Delete search_symbols_equal (use compare_search_syms instead).
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_stat.h"
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "psymtab.h"
65 #include "parser-defs.h"
66
67 /* Prototypes for local functions */
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct symbol *lookup_symbol_aux (const char *name,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *is_a_field_of_this);
86
87 static
88 struct symbol *lookup_symbol_aux_local (const char *name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
92
93 static
94 struct symbol *lookup_symbol_aux_symtabs (int block_index,
95 const char *name,
96 const domain_enum domain);
97
98 static
99 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
100 int block_index,
101 const char *name,
102 const domain_enum domain);
103
104 void _initialize_symtab (void);
105
106 /* */
107
108 /* When non-zero, print debugging messages related to symtab creation. */
109 int symtab_create_debug = 0;
110
111 /* Non-zero if a file may be known by two different basenames.
112 This is the uncommon case, and significantly slows down gdb.
113 Default set to "off" to not slow down the common case. */
114 int basenames_may_differ = 0;
115
116 /* Allow the user to configure the debugger behavior with respect
117 to multiple-choice menus when more than one symbol matches during
118 a symbol lookup. */
119
120 const char multiple_symbols_ask[] = "ask";
121 const char multiple_symbols_all[] = "all";
122 const char multiple_symbols_cancel[] = "cancel";
123 static const char *const multiple_symbols_modes[] =
124 {
125 multiple_symbols_ask,
126 multiple_symbols_all,
127 multiple_symbols_cancel,
128 NULL
129 };
130 static const char *multiple_symbols_mode = multiple_symbols_all;
131
132 /* Read-only accessor to AUTO_SELECT_MODE. */
133
134 const char *
135 multiple_symbols_select_mode (void)
136 {
137 return multiple_symbols_mode;
138 }
139
140 /* Block in which the most recently searched-for symbol was found.
141 Might be better to make this a parameter to lookup_symbol and
142 value_of_this. */
143
144 const struct block *block_found;
145
146 /* Return the name of a domain_enum. */
147
148 const char *
149 domain_name (domain_enum e)
150 {
151 switch (e)
152 {
153 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
154 case VAR_DOMAIN: return "VAR_DOMAIN";
155 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
156 case LABEL_DOMAIN: return "LABEL_DOMAIN";
157 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
158 default: gdb_assert_not_reached ("bad domain_enum");
159 }
160 }
161
162 /* Return the name of a search_domain . */
163
164 const char *
165 search_domain_name (enum search_domain e)
166 {
167 switch (e)
168 {
169 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
170 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
171 case TYPES_DOMAIN: return "TYPES_DOMAIN";
172 case ALL_DOMAIN: return "ALL_DOMAIN";
173 default: gdb_assert_not_reached ("bad search_domain");
174 }
175 }
176
177 /* See whether FILENAME matches SEARCH_NAME using the rule that we
178 advertise to the user. (The manual's description of linespecs
179 describes what we advertise). Returns true if they match, false
180 otherwise. */
181
182 int
183 compare_filenames_for_search (const char *filename, const char *search_name)
184 {
185 int len = strlen (filename);
186 size_t search_len = strlen (search_name);
187
188 if (len < search_len)
189 return 0;
190
191 /* The tail of FILENAME must match. */
192 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
193 return 0;
194
195 /* Either the names must completely match, or the character
196 preceding the trailing SEARCH_NAME segment of FILENAME must be a
197 directory separator.
198
199 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
200 cannot match FILENAME "/path//dir/file.c" - as user has requested
201 absolute path. The sama applies for "c:\file.c" possibly
202 incorrectly hypothetically matching "d:\dir\c:\file.c".
203
204 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
205 compatible with SEARCH_NAME "file.c". In such case a compiler had
206 to put the "c:file.c" name into debug info. Such compatibility
207 works only on GDB built for DOS host. */
208 return (len == search_len
209 || (!IS_ABSOLUTE_PATH (search_name)
210 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
211 || (HAS_DRIVE_SPEC (filename)
212 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
213 }
214
215 /* Check for a symtab of a specific name by searching some symtabs.
216 This is a helper function for callbacks of iterate_over_symtabs.
217
218 If NAME is not absolute, then REAL_PATH is NULL
219 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
220
221 The return value, NAME, REAL_PATH, CALLBACK, and DATA
222 are identical to the `map_symtabs_matching_filename' method of
223 quick_symbol_functions.
224
225 FIRST and AFTER_LAST indicate the range of symtabs to search.
226 AFTER_LAST is one past the last symtab to search; NULL means to
227 search until the end of the list. */
228
229 int
230 iterate_over_some_symtabs (const char *name,
231 const char *real_path,
232 int (*callback) (struct symtab *symtab,
233 void *data),
234 void *data,
235 struct symtab *first,
236 struct symtab *after_last)
237 {
238 struct symtab *s = NULL;
239 const char* base_name = lbasename (name);
240
241 for (s = first; s != NULL && s != after_last; s = s->next)
242 {
243 if (compare_filenames_for_search (s->filename, name))
244 {
245 if (callback (s, data))
246 return 1;
247 continue;
248 }
249
250 /* Before we invoke realpath, which can get expensive when many
251 files are involved, do a quick comparison of the basenames. */
252 if (! basenames_may_differ
253 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
254 continue;
255
256 if (compare_filenames_for_search (symtab_to_fullname (s), name))
257 {
258 if (callback (s, data))
259 return 1;
260 continue;
261 }
262
263 /* If the user gave us an absolute path, try to find the file in
264 this symtab and use its absolute path. */
265 if (real_path != NULL)
266 {
267 const char *fullname = symtab_to_fullname (s);
268
269 gdb_assert (IS_ABSOLUTE_PATH (real_path));
270 gdb_assert (IS_ABSOLUTE_PATH (name));
271 if (FILENAME_CMP (real_path, fullname) == 0)
272 {
273 if (callback (s, data))
274 return 1;
275 continue;
276 }
277 }
278 }
279
280 return 0;
281 }
282
283 /* Check for a symtab of a specific name; first in symtabs, then in
284 psymtabs. *If* there is no '/' in the name, a match after a '/'
285 in the symtab filename will also work.
286
287 Calls CALLBACK with each symtab that is found and with the supplied
288 DATA. If CALLBACK returns true, the search stops. */
289
290 void
291 iterate_over_symtabs (const char *name,
292 int (*callback) (struct symtab *symtab,
293 void *data),
294 void *data)
295 {
296 struct objfile *objfile;
297 char *real_path = NULL;
298 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
299
300 /* Here we are interested in canonicalizing an absolute path, not
301 absolutizing a relative path. */
302 if (IS_ABSOLUTE_PATH (name))
303 {
304 real_path = gdb_realpath (name);
305 make_cleanup (xfree, real_path);
306 gdb_assert (IS_ABSOLUTE_PATH (real_path));
307 }
308
309 ALL_OBJFILES (objfile)
310 {
311 if (iterate_over_some_symtabs (name, real_path, callback, data,
312 objfile->symtabs, NULL))
313 {
314 do_cleanups (cleanups);
315 return;
316 }
317 }
318
319 /* Same search rules as above apply here, but now we look thru the
320 psymtabs. */
321
322 ALL_OBJFILES (objfile)
323 {
324 if (objfile->sf
325 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
326 name,
327 real_path,
328 callback,
329 data))
330 {
331 do_cleanups (cleanups);
332 return;
333 }
334 }
335
336 do_cleanups (cleanups);
337 }
338
339 /* The callback function used by lookup_symtab. */
340
341 static int
342 lookup_symtab_callback (struct symtab *symtab, void *data)
343 {
344 struct symtab **result_ptr = data;
345
346 *result_ptr = symtab;
347 return 1;
348 }
349
350 /* A wrapper for iterate_over_symtabs that returns the first matching
351 symtab, or NULL. */
352
353 struct symtab *
354 lookup_symtab (const char *name)
355 {
356 struct symtab *result = NULL;
357
358 iterate_over_symtabs (name, lookup_symtab_callback, &result);
359 return result;
360 }
361
362 \f
363 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
364 full method name, which consist of the class name (from T), the unadorned
365 method name from METHOD_ID, and the signature for the specific overload,
366 specified by SIGNATURE_ID. Note that this function is g++ specific. */
367
368 char *
369 gdb_mangle_name (struct type *type, int method_id, int signature_id)
370 {
371 int mangled_name_len;
372 char *mangled_name;
373 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
374 struct fn_field *method = &f[signature_id];
375 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
376 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
377 const char *newname = type_name_no_tag (type);
378
379 /* Does the form of physname indicate that it is the full mangled name
380 of a constructor (not just the args)? */
381 int is_full_physname_constructor;
382
383 int is_constructor;
384 int is_destructor = is_destructor_name (physname);
385 /* Need a new type prefix. */
386 char *const_prefix = method->is_const ? "C" : "";
387 char *volatile_prefix = method->is_volatile ? "V" : "";
388 char buf[20];
389 int len = (newname == NULL ? 0 : strlen (newname));
390
391 /* Nothing to do if physname already contains a fully mangled v3 abi name
392 or an operator name. */
393 if ((physname[0] == '_' && physname[1] == 'Z')
394 || is_operator_name (field_name))
395 return xstrdup (physname);
396
397 is_full_physname_constructor = is_constructor_name (physname);
398
399 is_constructor = is_full_physname_constructor
400 || (newname && strcmp (field_name, newname) == 0);
401
402 if (!is_destructor)
403 is_destructor = (strncmp (physname, "__dt", 4) == 0);
404
405 if (is_destructor || is_full_physname_constructor)
406 {
407 mangled_name = (char *) xmalloc (strlen (physname) + 1);
408 strcpy (mangled_name, physname);
409 return mangled_name;
410 }
411
412 if (len == 0)
413 {
414 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
415 }
416 else if (physname[0] == 't' || physname[0] == 'Q')
417 {
418 /* The physname for template and qualified methods already includes
419 the class name. */
420 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
421 newname = NULL;
422 len = 0;
423 }
424 else
425 {
426 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
427 volatile_prefix, len);
428 }
429 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
430 + strlen (buf) + len + strlen (physname) + 1);
431
432 mangled_name = (char *) xmalloc (mangled_name_len);
433 if (is_constructor)
434 mangled_name[0] = '\0';
435 else
436 strcpy (mangled_name, field_name);
437
438 strcat (mangled_name, buf);
439 /* If the class doesn't have a name, i.e. newname NULL, then we just
440 mangle it using 0 for the length of the class. Thus it gets mangled
441 as something starting with `::' rather than `classname::'. */
442 if (newname != NULL)
443 strcat (mangled_name, newname);
444
445 strcat (mangled_name, physname);
446 return (mangled_name);
447 }
448
449 /* Initialize the cplus_specific structure. 'cplus_specific' should
450 only be allocated for use with cplus symbols. */
451
452 static void
453 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
454 struct obstack *obstack)
455 {
456 /* A language_specific structure should not have been previously
457 initialized. */
458 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
459 gdb_assert (obstack != NULL);
460
461 gsymbol->language_specific.cplus_specific =
462 OBSTACK_ZALLOC (obstack, struct cplus_specific);
463 }
464
465 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
466 correctly allocated. For C++ symbols a cplus_specific struct is
467 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
468 OBJFILE can be NULL. */
469
470 void
471 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
472 const char *name,
473 struct obstack *obstack)
474 {
475 if (gsymbol->language == language_cplus)
476 {
477 if (gsymbol->language_specific.cplus_specific == NULL)
478 symbol_init_cplus_specific (gsymbol, obstack);
479
480 gsymbol->language_specific.cplus_specific->demangled_name = name;
481 }
482 else if (gsymbol->language == language_ada)
483 {
484 if (name == NULL)
485 {
486 gsymbol->ada_mangled = 0;
487 gsymbol->language_specific.obstack = obstack;
488 }
489 else
490 {
491 gsymbol->ada_mangled = 1;
492 gsymbol->language_specific.mangled_lang.demangled_name = name;
493 }
494 }
495 else
496 gsymbol->language_specific.mangled_lang.demangled_name = name;
497 }
498
499 /* Return the demangled name of GSYMBOL. */
500
501 const char *
502 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
503 {
504 if (gsymbol->language == language_cplus)
505 {
506 if (gsymbol->language_specific.cplus_specific != NULL)
507 return gsymbol->language_specific.cplus_specific->demangled_name;
508 else
509 return NULL;
510 }
511 else if (gsymbol->language == language_ada)
512 {
513 if (!gsymbol->ada_mangled)
514 return NULL;
515 /* Fall through. */
516 }
517
518 return gsymbol->language_specific.mangled_lang.demangled_name;
519 }
520
521 \f
522 /* Initialize the language dependent portion of a symbol
523 depending upon the language for the symbol. */
524
525 void
526 symbol_set_language (struct general_symbol_info *gsymbol,
527 enum language language,
528 struct obstack *obstack)
529 {
530 gsymbol->language = language;
531 if (gsymbol->language == language_d
532 || gsymbol->language == language_go
533 || gsymbol->language == language_java
534 || gsymbol->language == language_objc
535 || gsymbol->language == language_fortran)
536 {
537 symbol_set_demangled_name (gsymbol, NULL, obstack);
538 }
539 else if (gsymbol->language == language_ada)
540 {
541 gdb_assert (gsymbol->ada_mangled == 0);
542 gsymbol->language_specific.obstack = obstack;
543 }
544 else if (gsymbol->language == language_cplus)
545 gsymbol->language_specific.cplus_specific = NULL;
546 else
547 {
548 memset (&gsymbol->language_specific, 0,
549 sizeof (gsymbol->language_specific));
550 }
551 }
552
553 /* Functions to initialize a symbol's mangled name. */
554
555 /* Objects of this type are stored in the demangled name hash table. */
556 struct demangled_name_entry
557 {
558 const char *mangled;
559 char demangled[1];
560 };
561
562 /* Hash function for the demangled name hash. */
563
564 static hashval_t
565 hash_demangled_name_entry (const void *data)
566 {
567 const struct demangled_name_entry *e = data;
568
569 return htab_hash_string (e->mangled);
570 }
571
572 /* Equality function for the demangled name hash. */
573
574 static int
575 eq_demangled_name_entry (const void *a, const void *b)
576 {
577 const struct demangled_name_entry *da = a;
578 const struct demangled_name_entry *db = b;
579
580 return strcmp (da->mangled, db->mangled) == 0;
581 }
582
583 /* Create the hash table used for demangled names. Each hash entry is
584 a pair of strings; one for the mangled name and one for the demangled
585 name. The entry is hashed via just the mangled name. */
586
587 static void
588 create_demangled_names_hash (struct objfile *objfile)
589 {
590 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
591 The hash table code will round this up to the next prime number.
592 Choosing a much larger table size wastes memory, and saves only about
593 1% in symbol reading. */
594
595 objfile->demangled_names_hash = htab_create_alloc
596 (256, hash_demangled_name_entry, eq_demangled_name_entry,
597 NULL, xcalloc, xfree);
598 }
599
600 /* Try to determine the demangled name for a symbol, based on the
601 language of that symbol. If the language is set to language_auto,
602 it will attempt to find any demangling algorithm that works and
603 then set the language appropriately. The returned name is allocated
604 by the demangler and should be xfree'd. */
605
606 static char *
607 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
608 const char *mangled)
609 {
610 char *demangled = NULL;
611
612 if (gsymbol->language == language_unknown)
613 gsymbol->language = language_auto;
614
615 if (gsymbol->language == language_objc
616 || gsymbol->language == language_auto)
617 {
618 demangled =
619 objc_demangle (mangled, 0);
620 if (demangled != NULL)
621 {
622 gsymbol->language = language_objc;
623 return demangled;
624 }
625 }
626 if (gsymbol->language == language_cplus
627 || gsymbol->language == language_auto)
628 {
629 demangled =
630 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
631 if (demangled != NULL)
632 {
633 gsymbol->language = language_cplus;
634 return demangled;
635 }
636 }
637 if (gsymbol->language == language_java)
638 {
639 demangled =
640 gdb_demangle (mangled,
641 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
642 if (demangled != NULL)
643 {
644 gsymbol->language = language_java;
645 return demangled;
646 }
647 }
648 if (gsymbol->language == language_d
649 || gsymbol->language == language_auto)
650 {
651 demangled = d_demangle(mangled, 0);
652 if (demangled != NULL)
653 {
654 gsymbol->language = language_d;
655 return demangled;
656 }
657 }
658 /* FIXME(dje): Continually adding languages here is clumsy.
659 Better to just call la_demangle if !auto, and if auto then call
660 a utility routine that tries successive languages in turn and reports
661 which one it finds. I realize the la_demangle options may be different
662 for different languages but there's already a FIXME for that. */
663 if (gsymbol->language == language_go
664 || gsymbol->language == language_auto)
665 {
666 demangled = go_demangle (mangled, 0);
667 if (demangled != NULL)
668 {
669 gsymbol->language = language_go;
670 return demangled;
671 }
672 }
673
674 /* We could support `gsymbol->language == language_fortran' here to provide
675 module namespaces also for inferiors with only minimal symbol table (ELF
676 symbols). Just the mangling standard is not standardized across compilers
677 and there is no DW_AT_producer available for inferiors with only the ELF
678 symbols to check the mangling kind. */
679 return NULL;
680 }
681
682 /* Set both the mangled and demangled (if any) names for GSYMBOL based
683 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
684 objfile's obstack; but if COPY_NAME is 0 and if NAME is
685 NUL-terminated, then this function assumes that NAME is already
686 correctly saved (either permanently or with a lifetime tied to the
687 objfile), and it will not be copied.
688
689 The hash table corresponding to OBJFILE is used, and the memory
690 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
691 so the pointer can be discarded after calling this function. */
692
693 /* We have to be careful when dealing with Java names: when we run
694 into a Java minimal symbol, we don't know it's a Java symbol, so it
695 gets demangled as a C++ name. This is unfortunate, but there's not
696 much we can do about it: but when demangling partial symbols and
697 regular symbols, we'd better not reuse the wrong demangled name.
698 (See PR gdb/1039.) We solve this by putting a distinctive prefix
699 on Java names when storing them in the hash table. */
700
701 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
702 don't mind the Java prefix so much: different languages have
703 different demangling requirements, so it's only natural that we
704 need to keep language data around in our demangling cache. But
705 it's not good that the minimal symbol has the wrong demangled name.
706 Unfortunately, I can't think of any easy solution to that
707 problem. */
708
709 #define JAVA_PREFIX "##JAVA$$"
710 #define JAVA_PREFIX_LEN 8
711
712 void
713 symbol_set_names (struct general_symbol_info *gsymbol,
714 const char *linkage_name, int len, int copy_name,
715 struct objfile *objfile)
716 {
717 struct demangled_name_entry **slot;
718 /* A 0-terminated copy of the linkage name. */
719 const char *linkage_name_copy;
720 /* A copy of the linkage name that might have a special Java prefix
721 added to it, for use when looking names up in the hash table. */
722 const char *lookup_name;
723 /* The length of lookup_name. */
724 int lookup_len;
725 struct demangled_name_entry entry;
726
727 if (gsymbol->language == language_ada)
728 {
729 /* In Ada, we do the symbol lookups using the mangled name, so
730 we can save some space by not storing the demangled name.
