresponding. They must
800 have the same size, address, and name. We can't compare section indexes,
801 which would be more reliable, because some sections may have been
802 stripped. */
803 if (bfd_get_section_size (first) != bfd_get_section_size (second))
804 return 0;
805
806 /* In-memory addresses may start at a different offset, relativize them. */
807 if (bfd_get_section_vma (first->owner, first)
808 - bfd_get_start_address (first->owner)
809 != bfd_get_section_vma (second->owner, second)
810 - bfd_get_start_address (second->owner))
811 return 0;
812
813 if (bfd_get_section_name (first->owner, first) == NULL
814 || bfd_get_section_name (second->owner, second) == NULL
815 || strcmp (bfd_get_section_name (first->owner, first),
816 bfd_get_section_name (second->owner, second)) != 0)
817 return 0;
818
819 /* Otherwise check that they are in corresponding objfiles. */
820
821 ALL_OBJFILES (obj)
822 if (obj->obfd == first->owner)
823 break;
824 gdb_assert (obj != NULL);
825
826 if (obj->separate_debug_objfile != NULL
827 && obj->separate_debug_objfile->obfd == second->owner)
828 return 1;
829 if (obj->separate_debug_objfile_backlink != NULL
830 && obj->separate_debug_objfile_backlink->obfd == second->owner)
831 return 1;
832
833 return 0;
834 }
835
836 struct symtab *
837 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
838 {
839 struct objfile *objfile;
840 struct minimal_symbol *msymbol;
841
842 /* If we know that this is not a text address, return failure. This is
843 necessary because we loop based on texthigh and textlow, which do
844 not include the data ranges. */
845 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
846 if (msymbol
847 && (MSYMBOL_TYPE (msymbol) == mst_data
848 || MSYMBOL_TYPE (msymbol) == mst_bss
849 || MSYMBOL_TYPE (msymbol) == mst_abs
850 || MSYMBOL_TYPE (msymbol) == mst_file_data
851 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
852 return NULL;
853
854 ALL_OBJFILES (objfile)
855 {
856 struct symtab *result = NULL;
857
858 if (objfile->sf)
859 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
860 pc, section, 0);
861 if (result)
862 return result;
863 }
864
865 return NULL;
866 }
867 \f
868 /* Debug symbols usually don't have section information. We need to dig that
869 out of the minimal symbols and stash that in the debug symbol. */
870
871 void
872 fixup_section (struct general_symbol_info *ginfo,
873 CORE_ADDR addr, struct objfile *objfile)
874 {
875 struct minimal_symbol *msym;
876
877 /* First, check whether a minimal symbol with the same name exists
878 and points to the same address. The address check is required
879 e.g. on PowerPC64, where the minimal symbol for a function will
880 point to the function descriptor, while the debug symbol will
881 point to the actual function code. */
882 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
883 if (msym)
884 {
885 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
886 ginfo->section = SYMBOL_SECTION (msym);
887 }
888 else
889 {
890 /* Static, function-local variables do appear in the linker
891 (minimal) symbols, but are frequently given names that won't
892 be found via lookup_minimal_symbol(). E.g., it has been
893 observed in frv-uclinux (ELF) executables that a static,
894 function-local variable named "foo" might appear in the
895 linker symbols as "foo.6" or "foo.3". Thus, there is no
896 point in attempting to extend the lookup-by-name mechanism to
897 handle this case due to the fact that there can be multiple
898 names.
899
900 So, instead, search the section table when lookup by name has
901 failed. The ``addr'' and ``endaddr'' fields may have already
902 been relocated. If so, the relocation offset (i.e. the
903 ANOFFSET value) needs to be subtracted from these values when
904 performing the comparison. We unconditionally subtract it,
905 because, when no relocation has been performed, the ANOFFSET
906 value will simply be zero.
907
908 The address of the symbol whose section we're fixing up HAS
909 NOT BEEN adjusted (relocated) yet. It can't have been since
910 the section isn't yet known and knowing the section is
911 necessary in order to add the correct relocation value. In
912 other words, we wouldn't even be in this function (attempting
913 to compute the section) if it were already known.
914
915 Note that it is possible to search the minimal symbols
916 (subtracting the relocation value if necessary) to find the
917 matching minimal symbol, but this is overkill and much less
918 efficient. It is not necessary to find the matching minimal
919 symbol, only its section.
920
921 Note that this technique (of doing a section table search)
922 can fail when unrelocated section addresses overlap. For
923 this reason, we still attempt a lookup by name prior to doing
924 a search of the section table. */
925
926 struct obj_section *s;
927
928 ALL_OBJFILE_OSECTIONS (objfile, s)
929 {
930 int idx = s->the_bfd_section->index;
931 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
932
933 if (obj_section_addr (s) - offset <= addr
934 && addr < obj_section_endaddr (s) - offset)
935 {
936 ginfo->obj_section = s;
937 ginfo->section = idx;
938 return;
939 }
940 }
941 }
942 }
943
944 struct symbol *
945 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
946 {
947 CORE_ADDR addr;
948
949 if (!sym)
950 return NULL;
951
952 if (SYMBOL_OBJ_SECTION (sym))
953 return sym;
954
955 /* We either have an OBJFILE, or we can get at it from the sym's
956 symtab. Anything else is a bug. */
957 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
958
959 if (objfile == NULL)
960 objfile = SYMBOL_SYMTAB (sym)->objfile;
961
962 /* We should have an objfile by now. */
963 gdb_assert (objfile);
964
965 switch (SYMBOL_CLASS (sym))
966 {
967 case LOC_STATIC:
968 case LOC_LABEL:
969 addr = SYMBOL_VALUE_ADDRESS (sym);
970 break;
971 case LOC_BLOCK:
972 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
973 break;
974
975 default:
976 /* Nothing else will be listed in the minsyms -- no use looking
977 it up. */
978 return sym;
979 }
980
981 fixup_section (&sym->ginfo, addr, objfile);
982
983 return sym;
984 }
985
986 /* Find the definition for a specified symbol name NAME
987 in domain DOMAIN, visible from lexical block BLOCK.
988 Returns the struct symbol pointer, or zero if no symbol is found.
989 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
990 NAME is a field of the current implied argument `this'. If so set
991 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
992 BLOCK_FOUND is set to the block in which NAME is found (in the case of
993 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
994
995 /* This function has a bunch of loops in it and it would seem to be
996 attractive to put in some QUIT's (though I'm not really sure
997 whether it can run long enough to be really important). But there
998 are a few calls for which it would appear to be bad news to quit
999 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1000 that there is C++ code below which can error(), but that probably
1001 doesn't affect these calls since they are looking for a known
1002 variable and thus can probably assume it will never hit the C++
1003 code). */
1004
1005 struct symbol *
1006 lookup_symbol_in_language (const char *name, const struct block *block,
1007 const domain_enum domain, enum language lang,
1008 int *is_a_field_of_this)
1009 {
1010 char *demangled_name = NULL;
1011 const char *modified_name = NULL;
1012 struct symbol *returnval;
1013 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1014
1015 modified_name = name;
1016
1017 /* If we are using C++, D, or Java, demangle the name before doing a
1018 lookup, so we can always binary search. */
1019 if (lang == language_cplus)
1020 {
1021 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1022 if (demangled_name)
1023 {
1024 modified_name = demangled_name;
1025 make_cleanup (xfree, demangled_name);
1026 }
1027 else
1028 {
1029 /* If we were given a non-mangled name, canonicalize it
1030 according to the language (so far only for C++). */
1031 demangled_name = cp_canonicalize_string (name);
1032 if (demangled_name)
1033 {
1034 modified_name = demangled_name;
1035 make_cleanup (xfree, demangled_name);
1036 }
1037 }
1038 }
1039 else if (lang == language_java)
1040 {
1041 demangled_name = cplus_demangle (name,
1042 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1043 if (demangled_name)
1044 {
1045 modified_name = demangled_name;
1046 make_cleanup (xfree, demangled_name);
1047 }
1048 }
1049 else if (lang == language_d)
1050 {
1051 demangled_name = d_demangle (name, 0);
1052 if (demangled_name)
1053 {
1054 modified_name = demangled_name;
1055 make_cleanup (xfree, demangled_name);
1056 }
1057 }
1058
1059 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1060 is_a_field_of_this);
1061 do_cleanups (cleanup);
1062
1063 return returnval;
1064 }
1065
1066 /* Behave like lookup_symbol_in_language, but performed with the
1067 current language. */
1068
1069 struct symbol *
1070 lookup_symbol (const char *name, const struct block *block,
1071 domain_enum domain, int *is_a_field_of_this)
1072 {
1073 return lookup_symbol_in_language (name, block, domain,
1074 current_language->la_language,
1075 is_a_field_of_this);
1076 }
1077
1078 /* Behave like lookup_symbol except that NAME is the natural name
1079 of the symbol that we're looking for and, if LINKAGE_NAME is
1080 non-NULL, ensure that the symbol's linkage name matches as
1081 well. */
1082
1083 static struct symbol *
1084 lookup_symbol_aux (const char *name, const struct block *block,
1085 const domain_enum domain, enum language language,
1086 int *is_a_field_of_this)
1087 {
1088 struct symbol *sym;
1089 const struct language_defn *langdef;
1090
1091 /* Make sure we do something sensible with is_a_field_of_this, since
1092 the callers that set this parameter to some non-null value will
1093 certainly use it later and expect it to be either 0 or 1.
1094 If we don't set it, the contents of is_a_field_of_this are
1095 undefined. */
1096 if (is_a_field_of_this != NULL)
1097 *is_a_field_of_this = 0;
1098
1099 /* Search specified block and its superiors. Don't search
1100 STATIC_BLOCK or GLOBAL_BLOCK. */
1101
1102 sym = lookup_symbol_aux_local (name, block, domain, language);
1103 if (sym != NULL)
1104 return sym;
1105
1106 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1107 check to see if NAME is a field of `this'. */
1108
1109 langdef = language_def (language);
1110
1111 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1112 && block != NULL)
1113 {
1114 struct symbol *sym = NULL;
1115 const struct block *function_block = block;
1116
1117 /* 'this' is only defined in the function's block, so find the
1118 enclosing function block. */
1119 for (; function_block && !BLOCK_FUNCTION (function_block);
1120 function_block = BLOCK_SUPERBLOCK (function_block));
1121
1122 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1123 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1124 VAR_DOMAIN);
1125 if (sym)
1126 {
1127 struct type *t = sym->type;
1128
1129 /* I'm not really sure that type of this can ever
1130 be typedefed; just be safe. */
1131 CHECK_TYPEDEF (t);
1132 if (TYPE_CODE (t) == TYPE_CODE_PTR
1133 || TYPE_CODE (t) == TYPE_CODE_REF)
1134 t = TYPE_TARGET_TYPE (t);
1135
1136 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1137 && TYPE_CODE (t) != TYPE_CODE_UNION)
1138 error (_("Internal error: `%s' is not an aggregate"),
1139 langdef->la_name_of_this);
1140
1141 if (check_field (t, name))
1142 {
1143 *is_a_field_of_this = 1;
1144 return NULL;
1145 }
1146 }
1147 }
1148
1149 /* Now do whatever is appropriate for LANGUAGE to look
1150 up static and global variables. */
1151
1152 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1153 if (sym != NULL)
1154 return sym;
1155
1156 /* Now search all static file-level symbols. Not strictly correct,
1157 but more useful than an error. */
1158
1159 return lookup_static_symbol_aux (name, domain);
1160 }
1161
1162 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1163 first, then check the psymtabs. If a psymtab indicates the existence of the
1164 desired name as a file-level static, then do psymtab-to-symtab conversion on
1165 the fly and return the found symbol. */
1166
1167 struct symbol *
1168 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1169 {
1170 struct objfile *objfile;
1171 struct symbol *sym;
1172
1173 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1174 if (sym != NULL)
1175 return sym;
1176
1177 ALL_OBJFILES (objfile)
1178 {
1179 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1180 if (sym != NULL)
1181 return sym;
1182 }
1183
1184 return NULL;
1185 }
1186
1187 /* Check to see if the symbol is defined in BLOCK or its superiors.
1188 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1189
1190 static struct symbol *
1191 lookup_symbol_aux_local (const char *name, const struct block *block,
1192 const domain_enum domain,
1193 enum language language)
1194 {
1195 struct symbol *sym;
1196 const struct block *static_block = block_static_block (block);
1197 const char *scope = block_scope (block);
1198
1199 /* Check if either no block is specified or it's a global block. */
1200
1201 if (static_block == NULL)
1202 return NULL;
1203
1204 while (block != static_block)
1205 {
1206 sym = lookup_symbol_aux_block (name, block, domain);
1207 if (sym != NULL)
1208 return sym;
1209
1210 if (language == language_cplus || language == language_fortran)
1211 {
1212 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1213 domain);
1214 if (sym != NULL)
1215 return sym;
1216 }
1217
1218 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1219 break;
1220 block = BLOCK_SUPERBLOCK (block);
1221 }
1222
1223 /* We've reached the edge of the function without finding a result. */
1224
1225 return NULL;
1226 }
1227
1228 /* Look up OBJFILE to BLOCK. */
1229
1230 struct objfile *
1231 lookup_objfile_from_block (const struct block *block)
1232 {
1233 struct objfile *obj;
1234 struct symtab *s;
1235
1236 if (block == NULL)
1237 return NULL;
1238
1239 block = block_global_block (block);
1240 /* Go through SYMTABS. */
1241 ALL_SYMTABS (obj, s)
1242 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1243 {
1244 if (obj->separate_debug_objfile_backlink)
1245 obj = obj->separate_debug_objfile_backlink;
1246
1247 return obj;
1248 }
1249
1250 return NULL;
1251 }
1252
1253 /* Look up a symbol in a block; if found, fixup the symbol, and set
1254 block_found appropriately. */
1255
1256 struct symbol *
1257 lookup_symbol_aux_block (const char *name, const struct block *block,
1258 const domain_enum domain)
1259 {
1260 struct symbol *sym;
1261
1262 sym = lookup_block_symbol (block, name, domain);
1263 if (sym)
1264 {
1265 block_found = block;
1266 return fixup_symbol_section (sym, NULL);
1267 }
1268
1269 return NULL;
1270 }
1271
1272 /* Check all global symbols in OBJFILE in symtabs and
1273 psymtabs. */
1274
1275 struct symbol *
1276 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1277 const char *name,
1278 const domain_enum domain)
1279 {
1280 const struct objfile *objfile;
1281 struct symbol *sym;
1282 struct blockvector *bv;
1283 const struct block *block;
1284 struct symtab *s;
1285
1286 for (objfile = main_objfile;
1287 objfile;
1288 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1289 {
1290 /* Go through symtabs. */
1291 ALL_OBJFILE_SYMTABS (objfile, s)
1292 {
1293 bv = BLOCKVECTOR (s);
1294 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1295 sym = lookup_block_symbol (block, name, domain);
1296 if (sym)
1297 {
1298 block_found = block;
1299 return fixup_symbol_section (sym, (struct objfile *)objfile);
1300 }
1301 }
1302
1303 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1304 name, domain);
1305 if (sym)
1306 return sym;
1307 }
1308
1309 return NULL;
1310 }
1311
1312 /* Check to see if the symbol is defined in one of the symtabs.
