PR c++/8888:
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "call-cmds.h"
31 #include "gdb_regex.h"
32 #include "expression.h"
33 #include "language.h"
34 #include "demangle.h"
35 #include "inferior.h"
36 #include "source.h"
37 #include "filenames.h" /* for FILENAME_CMP */
38 #include "objc-lang.h"
39 #include "d-lang.h"
40 #include "ada-lang.h"
41 #include "go-lang.h"
42 #include "p-lang.h"
43 #include "addrmap.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_stat.h"
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "psymtab.h"
65 #include "parser-defs.h"
66
67 /* Prototypes for local functions */
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct symbol *lookup_symbol_aux (const char *name,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *is_a_field_of_this);
86
87 static
88 struct symbol *lookup_symbol_aux_local (const char *name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
92
93 static
94 struct symbol *lookup_symbol_aux_symtabs (int block_index,
95 const char *name,
96 const domain_enum domain);
97
98 static
99 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
100 int block_index,
101 const char *name,
102 const domain_enum domain);
103
104 static void print_msymbol_info (struct minimal_symbol *);
105
106 void _initialize_symtab (void);
107
108 /* */
109
110 /* When non-zero, print debugging messages related to symtab creation. */
111 int symtab_create_debug = 0;
112
113 /* Non-zero if a file may be known by two different basenames.
114 This is the uncommon case, and significantly slows down gdb.
115 Default set to "off" to not slow down the common case. */
116 int basenames_may_differ = 0;
117
118 /* Allow the user to configure the debugger behavior with respect
119 to multiple-choice menus when more than one symbol matches during
120 a symbol lookup. */
121
122 const char multiple_symbols_ask[] = "ask";
123 const char multiple_symbols_all[] = "all";
124 const char multiple_symbols_cancel[] = "cancel";
125 static const char *const multiple_symbols_modes[] =
126 {
127 multiple_symbols_ask,
128 multiple_symbols_all,
129 multiple_symbols_cancel,
130 NULL
131 };
132 static const char *multiple_symbols_mode = multiple_symbols_all;
133
134 /* Read-only accessor to AUTO_SELECT_MODE. */
135
136 const char *
137 multiple_symbols_select_mode (void)
138 {
139 return multiple_symbols_mode;
140 }
141
142 /* Block in which the most recently searched-for symbol was found.
143 Might be better to make this a parameter to lookup_symbol and
144 value_of_this. */
145
146 const struct block *block_found;
147
148 /* See whether FILENAME matches SEARCH_NAME using the rule that we
149 advertise to the user. (The manual's description of linespecs
150 describes what we advertise). SEARCH_LEN is the length of
151 SEARCH_NAME. We assume that SEARCH_NAME is a relative path.
152 Returns true if they match, false otherwise. */
153
154 int
155 compare_filenames_for_search (const char *filename, const char *search_name,
156 int search_len)
157 {
158 int len = strlen (filename);
159
160 if (len < search_len)
161 return 0;
162
163 /* The tail of FILENAME must match. */
164 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
165 return 0;
166
167 /* Either the names must completely match, or the character
168 preceding the trailing SEARCH_NAME segment of FILENAME must be a
169 directory separator. */
170 return (len == search_len
171 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
172 || (HAS_DRIVE_SPEC (filename)
173 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
174 }
175
176 /* Check for a symtab of a specific name by searching some symtabs.
177 This is a helper function for callbacks of iterate_over_symtabs.
178
179 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
180 are identical to the `map_symtabs_matching_filename' method of
181 quick_symbol_functions.
182
183 FIRST and AFTER_LAST indicate the range of symtabs to search.
184 AFTER_LAST is one past the last symtab to search; NULL means to
185 search until the end of the list. */
186
187 int
188 iterate_over_some_symtabs (const char *name,
189 const char *full_path,
190 const char *real_path,
191 int (*callback) (struct symtab *symtab,
192 void *data),
193 void *data,
194 struct symtab *first,
195 struct symtab *after_last)
196 {
197 struct symtab *s = NULL;
198 const char* base_name = lbasename (name);
199 int name_len = strlen (name);
200 int is_abs = IS_ABSOLUTE_PATH (name);
201
202 for (s = first; s != NULL && s != after_last; s = s->next)
203 {
204 /* Exact match is always ok. */
205 if (FILENAME_CMP (name, s->filename) == 0)
206 {
207 if (callback (s, data))
208 return 1;
209 }
210
211 if (!is_abs && compare_filenames_for_search (s->filename, name, name_len))
212 {
213 if (callback (s, data))
214 return 1;
215 }
216
217 /* Before we invoke realpath, which can get expensive when many
218 files are involved, do a quick comparison of the basenames. */
219 if (! basenames_may_differ
220 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
221 continue;
222
223 /* If the user gave us an absolute path, try to find the file in
224 this symtab and use its absolute path. */
225
226 if (full_path != NULL)
227 {
228 const char *fp = symtab_to_fullname (s);
229
230 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
231 {
232 if (callback (s, data))
233 return 1;
234 }
235
236 if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name,
237 name_len))
238 {
239 if (callback (s, data))
240 return 1;
241 }
242 }
243
244 if (real_path != NULL)
245 {
246 const char *fullname = symtab_to_fullname (s);
247
248 if (fullname != NULL)
249 {
250 char *rp = gdb_realpath (fullname);
251
252 make_cleanup (xfree, rp);
253 if (FILENAME_CMP (real_path, rp) == 0)
254 {
255 if (callback (s, data))
256 return 1;
257 }
258
259 if (!is_abs && compare_filenames_for_search (rp, name, name_len))
260 {
261 if (callback (s, data))
262 return 1;
263 }
264 }
265 }
266 }
267
268 return 0;
269 }
270
271 /* Check for a symtab of a specific name; first in symtabs, then in
272 psymtabs. *If* there is no '/' in the name, a match after a '/'
273 in the symtab filename will also work.
274
275 Calls CALLBACK with each symtab that is found and with the supplied
276 DATA. If CALLBACK returns true, the search stops. */
277
278 void
279 iterate_over_symtabs (const char *name,
280 int (*callback) (struct symtab *symtab,
281 void *data),
282 void *data)
283 {
284 struct symtab *s = NULL;
285 struct objfile *objfile;
286 char *real_path = NULL;
287 char *full_path = NULL;
288 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
289
290 /* Here we are interested in canonicalizing an absolute path, not
291 absolutizing a relative path. */
292 if (IS_ABSOLUTE_PATH (name))
293 {
294 full_path = xfullpath (name);
295 make_cleanup (xfree, full_path);
296 real_path = gdb_realpath (name);
297 make_cleanup (xfree, real_path);
298 }
299
300 ALL_OBJFILES (objfile)
301 {
302 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
303 objfile->symtabs, NULL))
304 {
305 do_cleanups (cleanups);
306 return;
307 }
308 }
309
310 /* Same search rules as above apply here, but now we look thru the
311 psymtabs. */
312
313 ALL_OBJFILES (objfile)
314 {
315 if (objfile->sf
316 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
317 name,
318 full_path,
319 real_path,
320 callback,
321 data))
322 {
323 do_cleanups (cleanups);
324 return;
325 }
326 }
327
328 do_cleanups (cleanups);
329 }
330
331 /* The callback function used by lookup_symtab. */
332
333 static int
334 lookup_symtab_callback (struct symtab *symtab, void *data)
335 {
336 struct symtab **result_ptr = data;
337
338 *result_ptr = symtab;
339 return 1;
340 }
341
342 /* A wrapper for iterate_over_symtabs that returns the first matching
343 symtab, or NULL. */
344
345 struct symtab *
346 lookup_symtab (const char *name)
347 {
348 struct symtab *result = NULL;
349
350 iterate_over_symtabs (name, lookup_symtab_callback, &result);
351 return result;
352 }
353
354 \f
355 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
356 full method name, which consist of the class name (from T), the unadorned
357 method name from METHOD_ID, and the signature for the specific overload,
358 specified by SIGNATURE_ID. Note that this function is g++ specific. */
359
360 char *
361 gdb_mangle_name (struct type *type, int method_id, int signature_id)
362 {
363 int mangled_name_len;
364 char *mangled_name;
365 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
366 struct fn_field *method = &f[signature_id];
367 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
368 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
369 const char *newname = type_name_no_tag (type);
370
371 /* Does the form of physname indicate that it is the full mangled name
372 of a constructor (not just the args)? */
373 int is_full_physname_constructor;
374
375 int is_constructor;
376 int is_destructor = is_destructor_name (physname);
377 /* Need a new type prefix. */
378 char *const_prefix = method->is_const ? "C" : "";
379 char *volatile_prefix = method->is_volatile ? "V" : "";
380 char buf[20];
381 int len = (newname == NULL ? 0 : strlen (newname));
382
383 /* Nothing to do if physname already contains a fully mangled v3 abi name
384 or an operator name. */
385 if ((physname[0] == '_' && physname[1] == 'Z')
386 || is_operator_name (field_name))
387 return xstrdup (physname);
388
389 is_full_physname_constructor = is_constructor_name (physname);
390
391 is_constructor = is_full_physname_constructor
392 || (newname && strcmp (field_name, newname) == 0);
393
394 if (!is_destructor)
395 is_destructor = (strncmp (physname, "__dt", 4) == 0);
396
397 if (is_destructor || is_full_physname_constructor)
398 {
399 mangled_name = (char *) xmalloc (strlen (physname) + 1);
400 strcpy (mangled_name, physname);
401 return mangled_name;
402 }
403
404 if (len == 0)
405 {
406 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
407 }
408 else if (physname[0] == 't' || physname[0] == 'Q')
409 {
410 /* The physname for template and qualified methods already includes
411 the class name. */
412 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
413 newname = NULL;
414 len = 0;
415 }
416 else
417 {
418 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
419 volatile_prefix, len);
420 }
421 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
422 + strlen (buf) + len + strlen (physname) + 1);
423
424 mangled_name = (char *) xmalloc (mangled_name_len);
425 if (is_constructor)
426 mangled_name[0] = '\0';
427 else
428 strcpy (mangled_name, field_name);
429
430 strcat (mangled_name, buf);
431 /* If the class doesn't have a name, i.e. newname NULL, then we just
432 mangle it using 0 for the length of the class. Thus it gets mangled
433 as something starting with `::' rather than `classname::'. */
434 if (newname != NULL)
435 strcat (mangled_name, newname);
436
437 strcat (mangled_name, physname);
438 return (mangled_name);
439 }
440
441 /* Initialize the cplus_specific structure. 'cplus_specific' should
442 only be allocated for use with cplus symbols. */
443
444 static void
445 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
446 struct objfile *objfile)
447 {
448 /* A language_specific structure should not have been previously
449 initialized. */
450 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
451 gdb_assert (objfile != NULL);
452
453 gsymbol->language_specific.cplus_specific =
454 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
455 }
456
457 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
458 correctly allocated. For C++ symbols a cplus_specific struct is
459 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
460 OBJFILE can be NULL. */
461
462 void
463 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
464 char *name,
465 struct objfile *objfile)
466 {
467 if (gsymbol->language == language_cplus)
468 {
469 if (gsymbol->language_specific.cplus_specific == NULL)
470 symbol_init_cplus_specific (gsymbol, objfile);
471
472 gsymbol->language_specific.cplus_specific->demangled_name = name;
473 }
474 else
475 gsymbol->language_specific.mangled_lang.demangled_name = name;
476 }
477
478 /* Return the demangled name of GSYMBOL. */
479
480 const char *
481 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
482 {
483 if (gsymbol->language == language_cplus)
484 {
485 if (gsymbol->language_specific.cplus_specific != NULL)
486 return gsymbol->language_specific.cplus_specific->demangled_name;
487 else
488 return NULL;
489 }
490 else
491 return gsymbol->language_specific.mangled_lang.demangled_name;
492 }
493
494 \f
495 /* Initialize the language dependent portion of a symbol
496 depending upon the language for the symbol. */
497
498 void
499 symbol_set_language (struct general_symbol_info *gsymbol,
500 enum language language)
501 {
502 gsymbol->language = language;
503 if (gsymbol->language == language_d
504 || gsymbol->language == language_go
505 || gsymbol->language == language_java
506 || gsymbol->language == language_objc
507 || gsymbol->language == language_fortran)
508 {
509 symbol_set_demangled_name (gsymbol, NULL, NULL);
510 }
511 else if (gsymbol->language == language_cplus)
512 gsymbol->language_specific.cplus_specific = NULL;
513 else
514 {
515 memset (&gsymbol->language_specific, 0,
516 sizeof (gsymbol->language_specific));
517 }
518 }
519
520 /* Functions to initialize a symbol's mangled name. */
521
522 /* Objects of this type are stored in the demangled name hash table. */
523 struct demangled_name_entry
524 {
525 char *mangled;
526 char demangled[1];
527 };
528
529 /* Hash function for the demangled name hash. */
530
531 static hashval_t
532 hash_demangled_name_entry (const void *data)
533 {
534 const struct demangled_name_entry *e = data;
535
536 return htab_hash_string (e->mangled);
537 }
538
539 /* Equality function for the demangled name hash. */
540
541 static int
542 eq_demangled_name_entry (const void *a, const void *b)
543 {
544 const struct demangled_name_entry *da = a;
545 const struct demangled_name_entry *db = b;
546
547 return strcmp (da->mangled, db->mangled) == 0;
548 }
549
550 /* Create the hash table used for demangled names. Each hash entry is
551 a pair of strings; one for the mangled name and one for the demangled
552 name. The entry is hashed via just the mangled name. */
553
554 static void
555 create_demangled_names_hash (struct objfile *objfile)
556 {
557 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
558 The hash table code will round this up to the next prime number.
559 Choosing a much larger table size wastes memory, and saves only about
560 1% in symbol reading. */
561
562 objfile->demangled_names_hash = htab_create_alloc
563 (256, hash_demangled_name_entry, eq_demangled_name_entry,
564 NULL, xcalloc, xfree);
565 }
566
567 /* Try to determine the demangled name for a symbol, based on the
568 language of that symbol. If the language is set to language_auto,
569 it will attempt to find any demangling algorithm that works and
570 then set the language appropriately. The returned name is allocated
571 by the demangler and should be xfree'd. */
572
573 static char *
574 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
575 const char *mangled)
576 {
577 char *demangled = NULL;
578
579 if (gsymbol->language == language_unknown)
580 gsymbol->language = language_auto;
581
582 if (gsymbol->language == language_objc
583 || gsymbol->language == language_auto)
584 {
585 demangled =
586 objc_demangle (mangled, 0);
587 if (demangled != NULL)
588 {
589 gsymbol->language = language_objc;
590 return demangled;
591 }
592 }
593 if (gsymbol->language == language_cplus
594 || gsymbol->language == language_auto)
595 {
596 demangled =
597 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
598 if (demangled != NULL)
599 {
600 gsymbol->language = language_cplus;
601 return demangled;
602 }
603 }
604 if (gsymbol->language == language_java)
605 {
606 demangled =
607 cplus_demangle (mangled,
608 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
609 if (demangled != NULL)
610 {
611 gsymbol->language = language_java;
612 return demangled;
613 }
614 }
615 if (gsymbol->language == language_d
616 || gsymbol->language == language_auto)
617 {
618 demangled = d_demangle(mangled, 0);
619 if (demangled != NULL)
620 {
621 gsymbol->language = language_d;
622 return demangled;
623 }
624 }
625 /* FIXME(dje): Continually adding languages here is clumsy.
626 Better to just call la_demangle if !auto, and if auto then call
627 a utility routine that tries successive languages in turn and reports
628 which one it finds. I realize the la_demangle options may be different
629 for different languages but there's already a FIXME for that. */
630 if (gsymbol->language == language_go
631 || gsymbol->language == language_auto)
632 {
633 demangled = go_demangle (mangled, 0);
634 if (demangled != NULL)
635 {
636 gsymbol->language = language_go;
637 return demangled;
638 }
639 }
640
641 /* We could support `gsymbol->language == language_fortran' here to provide
642 module namespaces also for inferiors with only minimal symbol table (ELF
643 symbols). Just the mangling standard is not standardized across compilers
644 and there is no DW_AT_producer available for inferiors with only the ELF
645 symbols to check the mangling kind. */
646 return NULL;
647 }
648
649 /* Set both the mangled and demangled (if any) names for GSYMBOL based
650 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
651 objfile's obstack; but if COPY_NAME is 0 and if NAME is
652 NUL-terminated, then this function assumes that NAME is already
653 correctly saved (either permanently or with a lifetime tied to the
654 objfile), and it will not be copied.
655
656 The hash table corresponding to OBJFILE is used, and the memory
657 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
658 so the pointer can be discarded after calling this function. */
659
660 /* We have to be careful when dealing with Java names: when we run
661 into a Java minimal symbol, we don't know it's a Java symbol, so it
662 gets demangled as a C++ name. This is unfortunate, but there's not
663 much we can do about it: but when demangling partial symbols and
664 regular symbols, we'd better not reuse the wrong demangled name.
665 (See PR gdb/1039.) We solve this by putting a distinctive prefix
666 on Java names when storing them in the hash table. */
667
668 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
669 don't mind the Java prefix so much: different languages have
670 different demangling requirements, so it's only natural that we
671 need to keep language data around in our demangling cache. But
672 it's not good that the minimal symbol has the wrong demangled name.
673 Unfortunately, I can't think of any easy solution to that
674 problem. */
675
676 #define JAVA_PREFIX "##JAVA$$"
677 #define JAVA_PREFIX_LEN 8
678
679 void
680 symbol_set_names (struct general_symbol_info *gsymbol,
681 const char *linkage_name, int len, int copy_name,
682 struct objfile *objfile)
683 {
684 struct demangled_name_entry **slot;
685 /* A 0-terminated copy of the linkage name. */
686 const char *linkage_name_copy;
687 /* A copy of the linkage name that might have a special Java prefix
688 added to it, for use when looking names up in the hash table. */
689 const char *lookup_name;
690 /* The length of lookup_name. */
691 int lookup_len;
692 struct demangled_name_entry entry;
693
694 if (gsymbol->language == language_ada)
695 {
696 /* In Ada, we do the symbol lookups using the mangled name, so
697 we can save some space by not storing the demangled name.
