Rename some "aux" functions.
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63
64 /* Forward declarations for local functions. */
65
66 static void rbreak_command (char *, int);
67
68 static int find_line_common (struct linetable *, int, int *, int);
69
70 static struct symbol *lookup_symbol_aux (const char *name,
71 const struct block *block,
72 const domain_enum domain,
73 enum language language,
74 struct field_of_this_result *);
75
76 static
77 struct symbol *lookup_local_symbol (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language);
81
82 static
83 struct symbol *lookup_symbol_in_all_objfiles (int block_index,
84 const char *name,
85 const domain_enum domain);
86
87 static
88 struct symbol *lookup_symbol_via_quick_fns (struct objfile *objfile,
89 int block_index,
90 const char *name,
91 const domain_enum domain);
92
93 extern initialize_file_ftype _initialize_symtab;
94
95 /* Program space key for finding name and language of "main". */
96
97 static const struct program_space_data *main_progspace_key;
98
99 /* Type of the data stored on the program space. */
100
101 struct main_info
102 {
103 /* Name of "main". */
104
105 char *name_of_main;
106
107 /* Language of "main". */
108
109 enum language language_of_main;
110 };
111
112 /* When non-zero, print debugging messages related to symtab creation. */
113 unsigned int symtab_create_debug = 0;
114
115 /* Non-zero if a file may be known by two different basenames.
116 This is the uncommon case, and significantly slows down gdb.
117 Default set to "off" to not slow down the common case. */
118 int basenames_may_differ = 0;
119
120 /* Allow the user to configure the debugger behavior with respect
121 to multiple-choice menus when more than one symbol matches during
122 a symbol lookup. */
123
124 const char multiple_symbols_ask[] = "ask";
125 const char multiple_symbols_all[] = "all";
126 const char multiple_symbols_cancel[] = "cancel";
127 static const char *const multiple_symbols_modes[] =
128 {
129 multiple_symbols_ask,
130 multiple_symbols_all,
131 multiple_symbols_cancel,
132 NULL
133 };
134 static const char *multiple_symbols_mode = multiple_symbols_all;
135
136 /* Read-only accessor to AUTO_SELECT_MODE. */
137
138 const char *
139 multiple_symbols_select_mode (void)
140 {
141 return multiple_symbols_mode;
142 }
143
144 /* Block in which the most recently searched-for symbol was found.
145 Might be better to make this a parameter to lookup_symbol and
146 value_of_this. */
147
148 const struct block *block_found;
149
150 /* Return the name of a domain_enum. */
151
152 const char *
153 domain_name (domain_enum e)
154 {
155 switch (e)
156 {
157 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
158 case VAR_DOMAIN: return "VAR_DOMAIN";
159 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
160 case LABEL_DOMAIN: return "LABEL_DOMAIN";
161 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
162 default: gdb_assert_not_reached ("bad domain_enum");
163 }
164 }
165
166 /* Return the name of a search_domain . */
167
168 const char *
169 search_domain_name (enum search_domain e)
170 {
171 switch (e)
172 {
173 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
174 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
175 case TYPES_DOMAIN: return "TYPES_DOMAIN";
176 case ALL_DOMAIN: return "ALL_DOMAIN";
177 default: gdb_assert_not_reached ("bad search_domain");
178 }
179 }
180
181 /* Set the primary field in SYMTAB. */
182
183 void
184 set_symtab_primary (struct symtab *symtab, int primary)
185 {
186 symtab->primary = primary;
187
188 if (symtab_create_debug && primary)
189 {
190 fprintf_unfiltered (gdb_stdlog,
191 "Created primary symtab %s for %s.\n",
192 host_address_to_string (symtab),
193 symtab_to_filename_for_display (symtab));
194 }
195 }
196
197 /* See whether FILENAME matches SEARCH_NAME using the rule that we
198 advertise to the user. (The manual's description of linespecs
199 describes what we advertise). Returns true if they match, false
200 otherwise. */
201
202 int
203 compare_filenames_for_search (const char *filename, const char *search_name)
204 {
205 int len = strlen (filename);
206 size_t search_len = strlen (search_name);
207
208 if (len < search_len)
209 return 0;
210
211 /* The tail of FILENAME must match. */
212 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
213 return 0;
214
215 /* Either the names must completely match, or the character
216 preceding the trailing SEARCH_NAME segment of FILENAME must be a
217 directory separator.
218
219 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
220 cannot match FILENAME "/path//dir/file.c" - as user has requested
221 absolute path. The sama applies for "c:\file.c" possibly
222 incorrectly hypothetically matching "d:\dir\c:\file.c".
223
224 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
225 compatible with SEARCH_NAME "file.c". In such case a compiler had
226 to put the "c:file.c" name into debug info. Such compatibility
227 works only on GDB built for DOS host. */
228 return (len == search_len
229 || (!IS_ABSOLUTE_PATH (search_name)
230 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
231 || (HAS_DRIVE_SPEC (filename)
232 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
233 }
234
235 /* Check for a symtab of a specific name by searching some symtabs.
236 This is a helper function for callbacks of iterate_over_symtabs.
237
238 If NAME is not absolute, then REAL_PATH is NULL
239 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
240
241 The return value, NAME, REAL_PATH, CALLBACK, and DATA
242 are identical to the `map_symtabs_matching_filename' method of
243 quick_symbol_functions.
244
245 FIRST and AFTER_LAST indicate the range of symtabs to search.
246 AFTER_LAST is one past the last symtab to search; NULL means to
247 search until the end of the list. */
248
249 int
250 iterate_over_some_symtabs (const char *name,
251 const char *real_path,
252 int (*callback) (struct symtab *symtab,
253 void *data),
254 void *data,
255 struct symtab *first,
256 struct symtab *after_last)
257 {
258 struct symtab *s = NULL;
259 const char* base_name = lbasename (name);
260
261 for (s = first; s != NULL && s != after_last; s = s->next)
262 {
263 if (compare_filenames_for_search (s->filename, name))
264 {
265 if (callback (s, data))
266 return 1;
267 continue;
268 }
269
270 /* Before we invoke realpath, which can get expensive when many
271 files are involved, do a quick comparison of the basenames. */
272 if (! basenames_may_differ
273 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
274 continue;
275
276 if (compare_filenames_for_search (symtab_to_fullname (s), name))
277 {
278 if (callback (s, data))
279 return 1;
280 continue;
281 }
282
283 /* If the user gave us an absolute path, try to find the file in
284 this symtab and use its absolute path. */
285 if (real_path != NULL)
286 {
287 const char *fullname = symtab_to_fullname (s);
288
289 gdb_assert (IS_ABSOLUTE_PATH (real_path));
290 gdb_assert (IS_ABSOLUTE_PATH (name));
291 if (FILENAME_CMP (real_path, fullname) == 0)
292 {
293 if (callback (s, data))
294 return 1;
295 continue;
296 }
297 }
298 }
299
300 return 0;
301 }
302
303 /* Check for a symtab of a specific name; first in symtabs, then in
304 psymtabs. *If* there is no '/' in the name, a match after a '/'
305 in the symtab filename will also work.