1313 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1314 depending on whether or not we want to search global symbols or
1315 static symbols. */
1316
1317 static struct symbol *
1318 lookup_symbol_aux_symtabs (int block_index, const char *name,
1319 const domain_enum domain)
1320 {
1321 struct symbol *sym;
1322 struct objfile *objfile;
1323 struct blockvector *bv;
1324 const struct block *block;
1325 struct symtab *s;
1326
1327 ALL_OBJFILES (objfile)
1328 {
1329 if (objfile->sf)
1330 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1331 block_index,
1332 name, domain);
1333
1334 ALL_OBJFILE_SYMTABS (objfile, s)
1335 if (s->primary)
1336 {
1337 bv = BLOCKVECTOR (s);
1338 block = BLOCKVECTOR_BLOCK (bv, block_index);
1339 sym = lookup_block_symbol (block, name, domain);
1340 if (sym)
1341 {
1342 block_found = block;
1343 return fixup_symbol_section (sym, objfile);
1344 }
1345 }
1346 }
1347
1348 return NULL;
1349 }
1350
1351 /* A helper function for lookup_symbol_aux that interfaces with the
1352 "quick" symbol table functions. */
1353
1354 static struct symbol *
1355 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1356 const char *name, const domain_enum domain)
1357 {
1358 struct symtab *symtab;
1359 struct blockvector *bv;
1360 const struct block *block;
1361 struct symbol *sym;
1362
1363 if (!objfile->sf)
1364 return NULL;
1365 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1366 if (!symtab)
1367 return NULL;
1368
1369 bv = BLOCKVECTOR (symtab);
1370 block = BLOCKVECTOR_BLOCK (bv, kind);
1371 sym = lookup_block_symbol (block, name, domain);
1372 if (!sym)
1373 {
1374 /* This shouldn't be necessary, but as a last resort try
1375 looking in the statics even though the psymtab claimed
1376 the symbol was global, or vice-versa. It's possible
1377 that the psymtab gets it wrong in some cases. */
1378
1379 /* FIXME: carlton/2002-09-30: Should we really do that?
1380 If that happens, isn't it likely to be a GDB error, in
1381 which case we should fix the GDB error rather than
1382 silently dealing with it here? So I'd vote for
1383 removing the check for the symbol in the other
1384 block. */
1385 block = BLOCKVECTOR_BLOCK (bv,
1386 kind == GLOBAL_BLOCK ?
1387 STATIC_BLOCK : GLOBAL_BLOCK);
1388 sym = lookup_block_symbol (block, name, domain);
1389 if (!sym)
1390 error (_("\
1391 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1392 %s may be an inlined function, or may be a template function\n\
1393 (if a template, try specifying an instantiation: %s<type>)."),
1394 kind == GLOBAL_BLOCK ? "global" : "static",
1395 name, symtab->filename, name, name);
1396 }
1397 return fixup_symbol_section (sym, objfile);
1398 }
1399
1400 /* A default version of lookup_symbol_nonlocal for use by languages
1401 that can't think of anything better to do. This implements the C
1402 lookup rules. */
1403
1404 struct symbol *
1405 basic_lookup_symbol_nonlocal (const char *name,
1406 const struct block *block,
1407 const domain_enum domain)
1408 {
1409 struct symbol *sym;
1410
1411 /* NOTE: carlton/2003-05-19: The comments below were written when
1412 this (or what turned into this) was part of lookup_symbol_aux;
1413 I'm much less worried about these questions now, since these
1414 decisions have turned out well, but I leave these comments here
1415 for posterity. */
1416
1417 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1418 not it would be appropriate to search the current global block
1419 here as well. (That's what this code used to do before the
1420 is_a_field_of_this check was moved up.) On the one hand, it's
1421 redundant with the lookup_symbol_aux_symtabs search that happens
1422 next. On the other hand, if decode_line_1 is passed an argument
1423 like filename:var, then the user presumably wants 'var' to be
1424 searched for in filename. On the third hand, there shouldn't be
1425 multiple global variables all of which are named 'var', and it's
1426 not like decode_line_1 has ever restricted its search to only
1427 global variables in a single filename. All in all, only
1428 searching the static block here seems best: it's correct and it's
1429 cleanest. */
1430
1431 /* NOTE: carlton/2002-12-05: There's also a possible performance
1432 issue here: if you usually search for global symbols in the
1433 current file, then it would be slightly better to search the
1434 current global block before searching all the symtabs. But there
1435 are other factors that have a much greater effect on performance
1436 than that one, so I don't think we should worry about that for
1437 now. */
1438
1439 sym = lookup_symbol_static (name, block, domain);
1440 if (sym != NULL)
1441 return sym;
1442
1443 return lookup_symbol_global (name, block, domain);
1444 }
1445
1446 /* Lookup a symbol in the static block associated to BLOCK, if there
1447 is one; do nothing if BLOCK is NULL or a global block. */
1448
1449 struct symbol *
1450 lookup_symbol_static (const char *name,
1451 const struct block *block,
1452 const domain_enum domain)
1453 {
1454 const struct block *static_block = block_static_block (block);
1455
1456 if (static_block != NULL)
1457 return lookup_symbol_aux_block (name, static_block, domain);
1458 else
1459 return NULL;
1460 }
1461
1462 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1463 necessary). */
1464
1465 struct symbol *
1466 lookup_symbol_global (const char *name,
1467 const struct block *block,
1468 const domain_enum domain)
1469 {
1470 struct symbol *sym = NULL;
1471 struct objfile *objfile = NULL;
1472
1473 /* Call library-specific lookup procedure. */
1474 objfile = lookup_objfile_from_block (block);
1475 if (objfile != NULL)
1476 sym = solib_global_lookup (objfile, name, domain);
1477 if (sym != NULL)
1478 return sym;
1479
1480 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1481 if (sym != NULL)
1482 return sym;
1483
1484 ALL_OBJFILES (objfile)
1485 {
1486 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1487 if (sym)
1488 return sym;
1489 }
1490
1491 return NULL;
1492 }
1493
1494 int
1495 symbol_matches_domain (enum language symbol_language,
1496 domain_enum symbol_domain,
1497 domain_enum domain)
1498 {
1499 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1500 A Java class declaration also defines a typedef for the class.
1501 Similarly, any Ada type declaration implicitly defines a typedef. */
1502 if (symbol_language == language_cplus
1503 || symbol_language == language_d
1504 || symbol_language == language_java
1505 || symbol_language == language_ada)
1506 {
1507 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1508 && symbol_domain == STRUCT_DOMAIN)
1509 return 1;
1510 }
1511 /* For all other languages, strict match is required. */
1512 return (symbol_domain == domain);
1513 }
1514
1515 /* Look up a type named NAME in the struct_domain. The type returned
1516 must not be opaque -- i.e., must have at least one field
1517 defined. */
1518
1519 struct type *
1520 lookup_transparent_type (const char *name)
1521 {
1522 return current_language->la_lookup_transparent_type (name);
1523 }
1524
1525 /* A helper for basic_lookup_transparent_type that interfaces with the
1526 "quick" symbol table functions. */
1527
1528 static struct type *
1529 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1530 const char *name)
1531 {
1532 struct symtab *symtab;
1533 struct blockvector *bv;
1534 struct block *block;
1535 struct symbol *sym;
1536
1537 if (!objfile->sf)
1538 return NULL;
1539 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1540 if (!symtab)
1541 return NULL;
1542
1543 bv = BLOCKVECTOR (symtab);
1544 block = BLOCKVECTOR_BLOCK (bv, kind);
1545 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1546 if (!sym)
1547 {
1548 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1549
1550 /* This shouldn't be necessary, but as a last resort
1551 * try looking in the 'other kind' even though the psymtab
1552 * claimed the symbol was one thing. It's possible that
1553 * the psymtab gets it wrong in some cases.
1554 */
1555 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1556 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1557 if (!sym)
1558 /* FIXME; error is wrong in one case. */
1559 error (_("\
1560 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1561 %s may be an inlined function, or may be a template function\n\
1562 (if a template, try specifying an instantiation: %s<type>)."),
1563 name, symtab->filename, name, name);
1564 }
1565 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1566 return SYMBOL_TYPE (sym);
1567
1568 return NULL;
1569 }
1570
1571 /* The standard implementation of lookup_transparent_type. This code
1572 was modeled on lookup_symbol -- the parts not relevant to looking
1573 up types were just left out. In particular it's assumed here that
1574 types are available in struct_domain and only at file-static or
1575 global blocks. */
1576
1577 struct type *
1578 basic_lookup_transparent_type (const char *name)
1579 {
1580 struct symbol *sym;
1581 struct symtab *s = NULL;
1582 struct blockvector *bv;
1583 struct objfile *objfile;
1584 struct block *block;
1585 struct type *t;
1586
1587 /* Now search all the global symbols. Do the symtab's first, then
1588 check the psymtab's. If a psymtab indicates the existence
1589 of the desired name as a global, then do psymtab-to-symtab
1590 conversion on the fly and return the found symbol. */
1591
1592 ALL_OBJFILES (objfile)
1593 {
1594 if (objfile->sf)
1595 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1596 GLOBAL_BLOCK,
1597 name, STRUCT_DOMAIN);
1598
1599 ALL_OBJFILE_SYMTABS (objfile, s)
1600 if (s->primary)
1601 {
1602 bv = BLOCKVECTOR (s);
1603 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1604 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1605 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1606 {
1607 return SYMBOL_TYPE (sym);
1608 }
1609 }
1610 }
1611
1612 ALL_OBJFILES (objfile)
1613 {
1614 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1615 if (t)
1616 return t;
1617 }
1618
1619 /* Now search the static file-level symbols.
1620 Not strictly correct, but more useful than an error.
1621 Do the symtab's first, then
1622 check the psymtab's. If a psymtab indicates the existence
1623 of the desired name as a file-level static, then do psymtab-to-symtab
1624 conversion on the fly and return the found symbol. */
1625
1626 ALL_OBJFILES (objfile)
1627 {
1628 if (objfile->sf)
1629 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1630 name, STRUCT_DOMAIN);
1631
1632 ALL_OBJFILE_SYMTABS (objfile, s)
1633 {
1634 bv = BLOCKVECTOR (s);
1635 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1636 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1637 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1638 {
1639 return SYMBOL_TYPE (sym);
1640 }
1641 }
1642 }
1643
1644 ALL_OBJFILES (objfile)
1645 {
1646 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1647 if (t)
1648 return t;
1649 }
1650
1651 return (struct type *) 0;
1652 }
1653
1654
1655 /* Find the name of the file containing main(). */
1656 /* FIXME: What about languages without main() or specially linked
1657 executables that have no main() ? */
1658
1659 const char *
1660 find_main_filename (void)
1661 {
1662 struct objfile *objfile;
1663 char *name = main_name ();
1664
1665 ALL_OBJFILES (objfile)
1666 {
1667 const char *result;
1668
1669 if (!objfile->sf)
1670 continue;
1671 result = objfile->sf->qf->find_symbol_file (objfile, name);
1672 if (result)
1673 return result;
1674 }
1675 return (NULL);
1676 }
1677
1678 /* Search BLOCK for symbol NAME in DOMAIN.
1679
1680 Note that if NAME is the demangled form of a C++ symbol, we will fail
1681 to find a match during the binary search of the non-encoded names, but
1682 for now we don't worry about the slight inefficiency of looking for
1683 a match we'll never find, since it will go pretty quick. Once the
1684 binary search terminates, we drop through and do a straight linear
1685 search on the symbols. Each symbol which is marked as being a ObjC/C++
1686 symbol (language_cplus or language_objc set) has both the encoded and
1687 non-encoded names tested for a match. */
1688
1689 struct symbol *
1690 lookup_block_symbol (const struct block *block, const char *name,
1691 const domain_enum domain)
1692 {
1693 struct dict_iterator iter;
1694 struct symbol *sym;
1695
1696 if (!BLOCK_FUNCTION (block))
1697 {
1698 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1699 sym != NULL;
1700 sym = dict_iter_name_next (name, &iter))
1701 {
1702 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1703 SYMBOL_DOMAIN (sym), domain))
1704 return sym;
1705 }
1706 return NULL;
1707 }
1708 else
1709 {
1710 /* Note that parameter symbols do not always show up last in the
1711 list; this loop makes sure to take anything else other than
1712 parameter symbols first; it only uses parameter symbols as a
1713 last resort. Note that this only takes up extra computation
1714 time on a match. */
1715
1716 struct symbol *sym_found = NULL;
1717
1718 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1719 sym != NULL;
1720 sym = dict_iter_name_next (name, &iter))
1721 {
1722 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1723 SYMBOL_DOMAIN (sym), domain))
1724 {
1725 sym_found = sym;
1726 if (!SYMBOL_IS_ARGUMENT (sym))
1727 {
1728 break;
1729 }
1730 }
1731 }
1732 return (sym_found); /* Will be NULL if not found. */
1733 }
1734 }
1735
1736 /* Find the symtab associated with PC and SECTION. Look through the
1737 psymtabs and read in another symtab if necessary. */
1738
1739 struct symtab *
1740 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1741 {
1742 struct block *b;
1743 struct blockvector *bv;
1744 struct symtab *s = NULL;
1745 struct symtab *best_s = NULL;
1746 struct objfile *objfile;
1747 struct program_space *pspace;
1748 CORE_ADDR distance = 0;
1749 struct minimal_symbol *msymbol;
1750
1751 pspace = current_program_space;
1752
1753 /* If we know that this is not a text address, return failure. This is
1754 necessary because we loop based on the block's high and low code
1755 addresses, which do not include the data ranges, and because
1756 we call find_pc_sect_psymtab which has a similar restriction based
1757 on the partial_symtab's texthigh and textlow. */
1758 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1759 if (msymbol
1760 && (MSYMBOL_TYPE (msymbol) == mst_data
1761 || MSYMBOL_TYPE (msymbol) == mst_bss
1762 || MSYMBOL_TYPE (msymbol) == mst_abs
1763 || MSYMBOL_TYPE (msymbol) == mst_file_data
1764 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1765 return NULL;
1766
1767 /* Search all symtabs for the one whose file contains our address, and which
1768 is the smallest of all the ones containing the address. This is designed
1769 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1770 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1771 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1772
1773 This happens for native ecoff format, where code from included files
1774 gets its own symtab. The symtab for the included file should have
1775 been read in already via the dependency mechanism.
1776 It might be swifter to create several symtabs with the same name
1777 like xcoff does (I'm not sure).