731
732 As a side note, we have also observed some overlap between
733 the C++ mangling and Ada mangling, similarly to what has
734 been observed with Java. Because we don't store the demangled
735 name with the symbol, we don't need to use the same trick
736 as Java. */
737 if (!copy_name)
738 gsymbol->name = linkage_name;
739 else
740 {
741 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
742
743 memcpy (name, linkage_name, len);
744 name[len] = '\0';
745 gsymbol->name = name;
746 }
747 symbol_set_demangled_name (gsymbol, NULL, &objfile->objfile_obstack);
748
749 return;
750 }
751
752 if (objfile->demangled_names_hash == NULL)
753 create_demangled_names_hash (objfile);
754
755 /* The stabs reader generally provides names that are not
756 NUL-terminated; most of the other readers don't do this, so we
757 can just use the given copy, unless we're in the Java case. */
758 if (gsymbol->language == language_java)
759 {
760 char *alloc_name;
761
762 lookup_len = len + JAVA_PREFIX_LEN;
763 alloc_name = alloca (lookup_len + 1);
764 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
765 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
766 alloc_name[lookup_len] = '\0';
767
768 lookup_name = alloc_name;
769 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
770 }
771 else if (linkage_name[len] != '\0')
772 {
773 char *alloc_name;
774
775 lookup_len = len;
776 alloc_name = alloca (lookup_len + 1);
777 memcpy (alloc_name, linkage_name, len);
778 alloc_name[lookup_len] = '\0';
779
780 lookup_name = alloc_name;
781 linkage_name_copy = alloc_name;
782 }
783 else
784 {
785 lookup_len = len;
786 lookup_name = linkage_name;
787 linkage_name_copy = linkage_name;
788 }
789
790 entry.mangled = lookup_name;
791 slot = ((struct demangled_name_entry **)
792 htab_find_slot (objfile->demangled_names_hash,
793 &entry, INSERT));
794
795 /* If this name is not in the hash table, add it. */
796 if (*slot == NULL
797 /* A C version of the symbol may have already snuck into the table.
798 This happens to, e.g., main.init (__go_init_main). Cope. */
799 || (gsymbol->language == language_go
800 && (*slot)->demangled[0] == '\0'))
801 {
802 char *demangled_name = symbol_find_demangled_name (gsymbol,
803 linkage_name_copy);
804 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
805
806 /* Suppose we have demangled_name==NULL, copy_name==0, and
807 lookup_name==linkage_name. In this case, we already have the
808 mangled name saved, and we don't have a demangled name. So,
809 you might think we could save a little space by not recording
810 this in the hash table at all.
811
812 It turns out that it is actually important to still save such
813 an entry in the hash table, because storing this name gives
814 us better bcache hit rates for partial symbols. */
815 if (!copy_name && lookup_name == linkage_name)
816 {
817 *slot = obstack_alloc (&objfile->objfile_obstack,
818 offsetof (struct demangled_name_entry,
819 demangled)
820 + demangled_len + 1);
821 (*slot)->mangled = lookup_name;
822 }
823 else
824 {
825 char *mangled_ptr;
826
827 /* If we must copy the mangled name, put it directly after
828 the demangled name so we can have a single
829 allocation. */
830 *slot = obstack_alloc (&objfile->objfile_obstack,
831 offsetof (struct demangled_name_entry,
832 demangled)
833 + lookup_len + demangled_len + 2);
834 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
835 strcpy (mangled_ptr, lookup_name);
836 (*slot)->mangled = mangled_ptr;
837 }
838
839 if (demangled_name != NULL)
840 {
841 strcpy ((*slot)->demangled, demangled_name);
842 xfree (demangled_name);
843 }
844 else
845 (*slot)->demangled[0] = '\0';
846 }
847
848 gsymbol->name = (*slot)->mangled + lookup_len - len;
849 if ((*slot)->demangled[0] != '\0')
850 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
851 &objfile->objfile_obstack);
852 else
853 symbol_set_demangled_name (gsymbol, NULL, &objfile->objfile_obstack);
854 }
855
856 /* Return the source code name of a symbol. In languages where
857 demangling is necessary, this is the demangled name. */
858
859 const char *
860 symbol_natural_name (const struct general_symbol_info *gsymbol)
861 {
862 switch (gsymbol->language)
863 {
864 case language_cplus:
865 case language_d:
866 case language_go:
867 case language_java:
868 case language_objc:
869 case language_fortran:
870 if (symbol_get_demangled_name (gsymbol) != NULL)
871 return symbol_get_demangled_name (gsymbol);
872 break;
873 case language_ada:
874 return ada_decode_symbol (gsymbol);
875 default:
876 break;
877 }
878 return gsymbol->name;
879 }
880
881 /* Return the demangled name for a symbol based on the language for
882 that symbol. If no demangled name exists, return NULL. */
883
884 const char *
885 symbol_demangled_name (const struct general_symbol_info *gsymbol)
886 {
887 const char *dem_name = NULL;
888
889 switch (gsymbol->language)
890 {
891 case language_cplus:
892 case language_d:
893 case language_go:
894 case language_java:
895 case language_objc:
896 case language_fortran:
897 dem_name = symbol_get_demangled_name (gsymbol);
898 break;
899 case language_ada:
900 dem_name = ada_decode_symbol (gsymbol);
901 break;
902 default:
903 break;
904 }
905 return dem_name;
906 }
907
908 /* Return the search name of a symbol---generally the demangled or
909 linkage name of the symbol, depending on how it will be searched for.
910 If there is no distinct demangled name, then returns the same value
911 (same pointer) as SYMBOL_LINKAGE_NAME. */
912
913 const char *
914 symbol_search_name (const struct general_symbol_info *gsymbol)
915 {
916 if (gsymbol->language == language_ada)
917 return gsymbol->name;
918 else
919 return symbol_natural_name (gsymbol);
920 }
921
922 /* Initialize the structure fields to zero values. */
923
924 void
925 init_sal (struct symtab_and_line *sal)
926 {
927 sal->pspace = NULL;
928 sal->symtab = 0;
929 sal->section = 0;
930 sal->line = 0;
931 sal->pc = 0;
932 sal->end = 0;
933 sal->explicit_pc = 0;
934 sal->explicit_line = 0;
935 sal->probe = NULL;
936 }
937 \f
938
939 /* Return 1 if the two sections are the same, or if they could
940 plausibly be copies of each other, one in an original object
941 file and another in a separated debug file. */
942
943 int
944 matching_obj_sections (struct obj_section *obj_first,
945 struct obj_section *obj_second)
946 {
947 asection *first = obj_first? obj_first->the_bfd_section : NULL;
948 asection *second = obj_second? obj_second->the_bfd_section : NULL;
949 struct objfile *obj;
950
951 /* If they're the same section, then they match. */
952 if (first == second)
953 return 1;
954
955 /* If either is NULL, give up. */
956 if (first == NULL || second == NULL)
957 return 0;
958
959 /* This doesn't apply to absolute symbols. */
960 if (first->owner == NULL || second->owner == NULL)
961 return 0;
962
963 /* If they're in the same object file, they must be different sections. */
964 if (first->owner == second->owner)
965 return 0;
966
967 /* Check whether the two sections are potentially corresponding. They must
968 have the same size, address, and name. We can't compare section indexes,
969 which would be more reliable, because some sections may have been
970 stripped. */
971 if (bfd_get_section_size (first) != bfd_get_section_size (second))
972 return 0;
973
974 /* In-memory addresses may start at a different offset, relativize them. */
975 if (bfd_get_section_vma (first->owner, first)
976 - bfd_get_start_address (first->owner)
977 != bfd_get_section_vma (second->owner, second)
978 - bfd_get_start_address (second->owner))
979 return 0;
980
981 if (bfd_get_section_name (first->owner, first) == NULL
982 || bfd_get_section_name (second->owner, second) == NULL
983 || strcmp (bfd_get_section_name (first->owner, first),
984 bfd_get_section_name (second->owner, second)) != 0)
985 return 0;
986
987 /* Otherwise check that they are in corresponding objfiles. */
988
989 ALL_OBJFILES (obj)
990 if (obj->obfd == first->owner)
991 break;
992 gdb_assert (obj != NULL);
993
994 if (obj->separate_debug_objfile != NULL
995 && obj->separate_debug_objfile->obfd == second->owner)
996 return 1;
997 if (obj->separate_debug_objfile_backlink != NULL
998 && obj->separate_debug_objfile_backlink->obfd == second->owner)
999 return 1;
1000
1001 return 0;
1002 }
1003
1004 struct symtab *
1005 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
1006 {
1007 struct objfile *objfile;
1008 struct minimal_symbol *msymbol;
1009
1010 /* If we know that this is not a text address, return failure. This is
1011 necessary because we loop based on texthigh and textlow, which do
1012 not include the data ranges. */
1013 msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym;
1014 if (msymbol
1015 && (MSYMBOL_TYPE (msymbol) == mst_data
1016 || MSYMBOL_TYPE (msymbol) == mst_bss
1017 || MSYMBOL_TYPE (msymbol) == mst_abs
1018 || MSYMBOL_TYPE (msymbol) == mst_file_data
1019 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1020 return NULL;
1021
1022 ALL_OBJFILES (objfile)
1023 {
1024 struct symtab *result = NULL;
1025
1026 if (objfile->sf)
1027 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1028 pc, section, 0);
1029 if (result)
1030 return result;
1031 }
1032
1033 return NULL;
1034 }
1035 \f
1036 /* Debug symbols usually don't have section information. We need to dig that
1037 out of the minimal symbols and stash that in the debug symbol. */
1038
1039 void
1040 fixup_section (struct general_symbol_info *ginfo,
1041 CORE_ADDR addr, struct objfile *objfile)
1042 {
1043 struct minimal_symbol *msym;
1044
1045 /* First, check whether a minimal symbol with the same name exists
1046 and points to the same address. The address check is required
1047 e.g. on PowerPC64, where the minimal symbol for a function will
1048 point to the function descriptor, while the debug symbol will
1049 point to the actual function code. */
1050 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1051 if (msym)
1052 ginfo->section = SYMBOL_SECTION (msym);
1053 else
1054 {
1055 /* Static, function-local variables do appear in the linker
1056 (minimal) symbols, but are frequently given names that won't
1057 be found via lookup_minimal_symbol(). E.g., it has been
1058 observed in frv-uclinux (ELF) executables that a static,
1059 function-local variable named "foo" might appear in the
1060 linker symbols as "foo.6" or "foo.3". Thus, there is no
1061 point in attempting to extend the lookup-by-name mechanism to
1062 handle this case due to the fact that there can be multiple
1063 names.
1064
1065 So, instead, search the section table when lookup by name has
1066 failed. The ``addr'' and ``endaddr'' fields may have already
1067 been relocated. If so, the relocation offset (i.e. the
1068 ANOFFSET value) needs to be subtracted from these values when
1069 performing the comparison. We unconditionally subtract it,
1070 because, when no relocation has been performed, the ANOFFSET
1071 value will simply be zero.
1072
1073 The address of the symbol whose section we're fixing up HAS
1074 NOT BEEN adjusted (relocated) yet. It can't have been since
1075 the section isn't yet known and knowing the section is
1076 necessary in order to add the correct relocation value. In
1077 other words, we wouldn't even be in this function (attempting
1078 to compute the section) if it were already known.
1079
1080 Note that it is possible to search the minimal symbols
1081 (subtracting the relocation value if necessary) to find the
1082 matching minimal symbol, but this is overkill and much less
1083 efficient. It is not necessary to find the matching minimal
1084 symbol, only its section.
1085
1086 Note that this technique (of doing a section table search)
1087 can fail when unrelocated section addresses overlap. For
1088 this reason, we still attempt a lookup by name prior to doing
1089 a search of the section table. */
1090
1091 struct obj_section *s;
1092 int fallback = -1;
1093
1094 ALL_OBJFILE_OSECTIONS (objfile, s)
1095 {
1096 int idx = s - objfile->sections;
1097 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1098
1099 if (fallback == -1)
1100 fallback = idx;
1101
1102 if (obj_section_addr (s) - offset <= addr
1103 && addr < obj_section_endaddr (s) - offset)
1104 {
1105 ginfo->section = idx;
1106 return;
1107 }
1108 }
1109
1110 /* If we didn't find the section, assume it is in the first
1111 section. If there is no allocated section, then it hardly
1112 matters what we pick, so just pick zero. */
1113 if (fallback == -1)
1114 ginfo->section = 0;
1115 else
1116 ginfo->section = fallback;
1117 }
1118 }
1119
1120 struct symbol *
1121 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1122 {
1123 CORE_ADDR addr;
1124
1125 if (!sym)
1126 return NULL;
1127
1128 /* We either have an OBJFILE, or we can get at it from the sym's
1129 symtab. Anything else is a bug. */
1130 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1131
1132 if (objfile == NULL)
1133 objfile = SYMBOL_SYMTAB (sym)->objfile;
1134
1135 if (SYMBOL_OBJ_SECTION (objfile, sym))
1136 return sym;
1137
1138 /* We should have an objfile by now. */
1139 gdb_assert (objfile);
1140
1141 switch (SYMBOL_CLASS (sym))
1142 {
1143 case LOC_STATIC:
1144 case LOC_LABEL:
1145 addr = SYMBOL_VALUE_ADDRESS (sym);
1146 break;
1147 case LOC_BLOCK:
1148 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1149 break;
1150
1151 default:
1152 /* Nothing else will be listed in the minsyms -- no use looking
1153 it up. */
1154 return sym;
1155 }
1156
1157 fixup_section (&sym->ginfo, addr, objfile);
1158
1159 return sym;
1160 }
1161
1162 /* Compute the demangled form of NAME as used by the various symbol
1163 lookup functions. The result is stored in *RESULT_NAME. Returns a
1164 cleanup which can be used to clean up the result.
1165
1166 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1167 Normally, Ada symbol lookups are performed using the encoded name
1168 rather than the demangled name, and so it might seem to make sense
1169 for this function to return an encoded version of NAME.
1170 Unfortunately, we cannot do this, because this function is used in
1171 circumstances where it is not appropriate to try to encode NAME.
1172 For instance, when displaying the frame info, we demangle the name
1173 of each parameter, and then perform a symbol lookup inside our
1174 function using that demangled name. In Ada, certain functions
1175 have internally-generated parameters whose name contain uppercase
1176 characters. Encoding those name would result in those uppercase
1177 characters to become lowercase, and thus cause the symbol lookup
1178 to fail. */
1179
1180 struct cleanup *
1181 demangle_for_lookup (const char *name, enum language lang,
1182 const char **result_name)
1183 {
1184 char *demangled_name = NULL;
1185 const char *modified_name = NULL;
1186 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1187
1188 modified_name = name;
1189
1190 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1191 lookup, so we can always binary search. */
1192 if (lang == language_cplus)
1193 {
1194 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1195 if (demangled_name)
1196 {
1197 modified_name = demangled_name;
1198 make_cleanup (xfree, demangled_name);
1199 }
1200 else
1201 {
1202 /* If we were given a non-mangled name, canonicalize it
1203 according to the language (so far only for C++). */
1204 demangled_name = cp_canonicalize_string (name);
1205 if (demangled_name)
1206 {
1207 modified_name = demangled_name;
1208 make_cleanup (xfree, demangled_name);
1209 }
1210 }
1211 }
1212 else if (lang == language_java)
1213 {
1214 demangled_name = gdb_demangle (name,
1215 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1216 if (demangled_name)
1217 {
1218 modified_name = demangled_name;
1219 make_cleanup (xfree, demangled_name);
1220 }
1221 }
1222 else if (lang == language_d)
1223 {
1224 demangled_name = d_demangle (name, 0);
1225 if (demangled_name)
1226 {
1227 modified_name = demangled_name;
1228 make_cleanup (xfree, demangled_name);
1229 }
1230 }
1231 else if (lang == language_go)
1232 {
1233 demangled_name = go_demangle (name, 0);
1234 if (demangled_name)
1235 {
1236 modified_name = demangled_name;
1237 make_cleanup (xfree, demangled_name);
1238 }
1239 }
1240
1241 *result_name = modified_name;
1242 return cleanup;
1243 }
1244
1245 /* Find the definition for a specified symbol name NAME
1246 in domain DOMAIN, visible from lexical block BLOCK.
1247 Returns the struct symbol pointer, or zero if no symbol is found.
1248 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1249 NAME is a field of the current implied argument `this'. If so set
1250 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1251 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1252 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1253
1254 /* This function (or rather its subordinates) have a bunch of loops and
1255 it would seem to be attractive to put in some QUIT's (though I'm not really
1256 sure whether it can run long enough to be really important). But there
1257 are a few calls for which it would appear to be bad news to quit
1258 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1259 that there is C++ code below which can error(), but that probably
1260 doesn't affect these calls since they are looking for a known
1261 variable and thus can probably assume it will never hit the C++
1262 code). */
1263
1264 struct symbol *
1265 lookup_symbol_in_language (const char *name, const struct block *block,
1266 const domain_enum domain, enum language lang,
1267 struct field_of_this_result *is_a_field_of_this)
1268 {
1269 const char *modified_name;
1270 struct symbol *returnval;
1271 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1272
1273 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1274 is_a_field_of_this);
1275 do_cleanups (cleanup);
1276
1277 return returnval;
1278 }
1279
1280 /* Behave like lookup_symbol_in_language, but performed with the
1281 current language. */
1282
1283 struct symbol *
1284 lookup_symbol (const char *name, const struct block *block,
1285 domain_enum domain,
1286 struct field_of_this_result *is_a_field_of_this)
1287 {
1288 return lookup_symbol_in_language (name, block, domain,
1289 current_language->la_language,
1290 is_a_field_of_this);
1291 }
1292
1293 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1294 found, or NULL if not found. */
1295
1296 struct symbol *
1297 lookup_language_this (const struct language_defn *lang,
1298 const struct block *block)
1299 {
1300 if (lang->la_name_of_this == NULL || block == NULL)
1301 return NULL;
1302
1303 while (block)
1304 {
1305 struct symbol *sym;
1306
1307 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1308 if (sym != NULL)
1309 {
1310 block_found = block;
1311 return sym;
1312 }
1313 if (BLOCK_FUNCTION (block))
1314 break;
1315 block = BLOCK_SUPERBLOCK (block);
1316 }
1317
1318 return NULL;
1319 }
1320
1321 /* Given TYPE, a structure/union,
1322 return 1 if the component named NAME from the ultimate target
1323 structure/union is defined, otherwise, return 0. */
1324
1325 static int
1326 check_field (struct type *type, const char *name,
1327 struct field_of_this_result *is_a_field_of_this)
1328 {
1329 int i;
1330
1331 /* The type may be a stub. */
1332 CHECK_TYPEDEF (type);
1333
1334 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1335 {
1336 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1337
1338 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1339 {
1340 is_a_field_of_this->type = type;
1341 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1342 return 1;
1343 }
1344 }
1345
1346 /* C++: If it was not found as a data field, then try to return it
1347 as a pointer to a method. */
1348
1349 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1350 {
1351 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1352 {
1353 is_a_field_of_this->type = type;
1354 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1355 return 1;
1356 }
1357 }
1358
1359 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1360 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1361 return 1;
1362
1363 return 0;
1364 }
1365
1366 /* Behave like lookup_symbol except that NAME is the natural name
1367 (e.g., demangled name) of the symbol that we're looking for. */
1368
1369 static struct symbol *
1370 lookup_symbol_aux (const char *name, const struct block *block,
1371 const domain_enum domain, enum language language,
1372 struct field_of_this_result *is_a_field_of_this)
1373 {
1374 struct symbol *sym;
1375 const struct language_defn *langdef;
1376
1377 /* Make sure we do something sensible with is_a_field_of_this, since
1378 the callers that set this parameter to some non-null value will
1379 certainly use it later. If we don't set it, the contents of
1380 is_a_field_of_this are undefined. */
1381 if (is_a_field_of_this != NULL)
1382 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1383
1384 /* Search specified block and its superiors. Don't search
1385 STATIC_BLOCK or GLOBAL_BLOCK. */
1386
1387 sym = lookup_symbol_aux_local (name, block, domain, language);
1388 if (sym != NULL)
1389 return sym;
1390
1391 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1392 check to see if NAME is a field of `this'. */
1393
1394 langdef = language_def (language);
1395
1396 /* Don't do this check if we are searching for a struct. It will
1397 not be found by check_field, but will be found by other
1398 means. */
1399 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1400 {
1401 struct symbol *sym = lookup_language_this (langdef, block);
1402
1403 if (sym)
1404 {
1405 struct type *t = sym->type;
1406
1407 /* I'm not really sure that type of this can ever
1408 be typedefed; just be safe. */
1409 CHECK_TYPEDEF (t);
1410 if (TYPE_CODE (t) == TYPE_CODE_PTR
1411 || TYPE_CODE (t) == TYPE_CODE_REF)
1412 t = TYPE_TARGET_TYPE (t);
1413
1414 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1415 && TYPE_CODE (t) != TYPE_CODE_UNION)
1416 error (_("Internal error: `%s' is not an aggregate"),
1417 langdef->la_name_of_this);
1418
1419 if (check_field (t, name, is_a_field_of_this))
1420 return NULL;
1421 }
1422 }
1423
1424 /* Now do whatever is appropriate for LANGUAGE to look
1425 up static and global variables. */
1426
1427 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1428 if (sym != NULL)
1429 return sym;
1430
1431 /* Now search all static file-level symbols. Not strictly correct,
1432 but more useful than an error. */
1433
1434 return lookup_static_symbol_aux (name, domain);
1435 }
1436
1437 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1438 first, then check the psymtabs. If a psymtab indicates the existence of the
1439 desired name as a file-level static, then do psymtab-to-symtab conversion on
1440 the fly and return the found symbol. */
1441
1442 struct symbol *
1443 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1444 {
1445 struct objfile *objfile;
1446 struct symbol *sym;
1447
1448 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1449 if (sym != NULL)
1450 return sym;
1451
1452 ALL_OBJFILES (objfile)
1453 {
1454 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1455 if (sym != NULL)
1456 return sym;
1457 }
1458
1459 return NULL;
1460 }
1461
1462 /* Check to see if the symbol is defined in BLOCK or its superiors.