698
699 As a side note, we have also observed some overlap between
700 the C++ mangling and Ada mangling, similarly to what has
701 been observed with Java. Because we don't store the demangled
702 name with the symbol, we don't need to use the same trick
703 as Java. */
704 if (!copy_name)
705 gsymbol->name = linkage_name;
706 else
707 {
708 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
709
710 memcpy (name, linkage_name, len);
711 name[len] = '\0';
712 gsymbol->name = name;
713 }
714 symbol_set_demangled_name (gsymbol, NULL, NULL);
715
716 return;
717 }
718
719 if (objfile->demangled_names_hash == NULL)
720 create_demangled_names_hash (objfile);
721
722 /* The stabs reader generally provides names that are not
723 NUL-terminated; most of the other readers don't do this, so we
724 can just use the given copy, unless we're in the Java case. */
725 if (gsymbol->language == language_java)
726 {
727 char *alloc_name;
728
729 lookup_len = len + JAVA_PREFIX_LEN;
730 alloc_name = alloca (lookup_len + 1);
731 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
732 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
733 alloc_name[lookup_len] = '\0';
734
735 lookup_name = alloc_name;
736 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
737 }
738 else if (linkage_name[len] != '\0')
739 {
740 char *alloc_name;
741
742 lookup_len = len;
743 alloc_name = alloca (lookup_len + 1);
744 memcpy (alloc_name, linkage_name, len);
745 alloc_name[lookup_len] = '\0';
746
747 lookup_name = alloc_name;
748 linkage_name_copy = alloc_name;
749 }
750 else
751 {
752 lookup_len = len;
753 lookup_name = linkage_name;
754 linkage_name_copy = linkage_name;
755 }
756
757 entry.mangled = (char *) lookup_name;
758 slot = ((struct demangled_name_entry **)
759 htab_find_slot (objfile->demangled_names_hash,
760 &entry, INSERT));
761
762 /* If this name is not in the hash table, add it. */
763 if (*slot == NULL
764 /* A C version of the symbol may have already snuck into the table.
765 This happens to, e.g., main.init (__go_init_main). Cope. */
766 || (gsymbol->language == language_go
767 && (*slot)->demangled[0] == '\0'))
768 {
769 char *demangled_name = symbol_find_demangled_name (gsymbol,
770 linkage_name_copy);
771 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
772
773 /* Suppose we have demangled_name==NULL, copy_name==0, and
774 lookup_name==linkage_name. In this case, we already have the
775 mangled name saved, and we don't have a demangled name. So,
776 you might think we could save a little space by not recording
777 this in the hash table at all.
778
779 It turns out that it is actually important to still save such
780 an entry in the hash table, because storing this name gives
781 us better bcache hit rates for partial symbols. */
782 if (!copy_name && lookup_name == linkage_name)
783 {
784 *slot = obstack_alloc (&objfile->objfile_obstack,
785 offsetof (struct demangled_name_entry,
786 demangled)
787 + demangled_len + 1);
788 (*slot)->mangled = (char *) lookup_name;
789 }
790 else
791 {
792 /* If we must copy the mangled name, put it directly after
793 the demangled name so we can have a single
794 allocation. */
795 *slot = obstack_alloc (&objfile->objfile_obstack,
796 offsetof (struct demangled_name_entry,
797 demangled)
798 + lookup_len + demangled_len + 2);
799 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
800 strcpy ((*slot)->mangled, lookup_name);
801 }
802
803 if (demangled_name != NULL)
804 {
805 strcpy ((*slot)->demangled, demangled_name);
806 xfree (demangled_name);
807 }
808 else
809 (*slot)->demangled[0] = '\0';
810 }
811
812 gsymbol->name = (*slot)->mangled + lookup_len - len;
813 if ((*slot)->demangled[0] != '\0')
814 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
815 else
816 symbol_set_demangled_name (gsymbol, NULL, objfile);
817 }
818
819 /* Return the source code name of a symbol. In languages where
820 demangling is necessary, this is the demangled name. */
821
822 const char *
823 symbol_natural_name (const struct general_symbol_info *gsymbol)
824 {
825 switch (gsymbol->language)
826 {
827 case language_cplus:
828 case language_d:
829 case language_go:
830 case language_java:
831 case language_objc:
832 case language_fortran:
833 if (symbol_get_demangled_name (gsymbol) != NULL)
834 return symbol_get_demangled_name (gsymbol);
835 break;
836 case language_ada:
837 if (symbol_get_demangled_name (gsymbol) != NULL)
838 return symbol_get_demangled_name (gsymbol);
839 else
840 return ada_decode_symbol (gsymbol);
841 break;
842 default:
843 break;
844 }
845 return gsymbol->name;
846 }
847
848 /* Return the demangled name for a symbol based on the language for
849 that symbol. If no demangled name exists, return NULL. */
850
851 const char *
852 symbol_demangled_name (const struct general_symbol_info *gsymbol)
853 {
854 const char *dem_name = NULL;
855
856 switch (gsymbol->language)
857 {
858 case language_cplus:
859 case language_d:
860 case language_go:
861 case language_java:
862 case language_objc:
863 case language_fortran:
864 dem_name = symbol_get_demangled_name (gsymbol);
865 break;
866 case language_ada:
867 dem_name = symbol_get_demangled_name (gsymbol);
868 if (dem_name == NULL)
869 dem_name = ada_decode_symbol (gsymbol);
870 break;
871 default:
872 break;
873 }
874 return dem_name;
875 }
876
877 /* Return the search name of a symbol---generally the demangled or
878 linkage name of the symbol, depending on how it will be searched for.
879 If there is no distinct demangled name, then returns the same value
880 (same pointer) as SYMBOL_LINKAGE_NAME. */
881
882 const char *
883 symbol_search_name (const struct general_symbol_info *gsymbol)
884 {
885 if (gsymbol->language == language_ada)
886 return gsymbol->name;
887 else
888 return symbol_natural_name (gsymbol);
889 }
890
891 /* Initialize the structure fields to zero values. */
892
893 void
894 init_sal (struct symtab_and_line *sal)
895 {
896 sal->pspace = NULL;
897 sal->symtab = 0;
898 sal->section = 0;
899 sal->line = 0;
900 sal->pc = 0;
901 sal->end = 0;
902 sal->explicit_pc = 0;
903 sal->explicit_line = 0;
904 sal->probe = NULL;
905 }
906 \f
907
908 /* Return 1 if the two sections are the same, or if they could
909 plausibly be copies of each other, one in an original object
910 file and another in a separated debug file. */
911
912 int
913 matching_obj_sections (struct obj_section *obj_first,
914 struct obj_section *obj_second)
915 {
916 asection *first = obj_first? obj_first->the_bfd_section : NULL;
917 asection *second = obj_second? obj_second->the_bfd_section : NULL;
918 struct objfile *obj;
919
920 /* If they're the same section, then they match. */
921 if (first == second)
922 return 1;
923
924 /* If either is NULL, give up. */
925 if (first == NULL || second == NULL)
926 return 0;
927
928 /* This doesn't apply to absolute symbols. */
929 if (first->owner == NULL || second->owner == NULL)
930 return 0;
931
932 /* If they're in the same object file, they must be different sections. */
933 if (first->owner == second->owner)
934 return 0;
935
936 /* Check whether the two sections are potentially corresponding. They must
937 have the same size, address, and name. We can't compare section indexes,
938 which would be more reliable, because some sections may have been
939 stripped. */
940 if (bfd_get_section_size (first) != bfd_get_section_size (second))
941 return 0;
942
943 /* In-memory addresses may start at a different offset, relativize them. */
944 if (bfd_get_section_vma (first->owner, first)
945 - bfd_get_start_address (first->owner)
946 != bfd_get_section_vma (second->owner, second)
947 - bfd_get_start_address (second->owner))
948 return 0;
949
950 if (bfd_get_section_name (first->owner, first) == NULL
951 || bfd_get_section_name (second->owner, second) == NULL
952 || strcmp (bfd_get_section_name (first->owner, first),
953 bfd_get_section_name (second->owner, second)) != 0)
954 return 0;
955
956 /* Otherwise check that they are in corresponding objfiles. */
957
958 ALL_OBJFILES (obj)
959 if (obj->obfd == first->owner)
960 break;
961 gdb_assert (obj != NULL);
962
963 if (obj->separate_debug_objfile != NULL
964 && obj->separate_debug_objfile->obfd == second->owner)
965 return 1;
966 if (obj->separate_debug_objfile_backlink != NULL
967 && obj->separate_debug_objfile_backlink->obfd == second->owner)
968 return 1;
969
970 return 0;
971 }
972
973 struct symtab *
974 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
975 {
976 struct objfile *objfile;
977 struct minimal_symbol *msymbol;
978
979 /* If we know that this is not a text address, return failure. This is
980 necessary because we loop based on texthigh and textlow, which do
981 not include the data ranges. */
982 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
983 if (msymbol
984 && (MSYMBOL_TYPE (msymbol) == mst_data
985 || MSYMBOL_TYPE (msymbol) == mst_bss
986 || MSYMBOL_TYPE (msymbol) == mst_abs
987 || MSYMBOL_TYPE (msymbol) == mst_file_data
988 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
989 return NULL;
990
991 ALL_OBJFILES (objfile)
992 {
993 struct symtab *result = NULL;
994
995 if (objfile->sf)
996 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
997 pc, section, 0);
998 if (result)
999 return result;
1000 }
1001
1002 return NULL;
1003 }
1004 \f
1005 /* Debug symbols usually don't have section information. We need to dig that
1006 out of the minimal symbols and stash that in the debug symbol. */
1007
1008 void
1009 fixup_section (struct general_symbol_info *ginfo,
1010 CORE_ADDR addr, struct objfile *objfile)
1011 {
1012 struct minimal_symbol *msym;
1013
1014 /* First, check whether a minimal symbol with the same name exists
1015 and points to the same address. The address check is required
1016 e.g. on PowerPC64, where the minimal symbol for a function will
1017 point to the function descriptor, while the debug symbol will
1018 point to the actual function code. */
1019 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1020 if (msym)
1021 {
1022 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1023 ginfo->section = SYMBOL_SECTION (msym);
1024 }
1025 else
1026 {
1027 /* Static, function-local variables do appear in the linker
1028 (minimal) symbols, but are frequently given names that won't
1029 be found via lookup_minimal_symbol(). E.g., it has been
1030 observed in frv-uclinux (ELF) executables that a static,
1031 function-local variable named "foo" might appear in the
1032 linker symbols as "foo.6" or "foo.3". Thus, there is no
1033 point in attempting to extend the lookup-by-name mechanism to
1034 handle this case due to the fact that there can be multiple
1035 names.
1036
1037 So, instead, search the section table when lookup by name has
1038 failed. The ``addr'' and ``endaddr'' fields may have already
1039 been relocated. If so, the relocation offset (i.e. the
1040 ANOFFSET value) needs to be subtracted from these values when
1041 performing the comparison. We unconditionally subtract it,
1042 because, when no relocation has been performed, the ANOFFSET
1043 value will simply be zero.
1044
1045 The address of the symbol whose section we're fixing up HAS
1046 NOT BEEN adjusted (relocated) yet. It can't have been since
1047 the section isn't yet known and knowing the section is
1048 necessary in order to add the correct relocation value. In
1049 other words, we wouldn't even be in this function (attempting
1050 to compute the section) if it were already known.
1051
1052 Note that it is possible to search the minimal symbols
1053 (subtracting the relocation value if necessary) to find the
1054 matching minimal symbol, but this is overkill and much less
1055 efficient. It is not necessary to find the matching minimal
1056 symbol, only its section.
1057
1058 Note that this technique (of doing a section table search)
1059 can fail when unrelocated section addresses overlap. For
1060 this reason, we still attempt a lookup by name prior to doing
1061 a search of the section table. */
1062
1063 struct obj_section *s;
1064
1065 ALL_OBJFILE_OSECTIONS (objfile, s)
1066 {
1067 int idx = s->the_bfd_section->index;
1068 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1069
1070 if (obj_section_addr (s) - offset <= addr
1071 && addr < obj_section_endaddr (s) - offset)
1072 {
1073 ginfo->obj_section = s;
1074 ginfo->section = idx;
1075 return;
1076 }
1077 }
1078 }
1079 }
1080
1081 struct symbol *
1082 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1083 {
1084 CORE_ADDR addr;
1085
1086 if (!sym)
1087 return NULL;
1088
1089 if (SYMBOL_OBJ_SECTION (sym))
1090 return sym;
1091
1092 /* We either have an OBJFILE, or we can get at it from the sym's
1093 symtab. Anything else is a bug. */
1094 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1095
1096 if (objfile == NULL)
1097 objfile = SYMBOL_SYMTAB (sym)->objfile;
1098
1099 /* We should have an objfile by now. */
1100 gdb_assert (objfile);
1101
1102 switch (SYMBOL_CLASS (sym))
1103 {
1104 case LOC_STATIC:
1105 case LOC_LABEL:
1106 addr = SYMBOL_VALUE_ADDRESS (sym);
1107 break;
1108 case LOC_BLOCK:
1109 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1110 break;
1111
1112 default:
1113 /* Nothing else will be listed in the minsyms -- no use looking
1114 it up. */
1115 return sym;
1116 }
1117
1118 fixup_section (&sym->ginfo, addr, objfile);
1119
1120 return sym;
1121 }
1122
1123 /* Compute the demangled form of NAME as used by the various symbol
1124 lookup functions. The result is stored in *RESULT_NAME. Returns a
1125 cleanup which can be used to clean up the result.
1126
1127 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1128 Normally, Ada symbol lookups are performed using the encoded name
1129 rather than the demangled name, and so it might seem to make sense
1130 for this function to return an encoded version of NAME.
1131 Unfortunately, we cannot do this, because this function is used in
1132 circumstances where it is not appropriate to try to encode NAME.
1133 For instance, when displaying the frame info, we demangle the name
1134 of each parameter, and then perform a symbol lookup inside our
1135 function using that demangled name. In Ada, certain functions
1136 have internally-generated parameters whose name contain uppercase
1137 characters. Encoding those name would result in those uppercase
1138 characters to become lowercase, and thus cause the symbol lookup
1139 to fail. */
1140
1141 struct cleanup *
1142 demangle_for_lookup (const char *name, enum language lang,
1143 const char **result_name)
1144 {
1145 char *demangled_name = NULL;
1146 const char *modified_name = NULL;
1147 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1148
1149 modified_name = name;
1150
1151 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1152 lookup, so we can always binary search. */
1153 if (lang == language_cplus)
1154 {
1155 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1156 if (demangled_name)
1157 {
1158 modified_name = demangled_name;
1159 make_cleanup (xfree, demangled_name);
1160 }
1161 else
1162 {
1163 /* If we were given a non-mangled name, canonicalize it
1164 according to the language (so far only for C++). */
1165 demangled_name = cp_canonicalize_string (name);
1166 if (demangled_name)
1167 {
1168 modified_name = demangled_name;
1169 make_cleanup (xfree, demangled_name);
1170 }
1171 }
1172 }
1173 else if (lang == language_java)
1174 {
1175 demangled_name = cplus_demangle (name,
1176 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1177 if (demangled_name)
1178 {
1179 modified_name = demangled_name;
1180 make_cleanup (xfree, demangled_name);
1181 }
1182 }
1183 else if (lang == language_d)
1184 {
1185 demangled_name = d_demangle (name, 0);
1186 if (demangled_name)
1187 {
1188 modified_name = demangled_name;
1189 make_cleanup (xfree, demangled_name);
1190 }
1191 }
1192 else if (lang == language_go)
1193 {
1194 demangled_name = go_demangle (name, 0);
1195 if (demangled_name)
1196 {
1197 modified_name = demangled_name;
1198 make_cleanup (xfree, demangled_name);
1199 }
1200 }
1201
1202 *result_name = modified_name;
1203 return cleanup;
1204 }
1205
1206 /* Find the definition for a specified symbol name NAME
1207 in domain DOMAIN, visible from lexical block BLOCK.
1208 Returns the struct symbol pointer, or zero if no symbol is found.
1209 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1210 NAME is a field of the current implied argument `this'. If so set
1211 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1212 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1213 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1214
1215 /* This function (or rather its subordinates) have a bunch of loops and
1216 it would seem to be attractive to put in some QUIT's (though I'm not really
1217 sure whether it can run long enough to be really important). But there
1218 are a few calls for which it would appear to be bad news to quit
1219 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1220 that there is C++ code below which can error(), but that probably
1221 doesn't affect these calls since they are looking for a known
1222 variable and thus can probably assume it will never hit the C++
1223 code). */
1224
1225 struct symbol *
1226 lookup_symbol_in_language (const char *name, const struct block *block,
1227 const domain_enum domain, enum language lang,
1228 struct field_of_this_result *is_a_field_of_this)
1229 {
1230 const char *modified_name;
1231 struct symbol *returnval;
1232 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1233
1234 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1235 is_a_field_of_this);
1236 do_cleanups (cleanup);
1237
1238 return returnval;
1239 }
1240
1241 /* Behave like lookup_symbol_in_language, but performed with the
1242 current language. */
1243
1244 struct symbol *
1245 lookup_symbol (const char *name, const struct block *block,
1246 domain_enum domain,
1247 struct field_of_this_result *is_a_field_of_this)
1248 {
1249 return lookup_symbol_in_language (name, block, domain,
1250 current_language->la_language,
1251 is_a_field_of_this);
1252 }
1253
1254 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1255 found, or NULL if not found. */
1256
1257 struct symbol *
1258 lookup_language_this (const struct language_defn *lang,
1259 const struct block *block)
1260 {
1261 if (lang->la_name_of_this == NULL || block == NULL)
1262 return NULL;
1263
1264 while (block)
1265 {
1266 struct symbol *sym;
1267
1268 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1269 if (sym != NULL)
1270 {
1271 block_found = block;
1272 return sym;
1273 }
1274 if (BLOCK_FUNCTION (block))
1275 break;
1276 block = BLOCK_SUPERBLOCK (block);
1277 }
1278
1279 return NULL;
1280 }
1281
1282 /* Given TYPE, a structure/union,
1283 return 1 if the component named NAME from the ultimate target
1284 structure/union is defined, otherwise, return 0. */
1285
1286 static int
1287 check_field (struct type *type, const char *name,
1288 struct field_of_this_result *is_a_field_of_this)
1289 {
1290 int i;
1291
1292 /* The type may be a stub. */
1293 CHECK_TYPEDEF (type);
1294
1295 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1296 {
1297 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1298
1299 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1300 {
1301 is_a_field_of_this->type = type;
1302 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1303 return 1;
1304 }
1305 }
1306
1307 /* C++: If it was not found as a data field, then try to return it
1308 as a pointer to a method. */
1309
1310 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1311 {
1312 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1313 {
1314 is_a_field_of_this->type = type;
1315 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1316 return 1;
1317 }
1318 }
1319
1320 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1321 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1322 return 1;
1323
1324 return 0;
1325 }
1326
1327 /* Behave like lookup_symbol except that NAME is the natural name
1328 (e.g., demangled name) of the symbol that we're looking for. */
1329
1330 static struct symbol *
1331 lookup_symbol_aux (const char *name, const struct block *block,
1332 const domain_enum domain, enum language language,
1333 struct field_of_this_result *is_a_field_of_this)
1334 {
1335 struct symbol *sym;
1336 const struct language_defn *langdef;
1337
1338 /* Make sure we do something sensible with is_a_field_of_this, since
1339 the callers that set this parameter to some non-null value will
1340 certainly use it later. If we don't set it, the contents of
1341 is_a_field_of_this are undefined. */
1342 if (is_a_field_of_this != NULL)
1343 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1344
1345 /* Search specified block and its superiors. Don't search
1346 STATIC_BLOCK or GLOBAL_BLOCK. */
1347
1348 sym = lookup_symbol_aux_local (name, block, domain, language);
1349 if (sym != NULL)
1350 return sym;
1351
1352 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1353 check to see if NAME is a field of `this'. */
1354
1355 langdef = language_def (language);
1356
1357 /* Don't do this check if we are searching for a struct. It will
1358 not be found by check_field, but will be found by other
1359 means. */
1360 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1361 {
1362 struct symbol *sym = lookup_language_this (langdef, block);
1363
1364 if (sym)
1365 {
1366 struct type *t = sym->type;
1367
1368 /* I'm not really sure that type of this can ever
1369 be typedefed; just be safe. */
1370 CHECK_TYPEDEF (t);
1371 if (TYPE_CODE (t) == TYPE_CODE_PTR
1372 || TYPE_CODE (t) == TYPE_CODE_REF)
1373 t = TYPE_TARGET_TYPE (t);
1374
1375 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1376 && TYPE_CODE (t) != TYPE_CODE_UNION)
1377 error (_("Internal error: `%s' is not an aggregate"),
1378 langdef->la_name_of_this);
1379
1380 if (check_field (t, name, is_a_field_of_this))
1381 return NULL;
1382 }
1383 }
1384
1385 /* Now do whatever is appropriate for LANGUAGE to look
1386 up static and global variables. */
1387
1388 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1389 if (sym != NULL)
1390 return sym;
1391
1392 /* Now search all static file-level symbols. Not strictly correct,
1393 but more useful than an error. */
1394
1395 return lookup_static_symbol_aux (name, domain);
1396 }
1397
1398 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1399 first, then check the psymtabs. If a psymtab indicates the existence of the
1400 desired name as a file-level static, then do psymtab-to-symtab conversion on
1401 the fly and return the found symbol. */
1402
1403 struct symbol *
1404 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1405 {
1406 struct objfile *objfile;
1407 struct symbol *sym;
1408
1409 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1410 if (sym != NULL)
1411 return sym;
1412
1413 ALL_OBJFILES (objfile)
1414 {
1415 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1416 if (sym != NULL)
1417 return sym;
1418 }
1419
1420 return NULL;
1421 }
1422
1423 /* Check to see if the symbol is defined in BLOCK or its superiors.