306
307 Calls CALLBACK with each symtab that is found and with the supplied
308 DATA. If CALLBACK returns true, the search stops. */
309
310 void
311 iterate_over_symtabs (const char *name,
312 int (*callback) (struct symtab *symtab,
313 void *data),
314 void *data)
315 {
316 struct objfile *objfile;
317 char *real_path = NULL;
318 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
319
320 /* Here we are interested in canonicalizing an absolute path, not
321 absolutizing a relative path. */
322 if (IS_ABSOLUTE_PATH (name))
323 {
324 real_path = gdb_realpath (name);
325 make_cleanup (xfree, real_path);
326 gdb_assert (IS_ABSOLUTE_PATH (real_path));
327 }
328
329 ALL_OBJFILES (objfile)
330 {
331 if (iterate_over_some_symtabs (name, real_path, callback, data,
332 objfile->symtabs, NULL))
333 {
334 do_cleanups (cleanups);
335 return;
336 }
337 }
338
339 /* Same search rules as above apply here, but now we look thru the
340 psymtabs. */
341
342 ALL_OBJFILES (objfile)
343 {
344 if (objfile->sf
345 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
346 name,
347 real_path,
348 callback,
349 data))
350 {
351 do_cleanups (cleanups);
352 return;
353 }
354 }
355
356 do_cleanups (cleanups);
357 }
358
359 /* The callback function used by lookup_symtab. */
360
361 static int
362 lookup_symtab_callback (struct symtab *symtab, void *data)
363 {
364 struct symtab **result_ptr = data;
365
366 *result_ptr = symtab;
367 return 1;
368 }
369
370 /* A wrapper for iterate_over_symtabs that returns the first matching
371 symtab, or NULL. */
372
373 struct symtab *
374 lookup_symtab (const char *name)
375 {
376 struct symtab *result = NULL;
377
378 iterate_over_symtabs (name, lookup_symtab_callback, &result);
379 return result;
380 }
381
382 \f
383 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
384 full method name, which consist of the class name (from T), the unadorned
385 method name from METHOD_ID, and the signature for the specific overload,
386 specified by SIGNATURE_ID. Note that this function is g++ specific. */
387
388 char *
389 gdb_mangle_name (struct type *type, int method_id, int signature_id)
390 {
391 int mangled_name_len;
392 char *mangled_name;
393 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
394 struct fn_field *method = &f[signature_id];
395 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
396 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
397 const char *newname = type_name_no_tag (type);
398
399 /* Does the form of physname indicate that it is the full mangled name
400 of a constructor (not just the args)? */
401 int is_full_physname_constructor;
402
403 int is_constructor;
404 int is_destructor = is_destructor_name (physname);
405 /* Need a new type prefix. */
406 char *const_prefix = method->is_const ? "C" : "";
407 char *volatile_prefix = method->is_volatile ? "V" : "";
408 char buf[20];
409 int len = (newname == NULL ? 0 : strlen (newname));
410
411 /* Nothing to do if physname already contains a fully mangled v3 abi name
412 or an operator name. */
413 if ((physname[0] == '_' && physname[1] == 'Z')
414 || is_operator_name (field_name))
415 return xstrdup (physname);
416
417 is_full_physname_constructor = is_constructor_name (physname);
418
419 is_constructor = is_full_physname_constructor
420 || (newname && strcmp (field_name, newname) == 0);
421
422 if (!is_destructor)
423 is_destructor = (strncmp (physname, "__dt", 4) == 0);
424
425 if (is_destructor || is_full_physname_constructor)
426 {
427 mangled_name = (char *) xmalloc (strlen (physname) + 1);
428 strcpy (mangled_name, physname);
429 return mangled_name;
430 }
431
432 if (len == 0)
433 {
434 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
435 }
436 else if (physname[0] == 't' || physname[0] == 'Q')
437 {
438 /* The physname for template and qualified methods already includes
439 the class name. */
440 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
441 newname = NULL;
442 len = 0;
443 }
444 else
445 {
446 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
447 volatile_prefix, len);
448 }
449 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
450 + strlen (buf) + len + strlen (physname) + 1);
451
452 mangled_name = (char *) xmalloc (mangled_name_len);
453 if (is_constructor)
454 mangled_name[0] = '\0';
455 else
456 strcpy (mangled_name, field_name);
457
458 strcat (mangled_name, buf);
459 /* If the class doesn't have a name, i.e. newname NULL, then we just
460 mangle it using 0 for the length of the class. Thus it gets mangled
461 as something starting with `::' rather than `classname::'. */
462 if (newname != NULL)
463 strcat (mangled_name, newname);
464
465 strcat (mangled_name, physname);
466 return (mangled_name);
467 }
468
469 /* Initialize the cplus_specific structure. 'cplus_specific' should
470 only be allocated for use with cplus symbols. */
471
472 static void
473 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
474 struct obstack *obstack)
475 {
476 /* A language_specific structure should not have been previously
477 initialized. */
478 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
479 gdb_assert (obstack != NULL);
480
481 gsymbol->language_specific.cplus_specific =
482 OBSTACK_ZALLOC (obstack, struct cplus_specific);
483 }
484
485 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
486 correctly allocated. For C++ symbols a cplus_specific struct is
487 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
488 OBJFILE can be NULL. */
489
490 void
491 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
492 const char *name,
493 struct obstack *obstack)
494 {
495 if (gsymbol->language == language_cplus)
496 {
497 if (gsymbol->language_specific.cplus_specific == NULL)
498 symbol_init_cplus_specific (gsymbol, obstack);
499
500 gsymbol->language_specific.cplus_specific->demangled_name = name;
501 }
502 else if (gsymbol->language == language_ada)
503 {
504 if (name == NULL)
505 {
506 gsymbol->ada_mangled = 0;
507 gsymbol->language_specific.obstack = obstack;
508 }
509 else
510 {
511 gsymbol->ada_mangled = 1;
512 gsymbol->language_specific.mangled_lang.demangled_name = name;
513 }
514 }
515 else
516 gsymbol->language_specific.mangled_lang.demangled_name = name;
517 }
518
519 /* Return the demangled name of GSYMBOL. */
520
521 const char *
522 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
523 {
524 if (gsymbol->language == language_cplus)
525 {
526 if (gsymbol->language_specific.cplus_specific != NULL)
527 return gsymbol->language_specific.cplus_specific->demangled_name;
528 else
529 return NULL;
530 }
531 else if (gsymbol->language == language_ada)
532 {
533 if (!gsymbol->ada_mangled)
534 return NULL;
535 /* Fall through. */
536 }
537
538 return gsymbol->language_specific.mangled_lang.demangled_name;
539 }
540
541 \f
542 /* Initialize the language dependent portion of a symbol
543 depending upon the language for the symbol. */
544
545 void
546 symbol_set_language (struct general_symbol_info *gsymbol,
547 enum language language,
548 struct obstack *obstack)
549 {
550 gsymbol->language = language;
551 if (gsymbol->language == language_d
552 || gsymbol->language == language_go
553 || gsymbol->language == language_java
554 || gsymbol->language == language_objc
555 || gsymbol->language == language_fortran)
556 {
557 symbol_set_demangled_name (gsymbol, NULL, obstack);
558 }
559 else if (gsymbol->language == language_ada)
560 {
561 gdb_assert (gsymbol->ada_mangled == 0);
562 gsymbol->language_specific.obstack = obstack;
563 }
564 else if (gsymbol->language == language_cplus)
565 gsymbol->language_specific.cplus_specific = NULL;
566 else
567 {
568 memset (&gsymbol->language_specific, 0,
569 sizeof (gsymbol->language_specific));
570 }
571 }
572
573 /* Functions to initialize a symbol's mangled name. */
574
575 /* Objects of this type are stored in the demangled name hash table. */
576 struct demangled_name_entry
577 {
578 const char *mangled;
579 char demangled[1];
580 };
581
582 /* Hash function for the demangled name hash. */
583
584 static hashval_t
585 hash_demangled_name_entry (const void *data)
586 {
587 const struct demangled_name_entry *e = data;
588
589 return htab_hash_string (e->mangled);
590 }
591
592 /* Equality function for the demangled name hash. */
593
594 static int
595 eq_demangled_name_entry (const void *a, const void *b)
596 {
597 const struct demangled_name_entry *da = a;
598 const struct demangled_name_entry *db = b;
599
600 return strcmp (da->mangled, db->mangled) == 0;
601 }
602
603 /* Create the hash table used for demangled names. Each hash entry is
604 a pair of strings; one for the mangled name and one for the demangled
605 name. The entry is hashed via just the mangled name. */
606
607 static void
608 create_demangled_names_hash (struct objfile *objfile)
609 {
610 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
611 The hash table code will round this up to the next prime number.
612 Choosing a much larger table size wastes memory, and saves only about
613 1% in symbol reading. */
614
615 objfile->per_bfd->demangled_names_hash = htab_create_alloc
616 (256, hash_demangled_name_entry, eq_demangled_name_entry,
617 NULL, xcalloc, xfree);
618 }
619
620 /* Try to determine the demangled name for a symbol, based on the
621 language of that symbol. If the language is set to language_auto,
622 it will attempt to find any demangling algorithm that works and
623 then set the language appropriately. The returned name is allocated
624 by the demangler and should be xfree'd. */
625
626 static char *
627 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
628 const char *mangled)
629 {
630 char *demangled = NULL;
631
632 if (gsymbol->language == language_unknown)
633 gsymbol->language = language_auto;
634
635 if (gsymbol->language == language_objc
636 || gsymbol->language == language_auto)
637 {
638 demangled =
639 objc_demangle (mangled, 0);
640 if (demangled != NULL)
641 {
642 gsymbol->language = language_objc;
643 return demangled;
644 }
645 }
646 if (gsymbol->language == language_cplus
647 || gsymbol->language == language_auto)
648 {
649 demangled =
650 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
651 if (demangled != NULL)
652 {
653 gsymbol->language = language_cplus;
654 return demangled;
655 }
656 }
657 if (gsymbol->language == language_java)
658 {
659 demangled =
660 gdb_demangle (mangled,
661 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
662 if (demangled != NULL)
663 {
664 gsymbol->language = language_java;
665 return demangled;
666 }
667 }
668 if (gsymbol->language == language_d
669 || gsymbol->language == language_auto)
670 {
671 demangled = d_demangle(mangled, 0);
672 if (demangled != NULL)
673 {
674 gsymbol->language = language_d;
675 return demangled;
676 }
677 }
678 /* FIXME(dje): Continually adding languages here is clumsy.
679 Better to just call la_demangle if !auto, and if auto then call
680 a utility routine that tries successive languages in turn and reports
681 which one it finds. I realize the la_demangle options may be different
682 for different languages but there's already a FIXME for that. */
683 if (gsymbol->language == language_go
684 || gsymbol->language == language_auto)
685 {
686 demangled = go_demangle (mangled, 0);
687 if (demangled != NULL)
688 {
689 gsymbol->language = language_go;
690 return demangled;
691 }
692 }
693
694 /* We could support `gsymbol->language == language_fortran' here to provide
695 module namespaces also for inferiors with only minimal symbol table (ELF
696 symbols). Just the mangling standard is not standardized across compilers
697 and there is no DW_AT_producer available for inferiors with only the ELF
698 symbols to check the mangling kind. */
699
700 /* Check for Ada symbols last. See comment below explaining why. */
701
702 if (gsymbol->language == language_auto)
703 {
704 const char *demangled = ada_decode (mangled);
705
706 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
707 {
708 /* Set the gsymbol language to Ada, but still return NULL.
709 Two reasons for that:
710
711 1. For Ada, we prefer computing the symbol's decoded name
712 on the fly rather than pre-compute it, in order to save
713 memory (Ada projects are typically very large).