1463 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1464
1465 static struct symbol *
1466 lookup_symbol_aux_local (const char *name, const struct block *block,
1467 const domain_enum domain,
1468 enum language language)
1469 {
1470 struct symbol *sym;
1471 const struct block *static_block = block_static_block (block);
1472 const char *scope = block_scope (block);
1473
1474 /* Check if either no block is specified or it's a global block. */
1475
1476 if (static_block == NULL)
1477 return NULL;
1478
1479 while (block != static_block)
1480 {
1481 sym = lookup_symbol_aux_block (name, block, domain);
1482 if (sym != NULL)
1483 return sym;
1484
1485 if (language == language_cplus || language == language_fortran)
1486 {
1487 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1488 domain);
1489 if (sym != NULL)
1490 return sym;
1491 }
1492
1493 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1494 break;
1495 block = BLOCK_SUPERBLOCK (block);
1496 }
1497
1498 /* We've reached the edge of the function without finding a result. */
1499
1500 return NULL;
1501 }
1502
1503 /* Look up OBJFILE to BLOCK. */
1504
1505 struct objfile *
1506 lookup_objfile_from_block (const struct block *block)
1507 {
1508 struct objfile *obj;
1509 struct symtab *s;
1510
1511 if (block == NULL)
1512 return NULL;
1513
1514 block = block_global_block (block);
1515 /* Go through SYMTABS. */
1516 ALL_SYMTABS (obj, s)
1517 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1518 {
1519 if (obj->separate_debug_objfile_backlink)
1520 obj = obj->separate_debug_objfile_backlink;
1521
1522 return obj;
1523 }
1524
1525 return NULL;
1526 }
1527
1528 /* Look up a symbol in a block; if found, fixup the symbol, and set
1529 block_found appropriately. */
1530
1531 struct symbol *
1532 lookup_symbol_aux_block (const char *name, const struct block *block,
1533 const domain_enum domain)
1534 {
1535 struct symbol *sym;
1536
1537 sym = lookup_block_symbol (block, name, domain);
1538 if (sym)
1539 {
1540 block_found = block;
1541 return fixup_symbol_section (sym, NULL);
1542 }
1543
1544 return NULL;
1545 }
1546
1547 /* Check all global symbols in OBJFILE in symtabs and
1548 psymtabs. */
1549
1550 struct symbol *
1551 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1552 const char *name,
1553 const domain_enum domain)
1554 {
1555 const struct objfile *objfile;
1556 struct symbol *sym;
1557 struct blockvector *bv;
1558 const struct block *block;
1559 struct symtab *s;
1560
1561 for (objfile = main_objfile;
1562 objfile;
1563 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1564 {
1565 /* Go through symtabs. */
1566 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1567 {
1568 bv = BLOCKVECTOR (s);
1569 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1570 sym = lookup_block_symbol (block, name, domain);
1571 if (sym)
1572 {
1573 block_found = block;
1574 return fixup_symbol_section (sym, (struct objfile *)objfile);
1575 }
1576 }
1577
1578 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1579 name, domain);
1580 if (sym)
1581 return sym;
1582 }
1583
1584 return NULL;
1585 }
1586
1587 /* Check to see if the symbol is defined in one of the OBJFILE's
1588 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1589 depending on whether or not we want to search global symbols or
1590 static symbols. */
1591
1592 static struct symbol *
1593 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1594 const char *name, const domain_enum domain)
1595 {
1596 struct symbol *sym = NULL;
1597 struct blockvector *bv;
1598 const struct block *block;
1599 struct symtab *s;
1600
1601 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1602 {
1603 bv = BLOCKVECTOR (s);
1604 block = BLOCKVECTOR_BLOCK (bv, block_index);
1605 sym = lookup_block_symbol (block, name, domain);
1606 if (sym)
1607 {
1608 block_found = block;
1609 return fixup_symbol_section (sym, objfile);
1610 }
1611 }
1612
1613 return NULL;
1614 }
1615
1616 /* Same as lookup_symbol_aux_objfile, except that it searches all
1617 objfiles. Return the first match found. */
1618
1619 static struct symbol *
1620 lookup_symbol_aux_symtabs (int block_index, const char *name,
1621 const domain_enum domain)
1622 {
1623 struct symbol *sym;
1624 struct objfile *objfile;
1625
1626 ALL_OBJFILES (objfile)
1627 {
1628 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1629 if (sym)
1630 return sym;
1631 }
1632
1633 return NULL;
1634 }
1635
1636 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1637 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1638 and all related objfiles. */
1639
1640 static struct symbol *
1641 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1642 const char *linkage_name,
1643 domain_enum domain)
1644 {
1645 enum language lang = current_language->la_language;
1646 const char *modified_name;
1647 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1648 &modified_name);
1649 struct objfile *main_objfile, *cur_objfile;
1650
1651 if (objfile->separate_debug_objfile_backlink)
1652 main_objfile = objfile->separate_debug_objfile_backlink;
1653 else
1654 main_objfile = objfile;
1655
1656 for (cur_objfile = main_objfile;
1657 cur_objfile;
1658 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1659 {
1660 struct symbol *sym;
1661
1662 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1663 modified_name, domain);
1664 if (sym == NULL)
1665 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1666 modified_name, domain);
1667 if (sym != NULL)
1668 {
1669 do_cleanups (cleanup);
1670 return sym;
1671 }
1672 }
1673
1674 do_cleanups (cleanup);
1675 return NULL;
1676 }
1677
1678 /* A helper function that throws an exception when a symbol was found
1679 in a psymtab but not in a symtab. */
1680
1681 static void ATTRIBUTE_NORETURN
1682 error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab)
1683 {
1684 error (_("\
1685 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1686 %s may be an inlined function, or may be a template function\n \
1687 (if a template, try specifying an instantiation: %s<type>)."),
1688 kind == GLOBAL_BLOCK ? "global" : "static",
1689 name, symtab_to_filename_for_display (symtab), name, name);
1690 }
1691
1692 /* A helper function for lookup_symbol_aux that interfaces with the
1693 "quick" symbol table functions. */
1694
1695 static struct symbol *
1696 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1697 const char *name, const domain_enum domain)
1698 {
1699 struct symtab *symtab;
1700 struct blockvector *bv;
1701 const struct block *block;
1702 struct symbol *sym;
1703
1704 if (!objfile->sf)
1705 return NULL;
1706 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1707 if (!symtab)
1708 return NULL;
1709
1710 bv = BLOCKVECTOR (symtab);
1711 block = BLOCKVECTOR_BLOCK (bv, kind);
1712 sym = lookup_block_symbol (block, name, domain);
1713 if (!sym)
1714 error_in_psymtab_expansion (kind, name, symtab);
1715 return fixup_symbol_section (sym, objfile);
1716 }
1717
1718 /* A default version of lookup_symbol_nonlocal for use by languages
1719 that can't think of anything better to do. This implements the C
1720 lookup rules. */
1721
1722 struct symbol *
1723 basic_lookup_symbol_nonlocal (const char *name,
1724 const struct block *block,
1725 const domain_enum domain)
1726 {
1727 struct symbol *sym;
1728
1729 /* NOTE: carlton/2003-05-19: The comments below were written when
1730 this (or what turned into this) was part of lookup_symbol_aux;
1731 I'm much less worried about these questions now, since these
1732 decisions have turned out well, but I leave these comments here
1733 for posterity. */
1734
1735 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1736 not it would be appropriate to search the current global block
1737 here as well. (That's what this code used to do before the
1738 is_a_field_of_this check was moved up.) On the one hand, it's
1739 redundant with the lookup_symbol_aux_symtabs search that happens
1740 next. On the other hand, if decode_line_1 is passed an argument
1741 like filename:var, then the user presumably wants 'var' to be
1742 searched for in filename. On the third hand, there shouldn't be
1743 multiple global variables all of which are named 'var', and it's
1744 not like decode_line_1 has ever restricted its search to only
1745 global variables in a single filename. All in all, only
1746 searching the static block here seems best: it's correct and it's
1747 cleanest. */
1748
1749 /* NOTE: carlton/2002-12-05: There's also a possible performance
1750 issue here: if you usually search for global symbols in the
1751 current file, then it would be slightly better to search the
1752 current global block before searching all the symtabs. But there
1753 are other factors that have a much greater effect on performance
1754 than that one, so I don't think we should worry about that for
1755 now. */
1756
1757 sym = lookup_symbol_static (name, block, domain);
1758 if (sym != NULL)
1759 return sym;
1760
1761 return lookup_symbol_global (name, block, domain);
1762 }
1763
1764 /* Lookup a symbol in the static block associated to BLOCK, if there
1765 is one; do nothing if BLOCK is NULL or a global block. */
1766
1767 struct symbol *
1768 lookup_symbol_static (const char *name,
1769 const struct block *block,
1770 const domain_enum domain)
1771 {
1772 const struct block *static_block = block_static_block (block);
1773
1774 if (static_block != NULL)
1775 return lookup_symbol_aux_block (name, static_block, domain);
1776 else
1777 return NULL;
1778 }
1779
1780 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1781
1782 struct global_sym_lookup_data
1783 {
1784 /* The name of the symbol we are searching for. */
1785 const char *name;
1786
1787 /* The domain to use for our search. */
1788 domain_enum domain;
1789
1790 /* The field where the callback should store the symbol if found.
1791 It should be initialized to NULL before the search is started. */
1792 struct symbol *result;
1793 };
1794
1795 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1796 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1797 OBJFILE. The arguments for the search are passed via CB_DATA,
1798 which in reality is a pointer to struct global_sym_lookup_data. */
1799
1800 static int
1801 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1802 void *cb_data)
1803 {
1804 struct global_sym_lookup_data *data =
1805 (struct global_sym_lookup_data *) cb_data;
1806
1807 gdb_assert (data->result == NULL);
1808
1809 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1810 data->name, data->domain);
1811 if (data->result == NULL)
1812 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1813 data->name, data->domain);
1814
1815 /* If we found a match, tell the iterator to stop. Otherwise,
1816 keep going. */
1817 return (data->result != NULL);
1818 }
1819
1820 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1821 necessary). */
1822
1823 struct symbol *
1824 lookup_symbol_global (const char *name,
1825 const struct block *block,
1826 const domain_enum domain)
1827 {
1828 struct symbol *sym = NULL;
1829 struct objfile *objfile = NULL;
1830 struct global_sym_lookup_data lookup_data;
1831
1832 /* Call library-specific lookup procedure. */
1833 objfile = lookup_objfile_from_block (block);
1834 if (objfile != NULL)
1835 sym = solib_global_lookup (objfile, name, domain);
1836 if (sym != NULL)
1837 return sym;
1838
1839 memset (&lookup_data, 0, sizeof (lookup_data));
1840 lookup_data.name = name;
1841 lookup_data.domain = domain;
1842 gdbarch_iterate_over_objfiles_in_search_order
1843 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1844 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1845
1846 return lookup_data.result;
1847 }
1848
1849 int
1850 symbol_matches_domain (enum language symbol_language,
1851 domain_enum symbol_domain,
1852 domain_enum domain)
1853 {
1854 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1855 A Java class declaration also defines a typedef for the class.
1856 Similarly, any Ada type declaration implicitly defines a typedef. */
1857 if (symbol_language == language_cplus
1858 || symbol_language == language_d
1859 || symbol_language == language_java
1860 || symbol_language == language_ada)
1861 {
1862 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1863 && symbol_domain == STRUCT_DOMAIN)
1864 return 1;
1865 }
1866 /* For all other languages, strict match is required. */
1867 return (symbol_domain == domain);
1868 }
1869
1870 /* Look up a type named NAME in the struct_domain. The type returned
1871 must not be opaque -- i.e., must have at least one field
1872 defined. */
1873
1874 struct type *
1875 lookup_transparent_type (const char *name)
1876 {
1877 return current_language->la_lookup_transparent_type (name);
1878 }
1879
1880 /* A helper for basic_lookup_transparent_type that interfaces with the
1881 "quick" symbol table functions. */
1882
1883 static struct type *
1884 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1885 const char *name)
1886 {
1887 struct symtab *symtab;
1888 struct blockvector *bv;
1889 struct block *block;
1890 struct symbol *sym;
1891
1892 if (!objfile->sf)
1893 return NULL;
1894 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1895 if (!symtab)
1896 return NULL;
1897
1898 bv = BLOCKVECTOR (symtab);
1899 block = BLOCKVECTOR_BLOCK (bv, kind);
1900 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1901 if (!sym)
1902 error_in_psymtab_expansion (kind, name, symtab);
1903
1904 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1905 return SYMBOL_TYPE (sym);
1906
1907 return NULL;
1908 }
1909
1910 /* The standard implementation of lookup_transparent_type. This code
1911 was modeled on lookup_symbol -- the parts not relevant to looking
1912 up types were just left out. In particular it's assumed here that
1913 types are available in struct_domain and only at file-static or
1914 global blocks. */
1915
1916 struct type *
1917 basic_lookup_transparent_type (const char *name)
1918 {
1919 struct symbol *sym;
1920 struct symtab *s = NULL;
1921 struct blockvector *bv;
1922 struct objfile *objfile;
1923 struct block *block;
1924 struct type *t;
1925
1926 /* Now search all the global symbols. Do the symtab's first, then
1927 check the psymtab's. If a psymtab indicates the existence
1928 of the desired name as a global, then do psymtab-to-symtab
1929 conversion on the fly and return the found symbol. */
1930
1931 ALL_OBJFILES (objfile)
1932 {
1933 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1934 {
1935 bv = BLOCKVECTOR (s);
1936 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1937 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1938 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1939 {
1940 return SYMBOL_TYPE (sym);
1941 }
1942 }
1943 }
1944
1945 ALL_OBJFILES (objfile)
1946 {
1947 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1948 if (t)
1949 return t;
1950 }
1951
1952 /* Now search the static file-level symbols.
1953 Not strictly correct, but more useful than an error.
1954 Do the symtab's first, then
1955 check the psymtab's. If a psymtab indicates the existence
1956 of the desired name as a file-level static, then do psymtab-to-symtab
1957 conversion on the fly and return the found symbol. */
1958
1959 ALL_OBJFILES (objfile)
1960 {
1961 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1962 {
1963 bv = BLOCKVECTOR (s);
1964 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1965 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1966 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1967 {
1968 return SYMBOL_TYPE (sym);
1969 }
1970 }
1971 }
1972
1973 ALL_OBJFILES (objfile)
1974 {
1975 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1976 if (t)
1977 return t;
1978 }
1979
1980 return (struct type *) 0;
1981 }
1982
1983 /* Search BLOCK for symbol NAME in DOMAIN.
1984
1985 Note that if NAME is the demangled form of a C++ symbol, we will fail
1986 to find a match during the binary search of the non-encoded names, but
1987 for now we don't worry about the slight inefficiency of looking for
1988 a match we'll never find, since it will go pretty quick. Once the
1989 binary search terminates, we drop through and do a straight linear
1990 search on the symbols. Each symbol which is marked as being a ObjC/C++
1991 symbol (language_cplus or language_objc set) has both the encoded and
1992 non-encoded names tested for a match. */
1993
1994 struct symbol *
1995 lookup_block_symbol (const struct block *block, const char *name,
1996 const domain_enum domain)
1997 {
1998 struct block_iterator iter;
1999 struct symbol *sym;
2000
2001 if (!BLOCK_FUNCTION (block))
2002 {
2003 for (sym = block_iter_name_first (block, name, &iter);
2004 sym != NULL;
2005 sym = block_iter_name_next (name, &iter))
2006 {
2007 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2008 SYMBOL_DOMAIN (sym), domain))
2009 return sym;
2010 }
2011 return NULL;
2012 }
2013 else
2014 {
2015 /* Note that parameter symbols do not always show up last in the
2016 list; this loop makes sure to take anything else other than
2017 parameter symbols first; it only uses parameter symbols as a
2018 last resort. Note that this only takes up extra computation
2019 time on a match. */
2020
2021 struct symbol *sym_found = NULL;
2022
2023 for (sym = block_iter_name_first (block, name, &iter);
2024 sym != NULL;
2025 sym = block_iter_name_next (name, &iter))
2026 {
2027 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2028 SYMBOL_DOMAIN (sym), domain))
2029 {
2030 sym_found = sym;
2031 if (!SYMBOL_IS_ARGUMENT (sym))
2032 {
2033 break;
2034 }
2035 }
2036 }
2037 return (sym_found); /* Will be NULL if not found. */
2038 }
2039 }
2040
2041 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2042
2043 For each symbol that matches, CALLBACK is called. The symbol and
2044 DATA are passed to the callback.
2045
2046 If CALLBACK returns zero, the iteration ends. Otherwise, the
2047 search continues. */
2048
2049 void
2050 iterate_over_symbols (const struct block *block, const char *name,
2051 const domain_enum domain,
2052 symbol_found_callback_ftype *callback,
2053 void *data)
2054 {
2055 struct block_iterator iter;
2056 struct symbol *sym;
2057
2058 for (sym = block_iter_name_first (block, name, &iter);
2059 sym != NULL;
2060 sym = block_iter_name_next (name, &iter))
2061 {
2062 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2063 SYMBOL_DOMAIN (sym), domain))
2064 {
2065 if (!callback (sym, data))
2066 return;
2067 }
2068 }
2069 }
2070
2071 /* Find the symtab associated with PC and SECTION. Look through the
2072 psymtabs and read in another symtab if necessary. */
2073
2074 struct symtab *
2075 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2076 {
2077 struct block *b;
2078 struct blockvector *bv;
2079 struct symtab *s = NULL;
2080 struct symtab *best_s = NULL;
2081 struct objfile *objfile;
2082 CORE_ADDR distance = 0;
2083 struct minimal_symbol *msymbol;
2084
2085 /* If we know that this is not a text address, return failure. This is
2086 necessary because we loop based on the block's high and low code
2087 addresses, which do not include the data ranges, and because
2088 we call find_pc_sect_psymtab which has a similar restriction based
2089 on the partial_symtab's texthigh and textlow. */
2090 msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym;
2091 if (msymbol
2092 && (MSYMBOL_TYPE (msymbol) == mst_data
2093 || MSYMBOL_TYPE (msymbol) == mst_bss
2094 || MSYMBOL_TYPE (msymbol) == mst_abs
2095 || MSYMBOL_TYPE (msymbol) == mst_file_data
2096 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2097 return NULL;
2098
2099 /* Search all symtabs for the one whose file contains our address, and which
2100 is the smallest of all the ones containing the address. This is designed
2101 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2102 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2103 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2104
2105 This happens for native ecoff format, where code from included files
2106 gets its own symtab. The symtab for the included file should have
2107 been read in already via the dependency mechanism.