1424 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1425
1426 static struct symbol *
1427 lookup_symbol_aux_local (const char *name, const struct block *block,
1428 const domain_enum domain,
1429 enum language language)
1430 {
1431 struct symbol *sym;
1432 const struct block *static_block = block_static_block (block);
1433 const char *scope = block_scope (block);
1434
1435 /* Check if either no block is specified or it's a global block. */
1436
1437 if (static_block == NULL)
1438 return NULL;
1439
1440 while (block != static_block)
1441 {
1442 sym = lookup_symbol_aux_block (name, block, domain);
1443 if (sym != NULL)
1444 return sym;
1445
1446 if (language == language_cplus || language == language_fortran)
1447 {
1448 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1449 domain);
1450 if (sym != NULL)
1451 return sym;
1452 }
1453
1454 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1455 break;
1456 block = BLOCK_SUPERBLOCK (block);
1457 }
1458
1459 /* We've reached the edge of the function without finding a result. */
1460
1461 return NULL;
1462 }
1463
1464 /* Look up OBJFILE to BLOCK. */
1465
1466 struct objfile *
1467 lookup_objfile_from_block (const struct block *block)
1468 {
1469 struct objfile *obj;
1470 struct symtab *s;
1471
1472 if (block == NULL)
1473 return NULL;
1474
1475 block = block_global_block (block);
1476 /* Go through SYMTABS. */
1477 ALL_SYMTABS (obj, s)
1478 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1479 {
1480 if (obj->separate_debug_objfile_backlink)
1481 obj = obj->separate_debug_objfile_backlink;
1482
1483 return obj;
1484 }
1485
1486 return NULL;
1487 }
1488
1489 /* Look up a symbol in a block; if found, fixup the symbol, and set
1490 block_found appropriately. */
1491
1492 struct symbol *
1493 lookup_symbol_aux_block (const char *name, const struct block *block,
1494 const domain_enum domain)
1495 {
1496 struct symbol *sym;
1497
1498 sym = lookup_block_symbol (block, name, domain);
1499 if (sym)
1500 {
1501 block_found = block;
1502 return fixup_symbol_section (sym, NULL);
1503 }
1504
1505 return NULL;
1506 }
1507
1508 /* Check all global symbols in OBJFILE in symtabs and
1509 psymtabs. */
1510
1511 struct symbol *
1512 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1513 const char *name,
1514 const domain_enum domain)
1515 {
1516 const struct objfile *objfile;
1517 struct symbol *sym;
1518 struct blockvector *bv;
1519 const struct block *block;
1520 struct symtab *s;
1521
1522 for (objfile = main_objfile;
1523 objfile;
1524 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1525 {
1526 /* Go through symtabs. */
1527 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1528 {
1529 bv = BLOCKVECTOR (s);
1530 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1531 sym = lookup_block_symbol (block, name, domain);
1532 if (sym)
1533 {
1534 block_found = block;
1535 return fixup_symbol_section (sym, (struct objfile *)objfile);
1536 }
1537 }
1538
1539 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1540 name, domain);
1541 if (sym)
1542 return sym;
1543 }
1544
1545 return NULL;
1546 }
1547
1548 /* Check to see if the symbol is defined in one of the OBJFILE's
1549 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1550 depending on whether or not we want to search global symbols or
1551 static symbols. */
1552
1553 static struct symbol *
1554 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1555 const char *name, const domain_enum domain)
1556 {
1557 struct symbol *sym = NULL;
1558 struct blockvector *bv;
1559 const struct block *block;
1560 struct symtab *s;
1561
1562 if (objfile->sf)
1563 objfile->sf->qf->pre_expand_symtabs_matching (objfile, block_index,
1564 name, domain);
1565
1566 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1567 {
1568 bv = BLOCKVECTOR (s);
1569 block = BLOCKVECTOR_BLOCK (bv, block_index);
1570 sym = lookup_block_symbol (block, name, domain);
1571 if (sym)
1572 {
1573 block_found = block;
1574 return fixup_symbol_section (sym, objfile);
1575 }
1576 }
1577
1578 return NULL;
1579 }
1580
1581 /* Same as lookup_symbol_aux_objfile, except that it searches all
1582 objfiles. Return the first match found. */
1583
1584 static struct symbol *
1585 lookup_symbol_aux_symtabs (int block_index, const char *name,
1586 const domain_enum domain)
1587 {
1588 struct symbol *sym;
1589 struct objfile *objfile;
1590
1591 ALL_OBJFILES (objfile)
1592 {
1593 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1594 if (sym)
1595 return sym;
1596 }
1597
1598 return NULL;
1599 }
1600
1601 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1602 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1603 and all related objfiles. */
1604
1605 static struct symbol *
1606 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1607 const char *linkage_name,
1608 domain_enum domain)
1609 {
1610 enum language lang = current_language->la_language;
1611 const char *modified_name;
1612 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1613 &modified_name);
1614 struct objfile *main_objfile, *cur_objfile;
1615
1616 if (objfile->separate_debug_objfile_backlink)
1617 main_objfile = objfile->separate_debug_objfile_backlink;
1618 else
1619 main_objfile = objfile;
1620
1621 for (cur_objfile = main_objfile;
1622 cur_objfile;
1623 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1624 {
1625 struct symbol *sym;
1626
1627 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1628 modified_name, domain);
1629 if (sym == NULL)
1630 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1631 modified_name, domain);
1632 if (sym != NULL)
1633 {
1634 do_cleanups (cleanup);
1635 return sym;
1636 }
1637 }
1638
1639 do_cleanups (cleanup);
1640 return NULL;
1641 }
1642
1643 /* A helper function for lookup_symbol_aux that interfaces with the
1644 "quick" symbol table functions. */
1645
1646 static struct symbol *
1647 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1648 const char *name, const domain_enum domain)
1649 {
1650 struct symtab *symtab;
1651 struct blockvector *bv;
1652 const struct block *block;
1653 struct symbol *sym;
1654
1655 if (!objfile->sf)
1656 return NULL;
1657 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1658 if (!symtab)
1659 return NULL;
1660
1661 bv = BLOCKVECTOR (symtab);
1662 block = BLOCKVECTOR_BLOCK (bv, kind);
1663 sym = lookup_block_symbol (block, name, domain);
1664 if (!sym)
1665 {
1666 /* This shouldn't be necessary, but as a last resort try
1667 looking in the statics even though the psymtab claimed
1668 the symbol was global, or vice-versa. It's possible
1669 that the psymtab gets it wrong in some cases. */
1670
1671 /* FIXME: carlton/2002-09-30: Should we really do that?
1672 If that happens, isn't it likely to be a GDB error, in
1673 which case we should fix the GDB error rather than
1674 silently dealing with it here? So I'd vote for
1675 removing the check for the symbol in the other
1676 block. */
1677 block = BLOCKVECTOR_BLOCK (bv,
1678 kind == GLOBAL_BLOCK ?
1679 STATIC_BLOCK : GLOBAL_BLOCK);
1680 sym = lookup_block_symbol (block, name, domain);
1681 if (!sym)
1682 error (_("\
1683 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1684 %s may be an inlined function, or may be a template function\n\
1685 (if a template, try specifying an instantiation: %s<type>)."),
1686 kind == GLOBAL_BLOCK ? "global" : "static",
1687 name, symtab->filename, name, name);
1688 }
1689 return fixup_symbol_section (sym, objfile);
1690 }
1691
1692 /* A default version of lookup_symbol_nonlocal for use by languages
1693 that can't think of anything better to do. This implements the C
1694 lookup rules. */
1695
1696 struct symbol *
1697 basic_lookup_symbol_nonlocal (const char *name,
1698 const struct block *block,
1699 const domain_enum domain)
1700 {
1701 struct symbol *sym;
1702
1703 /* NOTE: carlton/2003-05-19: The comments below were written when
1704 this (or what turned into this) was part of lookup_symbol_aux;
1705 I'm much less worried about these questions now, since these
1706 decisions have turned out well, but I leave these comments here
1707 for posterity. */
1708
1709 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1710 not it would be appropriate to search the current global block
1711 here as well. (That's what this code used to do before the
1712 is_a_field_of_this check was moved up.) On the one hand, it's
1713 redundant with the lookup_symbol_aux_symtabs search that happens
1714 next. On the other hand, if decode_line_1 is passed an argument
1715 like filename:var, then the user presumably wants 'var' to be
1716 searched for in filename. On the third hand, there shouldn't be
1717 multiple global variables all of which are named 'var', and it's
1718 not like decode_line_1 has ever restricted its search to only
1719 global variables in a single filename. All in all, only
1720 searching the static block here seems best: it's correct and it's
1721 cleanest. */
1722
1723 /* NOTE: carlton/2002-12-05: There's also a possible performance
1724 issue here: if you usually search for global symbols in the
1725 current file, then it would be slightly better to search the
1726 current global block before searching all the symtabs. But there
1727 are other factors that have a much greater effect on performance
1728 than that one, so I don't think we should worry about that for
1729 now. */
1730
1731 sym = lookup_symbol_static (name, block, domain);
1732 if (sym != NULL)
1733 return sym;
1734
1735 return lookup_symbol_global (name, block, domain);
1736 }
1737
1738 /* Lookup a symbol in the static block associated to BLOCK, if there
1739 is one; do nothing if BLOCK is NULL or a global block. */
1740
1741 struct symbol *
1742 lookup_symbol_static (const char *name,
1743 const struct block *block,
1744 const domain_enum domain)
1745 {
1746 const struct block *static_block = block_static_block (block);
1747
1748 if (static_block != NULL)
1749 return lookup_symbol_aux_block (name, static_block, domain);
1750 else
1751 return NULL;
1752 }
1753
1754 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1755
1756 struct global_sym_lookup_data
1757 {
1758 /* The name of the symbol we are searching for. */
1759 const char *name;
1760
1761 /* The domain to use for our search. */
1762 domain_enum domain;
1763
1764 /* The field where the callback should store the symbol if found.
1765 It should be initialized to NULL before the search is started. */
1766 struct symbol *result;
1767 };
1768
1769 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1770 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1771 OBJFILE. The arguments for the search are passed via CB_DATA,
1772 which in reality is a pointer to struct global_sym_lookup_data. */
1773
1774 static int
1775 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1776 void *cb_data)
1777 {
1778 struct global_sym_lookup_data *data =
1779 (struct global_sym_lookup_data *) cb_data;
1780
1781 gdb_assert (data->result == NULL);
1782
1783 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1784 data->name, data->domain);
1785 if (data->result == NULL)
1786 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1787 data->name, data->domain);
1788
1789 /* If we found a match, tell the iterator to stop. Otherwise,
1790 keep going. */
1791 return (data->result != NULL);
1792 }
1793
1794 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1795 necessary). */
1796
1797 struct symbol *
1798 lookup_symbol_global (const char *name,
1799 const struct block *block,
1800 const domain_enum domain)
1801 {
1802 struct symbol *sym = NULL;
1803 struct objfile *objfile = NULL;
1804 struct global_sym_lookup_data lookup_data;
1805
1806 /* Call library-specific lookup procedure. */
1807 objfile = lookup_objfile_from_block (block);
1808 if (objfile != NULL)
1809 sym = solib_global_lookup (objfile, name, domain);
1810 if (sym != NULL)
1811 return sym;
1812
1813 memset (&lookup_data, 0, sizeof (lookup_data));
1814 lookup_data.name = name;
1815 lookup_data.domain = domain;
1816 gdbarch_iterate_over_objfiles_in_search_order
1817 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1818 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1819
1820 return lookup_data.result;
1821 }
1822
1823 int
1824 symbol_matches_domain (enum language symbol_language,
1825 domain_enum symbol_domain,
1826 domain_enum domain)
1827 {
1828 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1829 A Java class declaration also defines a typedef for the class.
1830 Similarly, any Ada type declaration implicitly defines a typedef. */
1831 if (symbol_language == language_cplus
1832 || symbol_language == language_d
1833 || symbol_language == language_java
1834 || symbol_language == language_ada)
1835 {
1836 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1837 && symbol_domain == STRUCT_DOMAIN)
1838 return 1;
1839 }
1840 /* For all other languages, strict match is required. */
1841 return (symbol_domain == domain);
1842 }
1843
1844 /* Look up a type named NAME in the struct_domain. The type returned
1845 must not be opaque -- i.e., must have at least one field
1846 defined. */
1847
1848 struct type *
1849 lookup_transparent_type (const char *name)
1850 {
1851 return current_language->la_lookup_transparent_type (name);
1852 }
1853
1854 /* A helper for basic_lookup_transparent_type that interfaces with the
1855 "quick" symbol table functions. */
1856
1857 static struct type *
1858 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1859 const char *name)
1860 {
1861 struct symtab *symtab;
1862 struct blockvector *bv;
1863 struct block *block;
1864 struct symbol *sym;
1865
1866 if (!objfile->sf)
1867 return NULL;
1868 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1869 if (!symtab)
1870 return NULL;
1871
1872 bv = BLOCKVECTOR (symtab);
1873 block = BLOCKVECTOR_BLOCK (bv, kind);
1874 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1875 if (!sym)
1876 {
1877 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1878
1879 /* This shouldn't be necessary, but as a last resort
1880 * try looking in the 'other kind' even though the psymtab
1881 * claimed the symbol was one thing. It's possible that
1882 * the psymtab gets it wrong in some cases.
1883 */
1884 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1885 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1886 if (!sym)
1887 /* FIXME; error is wrong in one case. */
1888 error (_("\
1889 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1890 %s may be an inlined function, or may be a template function\n\
1891 (if a template, try specifying an instantiation: %s<type>)."),
1892 name, symtab->filename, name, name);
1893 }
1894 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1895 return SYMBOL_TYPE (sym);
1896
1897 return NULL;
1898 }
1899
1900 /* The standard implementation of lookup_transparent_type. This code
1901 was modeled on lookup_symbol -- the parts not relevant to looking
1902 up types were just left out. In particular it's assumed here that
1903 types are available in struct_domain and only at file-static or
1904 global blocks. */
1905
1906 struct type *
1907 basic_lookup_transparent_type (const char *name)
1908 {
1909 struct symbol *sym;
1910 struct symtab *s = NULL;
1911 struct blockvector *bv;
1912 struct objfile *objfile;
1913 struct block *block;
1914 struct type *t;
1915
1916 /* Now search all the global symbols. Do the symtab's first, then
1917 check the psymtab's. If a psymtab indicates the existence
1918 of the desired name as a global, then do psymtab-to-symtab
1919 conversion on the fly and return the found symbol. */
1920
1921 ALL_OBJFILES (objfile)
1922 {
1923 if (objfile->sf)
1924 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1925 GLOBAL_BLOCK,
1926 name, STRUCT_DOMAIN);
1927
1928 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1929 {
1930 bv = BLOCKVECTOR (s);
1931 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1932 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1933 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1934 {
1935 return SYMBOL_TYPE (sym);
1936 }
1937 }
1938 }
1939
1940 ALL_OBJFILES (objfile)
1941 {
1942 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1943 if (t)
1944 return t;
1945 }
1946
1947 /* Now search the static file-level symbols.
1948 Not strictly correct, but more useful than an error.
1949 Do the symtab's first, then
1950 check the psymtab's. If a psymtab indicates the existence
1951 of the desired name as a file-level static, then do psymtab-to-symtab
1952 conversion on the fly and return the found symbol. */
1953
1954 ALL_OBJFILES (objfile)
1955 {
1956 if (objfile->sf)
1957 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1958 name, STRUCT_DOMAIN);
1959
1960 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1961 {
1962 bv = BLOCKVECTOR (s);
1963 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1964 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1965 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1966 {
1967 return SYMBOL_TYPE (sym);
1968 }
1969 }
1970 }
1971
1972 ALL_OBJFILES (objfile)
1973 {
1974 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1975 if (t)
1976 return t;
1977 }
1978
1979 return (struct type *) 0;
1980 }
1981
1982 /* Find the name of the file containing main(). */
1983 /* FIXME: What about languages without main() or specially linked
1984 executables that have no main() ? */
1985
1986 const char *
1987 find_main_filename (void)
1988 {
1989 struct objfile *objfile;
1990 char *name = main_name ();
1991
1992 ALL_OBJFILES (objfile)
1993 {
1994 const char *result;
1995
1996 if (!objfile->sf)
1997 continue;
1998 result = objfile->sf->qf->find_symbol_file (objfile, name);
1999 if (result)
2000 return result;
2001 }
2002 return (NULL);
2003 }
2004
2005 /* Search BLOCK for symbol NAME in DOMAIN.