714
715 2. There are some areas in the definition of the GNAT
716 encoding where, with a bit of bad luck, we might be able
717 to decode a non-Ada symbol, generating an incorrect
718 demangled name (Eg: names ending with "TB" for instance
719 are identified as task bodies and so stripped from
720 the decoded name returned).
721
722 Returning NULL, here, helps us get a little bit of
723 the best of both worlds. Because we're last, we should
724 not affect any of the other languages that were able to
725 demangle the symbol before us; we get to correctly tag
726 Ada symbols as such; and even if we incorrectly tagged
727 a non-Ada symbol, which should be rare, any routing
728 through the Ada language should be transparent (Ada
729 tries to behave much like C/C++ with non-Ada symbols). */
730 gsymbol->language = language_ada;
731 return NULL;
732 }
733 }
734
735 return NULL;
736 }
737
738 /* Set both the mangled and demangled (if any) names for GSYMBOL based
739 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
740 objfile's obstack; but if COPY_NAME is 0 and if NAME is
741 NUL-terminated, then this function assumes that NAME is already
742 correctly saved (either permanently or with a lifetime tied to the
743 objfile), and it will not be copied.
744
745 The hash table corresponding to OBJFILE is used, and the memory
746 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
747 so the pointer can be discarded after calling this function. */
748
749 /* We have to be careful when dealing with Java names: when we run
750 into a Java minimal symbol, we don't know it's a Java symbol, so it
751 gets demangled as a C++ name. This is unfortunate, but there's not
752 much we can do about it: but when demangling partial symbols and
753 regular symbols, we'd better not reuse the wrong demangled name.
754 (See PR gdb/1039.) We solve this by putting a distinctive prefix
755 on Java names when storing them in the hash table. */
756
757 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
758 don't mind the Java prefix so much: different languages have
759 different demangling requirements, so it's only natural that we
760 need to keep language data around in our demangling cache. But
761 it's not good that the minimal symbol has the wrong demangled name.
762 Unfortunately, I can't think of any easy solution to that
763 problem. */
764
765 #define JAVA_PREFIX "##JAVA$$"
766 #define JAVA_PREFIX_LEN 8
767
768 void
769 symbol_set_names (struct general_symbol_info *gsymbol,
770 const char *linkage_name, int len, int copy_name,
771 struct objfile *objfile)
772 {
773 struct demangled_name_entry **slot;
774 /* A 0-terminated copy of the linkage name. */
775 const char *linkage_name_copy;
776 /* A copy of the linkage name that might have a special Java prefix
777 added to it, for use when looking names up in the hash table. */
778 const char *lookup_name;
779 /* The length of lookup_name. */
780 int lookup_len;
781 struct demangled_name_entry entry;
782 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
783
784 if (gsymbol->language == language_ada)
785 {
786 /* In Ada, we do the symbol lookups using the mangled name, so
787 we can save some space by not storing the demangled name.
788
789 As a side note, we have also observed some overlap between
790 the C++ mangling and Ada mangling, similarly to what has
791 been observed with Java. Because we don't store the demangled
792 name with the symbol, we don't need to use the same trick
793 as Java. */
794 if (!copy_name)
795 gsymbol->name = linkage_name;
796 else
797 {
798 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
799
800 memcpy (name, linkage_name, len);
801 name[len] = '\0';
802 gsymbol->name = name;
803 }
804 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
805
806 return;
807 }
808
809 if (per_bfd->demangled_names_hash == NULL)
810 create_demangled_names_hash (objfile);
811
812 /* The stabs reader generally provides names that are not
813 NUL-terminated; most of the other readers don't do this, so we
814 can just use the given copy, unless we're in the Java case. */
815 if (gsymbol->language == language_java)
816 {
817 char *alloc_name;
818
819 lookup_len = len + JAVA_PREFIX_LEN;
820 alloc_name = alloca (lookup_len + 1);
821 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
822 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
823 alloc_name[lookup_len] = '\0';
824
825 lookup_name = alloc_name;
826 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
827 }
828 else if (linkage_name[len] != '\0')
829 {
830 char *alloc_name;
831
832 lookup_len = len;
833 alloc_name = alloca (lookup_len + 1);
834 memcpy (alloc_name, linkage_name, len);
835 alloc_name[lookup_len] = '\0';
836
837 lookup_name = alloc_name;
838 linkage_name_copy = alloc_name;
839 }
840 else
841 {
842 lookup_len = len;
843 lookup_name = linkage_name;
844 linkage_name_copy = linkage_name;
845 }
846
847 entry.mangled = lookup_name;
848 slot = ((struct demangled_name_entry **)
849 htab_find_slot (per_bfd->demangled_names_hash,
850 &entry, INSERT));
851
852 /* If this name is not in the hash table, add it. */
853 if (*slot == NULL
854 /* A C version of the symbol may have already snuck into the table.
855 This happens to, e.g., main.init (__go_init_main). Cope. */
856 || (gsymbol->language == language_go
857 && (*slot)->demangled[0] == '\0'))
858 {
859 char *demangled_name = symbol_find_demangled_name (gsymbol,
860 linkage_name_copy);
861 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
862
863 /* Suppose we have demangled_name==NULL, copy_name==0, and
864 lookup_name==linkage_name. In this case, we already have the
865 mangled name saved, and we don't have a demangled name. So,
866 you might think we could save a little space by not recording
867 this in the hash table at all.
868
869 It turns out that it is actually important to still save such
870 an entry in the hash table, because storing this name gives
871 us better bcache hit rates for partial symbols. */
872 if (!copy_name && lookup_name == linkage_name)
873 {
874 *slot = obstack_alloc (&per_bfd->storage_obstack,
875 offsetof (struct demangled_name_entry,
876 demangled)
877 + demangled_len + 1);
878 (*slot)->mangled = lookup_name;
879 }
880 else
881 {
882 char *mangled_ptr;
883
884 /* If we must copy the mangled name, put it directly after
885 the demangled name so we can have a single
886 allocation. */
887 *slot = obstack_alloc (&per_bfd->storage_obstack,
888 offsetof (struct demangled_name_entry,
889 demangled)
890 + lookup_len + demangled_len + 2);
891 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
892 strcpy (mangled_ptr, lookup_name);
893 (*slot)->mangled = mangled_ptr;
894 }
895
896 if (demangled_name != NULL)
897 {
898 strcpy ((*slot)->demangled, demangled_name);
899 xfree (demangled_name);
900 }
901 else
902 (*slot)->demangled[0] = '\0';
903 }
904
905 gsymbol->name = (*slot)->mangled + lookup_len - len;
906 if ((*slot)->demangled[0] != '\0')
907 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
908 &per_bfd->storage_obstack);
909 else
910 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
911 }
912
913 /* Return the source code name of a symbol. In languages where
914 demangling is necessary, this is the demangled name. */
915
916 const char *
917 symbol_natural_name (const struct general_symbol_info *gsymbol)
918 {
919 switch (gsymbol->language)
920 {
921 case language_cplus:
922 case language_d:
923 case language_go:
924 case language_java:
925 case language_objc:
926 case language_fortran:
927 if (symbol_get_demangled_name (gsymbol) != NULL)
928 return symbol_get_demangled_name (gsymbol);
929 break;
930 case language_ada:
931 return ada_decode_symbol (gsymbol);
932 default:
933 break;
934 }
935 return gsymbol->name;
936 }
937
938 /* Return the demangled name for a symbol based on the language for
939 that symbol. If no demangled name exists, return NULL. */
940
941 const char *
942 symbol_demangled_name (const struct general_symbol_info *gsymbol)
943 {
944 const char *dem_name = NULL;
945
946 switch (gsymbol->language)
947 {
948 case language_cplus:
949 case language_d:
950 case language_go:
951 case language_java:
952 case language_objc:
953 case language_fortran:
954 dem_name = symbol_get_demangled_name (gsymbol);
955 break;
956 case language_ada:
957 dem_name = ada_decode_symbol (gsymbol);
958 break;
959 default:
960 break;
961 }
962 return dem_name;
963 }
964
965 /* Return the search name of a symbol---generally the demangled or
966 linkage name of the symbol, depending on how it will be searched for.