2108 It might be swifter to create several symtabs with the same name
2109 like xcoff does (I'm not sure).
2110
2111 It also happens for objfiles that have their functions reordered.
2112 For these, the symtab we are looking for is not necessarily read in. */
2113
2114 ALL_PRIMARY_SYMTABS (objfile, s)
2115 {
2116 bv = BLOCKVECTOR (s);
2117 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2118
2119 if (BLOCK_START (b) <= pc
2120 && BLOCK_END (b) > pc
2121 && (distance == 0
2122 || BLOCK_END (b) - BLOCK_START (b) < distance))
2123 {
2124 /* For an objfile that has its functions reordered,
2125 find_pc_psymtab will find the proper partial symbol table
2126 and we simply return its corresponding symtab. */
2127 /* In order to better support objfiles that contain both
2128 stabs and coff debugging info, we continue on if a psymtab
2129 can't be found. */
2130 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2131 {
2132 struct symtab *result;
2133
2134 result
2135 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2136 msymbol,
2137 pc, section,
2138 0);
2139 if (result)
2140 return result;
2141 }
2142 if (section != 0)
2143 {
2144 struct block_iterator iter;
2145 struct symbol *sym = NULL;
2146
2147 ALL_BLOCK_SYMBOLS (b, iter, sym)
2148 {
2149 fixup_symbol_section (sym, objfile);
2150 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2151 section))
2152 break;
2153 }
2154 if (sym == NULL)
2155 continue; /* No symbol in this symtab matches
2156 section. */
2157 }
2158 distance = BLOCK_END (b) - BLOCK_START (b);
2159 best_s = s;
2160 }
2161 }
2162
2163 if (best_s != NULL)
2164 return (best_s);
2165
2166 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2167
2168 ALL_OBJFILES (objfile)
2169 {
2170 struct symtab *result;
2171
2172 if (!objfile->sf)
2173 continue;
2174 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2175 msymbol,
2176 pc, section,
2177 1);
2178 if (result)
2179 return result;
2180 }
2181
2182 return NULL;
2183 }
2184
2185 /* Find the symtab associated with PC. Look through the psymtabs and read
2186 in another symtab if necessary. Backward compatibility, no section. */
2187
2188 struct symtab *
2189 find_pc_symtab (CORE_ADDR pc)
2190 {
2191 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2192 }
2193 \f
2194
2195 /* Find the source file and line number for a given PC value and SECTION.
2196 Return a structure containing a symtab pointer, a line number,
2197 and a pc range for the entire source line.
2198 The value's .pc field is NOT the specified pc.
2199 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2200 use the line that ends there. Otherwise, in that case, the line
2201 that begins there is used. */
2202
2203 /* The big complication here is that a line may start in one file, and end just
2204 before the start of another file. This usually occurs when you #include
2205 code in the middle of a subroutine. To properly find the end of a line's PC
2206 range, we must search all symtabs associated with this compilation unit, and
2207 find the one whose first PC is closer than that of the next line in this
2208 symtab. */
2209
2210 /* If it's worth the effort, we could be using a binary search. */
2211
2212 struct symtab_and_line
2213 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2214 {
2215 struct symtab *s;
2216 struct linetable *l;
2217 int len;
2218 int i;
2219 struct linetable_entry *item;
2220 struct symtab_and_line val;
2221 struct blockvector *bv;
2222 struct bound_minimal_symbol msymbol;
2223 struct minimal_symbol *mfunsym;
2224 struct objfile *objfile;
2225
2226 /* Info on best line seen so far, and where it starts, and its file. */
2227
2228 struct linetable_entry *best = NULL;
2229 CORE_ADDR best_end = 0;
2230 struct symtab *best_symtab = 0;
2231
2232 /* Store here the first line number
2233 of a file which contains the line at the smallest pc after PC.
2234 If we don't find a line whose range contains PC,
2235 we will use a line one less than this,
2236 with a range from the start of that file to the first line's pc. */
2237 struct linetable_entry *alt = NULL;
2238
2239 /* Info on best line seen in this file. */
2240
2241 struct linetable_entry *prev;
2242
2243 /* If this pc is not from the current frame,
2244 it is the address of the end of a call instruction.
2245 Quite likely that is the start of the following statement.
2246 But what we want is the statement containing the instruction.
2247 Fudge the pc to make sure we get that. */
2248
2249 init_sal (&val); /* initialize to zeroes */
2250
2251 val.pspace = current_program_space;
2252
2253 /* It's tempting to assume that, if we can't find debugging info for
2254 any function enclosing PC, that we shouldn't search for line
2255 number info, either. However, GAS can emit line number info for
2256 assembly files --- very helpful when debugging hand-written
2257 assembly code. In such a case, we'd have no debug info for the
2258 function, but we would have line info. */
2259
2260 if (notcurrent)
2261 pc -= 1;
2262
2263 /* elz: added this because this function returned the wrong
2264 information if the pc belongs to a stub (import/export)
2265 to call a shlib function. This stub would be anywhere between
2266 two functions in the target, and the line info was erroneously
2267 taken to be the one of the line before the pc. */
2268
2269 /* RT: Further explanation:
2270
2271 * We have stubs (trampolines) inserted between procedures.
2272 *
2273 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2274 * exists in the main image.
2275 *
2276 * In the minimal symbol table, we have a bunch of symbols
2277 * sorted by start address. The stubs are marked as "trampoline",
2278 * the others appear as text. E.g.:
2279 *
2280 * Minimal symbol table for main image
2281 * main: code for main (text symbol)
2282 * shr1: stub (trampoline symbol)
2283 * foo: code for foo (text symbol)
2284 * ...
2285 * Minimal symbol table for "shr1" image:
2286 * ...
2287 * shr1: code for shr1 (text symbol)
2288 * ...
2289 *
2290 * So the code below is trying to detect if we are in the stub
2291 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2292 * and if found, do the symbolization from the real-code address
2293 * rather than the stub address.
2294 *
2295 * Assumptions being made about the minimal symbol table:
2296 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2297 * if we're really in the trampoline.s If we're beyond it (say
2298 * we're in "foo" in the above example), it'll have a closer
2299 * symbol (the "foo" text symbol for example) and will not
2300 * return the trampoline.
2301 * 2. lookup_minimal_symbol_text() will find a real text symbol
2302 * corresponding to the trampoline, and whose address will
2303 * be different than the trampoline address. I put in a sanity
2304 * check for the address being the same, to avoid an
2305 * infinite recursion.
2306 */
2307 msymbol = lookup_minimal_symbol_by_pc (pc);
2308 if (msymbol.minsym != NULL)
2309 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2310 {
2311 mfunsym
2312 = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol.minsym),
2313 NULL);
2314 if (mfunsym == NULL)
2315 /* I eliminated this warning since it is coming out
2316 * in the following situation:
2317 * gdb shmain // test program with shared libraries
2318 * (gdb) break shr1 // function in shared lib
2319 * Warning: In stub for ...
2320 * In the above situation, the shared lib is not loaded yet,
2321 * so of course we can't find the real func/line info,
2322 * but the "break" still works, and the warning is annoying.
2323 * So I commented out the warning. RT */
2324 /* warning ("In stub for %s; unable to find real function/line info",
2325 SYMBOL_LINKAGE_NAME (msymbol)); */
2326 ;
2327 /* fall through */
2328 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2329 == SYMBOL_VALUE_ADDRESS (msymbol.minsym))
2330 /* Avoid infinite recursion */
2331 /* See above comment about why warning is commented out. */
2332 /* warning ("In stub for %s; unable to find real function/line info",
2333 SYMBOL_LINKAGE_NAME (msymbol)); */
2334 ;
2335 /* fall through */
2336 else
2337 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2338 }
2339
2340
2341 s = find_pc_sect_symtab (pc, section);
2342 if (!s)
2343 {
2344 /* If no symbol information, return previous pc. */
2345 if (notcurrent)
2346 pc++;
2347 val.pc = pc;
2348 return val;
2349 }
2350
2351 bv = BLOCKVECTOR (s);
2352 objfile = s->objfile;
2353
2354 /* Look at all the symtabs that share this blockvector.
2355 They all have the same apriori range, that we found was right;
2356 but they have different line tables. */
2357
2358 ALL_OBJFILE_SYMTABS (objfile, s)
2359 {
2360 if (BLOCKVECTOR (s) != bv)
2361 continue;
2362
2363 /* Find the best line in this symtab. */
2364 l = LINETABLE (s);
2365 if (!l)
2366 continue;
2367 len = l->nitems;
2368 if (len <= 0)
2369 {
2370 /* I think len can be zero if the symtab lacks line numbers
2371 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2372 I'm not sure which, and maybe it depends on the symbol
2373 reader). */
2374 continue;
2375 }
2376
2377 prev = NULL;
2378 item = l->item; /* Get first line info. */
2379
2380 /* Is this file's first line closer than the first lines of other files?
2381 If so, record this file, and its first line, as best alternate. */
2382 if (item->pc > pc && (!alt || item->pc < alt->pc))
2383 alt = item;
2384
2385 for (i = 0; i < len; i++, item++)
2386 {
2387 /* Leave prev pointing to the linetable entry for the last line
2388 that started at or before PC. */
2389 if (item->pc > pc)
2390 break;
2391
2392 prev = item;
2393 }
2394
2395 /* At this point, prev points at the line whose start addr is <= pc, and
2396 item points at the next line. If we ran off the end of the linetable
2397 (pc >= start of the last line), then prev == item. If pc < start of
2398 the first line, prev will not be set. */
2399
2400 /* Is this file's best line closer than the best in the other files?
2401 If so, record this file, and its best line, as best so far. Don't
2402 save prev if it represents the end of a function (i.e. line number
2403 0) instead of a real line. */
2404
2405 if (prev && prev->line && (!best || prev->pc > best->pc))
2406 {
2407 best = prev;
2408 best_symtab = s;
2409
2410 /* Discard BEST_END if it's before the PC of the current BEST. */
2411 if (best_end <= best->pc)
2412 best_end = 0;
2413 }
2414
2415 /* If another line (denoted by ITEM) is in the linetable and its
2416 PC is after BEST's PC, but before the current BEST_END, then
2417 use ITEM's PC as the new best_end. */
2418 if (best && i < len && item->pc > best->pc
2419 && (best_end == 0 || best_end > item->pc))
2420 best_end = item->pc;
2421 }
2422
2423 if (!best_symtab)
2424 {
2425 /* If we didn't find any line number info, just return zeros.
2426 We used to return alt->line - 1 here, but that could be
2427 anywhere; if we don't have line number info for this PC,
2428 don't make some up. */
2429 val.pc = pc;
2430 }
2431 else if (best->line == 0)
2432 {
2433 /* If our best fit is in a range of PC's for which no line
2434 number info is available (line number is zero) then we didn't
2435 find any valid line information. */
2436 val.pc = pc;
2437 }
2438 else
2439 {
2440 val.symtab = best_symtab;
2441 val.line = best->line;
2442 val.pc = best->pc;
2443 if (best_end && (!alt || best_end < alt->pc))
2444 val.end = best_end;
2445 else if (alt)
2446 val.end = alt->pc;
2447 else
2448 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2449 }
2450 val.section = section;
2451 return val;
2452 }
2453
2454 /* Backward compatibility (no section). */
2455
2456 struct symtab_and_line
2457 find_pc_line (CORE_ADDR pc, int notcurrent)
2458 {
2459 struct obj_section *section;
2460
2461 section = find_pc_overlay (pc);
2462 if (pc_in_unmapped_range (pc, section))
2463 pc = overlay_mapped_address (pc, section);
2464 return find_pc_sect_line (pc, section, notcurrent);
2465 }
2466 \f
2467 /* Find line number LINE in any symtab whose name is the same as
2468 SYMTAB.
2469
2470 If found, return the symtab that contains the linetable in which it was
2471 found, set *INDEX to the index in the linetable of the best entry
2472 found, and set *EXACT_MATCH nonzero if the value returned is an
2473 exact match.
2474
2475 If not found, return NULL. */
2476
2477 struct symtab *
2478 find_line_symtab (struct symtab *symtab, int line,
2479 int *index, int *exact_match)
2480 {
2481 int exact = 0; /* Initialized here to avoid a compiler warning. */
2482
2483 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2484 so far seen. */
2485
2486 int best_index;
2487 struct linetable *best_linetable;
2488 struct symtab *best_symtab;
2489
2490 /* First try looking it up in the given symtab. */
2491 best_linetable = LINETABLE (symtab);
2492 best_symtab = symtab;
2493 best_index = find_line_common (best_linetable, line, &exact, 0);
2494 if (best_index < 0 || !exact)
2495 {
2496 /* Didn't find an exact match. So we better keep looking for
2497 another symtab with the same name. In the case of xcoff,
2498 multiple csects for one source file (produced by IBM's FORTRAN
2499 compiler) produce multiple symtabs (this is unavoidable
2500 assuming csects can be at arbitrary places in memory and that
2501 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2502
2503 /* BEST is the smallest linenumber > LINE so far seen,
2504 or 0 if none has been seen so far.
2505 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2506 int best;
2507
2508 struct objfile *objfile;
2509 struct symtab *s;
2510
2511 if (best_index >= 0)
2512 best = best_linetable->item[best_index].line;
2513 else
2514 best = 0;
2515
2516 ALL_OBJFILES (objfile)
2517 {
2518 if (objfile->sf)
2519 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2520 symtab_to_fullname (symtab));
2521 }
2522
2523 ALL_SYMTABS (objfile, s)
2524 {
2525 struct linetable *l;
2526 int ind;
2527
2528 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2529 continue;
2530 if (FILENAME_CMP (symtab_to_fullname (symtab),
2531 symtab_to_fullname (s)) != 0)
2532 continue;
2533 l = LINETABLE (s);
2534 ind = find_line_common (l, line, &exact, 0);
2535 if (ind >= 0)
2536 {
2537 if (exact)
2538 {
2539 best_index = ind;
2540 best_linetable = l;
2541 best_symtab = s;
2542 goto done;
2543 }
2544 if (best == 0 || l->item[ind].line < best)
2545 {
2546 best = l->item[ind].line;
2547 best_index = ind;
2548 best_linetable = l;
2549 best_symtab = s;
2550 }
2551 }
2552 }
2553 }
2554 done:
2555 if (best_index < 0)
2556 return NULL;
2557
2558 if (index)
2559 *index = best_index;
2560 if (exact_match)
2561 *exact_match = exact;
2562
2563 return best_symtab;
2564 }
2565
2566 /* Given SYMTAB, returns all the PCs function in the symtab that
2567 exactly match LINE. Returns NULL if there are no exact matches,
2568 but updates BEST_ITEM in this case. */
2569
2570 VEC (CORE_ADDR) *
2571 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2572 struct linetable_entry **best_item)
2573 {
2574 int start = 0;
2575 VEC (CORE_ADDR) *result = NULL;
2576
2577 /* First, collect all the PCs that are at this line. */
2578 while (1)
2579 {
2580 int was_exact;
2581 int idx;
2582
2583 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2584 if (idx < 0)
2585 break;
2586
2587 if (!was_exact)
2588 {
2589 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2590
2591 if (*best_item == NULL || item->line < (*best_item)->line)
2592 *best_item = item;
2593
2594 break;
2595 }
2596
2597 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2598 start = idx + 1;
2599 }
2600
2601 return result;
2602 }
2603
2604 \f
2605 /* Set the PC value for a given source file and line number and return true.
2606 Returns zero for invalid line number (and sets the PC to 0).
2607 The source file is specified with a struct symtab. */
2608
2609 int
2610 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2611 {
2612 struct linetable *l;
2613 int ind;
2614
2615 *pc = 0;
2616 if (symtab == 0)
2617 return 0;
2618
2619 symtab = find_line_symtab (symtab, line, &ind, NULL);
2620 if (symtab != NULL)
2621 {
2622 l = LINETABLE (symtab);
2623 *pc = l->item[ind].pc;
2624 return 1;
2625 }
2626 else
2627 return 0;
2628 }
2629
2630 /* Find the range of pc values in a line.
2631 Store the starting pc of the line into *STARTPTR
2632 and the ending pc (start of next line) into *ENDPTR.
2633 Returns 1 to indicate success.
2634 Returns 0 if could not find the specified line. */
2635
2636 int
2637 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2638 CORE_ADDR *endptr)
2639 {
2640 CORE_ADDR startaddr;
2641 struct symtab_and_line found_sal;
2642
2643 startaddr = sal.pc;
2644 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2645 return 0;
2646
2647 /* This whole function is based on address. For example, if line 10 has
2648 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2649 "info line *0x123" should say the line goes from 0x100 to 0x200
2650 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2651 This also insures that we never give a range like "starts at 0x134
2652 and ends at 0x12c". */
2653
2654 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2655 if (found_sal.line != sal.line)
2656 {
2657 /* The specified line (sal) has zero bytes. */
2658 *startptr = found_sal.pc;
2659 *endptr = found_sal.pc;
2660 }
2661 else
2662 {
2663 *startptr = found_sal.pc;
2664 *endptr = found_sal.end;
2665 }
2666 return 1;
2667 }
2668
2669 /* Given a line table and a line number, return the index into the line
2670 table for the pc of the nearest line whose number is >= the specified one.
2671 Return -1 if none is found. The value is >= 0 if it is an index.
2672 START is the index at which to start searching the line table.
2673
2674 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2675
2676 static int
2677 find_line_common (struct linetable *l, int lineno,
2678 int *exact_match, int start)
2679 {
2680 int i;
2681 int len;
2682
2683 /* BEST is the smallest linenumber > LINENO so far seen,
2684 or 0 if none has been seen so far.