1778
1779 It also happens for objfiles that have their functions reordered.
1780 For these, the symtab we are looking for is not necessarily read in. */
1781
1782 ALL_PRIMARY_SYMTABS (objfile, s)
1783 {
1784 bv = BLOCKVECTOR (s);
1785 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1786
1787 if (BLOCK_START (b) <= pc
1788 && BLOCK_END (b) > pc
1789 && (distance == 0
1790 || BLOCK_END (b) - BLOCK_START (b) < distance))
1791 {
1792 /* For an objfile that has its functions reordered,
1793 find_pc_psymtab will find the proper partial symbol table
1794 and we simply return its corresponding symtab. */
1795 /* In order to better support objfiles that contain both
1796 stabs and coff debugging info, we continue on if a psymtab
1797 can't be found. */
1798 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1799 {
1800 struct symtab *result;
1801
1802 result
1803 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1804 msymbol,
1805 pc, section,
1806 0);
1807 if (result)
1808 return result;
1809 }
1810 if (section != 0)
1811 {
1812 struct dict_iterator iter;
1813 struct symbol *sym = NULL;
1814
1815 ALL_BLOCK_SYMBOLS (b, iter, sym)
1816 {
1817 fixup_symbol_section (sym, objfile);
1818 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1819 break;
1820 }
1821 if (sym == NULL)
1822 continue; /* No symbol in this symtab matches
1823 section. */
1824 }
1825 distance = BLOCK_END (b) - BLOCK_START (b);
1826 best_s = s;
1827 }
1828 }
1829
1830 if (best_s != NULL)
1831 return (best_s);
1832
1833 ALL_OBJFILES (objfile)
1834 {
1835 struct symtab *result;
1836
1837 if (!objfile->sf)
1838 continue;
1839 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1840 msymbol,
1841 pc, section,
1842 1);
1843 if (result)
1844 return result;
1845 }
1846
1847 return NULL;
1848 }
1849
1850 /* Find the symtab associated with PC. Look through the psymtabs and read
1851 in another symtab if necessary. Backward compatibility, no section. */
1852
1853 struct symtab *
1854 find_pc_symtab (CORE_ADDR pc)
1855 {
1856 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1857 }
1858 \f
1859
1860 /* Find the source file and line number for a given PC value and SECTION.
1861 Return a structure containing a symtab pointer, a line number,
1862 and a pc range for the entire source line.
1863 The value's .pc field is NOT the specified pc.
1864 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1865 use the line that ends there. Otherwise, in that case, the line
1866 that begins there is used. */
1867
1868 /* The big complication here is that a line may start in one file, and end just
1869 before the start of another file. This usually occurs when you #include
1870 code in the middle of a subroutine. To properly find the end of a line's PC
1871 range, we must search all symtabs associated with this compilation unit, and
1872 find the one whose first PC is closer than that of the next line in this
1873 symtab. */
1874
1875 /* If it's worth the effort, we could be using a binary search. */
1876
1877 struct symtab_and_line
1878 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1879 {
1880 struct symtab *s;
1881 struct linetable *l;
1882 int len;
1883 int i;
1884 struct linetable_entry *item;
1885 struct symtab_and_line val;
1886 struct blockvector *bv;
1887 struct minimal_symbol *msymbol;
1888 struct minimal_symbol *mfunsym;
1889 struct objfile *objfile;
1890
1891 /* Info on best line seen so far, and where it starts, and its file. */
1892
1893 struct linetable_entry *best = NULL;
1894 CORE_ADDR best_end = 0;
1895 struct symtab *best_symtab = 0;
1896
1897 /* Store here the first line number
1898 of a file which contains the line at the smallest pc after PC.
1899 If we don't find a line whose range contains PC,
1900 we will use a line one less than this,
1901 with a range from the start of that file to the first line's pc. */
1902 struct linetable_entry *alt = NULL;
1903 struct symtab *alt_symtab = 0;
1904
1905 /* Info on best line seen in this file. */
1906
1907 struct linetable_entry *prev;
1908
1909 /* If this pc is not from the current frame,
1910 it is the address of the end of a call instruction.
1911 Quite likely that is the start of the following statement.
1912 But what we want is the statement containing the instruction.
1913 Fudge the pc to make sure we get that. */
1914
1915 init_sal (&val); /* initialize to zeroes */
1916
1917 val.pspace = current_program_space;
1918
1919 /* It's tempting to assume that, if we can't find debugging info for
1920 any function enclosing PC, that we shouldn't search for line
1921 number info, either. However, GAS can emit line number info for
1922 assembly files --- very helpful when debugging hand-written
1923 assembly code. In such a case, we'd have no debug info for the
1924 function, but we would have line info. */
1925
1926 if (notcurrent)
1927 pc -= 1;
1928
1929 /* elz: added this because this function returned the wrong
1930 information if the pc belongs to a stub (import/export)
1931 to call a shlib function. This stub would be anywhere between
1932 two functions in the target, and the line info was erroneously
1933 taken to be the one of the line before the pc. */
1934
1935 /* RT: Further explanation:
1936
1937 * We have stubs (trampolines) inserted between procedures.
1938 *
1939 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1940 * exists in the main image.
1941 *
1942 * In the minimal symbol table, we have a bunch of symbols
1943 * sorted by start address. The stubs are marked as "trampoline",
1944 * the others appear as text. E.g.:
1945 *
1946 * Minimal symbol table for main image
1947 * main: code for main (text symbol)
1948 * shr1: stub (trampoline symbol)
1949 * foo: code for foo (text symbol)
1950 * ...
1951 * Minimal symbol table for "shr1" image:
1952 * ...
1953 * shr1: code for shr1 (text symbol)
1954 * ...
1955 *
1956 * So the code below is trying to detect if we are in the stub
1957 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1958 * and if found, do the symbolization from the real-code address
1959 * rather than the stub address.
1960 *
1961 * Assumptions being made about the minimal symbol table:
1962 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1963 * if we're really in the trampoline.s If we're beyond it (say
1964 * we're in "foo" in the above example), it'll have a closer
1965 * symbol (the "foo" text symbol for example) and will not
1966 * return the trampoline.
1967 * 2. lookup_minimal_symbol_text() will find a real text symbol
1968 * corresponding to the trampoline, and whose address will
1969 * be different than the trampoline address. I put in a sanity
1970 * check for the address being the same, to avoid an
1971 * infinite recursion.
1972 */
1973 msymbol = lookup_minimal_symbol_by_pc (pc);
1974 if (msymbol != NULL)
1975 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1976 {
1977 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
1978 NULL);
1979 if (mfunsym == NULL)
1980 /* I eliminated this warning since it is coming out
1981 * in the following situation:
1982 * gdb shmain // test program with shared libraries
1983 * (gdb) break shr1 // function in shared lib
1984 * Warning: In stub for ...
1985 * In the above situation, the shared lib is not loaded yet,
1986 * so of course we can't find the real func/line info,
1987 * but the "break" still works, and the warning is annoying.
1988 * So I commented out the warning. RT */
1989 /* warning ("In stub for %s; unable to find real function/line info",
1990 SYMBOL_LINKAGE_NAME (msymbol)); */
1991 ;
1992 /* fall through */
1993 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
1994 == SYMBOL_VALUE_ADDRESS (msymbol))
1995 /* Avoid infinite recursion */
1996 /* See above comment about why warning is commented out. */
1997 /* warning ("In stub for %s; unable to find real function/line info",
1998 SYMBOL_LINKAGE_NAME (msymbol)); */
1999 ;
2000 /* fall through */
2001 else
2002 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2003 }
2004
2005
2006 s = find_pc_sect_symtab (pc, section);
2007 if (!s)
2008 {
2009 /* If no symbol information, return previous pc. */
2010 if (notcurrent)
2011 pc++;
2012 val.pc = pc;
2013 return val;
2014 }
2015
2016 bv = BLOCKVECTOR (s);
2017 objfile = s->objfile;
2018
2019 /* Look at all the symtabs that share this blockvector.
2020 They all have the same apriori range, that we found was right;
2021 but they have different line tables. */
2022
2023 ALL_OBJFILE_SYMTABS (objfile, s)
2024 {
2025 if (BLOCKVECTOR (s) != bv)
2026 continue;
2027
2028 /* Find the best line in this symtab. */
2029 l = LINETABLE (s);
2030 if (!l)
2031 continue;
2032 len = l->nitems;
2033 if (len <= 0)
2034 {
2035 /* I think len can be zero if the symtab lacks line numbers
2036 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2037 I'm not sure which, and maybe it depends on the symbol
2038 reader). */
2039 continue;
2040 }
2041
2042 prev = NULL;
2043 item = l->item; /* Get first line info. */
2044
2045 /* Is this file's first line closer than the first lines of other files?
2046 If so, record this file, and its first line, as best alternate. */
2047 if (item->pc > pc && (!alt || item->pc < alt->pc))
2048 {
2049 alt = item;
2050 alt_symtab = s;
2051 }
2052
2053 for (i = 0; i < len; i++, item++)
2054 {
2055 /* Leave prev pointing to the linetable entry for the last line
2056 that started at or before PC. */
2057 if (item->pc > pc)
2058 break;
2059
2060 prev = item;
2061 }
2062
2063 /* At this point, prev points at the line whose start addr is <= pc, and
2064 item points at the next line. If we ran off the end of the linetable
2065 (pc >= start of the last line), then prev == item. If pc < start of
2066 the first line, prev will not be set. */
2067
2068 /* Is this file's best line closer than the best in the other files?
2069 If so, record this file, and its best line, as best so far. Don't
2070 save prev if it represents the end of a function (i.e. line number
2071 0) instead of a real line. */
2072
2073 if (prev && prev->line && (!best || prev->pc > best->pc))
2074 {
2075 best = prev;
2076 best_symtab = s;
2077
2078 /* Discard BEST_END if it's before the PC of the current BEST. */
2079 if (best_end <= best->pc)
2080 best_end = 0;
2081 }
2082
2083 /* If another line (denoted by ITEM) is in the linetable and its
2084 PC is after BEST's PC, but before the current BEST_END, then
2085 use ITEM's PC as the new best_end. */
2086 if (best && i < len && item->pc > best->pc
2087 && (best_end == 0 || best_end > item->pc))
2088 best_end = item->pc;
2089 }
2090
2091 if (!best_symtab)
2092 {
2093 /* If we didn't find any line number info, just return zeros.
2094 We used to return alt->line - 1 here, but that could be
2095 anywhere; if we don't have line number info for this PC,
2096 don't make some up. */
2097 val.pc = pc;
2098 }
2099 else if (best->line == 0)
2100 {
2101 /* If our best fit is in a range of PC's for which no line
2102 number info is available (line number is zero) then we didn't
2103 find any valid line information. */
2104 val.pc = pc;
2105 }
2106 else
2107 {
2108 val.symtab = best_symtab;
2109 val.line = best->line;
2110 val.pc = best->pc;
2111 if (best_end && (!alt || best_end < alt->pc))
2112 val.end = best_end;
2113 else if (alt)
2114 val.end = alt->pc;
2115 else
2116 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2117 }
2118 val.section = section;
2119 return val;
2120 }
2121
2122 /* Backward compatibility (no section). */
2123
2124 struct symtab_and_line
2125 find_pc_line (CORE_ADDR pc, int notcurrent)
2126 {
2127 struct obj_section *section;
2128
2129 section = find_pc_overlay (pc);
2130 if (pc_in_unmapped_range (pc, section))
2131 pc = overlay_mapped_address (pc, section);
2132 return find_pc_sect_line (pc, section, notcurrent);
2133 }
2134 \f
2135 /* Find line number LINE in any symtab whose name is the same as
2136 SYMTAB.
2137
2138 If found, return the symtab that contains the linetable in which it was
2139 found, set *INDEX to the index in the linetable of the best entry
2140 found, and set *EXACT_MATCH nonzero if the value returned is an
2141 exact match.
2142
2143 If not found, return NULL. */
2144
2145 struct symtab *
2146 find_line_symtab (struct symtab *symtab, int line,
2147 int *index, int *exact_match)
2148 {
2149 int exact = 0; /* Initialized here to avoid a compiler warning. */
2150
2151 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2152 so far seen. */
2153
2154 int best_index;
2155 struct linetable *best_linetable;
2156 struct symtab *best_symtab;
2157
2158 /* First try looking it up in the given symtab. */
2159 best_linetable = LINETABLE (symtab);
2160 best_symtab = symtab;
2161 best_index = find_line_common (best_linetable, line, &exact);
2162 if (best_index < 0 || !exact)
2163 {
2164 /* Didn't find an exact match. So we better keep looking for
2165 another symtab with the same name. In the case of xcoff,
2166 multiple csects for one source file (produced by IBM's FORTRAN
2167 compiler) produce multiple symtabs (this is unavoidable
2168 assuming csects can be at arbitrary places in memory and that
2169 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2170
2171 /* BEST is the smallest linenumber > LINE so far seen,
2172 or 0 if none has been seen so far.
2173 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2174 int best;
2175
2176 struct objfile *objfile;
2177 struct symtab *s;
2178
2179 if (best_index >= 0)
2180 best = best_linetable->item[best_index].line;
2181 else
2182 best = 0;
2183
2184 ALL_OBJFILES (objfile)
2185 {
2186 if (objfile->sf)
2187 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2188 symtab->filename);
2189 }
2190
2191 /* Get symbol full file name if possible. */
2192 symtab_to_fullname (symtab);
2193
2194 ALL_SYMTABS (objfile, s)
2195 {
2196 struct linetable *l;
2197 int ind;
2198
2199 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2200 continue;
2201 if (symtab->fullname != NULL
2202 && symtab_to_fullname (s) != NULL
2203 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2204 continue;
2205 l = LINETABLE (s);
2206 ind = find_line_common (l, line, &exact);
2207 if (ind >= 0)
2208 {
2209 if (exact)
2210 {
2211 best_index = ind;
2212 best_linetable = l;
2213 best_symtab = s;
2214 goto done;
2215 }
2216 if (best == 0 || l->item[ind].line < best)
2217 {
2218 best = l->item[ind].line;
2219 best_index = ind;
2220 best_linetable = l;
2221 best_symtab = s;
2222 }
2223 }
2224 }
2225 }
2226 done:
2227 if (best_index < 0)
2228 return NULL;
2229
2230 if (index)
2231 *index = best_index;
2232 if (exact_match)
2233 *exact_match = exact;
2234
2235 return best_symtab;
2236 }
2237 \f
2238 /* Set the PC value for a given source file and line number and return true.
2239 Returns zero for invalid line number (and sets the PC to 0).
2240 The source file is specified with a struct symtab. */
2241
2242 int
2243 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2244 {
2245 struct linetable *l;
2246 int ind;
2247
2248 *pc = 0;
2249 if (symtab == 0)
2250 return 0;
2251
2252 symtab = find_line_symtab (symtab, line, &ind, NULL);
2253 if (symtab != NULL)
2254 {
2255 l = LINETABLE (symtab);
2256 *pc = l->item[ind].pc;
2257 return 1;
2258 }
2259 else
2260 return 0;
2261 }
2262
2263 /* Find the range of pc values in a line.
2264 Store the starting pc of the line into *STARTPTR
2265 and the ending pc (start of next line) into *ENDPTR.
2266 Returns 1 to indicate success.
2267 Returns 0 if could not find the specified line. */
2268
2269 int
2270 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2271 CORE_ADDR *endptr)
2272 {
2273 CORE_ADDR startaddr;
2274 struct symtab_and_line found_sal;
2275
2276 startaddr = sal.pc;
2277 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2278 return 0;
2279
2280 /* This whole function is based on address. For example, if line 10 has
2281 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2282 "info line *0x123" should say the line goes from 0x100 to 0x200
2283 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2284 This also insures that we never give a range like "starts at 0x134
2285 and ends at 0x12c". */
2286
2287 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2288 if (found_sal.line != sal.line)
2289 {
2290 /* The specified line (sal) has zero bytes. */
2291 *startptr = found_sal.pc;
2292 *endptr = found_sal.pc;
2293 }
2294 else
2295 {
2296 *startptr = found_sal.pc;
2297 *endptr = found_sal.end;
2298 }
2299 return 1;
2300 }
2301
2302 /* Given a line table and a line number, return the index into the line
2303 table for the pc of the nearest line whose number is >= the specified one.