967 If there is no distinct demangled name, then returns the same value
968 (same pointer) as SYMBOL_LINKAGE_NAME. */
969
970 const char *
971 symbol_search_name (const struct general_symbol_info *gsymbol)
972 {
973 if (gsymbol->language == language_ada)
974 return gsymbol->name;
975 else
976 return symbol_natural_name (gsymbol);
977 }
978
979 /* Initialize the structure fields to zero values. */
980
981 void
982 init_sal (struct symtab_and_line *sal)
983 {
984 memset (sal, 0, sizeof (*sal));
985 }
986 \f
987
988 /* Return 1 if the two sections are the same, or if they could
989 plausibly be copies of each other, one in an original object
990 file and another in a separated debug file. */
991
992 int
993 matching_obj_sections (struct obj_section *obj_first,
994 struct obj_section *obj_second)
995 {
996 asection *first = obj_first? obj_first->the_bfd_section : NULL;
997 asection *second = obj_second? obj_second->the_bfd_section : NULL;
998 struct objfile *obj;
999
1000 /* If they're the same section, then they match. */
1001 if (first == second)
1002 return 1;
1003
1004 /* If either is NULL, give up. */
1005 if (first == NULL || second == NULL)
1006 return 0;
1007
1008 /* This doesn't apply to absolute symbols. */
1009 if (first->owner == NULL || second->owner == NULL)
1010 return 0;
1011
1012 /* If they're in the same object file, they must be different sections. */
1013 if (first->owner == second->owner)
1014 return 0;
1015
1016 /* Check whether the two sections are potentially corresponding. They must
1017 have the same size, address, and name. We can't compare section indexes,
1018 which would be more reliable, because some sections may have been
1019 stripped. */
1020 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1021 return 0;
1022
1023 /* In-memory addresses may start at a different offset, relativize them. */
1024 if (bfd_get_section_vma (first->owner, first)
1025 - bfd_get_start_address (first->owner)
1026 != bfd_get_section_vma (second->owner, second)
1027 - bfd_get_start_address (second->owner))
1028 return 0;
1029
1030 if (bfd_get_section_name (first->owner, first) == NULL
1031 || bfd_get_section_name (second->owner, second) == NULL
1032 || strcmp (bfd_get_section_name (first->owner, first),
1033 bfd_get_section_name (second->owner, second)) != 0)
1034 return 0;
1035
1036 /* Otherwise check that they are in corresponding objfiles. */
1037
1038 ALL_OBJFILES (obj)
1039 if (obj->obfd == first->owner)
1040 break;
1041 gdb_assert (obj != NULL);
1042
1043 if (obj->separate_debug_objfile != NULL
1044 && obj->separate_debug_objfile->obfd == second->owner)
1045 return 1;
1046 if (obj->separate_debug_objfile_backlink != NULL
1047 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1048 return 1;
1049
1050 return 0;
1051 }
1052
1053 struct symtab *
1054 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
1055 {
1056 struct objfile *objfile;
1057 struct bound_minimal_symbol msymbol;
1058
1059 /* If we know that this is not a text address, return failure. This is
1060 necessary because we loop based on texthigh and textlow, which do
1061 not include the data ranges. */
1062 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1063 if (msymbol.minsym
1064 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1065 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1066 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1067 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1068 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1069 return NULL;
1070
1071 ALL_OBJFILES (objfile)
1072 {
1073 struct symtab *result = NULL;
1074
1075 if (objfile->sf)
1076 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1077 pc, section, 0);
1078 if (result)
1079 return result;
1080 }
1081
1082 return NULL;
1083 }
1084 \f
1085 /* Debug symbols usually don't have section information. We need to dig that
1086 out of the minimal symbols and stash that in the debug symbol. */
1087
1088 void
1089 fixup_section (struct general_symbol_info *ginfo,
1090 CORE_ADDR addr, struct objfile *objfile)
1091 {
1092 struct minimal_symbol *msym;
1093
1094 /* First, check whether a minimal symbol with the same name exists
1095 and points to the same address. The address check is required
1096 e.g. on PowerPC64, where the minimal symbol for a function will
1097 point to the function descriptor, while the debug symbol will
1098 point to the actual function code. */
1099 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1100 if (msym)
1101 ginfo->section = MSYMBOL_SECTION (msym);
1102 else
1103 {
1104 /* Static, function-local variables do appear in the linker
1105 (minimal) symbols, but are frequently given names that won't
1106 be found via lookup_minimal_symbol(). E.g., it has been
1107 observed in frv-uclinux (ELF) executables that a static,
1108 function-local variable named "foo" might appear in the
1109 linker symbols as "foo.6" or "foo.3". Thus, there is no
1110 point in attempting to extend the lookup-by-name mechanism to
1111 handle this case due to the fact that there can be multiple
1112 names.
1113
1114 So, instead, search the section table when lookup by name has
1115 failed. The ``addr'' and ``endaddr'' fields may have already
1116 been relocated. If so, the relocation offset (i.e. the
1117 ANOFFSET value) needs to be subtracted from these values when
1118 performing the comparison. We unconditionally subtract it,
1119 because, when no relocation has been performed, the ANOFFSET
1120 value will simply be zero.
1121
1122 The address of the symbol whose section we're fixing up HAS
1123 NOT BEEN adjusted (relocated) yet. It can't have been since
1124 the section isn't yet known and knowing the section is
1125 necessary in order to add the correct relocation value. In
1126 other words, we wouldn't even be in this function (attempting
1127 to compute the section) if it were already known.
1128
1129 Note that it is possible to search the minimal symbols
1130 (subtracting the relocation value if necessary) to find the
1131 matching minimal symbol, but this is overkill and much less
1132 efficient. It is not necessary to find the matching minimal
1133 symbol, only its section.
1134
1135 Note that this technique (of doing a section table search)
1136 can fail when unrelocated section addresses overlap. For
1137 this reason, we still attempt a lookup by name prior to doing
1138 a search of the section table. */
1139
1140 struct obj_section *s;
1141 int fallback = -1;
1142
1143 ALL_OBJFILE_OSECTIONS (objfile, s)
1144 {
1145 int idx = s - objfile->sections;
1146 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1147
1148 if (fallback == -1)
1149 fallback = idx;
1150
1151 if (obj_section_addr (s) - offset <= addr
1152 && addr < obj_section_endaddr (s) - offset)
1153 {
1154 ginfo->section = idx;
1155 return;
1156 }
1157 }
1158
1159 /* If we didn't find the section, assume it is in the first
1160 section. If there is no allocated section, then it hardly
1161 matters what we pick, so just pick zero. */
1162 if (fallback == -1)
1163 ginfo->section = 0;
1164 else
1165 ginfo->section = fallback;
1166 }
1167 }
1168
1169 struct symbol *
1170 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1171 {
1172 CORE_ADDR addr;
1173
1174 if (!sym)
1175 return NULL;
1176
1177 /* We either have an OBJFILE, or we can get at it from the sym's
1178 symtab. Anything else is a bug. */
1179 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1180
1181 if (objfile == NULL)
1182 objfile = SYMBOL_SYMTAB (sym)->objfile;
1183
1184 if (SYMBOL_OBJ_SECTION (objfile, sym))
1185 return sym;
1186
1187 /* We should have an objfile by now. */
1188 gdb_assert (objfile);
1189
1190 switch (SYMBOL_CLASS (sym))
1191 {
1192 case LOC_STATIC:
1193 case LOC_LABEL:
1194 addr = SYMBOL_VALUE_ADDRESS (sym);
1195 break;
1196 case LOC_BLOCK:
1197 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1198 break;
1199
1200 default:
1201 /* Nothing else will be listed in the minsyms -- no use looking
1202 it up. */
1203 return sym;
1204 }
1205
1206 fixup_section (&sym->ginfo, addr, objfile);
1207
1208 return sym;
1209 }
1210
1211 /* Compute the demangled form of NAME as used by the various symbol
1212 lookup functions. The result is stored in *RESULT_NAME. Returns a
1213 cleanup which can be used to clean up the result.
1214
1215 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1216 Normally, Ada symbol lookups are performed using the encoded name
1217 rather than the demangled name, and so it might seem to make sense
1218 for this function to return an encoded version of NAME.
1219 Unfortunately, we cannot do this, because this function is used in
1220 circumstances where it is not appropriate to try to encode NAME.
1221 For instance, when displaying the frame info, we demangle the name
1222 of each parameter, and then perform a symbol lookup inside our
1223 function using that demangled name. In Ada, certain functions
1224 have internally-generated parameters whose name contain uppercase
1225 characters. Encoding those name would result in those uppercase
1226 characters to become lowercase, and thus cause the symbol lookup
1227 to fail. */
1228
1229 struct cleanup *
1230 demangle_for_lookup (const char *name, enum language lang,
1231 const char **result_name)
1232 {
1233 char *demangled_name = NULL;
1234 const char *modified_name = NULL;
1235 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1236
1237 modified_name = name;
1238
1239 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1240 lookup, so we can always binary search. */
1241 if (lang == language_cplus)
1242 {
1243 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1244 if (demangled_name)
1245 {
1246 modified_name = demangled_name;
1247 make_cleanup (xfree, demangled_name);
1248 }
1249 else
1250 {
1251 /* If we were given a non-mangled name, canonicalize it
1252 according to the language (so far only for C++). */
1253 demangled_name = cp_canonicalize_string (name);
1254 if (demangled_name)
1255 {
1256 modified_name = demangled_name;
1257 make_cleanup (xfree, demangled_name);
1258 }
1259 }
1260 }
1261 else if (lang == language_java)
1262 {
1263 demangled_name = gdb_demangle (name,
1264 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1265 if (demangled_name)
1266 {
1267 modified_name = demangled_name;
1268 make_cleanup (xfree, demangled_name);
1269 }
1270 }
1271 else if (lang == language_d)
1272 {
1273 demangled_name = d_demangle (name, 0);
1274 if (demangled_name)
1275 {
1276 modified_name = demangled_name;
1277 make_cleanup (xfree, demangled_name);
1278 }
1279 }
1280 else if (lang == language_go)
1281 {
1282 demangled_name = go_demangle (name, 0);
1283 if (demangled_name)
1284 {
1285 modified_name = demangled_name;
1286 make_cleanup (xfree, demangled_name);
1287 }
1288 }
1289
1290 *result_name = modified_name;
1291 return cleanup;
1292 }
1293
1294 /* See symtab.h.