2685 BEST_INDEX identifies the item for it. */
2686
2687 int best_index = -1;
2688 int best = 0;
2689
2690 *exact_match = 0;
2691
2692 if (lineno <= 0)
2693 return -1;
2694 if (l == 0)
2695 return -1;
2696
2697 len = l->nitems;
2698 for (i = start; i < len; i++)
2699 {
2700 struct linetable_entry *item = &(l->item[i]);
2701
2702 if (item->line == lineno)
2703 {
2704 /* Return the first (lowest address) entry which matches. */
2705 *exact_match = 1;
2706 return i;
2707 }
2708
2709 if (item->line > lineno && (best == 0 || item->line < best))
2710 {
2711 best = item->line;
2712 best_index = i;
2713 }
2714 }
2715
2716 /* If we got here, we didn't get an exact match. */
2717 return best_index;
2718 }
2719
2720 int
2721 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2722 {
2723 struct symtab_and_line sal;
2724
2725 sal = find_pc_line (pc, 0);
2726 *startptr = sal.pc;
2727 *endptr = sal.end;
2728 return sal.symtab != 0;
2729 }
2730
2731 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2732 address for that function that has an entry in SYMTAB's line info
2733 table. If such an entry cannot be found, return FUNC_ADDR
2734 unaltered. */
2735
2736 static CORE_ADDR
2737 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2738 {
2739 CORE_ADDR func_start, func_end;
2740 struct linetable *l;
2741 int i;
2742
2743 /* Give up if this symbol has no lineinfo table. */
2744 l = LINETABLE (symtab);
2745 if (l == NULL)
2746 return func_addr;
2747
2748 /* Get the range for the function's PC values, or give up if we
2749 cannot, for some reason. */
2750 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2751 return func_addr;
2752
2753 /* Linetable entries are ordered by PC values, see the commentary in
2754 symtab.h where `struct linetable' is defined. Thus, the first
2755 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2756 address we are looking for. */
2757 for (i = 0; i < l->nitems; i++)
2758 {
2759 struct linetable_entry *item = &(l->item[i]);
2760
2761 /* Don't use line numbers of zero, they mark special entries in
2762 the table. See the commentary on symtab.h before the
2763 definition of struct linetable. */
2764 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2765 return item->pc;
2766 }
2767
2768 return func_addr;
2769 }
2770
2771 /* Given a function symbol SYM, find the symtab and line for the start
2772 of the function.
2773 If the argument FUNFIRSTLINE is nonzero, we want the first line
2774 of real code inside the function. */
2775
2776 struct symtab_and_line
2777 find_function_start_sal (struct symbol *sym, int funfirstline)
2778 {
2779 struct symtab_and_line sal;
2780
2781 fixup_symbol_section (sym, NULL);
2782 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2783 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2784
2785 /* We always should have a line for the function start address.
2786 If we don't, something is odd. Create a plain SAL refering
2787 just the PC and hope that skip_prologue_sal (if requested)
2788 can find a line number for after the prologue. */
2789 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2790 {
2791 init_sal (&sal);
2792 sal.pspace = current_program_space;
2793 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2794 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2795 }
2796
2797 if (funfirstline)
2798 skip_prologue_sal (&sal);
2799
2800 return sal;
2801 }
2802
2803 /* Adjust SAL to the first instruction past the function prologue.
2804 If the PC was explicitly specified, the SAL is not changed.
2805 If the line number was explicitly specified, at most the SAL's PC
2806 is updated. If SAL is already past the prologue, then do nothing. */
2807
2808 void
2809 skip_prologue_sal (struct symtab_and_line *sal)
2810 {
2811 struct symbol *sym;
2812 struct symtab_and_line start_sal;
2813 struct cleanup *old_chain;
2814 CORE_ADDR pc, saved_pc;
2815 struct obj_section *section;
2816 const char *name;
2817 struct objfile *objfile;
2818 struct gdbarch *gdbarch;
2819 struct block *b, *function_block;
2820 int force_skip, skip;
2821
2822 /* Do not change the SAL if PC was specified explicitly. */
2823 if (sal->explicit_pc)
2824 return;
2825
2826 old_chain = save_current_space_and_thread ();
2827 switch_to_program_space_and_thread (sal->pspace);
2828
2829 sym = find_pc_sect_function (sal->pc, sal->section);
2830 if (sym != NULL)
2831 {
2832 fixup_symbol_section (sym, NULL);
2833
2834 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2835 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2836 name = SYMBOL_LINKAGE_NAME (sym);
2837 objfile = SYMBOL_SYMTAB (sym)->objfile;
2838 }
2839 else
2840 {
2841 struct bound_minimal_symbol msymbol
2842 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2843
2844 if (msymbol.minsym == NULL)
2845 {
2846 do_cleanups (old_chain);
2847 return;
2848 }
2849
2850 objfile = msymbol.objfile;
2851 pc = SYMBOL_VALUE_ADDRESS (msymbol.minsym);
2852 section = SYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2853 name = SYMBOL_LINKAGE_NAME (msymbol.minsym);
2854 }
2855
2856 gdbarch = get_objfile_arch (objfile);
2857
2858 /* Process the prologue in two passes. In the first pass try to skip the
2859 prologue (SKIP is true) and verify there is a real need for it (indicated
2860 by FORCE_SKIP). If no such reason was found run a second pass where the
2861 prologue is not skipped (SKIP is false). */
2862
2863 skip = 1;
2864 force_skip = 1;
2865
2866 /* Be conservative - allow direct PC (without skipping prologue) only if we
2867 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2868 have to be set by the caller so we use SYM instead. */
2869 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2870 force_skip = 0;
2871
2872 saved_pc = pc;
2873 do
2874 {
2875 pc = saved_pc;
2876
2877 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2878 so that gdbarch_skip_prologue has something unique to work on. */
2879 if (section_is_overlay (section) && !section_is_mapped (section))
2880 pc = overlay_unmapped_address (pc, section);
2881
2882 /* Skip "first line" of function (which is actually its prologue). */
2883 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2884 if (skip)
2885 pc = gdbarch_skip_prologue (gdbarch, pc);
2886
2887 /* For overlays, map pc back into its mapped VMA range. */
2888 pc = overlay_mapped_address (pc, section);
2889
2890 /* Calculate line number. */
2891 start_sal = find_pc_sect_line (pc, section, 0);
2892
2893 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2894 line is still part of the same function. */
2895 if (skip && start_sal.pc != pc
2896 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2897 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2898 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2899 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2900 {
2901 /* First pc of next line */
2902 pc = start_sal.end;
2903 /* Recalculate the line number (might not be N+1). */
2904 start_sal = find_pc_sect_line (pc, section, 0);
2905 }
2906
2907 /* On targets with executable formats that don't have a concept of
2908 constructors (ELF with .init has, PE doesn't), gcc emits a call
2909 to `__main' in `main' between the prologue and before user
2910 code. */
2911 if (gdbarch_skip_main_prologue_p (gdbarch)
2912 && name && strcmp_iw (name, "main") == 0)
2913 {
2914 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2915 /* Recalculate the line number (might not be N+1). */
2916 start_sal = find_pc_sect_line (pc, section, 0);
2917 force_skip = 1;
2918 }
2919 }
2920 while (!force_skip && skip--);
2921
2922 /* If we still don't have a valid source line, try to find the first
2923 PC in the lineinfo table that belongs to the same function. This
2924 happens with COFF debug info, which does not seem to have an
2925 entry in lineinfo table for the code after the prologue which has
2926 no direct relation to source. For example, this was found to be
2927 the case with the DJGPP target using "gcc -gcoff" when the
2928 compiler inserted code after the prologue to make sure the stack
2929 is aligned. */
2930 if (!force_skip && sym && start_sal.symtab == NULL)
2931 {
2932 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2933 /* Recalculate the line number. */
2934 start_sal = find_pc_sect_line (pc, section, 0);
2935 }
2936
2937 do_cleanups (old_chain);
2938
2939 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2940 forward SAL to the end of the prologue. */
2941 if (sal->pc >= pc)
2942 return;
2943
2944 sal->pc = pc;
2945 sal->section = section;
2946
2947 /* Unless the explicit_line flag was set, update the SAL line
2948 and symtab to correspond to the modified PC location. */
2949 if (sal->explicit_line)
2950 return;
2951
2952 sal->symtab = start_sal.symtab;
2953 sal->line = start_sal.line;
2954 sal->end = start_sal.end;
2955
2956 /* Check if we are now inside an inlined function. If we can,
2957 use the call site of the function instead. */
2958 b = block_for_pc_sect (sal->pc, sal->section);
2959 function_block = NULL;
2960 while (b != NULL)
2961 {
2962 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2963 function_block = b;
2964 else if (BLOCK_FUNCTION (b) != NULL)
2965 break;
2966 b = BLOCK_SUPERBLOCK (b);
2967 }
2968 if (function_block != NULL
2969 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2970 {
2971 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2972 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2973 }
2974 }
2975
2976 /* If P is of the form "operator[ \t]+..." where `...' is
2977 some legitimate operator text, return a pointer to the
2978 beginning of the substring of the operator text.
2979 Otherwise, return "". */
2980
2981 static char *
2982 operator_chars (char *p, char **end)
2983 {
2984 *end = "";
2985 if (strncmp (p, "operator", 8))
2986 return *end;
2987 p += 8;
2988
2989 /* Don't get faked out by `operator' being part of a longer
2990 identifier. */
2991 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2992 return *end;
2993
2994 /* Allow some whitespace between `operator' and the operator symbol. */
2995 while (*p == ' ' || *p == '\t')
2996 p++;
2997
2998 /* Recognize 'operator TYPENAME'. */
2999
3000 if (isalpha (*p) || *p == '_' || *p == '$')
3001 {
3002 char *q = p + 1;
3003
3004 while (isalnum (*q) || *q == '_' || *q == '$')
3005 q++;
3006 *end = q;
3007 return p;
3008 }
3009
3010 while (*p)
3011 switch (*p)
3012 {
3013 case '\\': /* regexp quoting */
3014 if (p[1] == '*')
3015 {
3016 if (p[2] == '=') /* 'operator\*=' */
3017 *end = p + 3;
3018 else /* 'operator\*' */
3019 *end = p + 2;
3020 return p;
3021 }
3022 else if (p[1] == '[')
3023 {
3024 if (p[2] == ']')
3025 error (_("mismatched quoting on brackets, "
3026 "try 'operator\\[\\]'"));
3027 else if (p[2] == '\\' && p[3] == ']')
3028 {
3029 *end = p + 4; /* 'operator\[\]' */
3030 return p;
3031 }
3032 else
3033 error (_("nothing is allowed between '[' and ']'"));
3034 }
3035 else
3036 {
3037 /* Gratuitous qoute: skip it and move on. */
3038 p++;
3039 continue;
3040 }
3041 break;
3042 case '!':
3043 case '=':
3044 case '*':
3045 case '/':
3046 case '%':
3047 case '^':
3048 if (p[1] == '=')
3049 *end = p + 2;
3050 else
3051 *end = p + 1;
3052 return p;
3053 case '<':
3054 case '>':
3055 case '+':
3056 case '-':
3057 case '&':
3058 case '|':
3059 if (p[0] == '-' && p[1] == '>')
3060 {
3061 /* Struct pointer member operator 'operator->'. */
3062 if (p[2] == '*')
3063 {
3064 *end = p + 3; /* 'operator->*' */
3065 return p;
3066 }
3067 else if (p[2] == '\\')
3068 {
3069 *end = p + 4; /* Hopefully 'operator->\*' */
3070 return p;
3071 }
3072 else
3073 {
3074 *end = p + 2; /* 'operator->' */
3075 return p;
3076 }
3077 }
3078 if (p[1] == '=' || p[1] == p[0])
3079 *end = p + 2;
3080 else
3081 *end = p + 1;
3082 return p;
3083 case '~':
3084 case ',':
3085 *end = p + 1;
3086 return p;
3087 case '(':
3088 if (p[1] != ')')
3089 error (_("`operator ()' must be specified "
3090 "without whitespace in `()'"));
3091 *end = p + 2;
3092 return p;
3093 case '?':
3094 if (p[1] != ':')
3095 error (_("`operator ?:' must be specified "
3096 "without whitespace in `?:'"));
3097 *end = p + 2;
3098 return p;
3099 case '[':
3100 if (p[1] != ']')
3101 error (_("`operator []' must be specified "
3102 "without whitespace in `[]'"));
3103 *end = p + 2;
3104 return p;
3105 default:
3106 error (_("`operator %s' not supported"), p);
3107 break;
3108 }
3109
3110 *end = "";
3111 return *end;
3112 }
3113 \f
3114
3115 /* Cache to watch for file names already seen by filename_seen. */
3116
3117 struct filename_seen_cache
3118 {
3119 /* Table of files seen so far. */
3120 htab_t tab;
3121 /* Initial size of the table. It automagically grows from here. */
3122 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3123 };
3124
3125 /* filename_seen_cache constructor. */
3126
3127 static struct filename_seen_cache *
3128 create_filename_seen_cache (void)
3129 {
3130 struct filename_seen_cache *cache;
3131
3132 cache = XNEW (struct filename_seen_cache);
3133 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3134 filename_hash, filename_eq,
3135 NULL, xcalloc, xfree);
3136
3137 return cache;
3138 }
3139
3140 /* Empty the cache, but do not delete it. */
3141
3142 static void
3143 clear_filename_seen_cache (struct filename_seen_cache *cache)
3144 {
3145 htab_empty (cache->tab);
3146 }
3147
3148 /* filename_seen_cache destructor.
3149 This takes a void * argument as it is generally used as a cleanup. */
3150
3151 static void
3152 delete_filename_seen_cache (void *ptr)
3153 {
3154 struct filename_seen_cache *cache = ptr;
3155
3156 htab_delete (cache->tab);
3157 xfree (cache);
3158 }
3159
3160 /* If FILE is not already in the table of files in CACHE, return zero;
3161 otherwise return non-zero. Optionally add FILE to the table if ADD
3162 is non-zero.
3163
3164 NOTE: We don't manage space for FILE, we assume FILE lives as long
3165 as the caller needs. */
3166
3167 static int
3168 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3169 {
3170 void **slot;
3171
3172 /* Is FILE in tab? */
3173 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3174 if (*slot != NULL)
3175 return 1;
3176
3177 /* No; maybe add it to tab. */
3178 if (add)
3179 *slot = (char *) file;
3180
3181 return 0;
3182 }
3183
3184 /* Data structure to maintain printing state for output_source_filename. */
3185
3186 struct output_source_filename_data
3187 {
3188 /* Cache of what we've seen so far. */
3189 struct filename_seen_cache *filename_seen_cache;
3190
3191 /* Flag of whether we're printing the first one. */
3192 int first;
3193 };
3194
3195 /* Slave routine for sources_info. Force line breaks at ,'s.
3196 NAME is the name to print.
3197 DATA contains the state for printing and watching for duplicates. */
3198
3199 static void
3200 output_source_filename (const char *name,
3201 struct output_source_filename_data *data)
3202 {
3203 /* Since a single source file can result in several partial symbol
3204 tables, we need to avoid printing it more than once. Note: if
3205 some of the psymtabs are read in and some are not, it gets
3206 printed both under "Source files for which symbols have been
3207 read" and "Source files for which symbols will be read in on
3208 demand". I consider this a reasonable way to deal with the
3209 situation. I'm not sure whether this can also happen for
3210 symtabs; it doesn't hurt to check. */
3211
3212 /* Was NAME already seen? */
3213 if (filename_seen (data->filename_seen_cache, name, 1))
3214 {
3215 /* Yes; don't print it again. */
3216 return;
3217 }
3218
3219 /* No; print it and reset *FIRST. */
3220 if (! data->first)
3221 printf_filtered (", ");
3222 data->first = 0;
3223
3224 wrap_here ("");
3225 fputs_filtered (name, gdb_stdout);
3226 }
3227
3228 /* A callback for map_partial_symbol_filenames. */
3229
3230 static void
3231 output_partial_symbol_filename (const char *filename, const char *fullname,
3232 void *data)
3233 {
3234 output_source_filename (fullname ? fullname : filename, data);
3235 }
3236
3237 static void
3238 sources_info (char *ignore, int from_tty)
3239 {
3240 struct symtab *s;
3241 struct objfile *objfile;
3242 struct output_source_filename_data data;
3243 struct cleanup *cleanups;
3244
3245 if (!have_full_symbols () && !have_partial_symbols ())
3246 {
3247 error (_("No symbol table is loaded. Use the \"file\" command."));
3248 }
3249
3250 data.filename_seen_cache = create_filename_seen_cache ();
3251 cleanups = make_cleanup (delete_filename_seen_cache,
3252 data.filename_seen_cache);
3253
3254 printf_filtered ("Source files for which symbols have been read in:\n\n");
3255
3256 data.first = 1;
3257 ALL_SYMTABS (objfile, s)
3258 {
3259 const char *fullname = symtab_to_fullname (s);
3260
3261 output_source_filename (fullname, &data);
3262 }
3263 printf_filtered ("\n\n");
3264
3265 printf_filtered ("Source files for which symbols "
3266 "will be read in on demand:\n\n");
3267
3268 clear_filename_seen_cache (data.filename_seen_cache);
3269 data.first = 1;
3270 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3271 1 /*need_fullname*/);
3272 printf_filtered ("\n");
3273
3274 do_cleanups (cleanups);
3275 }
3276
3277 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3278 non-zero compare only lbasename of FILES. */
3279
3280 static int
3281 file_matches (const char *file, char *files[], int nfiles, int basenames)
3282 {
3283 int i;
3284
3285 if (file != NULL && nfiles != 0)
3286 {
3287 for (i = 0; i < nfiles; i++)
3288 {
3289 if (compare_filenames_for_search (file, (basenames
3290 ? lbasename (files[i])
3291 : files[i])))
3292 return 1;
3293 }
3294 }
3295 else if (nfiles == 0)
3296 return 1;
3297 return 0;
3298 }
3299
3300 /* Free any memory associated with a search. */
3301
3302 void
3303 free_search_symbols (struct symbol_search *symbols)
3304 {
3305 struct symbol_search *p;
3306 struct symbol_search *next;
3307
3308 for (p = symbols; p != NULL; p = next)
3309 {
3310 next = p->next;
3311 xfree (p);
3312 }
3313 }
3314
3315 static void
3316 do_free_search_symbols_cleanup (void *symbolsp)
3317 {
3318 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3319
3320 free_search_symbols (symbols);
3321 }
3322
3323 struct cleanup *
3324 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3325 {
3326 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3327 }
3328
3329 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3330 sort symbols, not minimal symbols. */
3331
3332 static int
3333 compare_search_syms (const void *sa, const void *sb)
3334 {
3335 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3336 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3337 int c;
3338
3339 c = strcmp (sym_a->symtab->filename, sym_b->symtab->filename);
3340 if (c != 0)
3341 return c;
3342
3343 if (sym_a->block != sym_b->block)
3344 return sym_a->block - sym_b->block;
3345
3346 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3347 SYMBOL_PRINT_NAME (sym_b->symbol));
3348 }
3349
3350 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3351 The duplicates are freed, and the new list is returned in
3352 *NEW_HEAD, *NEW_TAIL. */
3353
3354 static void
3355 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3356 struct symbol_search **new_head,
3357 struct symbol_search **new_tail)
3358 {
3359 struct symbol_search **symbols, *symp, *old_next;
3360 int i, j, nunique;
3361
3362 gdb_assert (found != NULL && nfound > 0);
3363
3364 /* Build an array out of the list so we can easily sort them. */
3365 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3366 * nfound);
3367 symp = found;
3368 for (i = 0; i < nfound; i++)
3369 {
3370 gdb_assert (symp != NULL);
3371 gdb_assert (symp->block >= 0 && symp->block <= 1);
3372 symbols[i] = symp;
3373 symp = symp->next;
3374 }
3375 gdb_assert (symp == NULL);
3376
3377 qsort (symbols, nfound, sizeof (struct symbol_search *),
3378 compare_search_syms);
3379
3380 /* Collapse out the dups. */
3381 for (i = 1, j = 1; i < nfound; ++i)
3382 {
3383 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3384 symbols[j++] = symbols[i];
3385 else
3386 xfree (symbols[i]);
3387 }
3388 nunique = j;
3389 symbols[j - 1]->next = NULL;
3390
3391 /* Rebuild the linked list. */
3392 for (i = 0; i < nunique - 1; i++)
3393 symbols[i]->next = symbols[i + 1];
3394 symbols[nunique - 1]->next = NULL;
3395
3396 *new_head = symbols[0];
3397 *new_tail = symbols[nunique - 1];
3398 xfree (symbols);
3399 }
3400
3401 /* An object of this type is passed as the user_data to the
3402 expand_symtabs_matching method. */
3403 struct search_symbols_data
3404 {
3405 int nfiles;
3406 char **files;
3407
3408 /* It is true if PREG contains valid data, false otherwise. */
3409 unsigned preg_p : 1;
3410 regex_t preg;
3411 };
3412
3413 /* A callback for expand_symtabs_matching. */
3414
3415 static int
3416 search_symbols_file_matches (const char *filename, void *user_data,
3417 int basenames)
3418 {
3419 struct search_symbols_data *data = user_data;
3420
3421 return file_matches (filename, data->files, data->nfiles, basenames);
3422 }
3423
3424 /* A callback for expand_symtabs_matching. */
3425
3426 static int
3427 search_symbols_name_matches (const char *symname, void *user_data)
3428 {
3429 struct search_symbols_data *data = user_data;
3430
3431 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3432 }
3433
3434 /* Search the symbol table for matches to the regular expression REGEXP,
3435 returning the results in *MATCHES.