2304 Return -1 if none is found. The value is >= 0 if it is an index.
2305
2306 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2307
2308 static int
2309 find_line_common (struct linetable *l, int lineno,
2310 int *exact_match)
2311 {
2312 int i;
2313 int len;
2314
2315 /* BEST is the smallest linenumber > LINENO so far seen,
2316 or 0 if none has been seen so far.
2317 BEST_INDEX identifies the item for it. */
2318
2319 int best_index = -1;
2320 int best = 0;
2321
2322 *exact_match = 0;
2323
2324 if (lineno <= 0)
2325 return -1;
2326 if (l == 0)
2327 return -1;
2328
2329 len = l->nitems;
2330 for (i = 0; i < len; i++)
2331 {
2332 struct linetable_entry *item = &(l->item[i]);
2333
2334 if (item->line == lineno)
2335 {
2336 /* Return the first (lowest address) entry which matches. */
2337 *exact_match = 1;
2338 return i;
2339 }
2340
2341 if (item->line > lineno && (best == 0 || item->line < best))
2342 {
2343 best = item->line;
2344 best_index = i;
2345 }
2346 }
2347
2348 /* If we got here, we didn't get an exact match. */
2349 return best_index;
2350 }
2351
2352 int
2353 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2354 {
2355 struct symtab_and_line sal;
2356
2357 sal = find_pc_line (pc, 0);
2358 *startptr = sal.pc;
2359 *endptr = sal.end;
2360 return sal.symtab != 0;
2361 }
2362
2363 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2364 address for that function that has an entry in SYMTAB's line info
2365 table. If such an entry cannot be found, return FUNC_ADDR
2366 unaltered. */
2367 CORE_ADDR
2368 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2369 {
2370 CORE_ADDR func_start, func_end;
2371 struct linetable *l;
2372 int i;
2373
2374 /* Give up if this symbol has no lineinfo table. */
2375 l = LINETABLE (symtab);
2376 if (l == NULL)
2377 return func_addr;
2378
2379 /* Get the range for the function's PC values, or give up if we
2380 cannot, for some reason. */
2381 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2382 return func_addr;
2383
2384 /* Linetable entries are ordered by PC values, see the commentary in
2385 symtab.h where `struct linetable' is defined. Thus, the first
2386 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2387 address we are looking for. */
2388 for (i = 0; i < l->nitems; i++)
2389 {
2390 struct linetable_entry *item = &(l->item[i]);
2391
2392 /* Don't use line numbers of zero, they mark special entries in
2393 the table. See the commentary on symtab.h before the
2394 definition of struct linetable. */
2395 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2396 return item->pc;
2397 }
2398
2399 return func_addr;
2400 }
2401
2402 /* Given a function symbol SYM, find the symtab and line for the start
2403 of the function.
2404 If the argument FUNFIRSTLINE is nonzero, we want the first line
2405 of real code inside the function. */
2406
2407 struct symtab_and_line
2408 find_function_start_sal (struct symbol *sym, int funfirstline)
2409 {
2410 struct symtab_and_line sal;
2411
2412 fixup_symbol_section (sym, NULL);
2413 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2414 SYMBOL_OBJ_SECTION (sym), 0);
2415
2416 /* We always should have a line for the function start address.
2417 If we don't, something is odd. Create a plain SAL refering
2418 just the PC and hope that skip_prologue_sal (if requested)
2419 can find a line number for after the prologue. */
2420 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2421 {
2422 init_sal (&sal);
2423 sal.pspace = current_program_space;
2424 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2425 sal.section = SYMBOL_OBJ_SECTION (sym);
2426 }
2427
2428 if (funfirstline)
2429 skip_prologue_sal (&sal);
2430
2431 return sal;
2432 }
2433
2434 /* Adjust SAL to the first instruction past the function prologue.
2435 If the PC was explicitly specified, the SAL is not changed.
2436 If the line number was explicitly specified, at most the SAL's PC
2437 is updated. If SAL is already past the prologue, then do nothing. */
2438 void
2439 skip_prologue_sal (struct symtab_and_line *sal)
2440 {
2441 struct symbol *sym;
2442 struct symtab_and_line start_sal;
2443 struct cleanup *old_chain;
2444 CORE_ADDR pc;
2445 struct obj_section *section;
2446 const char *name;
2447 struct objfile *objfile;
2448 struct gdbarch *gdbarch;
2449 struct block *b, *function_block;
2450
2451 /* Do not change the SAL is PC was specified explicitly. */
2452 if (sal->explicit_pc)
2453 return;
2454
2455 old_chain = save_current_space_and_thread ();
2456 switch_to_program_space_and_thread (sal->pspace);
2457
2458 sym = find_pc_sect_function (sal->pc, sal->section);
2459 if (sym != NULL)
2460 {
2461 fixup_symbol_section (sym, NULL);
2462
2463 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2464 section = SYMBOL_OBJ_SECTION (sym);
2465 name = SYMBOL_LINKAGE_NAME (sym);
2466 objfile = SYMBOL_SYMTAB (sym)->objfile;
2467 }
2468 else
2469 {
2470 struct minimal_symbol *msymbol
2471 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2472
2473 if (msymbol == NULL)
2474 {
2475 do_cleanups (old_chain);
2476 return;
2477 }
2478
2479 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2480 section = SYMBOL_OBJ_SECTION (msymbol);
2481 name = SYMBOL_LINKAGE_NAME (msymbol);
2482 objfile = msymbol_objfile (msymbol);
2483 }
2484
2485 gdbarch = get_objfile_arch (objfile);
2486
2487 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2488 so that gdbarch_skip_prologue has something unique to work on. */
2489 if (section_is_overlay (section) && !section_is_mapped (section))
2490 pc = overlay_unmapped_address (pc, section);
2491
2492 /* Skip "first line" of function (which is actually its prologue). */
2493 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2494 pc = gdbarch_skip_prologue (gdbarch, pc);
2495
2496 /* For overlays, map pc back into its mapped VMA range. */
2497 pc = overlay_mapped_address (pc, section);
2498
2499 /* Calculate line number. */
2500 start_sal = find_pc_sect_line (pc, section, 0);
2501
2502 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2503 line is still part of the same function. */
2504 if (start_sal.pc != pc
2505 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2506 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2507 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2508 == lookup_minimal_symbol_by_pc_section (pc, section))))
2509 {
2510 /* First pc of next line */
2511 pc = start_sal.end;
2512 /* Recalculate the line number (might not be N+1). */
2513 start_sal = find_pc_sect_line (pc, section, 0);
2514 }
2515
2516 /* On targets with executable formats that don't have a concept of
2517 constructors (ELF with .init has, PE doesn't), gcc emits a call
2518 to `__main' in `main' between the prologue and before user
2519 code. */
2520 if (gdbarch_skip_main_prologue_p (gdbarch)
2521 && name && strcmp (name, "main") == 0)
2522 {
2523 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2524 /* Recalculate the line number (might not be N+1). */
2525 start_sal = find_pc_sect_line (pc, section, 0);
2526 }
2527
2528 /* If we still don't have a valid source line, try to find the first
2529 PC in the lineinfo table that belongs to the same function. This
2530 happens with COFF debug info, which does not seem to have an
2531 entry in lineinfo table for the code after the prologue which has
2532 no direct relation to source. For example, this was found to be
2533 the case with the DJGPP target using "gcc -gcoff" when the
2534 compiler inserted code after the prologue to make sure the stack
2535 is aligned. */
2536 if (sym && start_sal.symtab == NULL)
2537 {
2538 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2539 /* Recalculate the line number. */
2540 start_sal = find_pc_sect_line (pc, section, 0);
2541 }
2542
2543 do_cleanups (old_chain);
2544
2545 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2546 forward SAL to the end of the prologue. */
2547 if (sal->pc >= pc)
2548 return;
2549
2550 sal->pc = pc;
2551 sal->section = section;
2552
2553 /* Unless the explicit_line flag was set, update the SAL line
2554 and symtab to correspond to the modified PC location. */
2555 if (sal->explicit_line)
2556 return;
2557
2558 sal->symtab = start_sal.symtab;
2559 sal->line = start_sal.line;
2560 sal->end = start_sal.end;
2561
2562 /* Check if we are now inside an inlined function. If we can,
2563 use the call site of the function instead. */
2564 b = block_for_pc_sect (sal->pc, sal->section);
2565 function_block = NULL;
2566 while (b != NULL)
2567 {
2568 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2569 function_block = b;
2570 else if (BLOCK_FUNCTION (b) != NULL)
2571 break;
2572 b = BLOCK_SUPERBLOCK (b);
2573 }
2574 if (function_block != NULL
2575 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2576 {
2577 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2578 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2579 }
2580 }
2581
2582 /* If P is of the form "operator[ \t]+..." where `...' is
2583 some legitimate operator text, return a pointer to the
2584 beginning of the substring of the operator text.
2585 Otherwise, return "". */
2586 char *
2587 operator_chars (char *p, char **end)
2588 {
2589 *end = "";
2590 if (strncmp (p, "operator", 8))
2591 return *end;
2592 p += 8;
2593
2594 /* Don't get faked out by `operator' being part of a longer
2595 identifier. */
2596 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2597 return *end;
2598
2599 /* Allow some whitespace between `operator' and the operator symbol. */
2600 while (*p == ' ' || *p == '\t')
2601 p++;
2602
2603 /* Recognize 'operator TYPENAME'. */
2604
2605 if (isalpha (*p) || *p == '_' || *p == '$')
2606 {
2607 char *q = p + 1;
2608
2609 while (isalnum (*q) || *q == '_' || *q == '$')
2610 q++;
2611 *end = q;
2612 return p;
2613 }
2614
2615 while (*p)
2616 switch (*p)
2617 {
2618 case '\\': /* regexp quoting */
2619 if (p[1] == '*')
2620 {
2621 if (p[2] == '=') /* 'operator\*=' */
2622 *end = p + 3;
2623 else /* 'operator\*' */
2624 *end = p + 2;
2625 return p;
2626 }
2627 else if (p[1] == '[')
2628 {
2629 if (p[2] == ']')
2630 error (_("mismatched quoting on brackets, "
2631 "try 'operator\\[\\]'"));
2632 else if (p[2] == '\\' && p[3] == ']')
2633 {
2634 *end = p + 4; /* 'operator\[\]' */
2635 return p;
2636 }
2637 else
2638 error (_("nothing is allowed between '[' and ']'"));
2639 }
2640 else
2641 {
2642 /* Gratuitous qoute: skip it and move on. */
2643 p++;
2644 continue;
2645 }
2646 break;
2647 case '!':
2648 case '=':
2649 case '*':
2650 case '/':
2651 case '%':
2652 case '^':
2653 if (p[1] == '=')
2654 *end = p + 2;
2655 else
2656 *end = p + 1;
2657 return p;
2658 case '<':
2659 case '>':
2660 case '+':
2661 case '-':
2662 case '&':
2663 case '|':
2664 if (p[0] == '-' && p[1] == '>')
2665 {
2666 /* Struct pointer member operator 'operator->'. */
2667 if (p[2] == '*')
2668 {
2669 *end = p + 3; /* 'operator->*' */
2670 return p;
2671 }
2672 else if (p[2] == '\\')
2673 {
2674 *end = p + 4; /* Hopefully 'operator->\*' */
2675 return p;
2676 }
2677 else
2678 {
2679 *end = p + 2; /* 'operator->' */
2680 return p;
2681 }
2682 }
2683 if (p[1] == '=' || p[1] == p[0])
2684 *end = p + 2;
2685 else
2686 *end = p + 1;
2687 return p;
2688 case '~':
2689 case ',':
2690 *end = p + 1;
2691 return p;
2692 case '(':
2693 if (p[1] != ')')
2694 error (_("`operator ()' must be specified "
2695 "without whitespace in `()'"));
2696 *end = p + 2;
2697 return p;
2698 case '?':
2699 if (p[1] != ':')
2700 error (_("`operator ?:' must be specified "
2701 "without whitespace in `?:'"));
2702 *end = p + 2;
2703 return p;
2704 case '[':
2705 if (p[1] != ']')
2706 error (_("`operator []' must be specified "
2707 "without whitespace in `[]'"));
2708 *end = p + 2;
2709 return p;
2710 default:
2711 error (_("`operator %s' not supported"), p);
2712 break;
2713 }
2714
2715 *end = "";
2716 return *end;
2717 }
2718 \f
2719
2720 /* If FILE is not already in the table of files, return zero;
2721 otherwise return non-zero. Optionally add FILE to the table if ADD
2722 is non-zero. If *FIRST is non-zero, forget the old table
2723 contents. */
2724 static int
2725 filename_seen (const char *file, int add, int *first)
2726 {
2727 /* Table of files seen so far. */
2728 static const char **tab = NULL;
2729 /* Allocated size of tab in elements.
2730 Start with one 256-byte block (when using GNU malloc.c).
2731 24 is the malloc overhead when range checking is in effect. */
2732 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2733 /* Current size of tab in elements. */
2734 static int tab_cur_size;
2735 const char **p;
2736
2737 if (*first)
2738 {
2739 if (tab == NULL)
2740 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2741 tab_cur_size = 0;
2742 }
2743
2744 /* Is FILE in tab? */
2745 for (p = tab; p < tab + tab_cur_size; p++)
2746 if (filename_cmp (*p, file) == 0)
2747 return 1;
2748
2749 /* No; maybe add it to tab. */
2750 if (add)
2751 {
2752 if (tab_cur_size == tab_alloc_size)
2753 {
2754 tab_alloc_size *= 2;
2755 tab = (const char **) xrealloc ((char *) tab,
2756 tab_alloc_size * sizeof (*tab));
2757 }
2758 tab[tab_cur_size++] = file;
2759 }
2760
2761 return 0;
2762 }
2763
2764 /* Slave routine for sources_info. Force line breaks at ,'s.