2006
2007 Note that if NAME is the demangled form of a C++ symbol, we will fail
2008 to find a match during the binary search of the non-encoded names, but
2009 for now we don't worry about the slight inefficiency of looking for
2010 a match we'll never find, since it will go pretty quick. Once the
2011 binary search terminates, we drop through and do a straight linear
2012 search on the symbols. Each symbol which is marked as being a ObjC/C++
2013 symbol (language_cplus or language_objc set) has both the encoded and
2014 non-encoded names tested for a match. */
2015
2016 struct symbol *
2017 lookup_block_symbol (const struct block *block, const char *name,
2018 const domain_enum domain)
2019 {
2020 struct block_iterator iter;
2021 struct symbol *sym;
2022
2023 if (!BLOCK_FUNCTION (block))
2024 {
2025 for (sym = block_iter_name_first (block, name, &iter);
2026 sym != NULL;
2027 sym = block_iter_name_next (name, &iter))
2028 {
2029 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2030 SYMBOL_DOMAIN (sym), domain))
2031 return sym;
2032 }
2033 return NULL;
2034 }
2035 else
2036 {
2037 /* Note that parameter symbols do not always show up last in the
2038 list; this loop makes sure to take anything else other than
2039 parameter symbols first; it only uses parameter symbols as a
2040 last resort. Note that this only takes up extra computation
2041 time on a match. */
2042
2043 struct symbol *sym_found = NULL;
2044
2045 for (sym = block_iter_name_first (block, name, &iter);
2046 sym != NULL;
2047 sym = block_iter_name_next (name, &iter))
2048 {
2049 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2050 SYMBOL_DOMAIN (sym), domain))
2051 {
2052 sym_found = sym;
2053 if (!SYMBOL_IS_ARGUMENT (sym))
2054 {
2055 break;
2056 }
2057 }
2058 }
2059 return (sym_found); /* Will be NULL if not found. */
2060 }
2061 }
2062
2063 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
2064 BLOCK.
2065
2066 For each symbol that matches, CALLBACK is called. The symbol and
2067 DATA are passed to the callback.
2068
2069 If CALLBACK returns zero, the iteration ends. Otherwise, the
2070 search continues. This function iterates upward through blocks.
2071 When the outermost block has been finished, the function
2072 returns. */
2073
2074 void
2075 iterate_over_symbols (const struct block *block, const char *name,
2076 const domain_enum domain,
2077 symbol_found_callback_ftype *callback,
2078 void *data)
2079 {
2080 while (block)
2081 {
2082 struct block_iterator iter;
2083 struct symbol *sym;
2084
2085 for (sym = block_iter_name_first (block, name, &iter);
2086 sym != NULL;
2087 sym = block_iter_name_next (name, &iter))
2088 {
2089 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2090 SYMBOL_DOMAIN (sym), domain))
2091 {
2092 if (!callback (sym, data))
2093 return;
2094 }
2095 }
2096
2097 block = BLOCK_SUPERBLOCK (block);
2098 }
2099 }
2100
2101 /* Find the symtab associated with PC and SECTION. Look through the
2102 psymtabs and read in another symtab if necessary. */
2103
2104 struct symtab *
2105 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2106 {
2107 struct block *b;
2108 struct blockvector *bv;
2109 struct symtab *s = NULL;
2110 struct symtab *best_s = NULL;
2111 struct objfile *objfile;
2112 struct program_space *pspace;
2113 CORE_ADDR distance = 0;
2114 struct minimal_symbol *msymbol;
2115
2116 pspace = current_program_space;
2117
2118 /* If we know that this is not a text address, return failure. This is
2119 necessary because we loop based on the block's high and low code
2120 addresses, which do not include the data ranges, and because
2121 we call find_pc_sect_psymtab which has a similar restriction based
2122 on the partial_symtab's texthigh and textlow. */
2123 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2124 if (msymbol
2125 && (MSYMBOL_TYPE (msymbol) == mst_data
2126 || MSYMBOL_TYPE (msymbol) == mst_bss
2127 || MSYMBOL_TYPE (msymbol) == mst_abs
2128 || MSYMBOL_TYPE (msymbol) == mst_file_data
2129 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2130 return NULL;
2131
2132 /* Search all symtabs for the one whose file contains our address, and which
2133 is the smallest of all the ones containing the address. This is designed
2134 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2135 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2136 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2137
2138 This happens for native ecoff format, where code from included files
2139 gets its own symtab. The symtab for the included file should have
2140 been read in already via the dependency mechanism.
2141 It might be swifter to create several symtabs with the same name
2142 like xcoff does (I'm not sure).
2143
2144 It also happens for objfiles that have their functions reordered.
2145 For these, the symtab we are looking for is not necessarily read in. */
2146
2147 ALL_PRIMARY_SYMTABS (objfile, s)
2148 {
2149 bv = BLOCKVECTOR (s);
2150 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2151
2152 if (BLOCK_START (b) <= pc
2153 && BLOCK_END (b) > pc
2154 && (distance == 0
2155 || BLOCK_END (b) - BLOCK_START (b) < distance))
2156 {
2157 /* For an objfile that has its functions reordered,
2158 find_pc_psymtab will find the proper partial symbol table
2159 and we simply return its corresponding symtab. */
2160 /* In order to better support objfiles that contain both
2161 stabs and coff debugging info, we continue on if a psymtab
2162 can't be found. */
2163 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2164 {
2165 struct symtab *result;
2166
2167 result
2168 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2169 msymbol,
2170 pc, section,
2171 0);
2172 if (result)
2173 return result;
2174 }
2175 if (section != 0)
2176 {
2177 struct block_iterator iter;
2178 struct symbol *sym = NULL;
2179
2180 ALL_BLOCK_SYMBOLS (b, iter, sym)
2181 {
2182 fixup_symbol_section (sym, objfile);
2183 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2184 break;
2185 }
2186 if (sym == NULL)
2187 continue; /* No symbol in this symtab matches
2188 section. */
2189 }
2190 distance = BLOCK_END (b) - BLOCK_START (b);
2191 best_s = s;
2192 }
2193 }
2194
2195 if (best_s != NULL)
2196 return (best_s);
2197
2198 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2199
2200 ALL_OBJFILES (objfile)
2201 {
2202 struct symtab *result;
2203
2204 if (!objfile->sf)
2205 continue;
2206 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2207 msymbol,
2208 pc, section,
2209 1);
2210 if (result)
2211 return result;
2212 }
2213
2214 return NULL;
2215 }
2216
2217 /* Find the symtab associated with PC. Look through the psymtabs and read
2218 in another symtab if necessary. Backward compatibility, no section. */
2219
2220 struct symtab *
2221 find_pc_symtab (CORE_ADDR pc)
2222 {
2223 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2224 }
2225 \f
2226
2227 /* Find the source file and line number for a given PC value and SECTION.
2228 Return a structure containing a symtab pointer, a line number,
2229 and a pc range for the entire source line.
2230 The value's .pc field is NOT the specified pc.
2231 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2232 use the line that ends there. Otherwise, in that case, the line
2233 that begins there is used. */
2234
2235 /* The big complication here is that a line may start in one file, and end just
2236 before the start of another file. This usually occurs when you #include
2237 code in the middle of a subroutine. To properly find the end of a line's PC
2238 range, we must search all symtabs associated with this compilation unit, and
2239 find the one whose first PC is closer than that of the next line in this
2240 symtab. */
2241
2242 /* If it's worth the effort, we could be using a binary search. */
2243
2244 struct symtab_and_line
2245 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2246 {
2247 struct symtab *s;
2248 struct linetable *l;
2249 int len;
2250 int i;
2251 struct linetable_entry *item;
2252 struct symtab_and_line val;
2253 struct blockvector *bv;
2254 struct minimal_symbol *msymbol;
2255 struct minimal_symbol *mfunsym;
2256 struct objfile *objfile;
2257
2258 /* Info on best line seen so far, and where it starts, and its file. */
2259
2260 struct linetable_entry *best = NULL;
2261 CORE_ADDR best_end = 0;
2262 struct symtab *best_symtab = 0;
2263
2264 /* Store here the first line number
2265 of a file which contains the line at the smallest pc after PC.
2266 If we don't find a line whose range contains PC,
2267 we will use a line one less than this,
2268 with a range from the start of that file to the first line's pc. */
2269 struct linetable_entry *alt = NULL;
2270 struct symtab *alt_symtab = 0;
2271
2272 /* Info on best line seen in this file. */
2273
2274 struct linetable_entry *prev;
2275
2276 /* If this pc is not from the current frame,
2277 it is the address of the end of a call instruction.
2278 Quite likely that is the start of the following statement.
2279 But what we want is the statement containing the instruction.
2280 Fudge the pc to make sure we get that. */
2281
2282 init_sal (&val); /* initialize to zeroes */
2283
2284 val.pspace = current_program_space;
2285
2286 /* It's tempting to assume that, if we can't find debugging info for
2287 any function enclosing PC, that we shouldn't search for line
2288 number info, either. However, GAS can emit line number info for
2289 assembly files --- very helpful when debugging hand-written
2290 assembly code. In such a case, we'd have no debug info for the
2291 function, but we would have line info. */
2292
2293 if (notcurrent)
2294 pc -= 1;
2295
2296 /* elz: added this because this function returned the wrong
2297 information if the pc belongs to a stub (import/export)
2298 to call a shlib function. This stub would be anywhere between
2299 two functions in the target, and the line info was erroneously
2300 taken to be the one of the line before the pc. */
2301
2302 /* RT: Further explanation:
2303
2304 * We have stubs (trampolines) inserted between procedures.
2305 *
2306 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2307 * exists in the main image.
2308 *
2309 * In the minimal symbol table, we have a bunch of symbols
2310 * sorted by start address. The stubs are marked as "trampoline",
2311 * the others appear as text. E.g.:
2312 *
2313 * Minimal symbol table for main image
2314 * main: code for main (text symbol)
2315 * shr1: stub (trampoline symbol)
2316 * foo: code for foo (text symbol)
2317 * ...
2318 * Minimal symbol table for "shr1" image:
2319 * ...
2320 * shr1: code for shr1 (text symbol)
2321 * ...
2322 *
2323 * So the code below is trying to detect if we are in the stub
2324 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2325 * and if found, do the symbolization from the real-code address
2326 * rather than the stub address.
2327 *
2328 * Assumptions being made about the minimal symbol table:
2329 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2330 * if we're really in the trampoline.s If we're beyond it (say
2331 * we're in "foo" in the above example), it'll have a closer
2332 * symbol (the "foo" text symbol for example) and will not
2333 * return the trampoline.
2334 * 2. lookup_minimal_symbol_text() will find a real text symbol
2335 * corresponding to the trampoline, and whose address will
2336 * be different than the trampoline address. I put in a sanity
2337 * check for the address being the same, to avoid an
2338 * infinite recursion.
2339 */
2340 msymbol = lookup_minimal_symbol_by_pc (pc);
2341 if (msymbol != NULL)
2342 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2343 {
2344 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2345 NULL);
2346 if (mfunsym == NULL)
2347 /* I eliminated this warning since it is coming out
2348 * in the following situation:
2349 * gdb shmain // test program with shared libraries
2350 * (gdb) break shr1 // function in shared lib
2351 * Warning: In stub for ...
2352 * In the above situation, the shared lib is not loaded yet,
2353 * so of course we can't find the real func/line info,
2354 * but the "break" still works, and the warning is annoying.
2355 * So I commented out the warning. RT */
2356 /* warning ("In stub for %s; unable to find real function/line info",
2357 SYMBOL_LINKAGE_NAME (msymbol)); */
2358 ;
2359 /* fall through */
2360 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2361 == SYMBOL_VALUE_ADDRESS (msymbol))
2362 /* Avoid infinite recursion */
2363 /* See above comment about why warning is commented out. */
2364 /* warning ("In stub for %s; unable to find real function/line info",
2365 SYMBOL_LINKAGE_NAME (msymbol)); */
2366 ;
2367 /* fall through */
2368 else
2369 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2370 }
2371
2372
2373 s = find_pc_sect_symtab (pc, section);
2374 if (!s)
2375 {
2376 /* If no symbol information, return previous pc. */
2377 if (notcurrent)
2378 pc++;
2379 val.pc = pc;
2380 return val;
2381 }
2382
2383 bv = BLOCKVECTOR (s);
2384 objfile = s->objfile;
2385
2386 /* Look at all the symtabs that share this blockvector.
2387 They all have the same apriori range, that we found was right;
2388 but they have different line tables. */
2389
2390 ALL_OBJFILE_SYMTABS (objfile, s)
2391 {
2392 if (BLOCKVECTOR (s) != bv)
2393 continue;
2394
2395 /* Find the best line in this symtab. */
2396 l = LINETABLE (s);
2397 if (!l)
2398 continue;
2399 len = l->nitems;
2400 if (len <= 0)
2401 {
2402 /* I think len can be zero if the symtab lacks line numbers
2403 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2404 I'm not sure which, and maybe it depends on the symbol
2405 reader). */
2406 continue;
2407 }
2408
2409 prev = NULL;
2410 item = l->item; /* Get first line info. */
2411
2412 /* Is this file's first line closer than the first lines of other files?
2413 If so, record this file, and its first line, as best alternate. */
2414 if (item->pc > pc && (!alt || item->pc < alt->pc))
2415 {
2416 alt = item;
2417 alt_symtab = s;
2418 }
2419
2420 for (i = 0; i < len; i++, item++)
2421 {
2422 /* Leave prev pointing to the linetable entry for the last line
2423 that started at or before PC. */
2424 if (item->pc > pc)
2425 break;
2426
2427 prev = item;
2428 }
2429
2430 /* At this point, prev points at the line whose start addr is <= pc, and
2431 item points at the next line. If we ran off the end of the linetable
2432 (pc >= start of the last line), then prev == item. If pc < start of
2433 the first line, prev will not be set. */
2434
2435 /* Is this file's best line closer than the best in the other files?
2436 If so, record this file, and its best line, as best so far. Don't
2437 save prev if it represents the end of a function (i.e. line number
2438 0) instead of a real line. */
2439
2440 if (prev && prev->line && (!best || prev->pc > best->pc))
2441 {
2442 best = prev;
2443 best_symtab = s;
2444
2445 /* Discard BEST_END if it's before the PC of the current BEST. */
2446 if (best_end <= best->pc)
2447 best_end = 0;
2448 }
2449
2450 /* If another line (denoted by ITEM) is in the linetable and its
2451 PC is after BEST's PC, but before the current BEST_END, then
2452 use ITEM's PC as the new best_end. */
2453 if (best && i < len && item->pc > best->pc
2454 && (best_end == 0 || best_end > item->pc))
2455 best_end = item->pc;
2456 }
2457
2458 if (!best_symtab)
2459 {
2460 /* If we didn't find any line number info, just return zeros.
2461 We used to return alt->line - 1 here, but that could be
2462 anywhere; if we don't have line number info for this PC,
2463 don't make some up. */
2464 val.pc = pc;
2465 }
2466 else if (best->line == 0)
2467 {
2468 /* If our best fit is in a range of PC's for which no line
2469 number info is available (line number is zero) then we didn't
2470 find any valid line information. */
2471 val.pc = pc;
2472 }
2473 else
2474 {
2475 val.symtab = best_symtab;
2476 val.line = best->line;
2477 val.pc = best->pc;
2478 if (best_end && (!alt || best_end < alt->pc))
2479 val.end = best_end;
2480 else if (alt)
2481 val.end = alt->pc;
2482 else
2483 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2484 }
2485 val.section = section;
2486 return val;
2487 }
2488
2489 /* Backward compatibility (no section). */
2490
2491 struct symtab_and_line
2492 find_pc_line (CORE_ADDR pc, int notcurrent)
2493 {
2494 struct obj_section *section;
2495
2496 section = find_pc_overlay (pc);
2497 if (pc_in_unmapped_range (pc, section))
2498 pc = overlay_mapped_address (pc, section);
2499 return find_pc_sect_line (pc, section, notcurrent);
2500 }
2501 \f
2502 /* Find line number LINE in any symtab whose name is the same as
2503 SYMTAB.
2504
2505 If found, return the symtab that contains the linetable in which it was
2506 found, set *INDEX to the index in the linetable of the best entry
2507 found, and set *EXACT_MATCH nonzero if the value returned is an
2508 exact match.
2509
2510 If not found, return NULL. */
2511
2512 struct symtab *
2513 find_line_symtab (struct symtab *symtab, int line,
2514 int *index, int *exact_match)
2515 {
2516 int exact = 0; /* Initialized here to avoid a compiler warning. */
2517
2518 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2519 so far seen. */
2520
2521 int best_index;
2522 struct linetable *best_linetable;
2523 struct symtab *best_symtab;
2524
2525 /* First try looking it up in the given symtab. */
2526 best_linetable = LINETABLE (symtab);
2527 best_symtab = symtab;
2528 best_index = find_line_common (best_linetable, line, &exact, 0);
2529 if (best_index < 0 || !exact)
2530 {
2531 /* Didn't find an exact match. So we better keep looking for
2532 another symtab with the same name. In the case of xcoff,
2533 multiple csects for one source file (produced by IBM's FORTRAN
2534 compiler) produce multiple symtabs (this is unavoidable
2535 assuming csects can be at arbitrary places in memory and that
2536 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2537
2538 /* BEST is the smallest linenumber > LINE so far seen,
2539 or 0 if none has been seen so far.
2540 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2541 int best;
2542
2543 struct objfile *objfile;
2544 struct symtab *s;
2545
2546 if (best_index >= 0)
2547 best = best_linetable->item[best_index].line;
2548 else
2549 best = 0;
2550
2551 ALL_OBJFILES (objfile)
2552 {
2553 if (objfile->sf)
2554 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2555 symtab->filename);
2556 }
2557
2558 /* Get symbol full file name if possible. */
2559 symtab_to_fullname (symtab);
2560
2561 ALL_SYMTABS (objfile, s)
2562 {
2563 struct linetable *l;
2564 int ind;
2565
2566 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2567 continue;
2568 if (symtab->fullname != NULL
2569 && symtab_to_fullname (s) != NULL
2570 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2571 continue;
2572 l = LINETABLE (s);
2573 ind = find_line_common (l, line, &exact, 0);
2574 if (ind >= 0)
2575 {
2576 if (exact)
2577 {
2578 best_index = ind;
2579 best_linetable = l;
2580 best_symtab = s;
2581 goto done;
2582 }
2583 if (best == 0 || l->item[ind].line < best)
2584 {
2585 best = l->item[ind].line;
2586 best_index = ind;
2587 best_linetable = l;
2588 best_symtab = s;
2589 }
2590 }
2591 }
2592 }
2593 done:
2594 if (best_index < 0)
2595 return NULL;
2596
2597 if (index)
2598 *index = best_index;
2599 if (exact_match)
2600 *exact_match = exact;
2601
2602 return best_symtab;
2603 }
2604
2605 /* Given SYMTAB, returns all the PCs function in the symtab that
2606 exactly match LINE. Returns NULL if there are no exact matches,
2607 but updates BEST_ITEM in this case. */
2608
2609 VEC (CORE_ADDR) *
2610 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2611 struct linetable_entry **best_item)
2612 {
2613 int start = 0, ix;
2614 struct symbol *previous_function = NULL;
2615 VEC (CORE_ADDR) *result = NULL;
2616
2617 /* First, collect all the PCs that are at this line. */
2618 while (1)
2619 {
2620 int was_exact;
2621 int idx;
2622
2623 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2624 if (idx < 0)
2625 break;
2626
2627 if (!was_exact)
2628 {
2629 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2630
2631 if (*best_item == NULL || item->line < (*best_item)->line)
2632 *best_item = item;
2633
2634 break;
2635 }
2636
2637 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2638 start = idx + 1;
2639 }
2640
2641 return result;
2642 }
2643
2644 \f
2645 /* Set the PC value for a given source file and line number and return true.