3436
3437 Only symbols of KIND are searched:
3438 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3439 and constants (enums)
3440 FUNCTIONS_DOMAIN - search all functions
3441 TYPES_DOMAIN - search all type names
3442 ALL_DOMAIN - an internal error for this function
3443
3444 free_search_symbols should be called when *MATCHES is no longer needed.
3445
3446 Within each file the results are sorted locally; each symtab's global and
3447 static blocks are separately alphabetized.
3448 Duplicate entries are removed. */
3449
3450 void
3451 search_symbols (char *regexp, enum search_domain kind,
3452 int nfiles, char *files[],
3453 struct symbol_search **matches)
3454 {
3455 struct symtab *s;
3456 struct blockvector *bv;
3457 struct block *b;
3458 int i = 0;
3459 struct block_iterator iter;
3460 struct symbol *sym;
3461 struct objfile *objfile;
3462 struct minimal_symbol *msymbol;
3463 int found_misc = 0;
3464 static const enum minimal_symbol_type types[]
3465 = {mst_data, mst_text, mst_abs};
3466 static const enum minimal_symbol_type types2[]
3467 = {mst_bss, mst_file_text, mst_abs};
3468 static const enum minimal_symbol_type types3[]
3469 = {mst_file_data, mst_solib_trampoline, mst_abs};
3470 static const enum minimal_symbol_type types4[]
3471 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3472 enum minimal_symbol_type ourtype;
3473 enum minimal_symbol_type ourtype2;
3474 enum minimal_symbol_type ourtype3;
3475 enum minimal_symbol_type ourtype4;
3476 struct symbol_search *found;
3477 struct symbol_search *tail;
3478 struct search_symbols_data datum;
3479 int nfound;
3480
3481 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3482 CLEANUP_CHAIN is freed only in the case of an error. */
3483 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3484 struct cleanup *retval_chain;
3485
3486 gdb_assert (kind <= TYPES_DOMAIN);
3487
3488 ourtype = types[kind];
3489 ourtype2 = types2[kind];
3490 ourtype3 = types3[kind];
3491 ourtype4 = types4[kind];
3492
3493 *matches = NULL;
3494 datum.preg_p = 0;
3495
3496 if (regexp != NULL)
3497 {
3498 /* Make sure spacing is right for C++ operators.
3499 This is just a courtesy to make the matching less sensitive
3500 to how many spaces the user leaves between 'operator'
3501 and <TYPENAME> or <OPERATOR>. */
3502 char *opend;
3503 char *opname = operator_chars (regexp, &opend);
3504 int errcode;
3505
3506 if (*opname)
3507 {
3508 int fix = -1; /* -1 means ok; otherwise number of
3509 spaces needed. */
3510
3511 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3512 {
3513 /* There should 1 space between 'operator' and 'TYPENAME'. */
3514 if (opname[-1] != ' ' || opname[-2] == ' ')
3515 fix = 1;
3516 }
3517 else
3518 {
3519 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3520 if (opname[-1] == ' ')
3521 fix = 0;
3522 }
3523 /* If wrong number of spaces, fix it. */
3524 if (fix >= 0)
3525 {
3526 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3527
3528 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3529 regexp = tmp;
3530 }
3531 }
3532
3533 errcode = regcomp (&datum.preg, regexp,
3534 REG_NOSUB | (case_sensitivity == case_sensitive_off
3535 ? REG_ICASE : 0));
3536 if (errcode != 0)
3537 {
3538 char *err = get_regcomp_error (errcode, &datum.preg);
3539
3540 make_cleanup (xfree, err);
3541 error (_("Invalid regexp (%s): %s"), err, regexp);
3542 }
3543 datum.preg_p = 1;
3544 make_regfree_cleanup (&datum.preg);
3545 }
3546
3547 /* Search through the partial symtabs *first* for all symbols
3548 matching the regexp. That way we don't have to reproduce all of
3549 the machinery below. */
3550
3551 datum.nfiles = nfiles;
3552 datum.files = files;
3553 ALL_OBJFILES (objfile)
3554 {
3555 if (objfile->sf)
3556 objfile->sf->qf->expand_symtabs_matching (objfile,
3557 (nfiles == 0
3558 ? NULL
3559 : search_symbols_file_matches),
3560 search_symbols_name_matches,
3561 kind,
3562 &datum);
3563 }
3564
3565 /* Here, we search through the minimal symbol tables for functions
3566 and variables that match, and force their symbols to be read.
3567 This is in particular necessary for demangled variable names,
3568 which are no longer put into the partial symbol tables.
3569 The symbol will then be found during the scan of symtabs below.
3570
3571 For functions, find_pc_symtab should succeed if we have debug info
3572 for the function, for variables we have to call
3573 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3574 has debug info.
3575 If the lookup fails, set found_misc so that we will rescan to print
3576 any matching symbols without debug info.
3577 We only search the objfile the msymbol came from, we no longer search
3578 all objfiles. In large programs (1000s of shared libs) searching all
3579 objfiles is not worth the pain. */
3580
3581 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3582 {
3583 ALL_MSYMBOLS (objfile, msymbol)
3584 {
3585 QUIT;
3586
3587 if (msymbol->created_by_gdb)
3588 continue;
3589
3590 if (MSYMBOL_TYPE (msymbol) == ourtype
3591 || MSYMBOL_TYPE (msymbol) == ourtype2
3592 || MSYMBOL_TYPE (msymbol) == ourtype3
3593 || MSYMBOL_TYPE (msymbol) == ourtype4)
3594 {
3595 if (!datum.preg_p
3596 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3597 NULL, 0) == 0)
3598 {
3599 /* Note: An important side-effect of these lookup functions
3600 is to expand the symbol table if msymbol is found, for the
3601 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3602 if (kind == FUNCTIONS_DOMAIN
3603 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3604 : (lookup_symbol_in_objfile_from_linkage_name
3605 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3606 == NULL))
3607 found_misc = 1;
3608 }
3609 }
3610 }
3611 }
3612
3613 found = NULL;
3614 tail = NULL;
3615 nfound = 0;
3616 retval_chain = make_cleanup_free_search_symbols (&found);
3617
3618 ALL_PRIMARY_SYMTABS (objfile, s)
3619 {
3620 bv = BLOCKVECTOR (s);
3621 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3622 {
3623 b = BLOCKVECTOR_BLOCK (bv, i);
3624 ALL_BLOCK_SYMBOLS (b, iter, sym)
3625 {
3626 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3627
3628 QUIT;
3629
3630 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3631 a substring of symtab_to_fullname as it may contain "./" etc. */
3632 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3633 || ((basenames_may_differ
3634 || file_matches (lbasename (real_symtab->filename),
3635 files, nfiles, 1))
3636 && file_matches (symtab_to_fullname (real_symtab),
3637 files, nfiles, 0)))
3638 && ((!datum.preg_p
3639 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3640 NULL, 0) == 0)
3641 && ((kind == VARIABLES_DOMAIN
3642 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3643 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3644 && SYMBOL_CLASS (sym) != LOC_BLOCK
3645 /* LOC_CONST can be used for more than just enums,
3646 e.g., c++ static const members.
3647 We only want to skip enums here. */
3648 && !(SYMBOL_CLASS (sym) == LOC_CONST
3649 && TYPE_CODE (SYMBOL_TYPE (sym))
3650 == TYPE_CODE_ENUM))
3651 || (kind == FUNCTIONS_DOMAIN
3652 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3653 || (kind == TYPES_DOMAIN
3654 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3655 {
3656 /* match */
3657 struct symbol_search *psr = (struct symbol_search *)
3658 xmalloc (sizeof (struct symbol_search));
3659 psr->block = i;
3660 psr->symtab = real_symtab;
3661 psr->symbol = sym;
3662 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3663 psr->next = NULL;
3664 if (tail == NULL)
3665 found = psr;
3666 else
3667 tail->next = psr;
3668 tail = psr;
3669 nfound ++;
3670 }
3671 }
3672 }
3673 }
3674
3675 if (found != NULL)
3676 {
3677 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3678 /* Note: nfound is no longer useful beyond this point. */
3679 }
3680
3681 /* If there are no eyes, avoid all contact. I mean, if there are
3682 no debug symbols, then print directly from the msymbol_vector. */
3683
3684 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3685 {
3686 ALL_MSYMBOLS (objfile, msymbol)
3687 {
3688 QUIT;
3689
3690 if (msymbol->created_by_gdb)
3691 continue;
3692
3693 if (MSYMBOL_TYPE (msymbol) == ourtype
3694 || MSYMBOL_TYPE (msymbol) == ourtype2
3695 || MSYMBOL_TYPE (msymbol) == ourtype3
3696 || MSYMBOL_TYPE (msymbol) == ourtype4)
3697 {
3698 if (!datum.preg_p
3699 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3700 NULL, 0) == 0)
3701 {
3702 /* For functions we can do a quick check of whether the
3703 symbol might be found via find_pc_symtab. */
3704 if (kind != FUNCTIONS_DOMAIN
3705 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3706 {
3707 if (lookup_symbol_in_objfile_from_linkage_name
3708 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3709 == NULL)
3710 {
3711 /* match */
3712 struct symbol_search *psr = (struct symbol_search *)
3713 xmalloc (sizeof (struct symbol_search));
3714 psr->block = i;
3715 psr->msymbol.minsym = msymbol;
3716 psr->msymbol.objfile = objfile;
3717 psr->symtab = NULL;
3718 psr->symbol = NULL;
3719 psr->next = NULL;
3720 if (tail == NULL)
3721 found = psr;
3722 else
3723 tail->next = psr;
3724 tail = psr;
3725 }
3726 }
3727 }
3728 }
3729 }
3730 }
3731
3732 discard_cleanups (retval_chain);
3733 do_cleanups (old_chain);
3734 *matches = found;
3735 }
3736
3737 /* Helper function for symtab_symbol_info, this function uses
3738 the data returned from search_symbols() to print information
3739 regarding the match to gdb_stdout. */
3740
3741 static void
3742 print_symbol_info (enum search_domain kind,
3743 struct symtab *s, struct symbol *sym,
3744 int block, const char *last)
3745 {
3746 const char *s_filename = symtab_to_filename_for_display (s);
3747
3748 if (last == NULL || filename_cmp (last, s_filename) != 0)
3749 {
3750 fputs_filtered ("\nFile ", gdb_stdout);
3751 fputs_filtered (s_filename, gdb_stdout);
3752 fputs_filtered (":\n", gdb_stdout);
3753 }
3754
3755 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3756 printf_filtered ("static ");
3757
3758 /* Typedef that is not a C++ class. */
3759 if (kind == TYPES_DOMAIN
3760 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3761 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3762 /* variable, func, or typedef-that-is-c++-class. */
3763 else if (kind < TYPES_DOMAIN
3764 || (kind == TYPES_DOMAIN
3765 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3766 {
3767 type_print (SYMBOL_TYPE (sym),
3768 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3769 ? "" : SYMBOL_PRINT_NAME (sym)),
3770 gdb_stdout, 0);
3771
3772 printf_filtered (";\n");
3773 }
3774 }
3775
3776 /* This help function for symtab_symbol_info() prints information
3777 for non-debugging symbols to gdb_stdout. */
3778
3779 static void
3780 print_msymbol_info (struct bound_minimal_symbol msymbol)
3781 {
3782 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3783 char *tmp;
3784
3785 if (gdbarch_addr_bit (gdbarch) <= 32)
3786 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol.minsym)
3787 & (CORE_ADDR) 0xffffffff,
3788 8);
3789 else
3790 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol.minsym),
3791 16);
3792 printf_filtered ("%s %s\n",
3793 tmp, SYMBOL_PRINT_NAME (msymbol.minsym));
3794 }
3795
3796 /* This is the guts of the commands "info functions", "info types", and
3797 "info variables". It calls search_symbols to find all matches and then
3798 print_[m]symbol_info to print out some useful information about the
3799 matches. */
3800
3801 static void
3802 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3803 {
3804 static const char * const classnames[] =
3805 {"variable", "function", "type"};
3806 struct symbol_search *symbols;
3807 struct symbol_search *p;
3808 struct cleanup *old_chain;
3809 const char *last_filename = NULL;
3810 int first = 1;
3811
3812 gdb_assert (kind <= TYPES_DOMAIN);
3813
3814 /* Must make sure that if we're interrupted, symbols gets freed. */
3815 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3816 old_chain = make_cleanup_free_search_symbols (&symbols);
3817
3818 if (regexp != NULL)
3819 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3820 classnames[kind], regexp);
3821 else
3822 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3823
3824 for (p = symbols; p != NULL; p = p->next)
3825 {
3826 QUIT;
3827
3828 if (p->msymbol.minsym != NULL)
3829 {
3830 if (first)
3831 {
3832 printf_filtered (_("\nNon-debugging symbols:\n"));
3833 first = 0;
3834 }
3835 print_msymbol_info (p->msymbol);
3836 }
3837 else
3838 {
3839 print_symbol_info (kind,
3840 p->symtab,
3841 p->symbol,
3842 p->block,
3843 last_filename);
3844 last_filename = symtab_to_filename_for_display (p->symtab);
3845 }
3846 }
3847
3848 do_cleanups (old_chain);
3849 }
3850
3851 static void
3852 variables_info (char *regexp, int from_tty)
3853 {
3854 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3855 }
3856
3857 static void
3858 functions_info (char *regexp, int from_tty)
3859 {
3860 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3861 }
3862
3863
3864 static void
3865 types_info (char *regexp, int from_tty)
3866 {
3867 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3868 }
3869
3870 /* Breakpoint all functions matching regular expression. */
3871
3872 void
3873 rbreak_command_wrapper (char *regexp, int from_tty)
3874 {
3875 rbreak_command (regexp, from_tty);
3876 }
3877
3878 /* A cleanup function that calls end_rbreak_breakpoints. */
3879
3880 static void
3881 do_end_rbreak_breakpoints (void *ignore)
3882 {
3883 end_rbreak_breakpoints ();
3884 }
3885
3886 static void
3887 rbreak_command (char *regexp, int from_tty)
3888 {
3889 struct symbol_search *ss;
3890 struct symbol_search *p;
3891 struct cleanup *old_chain;
3892 char *string = NULL;
3893 int len = 0;
3894 char **files = NULL, *file_name;
3895 int nfiles = 0;
3896
3897 if (regexp)
3898 {
3899 char *colon = strchr (regexp, ':');
3900
3901 if (colon && *(colon + 1) != ':')
3902 {
3903 int colon_index;
3904
3905 colon_index = colon - regexp;
3906 file_name = alloca (colon_index + 1);
3907 memcpy (file_name, regexp, colon_index);
3908 file_name[colon_index--] = 0;
3909 while (isspace (file_name[colon_index]))
3910 file_name[colon_index--] = 0;
3911 files = &file_name;
3912 nfiles = 1;
3913 regexp = skip_spaces (colon + 1);
3914 }
3915 }
3916
3917 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3918 old_chain = make_cleanup_free_search_symbols (&ss);
3919 make_cleanup (free_current_contents, &string);
3920
3921 start_rbreak_breakpoints ();
3922 make_cleanup (do_end_rbreak_breakpoints, NULL);
3923 for (p = ss; p != NULL; p = p->next)
3924 {
3925 if (p->msymbol.minsym == NULL)
3926 {
3927 const char *fullname = symtab_to_fullname (p->symtab);
3928
3929 int newlen = (strlen (fullname)
3930 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3931 + 4);
3932
3933 if (newlen > len)
3934 {
3935 string = xrealloc (string, newlen);
3936 len = newlen;
3937 }
3938 strcpy (string, fullname);
3939 strcat (string, ":'");
3940 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3941 strcat (string, "'");
3942 break_command (string, from_tty);
3943 print_symbol_info (FUNCTIONS_DOMAIN,
3944 p->symtab,
3945 p->symbol,
3946 p->block,
3947 symtab_to_filename_for_display (p->symtab));
3948 }
3949 else
3950 {
3951 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
3952
3953 if (newlen > len)
3954 {
3955 string = xrealloc (string, newlen);
3956 len = newlen;
3957 }
3958 strcpy (string, "'");
3959 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol.minsym));
3960 strcat (string, "'");
3961
3962 break_command (string, from_tty);
3963 printf_filtered ("<function, no debug info> %s;\n",
3964 SYMBOL_PRINT_NAME (p->msymbol.minsym));
3965 }
3966 }
3967
3968 do_cleanups (old_chain);
3969 }
3970 \f
3971
3972 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3973
3974 Either sym_text[sym_text_len] != '(' and then we search for any
3975 symbol starting with SYM_TEXT text.
3976
3977 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3978 be terminated at that point. Partial symbol tables do not have parameters
3979 information. */
3980
3981 static int
3982 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3983 {
3984 int (*ncmp) (const char *, const char *, size_t);
3985
3986 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3987
3988 if (ncmp (name, sym_text, sym_text_len) != 0)
3989 return 0;
3990
3991 if (sym_text[sym_text_len] == '(')
3992 {
3993 /* User searches for `name(someth...'. Require NAME to be terminated.