1295
1296 This function (or rather its subordinates) have a bunch of loops and
1297 it would seem to be attractive to put in some QUIT's (though I'm not really
1298 sure whether it can run long enough to be really important). But there
1299 are a few calls for which it would appear to be bad news to quit
1300 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1301 that there is C++ code below which can error(), but that probably
1302 doesn't affect these calls since they are looking for a known
1303 variable and thus can probably assume it will never hit the C++
1304 code). */
1305
1306 struct symbol *
1307 lookup_symbol_in_language (const char *name, const struct block *block,
1308 const domain_enum domain, enum language lang,
1309 struct field_of_this_result *is_a_field_of_this)
1310 {
1311 const char *modified_name;
1312 struct symbol *returnval;
1313 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1314
1315 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1316 is_a_field_of_this);
1317 do_cleanups (cleanup);
1318
1319 return returnval;
1320 }
1321
1322 /* See symtab.h. */
1323
1324 struct symbol *
1325 lookup_symbol (const char *name, const struct block *block,
1326 domain_enum domain,
1327 struct field_of_this_result *is_a_field_of_this)
1328 {
1329 return lookup_symbol_in_language (name, block, domain,
1330 current_language->la_language,
1331 is_a_field_of_this);
1332 }
1333
1334 /* See symtab.h. */
1335
1336 struct symbol *
1337 lookup_language_this (const struct language_defn *lang,
1338 const struct block *block)
1339 {
1340 if (lang->la_name_of_this == NULL || block == NULL)
1341 return NULL;
1342
1343 while (block)
1344 {
1345 struct symbol *sym;
1346
1347 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1348 if (sym != NULL)
1349 {
1350 block_found = block;
1351 return sym;
1352 }
1353 if (BLOCK_FUNCTION (block))
1354 break;
1355 block = BLOCK_SUPERBLOCK (block);
1356 }
1357
1358 return NULL;
1359 }
1360
1361 /* Given TYPE, a structure/union,
1362 return 1 if the component named NAME from the ultimate target
1363 structure/union is defined, otherwise, return 0. */
1364
1365 static int
1366 check_field (struct type *type, const char *name,
1367 struct field_of_this_result *is_a_field_of_this)
1368 {
1369 int i;
1370
1371 /* The type may be a stub. */
1372 CHECK_TYPEDEF (type);
1373
1374 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1375 {
1376 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1377
1378 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1379 {
1380 is_a_field_of_this->type = type;
1381 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1382 return 1;
1383 }
1384 }
1385
1386 /* C++: If it was not found as a data field, then try to return it
1387 as a pointer to a method. */
1388
1389 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1390 {
1391 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1392 {
1393 is_a_field_of_this->type = type;
1394 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1395 return 1;
1396 }
1397 }
1398
1399 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1400 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1401 return 1;
1402
1403 return 0;
1404 }
1405
1406 /* Behave like lookup_symbol except that NAME is the natural name
1407 (e.g., demangled name) of the symbol that we're looking for. */
1408
1409 static struct symbol *
1410 lookup_symbol_aux (const char *name, const struct block *block,
1411 const domain_enum domain, enum language language,
1412 struct field_of_this_result *is_a_field_of_this)
1413 {
1414 struct symbol *sym;
1415 const struct language_defn *langdef;
1416
1417 /* Make sure we do something sensible with is_a_field_of_this, since
1418 the callers that set this parameter to some non-null value will
1419 certainly use it later. If we don't set it, the contents of
1420 is_a_field_of_this are undefined. */
1421 if (is_a_field_of_this != NULL)
1422 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1423
1424 /* Search specified block and its superiors. Don't search
1425 STATIC_BLOCK or GLOBAL_BLOCK. */
1426
1427 sym = lookup_local_symbol (name, block, domain, language);
1428 if (sym != NULL)
1429 return sym;
1430
1431 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1432 check to see if NAME is a field of `this'. */
1433
1434 langdef = language_def (language);
1435
1436 /* Don't do this check if we are searching for a struct. It will
1437 not be found by check_field, but will be found by other
1438 means. */
1439 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1440 {
1441 struct symbol *sym = lookup_language_this (langdef, block);
1442
1443 if (sym)
1444 {
1445 struct type *t = sym->type;
1446
1447 /* I'm not really sure that type of this can ever
1448 be typedefed; just be safe. */
1449 CHECK_TYPEDEF (t);
1450 if (TYPE_CODE (t) == TYPE_CODE_PTR
1451 || TYPE_CODE (t) == TYPE_CODE_REF)
1452 t = TYPE_TARGET_TYPE (t);
1453
1454 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1455 && TYPE_CODE (t) != TYPE_CODE_UNION)
1456 error (_("Internal error: `%s' is not an aggregate"),
1457 langdef->la_name_of_this);
1458
1459 if (check_field (t, name, is_a_field_of_this))
1460 return NULL;
1461 }
1462 }
1463
1464 /* Now do whatever is appropriate for LANGUAGE to look
1465 up static and global variables. */
1466
1467 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1468 if (sym != NULL)
1469 return sym;
1470
1471 /* Now search all static file-level symbols. Not strictly correct,
1472 but more useful than an error. */
1473
1474 return lookup_static_symbol (name, domain);
1475 }
1476
1477 /* See symtab.h. */
1478
1479 struct symbol *
1480 lookup_static_symbol (const char *name, const domain_enum domain)
1481 {
1482 struct objfile *objfile;
1483 struct symbol *sym;
1484
1485 sym = lookup_symbol_in_all_objfiles (STATIC_BLOCK, name, domain);
1486 if (sym != NULL)
1487 return sym;
1488
1489 ALL_OBJFILES (objfile)
1490 {
1491 sym = lookup_symbol_via_quick_fns (objfile, STATIC_BLOCK, name, domain);
1492 if (sym != NULL)
1493 return sym;
1494 }
1495
1496 return NULL;
1497 }
1498
1499 /* Check to see if the symbol is defined in BLOCK or its superiors.
1500 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1501
1502 static struct symbol *
1503 lookup_local_symbol (const char *name, const struct block *block,
1504 const domain_enum domain,
1505 enum language language)
1506 {
1507 struct symbol *sym;
1508 const struct block *static_block = block_static_block (block);
1509 const char *scope = block_scope (block);
1510
1511 /* Check if either no block is specified or it's a global block. */
1512
1513 if (static_block == NULL)
1514 return NULL;
1515
1516 while (block != static_block)
1517 {
1518 sym = lookup_symbol_in_block (name, block, domain);
1519 if (sym != NULL)
1520 return sym;
1521
1522 if (language == language_cplus || language == language_fortran)
1523 {
1524 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1525 domain);
1526 if (sym != NULL)
1527 return sym;
1528 }
1529
1530 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1531 break;
1532 block = BLOCK_SUPERBLOCK (block);
1533 }
1534
1535 /* We've reached the end of the function without finding a result. */
1536
1537 return NULL;
1538 }
1539
1540 /* See symtab.h. */
1541
1542 struct objfile *
1543 lookup_objfile_from_block (const struct block *block)
1544 {
1545 struct objfile *obj;
1546 struct symtab *s;
1547
1548 if (block == NULL)
1549 return NULL;
1550
1551 block = block_global_block (block);
1552 /* Go through SYMTABS.
1553 Non-primary symtabs share the block vector with their primary symtabs
1554 so we use ALL_PRIMARY_SYMTABS here instead of ALL_SYMTABS. */
1555 ALL_PRIMARY_SYMTABS (obj, s)
1556 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1557 {
1558 if (obj->separate_debug_objfile_backlink)
1559 obj = obj->separate_debug_objfile_backlink;
1560
1561 return obj;
1562 }
1563
1564 return NULL;
1565 }
1566
1567 /* See symtab.h. */
1568
1569 struct symbol *
1570 lookup_symbol_in_block (const char *name, const struct block *block,
1571 const domain_enum domain)
1572 {
1573 struct symbol *sym;
1574
1575 sym = block_lookup_symbol (block, name, domain);
1576 if (sym)
1577 {
1578 block_found = block;
1579 return fixup_symbol_section (sym, NULL);
1580 }
1581
1582 return NULL;
1583 }
1584
1585 /* See symtab.h. */
1586
1587 struct symbol *
1588 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1589 const char *name,
1590 const domain_enum domain)
1591 {
1592 const struct objfile *objfile;
1593 struct symbol *sym;
1594 const struct blockvector *bv;
1595 const struct block *block;
1596 struct symtab *s;
1597
1598 for (objfile = main_objfile;
1599 objfile;
1600 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1601 {
1602 /* Go through symtabs. */
1603 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1604 {
1605 bv = BLOCKVECTOR (s);
1606 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1607 sym = block_lookup_symbol (block, name, domain);
1608 if (sym)
1609 {
1610 block_found = block;
1611 return fixup_symbol_section (sym, (struct objfile *)objfile);
1612 }
1613 }
1614
1615 sym = lookup_symbol_via_quick_fns ((struct objfile *) objfile,
1616 GLOBAL_BLOCK, name, domain);
1617 if (sym)
1618 return sym;
1619 }
1620
1621 return NULL;
1622 }
1623
1624 /* Check to see if the symbol is defined in one of the OBJFILE's
1625 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1626 depending on whether or not we want to search global symbols or
1627 static symbols. */
1628
1629 static struct symbol *
1630 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
1631 const char *name, const domain_enum domain)
1632 {
1633 struct symbol *sym = NULL;
1634 const struct blockvector *bv;
1635 const struct block *block;
1636 struct symtab *s;
1637
1638 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1639 {
1640 bv = BLOCKVECTOR (s);
1641 block = BLOCKVECTOR_BLOCK (bv, block_index);
1642 sym = block_lookup_symbol (block, name, domain);
1643 if (sym)
1644 {
1645 block_found = block;
1646 return fixup_symbol_section (sym, objfile);
1647 }
1648 }
1649
1650 return NULL;
1651 }
1652
1653 /* Wrapper around lookup_symbol_in_objfile_symtabs to search all objfiles.