2646 Returns zero for invalid line number (and sets the PC to 0).
2647 The source file is specified with a struct symtab. */
2648
2649 int
2650 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2651 {
2652 struct linetable *l;
2653 int ind;
2654
2655 *pc = 0;
2656 if (symtab == 0)
2657 return 0;
2658
2659 symtab = find_line_symtab (symtab, line, &ind, NULL);
2660 if (symtab != NULL)
2661 {
2662 l = LINETABLE (symtab);
2663 *pc = l->item[ind].pc;
2664 return 1;
2665 }
2666 else
2667 return 0;
2668 }
2669
2670 /* Find the range of pc values in a line.
2671 Store the starting pc of the line into *STARTPTR
2672 and the ending pc (start of next line) into *ENDPTR.
2673 Returns 1 to indicate success.
2674 Returns 0 if could not find the specified line. */
2675
2676 int
2677 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2678 CORE_ADDR *endptr)
2679 {
2680 CORE_ADDR startaddr;
2681 struct symtab_and_line found_sal;
2682
2683 startaddr = sal.pc;
2684 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2685 return 0;
2686
2687 /* This whole function is based on address. For example, if line 10 has
2688 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2689 "info line *0x123" should say the line goes from 0x100 to 0x200
2690 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2691 This also insures that we never give a range like "starts at 0x134
2692 and ends at 0x12c". */
2693
2694 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2695 if (found_sal.line != sal.line)
2696 {
2697 /* The specified line (sal) has zero bytes. */
2698 *startptr = found_sal.pc;
2699 *endptr = found_sal.pc;
2700 }
2701 else
2702 {
2703 *startptr = found_sal.pc;
2704 *endptr = found_sal.end;
2705 }
2706 return 1;
2707 }
2708
2709 /* Given a line table and a line number, return the index into the line
2710 table for the pc of the nearest line whose number is >= the specified one.
2711 Return -1 if none is found. The value is >= 0 if it is an index.
2712 START is the index at which to start searching the line table.
2713
2714 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2715
2716 static int
2717 find_line_common (struct linetable *l, int lineno,
2718 int *exact_match, int start)
2719 {
2720 int i;
2721 int len;
2722
2723 /* BEST is the smallest linenumber > LINENO so far seen,
2724 or 0 if none has been seen so far.
2725 BEST_INDEX identifies the item for it. */
2726
2727 int best_index = -1;
2728 int best = 0;
2729
2730 *exact_match = 0;
2731
2732 if (lineno <= 0)
2733 return -1;
2734 if (l == 0)
2735 return -1;
2736
2737 len = l->nitems;
2738 for (i = start; i < len; i++)
2739 {
2740 struct linetable_entry *item = &(l->item[i]);
2741
2742 if (item->line == lineno)
2743 {
2744 /* Return the first (lowest address) entry which matches. */
2745 *exact_match = 1;
2746 return i;
2747 }
2748
2749 if (item->line > lineno && (best == 0 || item->line < best))
2750 {
2751 best = item->line;
2752 best_index = i;
2753 }
2754 }
2755
2756 /* If we got here, we didn't get an exact match. */
2757 return best_index;
2758 }
2759
2760 int
2761 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2762 {
2763 struct symtab_and_line sal;
2764
2765 sal = find_pc_line (pc, 0);
2766 *startptr = sal.pc;
2767 *endptr = sal.end;
2768 return sal.symtab != 0;
2769 }
2770
2771 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2772 address for that function that has an entry in SYMTAB's line info
2773 table. If such an entry cannot be found, return FUNC_ADDR
2774 unaltered. */
2775
2776 static CORE_ADDR
2777 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2778 {
2779 CORE_ADDR func_start, func_end;
2780 struct linetable *l;
2781 int i;
2782
2783 /* Give up if this symbol has no lineinfo table. */
2784 l = LINETABLE (symtab);
2785 if (l == NULL)
2786 return func_addr;
2787
2788 /* Get the range for the function's PC values, or give up if we
2789 cannot, for some reason. */
2790 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2791 return func_addr;
2792
2793 /* Linetable entries are ordered by PC values, see the commentary in
2794 symtab.h where `struct linetable' is defined. Thus, the first
2795 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2796 address we are looking for. */
2797 for (i = 0; i < l->nitems; i++)
2798 {
2799 struct linetable_entry *item = &(l->item[i]);
2800
2801 /* Don't use line numbers of zero, they mark special entries in
2802 the table. See the commentary on symtab.h before the
2803 definition of struct linetable. */
2804 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2805 return item->pc;
2806 }
2807
2808 return func_addr;
2809 }
2810
2811 /* Given a function symbol SYM, find the symtab and line for the start
2812 of the function.
2813 If the argument FUNFIRSTLINE is nonzero, we want the first line
2814 of real code inside the function. */
2815
2816 struct symtab_and_line
2817 find_function_start_sal (struct symbol *sym, int funfirstline)
2818 {
2819 struct symtab_and_line sal;
2820
2821 fixup_symbol_section (sym, NULL);
2822 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2823 SYMBOL_OBJ_SECTION (sym), 0);
2824
2825 /* We always should have a line for the function start address.
2826 If we don't, something is odd. Create a plain SAL refering
2827 just the PC and hope that skip_prologue_sal (if requested)
2828 can find a line number for after the prologue. */
2829 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2830 {
2831 init_sal (&sal);
2832 sal.pspace = current_program_space;
2833 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2834 sal.section = SYMBOL_OBJ_SECTION (sym);
2835 }
2836
2837 if (funfirstline)
2838 skip_prologue_sal (&sal);
2839
2840 return sal;
2841 }
2842
2843 /* Adjust SAL to the first instruction past the function prologue.
2844 If the PC was explicitly specified, the SAL is not changed.
2845 If the line number was explicitly specified, at most the SAL's PC
2846 is updated. If SAL is already past the prologue, then do nothing. */
2847
2848 void
2849 skip_prologue_sal (struct symtab_and_line *sal)
2850 {
2851 struct symbol *sym;
2852 struct symtab_and_line start_sal;
2853 struct cleanup *old_chain;
2854 CORE_ADDR pc, saved_pc;
2855 struct obj_section *section;
2856 const char *name;
2857 struct objfile *objfile;
2858 struct gdbarch *gdbarch;
2859 struct block *b, *function_block;
2860 int force_skip, skip;
2861
2862 /* Do not change the SAL if PC was specified explicitly. */
2863 if (sal->explicit_pc)
2864 return;
2865
2866 old_chain = save_current_space_and_thread ();
2867 switch_to_program_space_and_thread (sal->pspace);
2868
2869 sym = find_pc_sect_function (sal->pc, sal->section);
2870 if (sym != NULL)
2871 {
2872 fixup_symbol_section (sym, NULL);
2873
2874 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2875 section = SYMBOL_OBJ_SECTION (sym);
2876 name = SYMBOL_LINKAGE_NAME (sym);
2877 objfile = SYMBOL_SYMTAB (sym)->objfile;
2878 }
2879 else
2880 {
2881 struct minimal_symbol *msymbol
2882 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2883
2884 if (msymbol == NULL)
2885 {
2886 do_cleanups (old_chain);
2887 return;
2888 }
2889
2890 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2891 section = SYMBOL_OBJ_SECTION (msymbol);
2892 name = SYMBOL_LINKAGE_NAME (msymbol);
2893 objfile = msymbol_objfile (msymbol);
2894 }
2895
2896 gdbarch = get_objfile_arch (objfile);
2897
2898 /* Process the prologue in two passes. In the first pass try to skip the
2899 prologue (SKIP is true) and verify there is a real need for it (indicated
2900 by FORCE_SKIP). If no such reason was found run a second pass where the
2901 prologue is not skipped (SKIP is false). */
2902
2903 skip = 1;
2904 force_skip = 1;
2905
2906 /* Be conservative - allow direct PC (without skipping prologue) only if we
2907 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2908 have to be set by the caller so we use SYM instead. */
2909 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2910 force_skip = 0;
2911
2912 saved_pc = pc;
2913 do
2914 {
2915 pc = saved_pc;
2916
2917 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2918 so that gdbarch_skip_prologue has something unique to work on. */
2919 if (section_is_overlay (section) && !section_is_mapped (section))
2920 pc = overlay_unmapped_address (pc, section);
2921
2922 /* Skip "first line" of function (which is actually its prologue). */
2923 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2924 if (skip)
2925 pc = gdbarch_skip_prologue (gdbarch, pc);
2926
2927 /* For overlays, map pc back into its mapped VMA range. */
2928 pc = overlay_mapped_address (pc, section);
2929
2930 /* Calculate line number. */
2931 start_sal = find_pc_sect_line (pc, section, 0);
2932
2933 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2934 line is still part of the same function. */
2935 if (skip && start_sal.pc != pc
2936 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2937 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2938 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2939 == lookup_minimal_symbol_by_pc_section (pc, section))))
2940 {
2941 /* First pc of next line */
2942 pc = start_sal.end;
2943 /* Recalculate the line number (might not be N+1). */
2944 start_sal = find_pc_sect_line (pc, section, 0);
2945 }
2946
2947 /* On targets with executable formats that don't have a concept of
2948 constructors (ELF with .init has, PE doesn't), gcc emits a call
2949 to `__main' in `main' between the prologue and before user
2950 code. */
2951 if (gdbarch_skip_main_prologue_p (gdbarch)
2952 && name && strcmp_iw (name, "main") == 0)
2953 {
2954 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2955 /* Recalculate the line number (might not be N+1). */
2956 start_sal = find_pc_sect_line (pc, section, 0);
2957 force_skip = 1;
2958 }
2959 }
2960 while (!force_skip && skip--);
2961
2962 /* If we still don't have a valid source line, try to find the first
2963 PC in the lineinfo table that belongs to the same function. This
2964 happens with COFF debug info, which does not seem to have an
2965 entry in lineinfo table for the code after the prologue which has
2966 no direct relation to source. For example, this was found to be
2967 the case with the DJGPP target using "gcc -gcoff" when the
2968 compiler inserted code after the prologue to make sure the stack
2969 is aligned. */
2970 if (!force_skip && sym && start_sal.symtab == NULL)
2971 {
2972 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2973 /* Recalculate the line number. */
2974 start_sal = find_pc_sect_line (pc, section, 0);
2975 }
2976
2977 do_cleanups (old_chain);
2978
2979 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2980 forward SAL to the end of the prologue. */
2981 if (sal->pc >= pc)
2982 return;
2983
2984 sal->pc = pc;
2985 sal->section = section;
2986
2987 /* Unless the explicit_line flag was set, update the SAL line
2988 and symtab to correspond to the modified PC location. */
2989 if (sal->explicit_line)
2990 return;
2991
2992 sal->symtab = start_sal.symtab;
2993 sal->line = start_sal.line;
2994 sal->end = start_sal.end;
2995
2996 /* Check if we are now inside an inlined function. If we can,
2997 use the call site of the function instead. */
2998 b = block_for_pc_sect (sal->pc, sal->section);
2999 function_block = NULL;
3000 while (b != NULL)
3001 {
3002 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3003 function_block = b;
3004 else if (BLOCK_FUNCTION (b) != NULL)
3005 break;
3006 b = BLOCK_SUPERBLOCK (b);
3007 }
3008 if (function_block != NULL
3009 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3010 {
3011 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3012 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
3013 }
3014 }
3015
3016 /* If P is of the form "operator[ \t]+..." where `...' is
3017 some legitimate operator text, return a pointer to the
3018 beginning of the substring of the operator text.
3019 Otherwise, return "". */
3020
3021 static char *
3022 operator_chars (char *p, char **end)
3023 {
3024 *end = "";
3025 if (strncmp (p, "operator", 8))
3026 return *end;
3027 p += 8;
3028
3029 /* Don't get faked out by `operator' being part of a longer
3030 identifier. */
3031 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3032 return *end;
3033
3034 /* Allow some whitespace between `operator' and the operator symbol. */
3035 while (*p == ' ' || *p == '\t')
3036 p++;
3037
3038 /* Recognize 'operator TYPENAME'. */
3039
3040 if (isalpha (*p) || *p == '_' || *p == '$')
3041 {
3042 char *q = p + 1;
3043
3044 while (isalnum (*q) || *q == '_' || *q == '$')
3045 q++;
3046 *end = q;
3047 return p;
3048 }
3049
3050 while (*p)
3051 switch (*p)
3052 {
3053 case '\\': /* regexp quoting */
3054 if (p[1] == '*')
3055 {
3056 if (p[2] == '=') /* 'operator\*=' */
3057 *end = p + 3;
3058 else /* 'operator\*' */
3059 *end = p + 2;
3060 return p;
3061 }
3062 else if (p[1] == '[')
3063 {
3064 if (p[2] == ']')
3065 error (_("mismatched quoting on brackets, "
3066 "try 'operator\\[\\]'"));
3067 else if (p[2] == '\\' && p[3] == ']')
3068 {
3069 *end = p + 4; /* 'operator\[\]' */
3070 return p;
3071 }
3072 else
3073 error (_("nothing is allowed between '[' and ']'"));
3074 }
3075 else
3076 {
3077 /* Gratuitous qoute: skip it and move on. */
3078 p++;
3079 continue;
3080 }
3081 break;
3082 case '!':
3083 case '=':
3084 case '*':
3085 case '/':
3086 case '%':
3087 case '^':
3088 if (p[1] == '=')
3089 *end = p + 2;
3090 else
3091 *end = p + 1;
3092 return p;
3093 case '<':
3094 case '>':
3095 case '+':
3096 case '-':
3097 case '&':
3098 case '|':
3099 if (p[0] == '-' && p[1] == '>')
3100 {
3101 /* Struct pointer member operator 'operator->'. */
3102 if (p[2] == '*')
3103 {
3104 *end = p + 3; /* 'operator->*' */
3105 return p;
3106 }
3107 else if (p[2] == '\\')
3108 {
3109 *end = p + 4; /* Hopefully 'operator->\*' */
3110 return p;
3111 }
3112 else
3113 {
3114 *end = p + 2; /* 'operator->' */
3115 return p;
3116 }
3117 }
3118 if (p[1] == '=' || p[1] == p[0])
3119 *end = p + 2;
3120 else
3121 *end = p + 1;
3122 return p;
3123 case '~':
3124 case ',':
3125 *end = p + 1;
3126 return p;
3127 case '(':
3128 if (p[1] != ')')
3129 error (_("`operator ()' must be specified "
3130 "without whitespace in `()'"));
3131 *end = p + 2;
3132 return p;
3133 case '?':
3134 if (p[1] != ':')
3135 error (_("`operator ?:' must be specified "
3136 "without whitespace in `?:'"));
3137 *end = p + 2;
3138 return p;
3139 case '[':
3140 if (p[1] != ']')
3141 error (_("`operator []' must be specified "
3142 "without whitespace in `[]'"));
3143 *end = p + 2;
3144 return p;
3145 default:
3146 error (_("`operator %s' not supported"), p);
3147 break;
3148 }
3149
3150 *end = "";
3151 return *end;
3152 }
3153 \f
3154
3155 /* Cache to watch for file names already seen by filename_seen. */
3156
3157 struct filename_seen_cache
3158 {
3159 /* Table of files seen so far. */
3160 htab_t tab;
3161 /* Initial size of the table. It automagically grows from here. */
3162 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3163 };
3164
3165 /* filename_seen_cache constructor. */
3166
3167 static struct filename_seen_cache *
3168 create_filename_seen_cache (void)
3169 {
3170 struct filename_seen_cache *cache;
3171
3172 cache = XNEW (struct filename_seen_cache);
3173 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3174 filename_hash, filename_eq,
3175 NULL, xcalloc, xfree);
3176
3177 return cache;
3178 }
3179
3180 /* Empty the cache, but do not delete it. */
3181
3182 static void
3183 clear_filename_seen_cache (struct filename_seen_cache *cache)
3184 {
3185 htab_empty (cache->tab);
3186 }
3187
3188 /* filename_seen_cache destructor.
3189 This takes a void * argument as it is generally used as a cleanup. */
3190
3191 static void
3192 delete_filename_seen_cache (void *ptr)
3193 {
3194 struct filename_seen_cache *cache = ptr;
3195
3196 htab_delete (cache->tab);
3197 xfree (cache);
3198 }
3199
3200 /* If FILE is not already in the table of files in CACHE, return zero;
3201 otherwise return non-zero. Optionally add FILE to the table if ADD
3202 is non-zero.
3203
3204 NOTE: We don't manage space for FILE, we assume FILE lives as long
3205 as the caller needs. */
3206
3207 static int
3208 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3209 {
3210 void **slot;
3211
3212 /* Is FILE in tab? */
3213 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3214 if (*slot != NULL)
3215 return 1;
3216
3217 /* No; maybe add it to tab. */
3218 if (add)
3219 *slot = (char *) file;
3220
3221 return 0;
3222 }
3223
3224 /* Data structure to maintain printing state for output_source_filename. */
3225
3226 struct output_source_filename_data
3227 {
3228 /* Cache of what we've seen so far. */
3229 struct filename_seen_cache *filename_seen_cache;
3230
3231 /* Flag of whether we're printing the first one. */
3232 int first;
3233 };
3234
3235 /* Slave routine for sources_info. Force line breaks at ,'s.