2765 NAME is the name to print and *FIRST is nonzero if this is the first
2766 name printed. Set *FIRST to zero. */
2767 static void
2768 output_source_filename (const char *name, int *first)
2769 {
2770 /* Since a single source file can result in several partial symbol
2771 tables, we need to avoid printing it more than once. Note: if
2772 some of the psymtabs are read in and some are not, it gets
2773 printed both under "Source files for which symbols have been
2774 read" and "Source files for which symbols will be read in on
2775 demand". I consider this a reasonable way to deal with the
2776 situation. I'm not sure whether this can also happen for
2777 symtabs; it doesn't hurt to check. */
2778
2779 /* Was NAME already seen? */
2780 if (filename_seen (name, 1, first))
2781 {
2782 /* Yes; don't print it again. */
2783 return;
2784 }
2785 /* No; print it and reset *FIRST. */
2786 if (*first)
2787 {
2788 *first = 0;
2789 }
2790 else
2791 {
2792 printf_filtered (", ");
2793 }
2794
2795 wrap_here ("");
2796 fputs_filtered (name, gdb_stdout);
2797 }
2798
2799 /* A callback for map_partial_symbol_filenames. */
2800 static void
2801 output_partial_symbol_filename (const char *fullname, const char *filename,
2802 void *data)
2803 {
2804 output_source_filename (fullname ? fullname : filename, data);
2805 }
2806
2807 static void
2808 sources_info (char *ignore, int from_tty)
2809 {
2810 struct symtab *s;
2811 struct objfile *objfile;
2812 int first;
2813
2814 if (!have_full_symbols () && !have_partial_symbols ())
2815 {
2816 error (_("No symbol table is loaded. Use the \"file\" command."));
2817 }
2818
2819 printf_filtered ("Source files for which symbols have been read in:\n\n");
2820
2821 first = 1;
2822 ALL_SYMTABS (objfile, s)
2823 {
2824 const char *fullname = symtab_to_fullname (s);
2825
2826 output_source_filename (fullname ? fullname : s->filename, &first);
2827 }
2828 printf_filtered ("\n\n");
2829
2830 printf_filtered ("Source files for which symbols "
2831 "will be read in on demand:\n\n");
2832
2833 first = 1;
2834 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2835 printf_filtered ("\n");
2836 }
2837
2838 static int
2839 file_matches (const char *file, char *files[], int nfiles)
2840 {
2841 int i;
2842
2843 if (file != NULL && nfiles != 0)
2844 {
2845 for (i = 0; i < nfiles; i++)
2846 {
2847 if (filename_cmp (files[i], lbasename (file)) == 0)
2848 return 1;
2849 }
2850 }
2851 else if (nfiles == 0)
2852 return 1;
2853 return 0;
2854 }
2855
2856 /* Free any memory associated with a search. */
2857 void
2858 free_search_symbols (struct symbol_search *symbols)
2859 {
2860 struct symbol_search *p;
2861 struct symbol_search *next;
2862
2863 for (p = symbols; p != NULL; p = next)
2864 {
2865 next = p->next;
2866 xfree (p);
2867 }
2868 }
2869
2870 static void
2871 do_free_search_symbols_cleanup (void *symbols)
2872 {
2873 free_search_symbols (symbols);
2874 }
2875
2876 struct cleanup *
2877 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2878 {
2879 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2880 }
2881
2882 /* Helper function for sort_search_symbols and qsort. Can only
2883 sort symbols, not minimal symbols. */
2884 static int
2885 compare_search_syms (const void *sa, const void *sb)
2886 {
2887 struct symbol_search **sym_a = (struct symbol_search **) sa;
2888 struct symbol_search **sym_b = (struct symbol_search **) sb;
2889
2890 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2891 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2892 }
2893
2894 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2895 prevtail where it is, but update its next pointer to point to
2896 the first of the sorted symbols. */
2897 static struct symbol_search *
2898 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2899 {
2900 struct symbol_search **symbols, *symp, *old_next;
2901 int i;
2902
2903 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2904 * nfound);
2905 symp = prevtail->next;
2906 for (i = 0; i < nfound; i++)
2907 {
2908 symbols[i] = symp;
2909 symp = symp->next;
2910 }
2911 /* Generally NULL. */
2912 old_next = symp;
2913
2914 qsort (symbols, nfound, sizeof (struct symbol_search *),
2915 compare_search_syms);
2916
2917 symp = prevtail;
2918 for (i = 0; i < nfound; i++)
2919 {
2920 symp->next = symbols[i];
2921 symp = symp->next;
2922 }
2923 symp->next = old_next;
2924
2925 xfree (symbols);
2926 return symp;
2927 }
2928
2929 /* An object of this type is passed as the user_data to the
2930 expand_symtabs_matching method. */
2931 struct search_symbols_data
2932 {
2933 int nfiles;
2934 char **files;
2935
2936 /* It is true if PREG contains valid data, false otherwise. */
2937 unsigned preg_p : 1;
2938 regex_t preg;
2939 };
2940
2941 /* A callback for expand_symtabs_matching. */
2942 static int
2943 search_symbols_file_matches (const char *filename, void *user_data)
2944 {
2945 struct search_symbols_data *data = user_data;
2946
2947 return file_matches (filename, data->files, data->nfiles);
2948 }
2949
2950 /* A callback for expand_symtabs_matching. */
2951 static int
2952 search_symbols_name_matches (const char *symname, void *user_data)
2953 {
2954 struct search_symbols_data *data = user_data;
2955
2956 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
2957 }
2958
2959 /* Search the symbol table for matches to the regular expression REGEXP,
2960 returning the results in *MATCHES.
2961
2962 Only symbols of KIND are searched:
2963 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2964 and constants (enums)
2965 FUNCTIONS_DOMAIN - search all functions
2966 TYPES_DOMAIN - search all type names
2967 ALL_DOMAIN - an internal error for this function
2968
2969 free_search_symbols should be called when *MATCHES is no longer needed.
2970
2971 The results are sorted locally; each symtab's global and static blocks are
2972 separately alphabetized. */
2973
2974 void
2975 search_symbols (char *regexp, enum search_domain kind,
2976 int nfiles, char *files[],
2977 struct symbol_search **matches)
2978 {
2979 struct symtab *s;
2980 struct blockvector *bv;
2981 struct block *b;
2982 int i = 0;
2983 struct dict_iterator iter;
2984 struct symbol *sym;
2985 struct objfile *objfile;
2986 struct minimal_symbol *msymbol;
2987 char *val;
2988 int found_misc = 0;
2989 static const enum minimal_symbol_type types[]
2990 = {mst_data, mst_text, mst_abs};
2991 static const enum minimal_symbol_type types2[]
2992 = {mst_bss, mst_file_text, mst_abs};
2993 static const enum minimal_symbol_type types3[]
2994 = {mst_file_data, mst_solib_trampoline, mst_abs};
2995 static const enum minimal_symbol_type types4[]
2996 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
2997 enum minimal_symbol_type ourtype;
2998 enum minimal_symbol_type ourtype2;
2999 enum minimal_symbol_type ourtype3;
3000 enum minimal_symbol_type ourtype4;
3001 struct symbol_search *sr;
3002 struct symbol_search *psr;
3003 struct symbol_search *tail;
3004 struct search_symbols_data datum;
3005
3006 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3007 CLEANUP_CHAIN is freed only in the case of an error. */
3008 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3009 struct cleanup *retval_chain;
3010
3011 gdb_assert (kind <= TYPES_DOMAIN);
3012
3013 ourtype = types[kind];
3014 ourtype2 = types2[kind];
3015 ourtype3 = types3[kind];
3016 ourtype4 = types4[kind];
3017
3018 sr = *matches = NULL;
3019 tail = NULL;
3020 datum.preg_p = 0;
3021
3022 if (regexp != NULL)
3023 {
3024 /* Make sure spacing is right for C++ operators.
3025 This is just a courtesy to make the matching less sensitive
3026 to how many spaces the user leaves between 'operator'
3027 and <TYPENAME> or <OPERATOR>. */
3028 char *opend;
3029 char *opname = operator_chars (regexp, &opend);
3030 int errcode;
3031
3032 if (*opname)
3033 {
3034 int fix = -1; /* -1 means ok; otherwise number of
3035 spaces needed. */
3036
3037 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3038 {
3039 /* There should 1 space between 'operator' and 'TYPENAME'. */
3040 if (opname[-1] != ' ' || opname[-2] == ' ')
3041 fix = 1;
3042 }
3043 else
3044 {
3045 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3046 if (opname[-1] == ' ')
3047 fix = 0;
3048 }
3049 /* If wrong number of spaces, fix it. */
3050 if (fix >= 0)
3051 {
3052 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3053
3054 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3055 regexp = tmp;
3056 }
3057 }
3058
3059 errcode = regcomp (&datum.preg, regexp,
3060 REG_NOSUB | (case_sensitivity == case_sensitive_off
3061 ? REG_ICASE : 0));
3062 if (errcode != 0)
3063 {
3064 char *err = get_regcomp_error (errcode, &datum.preg);
3065
3066 make_cleanup (xfree, err);
3067 error (_("Invalid regexp (%s): %s"), err, regexp);
3068 }
3069 datum.preg_p = 1;
3070 make_regfree_cleanup (&datum.preg);
3071 }
3072
3073 /* Search through the partial symtabs *first* for all symbols
3074 matching the regexp. That way we don't have to reproduce all of
3075 the machinery below. */
3076
3077 datum.nfiles = nfiles;
3078 datum.files = files;
3079 ALL_OBJFILES (objfile)
3080 {
3081 if (objfile->sf)
3082 objfile->sf->qf->expand_symtabs_matching (objfile,
3083 search_symbols_file_matches,
3084 search_symbols_name_matches,
3085 kind,
3086 &datum);
3087 }
3088
3089 retval_chain = old_chain;
3090
3091 /* Here, we search through the minimal symbol tables for functions
3092 and variables that match, and force their symbols to be read.
3093 This is in particular necessary for demangled variable names,
3094 which are no longer put into the partial symbol tables.
3095 The symbol will then be found during the scan of symtabs below.
3096
3097 For functions, find_pc_symtab should succeed if we have debug info
3098 for the function, for variables we have to call lookup_symbol
3099 to determine if the variable has debug info.
3100 If the lookup fails, set found_misc so that we will rescan to print
3101 any matching symbols without debug info. */
3102
3103 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3104 {
3105 ALL_MSYMBOLS (objfile, msymbol)
3106 {
3107 QUIT;
3108
3109 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3110 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3111 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3112 MSYMBOL_TYPE (msymbol) == ourtype4)
3113 {
3114 if (!datum.preg_p
3115 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3116 NULL, 0) == 0)
3117 {
3118 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3119 {
3120 /* FIXME: carlton/2003-02-04: Given that the
3121 semantics of lookup_symbol keeps on changing
3122 slightly, it would be a nice idea if we had a
3123 function lookup_symbol_minsym that found the
3124 symbol associated to a given minimal symbol (if
3125 any). */
3126 if (kind == FUNCTIONS_DOMAIN
3127 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3128 (struct block *) NULL,
3129 VAR_DOMAIN, 0)
3130 == NULL)
3131 found_misc = 1;
3132 }
3133 }
3134 }
3135 }
3136 }
3137
3138 ALL_PRIMARY_SYMTABS (objfile, s)
3139 {
3140 bv = BLOCKVECTOR (s);
3141 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3142 {
3143 struct symbol_search *prevtail = tail;
3144 int nfound = 0;
3145
3146 b = BLOCKVECTOR_BLOCK (bv, i);
3147 ALL_BLOCK_SYMBOLS (b, iter, sym)
3148 {
3149 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3150
3151 QUIT;
3152
3153 if (file_matches (real_symtab->filename, files, nfiles)
3154 && ((!datum.preg_p
3155 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3156 NULL, 0) == 0)
3157 && ((kind == VARIABLES_DOMAIN
3158 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3159 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3160 && SYMBOL_CLASS (sym) != LOC_BLOCK
3161 /* LOC_CONST can be used for more than just enums,
3162 e.g., c++ static const members.