1654 Returns the first match found. */
1655
1656 static struct symbol *
1657 lookup_symbol_in_all_objfiles (int block_index, const char *name,
1658 const domain_enum domain)
1659 {
1660 struct symbol *sym;
1661 struct objfile *objfile;
1662
1663 ALL_OBJFILES (objfile)
1664 {
1665 sym = lookup_symbol_in_objfile_symtabs (objfile, block_index, name,
1666 domain);
1667 if (sym)
1668 return sym;
1669 }
1670
1671 return NULL;
1672 }
1673
1674 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
1675 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1676 and all related objfiles. */
1677
1678 static struct symbol *
1679 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1680 const char *linkage_name,
1681 domain_enum domain)
1682 {
1683 enum language lang = current_language->la_language;
1684 const char *modified_name;
1685 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1686 &modified_name);
1687 struct objfile *main_objfile, *cur_objfile;
1688
1689 if (objfile->separate_debug_objfile_backlink)
1690 main_objfile = objfile->separate_debug_objfile_backlink;
1691 else
1692 main_objfile = objfile;
1693
1694 for (cur_objfile = main_objfile;
1695 cur_objfile;
1696 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1697 {
1698 struct symbol *sym;
1699
1700 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
1701 modified_name, domain);
1702 if (sym == NULL)
1703 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
1704 modified_name, domain);
1705 if (sym != NULL)
1706 {
1707 do_cleanups (cleanup);
1708 return sym;
1709 }
1710 }
1711
1712 do_cleanups (cleanup);
1713 return NULL;
1714 }
1715
1716 /* A helper function that throws an exception when a symbol was found
1717 in a psymtab but not in a symtab. */
1718
1719 static void ATTRIBUTE_NORETURN
1720 error_in_psymtab_expansion (int block_index, const char *name,
1721 struct symtab *symtab)
1722 {
1723 error (_("\
1724 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1725 %s may be an inlined function, or may be a template function\n \
1726 (if a template, try specifying an instantiation: %s<type>)."),
1727 block_index == GLOBAL_BLOCK ? "global" : "static",
1728 name, symtab_to_filename_for_display (symtab), name, name);
1729 }
1730
1731 /* A helper function for various lookup routines that interfaces with
1732 the "quick" symbol table functions. */
1733
1734 static struct symbol *
1735 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
1736 const char *name, const domain_enum domain)
1737 {
1738 struct symtab *symtab;
1739 const struct blockvector *bv;
1740 const struct block *block;
1741 struct symbol *sym;
1742
1743 if (!objfile->sf)
1744 return NULL;
1745 symtab = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
1746 if (!symtab)
1747 return NULL;
1748
1749 bv = BLOCKVECTOR (symtab);
1750 block = BLOCKVECTOR_BLOCK (bv, block_index);
1751 sym = block_lookup_symbol (block, name, domain);
1752 if (!sym)
1753 error_in_psymtab_expansion (block_index, name, symtab);
1754 block_found = block;
1755 return fixup_symbol_section (sym, objfile);
1756 }
1757
1758 /* See symtab.h. */
1759
1760 struct symbol *
1761 basic_lookup_symbol_nonlocal (const char *name,
1762 const struct block *block,
1763 const domain_enum domain)
1764 {
1765 struct symbol *sym;
1766
1767 /* NOTE: carlton/2003-05-19: The comments below were written when
1768 this (or what turned into this) was part of lookup_symbol_aux;
1769 I'm much less worried about these questions now, since these
1770 decisions have turned out well, but I leave these comments here
1771 for posterity. */
1772
1773 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1774 not it would be appropriate to search the current global block
1775 here as well. (That's what this code used to do before the
1776 is_a_field_of_this check was moved up.) On the one hand, it's
1777 redundant with the lookup_symbol_in_all_objfiles search that happens
1778 next. On the other hand, if decode_line_1 is passed an argument
1779 like filename:var, then the user presumably wants 'var' to be
1780 searched for in filename. On the third hand, there shouldn't be
1781 multiple global variables all of which are named 'var', and it's
1782 not like decode_line_1 has ever restricted its search to only
1783 global variables in a single filename. All in all, only
1784 searching the static block here seems best: it's correct and it's
1785 cleanest. */
1786
1787 /* NOTE: carlton/2002-12-05: There's also a possible performance
1788 issue here: if you usually search for global symbols in the
1789 current file, then it would be slightly better to search the
1790 current global block before searching all the symtabs. But there
1791 are other factors that have a much greater effect on performance
1792 than that one, so I don't think we should worry about that for
1793 now. */
1794
1795 sym = lookup_symbol_in_static_block (name, block, domain);
1796 if (sym != NULL)
1797 return sym;
1798
1799 return lookup_symbol_global (name, block, domain);
1800 }
1801
1802 /* See symtab.h. */
1803
1804 struct symbol *
1805 lookup_symbol_in_static_block (const char *name,
1806 const struct block *block,
1807 const domain_enum domain)
1808 {
1809 const struct block *static_block = block_static_block (block);
1810
1811 if (static_block != NULL)
1812 return lookup_symbol_in_block (name, static_block, domain);
1813 else
1814 return NULL;
1815 }
1816
1817 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1818
1819 struct global_sym_lookup_data
1820 {
1821 /* The name of the symbol we are searching for. */
1822 const char *name;
1823
1824 /* The domain to use for our search. */
1825 domain_enum domain;
1826
1827 /* The field where the callback should store the symbol if found.
1828 It should be initialized to NULL before the search is started. */
1829 struct symbol *result;
1830 };
1831
1832 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1833 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1834 OBJFILE. The arguments for the search are passed via CB_DATA,
1835 which in reality is a pointer to struct global_sym_lookup_data. */
1836
1837 static int
1838 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1839 void *cb_data)
1840 {
1841 struct global_sym_lookup_data *data =
1842 (struct global_sym_lookup_data *) cb_data;
1843
1844 gdb_assert (data->result == NULL);
1845
1846 data->result = lookup_symbol_in_objfile_symtabs (objfile, GLOBAL_BLOCK,
1847 data->name, data->domain);
1848 if (data->result == NULL)
1849 data->result = lookup_symbol_via_quick_fns (objfile, GLOBAL_BLOCK,
1850 data->name, data->domain);
1851
1852 /* If we found a match, tell the iterator to stop. Otherwise,
1853 keep going. */
1854 return (data->result != NULL);
1855 }
1856
1857 /* See symtab.h. */
1858
1859 struct symbol *
1860 lookup_symbol_global (const char *name,
1861 const struct block *block,
1862 const domain_enum domain)
1863 {
1864 struct symbol *sym = NULL;
1865 struct objfile *objfile = NULL;
1866 struct global_sym_lookup_data lookup_data;
1867
1868 /* Call library-specific lookup procedure. */
1869 objfile = lookup_objfile_from_block (block);
1870 if (objfile != NULL)
1871 sym = solib_global_lookup (objfile, name, domain);
1872 if (sym != NULL)
1873 return sym;
1874
1875 memset (&lookup_data, 0, sizeof (lookup_data));
1876 lookup_data.name = name;
1877 lookup_data.domain = domain;
1878 gdbarch_iterate_over_objfiles_in_search_order
1879 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1880 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1881
1882 return lookup_data.result;
1883 }
1884
1885 int
1886 symbol_matches_domain (enum language symbol_language,
1887 domain_enum symbol_domain,
1888 domain_enum domain)
1889 {
1890 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1891 A Java class declaration also defines a typedef for the class.
1892 Similarly, any Ada type declaration implicitly defines a typedef. */
1893 if (symbol_language == language_cplus
1894 || symbol_language == language_d
1895 || symbol_language == language_java
1896 || symbol_language == language_ada)
1897 {
1898 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1899 && symbol_domain == STRUCT_DOMAIN)
1900 return 1;
1901 }
1902 /* For all other languages, strict match is required. */
1903 return (symbol_domain == domain);
1904 }
1905
1906 /* See symtab.h. */
1907
1908 struct type *
1909 lookup_transparent_type (const char *name)
1910 {
1911 return current_language->la_lookup_transparent_type (name);
1912 }
1913
1914 /* A helper for basic_lookup_transparent_type that interfaces with the
1915 "quick" symbol table functions. */
1916
1917 static struct type *
1918 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
1919 const char *name)
1920 {
1921 struct symtab *symtab;
1922 const struct blockvector *bv;
1923 struct block *block;
1924 struct symbol *sym;
1925
1926 if (!objfile->sf)
1927 return NULL;
1928 symtab = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
1929 STRUCT_DOMAIN);
1930 if (!symtab)
1931 return NULL;
1932
1933 bv = BLOCKVECTOR (symtab);
1934 block = BLOCKVECTOR_BLOCK (bv, block_index);
1935 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1936 if (!sym)
1937 error_in_psymtab_expansion (block_index, name, symtab);
1938
1939 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1940 return SYMBOL_TYPE (sym);
1941
1942 return NULL;
1943 }
1944
1945 /* The standard implementation of lookup_transparent_type. This code
1946 was modeled on lookup_symbol -- the parts not relevant to looking
1947 up types were just left out. In particular it's assumed here that
1948 types are available in STRUCT_DOMAIN and only in file-static or
1949 global blocks. */
1950
1951 struct type *
1952 basic_lookup_transparent_type (const char *name)
1953 {
1954 struct symbol *sym;
1955 struct symtab *s = NULL;
1956 const struct blockvector *bv;
1957 struct objfile *objfile;
1958 struct block *block;
1959 struct type *t;
1960
1961 /* Now search all the global symbols. Do the symtab's first, then
1962 check the psymtab's. If a psymtab indicates the existence
1963 of the desired name as a global, then do psymtab-to-symtab
1964 conversion on the fly and return the found symbol. */
1965
1966 ALL_OBJFILES (objfile)
1967 {
1968 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1969 {
1970 bv = BLOCKVECTOR (s);
1971 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1972 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1973 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1974 {
1975 return SYMBOL_TYPE (sym);
1976 }
1977 }
1978 }
1979
1980 ALL_OBJFILES (objfile)
1981 {
1982 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1983 if (t)
1984 return t;
1985 }
1986
1987 /* Now search the static file-level symbols.