3236 NAME is the name to print.
3237 DATA contains the state for printing and watching for duplicates. */
3238
3239 static void
3240 output_source_filename (const char *name,
3241 struct output_source_filename_data *data)
3242 {
3243 /* Since a single source file can result in several partial symbol
3244 tables, we need to avoid printing it more than once. Note: if
3245 some of the psymtabs are read in and some are not, it gets
3246 printed both under "Source files for which symbols have been
3247 read" and "Source files for which symbols will be read in on
3248 demand". I consider this a reasonable way to deal with the
3249 situation. I'm not sure whether this can also happen for
3250 symtabs; it doesn't hurt to check. */
3251
3252 /* Was NAME already seen? */
3253 if (filename_seen (data->filename_seen_cache, name, 1))
3254 {
3255 /* Yes; don't print it again. */
3256 return;
3257 }
3258
3259 /* No; print it and reset *FIRST. */
3260 if (! data->first)
3261 printf_filtered (", ");
3262 data->first = 0;
3263
3264 wrap_here ("");
3265 fputs_filtered (name, gdb_stdout);
3266 }
3267
3268 /* A callback for map_partial_symbol_filenames. */
3269
3270 static void
3271 output_partial_symbol_filename (const char *filename, const char *fullname,
3272 void *data)
3273 {
3274 output_source_filename (fullname ? fullname : filename, data);
3275 }
3276
3277 static void
3278 sources_info (char *ignore, int from_tty)
3279 {
3280 struct symtab *s;
3281 struct objfile *objfile;
3282 struct output_source_filename_data data;
3283 struct cleanup *cleanups;
3284
3285 if (!have_full_symbols () && !have_partial_symbols ())
3286 {
3287 error (_("No symbol table is loaded. Use the \"file\" command."));
3288 }
3289
3290 data.filename_seen_cache = create_filename_seen_cache ();
3291 cleanups = make_cleanup (delete_filename_seen_cache,
3292 data.filename_seen_cache);
3293
3294 printf_filtered ("Source files for which symbols have been read in:\n\n");
3295
3296 data.first = 1;
3297 ALL_SYMTABS (objfile, s)
3298 {
3299 const char *fullname = symtab_to_fullname (s);
3300
3301 output_source_filename (fullname ? fullname : s->filename, &data);
3302 }
3303 printf_filtered ("\n\n");
3304
3305 printf_filtered ("Source files for which symbols "
3306 "will be read in on demand:\n\n");
3307
3308 clear_filename_seen_cache (data.filename_seen_cache);
3309 data.first = 1;
3310 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3311 1 /*need_fullname*/);
3312 printf_filtered ("\n");
3313
3314 do_cleanups (cleanups);
3315 }
3316
3317 static int
3318 file_matches (const char *file, char *files[], int nfiles)
3319 {
3320 int i;
3321
3322 if (file != NULL && nfiles != 0)
3323 {
3324 for (i = 0; i < nfiles; i++)
3325 {
3326 if (filename_cmp (files[i], lbasename (file)) == 0)
3327 return 1;
3328 }
3329 }
3330 else if (nfiles == 0)
3331 return 1;
3332 return 0;
3333 }
3334
3335 /* Free any memory associated with a search. */
3336
3337 void
3338 free_search_symbols (struct symbol_search *symbols)
3339 {
3340 struct symbol_search *p;
3341 struct symbol_search *next;
3342
3343 for (p = symbols; p != NULL; p = next)
3344 {
3345 next = p->next;
3346 xfree (p);
3347 }
3348 }
3349
3350 static void
3351 do_free_search_symbols_cleanup (void *symbols)
3352 {
3353 free_search_symbols (symbols);
3354 }
3355
3356 struct cleanup *
3357 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3358 {
3359 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3360 }
3361
3362 /* Helper function for sort_search_symbols and qsort. Can only
3363 sort symbols, not minimal symbols. */
3364
3365 static int
3366 compare_search_syms (const void *sa, const void *sb)
3367 {
3368 struct symbol_search **sym_a = (struct symbol_search **) sa;
3369 struct symbol_search **sym_b = (struct symbol_search **) sb;
3370
3371 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3372 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3373 }
3374
3375 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3376 prevtail where it is, but update its next pointer to point to
3377 the first of the sorted symbols. */
3378
3379 static struct symbol_search *
3380 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3381 {
3382 struct symbol_search **symbols, *symp, *old_next;
3383 int i;
3384
3385 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3386 * nfound);
3387 symp = prevtail->next;
3388 for (i = 0; i < nfound; i++)
3389 {
3390 symbols[i] = symp;
3391 symp = symp->next;
3392 }
3393 /* Generally NULL. */
3394 old_next = symp;
3395
3396 qsort (symbols, nfound, sizeof (struct symbol_search *),
3397 compare_search_syms);
3398
3399 symp = prevtail;
3400 for (i = 0; i < nfound; i++)
3401 {
3402 symp->next = symbols[i];
3403 symp = symp->next;
3404 }
3405 symp->next = old_next;
3406
3407 xfree (symbols);
3408 return symp;
3409 }
3410
3411 /* An object of this type is passed as the user_data to the
3412 expand_symtabs_matching method. */
3413 struct search_symbols_data
3414 {
3415 int nfiles;
3416 char **files;
3417
3418 /* It is true if PREG contains valid data, false otherwise. */
3419 unsigned preg_p : 1;
3420 regex_t preg;
3421 };
3422
3423 /* A callback for expand_symtabs_matching. */
3424
3425 static int
3426 search_symbols_file_matches (const char *filename, void *user_data)
3427 {
3428 struct search_symbols_data *data = user_data;
3429
3430 return file_matches (filename, data->files, data->nfiles);
3431 }
3432
3433 /* A callback for expand_symtabs_matching. */
3434
3435 static int
3436 search_symbols_name_matches (const char *symname, void *user_data)
3437 {
3438 struct search_symbols_data *data = user_data;
3439
3440 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3441 }
3442
3443 /* Search the symbol table for matches to the regular expression REGEXP,
3444 returning the results in *MATCHES.
3445
3446 Only symbols of KIND are searched:
3447 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3448 and constants (enums)
3449 FUNCTIONS_DOMAIN - search all functions
3450 TYPES_DOMAIN - search all type names
3451 ALL_DOMAIN - an internal error for this function
3452
3453 free_search_symbols should be called when *MATCHES is no longer needed.
3454
3455 The results are sorted locally; each symtab's global and static blocks are
3456 separately alphabetized. */
3457
3458 void
3459 search_symbols (char *regexp, enum search_domain kind,
3460 int nfiles, char *files[],
3461 struct symbol_search **matches)
3462 {
3463 struct symtab *s;
3464 struct blockvector *bv;
3465 struct block *b;
3466 int i = 0;
3467 struct block_iterator iter;
3468 struct symbol *sym;
3469 struct objfile *objfile;
3470 struct minimal_symbol *msymbol;
3471 int found_misc = 0;
3472 static const enum minimal_symbol_type types[]
3473 = {mst_data, mst_text, mst_abs};
3474 static const enum minimal_symbol_type types2[]
3475 = {mst_bss, mst_file_text, mst_abs};
3476 static const enum minimal_symbol_type types3[]
3477 = {mst_file_data, mst_solib_trampoline, mst_abs};
3478 static const enum minimal_symbol_type types4[]
3479 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3480 enum minimal_symbol_type ourtype;
3481 enum minimal_symbol_type ourtype2;
3482 enum minimal_symbol_type ourtype3;
3483 enum minimal_symbol_type ourtype4;
3484 struct symbol_search *sr;
3485 struct symbol_search *psr;
3486 struct symbol_search *tail;
3487 struct search_symbols_data datum;
3488
3489 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3490 CLEANUP_CHAIN is freed only in the case of an error. */
3491 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3492 struct cleanup *retval_chain;
3493
3494 gdb_assert (kind <= TYPES_DOMAIN);
3495
3496 ourtype = types[kind];
3497 ourtype2 = types2[kind];
3498 ourtype3 = types3[kind];
3499 ourtype4 = types4[kind];
3500
3501 sr = *matches = NULL;
3502 tail = NULL;
3503 datum.preg_p = 0;
3504
3505 if (regexp != NULL)
3506 {
3507 /* Make sure spacing is right for C++ operators.
3508 This is just a courtesy to make the matching less sensitive
3509 to how many spaces the user leaves between 'operator'
3510 and <TYPENAME> or <OPERATOR>. */
3511 char *opend;
3512 char *opname = operator_chars (regexp, &opend);
3513 int errcode;
3514
3515 if (*opname)
3516 {
3517 int fix = -1; /* -1 means ok; otherwise number of
3518 spaces needed. */
3519
3520 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3521 {
3522 /* There should 1 space between 'operator' and 'TYPENAME'. */
3523 if (opname[-1] != ' ' || opname[-2] == ' ')
3524 fix = 1;
3525 }
3526 else
3527 {
3528 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3529 if (opname[-1] == ' ')
3530 fix = 0;
3531 }
3532 /* If wrong number of spaces, fix it. */
3533 if (fix >= 0)
3534 {
3535 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3536
3537 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3538 regexp = tmp;
3539 }
3540 }
3541
3542 errcode = regcomp (&datum.preg, regexp,
3543 REG_NOSUB | (case_sensitivity == case_sensitive_off
3544 ? REG_ICASE : 0));
3545 if (errcode != 0)
3546 {
3547 char *err = get_regcomp_error (errcode, &datum.preg);
3548
3549 make_cleanup (xfree, err);
3550 error (_("Invalid regexp (%s): %s"), err, regexp);
3551 }
3552 datum.preg_p = 1;
3553 make_regfree_cleanup (&datum.preg);
3554 }
3555
3556 /* Search through the partial symtabs *first* for all symbols
3557 matching the regexp. That way we don't have to reproduce all of
3558 the machinery below. */
3559
3560 datum.nfiles = nfiles;
3561 datum.files = files;
3562 ALL_OBJFILES (objfile)
3563 {
3564 if (objfile->sf)
3565 objfile->sf->qf->expand_symtabs_matching (objfile,
3566 (nfiles == 0
3567 ? NULL
3568 : search_symbols_file_matches),
3569 search_symbols_name_matches,
3570 kind,
3571 &datum);
3572 }
3573
3574 retval_chain = old_chain;
3575
3576 /* Here, we search through the minimal symbol tables for functions
3577 and variables that match, and force their symbols to be read.
3578 This is in particular necessary for demangled variable names,
3579 which are no longer put into the partial symbol tables.
3580 The symbol will then be found during the scan of symtabs below.
3581
3582 For functions, find_pc_symtab should succeed if we have debug info
3583 for the function, for variables we have to call
3584 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3585 has debug info.
3586 If the lookup fails, set found_misc so that we will rescan to print
3587 any matching symbols without debug info.
3588 We only search the objfile the msymbol came from, we no longer search
3589 all objfiles. In large programs (1000s of shared libs) searching all
3590 objfiles is not worth the pain. */
3591
3592 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3593 {
3594 ALL_MSYMBOLS (objfile, msymbol)
3595 {
3596 QUIT;
3597
3598 if (msymbol->created_by_gdb)
3599 continue;
3600
3601 if (MSYMBOL_TYPE (msymbol) == ourtype
3602 || MSYMBOL_TYPE (msymbol) == ourtype2
3603 || MSYMBOL_TYPE (msymbol) == ourtype3
3604 || MSYMBOL_TYPE (msymbol) == ourtype4)
3605 {
3606 if (!datum.preg_p
3607 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3608 NULL, 0) == 0)
3609 {
3610 /* Note: An important side-effect of these lookup functions
3611 is to expand the symbol table if msymbol is found, for the
3612 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3613 if (kind == FUNCTIONS_DOMAIN
3614 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3615 : (lookup_symbol_in_objfile_from_linkage_name
3616 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3617 == NULL))
3618 found_misc = 1;
3619 }
3620 }
3621 }
3622 }
3623
3624 ALL_PRIMARY_SYMTABS (objfile, s)
3625 {
3626 bv = BLOCKVECTOR (s);
3627 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3628 {
3629 struct symbol_search *prevtail = tail;
3630 int nfound = 0;
3631
3632 b = BLOCKVECTOR_BLOCK (bv, i);
3633 ALL_BLOCK_SYMBOLS (b, iter, sym)
3634 {
3635 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3636
3637 QUIT;
3638
3639 if (file_matches (real_symtab->filename, files, nfiles)
3640 && ((!datum.preg_p
3641 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3642 NULL, 0) == 0)
3643 && ((kind == VARIABLES_DOMAIN
3644 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3645 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3646 && SYMBOL_CLASS (sym) != LOC_BLOCK
3647 /* LOC_CONST can be used for more than just enums,
3648 e.g., c++ static const members.
3649 We only want to skip enums here. */
3650 && !(SYMBOL_CLASS (sym) == LOC_CONST
3651 && TYPE_CODE (SYMBOL_TYPE (sym))
3652 == TYPE_CODE_ENUM))
3653 || (kind == FUNCTIONS_DOMAIN
3654 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3655 || (kind == TYPES_DOMAIN
3656 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3657 {
3658 /* match */
3659 psr = (struct symbol_search *)
3660 xmalloc (sizeof (struct symbol_search));
3661 psr->block = i;
3662 psr->symtab = real_symtab;
3663 psr->symbol = sym;
3664 psr->msymbol = NULL;
3665 psr->next = NULL;
3666 if (tail == NULL)
3667 sr = psr;
3668 else
3669 tail->next = psr;
3670 tail = psr;
3671 nfound ++;
3672 }
3673 }
3674 if (nfound > 0)
3675 {
3676 if (prevtail == NULL)
3677 {
3678 struct symbol_search dummy;
3679
3680 dummy.next = sr;
3681 tail = sort_search_symbols (&dummy, nfound);
3682 sr = dummy.next;
3683
3684 make_cleanup_free_search_symbols (sr);
3685 }
3686 else
3687 tail = sort_search_symbols (prevtail, nfound);
3688 }
3689 }
3690 }
3691
3692 /* If there are no eyes, avoid all contact. I mean, if there are
3693 no debug symbols, then print directly from the msymbol_vector. */
3694
3695 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3696 {
3697 ALL_MSYMBOLS (objfile, msymbol)
3698 {
3699 QUIT;
3700
3701 if (msymbol->created_by_gdb)
3702 continue;
3703
3704 if (MSYMBOL_TYPE (msymbol) == ourtype
3705 || MSYMBOL_TYPE (msymbol) == ourtype2
3706 || MSYMBOL_TYPE (msymbol) == ourtype3
3707 || MSYMBOL_TYPE (msymbol) == ourtype4)
3708 {
3709 if (!datum.preg_p
3710 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3711 NULL, 0) == 0)
3712 {
3713 /* For functions we can do a quick check of whether the
3714 symbol might be found via find_pc_symtab. */
3715 if (kind != FUNCTIONS_DOMAIN
3716 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3717 {
3718 if (lookup_symbol_in_objfile_from_linkage_name
3719 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3720 == NULL)
3721 {
3722 /* match */
3723 psr = (struct symbol_search *)
3724 xmalloc (sizeof (struct symbol_search));
3725 psr->block = i;
3726 psr->msymbol = msymbol;
3727 psr->symtab = NULL;
3728 psr->symbol = NULL;
3729 psr->next = NULL;
3730 if (tail == NULL)
3731 {
3732 sr = psr;
3733 make_cleanup_free_search_symbols (sr);
3734 }
3735 else
3736 tail->next = psr;
3737 tail = psr;
3738 }
3739 }
3740 }
3741 }
3742 }
3743 }
3744
3745 discard_cleanups (retval_chain);
3746 do_cleanups (old_chain);
3747 *matches = sr;
3748 }
3749
3750 /* Helper function for symtab_symbol_info, this function uses
3751 the data returned from search_symbols() to print information
3752 regarding the match to gdb_stdout. */
3753
3754 static void
3755 print_symbol_info (enum search_domain kind,
3756 struct symtab *s, struct symbol *sym,
3757 int block, char *last)
3758 {
3759 if (last == NULL || filename_cmp (last, s->filename) != 0)
3760 {
3761 fputs_filtered ("\nFile ", gdb_stdout);
3762 fputs_filtered (s->filename, gdb_stdout);
3763 fputs_filtered (":\n", gdb_stdout);
3764 }
3765
3766 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3767 printf_filtered ("static ");
3768
3769 /* Typedef that is not a C++ class. */
3770 if (kind == TYPES_DOMAIN
3771 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3772 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3773 /* variable, func, or typedef-that-is-c++-class. */
3774 else if (kind < TYPES_DOMAIN
3775 || (kind == TYPES_DOMAIN
3776 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3777 {
3778 type_print (SYMBOL_TYPE (sym),
3779 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3780 ? "" : SYMBOL_PRINT_NAME (sym)),
3781 gdb_stdout, 0);
3782
3783 printf_filtered (";\n");
3784 }
3785 }
3786
3787 /* This help function for symtab_symbol_info() prints information
3788 for non-debugging symbols to gdb_stdout. */
3789
3790 static void
3791 print_msymbol_info (struct minimal_symbol *msymbol)
3792 {
3793 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3794 char *tmp;
3795
3796 if (gdbarch_addr_bit (gdbarch) <= 32)
3797 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3798 & (CORE_ADDR) 0xffffffff,
3799 8);
3800 else
3801 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3802 16);
3803 printf_filtered ("%s %s\n",
3804 tmp, SYMBOL_PRINT_NAME (msymbol));
3805 }
3806
3807 /* This is the guts of the commands "info functions", "info types", and
3808 "info variables". It calls search_symbols to find all matches and then
3809 print_[m]symbol_info to print out some useful information about the
3810 matches. */
3811
3812 static void
3813 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3814 {
3815 static const char * const classnames[] =
3816 {"variable", "function", "type"};
3817 struct symbol_search *symbols;
3818 struct symbol_search *p;
3819 struct cleanup *old_chain;
3820 char *last_filename = NULL;
3821 int first = 1;
3822
3823 gdb_assert (kind <= TYPES_DOMAIN);
3824
3825 /* Must make sure that if we're interrupted, symbols gets freed. */
3826 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3827 old_chain = make_cleanup_free_search_symbols (symbols);
3828
3829 if (regexp != NULL)
3830 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3831 classnames[kind], regexp);
3832 else
3833 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3834
3835 for (p = symbols; p != NULL; p = p->next)
3836 {
3837 QUIT;
3838
3839 if (p->msymbol != NULL)
3840 {
3841 if (first)
3842 {
3843 printf_filtered (_("\nNon-debugging symbols:\n"));
3844 first = 0;
3845 }
3846 print_msymbol_info (p->msymbol);
3847 }
3848 else
3849 {
3850 print_symbol_info (kind,
3851 p->symtab,
3852 p->symbol,
3853 p->block,
3854 last_filename);
3855 last_filename = p->symtab->filename;
3856 }
3857 }
3858
3859 do_cleanups (old_chain);
3860 }
3861
3862 static void
3863 variables_info (char *regexp, int from_tty)
3864 {
3865 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3866 }
3867
3868 static void
3869 functions_info (char *regexp, int from_tty)
3870 {
3871 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3872 }
3873
3874
3875 static void
3876 types_info (char *regexp, int from_tty)
3877 {
3878 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3879 }
3880
3881 /* Breakpoint all functions matching regular expression. */
3882
3883 void
3884 rbreak_command_wrapper (char *regexp, int from_tty)
3885 {
3886 rbreak_command (regexp, from_tty);
3887 }
3888
3889 /* A cleanup function that calls end_rbreak_breakpoints. */
3890
3891 static void
3892 do_end_rbreak_breakpoints (void *ignore)
3893 {
3894 end_rbreak_breakpoints ();
3895 }
3896
3897 static void
3898 rbreak_command (char *regexp, int from_tty)
3899 {
3900 struct symbol_search *ss;
3901 struct symbol_search *p;
3902 struct cleanup *old_chain;
3903 char *string = NULL;
3904 int len = 0;
3905 char **files = NULL, *file_name;
3906 int nfiles = 0;
3907
3908 if (regexp)
3909 {
3910 char *colon = strchr (regexp, ':');
3911
3912 if (colon && *(colon + 1) != ':')
3913 {
3914 int colon_index;
3915
3916 colon_index = colon - regexp;
3917 file_name = alloca (colon_index + 1);
3918 memcpy (file_name, regexp, colon_index);
3919 file_name[colon_index--] = 0;
3920 while (isspace (file_name[colon_index]))
3921 file_name[colon_index--] = 0;
3922 files = &file_name;
3923 nfiles = 1;
3924 regexp = colon + 1;
3925 while (isspace (*regexp)) regexp++;
3926 }
3927 }
3928
3929 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3930 old_chain = make_cleanup_free_search_symbols (ss);
3931 make_cleanup (free_current_contents, &string);
3932
3933 start_rbreak_breakpoints ();
3934 make_cleanup (do_end_rbreak_breakpoints, NULL);
3935 for (p = ss; p != NULL; p = p->next)
3936 {
3937 if (p->msymbol == NULL)
3938 {
3939 int newlen = (strlen (p->symtab->filename)
3940 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3941 + 4);
3942
3943 if (newlen > len)
3944 {
3945 string = xrealloc (string, newlen);
3946 len = newlen;
3947 }
3948 strcpy (string, p->symtab->filename);
3949 strcat (string, ":'");
3950 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3951 strcat (string, "'");
3952 break_command (string, from_tty);
3953 print_symbol_info (FUNCTIONS_DOMAIN,
3954 p->symtab,
3955 p->symbol,
3956 p->block,
3957 p->symtab->filename);
3958 }
3959 else
3960 {
3961 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3962
3963 if (newlen > len)
3964 {
3965 string = xrealloc (string, newlen);
3966 len = newlen;
3967 }
3968 strcpy (string, "'");
3969 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3970 strcat (string, "'");
3971
3972 break_command (string, from_tty);
3973 printf_filtered ("<function, no debug info> %s;\n",
3974 SYMBOL_PRINT_NAME (p->msymbol));
3975 }
3976 }
3977
3978 do_cleanups (old_chain);
3979 }
3980 \f
3981
3982 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3983
3984 Either sym_text[sym_text_len] != '(' and then we search for any
3985 symbol starting with SYM_TEXT text.