3163 We only want to skip enums here. */
3164 && !(SYMBOL_CLASS (sym) == LOC_CONST
3165 && TYPE_CODE (SYMBOL_TYPE (sym))
3166 == TYPE_CODE_ENUM))
3167 || (kind == FUNCTIONS_DOMAIN
3168 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3169 || (kind == TYPES_DOMAIN
3170 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3171 {
3172 /* match */
3173 psr = (struct symbol_search *)
3174 xmalloc (sizeof (struct symbol_search));
3175 psr->block = i;
3176 psr->symtab = real_symtab;
3177 psr->symbol = sym;
3178 psr->msymbol = NULL;
3179 psr->next = NULL;
3180 if (tail == NULL)
3181 sr = psr;
3182 else
3183 tail->next = psr;
3184 tail = psr;
3185 nfound ++;
3186 }
3187 }
3188 if (nfound > 0)
3189 {
3190 if (prevtail == NULL)
3191 {
3192 struct symbol_search dummy;
3193
3194 dummy.next = sr;
3195 tail = sort_search_symbols (&dummy, nfound);
3196 sr = dummy.next;
3197
3198 make_cleanup_free_search_symbols (sr);
3199 }
3200 else
3201 tail = sort_search_symbols (prevtail, nfound);
3202 }
3203 }
3204 }
3205
3206 /* If there are no eyes, avoid all contact. I mean, if there are
3207 no debug symbols, then print directly from the msymbol_vector. */
3208
3209 if (found_misc || kind != FUNCTIONS_DOMAIN)
3210 {
3211 ALL_MSYMBOLS (objfile, msymbol)
3212 {
3213 QUIT;
3214
3215 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3216 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3217 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3218 MSYMBOL_TYPE (msymbol) == ourtype4)
3219 {
3220 if (!datum.preg_p
3221 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3222 NULL, 0) == 0)
3223 {
3224 /* Functions: Look up by address. */
3225 if (kind != FUNCTIONS_DOMAIN ||
3226 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3227 {
3228 /* Variables/Absolutes: Look up by name. */
3229 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3230 (struct block *) NULL, VAR_DOMAIN, 0)
3231 == NULL)
3232 {
3233 /* match */
3234 psr = (struct symbol_search *)
3235 xmalloc (sizeof (struct symbol_search));
3236 psr->block = i;
3237 psr->msymbol = msymbol;
3238 psr->symtab = NULL;
3239 psr->symbol = NULL;
3240 psr->next = NULL;
3241 if (tail == NULL)
3242 {
3243 sr = psr;
3244 make_cleanup_free_search_symbols (sr);
3245 }
3246 else
3247 tail->next = psr;
3248 tail = psr;
3249 }
3250 }
3251 }
3252 }
3253 }
3254 }
3255
3256 discard_cleanups (retval_chain);
3257 do_cleanups (old_chain);
3258 *matches = sr;
3259 }
3260
3261 /* Helper function for symtab_symbol_info, this function uses
3262 the data returned from search_symbols() to print information
3263 regarding the match to gdb_stdout. */
3264
3265 static void
3266 print_symbol_info (enum search_domain kind,
3267 struct symtab *s, struct symbol *sym,
3268 int block, char *last)
3269 {
3270 if (last == NULL || filename_cmp (last, s->filename) != 0)
3271 {
3272 fputs_filtered ("\nFile ", gdb_stdout);
3273 fputs_filtered (s->filename, gdb_stdout);
3274 fputs_filtered (":\n", gdb_stdout);
3275 }
3276
3277 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3278 printf_filtered ("static ");
3279
3280 /* Typedef that is not a C++ class. */
3281 if (kind == TYPES_DOMAIN
3282 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3283 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3284 /* variable, func, or typedef-that-is-c++-class. */
3285 else if (kind < TYPES_DOMAIN ||
3286 (kind == TYPES_DOMAIN &&
3287 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3288 {
3289 type_print (SYMBOL_TYPE (sym),
3290 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3291 ? "" : SYMBOL_PRINT_NAME (sym)),
3292 gdb_stdout, 0);
3293
3294 printf_filtered (";\n");
3295 }
3296 }
3297
3298 /* This help function for symtab_symbol_info() prints information
3299 for non-debugging symbols to gdb_stdout. */
3300
3301 static void
3302 print_msymbol_info (struct minimal_symbol *msymbol)
3303 {
3304 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3305 char *tmp;
3306
3307 if (gdbarch_addr_bit (gdbarch) <= 32)
3308 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3309 & (CORE_ADDR) 0xffffffff,
3310 8);
3311 else
3312 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3313 16);
3314 printf_filtered ("%s %s\n",
3315 tmp, SYMBOL_PRINT_NAME (msymbol));
3316 }
3317
3318 /* This is the guts of the commands "info functions", "info types", and
3319 "info variables". It calls search_symbols to find all matches and then
3320 print_[m]symbol_info to print out some useful information about the
3321 matches. */
3322
3323 static void
3324 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3325 {
3326 static const char * const classnames[] =
3327 {"variable", "function", "type"};
3328 struct symbol_search *symbols;
3329 struct symbol_search *p;
3330 struct cleanup *old_chain;
3331 char *last_filename = NULL;
3332 int first = 1;
3333
3334 gdb_assert (kind <= TYPES_DOMAIN);
3335
3336 /* Must make sure that if we're interrupted, symbols gets freed. */
3337 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3338 old_chain = make_cleanup_free_search_symbols (symbols);
3339
3340 printf_filtered (regexp
3341 ? "All %ss matching regular expression \"%s\":\n"
3342 : "All defined %ss:\n",
3343 classnames[kind], regexp);
3344
3345 for (p = symbols; p != NULL; p = p->next)
3346 {
3347 QUIT;
3348
3349 if (p->msymbol != NULL)
3350 {
3351 if (first)
3352 {
3353 printf_filtered ("\nNon-debugging symbols:\n");
3354 first = 0;
3355 }
3356 print_msymbol_info (p->msymbol);
3357 }
3358 else
3359 {
3360 print_symbol_info (kind,
3361 p->symtab,
3362 p->symbol,
3363 p->block,
3364 last_filename);
3365 last_filename = p->symtab->filename;
3366 }
3367 }
3368
3369 do_cleanups (old_chain);
3370 }
3371
3372 static void
3373 variables_info (char *regexp, int from_tty)
3374 {
3375 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3376 }
3377
3378 static void
3379 functions_info (char *regexp, int from_tty)
3380 {
3381 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3382 }
3383
3384
3385 static void
3386 types_info (char *regexp, int from_tty)
3387 {
3388 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3389 }
3390
3391 /* Breakpoint all functions matching regular expression. */
3392
3393 void
3394 rbreak_command_wrapper (char *regexp, int from_tty)
3395 {
3396 rbreak_command (regexp, from_tty);
3397 }
3398
3399 /* A cleanup function that calls end_rbreak_breakpoints. */
3400
3401 static void
3402 do_end_rbreak_breakpoints (void *ignore)
3403 {
3404 end_rbreak_breakpoints ();
3405 }
3406
3407 static void
3408 rbreak_command (char *regexp, int from_tty)
3409 {
3410 struct symbol_search *ss;
3411 struct symbol_search *p;
3412 struct cleanup *old_chain;
3413 char *string = NULL;
3414 int len = 0;
3415 char **files = NULL, *file_name;
3416 int nfiles = 0;
3417
3418 if (regexp)
3419 {
3420 char *colon = strchr (regexp, ':');
3421
3422 if (colon && *(colon + 1) != ':')
3423 {
3424 int colon_index;
3425
3426 colon_index = colon - regexp;
3427 file_name = alloca (colon_index + 1);
3428 memcpy (file_name, regexp, colon_index);
3429 file_name[colon_index--] = 0;
3430 while (isspace (file_name[colon_index]))
3431 file_name[colon_index--] = 0;
3432 files = &file_name;
3433 nfiles = 1;
3434 regexp = colon + 1;
3435 while (isspace (*regexp)) regexp++;
3436 }
3437 }
3438
3439 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3440 old_chain = make_cleanup_free_search_symbols (ss);
3441 make_cleanup (free_current_contents, &string);
3442
3443 start_rbreak_breakpoints ();
3444 make_cleanup (do_end_rbreak_breakpoints, NULL);
3445 for (p = ss; p != NULL; p = p->next)
3446 {
3447 if (p->msymbol == NULL)
3448 {
3449 int newlen = (strlen (p->symtab->filename)
3450 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3451 + 4);
3452
3453 if (newlen > len)
3454 {
3455 string = xrealloc (string, newlen);
3456 len = newlen;
3457 }
3458 strcpy (string, p->symtab->filename);
3459 strcat (string, ":'");
3460 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3461 strcat (string, "'");
3462 break_command (string, from_tty);
3463 print_symbol_info (FUNCTIONS_DOMAIN,
3464 p->symtab,
3465 p->symbol,
3466 p->block,
3467 p->symtab->filename);
3468 }
3469 else
3470 {
3471 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3472
3473 if (newlen > len)
3474 {
3475 string = xrealloc (string, newlen);
3476 len = newlen;
3477 }
3478 strcpy (string, "'");
3479 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3480 strcat (string, "'");
3481
3482 break_command (string, from_tty);
3483 printf_filtered ("<function, no debug info> %s;\n",
3484 SYMBOL_PRINT_NAME (p->msymbol));
3485 }
3486 }
3487
3488 do_cleanups (old_chain);
3489 }
3490 \f
3491
3492 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3493
3494 Either sym_text[sym_text_len] != '(' and then we search for any
3495 symbol starting with SYM_TEXT text.
3496
3497 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3498 be terminated at that point. Partial symbol tables do not have parameters
3499 information. */
3500
3501 static int
3502 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3503 {
3504 int (*ncmp) (const char *, const char *, size_t);
3505
3506 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3507
3508 if (ncmp (name, sym_text, sym_text_len) != 0)
3509 return 0;
3510
3511 if (sym_text[sym_text_len] == '(')
3512 {
3513 /* User searches for `name(someth...'. Require NAME to be terminated.
3514 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3515 present but accept even parameters presence. In this case this
3516 function is in fact strcmp_iw but whitespace skipping is not supported
3517 for tab completion. */
3518
3519 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3520 return 0;
3521 }
3522
3523 return 1;
3524 }
3525
3526 /* Helper routine for make_symbol_completion_list. */
3527
3528 static int return_val_size;
3529 static int return_val_index;
3530 static char **return_val;
3531
3532 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3533 completion_list_add_name \
3534 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3535
3536 /* Test to see if the symbol specified by SYMNAME (which is already
3537 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3538 characters. If so, add it to the current completion list. */
3539
3540 static void
3541 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3542 char *text, char *word)
3543 {
3544 int newsize;
3545
3546 /* Clip symbols that cannot match. */
3547 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3548 return;
3549
3550 /* We have a match for a completion, so add SYMNAME to the current list
3551 of matches. Note that the name is moved to freshly malloc'd space. */
3552
3553 {
3554 char *new;
3555
3556 if (word == sym_text)
3557 {
3558 new = xmalloc (strlen (symname) + 5);
3559 strcpy (new, symname);
3560 }
3561 else if (word > sym_text)
3562 {
3563 /* Return some portion of symname. */
3564 new = xmalloc (strlen (symname) + 5);
3565 strcpy (new, symname + (word - sym_text));
3566 }
3567 else
3568 {
3569 /* Return some of SYM_TEXT plus symname. */
3570 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3571 strncpy (new, word, sym_text - word);
3572 new[sym_text - word] = '\0';
3573 strcat (new, symname);
3574 }
3575
3576 if (return_val_index + 3 > return_val_size)
3577 {
3578 newsize = (return_val_size *= 2) * sizeof (char *);
3579 return_val = (char **) xrealloc ((char *) return_val, newsize);
3580 }
3581 return_val[return_val_index++] = new;
3582 return_val[return_val_index] = NULL;
3583 }
3584 }
3585
3586 /* ObjC: In case we are completing on a selector, look as the msymbol
3587 again and feed all the selectors into the mill. */
3588
3589 static void
3590 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3591 int sym_text_len, char *text, char *word)
3592 {
3593 static char *tmp = NULL;
3594 static unsigned int tmplen = 0;
3595
3596 char *method, *category, *selector;
3597 char *tmp2 = NULL;
3598
3599 method = SYMBOL_NATURAL_NAME (msymbol);
3600
3601 /* Is it a method? */
3602 if ((method[0] != '-') && (method[0] != '+'))
3603 return;
3604
3605 if (sym_text[0] == '[')
3606 /* Complete on shortened method method. */
3607 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3608
3609 while ((strlen (method) + 1) >= tmplen)
3610 {
3611 if (tmplen == 0)
3612 tmplen = 1024;
3613 else
3614 tmplen *= 2;
3615 tmp = xrealloc (tmp, tmplen);
3616 }
3617 selector = strchr (method, ' ');
3618 if (selector != NULL)
3619 selector++;
3620
3621 category = strchr (method, '(');
3622
3623 if ((category != NULL) && (selector != NULL))
3624 {
3625 memcpy (tmp, method, (category - method));
3626 tmp[category - method] = ' ';
3627 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3628 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3629 if (sym_text[0] == '[')
3630 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3631 }
3632
3633 if (selector != NULL)
3634 {
3635 /* Complete on selector only. */
3636 strcpy (tmp, selector);
3637 tmp2 = strchr (tmp, ']');
3638 if (tmp2 != NULL)
3639 *tmp2 = '\0';
3640
3641 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3642 }
3643 }
3644
3645 /* Break the non-quoted text based on the characters which are in
3646 symbols. FIXME: This should probably be language-specific. */
3647
3648 static char *
3649 language_search_unquoted_string (char *text, char *p)
3650 {
3651 for (; p > text; --p)
3652 {
3653 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3654 continue;
3655 else
3656 {
3657 if ((current_language->la_language == language_objc))
3658 {
3659 if (p[-1] == ':') /* Might be part of a method name. */
3660 continue;
3661 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3662 p -= 2; /* Beginning of a method name. */
3663 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3664 { /* Might be part of a method name. */
3665 char *t = p;
3666
3667 /* Seeing a ' ' or a '(' is not conclusive evidence
3668 that we are in the middle of a method name. However,
3669 finding "-[" or "+[" should be pretty un-ambiguous.
3670 Unfortunately we have to find it now to decide. */
3671
3672 while (t > text)
3673 if (isalnum (t[-1]) || t[-1] == '_' ||
3674 t[-1] == ' ' || t[-1] == ':' ||
3675 t[-1] == '(' || t[-1] == ')')
3676 --t;
3677 else
3678 break;
3679
3680 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3681 p = t - 2; /* Method name detected. */
3682 /* Else we leave with p unchanged. */
3683 }
3684 }
3685 break;
3686 }
3687 }
3688 return p;
3689 }
3690
3691 static void
3692 completion_list_add_fields (struct symbol *sym, char *sym_text,
3693 int sym_text_len, char *text, char *word)
3694 {
3695 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3696 {
3697 struct type *t = SYMBOL_TYPE (sym);
3698 enum type_code c = TYPE_CODE (t);
3699 int j;
3700
3701 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3702 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3703 if (TYPE_FIELD_NAME (t, j))
3704 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3705 sym_text, sym_text_len, text, word);
3706 }
3707 }
3708
3709 /* Type of the user_data argument passed to add_macro_name or
3710 expand_partial_symbol_name. The contents are simply whatever is
3711 needed by completion_list_add_name. */
3712 struct add_name_data
3713 {
3714 char *sym_text;
3715 int sym_text_len;
3716 char *text;
3717 char *word;
3718 };
3719
3720 /* A callback used with macro_for_each and macro_for_each_in_scope.
3721 This adds a macro's name to the current completion list. */
3722 static void
3723 add_macro_name (const char *name, const struct macro_definition *ignore,
3724 void *user_data)
3725 {
3726 struct add_name_data *datum = (struct add_name_data *) user_data;
3727
3728 completion_list_add_name ((char *) name,
3729 datum->sym_text, datum->sym_text_len,
3730 datum->text, datum->word);
3731 }
3732
3733 /* A callback for expand_partial_symbol_names. */
3734 static int
3735 expand_partial_symbol_name (const char *name, void *user_data)
3736 {
3737 struct add_name_data *datum = (struct add_name_data *) user_data;
3738
3739 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
3740 }
3741
3742 char **
3743 default_make_symbol_completion_list_break_on (char *text, char *word,
3744 const char *break_on)
3745 {
3746 /* Problem: All of the symbols have to be copied because readline
3747 frees them. I'm not going to worry about this; hopefully there
3748 won't be that many. */
3749
3750 struct symbol *sym;
3751 struct symtab *s;
3752 struct minimal_symbol *msymbol;
3753 struct objfile *objfile;
3754 struct block *b;
3755 const struct block *surrounding_static_block, *surrounding_global_block;
3756 struct dict_iterator iter;
3757 /* The symbol we are completing on. Points in same buffer as text. */
3758 char *sym_text;
3759 /* Length of sym_text. */
3760 int sym_text_len;
3761 struct add_name_data datum;
3762
3763 /* Now look for the symbol we are supposed to complete on. */
3764 {
3765 char *p;
3766 char quote_found;
3767 char *quote_pos = NULL;
3768
3769 /* First see if this is a quoted string. */
3770 quote_found = '\0';
3771 for (p = text; *p != '\0'; ++p)
3772 {
3773 if (quote_found != '\0')
3774 {
3775 if (*p == quote_found)
3776 /* Found close quote. */
3777 quote_found = '\0';
3778 else if (*p == '\\' && p[1] == quote_found)
3779 /* A backslash followed by the quote character
3780 doesn't end the string. */
3781 ++p;
3782 }
3783 else if (*p == '\'' || *p == '"')
3784 {
3785 quote_found = *p;
3786 quote_pos = p;
3787 }
3788 }
3789 if (quote_found == '\'')
3790 /* A string within single quotes can be a symbol, so complete on it. */
3791 sym_text = quote_pos + 1;
3792 else if (quote_found == '"')
3793 /* A double-quoted string is never a symbol, nor does it make sense
3794 to complete it any other way. */
3795 {
3796 return_val = (char **) xmalloc (sizeof (char *));
3797 return_val[0] = NULL;
3798 return return_val;
3799 }
3800 else
3801 {
3802 /* It is not a quoted string. Break it based on the characters
3803 which are in symbols. */
3804 while (p > text)
3805 {
3806 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3807 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3808 --p;
3809 else
3810 break;
3811 }
3812 sym_text = p;
3813 }
3814 }
3815
3816 sym_text_len = strlen (sym_text);
3817
3818 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
3819
3820 if (current_language->la_language == language_cplus
3821 || current_language->la_language == language_java
3822 || current_language->la_language == language_fortran)
3823 {
3824 /* These languages may have parameters entered by user but they are never
3825 present in the partial symbol tables. */
3826
3827 const char *cs = memchr (sym_text, '(', sym_text_len);
3828
3829 if (cs)
3830 sym_text_len = cs - sym_text;
3831 }
3832 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
3833
3834 return_val_size = 100;
3835 return_val_index = 0;
3836 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3837 return_val[0] = NULL;
3838
3839 datum.sym_text = sym_text;
3840 datum.sym_text_len = sym_text_len;
3841 datum.text = text;
3842 datum.word = word;
3843
3844 /* Look through the partial symtabs for all symbols which begin
3845 by matching SYM_TEXT. Expand all CUs that you find to the list.