3994 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3995 present but accept even parameters presence. In this case this
3996 function is in fact strcmp_iw but whitespace skipping is not supported
3997 for tab completion. */
3998
3999 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4000 return 0;
4001 }
4002
4003 return 1;
4004 }
4005
4006 /* Free any memory associated with a completion list. */
4007
4008 static void
4009 free_completion_list (VEC (char_ptr) **list_ptr)
4010 {
4011 int i;
4012 char *p;
4013
4014 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4015 xfree (p);
4016 VEC_free (char_ptr, *list_ptr);
4017 }
4018
4019 /* Callback for make_cleanup. */
4020
4021 static void
4022 do_free_completion_list (void *list)
4023 {
4024 free_completion_list (list);
4025 }
4026
4027 /* Helper routine for make_symbol_completion_list. */
4028
4029 static VEC (char_ptr) *return_val;
4030
4031 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4032 completion_list_add_name \
4033 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4034
4035 /* Test to see if the symbol specified by SYMNAME (which is already
4036 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4037 characters. If so, add it to the current completion list. */
4038
4039 static void
4040 completion_list_add_name (const char *symname,
4041 const char *sym_text, int sym_text_len,
4042 const char *text, const char *word)
4043 {
4044 /* Clip symbols that cannot match. */
4045 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4046 return;
4047
4048 /* We have a match for a completion, so add SYMNAME to the current list
4049 of matches. Note that the name is moved to freshly malloc'd space. */
4050
4051 {
4052 char *new;
4053
4054 if (word == sym_text)
4055 {
4056 new = xmalloc (strlen (symname) + 5);
4057 strcpy (new, symname);
4058 }
4059 else if (word > sym_text)
4060 {
4061 /* Return some portion of symname. */
4062 new = xmalloc (strlen (symname) + 5);
4063 strcpy (new, symname + (word - sym_text));
4064 }
4065 else
4066 {
4067 /* Return some of SYM_TEXT plus symname. */
4068 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4069 strncpy (new, word, sym_text - word);
4070 new[sym_text - word] = '\0';
4071 strcat (new, symname);
4072 }
4073
4074 VEC_safe_push (char_ptr, return_val, new);
4075 }
4076 }
4077
4078 /* ObjC: In case we are completing on a selector, look as the msymbol
4079 again and feed all the selectors into the mill. */
4080
4081 static void
4082 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4083 const char *sym_text, int sym_text_len,
4084 const char *text, const char *word)
4085 {
4086 static char *tmp = NULL;
4087 static unsigned int tmplen = 0;
4088
4089 const char *method, *category, *selector;
4090 char *tmp2 = NULL;
4091
4092 method = SYMBOL_NATURAL_NAME (msymbol);
4093
4094 /* Is it a method? */
4095 if ((method[0] != '-') && (method[0] != '+'))
4096 return;
4097
4098 if (sym_text[0] == '[')
4099 /* Complete on shortened method method. */
4100 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4101
4102 while ((strlen (method) + 1) >= tmplen)
4103 {
4104 if (tmplen == 0)
4105 tmplen = 1024;
4106 else
4107 tmplen *= 2;
4108 tmp = xrealloc (tmp, tmplen);
4109 }
4110 selector = strchr (method, ' ');
4111 if (selector != NULL)
4112 selector++;
4113
4114 category = strchr (method, '(');
4115
4116 if ((category != NULL) && (selector != NULL))
4117 {
4118 memcpy (tmp, method, (category - method));
4119 tmp[category - method] = ' ';
4120 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4121 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4122 if (sym_text[0] == '[')
4123 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4124 }
4125
4126 if (selector != NULL)
4127 {
4128 /* Complete on selector only. */
4129 strcpy (tmp, selector);
4130 tmp2 = strchr (tmp, ']');
4131 if (tmp2 != NULL)
4132 *tmp2 = '\0';
4133
4134 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4135 }
4136 }
4137
4138 /* Break the non-quoted text based on the characters which are in
4139 symbols. FIXME: This should probably be language-specific. */
4140
4141 static const char *
4142 language_search_unquoted_string (const char *text, const char *p)
4143 {
4144 for (; p > text; --p)
4145 {
4146 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4147 continue;
4148 else
4149 {
4150 if ((current_language->la_language == language_objc))
4151 {
4152 if (p[-1] == ':') /* Might be part of a method name. */
4153 continue;
4154 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4155 p -= 2; /* Beginning of a method name. */
4156 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4157 { /* Might be part of a method name. */
4158 const char *t = p;
4159
4160 /* Seeing a ' ' or a '(' is not conclusive evidence
4161 that we are in the middle of a method name. However,
4162 finding "-[" or "+[" should be pretty un-ambiguous.
4163 Unfortunately we have to find it now to decide. */
4164
4165 while (t > text)
4166 if (isalnum (t[-1]) || t[-1] == '_' ||
4167 t[-1] == ' ' || t[-1] == ':' ||
4168 t[-1] == '(' || t[-1] == ')')
4169 --t;
4170 else
4171 break;
4172
4173 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4174 p = t - 2; /* Method name detected. */
4175 /* Else we leave with p unchanged. */
4176 }
4177 }
4178 break;
4179 }
4180 }
4181 return p;
4182 }
4183
4184 static void
4185 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4186 int sym_text_len, const char *text,
4187 const char *word)
4188 {
4189 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4190 {
4191 struct type *t = SYMBOL_TYPE (sym);
4192 enum type_code c = TYPE_CODE (t);
4193 int j;
4194
4195 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4196 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4197 if (TYPE_FIELD_NAME (t, j))
4198 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4199 sym_text, sym_text_len, text, word);
4200 }
4201 }
4202
4203 /* Type of the user_data argument passed to add_macro_name or
4204 expand_partial_symbol_name. The contents are simply whatever is
4205 needed by completion_list_add_name. */
4206 struct add_name_data
4207 {
4208 const char *sym_text;
4209 int sym_text_len;
4210 const char *text;
4211 const char *word;
4212 };
4213
4214 /* A callback used with macro_for_each and macro_for_each_in_scope.
4215 This adds a macro's name to the current completion list. */
4216
4217 static void
4218 add_macro_name (const char *name, const struct macro_definition *ignore,
4219 struct macro_source_file *ignore2, int ignore3,
4220 void *user_data)
4221 {
4222 struct add_name_data *datum = (struct add_name_data *) user_data;
4223
4224 completion_list_add_name ((char *) name,
4225 datum->sym_text, datum->sym_text_len,
4226 datum->text, datum->word);
4227 }
4228
4229 /* A callback for expand_partial_symbol_names. */
4230
4231 static int
4232 expand_partial_symbol_name (const char *name, void *user_data)
4233 {
4234 struct add_name_data *datum = (struct add_name_data *) user_data;
4235
4236 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4237 }
4238
4239 VEC (char_ptr) *
4240 default_make_symbol_completion_list_break_on (const char *text,
4241 const char *word,
4242 const char *break_on,
4243 enum type_code code)
4244 {
4245 /* Problem: All of the symbols have to be copied because readline
4246 frees them. I'm not going to worry about this; hopefully there
4247 won't be that many. */
4248
4249 struct symbol *sym;
4250 struct symtab *s;
4251 struct minimal_symbol *msymbol;
4252 struct objfile *objfile;
4253 struct block *b;
4254 const struct block *surrounding_static_block, *surrounding_global_block;
4255 struct block_iterator iter;
4256 /* The symbol we are completing on. Points in same buffer as text. */
4257 const char *sym_text;
4258 /* Length of sym_text. */
4259 int sym_text_len;
4260 struct add_name_data datum;
4261 struct cleanup *back_to;
4262
4263 /* Now look for the symbol we are supposed to complete on. */
4264 {
4265 const char *p;
4266 char quote_found;
4267 const char *quote_pos = NULL;
4268
4269 /* First see if this is a quoted string. */
4270 quote_found = '\0';
4271 for (p = text; *p != '\0'; ++p)
4272 {
4273 if (quote_found != '\0')
4274 {
4275 if (*p == quote_found)
4276 /* Found close quote. */
4277 quote_found = '\0';
4278 else if (*p == '\\' && p[1] == quote_found)
4279 /* A backslash followed by the quote character
4280 doesn't end the string. */
4281 ++p;
4282 }
4283 else if (*p == '\'' || *p == '"')
4284 {
4285 quote_found = *p;
4286 quote_pos = p;
4287 }
4288 }
4289 if (quote_found == '\'')
4290 /* A string within single quotes can be a symbol, so complete on it. */
4291 sym_text = quote_pos + 1;
4292 else if (quote_found == '"')
4293 /* A double-quoted string is never a symbol, nor does it make sense
4294 to complete it any other way. */
4295 {
4296 return NULL;
4297 }
4298 else
4299 {
4300 /* It is not a quoted string. Break it based on the characters
4301 which are in symbols. */
4302 while (p > text)
4303 {
4304 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4305 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4306 --p;
4307 else
4308 break;
4309 }
4310 sym_text = p;
4311 }
4312 }
4313
4314 sym_text_len = strlen (sym_text);
4315
4316 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4317
4318 if (current_language->la_language == language_cplus
4319 || current_language->la_language == language_java
4320 || current_language->la_language == language_fortran)
4321 {
4322 /* These languages may have parameters entered by user but they are never
4323 present in the partial symbol tables. */
4324
4325 const char *cs = memchr (sym_text, '(', sym_text_len);
4326
4327 if (cs)
4328 sym_text_len = cs - sym_text;
4329 }
4330 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4331
4332 return_val = NULL;
4333 back_to = make_cleanup (do_free_completion_list, &return_val);
4334
4335 datum.sym_text = sym_text;
4336 datum.sym_text_len = sym_text_len;
4337 datum.text = text;
4338 datum.word = word;
4339
4340 /* Look through the partial symtabs for all symbols which begin
4341 by matching SYM_TEXT. Expand all CUs that you find to the list.
4342 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4343 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4344
4345 /* At this point scan through the misc symbol vectors and add each
4346 symbol you find to the list. Eventually we want to ignore
4347 anything that isn't a text symbol (everything else will be
4348 handled by the psymtab code above). */
4349
4350 if (code == TYPE_CODE_UNDEF)
4351 {
4352 ALL_MSYMBOLS (objfile, msymbol)
4353 {
4354 QUIT;
4355 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4356 word);
4357
4358 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4359 word);
4360 }
4361 }
4362
4363 /* Search upwards from currently selected frame (so that we can
4364 complete on local vars). Also catch fields of types defined in
4365 this places which match our text string. Only complete on types
4366 visible from current context. */
4367
4368 b = get_selected_block (0);
4369 surrounding_static_block = block_static_block (b);
4370 surrounding_global_block = block_global_block (b);
4371 if (surrounding_static_block != NULL)
4372 while (b != surrounding_static_block)
4373 {
4374 QUIT;
4375
4376 ALL_BLOCK_SYMBOLS (b, iter, sym)
4377 {
4378 if (code == TYPE_CODE_UNDEF)
4379 {
4380 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4381 word);
4382 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4383 word);
4384 }
4385 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4386 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4387 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4388 word);
4389 }
4390
4391 /* Stop when we encounter an enclosing function. Do not stop for
4392 non-inlined functions - the locals of the enclosing function
4393 are in scope for a nested function. */
4394 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4395 break;
4396 b = BLOCK_SUPERBLOCK (b);
4397 }
4398
4399 /* Add fields from the file's types; symbols will be added below. */
4400
4401 if (code == TYPE_CODE_UNDEF)
4402 {
4403 if (surrounding_static_block != NULL)
4404 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4405 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4406
4407 if (surrounding_global_block != NULL)
4408 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4409 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4410 }
4411
4412 /* Go through the symtabs and check the externs and statics for
4413 symbols which match. */
4414
4415 ALL_PRIMARY_SYMTABS (objfile, s)
4416 {
4417 QUIT;
4418 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4419 ALL_BLOCK_SYMBOLS (b, iter, sym)
4420 {
4421 if (code == TYPE_CODE_UNDEF
4422 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4423 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4424 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4425 }
4426 }
4427
4428 ALL_PRIMARY_SYMTABS (objfile, s)
4429 {
4430 QUIT;
4431 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4432 ALL_BLOCK_SYMBOLS (b, iter, sym)
4433 {
4434 if (code == TYPE_CODE_UNDEF
4435 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4436 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4437 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4438 }
4439 }
4440
4441 /* Skip macros if we are completing a struct tag -- arguable but
4442 usually what is expected. */
4443 if (current_language->la_macro_expansion == macro_expansion_c
4444 && code == TYPE_CODE_UNDEF)
4445 {
4446 struct macro_scope *scope;
4447
4448 /* Add any macros visible in the default scope. Note that this
4449 may yield the occasional wrong result, because an expression
4450 might be evaluated in a scope other than the default. For
4451 example, if the user types "break file:line if <TAB>", the
4452 resulting expression will be evaluated at "file:line" -- but
4453 at there does not seem to be a way to detect this at
4454 completion time. */
4455 scope = default_macro_scope ();
4456 if (scope)
4457 {
4458 macro_for_each_in_scope (scope->file, scope->line,
4459 add_macro_name, &datum);
4460 xfree (scope);
4461 }
4462
4463 /* User-defined macros are always visible. */
4464 macro_for_each (macro_user_macros, add_macro_name, &datum);
4465 }
4466
4467 discard_cleanups (back_to);
4468 return (return_val);
4469 }
4470
4471 VEC (char_ptr) *
4472 default_make_symbol_completion_list (const char *text, const char *word,
4473 enum type_code code)
4474 {
4475 return default_make_symbol_completion_list_break_on (text, word, "", code);
4476 }
4477
4478 /* Return a vector of all symbols (regardless of class) which begin by
4479 matching TEXT. If the answer is no symbols, then the return value
4480 is NULL. */
4481
4482 VEC (char_ptr) *
4483 make_symbol_completion_list (const char *text, const char *word)
4484 {
4485 return current_language->la_make_symbol_completion_list (text, word,
4486 TYPE_CODE_UNDEF);
4487 }
4488
4489 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4490 symbols whose type code is CODE. */
4491
4492 VEC (char_ptr) *
4493 make_symbol_completion_type (const char *text, const char *word,
4494 enum type_code code)
4495 {
4496 gdb_assert (code == TYPE_CODE_UNION
4497 || code == TYPE_CODE_STRUCT
4498 || code == TYPE_CODE_CLASS
4499 || code == TYPE_CODE_ENUM);
4500 return current_language->la_make_symbol_completion_list (text, word, code);
4501 }
4502
4503 /* Like make_symbol_completion_list, but suitable for use as a
4504 completion function. */
4505
4506 VEC (char_ptr) *
4507 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4508 const char *text, const char *word)
4509 {
4510 return make_symbol_completion_list (text, word);
4511 }
4512
4513 /* Like make_symbol_completion_list, but returns a list of symbols
4514 defined in a source file FILE. */
4515
4516 VEC (char_ptr) *
4517 make_file_symbol_completion_list (const char *text, const char *word,
4518 const char *srcfile)
4519 {
4520 struct symbol *sym;
4521 struct symtab *s;
4522 struct block *b;
4523 struct block_iterator iter;
4524 /* The symbol we are completing on. Points in same buffer as text. */
4525 const char *sym_text;
4526 /* Length of sym_text. */
4527 int sym_text_len;
4528
4529 /* Now look for the symbol we are supposed to complete on.
4530 FIXME: This should be language-specific. */
4531 {
4532 const char *p;
4533 char quote_found;
4534 const char *quote_pos = NULL;
4535
4536 /* First see if this is a quoted string. */
4537 quote_found = '\0';
4538 for (p = text; *p != '\0'; ++p)
4539 {
4540 if (quote_found != '\0')
4541 {
4542 if (*p == quote_found)
4543 /* Found close quote. */
4544 quote_found = '\0';
4545 else if (*p == '\\' && p[1] == quote_found)
4546 /* A backslash followed by the quote character
4547 doesn't end the string. */
4548 ++p;
4549 }
4550 else if (*p == '\'' || *p == '"')
4551 {
4552 quote_found = *p;
4553 quote_pos = p;
4554 }
4555 }
4556 if (quote_found == '\'')
4557 /* A string within single quotes can be a symbol, so complete on it. */
4558 sym_text = quote_pos + 1;
4559 else if (quote_found == '"')
4560 /* A double-quoted string is never a symbol, nor does it make sense
4561 to complete it any other way. */
4562 {
4563 return NULL;
4564 }
4565 else
4566 {
4567 /* Not a quoted string. */
4568 sym_text = language_search_unquoted_string (text, p);
4569 }
4570 }
4571
4572 sym_text_len = strlen (sym_text);
4573
4574 return_val = NULL;
4575
4576 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4577 in). */
4578 s = lookup_symtab (srcfile);
4579 if (s == NULL)
4580 {
4581 /* Maybe they typed the file with leading directories, while the
4582 symbol tables record only its basename. */
4583 const char *tail = lbasename (srcfile);
4584
4585 if (tail > srcfile)
4586 s = lookup_symtab (tail);
4587 }
4588
4589 /* If we have no symtab for that file, return an empty list. */
4590 if (s == NULL)
4591 return (return_val);
4592
4593 /* Go through this symtab and check the externs and statics for
4594 symbols which match. */
4595
4596 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4597 ALL_BLOCK_SYMBOLS (b, iter, sym)
4598 {
4599 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4600 }
4601
4602 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4603 ALL_BLOCK_SYMBOLS (b, iter, sym)
4604 {
4605 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4606 }
4607
4608 return (return_val);
4609 }
4610
4611 /* A helper function for make_source_files_completion_list. It adds
4612 another file name to a list of possible completions, growing the
4613 list as necessary. */
4614
4615 static void
4616 add_filename_to_list (const char *fname, const char *text, const char *word,
4617 VEC (char_ptr) **list)
4618 {
4619 char *new;
4620 size_t fnlen = strlen (fname);
4621
4622 if (word == text)
4623 {
4624 /* Return exactly fname. */
4625 new = xmalloc (fnlen + 5);
4626 strcpy (new, fname);
4627 }
4628 else if (word > text)
4629 {
4630 /* Return some portion of fname. */
4631 new = xmalloc (fnlen + 5);
4632 strcpy (new, fname + (word - text));
4633 }
4634 else
4635 {
4636 /* Return some of TEXT plus fname. */
4637 new = xmalloc (fnlen + (text - word) + 5);
4638 strncpy (new, word, text - word);
4639 new[text - word] = '\0';
4640 strcat (new, fname);
4641 }
4642 VEC_safe_push (char_ptr, *list, new);
4643 }
4644
4645 static int
4646 not_interesting_fname (const char *fname)
4647 {
4648 static const char *illegal_aliens[] = {
4649 "_globals_", /* inserted by coff_symtab_read */
4650 NULL
4651 };
4652 int i;
4653
4654 for (i = 0; illegal_aliens[i]; i++)
4655 {
4656 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4657 return 1;
4658 }
4659 return 0;
4660 }
4661
4662 /* An object of this type is passed as the user_data argument to
4663 map_partial_symbol_filenames. */
4664 struct add_partial_filename_data
4665 {
4666 struct filename_seen_cache *filename_seen_cache;
4667 const char *text;
4668 const char *word;
4669 int text_len;
4670 VEC (char_ptr) **list;
4671 };
4672
4673 /* A callback for map_partial_symbol_filenames. */
4674
4675 static void
4676 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4677 void *user_data)
4678 {
4679 struct add_partial_filename_data *data = user_data;
4680
4681 if (not_interesting_fname (filename))
4682 return;
4683 if (!filename_seen (data->filename_seen_cache, filename, 1)
4684 && filename_ncmp (filename, data->text, data->text_len) == 0)
4685 {
4686 /* This file matches for a completion; add it to the
4687 current list of matches. */
4688 add_filename_to_list (filename, data->text, data->word, data->list);
4689 }
4690 else
4691 {
4692 const char *base_name = lbasename (filename);
4693
4694 if (base_name != filename
4695 && !filename_seen (data->filename_seen_cache, base_name, 1)
4696 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4697 add_filename_to_list (base_name, data->text, data->word, data->list);
4698 }
4699 }
4700
4701 /* Return a vector of all source files whose names begin with matching
4702 TEXT. The file names are looked up in the symbol tables of this
4703 program. If the answer is no matchess, then the return value is
4704 NULL. */
4705
4706 VEC (char_ptr) *
4707 make_source_files_completion_list (const char *text, const char *word)
4708 {
4709 struct symtab *s;
4710 struct objfile *objfile;
4711 size_t text_len = strlen (text);
4712 VEC (char_ptr) *list = NULL;
4713 const char *base_name;
4714 struct add_partial_filename_data datum;
4715 struct filename_seen_cache *filename_seen_cache;
4716 struct cleanup *back_to, *cache_cleanup;
4717
4718 if (!have_full_symbols () && !have_partial_symbols ())
4719 return list;
4720
4721 back_to = make_cleanup (do_free_completion_list, &list);
4722
4723 filename_seen_cache = create_filename_seen_cache ();
4724 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4725 filename_seen_cache);
4726
4727 ALL_SYMTABS (objfile, s)
4728 {
4729 if (not_interesting_fname (s->filename))
4730 continue;
4731 if (!filename_seen (filename_seen_cache, s->filename, 1)
4732 && filename_ncmp (s->filename, text, text_len) == 0)
4733 {
4734 /* This file matches for a completion; add it to the current
4735 list of matches. */
4736 add_filename_to_list (s->filename, text, word, &list);
4737 }
4738 else
4739 {
4740 /* NOTE: We allow the user to type a base name when the
4741 debug info records leading directories, but not the other
4742 way around. This is what subroutines of breakpoint
4743 command do when they parse file names. */
4744 base_name = lbasename (s->filename);
4745 if (base_name != s->filename
4746 && !filename_seen (filename_seen_cache, base_name, 1)
4747 && filename_ncmp (base_name, text, text_len) == 0)
4748 add_filename_to_list (base_name, text, word, &list);
4749 }
4750 }
4751
4752 datum.filename_seen_cache = filename_seen_cache;
4753 datum.text = text;
4754 datum.word = word;
4755 datum.text_len = text_len;
4756 datum.list = &list;
4757 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4758 0 /*need_fullname*/);
4759
4760 do_cleanups (cache_cleanup);
4761 discard_cleanups (back_to);
4762
4763 return list;
4764 }
4765
4766 /* Determine if PC is in the prologue of a function. The prologue is the area
4767 between the first instruction of a function, and the first executable line.