3986
3987 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3988 be terminated at that point. Partial symbol tables do not have parameters
3989 information. */
3990
3991 static int
3992 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3993 {
3994 int (*ncmp) (const char *, const char *, size_t);
3995
3996 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3997
3998 if (ncmp (name, sym_text, sym_text_len) != 0)
3999 return 0;
4000
4001 if (sym_text[sym_text_len] == '(')
4002 {
4003 /* User searches for `name(someth...'. Require NAME to be terminated.
4004 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4005 present but accept even parameters presence. In this case this
4006 function is in fact strcmp_iw but whitespace skipping is not supported
4007 for tab completion. */
4008
4009 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4010 return 0;
4011 }
4012
4013 return 1;
4014 }
4015
4016 /* Free any memory associated with a completion list. */
4017
4018 static void
4019 free_completion_list (VEC (char_ptr) **list_ptr)
4020 {
4021 int i;
4022 char *p;
4023
4024 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4025 xfree (p);
4026 VEC_free (char_ptr, *list_ptr);
4027 }
4028
4029 /* Callback for make_cleanup. */
4030
4031 static void
4032 do_free_completion_list (void *list)
4033 {
4034 free_completion_list (list);
4035 }
4036
4037 /* Helper routine for make_symbol_completion_list. */
4038
4039 static VEC (char_ptr) *return_val;
4040
4041 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4042 completion_list_add_name \
4043 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4044
4045 /* Test to see if the symbol specified by SYMNAME (which is already
4046 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4047 characters. If so, add it to the current completion list. */
4048
4049 static void
4050 completion_list_add_name (const char *symname,
4051 const char *sym_text, int sym_text_len,
4052 const char *text, const char *word)
4053 {
4054 int newsize;
4055
4056 /* Clip symbols that cannot match. */
4057 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4058 return;
4059
4060 /* We have a match for a completion, so add SYMNAME to the current list
4061 of matches. Note that the name is moved to freshly malloc'd space. */
4062
4063 {
4064 char *new;
4065
4066 if (word == sym_text)
4067 {
4068 new = xmalloc (strlen (symname) + 5);
4069 strcpy (new, symname);
4070 }
4071 else if (word > sym_text)
4072 {
4073 /* Return some portion of symname. */
4074 new = xmalloc (strlen (symname) + 5);
4075 strcpy (new, symname + (word - sym_text));
4076 }
4077 else
4078 {
4079 /* Return some of SYM_TEXT plus symname. */
4080 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4081 strncpy (new, word, sym_text - word);
4082 new[sym_text - word] = '\0';
4083 strcat (new, symname);
4084 }
4085
4086 VEC_safe_push (char_ptr, return_val, new);
4087 }
4088 }
4089
4090 /* ObjC: In case we are completing on a selector, look as the msymbol
4091 again and feed all the selectors into the mill. */
4092
4093 static void
4094 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4095 const char *sym_text, int sym_text_len,
4096 const char *text, const char *word)
4097 {
4098 static char *tmp = NULL;
4099 static unsigned int tmplen = 0;
4100
4101 const char *method, *category, *selector;
4102 char *tmp2 = NULL;
4103
4104 method = SYMBOL_NATURAL_NAME (msymbol);
4105
4106 /* Is it a method? */
4107 if ((method[0] != '-') && (method[0] != '+'))
4108 return;
4109
4110 if (sym_text[0] == '[')
4111 /* Complete on shortened method method. */
4112 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4113
4114 while ((strlen (method) + 1) >= tmplen)
4115 {
4116 if (tmplen == 0)
4117 tmplen = 1024;
4118 else
4119 tmplen *= 2;
4120 tmp = xrealloc (tmp, tmplen);
4121 }
4122 selector = strchr (method, ' ');
4123 if (selector != NULL)
4124 selector++;
4125
4126 category = strchr (method, '(');
4127
4128 if ((category != NULL) && (selector != NULL))
4129 {
4130 memcpy (tmp, method, (category - method));
4131 tmp[category - method] = ' ';
4132 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4133 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4134 if (sym_text[0] == '[')
4135 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4136 }
4137
4138 if (selector != NULL)
4139 {
4140 /* Complete on selector only. */
4141 strcpy (tmp, selector);
4142 tmp2 = strchr (tmp, ']');
4143 if (tmp2 != NULL)
4144 *tmp2 = '\0';
4145
4146 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4147 }
4148 }
4149
4150 /* Break the non-quoted text based on the characters which are in
4151 symbols. FIXME: This should probably be language-specific. */
4152
4153 static char *
4154 language_search_unquoted_string (char *text, char *p)
4155 {
4156 for (; p > text; --p)
4157 {
4158 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4159 continue;
4160 else
4161 {
4162 if ((current_language->la_language == language_objc))
4163 {
4164 if (p[-1] == ':') /* Might be part of a method name. */
4165 continue;
4166 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4167 p -= 2; /* Beginning of a method name. */
4168 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4169 { /* Might be part of a method name. */
4170 char *t = p;
4171
4172 /* Seeing a ' ' or a '(' is not conclusive evidence
4173 that we are in the middle of a method name. However,
4174 finding "-[" or "+[" should be pretty un-ambiguous.
4175 Unfortunately we have to find it now to decide. */
4176
4177 while (t > text)
4178 if (isalnum (t[-1]) || t[-1] == '_' ||
4179 t[-1] == ' ' || t[-1] == ':' ||
4180 t[-1] == '(' || t[-1] == ')')
4181 --t;
4182 else
4183 break;
4184
4185 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4186 p = t - 2; /* Method name detected. */
4187 /* Else we leave with p unchanged. */
4188 }
4189 }
4190 break;
4191 }
4192 }
4193 return p;
4194 }
4195
4196 static void
4197 completion_list_add_fields (struct symbol *sym, char *sym_text,
4198 int sym_text_len, char *text, char *word)
4199 {
4200 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4201 {
4202 struct type *t = SYMBOL_TYPE (sym);
4203 enum type_code c = TYPE_CODE (t);
4204 int j;
4205
4206 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4207 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4208 if (TYPE_FIELD_NAME (t, j))
4209 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4210 sym_text, sym_text_len, text, word);
4211 }
4212 }
4213
4214 /* Type of the user_data argument passed to add_macro_name or
4215 expand_partial_symbol_name. The contents are simply whatever is
4216 needed by completion_list_add_name. */
4217 struct add_name_data
4218 {
4219 char *sym_text;
4220 int sym_text_len;
4221 char *text;
4222 char *word;
4223 };
4224
4225 /* A callback used with macro_for_each and macro_for_each_in_scope.
4226 This adds a macro's name to the current completion list. */
4227
4228 static void
4229 add_macro_name (const char *name, const struct macro_definition *ignore,
4230 struct macro_source_file *ignore2, int ignore3,
4231 void *user_data)
4232 {
4233 struct add_name_data *datum = (struct add_name_data *) user_data;
4234
4235 completion_list_add_name ((char *) name,
4236 datum->sym_text, datum->sym_text_len,
4237 datum->text, datum->word);
4238 }
4239
4240 /* A callback for expand_partial_symbol_names. */
4241
4242 static int
4243 expand_partial_symbol_name (const char *name, void *user_data)
4244 {
4245 struct add_name_data *datum = (struct add_name_data *) user_data;
4246
4247 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4248 }
4249
4250 VEC (char_ptr) *
4251 default_make_symbol_completion_list_break_on (char *text, char *word,
4252 const char *break_on,
4253 enum type_code code)
4254 {
4255 /* Problem: All of the symbols have to be copied because readline
4256 frees them. I'm not going to worry about this; hopefully there
4257 won't be that many. */
4258
4259 struct symbol *sym;
4260 struct symtab *s;
4261 struct minimal_symbol *msymbol;
4262 struct objfile *objfile;
4263 struct block *b;
4264 const struct block *surrounding_static_block, *surrounding_global_block;
4265 struct block_iterator iter;
4266 /* The symbol we are completing on. Points in same buffer as text. */
4267 char *sym_text;
4268 /* Length of sym_text. */
4269 int sym_text_len;
4270 struct add_name_data datum;
4271 struct cleanup *back_to;
4272
4273 /* Now look for the symbol we are supposed to complete on. */
4274 {
4275 char *p;
4276 char quote_found;
4277 char *quote_pos = NULL;
4278
4279 /* First see if this is a quoted string. */
4280 quote_found = '\0';
4281 for (p = text; *p != '\0'; ++p)
4282 {
4283 if (quote_found != '\0')
4284 {
4285 if (*p == quote_found)
4286 /* Found close quote. */
4287 quote_found = '\0';
4288 else if (*p == '\\' && p[1] == quote_found)
4289 /* A backslash followed by the quote character
4290 doesn't end the string. */
4291 ++p;
4292 }
4293 else if (*p == '\'' || *p == '"')
4294 {
4295 quote_found = *p;
4296 quote_pos = p;
4297 }
4298 }
4299 if (quote_found == '\'')
4300 /* A string within single quotes can be a symbol, so complete on it. */
4301 sym_text = quote_pos + 1;
4302 else if (quote_found == '"')
4303 /* A double-quoted string is never a symbol, nor does it make sense
4304 to complete it any other way. */
4305 {
4306 return NULL;
4307 }
4308 else
4309 {
4310 /* It is not a quoted string. Break it based on the characters
4311 which are in symbols. */
4312 while (p > text)
4313 {
4314 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4315 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4316 --p;
4317 else
4318 break;
4319 }
4320 sym_text = p;
4321 }
4322 }
4323
4324 sym_text_len = strlen (sym_text);
4325
4326 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4327
4328 if (current_language->la_language == language_cplus
4329 || current_language->la_language == language_java
4330 || current_language->la_language == language_fortran)
4331 {
4332 /* These languages may have parameters entered by user but they are never
4333 present in the partial symbol tables. */
4334
4335 const char *cs = memchr (sym_text, '(', sym_text_len);
4336
4337 if (cs)
4338 sym_text_len = cs - sym_text;
4339 }
4340 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4341
4342 return_val = NULL;
4343 back_to = make_cleanup (do_free_completion_list, &return_val);
4344
4345 datum.sym_text = sym_text;
4346 datum.sym_text_len = sym_text_len;
4347 datum.text = text;
4348 datum.word = word;
4349
4350 /* Look through the partial symtabs for all symbols which begin
4351 by matching SYM_TEXT. Expand all CUs that you find to the list.
4352 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4353 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4354
4355 /* At this point scan through the misc symbol vectors and add each
4356 symbol you find to the list. Eventually we want to ignore
4357 anything that isn't a text symbol (everything else will be
4358 handled by the psymtab code above). */
4359
4360 if (code == TYPE_CODE_UNDEF)
4361 {
4362 ALL_MSYMBOLS (objfile, msymbol)
4363 {
4364 QUIT;
4365 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4366 word);
4367
4368 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4369 word);
4370 }
4371 }
4372
4373 /* Search upwards from currently selected frame (so that we can
4374 complete on local vars). Also catch fields of types defined in
4375 this places which match our text string. Only complete on types
4376 visible from current context. */
4377
4378 b = get_selected_block (0);
4379 surrounding_static_block = block_static_block (b);
4380 surrounding_global_block = block_global_block (b);
4381 if (surrounding_static_block != NULL)
4382 while (b != surrounding_static_block)
4383 {
4384 QUIT;
4385
4386 ALL_BLOCK_SYMBOLS (b, iter, sym)
4387 {
4388 if (code == TYPE_CODE_UNDEF)
4389 {
4390 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4391 word);
4392 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4393 word);
4394 }
4395 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4396 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4397 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4398 word);
4399 }
4400
4401 /* Stop when we encounter an enclosing function. Do not stop for
4402 non-inlined functions - the locals of the enclosing function
4403 are in scope for a nested function. */
4404 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4405 break;
4406 b = BLOCK_SUPERBLOCK (b);
4407 }
4408
4409 /* Add fields from the file's types; symbols will be added below. */
4410
4411 if (code == TYPE_CODE_UNDEF)
4412 {
4413 if (surrounding_static_block != NULL)
4414 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4415 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4416
4417 if (surrounding_global_block != NULL)
4418 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4419 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4420 }
4421
4422 /* Go through the symtabs and check the externs and statics for
4423 symbols which match. */
4424
4425 ALL_PRIMARY_SYMTABS (objfile, s)
4426 {
4427 QUIT;
4428 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4429 ALL_BLOCK_SYMBOLS (b, iter, sym)
4430 {
4431 if (code == TYPE_CODE_UNDEF
4432 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4433 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4434 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4435 }
4436 }
4437
4438 ALL_PRIMARY_SYMTABS (objfile, s)
4439 {
4440 QUIT;
4441 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4442 ALL_BLOCK_SYMBOLS (b, iter, sym)
4443 {
4444 if (code == TYPE_CODE_UNDEF
4445 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4446 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4447 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4448 }
4449 }
4450
4451 /* Skip macros if we are completing a struct tag -- arguable but
4452 usually what is expected. */
4453 if (current_language->la_macro_expansion == macro_expansion_c
4454 && code == TYPE_CODE_UNDEF)
4455 {
4456 struct macro_scope *scope;
4457
4458 /* Add any macros visible in the default scope. Note that this
4459 may yield the occasional wrong result, because an expression
4460 might be evaluated in a scope other than the default. For
4461 example, if the user types "break file:line if <TAB>", the
4462 resulting expression will be evaluated at "file:line" -- but
4463 at there does not seem to be a way to detect this at
4464 completion time. */
4465 scope = default_macro_scope ();
4466 if (scope)
4467 {
4468 macro_for_each_in_scope (scope->file, scope->line,
4469 add_macro_name, &datum);
4470 xfree (scope);
4471 }
4472
4473 /* User-defined macros are always visible. */
4474 macro_for_each (macro_user_macros, add_macro_name, &datum);
4475 }
4476
4477 discard_cleanups (back_to);
4478 return (return_val);
4479 }
4480
4481 VEC (char_ptr) *
4482 default_make_symbol_completion_list (char *text, char *word,
4483 enum type_code code)
4484 {
4485 return default_make_symbol_completion_list_break_on (text, word, "", code);
4486 }
4487
4488 /* Return a vector of all symbols (regardless of class) which begin by
4489 matching TEXT. If the answer is no symbols, then the return value
4490 is NULL. */
4491
4492 VEC (char_ptr) *
4493 make_symbol_completion_list (char *text, char *word)
4494 {
4495 return current_language->la_make_symbol_completion_list (text, word,
4496 TYPE_CODE_UNDEF);
4497 }
4498
4499 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4500 symbols whose type code is CODE. */
4501
4502 VEC (char_ptr) *
4503 make_symbol_completion_type (char *text, char *word, enum type_code code)
4504 {
4505 gdb_assert (code == TYPE_CODE_UNION
4506 || code == TYPE_CODE_STRUCT
4507 || code == TYPE_CODE_CLASS
4508 || code == TYPE_CODE_ENUM);
4509 return current_language->la_make_symbol_completion_list (text, word, code);
4510 }
4511
4512 /* Like make_symbol_completion_list, but suitable for use as a
4513 completion function. */
4514
4515 VEC (char_ptr) *
4516 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4517 char *text, char *word)
4518 {
4519 return make_symbol_completion_list (text, word);
4520 }
4521
4522 /* Like make_symbol_completion_list, but returns a list of symbols
4523 defined in a source file FILE. */
4524
4525 VEC (char_ptr) *
4526 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4527 {
4528 struct symbol *sym;
4529 struct symtab *s;
4530 struct block *b;
4531 struct block_iterator iter;
4532 /* The symbol we are completing on. Points in same buffer as text. */
4533 char *sym_text;
4534 /* Length of sym_text. */
4535 int sym_text_len;
4536
4537 /* Now look for the symbol we are supposed to complete on.