3846 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
3847 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
3848
3849 /* At this point scan through the misc symbol vectors and add each
3850 symbol you find to the list. Eventually we want to ignore
3851 anything that isn't a text symbol (everything else will be
3852 handled by the psymtab code above). */
3853
3854 ALL_MSYMBOLS (objfile, msymbol)
3855 {
3856 QUIT;
3857 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3858
3859 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3860 }
3861
3862 /* Search upwards from currently selected frame (so that we can
3863 complete on local vars). Also catch fields of types defined in
3864 this places which match our text string. Only complete on types
3865 visible from current context. */
3866
3867 b = get_selected_block (0);
3868 surrounding_static_block = block_static_block (b);
3869 surrounding_global_block = block_global_block (b);
3870 if (surrounding_static_block != NULL)
3871 while (b != surrounding_static_block)
3872 {
3873 QUIT;
3874
3875 ALL_BLOCK_SYMBOLS (b, iter, sym)
3876 {
3877 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3878 word);
3879 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3880 word);
3881 }
3882
3883 /* Stop when we encounter an enclosing function. Do not stop for
3884 non-inlined functions - the locals of the enclosing function
3885 are in scope for a nested function. */
3886 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3887 break;
3888 b = BLOCK_SUPERBLOCK (b);
3889 }
3890
3891 /* Add fields from the file's types; symbols will be added below. */
3892
3893 if (surrounding_static_block != NULL)
3894 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3895 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3896
3897 if (surrounding_global_block != NULL)
3898 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3899 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3900
3901 /* Go through the symtabs and check the externs and statics for
3902 symbols which match. */
3903
3904 ALL_PRIMARY_SYMTABS (objfile, s)
3905 {
3906 QUIT;
3907 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3908 ALL_BLOCK_SYMBOLS (b, iter, sym)
3909 {
3910 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3911 }
3912 }
3913
3914 ALL_PRIMARY_SYMTABS (objfile, s)
3915 {
3916 QUIT;
3917 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3918 ALL_BLOCK_SYMBOLS (b, iter, sym)
3919 {
3920 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3921 }
3922 }
3923
3924 if (current_language->la_macro_expansion == macro_expansion_c)
3925 {
3926 struct macro_scope *scope;
3927
3928 /* Add any macros visible in the default scope. Note that this
3929 may yield the occasional wrong result, because an expression
3930 might be evaluated in a scope other than the default. For
3931 example, if the user types "break file:line if <TAB>", the
3932 resulting expression will be evaluated at "file:line" -- but
3933 at there does not seem to be a way to detect this at
3934 completion time. */
3935 scope = default_macro_scope ();
3936 if (scope)
3937 {
3938 macro_for_each_in_scope (scope->file, scope->line,
3939 add_macro_name, &datum);
3940 xfree (scope);
3941 }
3942
3943 /* User-defined macros are always visible. */
3944 macro_for_each (macro_user_macros, add_macro_name, &datum);
3945 }
3946
3947 return (return_val);
3948 }
3949
3950 char **
3951 default_make_symbol_completion_list (char *text, char *word)
3952 {
3953 return default_make_symbol_completion_list_break_on (text, word, "");
3954 }
3955
3956 /* Return a NULL terminated array of all symbols (regardless of class)
3957 which begin by matching TEXT. If the answer is no symbols, then
3958 the return value is an array which contains only a NULL pointer. */
3959
3960 char **
3961 make_symbol_completion_list (char *text, char *word)
3962 {
3963 return current_language->la_make_symbol_completion_list (text, word);
3964 }
3965
3966 /* Like make_symbol_completion_list, but suitable for use as a
3967 completion function. */
3968
3969 char **
3970 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3971 char *text, char *word)
3972 {
3973 return make_symbol_completion_list (text, word);
3974 }
3975
3976 /* Like make_symbol_completion_list, but returns a list of symbols
3977 defined in a source file FILE. */
3978
3979 char **
3980 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3981 {
3982 struct symbol *sym;
3983 struct symtab *s;
3984 struct block *b;
3985 struct dict_iterator iter;
3986 /* The symbol we are completing on. Points in same buffer as text. */
3987 char *sym_text;
3988 /* Length of sym_text. */
3989 int sym_text_len;
3990
3991 /* Now look for the symbol we are supposed to complete on.
3992 FIXME: This should be language-specific. */
3993 {
3994 char *p;
3995 char quote_found;
3996 char *quote_pos = NULL;
3997
3998 /* First see if this is a quoted string. */
3999 quote_found = '\0';
4000 for (p = text; *p != '\0'; ++p)
4001 {
4002 if (quote_found != '\0')
4003 {
4004 if (*p == quote_found)
4005 /* Found close quote. */
4006 quote_found = '\0';
4007 else if (*p == '\\' && p[1] == quote_found)
4008 /* A backslash followed by the quote character
4009 doesn't end the string. */
4010 ++p;
4011 }
4012 else if (*p == '\'' || *p == '"')
4013 {
4014 quote_found = *p;
4015 quote_pos = p;
4016 }
4017 }
4018 if (quote_found == '\'')
4019 /* A string within single quotes can be a symbol, so complete on it. */
4020 sym_text = quote_pos + 1;
4021 else if (quote_found == '"')
4022 /* A double-quoted string is never a symbol, nor does it make sense
4023 to complete it any other way. */
4024 {
4025 return_val = (char **) xmalloc (sizeof (char *));
4026 return_val[0] = NULL;
4027 return return_val;
4028 }
4029 else
4030 {
4031 /* Not a quoted string. */
4032 sym_text = language_search_unquoted_string (text, p);
4033 }
4034 }
4035
4036 sym_text_len = strlen (sym_text);
4037
4038 return_val_size = 10;
4039 return_val_index = 0;
4040 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4041 return_val[0] = NULL;
4042
4043 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4044 in). */
4045 s = lookup_symtab (srcfile);
4046 if (s == NULL)
4047 {
4048 /* Maybe they typed the file with leading directories, while the
4049 symbol tables record only its basename. */
4050 const char *tail = lbasename (srcfile);
4051
4052 if (tail > srcfile)
4053 s = lookup_symtab (tail);
4054 }
4055
4056 /* If we have no symtab for that file, return an empty list. */
4057 if (s == NULL)
4058 return (return_val);
4059
4060 /* Go through this symtab and check the externs and statics for
4061 symbols which match. */
4062
4063 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4064 ALL_BLOCK_SYMBOLS (b, iter, sym)
4065 {
4066 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4067 }
4068
4069 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4070 ALL_BLOCK_SYMBOLS (b, iter, sym)
4071 {
4072 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4073 }
4074
4075 return (return_val);
4076 }
4077
4078 /* A helper function for make_source_files_completion_list. It adds
4079 another file name to a list of possible completions, growing the
4080 list as necessary. */
4081
4082 static void
4083 add_filename_to_list (const char *fname, char *text, char *word,
4084 char ***list, int *list_used, int *list_alloced)
4085 {
4086 char *new;
4087 size_t fnlen = strlen (fname);
4088
4089 if (*list_used + 1 >= *list_alloced)
4090 {
4091 *list_alloced *= 2;
4092 *list = (char **) xrealloc ((char *) *list,
4093 *list_alloced * sizeof (char *));
4094 }
4095
4096 if (word == text)
4097 {
4098 /* Return exactly fname. */
4099 new = xmalloc (fnlen + 5);
4100 strcpy (new, fname);
4101 }
4102 else if (word > text)
4103 {
4104 /* Return some portion of fname. */
4105 new = xmalloc (fnlen + 5);
4106 strcpy (new, fname + (word - text));
4107 }
4108 else
4109 {
4110 /* Return some of TEXT plus fname. */
4111 new = xmalloc (fnlen + (text - word) + 5);
4112 strncpy (new, word, text - word);
4113 new[text - word] = '\0';
4114 strcat (new, fname);
4115 }
4116 (*list)[*list_used] = new;
4117 (*list)[++*list_used] = NULL;
4118 }
4119
4120 static int
4121 not_interesting_fname (const char *fname)
4122 {
4123 static const char *illegal_aliens[] = {
4124 "_globals_", /* inserted by coff_symtab_read */
4125 NULL
4126 };
4127 int i;
4128
4129 for (i = 0; illegal_aliens[i]; i++)
4130 {
4131 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4132 return 1;
4133 }
4134 return 0;
4135 }
4136
4137 /* An object of this type is passed as the user_data argument to
4138 map_partial_symbol_filenames. */
4139 struct add_partial_filename_data
4140 {
4141 int *first;
4142 char *text;
4143 char *word;
4144 int text_len;
4145 char ***list;
4146 int *list_used;
4147 int *list_alloced;
4148 };
4149
4150 /* A callback for map_partial_symbol_filenames. */
4151 static void
4152 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4153 void *user_data)
4154 {
4155 struct add_partial_filename_data *data = user_data;
4156
4157 if (not_interesting_fname (filename))
4158 return;
4159 if (!filename_seen (filename, 1, data->first)
4160 && filename_ncmp (filename, data->text, data->text_len) == 0)
4161 {
4162 /* This file matches for a completion; add it to the
4163 current list of matches. */
4164 add_filename_to_list (filename, data->text, data->word,
4165 data->list, data->list_used, data->list_alloced);
4166 }
4167 else
4168 {
4169 const char *base_name = lbasename (filename);
4170
4171 if (base_name != filename
4172 && !filename_seen (base_name, 1, data->first)
4173 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4174 add_filename_to_list (base_name, data->text, data->word,
4175 data->list, data->list_used, data->list_alloced);
4176 }
4177 }
4178
4179 /* Return a NULL terminated array of all source files whose names
4180 begin with matching TEXT. The file names are looked up in the
4181 symbol tables of this program. If the answer is no matchess, then
4182 the return value is an array which contains only a NULL pointer. */
4183
4184 char **
4185 make_source_files_completion_list (char *text, char *word)
4186 {
4187 struct symtab *s;
4188 struct objfile *objfile;
4189 int first = 1;
4190 int list_alloced = 1;
4191 int list_used = 0;
4192 size_t text_len = strlen (text);
4193 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4194 const char *base_name;
4195 struct add_partial_filename_data datum;
4196
4197 list[0] = NULL;
4198
4199 if (!have_full_symbols () && !have_partial_symbols ())
4200 return list;
4201
4202 ALL_SYMTABS (objfile, s)
4203 {
4204 if (not_interesting_fname (s->filename))
4205 continue;
4206 if (!filename_seen (s->filename, 1, &first)
4207 && filename_ncmp (s->filename, text, text_len) == 0)
4208 {
4209 /* This file matches for a completion; add it to the current
4210 list of matches. */
4211 add_filename_to_list (s->filename, text, word,
4212 &list, &list_used, &list_alloced);
4213 }
4214 else
4215 {
4216 /* NOTE: We allow the user to type a base name when the
4217 debug info records leading directories, but not the other
4218 way around. This is what subroutines of breakpoint
4219 command do when they parse file names. */
4220 base_name = lbasename (s->filename);
4221 if (base_name != s->filename
4222 && !filename_seen (base_name, 1, &first)
4223 && filename_ncmp (base_name, text, text_len) == 0)
4224 add_filename_to_list (base_name, text, word,
4225 &list, &list_used, &list_alloced);
4226 }
4227 }
4228
4229 datum.first = &first;
4230 datum.text = text;
4231 datum.word = word;
4232 datum.text_len = text_len;
4233 datum.list = &list;
4234 datum.list_used = &list_used;
4235 datum.list_alloced = &list_alloced;
4236 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4237
4238 return list;
4239 }
4240
4241 /* Determine if PC is in the prologue of a function. The prologue is the area
4242 between the first instruction of a function, and the first executable line.
4243 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4244
4245 If non-zero, func_start is where we think the prologue starts, possibly
4246 by previous examination of symbol table information. */
4247
4248 int
4249 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4250 {
4251 struct symtab_and_line sal;
4252 CORE_ADDR func_addr, func_end;
4253
4254 /* We have several sources of information we can consult to figure
4255 this out.
4256 - Compilers usually emit line number info that marks the prologue
4257 as its own "source line". So the ending address of that "line"
4258 is the end of the prologue. If available, this is the most
4259 reliable method.
4260 - The minimal symbols and partial symbols, which can usually tell
4261 us the starting and ending addresses of a function.
4262 - If we know the function's start address, we can call the
4263 architecture-defined gdbarch_skip_prologue function to analyze the
4264 instruction stream and guess where the prologue ends.
4265 - Our `func_start' argument; if non-zero, this is the caller's
4266 best guess as to the function's entry point. At the time of
4267 this writing, handle_inferior_event doesn't get this right, so
4268 it should be our last resort. */
4269
4270 /* Consult the partial symbol table, to find which function
4271 the PC is in. */
4272 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4273 {
4274 CORE_ADDR prologue_end;
4275
4276 /* We don't even have minsym information, so fall back to using
4277 func_start, if given. */
4278 if (! func_start)
4279 return 1; /* We *might* be in a prologue. */
4280
4281 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4282
4283 return func_start <= pc && pc < prologue_end;
4284 }
4285
4286 /* If we have line number information for the function, that's
4287 usually pretty reliable. */
4288 sal = find_pc_line (func_addr, 0);
4289
4290 /* Now sal describes the source line at the function's entry point,
4291 which (by convention) is the prologue. The end of that "line",
4292 sal.end, is the end of the prologue.
4293
4294 Note that, for functions whose source code is all on a single
4295 line, the line number information doesn't always end up this way.
4296 So we must verify that our purported end-of-prologue address is
4297 *within* the function, not at its start or end. */
4298 if (sal.line == 0
4299 || sal.end <= func_addr
4300 || func_end <= sal.end)
4301 {
4302 /* We don't have any good line number info, so use the minsym
4303 information, together with the architecture-specific prologue
4304 scanning code. */
4305 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4306
4307 return func_addr <= pc && pc < prologue_end;
4308 }
4309
4310 /* We have line number info, and it looks good. */
4311 return func_addr <= pc && pc < sal.end;
4312 }
4313
4314 /* Given PC at the function's start address, attempt to find the
4315 prologue end using SAL information. Return zero if the skip fails.
4316
4317 A non-optimized prologue traditionally has one SAL for the function
4318 and a second for the function body. A single line function has
4319 them both pointing at the same line.
4320
4321 An optimized prologue is similar but the prologue may contain
4322 instructions (SALs) from the instruction body. Need to skip those
4323 while not getting into the function body.
4324
4325 The functions end point and an increasing SAL line are used as
4326 indicators of the prologue's endpoint.
4327
4328 This code is based on the function refine_prologue_limit (versions
4329 found in both ia64 and ppc). */
4330
4331 CORE_ADDR
4332 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4333 {
4334 struct symtab_and_line prologue_sal;
4335 CORE_ADDR start_pc;
4336 CORE_ADDR end_pc;
4337 struct block *bl;
4338
4339 /* Get an initial range for the function. */
4340 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4341 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4342
4343 prologue_sal = find_pc_line (start_pc, 0);
4344 if (prologue_sal.line != 0)
4345 {
4346 /* For langauges other than assembly, treat two consecutive line
4347 entries at the same address as a zero-instruction prologue.