1988 Not strictly correct, but more useful than an error.
1989 Do the symtab's first, then
1990 check the psymtab's. If a psymtab indicates the existence
1991 of the desired name as a file-level static, then do psymtab-to-symtab
1992 conversion on the fly and return the found symbol. */
1993
1994 ALL_OBJFILES (objfile)
1995 {
1996 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1997 {
1998 bv = BLOCKVECTOR (s);
1999 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
2000 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
2001 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2002 {
2003 return SYMBOL_TYPE (sym);
2004 }
2005 }
2006 }
2007
2008 ALL_OBJFILES (objfile)
2009 {
2010 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2011 if (t)
2012 return t;
2013 }
2014
2015 return (struct type *) 0;
2016 }
2017
2018 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2019
2020 For each symbol that matches, CALLBACK is called. The symbol and
2021 DATA are passed to the callback.
2022
2023 If CALLBACK returns zero, the iteration ends. Otherwise, the
2024 search continues. */
2025
2026 void
2027 iterate_over_symbols (const struct block *block, const char *name,
2028 const domain_enum domain,
2029 symbol_found_callback_ftype *callback,
2030 void *data)
2031 {
2032 struct block_iterator iter;
2033 struct symbol *sym;
2034
2035 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2036 {
2037 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2038 SYMBOL_DOMAIN (sym), domain))
2039 {
2040 if (!callback (sym, data))
2041 return;
2042 }
2043 }
2044 }
2045
2046 /* Find the symtab associated with PC and SECTION. Look through the
2047 psymtabs and read in another symtab if necessary. */
2048
2049 struct symtab *
2050 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2051 {
2052 struct block *b;
2053 const struct blockvector *bv;
2054 struct symtab *s = NULL;
2055 struct symtab *best_s = NULL;
2056 struct objfile *objfile;
2057 CORE_ADDR distance = 0;
2058 struct bound_minimal_symbol msymbol;
2059
2060 /* If we know that this is not a text address, return failure. This is
2061 necessary because we loop based on the block's high and low code
2062 addresses, which do not include the data ranges, and because
2063 we call find_pc_sect_psymtab which has a similar restriction based
2064 on the partial_symtab's texthigh and textlow. */
2065 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2066 if (msymbol.minsym
2067 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2068 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2069 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2070 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2071 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2072 return NULL;
2073
2074 /* Search all symtabs for the one whose file contains our address, and which
2075 is the smallest of all the ones containing the address. This is designed
2076 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2077 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2078 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2079
2080 This happens for native ecoff format, where code from included files
2081 gets its own symtab. The symtab for the included file should have
2082 been read in already via the dependency mechanism.
2083 It might be swifter to create several symtabs with the same name
2084 like xcoff does (I'm not sure).
2085
2086 It also happens for objfiles that have their functions reordered.
2087 For these, the symtab we are looking for is not necessarily read in. */
2088
2089 ALL_PRIMARY_SYMTABS (objfile, s)
2090 {
2091 bv = BLOCKVECTOR (s);
2092 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2093
2094 if (BLOCK_START (b) <= pc
2095 && BLOCK_END (b) > pc
2096 && (distance == 0
2097 || BLOCK_END (b) - BLOCK_START (b) < distance))
2098 {
2099 /* For an objfile that has its functions reordered,
2100 find_pc_psymtab will find the proper partial symbol table
2101 and we simply return its corresponding symtab. */
2102 /* In order to better support objfiles that contain both
2103 stabs and coff debugging info, we continue on if a psymtab
2104 can't be found. */
2105 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2106 {
2107 struct symtab *result;
2108
2109 result
2110 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2111 msymbol,
2112 pc, section,
2113 0);
2114 if (result)
2115 return result;
2116 }
2117 if (section != 0)
2118 {
2119 struct block_iterator iter;
2120 struct symbol *sym = NULL;
2121
2122 ALL_BLOCK_SYMBOLS (b, iter, sym)
2123 {
2124 fixup_symbol_section (sym, objfile);
2125 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2126 section))
2127 break;
2128 }
2129 if (sym == NULL)
2130 continue; /* No symbol in this symtab matches
2131 section. */
2132 }
2133 distance = BLOCK_END (b) - BLOCK_START (b);
2134 best_s = s;
2135 }
2136 }
2137
2138 if (best_s != NULL)
2139 return (best_s);
2140
2141 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2142
2143 ALL_OBJFILES (objfile)
2144 {
2145 struct symtab *result;
2146
2147 if (!objfile->sf)
2148 continue;
2149 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2150 msymbol,
2151 pc, section,
2152 1);
2153 if (result)
2154 return result;
2155 }
2156
2157 return NULL;
2158 }
2159
2160 /* Find the symtab associated with PC. Look through the psymtabs and read
2161 in another symtab if necessary. Backward compatibility, no section. */
2162
2163 struct symtab *
2164 find_pc_symtab (CORE_ADDR pc)
2165 {
2166 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2167 }
2168 \f
2169
2170 /* Find the source file and line number for a given PC value and SECTION.
2171 Return a structure containing a symtab pointer, a line number,
2172 and a pc range for the entire source line.
2173 The value's .pc field is NOT the specified pc.
2174 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2175 use the line that ends there. Otherwise, in that case, the line
2176 that begins there is used. */
2177
2178 /* The big complication here is that a line may start in one file, and end just
2179 before the start of another file. This usually occurs when you #include
2180 code in the middle of a subroutine. To properly find the end of a line's PC
2181 range, we must search all symtabs associated with this compilation unit, and
2182 find the one whose first PC is closer than that of the next line in this
2183 symtab. */
2184
2185 /* If it's worth the effort, we could be using a binary search. */
2186
2187 struct symtab_and_line
2188 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2189 {
2190 struct symtab *s;
2191 struct linetable *l;
2192 int len;
2193 int i;
2194 struct linetable_entry *item;
2195 struct symtab_and_line val;
2196 const struct blockvector *bv;
2197 struct bound_minimal_symbol msymbol;
2198 struct objfile *objfile;
2199
2200 /* Info on best line seen so far, and where it starts, and its file. */
2201
2202 struct linetable_entry *best = NULL;
2203 CORE_ADDR best_end = 0;
2204 struct symtab *best_symtab = 0;
2205
2206 /* Store here the first line number
2207 of a file which contains the line at the smallest pc after PC.
2208 If we don't find a line whose range contains PC,
2209 we will use a line one less than this,
2210 with a range from the start of that file to the first line's pc. */
2211 struct linetable_entry *alt = NULL;
2212
2213 /* Info on best line seen in this file. */
2214
2215 struct linetable_entry *prev;
2216
2217 /* If this pc is not from the current frame,
2218 it is the address of the end of a call instruction.
2219 Quite likely that is the start of the following statement.
2220 But what we want is the statement containing the instruction.
2221 Fudge the pc to make sure we get that. */
2222
2223 init_sal (&val); /* initialize to zeroes */
2224
2225 val.pspace = current_program_space;
2226
2227 /* It's tempting to assume that, if we can't find debugging info for
2228 any function enclosing PC, that we shouldn't search for line
2229 number info, either. However, GAS can emit line number info for
2230 assembly files --- very helpful when debugging hand-written
2231 assembly code. In such a case, we'd have no debug info for the
2232 function, but we would have line info. */
2233
2234 if (notcurrent)
2235 pc -= 1;
2236
2237 /* elz: added this because this function returned the wrong
2238 information if the pc belongs to a stub (import/export)
2239 to call a shlib function. This stub would be anywhere between
2240 two functions in the target, and the line info was erroneously
2241 taken to be the one of the line before the pc. */
2242
2243 /* RT: Further explanation:
2244
2245 * We have stubs (trampolines) inserted between procedures.
2246 *
2247 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2248 * exists in the main image.
2249 *
2250 * In the minimal symbol table, we have a bunch of symbols
2251 * sorted by start address. The stubs are marked as "trampoline",
2252 * the others appear as text. E.g.:
2253 *
2254 * Minimal symbol table for main image
2255 * main: code for main (text symbol)
2256 * shr1: stub (trampoline symbol)
2257 * foo: code for foo (text symbol)
2258 * ...
2259 * Minimal symbol table for "shr1" image:
2260 * ...