4538 FIXME: This should be language-specific. */
4539 {
4540 char *p;
4541 char quote_found;
4542 char *quote_pos = NULL;
4543
4544 /* First see if this is a quoted string. */
4545 quote_found = '\0';
4546 for (p = text; *p != '\0'; ++p)
4547 {
4548 if (quote_found != '\0')
4549 {
4550 if (*p == quote_found)
4551 /* Found close quote. */
4552 quote_found = '\0';
4553 else if (*p == '\\' && p[1] == quote_found)
4554 /* A backslash followed by the quote character
4555 doesn't end the string. */
4556 ++p;
4557 }
4558 else if (*p == '\'' || *p == '"')
4559 {
4560 quote_found = *p;
4561 quote_pos = p;
4562 }
4563 }
4564 if (quote_found == '\'')
4565 /* A string within single quotes can be a symbol, so complete on it. */
4566 sym_text = quote_pos + 1;
4567 else if (quote_found == '"')
4568 /* A double-quoted string is never a symbol, nor does it make sense
4569 to complete it any other way. */
4570 {
4571 return NULL;
4572 }
4573 else
4574 {
4575 /* Not a quoted string. */
4576 sym_text = language_search_unquoted_string (text, p);
4577 }
4578 }
4579
4580 sym_text_len = strlen (sym_text);
4581
4582 return_val = NULL;
4583
4584 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4585 in). */
4586 s = lookup_symtab (srcfile);
4587 if (s == NULL)
4588 {
4589 /* Maybe they typed the file with leading directories, while the
4590 symbol tables record only its basename. */
4591 const char *tail = lbasename (srcfile);
4592
4593 if (tail > srcfile)
4594 s = lookup_symtab (tail);
4595 }
4596
4597 /* If we have no symtab for that file, return an empty list. */
4598 if (s == NULL)
4599 return (return_val);
4600
4601 /* Go through this symtab and check the externs and statics for
4602 symbols which match. */
4603
4604 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4605 ALL_BLOCK_SYMBOLS (b, iter, sym)
4606 {
4607 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4608 }
4609
4610 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4611 ALL_BLOCK_SYMBOLS (b, iter, sym)
4612 {
4613 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4614 }
4615
4616 return (return_val);
4617 }
4618
4619 /* A helper function for make_source_files_completion_list. It adds
4620 another file name to a list of possible completions, growing the
4621 list as necessary. */
4622
4623 static void
4624 add_filename_to_list (const char *fname, char *text, char *word,
4625 VEC (char_ptr) **list)
4626 {
4627 char *new;
4628 size_t fnlen = strlen (fname);
4629
4630 if (word == text)
4631 {
4632 /* Return exactly fname. */
4633 new = xmalloc (fnlen + 5);
4634 strcpy (new, fname);
4635 }
4636 else if (word > text)
4637 {
4638 /* Return some portion of fname. */
4639 new = xmalloc (fnlen + 5);
4640 strcpy (new, fname + (word - text));
4641 }
4642 else
4643 {
4644 /* Return some of TEXT plus fname. */
4645 new = xmalloc (fnlen + (text - word) + 5);
4646 strncpy (new, word, text - word);
4647 new[text - word] = '\0';
4648 strcat (new, fname);
4649 }
4650 VEC_safe_push (char_ptr, *list, new);
4651 }
4652
4653 static int
4654 not_interesting_fname (const char *fname)
4655 {
4656 static const char *illegal_aliens[] = {
4657 "_globals_", /* inserted by coff_symtab_read */
4658 NULL
4659 };
4660 int i;
4661
4662 for (i = 0; illegal_aliens[i]; i++)
4663 {
4664 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4665 return 1;
4666 }
4667 return 0;
4668 }
4669
4670 /* An object of this type is passed as the user_data argument to
4671 map_partial_symbol_filenames. */
4672 struct add_partial_filename_data
4673 {
4674 struct filename_seen_cache *filename_seen_cache;
4675 char *text;
4676 char *word;
4677 int text_len;
4678 VEC (char_ptr) **list;
4679 };
4680
4681 /* A callback for map_partial_symbol_filenames. */
4682
4683 static void
4684 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4685 void *user_data)
4686 {
4687 struct add_partial_filename_data *data = user_data;
4688
4689 if (not_interesting_fname (filename))
4690 return;
4691 if (!filename_seen (data->filename_seen_cache, filename, 1)
4692 && filename_ncmp (filename, data->text, data->text_len) == 0)
4693 {
4694 /* This file matches for a completion; add it to the
4695 current list of matches. */
4696 add_filename_to_list (filename, data->text, data->word, data->list);
4697 }
4698 else
4699 {
4700 const char *base_name = lbasename (filename);
4701
4702 if (base_name != filename
4703 && !filename_seen (data->filename_seen_cache, base_name, 1)
4704 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4705 add_filename_to_list (base_name, data->text, data->word, data->list);
4706 }
4707 }
4708
4709 /* Return a vector of all source files whose names begin with matching
4710 TEXT. The file names are looked up in the symbol tables of this
4711 program. If the answer is no matchess, then the return value is
4712 NULL. */
4713
4714 VEC (char_ptr) *
4715 make_source_files_completion_list (char *text, char *word)
4716 {
4717 struct symtab *s;
4718 struct objfile *objfile;
4719 size_t text_len = strlen (text);
4720 VEC (char_ptr) *list = NULL;
4721 const char *base_name;
4722 struct add_partial_filename_data datum;
4723 struct filename_seen_cache *filename_seen_cache;
4724 struct cleanup *back_to, *cache_cleanup;
4725
4726 if (!have_full_symbols () && !have_partial_symbols ())
4727 return list;
4728
4729 back_to = make_cleanup (do_free_completion_list, &list);
4730
4731 filename_seen_cache = create_filename_seen_cache ();
4732 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4733 filename_seen_cache);
4734
4735 ALL_SYMTABS (objfile, s)
4736 {
4737 if (not_interesting_fname (s->filename))
4738 continue;
4739 if (!filename_seen (filename_seen_cache, s->filename, 1)
4740 && filename_ncmp (s->filename, text, text_len) == 0)
4741 {
4742 /* This file matches for a completion; add it to the current
4743 list of matches. */
4744 add_filename_to_list (s->filename, text, word, &list);
4745 }
4746 else
4747 {
4748 /* NOTE: We allow the user to type a base name when the
4749 debug info records leading directories, but not the other
4750 way around. This is what subroutines of breakpoint
4751 command do when they parse file names. */
4752 base_name = lbasename (s->filename);
4753 if (base_name != s->filename
4754 && !filename_seen (filename_seen_cache, base_name, 1)
4755 && filename_ncmp (base_name, text, text_len) == 0)
4756 add_filename_to_list (base_name, text, word, &list);
4757 }
4758 }
4759
4760 datum.filename_seen_cache = filename_seen_cache;
4761 datum.text = text;
4762 datum.word = word;
4763 datum.text_len = text_len;
4764 datum.list = &list;
4765 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4766 0 /*need_fullname*/);
4767
4768 do_cleanups (cache_cleanup);
4769 discard_cleanups (back_to);
4770
4771 return list;
4772 }
4773
4774 /* Determine if PC is in the prologue of a function. The prologue is the area
4775 between the first instruction of a function, and the first executable line.
4776 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4777
4778 If non-zero, func_start is where we think the prologue starts, possibly
4779 by previous examination of symbol table information. */
4780
4781 int
4782 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4783 {
4784 struct symtab_and_line sal;
4785 CORE_ADDR func_addr, func_end;
4786
4787 /* We have several sources of information we can consult to figure
4788 this out.
4789 - Compilers usually emit line number info that marks the prologue
4790 as its own "source line". So the ending address of that "line"
4791 is the end of the prologue. If available, this is the most
4792 reliable method.
4793 - The minimal symbols and partial symbols, which can usually tell
4794 us the starting and ending addresses of a function.
4795 - If we know the function's start address, we can call the
4796 architecture-defined gdbarch_skip_prologue function to analyze the
4797 instruction stream and guess where the prologue ends.
4798 - Our `func_start' argument; if non-zero, this is the caller's
4799 best guess as to the function's entry point. At the time of
4800 this writing, handle_inferior_event doesn't get this right, so
4801 it should be our last resort. */
4802
4803 /* Consult the partial symbol table, to find which function
4804 the PC is in. */
4805 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4806 {
4807 CORE_ADDR prologue_end;
4808
4809 /* We don't even have minsym information, so fall back to using
4810 func_start, if given. */
4811 if (! func_start)
4812 return 1; /* We *might* be in a prologue. */
4813
4814 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4815
4816 return func_start <= pc && pc < prologue_end;
4817 }
4818
4819 /* If we have line number information for the function, that's
4820 usually pretty reliable. */
4821 sal = find_pc_line (func_addr, 0);
4822
4823 /* Now sal describes the source line at the function's entry point,
4824 which (by convention) is the prologue. The end of that "line",
4825 sal.end, is the end of the prologue.
4826
4827 Note that, for functions whose source code is all on a single
4828 line, the line number information doesn't always end up this way.
4829 So we must verify that our purported end-of-prologue address is
4830 *within* the function, not at its start or end. */
4831 if (sal.line == 0
4832 || sal.end <= func_addr
4833 || func_end <= sal.end)
4834 {
4835 /* We don't have any good line number info, so use the minsym
4836 information, together with the architecture-specific prologue
4837 scanning code. */
4838 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4839
4840 return func_addr <= pc && pc < prologue_end;
4841 }
4842
4843 /* We have line number info, and it looks good. */
4844 return func_addr <= pc && pc < sal.end;
4845 }
4846
4847 /* Given PC at the function's start address, attempt to find the
4848 prologue end using SAL information. Return zero if the skip fails.
4849
4850 A non-optimized prologue traditionally has one SAL for the function
4851 and a second for the function body. A single line function has
4852 them both pointing at the same line.
4853
4854 An optimized prologue is similar but the prologue may contain
4855 instructions (SALs) from the instruction body. Need to skip those
4856 while not getting into the function body.
4857
4858 The functions end point and an increasing SAL line are used as
4859 indicators of the prologue's endpoint.
4860
4861 This code is based on the function refine_prologue_limit
4862 (found in ia64). */
4863
4864 CORE_ADDR
4865 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4866 {
4867 struct symtab_and_line prologue_sal;
4868 CORE_ADDR start_pc;
4869 CORE_ADDR end_pc;
4870 struct block *bl;
4871
4872 /* Get an initial range for the function. */
4873 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4874 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4875
4876 prologue_sal = find_pc_line (start_pc, 0);
4877 if (prologue_sal.line != 0)
4878 {
4879 /* For languages other than assembly, treat two consecutive line
4880 entries at the same address as a zero-instruction prologue.
4881 The GNU assembler emits separate line notes for each instruction
4882 in a multi-instruction macro, but compilers generally will not
4883 do this. */
4884 if (prologue_sal.symtab->language != language_asm)
4885 {
4886 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4887 int idx = 0;
4888
4889 /* Skip any earlier lines, and any end-of-sequence marker
4890 from a previous function. */
4891 while (linetable->item[idx].pc != prologue_sal.pc
4892 || linetable->item[idx].line == 0)
4893 idx++;
4894
4895 if (idx+1 < linetable->nitems
4896 && linetable->item[idx+1].line != 0
4897 && linetable->item[idx+1].pc == start_pc)
4898 return start_pc;
4899 }
4900
4901 /* If there is only one sal that covers the entire function,
4902 then it is probably a single line function, like
4903 "foo(){}". */
4904 if (prologue_sal.end >= end_pc)
4905 return 0;
4906
4907 while (prologue_sal.end < end_pc)
4908 {
4909 struct symtab_and_line sal;
4910
4911 sal = find_pc_line (prologue_sal.end, 0);
4912 if (sal.line == 0)
4913 break;
4914 /* Assume that a consecutive SAL for the same (or larger)
4915 line mark the prologue -> body transition. */
4916 if (sal.line >= prologue_sal.line)
4917 break;
4918
4919 /* The line number is smaller. Check that it's from the
4920 same function, not something inlined. If it's inlined,
4921 then there is no point comparing the line numbers. */
4922 bl = block_for_pc (prologue_sal.end);
4923 while (bl)
4924 {
4925 if (block_inlined_p (bl))
4926 break;
4927 if (BLOCK_FUNCTION (bl))
4928 {
4929 bl = NULL;
4930 break;
4931 }
4932 bl = BLOCK_SUPERBLOCK (bl);
4933 }
4934 if (bl != NULL)
4935 break;
4936
4937 /* The case in which compiler's optimizer/scheduler has
4938 moved instructions into the prologue. We look ahead in
4939 the function looking for address ranges whose
4940 corresponding line number is less the first one that we
4941 found for the function. This is more conservative then
4942 refine_prologue_limit which scans a large number of SALs
4943 looking for any in the prologue. */
4944 prologue_sal = sal;
4945 }
4946 }
4947
4948 if (prologue_sal.end < end_pc)
4949 /* Return the end of this line, or zero if we could not find a
4950 line. */
4951 return prologue_sal.end;
4952 else
4953 /* Don't return END_PC, which is past the end of the function. */
4954 return prologue_sal.pc;
4955 }
4956 \f
4957 /* Track MAIN */
4958 static char *name_of_main;
4959 enum language language_of_main = language_unknown;
4960
4961 void
4962 set_main_name (const char *name)
4963 {
4964 if (name_of_main != NULL)
4965 {
4966 xfree (name_of_main);
4967 name_of_main = NULL;
4968 language_of_main = language_unknown;
4969 }
4970 if (name != NULL)
4971 {
4972 name_of_main = xstrdup (name);
4973 language_of_main = language_unknown;
4974 }
4975 }
4976
4977 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4978 accordingly. */
4979
4980 static void
4981 find_main_name (void)
4982 {
4983 const char *new_main_name;
4984
4985 /* Try to see if the main procedure is in Ada. */
4986 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4987 be to add a new method in the language vector, and call this
4988 method for each language until one of them returns a non-empty
4989 name. This would allow us to remove this hard-coded call to
4990 an Ada function. It is not clear that this is a better approach
4991 at this point, because all methods need to be written in a way
4992 such that false positives never be returned. For instance, it is
4993 important that a method does not return a wrong name for the main
4994 procedure if the main procedure is actually written in a different
4995 language. It is easy to guaranty this with Ada, since we use a
4996 special symbol generated only when the main in Ada to find the name
4997 of the main procedure. It is difficult however to see how this can
4998 be guarantied for languages such as C, for instance. This suggests
4999 that order of call for these methods becomes important, which means
5000 a more complicated approach. */
5001 new_main_name = ada_main_name ();
5002 if (new_main_name != NULL)
5003 {
5004 set_main_name (new_main_name);
5005 return;
5006 }
5007
5008 new_main_name = go_main_name ();
5009 if (new_main_name != NULL)
5010 {
5011 set_main_name (new_main_name);
5012 return;
5013 }
5014
5015 new_main_name = pascal_main_name ();
5016 if (new_main_name != NULL)
5017 {
5018 set_main_name (new_main_name);
5019 return;
5020 }
5021
5022 /* The languages above didn't identify the name of the main procedure.
5023 Fallback to "main". */
5024 set_main_name ("main");
5025 }
5026
5027 char *
5028 main_name (void)
5029 {
5030 if (name_of_main == NULL)
5031 find_main_name ();
5032
5033 return name_of_main;
5034 }
5035
5036 /* Handle ``executable_changed'' events for the symtab module. */
5037
5038 static void
5039 symtab_observer_executable_changed (void)
5040 {
5041 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5042 set_main_name (NULL);
5043 }
5044
5045 /* Return 1 if the supplied producer string matches the ARM RealView
5046 compiler (armcc). */
5047
5048 int
5049 producer_is_realview (const char *producer)
5050 {
5051 static const char *const arm_idents[] = {
5052 "ARM C Compiler, ADS",
5053 "Thumb C Compiler, ADS",
5054 "ARM C++ Compiler, ADS",
5055 "Thumb C++ Compiler, ADS",
5056 "ARM/Thumb C/C++ Compiler, RVCT",
5057 "ARM C/C++ Compiler, RVCT"
5058 };
5059 int i;
5060
5061 if (producer == NULL)
5062 return 0;
5063
5064 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5065 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5066 return 1;
5067
5068 return 0;
5069 }
5070
5071 void
5072 _initialize_symtab (void)
5073 {
5074 add_info ("variables", variables_info, _("\
5075 All global and static variable names, or those matching REGEXP."));
5076 if (dbx_commands)
5077 add_com ("whereis", class_info, variables_info, _("\
5078 All global and static variable names, or those matching REGEXP."));
5079
5080 add_info ("functions", functions_info,
5081 _("All function names, or those matching REGEXP."));
5082
5083 /* FIXME: This command has at least the following problems:
5084 1. It prints builtin types (in a very strange and confusing fashion).
5085 2. It doesn't print right, e.g. with
5086 typedef struct foo *FOO
5087 type_print prints "FOO" when we want to make it (in this situation)
5088 print "struct foo *".
5089 I also think "ptype" or "whatis" is more likely to be useful (but if
5090 there is much disagreement "info types" can be fixed). */
5091 add_info ("types", types_info,
5092 _("All type names, or those matching REGEXP."));
5093
5094 add_info ("sources", sources_info,
5095 _("Source files in the program."));
5096
5097 add_com ("rbreak", class_breakpoint, rbreak_command,
5098 _("Set a breakpoint for all functions matching REGEXP."));
5099
5100 if (xdb_commands)
5101 {
5102 add_com ("lf", class_info, sources_info,
5103 _("Source files in the program"));
5104 add_com ("lg", class_info, variables_info, _("\
5105 All global and static variable names, or those matching REGEXP."));
5106 }
5107
5108 add_setshow_enum_cmd ("multiple-symbols", no_class,
5109 multiple_symbols_modes, &multiple_symbols_mode,
5110 _("\
5111 Set the debugger behavior when more than one symbol are possible matches\n\
5112 in an expression."), _("\
5113 Show how the debugger handles ambiguities in expressions."), _("\
5114 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5115 NULL, NULL, &setlist, &showlist);
5116
5117 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5118 &basenames_may_differ, _("\
5119 Set whether a source file may have multiple base names."), _("\
5120 Show whether a source file may have multiple base names."), _("\
5121 (A \"base name\" is the name of a file with the directory part removed.\n\
5122 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5123 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5124 before comparing them. Canonicalization is an expensive operation,\n\
5125 but it allows the same file be known by more than one base name.\n\
5126 If not set (the default), all source files are assumed to have just\n\
5127 one base name, and gdb will do file name comparisons more efficiently."),
5128 NULL, NULL,
5129 &setlist, &showlist);
5130
5131 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5132 _("Set debugging of symbol table creation."),
5133 _("Show debugging of symbol table creation."), _("\
5134 When enabled, debugging messages are printed when building symbol tables."),
5135 NULL,
5136 NULL,
5137 &setdebuglist, &showdebuglist);
5138
5139 observer_attach_executable_changed (symtab_observer_executable_changed);
5140 }
This page took 0.208672 seconds and 5 git commands to generate.