4348 The GNU assembler emits separate line notes for each instruction
4349 in a multi-instruction macro, but compilers generally will not
4350 do this. */
4351 if (prologue_sal.symtab->language != language_asm)
4352 {
4353 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4354 int idx = 0;
4355
4356 /* Skip any earlier lines, and any end-of-sequence marker
4357 from a previous function. */
4358 while (linetable->item[idx].pc != prologue_sal.pc
4359 || linetable->item[idx].line == 0)
4360 idx++;
4361
4362 if (idx+1 < linetable->nitems
4363 && linetable->item[idx+1].line != 0
4364 && linetable->item[idx+1].pc == start_pc)
4365 return start_pc;
4366 }
4367
4368 /* If there is only one sal that covers the entire function,
4369 then it is probably a single line function, like
4370 "foo(){}". */
4371 if (prologue_sal.end >= end_pc)
4372 return 0;
4373
4374 while (prologue_sal.end < end_pc)
4375 {
4376 struct symtab_and_line sal;
4377
4378 sal = find_pc_line (prologue_sal.end, 0);
4379 if (sal.line == 0)
4380 break;
4381 /* Assume that a consecutive SAL for the same (or larger)
4382 line mark the prologue -> body transition. */
4383 if (sal.line >= prologue_sal.line)
4384 break;
4385
4386 /* The line number is smaller. Check that it's from the
4387 same function, not something inlined. If it's inlined,
4388 then there is no point comparing the line numbers. */
4389 bl = block_for_pc (prologue_sal.end);
4390 while (bl)
4391 {
4392 if (block_inlined_p (bl))
4393 break;
4394 if (BLOCK_FUNCTION (bl))
4395 {
4396 bl = NULL;
4397 break;
4398 }
4399 bl = BLOCK_SUPERBLOCK (bl);
4400 }
4401 if (bl != NULL)
4402 break;
4403
4404 /* The case in which compiler's optimizer/scheduler has
4405 moved instructions into the prologue. We look ahead in
4406 the function looking for address ranges whose
4407 corresponding line number is less the first one that we
4408 found for the function. This is more conservative then
4409 refine_prologue_limit which scans a large number of SALs
4410 looking for any in the prologue. */
4411 prologue_sal = sal;
4412 }
4413 }
4414
4415 if (prologue_sal.end < end_pc)
4416 /* Return the end of this line, or zero if we could not find a
4417 line. */
4418 return prologue_sal.end;
4419 else
4420 /* Don't return END_PC, which is past the end of the function. */
4421 return prologue_sal.pc;
4422 }
4423 \f
4424 struct symtabs_and_lines
4425 decode_line_spec (char *string, int funfirstline)
4426 {
4427 struct symtabs_and_lines sals;
4428 struct symtab_and_line cursal;
4429
4430 if (string == 0)
4431 error (_("Empty line specification."));
4432
4433 /* We use whatever is set as the current source line. We do not try
4434 and get a default or it will recursively call us! */
4435 cursal = get_current_source_symtab_and_line ();
4436
4437 sals = decode_line_1 (&string, funfirstline,
4438 cursal.symtab, cursal.line,
4439 NULL);
4440
4441 if (*string)
4442 error (_("Junk at end of line specification: %s"), string);
4443 return sals;
4444 }
4445
4446 /* Track MAIN */
4447 static char *name_of_main;
4448 enum language language_of_main = language_unknown;
4449
4450 void
4451 set_main_name (const char *name)
4452 {
4453 if (name_of_main != NULL)
4454 {
4455 xfree (name_of_main);
4456 name_of_main = NULL;
4457 language_of_main = language_unknown;
4458 }
4459 if (name != NULL)
4460 {
4461 name_of_main = xstrdup (name);
4462 language_of_main = language_unknown;
4463 }
4464 }
4465
4466 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4467 accordingly. */
4468
4469 static void
4470 find_main_name (void)
4471 {
4472 const char *new_main_name;
4473
4474 /* Try to see if the main procedure is in Ada. */
4475 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4476 be to add a new method in the language vector, and call this
4477 method for each language until one of them returns a non-empty
4478 name. This would allow us to remove this hard-coded call to
4479 an Ada function. It is not clear that this is a better approach
4480 at this point, because all methods need to be written in a way
4481 such that false positives never be returned. For instance, it is
4482 important that a method does not return a wrong name for the main
4483 procedure if the main procedure is actually written in a different
4484 language. It is easy to guaranty this with Ada, since we use a
4485 special symbol generated only when the main in Ada to find the name
4486 of the main procedure. It is difficult however to see how this can
4487 be guarantied for languages such as C, for instance. This suggests
4488 that order of call for these methods becomes important, which means
4489 a more complicated approach. */
4490 new_main_name = ada_main_name ();
4491 if (new_main_name != NULL)
4492 {
4493 set_main_name (new_main_name);
4494 return;
4495 }
4496
4497 new_main_name = pascal_main_name ();
4498 if (new_main_name != NULL)
4499 {
4500 set_main_name (new_main_name);
4501 return;
4502 }
4503
4504 /* The languages above didn't identify the name of the main procedure.
4505 Fallback to "main". */
4506 set_main_name ("main");
4507 }
4508
4509 char *
4510 main_name (void)
4511 {
4512 if (name_of_main == NULL)
4513 find_main_name ();
4514
4515 return name_of_main;
4516 }
4517
4518 /* Handle ``executable_changed'' events for the symtab module. */
4519
4520 static void
4521 symtab_observer_executable_changed (void)
4522 {
4523 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4524 set_main_name (NULL);
4525 }
4526
4527 /* Helper to expand_line_sal below. Appends new sal to SAL,
4528 initializing it from SYMTAB, LINENO and PC. */
4529 static void
4530 append_expanded_sal (struct symtabs_and_lines *sal,
4531 struct program_space *pspace,
4532 struct symtab *symtab,
4533 int lineno, CORE_ADDR pc)
4534 {
4535 sal->sals = xrealloc (sal->sals,
4536 sizeof (sal->sals[0])
4537 * (sal->nelts + 1));
4538 init_sal (sal->sals + sal->nelts);
4539 sal->sals[sal->nelts].pspace = pspace;
4540 sal->sals[sal->nelts].symtab = symtab;
4541 sal->sals[sal->nelts].section = NULL;
4542 sal->sals[sal->nelts].end = 0;
4543 sal->sals[sal->nelts].line = lineno;
4544 sal->sals[sal->nelts].pc = pc;
4545 ++sal->nelts;
4546 }
4547
4548 /* Helper to expand_line_sal below. Search in the symtabs for any
4549 linetable entry that exactly matches FULLNAME and LINENO and append
4550 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4551 use FILENAME and LINENO instead. If there is at least one match,
4552 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4553 and BEST_SYMTAB. */
4554
4555 static int
4556 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4557 struct symtabs_and_lines *ret,
4558 struct linetable_entry **best_item,
4559 struct symtab **best_symtab)
4560 {
4561 struct program_space *pspace;
4562 struct objfile *objfile;
4563 struct symtab *symtab;
4564 int exact = 0;
4565 int j;
4566 *best_item = 0;
4567 *best_symtab = 0;
4568
4569 ALL_PSPACES (pspace)
4570 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4571 {
4572 if (FILENAME_CMP (filename, symtab->filename) == 0)
4573 {
4574 struct linetable *l;
4575 int len;
4576
4577 if (fullname != NULL
4578 && symtab_to_fullname (symtab) != NULL
4579 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4580 continue;
4581 l = LINETABLE (symtab);
4582 if (!l)
4583 continue;
4584 len = l->nitems;
4585
4586 for (j = 0; j < len; j++)
4587 {
4588 struct linetable_entry *item = &(l->item[j]);
4589
4590 if (item->line == lineno)
4591 {
4592 exact = 1;
4593 append_expanded_sal (ret, objfile->pspace,
4594 symtab, lineno, item->pc);
4595 }
4596 else if (!exact && item->line > lineno
4597 && (*best_item == NULL
4598 || item->line < (*best_item)->line))
4599 {
4600 *best_item = item;
4601 *best_symtab = symtab;
4602 }
4603 }
4604 }
4605 }
4606 return exact;
4607 }
4608
4609 /* Compute a set of all sals in all program spaces that correspond to
4610 same file and line as SAL and return those. If there are several
4611 sals that belong to the same block, only one sal for the block is
4612 included in results. */
4613
4614 struct symtabs_and_lines
4615 expand_line_sal (struct symtab_and_line sal)
4616 {
4617 struct symtabs_and_lines ret;
4618 int i, j;
4619 struct objfile *objfile;
4620 int lineno;
4621 int deleted = 0;
4622 struct block **blocks = NULL;
4623 int *filter;
4624 struct cleanup *old_chain;
4625
4626 ret.nelts = 0;
4627 ret.sals = NULL;
4628
4629 /* Only expand sals that represent file.c:line. */
4630 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4631 {
4632 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4633 ret.sals[0] = sal;
4634 ret.nelts = 1;
4635 return ret;
4636 }
4637 else
4638 {
4639 struct program_space *pspace;
4640 struct linetable_entry *best_item = 0;
4641 struct symtab *best_symtab = 0;
4642 int exact = 0;
4643 char *match_filename;
4644
4645 lineno = sal.line;
4646 match_filename = sal.symtab->filename;
4647
4648 /* We need to find all symtabs for a file which name
4649 is described by sal. We cannot just directly
4650 iterate over symtabs, since a symtab might not be
4651 yet created. We also cannot iterate over psymtabs,
4652 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4653 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4654 corresponding to an included file. Therefore, we do
4655 first pass over psymtabs, reading in those with
4656 the right name. Then, we iterate over symtabs, knowing
4657 that all symtabs we're interested in are loaded. */
4658
4659 old_chain = save_current_program_space ();
4660 ALL_PSPACES (pspace)
4661 {
4662 set_current_program_space (pspace);
4663 ALL_PSPACE_OBJFILES (pspace, objfile)
4664 {
4665 if (objfile->sf)
4666 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4667 sal.symtab->filename);
4668 }
4669 }
4670 do_cleanups (old_chain);
4671
4672 /* Now search the symtab for exact matches and append them. If
4673 none is found, append the best_item and all its exact
4674 matches. */
4675 symtab_to_fullname (sal.symtab);
4676 exact = append_exact_match_to_sals (sal.symtab->filename,
4677 sal.symtab->fullname, lineno,
4678 &ret, &best_item, &best_symtab);
4679 if (!exact && best_item)
4680 append_exact_match_to_sals (best_symtab->filename,
4681 best_symtab->fullname, best_item->line,
4682 &ret, &best_item, &best_symtab);
4683 }
4684
4685 /* For optimized code, compiler can scatter one source line accross
4686 disjoint ranges of PC values, even when no duplicate functions
4687 or inline functions are involved. For example, 'for (;;)' inside
4688 non-template non-inline non-ctor-or-dtor function can result
4689 in two PC ranges. In this case, we don't want to set breakpoint
4690 on first PC of each range. To filter such cases, we use containing
4691 blocks -- for each PC found above we see if there are other PCs
4692 that are in the same block. If yes, the other PCs are filtered out. */
4693
4694 old_chain = save_current_program_space ();
4695 filter = alloca (ret.nelts * sizeof (int));
4696 blocks = alloca (ret.nelts * sizeof (struct block *));
4697 for (i = 0; i < ret.nelts; ++i)
4698 {
4699 set_current_program_space (ret.sals[i].pspace);
4700
4701 filter[i] = 1;
4702 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4703
4704 }
4705 do_cleanups (old_chain);
4706
4707 for (i = 0; i < ret.nelts; ++i)
4708 if (blocks[i] != NULL)
4709 for (j = i+1; j < ret.nelts; ++j)
4710 if (blocks[j] == blocks[i])
4711 {
4712 filter[j] = 0;
4713 ++deleted;
4714 break;
4715 }
4716
4717 {
4718 struct symtab_and_line *final =
4719 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4720
4721 for (i = 0, j = 0; i < ret.nelts; ++i)
4722 if (filter[i])
4723 final[j++] = ret.sals[i];
4724
4725 ret.nelts -= deleted;
4726 xfree (ret.sals);
4727 ret.sals = final;
4728 }
4729
4730 return ret;
4731 }
4732
4733 /* Return 1 if the supplied producer string matches the ARM RealView
4734 compiler (armcc). */
4735
4736 int
4737 producer_is_realview (const char *producer)
4738 {
4739 static const char *const arm_idents[] = {
4740 "ARM C Compiler, ADS",
4741 "Thumb C Compiler, ADS",
4742 "ARM C++ Compiler, ADS",
4743 "Thumb C++ Compiler, ADS",
4744 "ARM/Thumb C/C++ Compiler, RVCT",
4745 "ARM C/C++ Compiler, RVCT"
4746 };
4747 int i;
4748
4749 if (producer == NULL)
4750 return 0;
4751
4752 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4753 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4754 return 1;
4755
4756 return 0;
4757 }
4758
4759 void
4760 _initialize_symtab (void)
4761 {
4762 add_info ("variables", variables_info, _("\
4763 All global and static variable names, or those matching REGEXP."));
4764 if (dbx_commands)
4765 add_com ("whereis", class_info, variables_info, _("\
4766 All global and static variable names, or those matching REGEXP."));
4767
4768 add_info ("functions", functions_info,
4769 _("All function names, or those matching REGEXP."));
4770
4771 /* FIXME: This command has at least the following problems:
4772 1. It prints builtin types (in a very strange and confusing fashion).
4773 2. It doesn't print right, e.g. with
4774 typedef struct foo *FOO
4775 type_print prints "FOO" when we want to make it (in this situation)
4776 print "struct foo *".
4777 I also think "ptype" or "whatis" is more likely to be useful (but if
4778 there is much disagreement "info types" can be fixed). */
4779 add_info ("types", types_info,
4780 _("All type names, or those matching REGEXP."));
4781
4782 add_info ("sources", sources_info,
4783 _("Source files in the program."));
4784
4785 add_com ("rbreak", class_breakpoint, rbreak_command,
4786 _("Set a breakpoint for all functions matching REGEXP."));
4787
4788 if (xdb_commands)
4789 {
4790 add_com ("lf", class_info, sources_info,
4791 _("Source files in the program"));
4792 add_com ("lg", class_info, variables_info, _("\
4793 All global and static variable names, or those matching REGEXP."));
4794 }
4795
4796 add_setshow_enum_cmd ("multiple-symbols", no_class,
4797 multiple_symbols_modes, &multiple_symbols_mode,
4798 _("\
4799 Set the debugger behavior when more than one symbol are possible matches\n\
4800 in an expression."), _("\
4801 Show how the debugger handles ambiguities in expressions."), _("\
4802 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4803 NULL, NULL, &setlist, &showlist);
4804
4805 observer_attach_executable_changed (symtab_observer_executable_changed);
4806 }
This page took 0.250544 seconds and 5 git commands to generate.