4768 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4769
4770 If non-zero, func_start is where we think the prologue starts, possibly
4771 by previous examination of symbol table information. */
4772
4773 int
4774 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4775 {
4776 struct symtab_and_line sal;
4777 CORE_ADDR func_addr, func_end;
4778
4779 /* We have several sources of information we can consult to figure
4780 this out.
4781 - Compilers usually emit line number info that marks the prologue
4782 as its own "source line". So the ending address of that "line"
4783 is the end of the prologue. If available, this is the most
4784 reliable method.
4785 - The minimal symbols and partial symbols, which can usually tell
4786 us the starting and ending addresses of a function.
4787 - If we know the function's start address, we can call the
4788 architecture-defined gdbarch_skip_prologue function to analyze the
4789 instruction stream and guess where the prologue ends.
4790 - Our `func_start' argument; if non-zero, this is the caller's
4791 best guess as to the function's entry point. At the time of
4792 this writing, handle_inferior_event doesn't get this right, so
4793 it should be our last resort. */
4794
4795 /* Consult the partial symbol table, to find which function
4796 the PC is in. */
4797 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4798 {
4799 CORE_ADDR prologue_end;
4800
4801 /* We don't even have minsym information, so fall back to using
4802 func_start, if given. */
4803 if (! func_start)
4804 return 1; /* We *might* be in a prologue. */
4805
4806 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4807
4808 return func_start <= pc && pc < prologue_end;
4809 }
4810
4811 /* If we have line number information for the function, that's
4812 usually pretty reliable. */
4813 sal = find_pc_line (func_addr, 0);
4814
4815 /* Now sal describes the source line at the function's entry point,
4816 which (by convention) is the prologue. The end of that "line",
4817 sal.end, is the end of the prologue.
4818
4819 Note that, for functions whose source code is all on a single
4820 line, the line number information doesn't always end up this way.
4821 So we must verify that our purported end-of-prologue address is
4822 *within* the function, not at its start or end. */
4823 if (sal.line == 0
4824 || sal.end <= func_addr
4825 || func_end <= sal.end)
4826 {
4827 /* We don't have any good line number info, so use the minsym
4828 information, together with the architecture-specific prologue
4829 scanning code. */
4830 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4831
4832 return func_addr <= pc && pc < prologue_end;
4833 }
4834
4835 /* We have line number info, and it looks good. */
4836 return func_addr <= pc && pc < sal.end;
4837 }
4838
4839 /* Given PC at the function's start address, attempt to find the
4840 prologue end using SAL information. Return zero if the skip fails.
4841
4842 A non-optimized prologue traditionally has one SAL for the function
4843 and a second for the function body. A single line function has
4844 them both pointing at the same line.
4845
4846 An optimized prologue is similar but the prologue may contain
4847 instructions (SALs) from the instruction body. Need to skip those
4848 while not getting into the function body.
4849
4850 The functions end point and an increasing SAL line are used as
4851 indicators of the prologue's endpoint.
4852
4853 This code is based on the function refine_prologue_limit
4854 (found in ia64). */
4855
4856 CORE_ADDR
4857 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4858 {
4859 struct symtab_and_line prologue_sal;
4860 CORE_ADDR start_pc;
4861 CORE_ADDR end_pc;
4862 struct block *bl;
4863
4864 /* Get an initial range for the function. */
4865 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4866 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4867
4868 prologue_sal = find_pc_line (start_pc, 0);
4869 if (prologue_sal.line != 0)
4870 {
4871 /* For languages other than assembly, treat two consecutive line
4872 entries at the same address as a zero-instruction prologue.
4873 The GNU assembler emits separate line notes for each instruction
4874 in a multi-instruction macro, but compilers generally will not
4875 do this. */
4876 if (prologue_sal.symtab->language != language_asm)
4877 {
4878 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4879 int idx = 0;
4880
4881 /* Skip any earlier lines, and any end-of-sequence marker
4882 from a previous function. */
4883 while (linetable->item[idx].pc != prologue_sal.pc
4884 || linetable->item[idx].line == 0)
4885 idx++;
4886
4887 if (idx+1 < linetable->nitems
4888 && linetable->item[idx+1].line != 0
4889 && linetable->item[idx+1].pc == start_pc)
4890 return start_pc;
4891 }
4892
4893 /* If there is only one sal that covers the entire function,
4894 then it is probably a single line function, like
4895 "foo(){}". */
4896 if (prologue_sal.end >= end_pc)
4897 return 0;
4898
4899 while (prologue_sal.end < end_pc)
4900 {
4901 struct symtab_and_line sal;
4902
4903 sal = find_pc_line (prologue_sal.end, 0);
4904 if (sal.line == 0)
4905 break;
4906 /* Assume that a consecutive SAL for the same (or larger)
4907 line mark the prologue -> body transition. */
4908 if (sal.line >= prologue_sal.line)
4909 break;
4910 /* Likewise if we are in a different symtab altogether
4911 (e.g. within a file included via #include).  */
4912 if (sal.symtab != prologue_sal.symtab)
4913 break;
4914
4915 /* The line number is smaller. Check that it's from the
4916 same function, not something inlined. If it's inlined,
4917 then there is no point comparing the line numbers. */
4918 bl = block_for_pc (prologue_sal.end);
4919 while (bl)
4920 {
4921 if (block_inlined_p (bl))
4922 break;
4923 if (BLOCK_FUNCTION (bl))
4924 {
4925 bl = NULL;
4926 break;
4927 }
4928 bl = BLOCK_SUPERBLOCK (bl);
4929 }
4930 if (bl != NULL)
4931 break;
4932
4933 /* The case in which compiler's optimizer/scheduler has
4934 moved instructions into the prologue. We look ahead in
4935 the function looking for address ranges whose
4936 corresponding line number is less the first one that we
4937 found for the function. This is more conservative then
4938 refine_prologue_limit which scans a large number of SALs
4939 looking for any in the prologue. */
4940 prologue_sal = sal;
4941 }
4942 }
4943
4944 if (prologue_sal.end < end_pc)
4945 /* Return the end of this line, or zero if we could not find a
4946 line. */
4947 return prologue_sal.end;
4948 else
4949 /* Don't return END_PC, which is past the end of the function. */
4950 return prologue_sal.pc;
4951 }
4952 \f
4953 /* Track MAIN */
4954 static char *name_of_main;
4955 enum language language_of_main = language_unknown;
4956
4957 void
4958 set_main_name (const char *name)
4959 {
4960 if (name_of_main != NULL)
4961 {
4962 xfree (name_of_main);
4963 name_of_main = NULL;
4964 language_of_main = language_unknown;
4965 }
4966 if (name != NULL)
4967 {
4968 name_of_main = xstrdup (name);
4969 language_of_main = language_unknown;
4970 }
4971 }
4972
4973 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4974 accordingly. */
4975
4976 static void
4977 find_main_name (void)
4978 {
4979 const char *new_main_name;
4980
4981 /* Try to see if the main procedure is in Ada. */
4982 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4983 be to add a new method in the language vector, and call this
4984 method for each language until one of them returns a non-empty
4985 name. This would allow us to remove this hard-coded call to
4986 an Ada function. It is not clear that this is a better approach
4987 at this point, because all methods need to be written in a way
4988 such that false positives never be returned. For instance, it is
4989 important that a method does not return a wrong name for the main
4990 procedure if the main procedure is actually written in a different
4991 language. It is easy to guaranty this with Ada, since we use a
4992 special symbol generated only when the main in Ada to find the name
4993 of the main procedure. It is difficult however to see how this can
4994 be guarantied for languages such as C, for instance. This suggests
4995 that order of call for these methods becomes important, which means
4996 a more complicated approach. */
4997 new_main_name = ada_main_name ();
4998 if (new_main_name != NULL)
4999 {
5000 set_main_name (new_main_name);
5001 return;
5002 }
5003
5004 new_main_name = go_main_name ();
5005 if (new_main_name != NULL)
5006 {
5007 set_main_name (new_main_name);
5008 return;
5009 }
5010
5011 new_main_name = pascal_main_name ();
5012 if (new_main_name != NULL)
5013 {
5014 set_main_name (new_main_name);
5015 return;
5016 }
5017
5018 /* The languages above didn't identify the name of the main procedure.
5019 Fallback to "main". */
5020 set_main_name ("main");
5021 }
5022
5023 char *
5024 main_name (void)
5025 {
5026 if (name_of_main == NULL)
5027 find_main_name ();
5028
5029 return name_of_main;
5030 }
5031
5032 /* Handle ``executable_changed'' events for the symtab module. */
5033
5034 static void
5035 symtab_observer_executable_changed (void)
5036 {
5037 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5038 set_main_name (NULL);
5039 }
5040
5041 /* Return 1 if the supplied producer string matches the ARM RealView
5042 compiler (armcc). */
5043
5044 int
5045 producer_is_realview (const char *producer)
5046 {
5047 static const char *const arm_idents[] = {
5048 "ARM C Compiler, ADS",
5049 "Thumb C Compiler, ADS",
5050 "ARM C++ Compiler, ADS",
5051 "Thumb C++ Compiler, ADS",
5052 "ARM/Thumb C/C++ Compiler, RVCT",
5053 "ARM C/C++ Compiler, RVCT"
5054 };
5055 int i;
5056
5057 if (producer == NULL)
5058 return 0;
5059
5060 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5061 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5062 return 1;
5063
5064 return 0;
5065 }
5066
5067 \f
5068
5069 /* The next index to hand out in response to a registration request. */
5070
5071 static int next_aclass_value = LOC_FINAL_VALUE;
5072
5073 /* The maximum number of "aclass" registrations we support. This is
5074 constant for convenience. */
5075 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5076
5077 /* The objects representing the various "aclass" values. The elements
5078 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5079 elements are those registered at gdb initialization time. */
5080
5081 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5082
5083 /* The globally visible pointer. This is separate from 'symbol_impl'
5084 so that it can be const. */
5085
5086 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5087
5088 /* Make sure we saved enough room in struct symbol. */
5089
5090 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5091
5092 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5093 is the ops vector associated with this index. This returns the new
5094 index, which should be used as the aclass_index field for symbols
5095 of this type. */
5096
5097 int
5098 register_symbol_computed_impl (enum address_class aclass,
5099 const struct symbol_computed_ops *ops)
5100 {
5101 int result = next_aclass_value++;
5102
5103 gdb_assert (aclass == LOC_COMPUTED);
5104 gdb_assert (result < MAX_SYMBOL_IMPLS);
5105 symbol_impl[result].aclass = aclass;
5106 symbol_impl[result].ops_computed = ops;
5107
5108 /* Sanity check OPS. */
5109 gdb_assert (ops != NULL);
5110 gdb_assert (ops->tracepoint_var_ref != NULL);
5111 gdb_assert (ops->describe_location != NULL);
5112 gdb_assert (ops->read_needs_frame != NULL);
5113 gdb_assert (ops->read_variable != NULL);
5114
5115 return result;
5116 }
5117
5118 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5119 OPS is the ops vector associated with this index. This returns the
5120 new index, which should be used as the aclass_index field for symbols
5121 of this type. */
5122
5123 int
5124 register_symbol_block_impl (enum address_class aclass,
5125 const struct symbol_block_ops *ops)
5126 {
5127 int result = next_aclass_value++;
5128
5129 gdb_assert (aclass == LOC_BLOCK);
5130 gdb_assert (result < MAX_SYMBOL_IMPLS);
5131 symbol_impl[result].aclass = aclass;
5132 symbol_impl[result].ops_block = ops;
5133
5134 /* Sanity check OPS. */
5135 gdb_assert (ops != NULL);
5136 gdb_assert (ops->find_frame_base_location != NULL);
5137
5138 return result;
5139 }
5140
5141 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5142 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5143 this index. This returns the new index, which should be used as
5144 the aclass_index field for symbols of this type. */
5145
5146 int
5147 register_symbol_register_impl (enum address_class aclass,
5148 const struct symbol_register_ops *ops)
5149 {
5150 int result = next_aclass_value++;
5151
5152 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5153 gdb_assert (result < MAX_SYMBOL_IMPLS);
5154 symbol_impl[result].aclass = aclass;
5155 symbol_impl[result].ops_register = ops;
5156
5157 return result;
5158 }
5159
5160 /* Initialize elements of 'symbol_impl' for the constants in enum
5161 address_class. */
5162
5163 static void
5164 initialize_ordinary_address_classes (void)
5165 {
5166 int i;
5167
5168 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5169 symbol_impl[i].aclass = i;
5170 }
5171
5172 \f
5173
5174 /* Initialize the symbol SYM. */
5175
5176 void
5177 initialize_symbol (struct symbol *sym)
5178 {
5179 memset (sym, 0, sizeof (*sym));
5180 SYMBOL_SECTION (sym) = -1;
5181 }
5182
5183 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5184 obstack. */
5185
5186 struct symbol *
5187 allocate_symbol (struct objfile *objfile)
5188 {
5189 struct symbol *result;
5190
5191 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5192 SYMBOL_SECTION (result) = -1;
5193
5194 return result;
5195 }
5196
5197 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5198 obstack. */
5199
5200 struct template_symbol *
5201 allocate_template_symbol (struct objfile *objfile)
5202 {
5203 struct template_symbol *result;
5204
5205 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5206 SYMBOL_SECTION (&result->base) = -1;
5207
5208 return result;
5209 }
5210
5211 \f
5212
5213 void
5214 _initialize_symtab (void)
5215 {
5216 initialize_ordinary_address_classes ();
5217
5218 add_info ("variables", variables_info, _("\
5219 All global and static variable names, or those matching REGEXP."));
5220 if (dbx_commands)
5221 add_com ("whereis", class_info, variables_info, _("\
5222 All global and static variable names, or those matching REGEXP."));
5223
5224 add_info ("functions", functions_info,
5225 _("All function names, or those matching REGEXP."));
5226
5227 /* FIXME: This command has at least the following problems:
5228 1. It prints builtin types (in a very strange and confusing fashion).
5229 2. It doesn't print right, e.g. with
5230 typedef struct foo *FOO
5231 type_print prints "FOO" when we want to make it (in this situation)
5232 print "struct foo *".
5233 I also think "ptype" or "whatis" is more likely to be useful (but if
5234 there is much disagreement "info types" can be fixed). */
5235 add_info ("types", types_info,
5236 _("All type names, or those matching REGEXP."));
5237
5238 add_info ("sources", sources_info,
5239 _("Source files in the program."));
5240
5241 add_com ("rbreak", class_breakpoint, rbreak_command,
5242 _("Set a breakpoint for all functions matching REGEXP."));
5243
5244 if (xdb_commands)
5245 {
5246 add_com ("lf", class_info, sources_info,
5247 _("Source files in the program"));
5248 add_com ("lg", class_info, variables_info, _("\
5249 All global and static variable names, or those matching REGEXP."));
5250 }
5251
5252 add_setshow_enum_cmd ("multiple-symbols", no_class,
5253 multiple_symbols_modes, &multiple_symbols_mode,
5254 _("\
5255 Set the debugger behavior when more than one symbol are possible matches\n\
5256 in an expression."), _("\
5257 Show how the debugger handles ambiguities in expressions."), _("\
5258 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5259 NULL, NULL, &setlist, &showlist);
5260
5261 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5262 &basenames_may_differ, _("\
5263 Set whether a source file may have multiple base names."), _("\
5264 Show whether a source file may have multiple base names."), _("\
5265 (A \"base name\" is the name of a file with the directory part removed.\n\
5266 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5267 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5268 before comparing them. Canonicalization is an expensive operation,\n\
5269 but it allows the same file be known by more than one base name.\n\
5270 If not set (the default), all source files are assumed to have just\n\
5271 one base name, and gdb will do file name comparisons more efficiently."),
5272 NULL, NULL,
5273 &setlist, &showlist);
5274
5275 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5276 _("Set debugging of symbol table creation."),
5277 _("Show debugging of symbol table creation."), _("\
5278 When enabled, debugging messages are printed when building symbol tables."),
5279 NULL,
5280 NULL,
5281 &setdebuglist, &showdebuglist);
5282
5283 observer_attach_executable_changed (symtab_observer_executable_changed);
5284 }
This page took 0.20334 seconds and 5 git commands to generate.