2261 * shr1: code for shr1 (text symbol)
2262 * ...
2263 *
2264 * So the code below is trying to detect if we are in the stub
2265 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2266 * and if found, do the symbolization from the real-code address
2267 * rather than the stub address.
2268 *
2269 * Assumptions being made about the minimal symbol table:
2270 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2271 * if we're really in the trampoline.s If we're beyond it (say
2272 * we're in "foo" in the above example), it'll have a closer
2273 * symbol (the "foo" text symbol for example) and will not
2274 * return the trampoline.
2275 * 2. lookup_minimal_symbol_text() will find a real text symbol
2276 * corresponding to the trampoline, and whose address will
2277 * be different than the trampoline address. I put in a sanity
2278 * check for the address being the same, to avoid an
2279 * infinite recursion.
2280 */
2281 msymbol = lookup_minimal_symbol_by_pc (pc);
2282 if (msymbol.minsym != NULL)
2283 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2284 {
2285 struct bound_minimal_symbol mfunsym
2286 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2287 NULL);
2288
2289 if (mfunsym.minsym == NULL)
2290 /* I eliminated this warning since it is coming out
2291 * in the following situation:
2292 * gdb shmain // test program with shared libraries
2293 * (gdb) break shr1 // function in shared lib
2294 * Warning: In stub for ...
2295 * In the above situation, the shared lib is not loaded yet,
2296 * so of course we can't find the real func/line info,
2297 * but the "break" still works, and the warning is annoying.
2298 * So I commented out the warning. RT */
2299 /* warning ("In stub for %s; unable to find real function/line info",
2300 SYMBOL_LINKAGE_NAME (msymbol)); */
2301 ;
2302 /* fall through */
2303 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2304 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2305 /* Avoid infinite recursion */
2306 /* See above comment about why warning is commented out. */
2307 /* warning ("In stub for %s; unable to find real function/line info",
2308 SYMBOL_LINKAGE_NAME (msymbol)); */
2309 ;
2310 /* fall through */
2311 else
2312 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2313 }
2314
2315
2316 s = find_pc_sect_symtab (pc, section);
2317 if (!s)
2318 {
2319 /* If no symbol information, return previous pc. */
2320 if (notcurrent)
2321 pc++;
2322 val.pc = pc;
2323 return val;
2324 }
2325
2326 bv = BLOCKVECTOR (s);
2327 objfile = s->objfile;
2328
2329 /* Look at all the symtabs that share this blockvector.
2330 They all have the same apriori range, that we found was right;
2331 but they have different line tables. */
2332
2333 ALL_OBJFILE_SYMTABS (objfile, s)
2334 {
2335 if (BLOCKVECTOR (s) != bv)
2336 continue;
2337
2338 /* Find the best line in this symtab. */
2339 l = LINETABLE (s);
2340 if (!l)
2341 continue;
2342 len = l->nitems;
2343 if (len <= 0)
2344 {
2345 /* I think len can be zero if the symtab lacks line numbers
2346 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2347 I'm not sure which, and maybe it depends on the symbol
2348 reader). */
2349 continue;
2350 }
2351
2352 prev = NULL;
2353 item = l->item; /* Get first line info. */
2354
2355 /* Is this file's first line closer than the first lines of other files?
2356 If so, record this file, and its first line, as best alternate. */
2357 if (item->pc > pc && (!alt || item->pc < alt->pc))
2358 alt = item;
2359
2360 for (i = 0; i < len; i++, item++)
2361 {
2362 /* Leave prev pointing to the linetable entry for the last line
2363 that started at or before PC. */
2364 if (item->pc > pc)
2365 break;
2366
2367 prev = item;
2368 }
2369
2370 /* At this point, prev points at the line whose start addr is <= pc, and
2371 item points at the next line. If we ran off the end of the linetable
2372 (pc >= start of the last line), then prev == item. If pc < start of
2373 the first line, prev will not be set. */
2374
2375 /* Is this file's best line closer than the best in the other files?
2376 If so, record this file, and its best line, as best so far. Don't
2377 save prev if it represents the end of a function (i.e. line number
2378 0) instead of a real line. */
2379
2380 if (prev && prev->line && (!best || prev->pc > best->pc))
2381 {
2382 best = prev;
2383 best_symtab = s;
2384
2385 /* Discard BEST_END if it's before the PC of the current BEST. */
2386 if (best_end <= best->pc)
2387 best_end = 0;
2388 }
2389
2390 /* If another line (denoted by ITEM) is in the linetable and its
2391 PC is after BEST's PC, but before the current BEST_END, then
2392 use ITEM's PC as the new best_end. */
2393 if (best && i < len && item->pc > best->pc
2394 && (best_end == 0 || best_end > item->pc))
2395 best_end = item->pc;
2396 }
2397
2398 if (!best_symtab)
2399 {
2400 /* If we didn't find any line number info, just return zeros.
2401 We used to return alt->line - 1 here, but that could be
2402 anywhere; if we don't have line number info for this PC,
2403 don't make some up. */
2404 val.pc = pc;
2405 }
2406 else if (best->line == 0)
2407 {
2408 /* If our best fit is in a range of PC's for which no line
2409 number info is available (line number is zero) then we didn't
2410 find any valid line information. */
2411 val.pc = pc;
2412 }
2413 else
2414 {
2415 val.symtab = best_symtab;
2416 val.line = best->line;
2417 val.pc = best->pc;
2418 if (best_end && (!alt || best_end < alt->pc))
2419 val.end = best_end;
2420 else if (alt)
2421 val.end = alt->pc;
2422 else
2423 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2424 }
2425 val.section = section;
2426 return val;
2427 }
2428
2429 /* Backward compatibility (no section). */
2430
2431 struct symtab_and_line
2432 find_pc_line (CORE_ADDR pc, int notcurrent)
2433 {
2434 struct obj_section *section;
2435
2436 section = find_pc_overlay (pc);
2437 if (pc_in_unmapped_range (pc, section))
2438 pc = overlay_mapped_address (pc, section);
2439 return find_pc_sect_line (pc, section, notcurrent);
2440 }
2441 \f
2442 /* Find line number LINE in any symtab whose name is the same as
2443 SYMTAB.
2444
2445 If found, return the symtab that contains the linetable in which it was
2446 found, set *INDEX to the index in the linetable of the best entry
2447 found, and set *EXACT_MATCH nonzero if the value returned is an
2448 exact match.
2449
2450 If not found, return NULL. */
2451
2452 struct symtab *
2453 find_line_symtab (struct symtab *symtab, int line,
2454 int *index, int *exact_match)
2455 {
2456 int exact = 0; /* Initialized here to avoid a compiler warning. */
2457
2458 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2459 so far seen. */
2460
2461 int best_index;
2462 struct linetable *best_linetable;
2463 struct symtab *best_symtab;
2464
2465 /* First try looking it up in the given symtab. */
2466 best_linetable = LINETABLE (symtab);
2467 best_symtab = symtab;
2468 best_index = find_line_common (best_linetable, line, &exact, 0);
2469 if (best_index < 0 || !exact)
2470 {
2471 /* Didn't find an exact match. So we better keep looking for
2472 another symtab with the same name. In the case of xcoff,
2473 multiple csects for one source file (produced by IBM's FORTRAN
2474 compiler) produce multiple symtabs (this is unavoidable
2475 assuming csects can be at arbitrary places in memory and that
2476 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2477
2478 /* BEST is the smallest linenumber > LINE so far seen,
2479 or 0 if none has been seen so far.
2480 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2481 int best;
2482
2483 struct objfile *objfile;
2484 struct symtab *s;
2485
2486 if (best_index >= 0)
2487 best = best_linetable->item[best_index].line;
2488 else
2489 best = 0;
2490
2491 ALL_OBJFILES (objfile)
2492 {
2493 if (objfile->sf)
2494 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2495 symtab_to_fullname (symtab));
2496 }
2497
2498 ALL_SYMTABS (objfile, s)
2499 {
2500 struct linetable *l;
2501 int ind;
2502
2503 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2504 continue;
2505 if (FILENAME_CMP (symtab_to_fullname (symtab),
2506 symtab_to_fullname (s)) != 0)
2507 continue;
2508 l = LINETABLE (s);
2509 ind = find_line_common (l, line, &exact, 0);
2510 if (ind >= 0)
2511 {
2512 if (exact)
2513 {
2514 best_index = ind;
2515 best_linetable = l;
2516 best_symtab = s;
2517 goto done;
2518 }
2519 if (best == 0 || l->item[ind].line < best)
2520 {
2521 best = l->item[ind].line;
2522 best_index = ind;
2523 best_linetable = l;
2524 best_symtab = s;
2525 }
2526 }
2527 }
2528 }
2529 done:
2530 if (best_index < 0)
2531 return NULL;
2532
2533 if (index)
2534 *index = best_index;
2535 if (exact_match)
2536 *exact_match = exact;
2537
2538 return best_symtab;
2539 }
2540
2541 /* Given SYMTAB, returns all the PCs function in the symtab that
2542 exactly match LINE. Returns NULL if there are no exact matches,
2543 but updates BEST_ITEM in this case. */
2544
2545 VEC (CORE_ADDR) *
2546 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2547 struct linetable_entry **best_item)
2548 {
2549 int start = 0;
2550 VEC (CORE_ADDR) *result = NULL;
2551
2552 /* First, collect all the PCs that are at this line. */
2553 while (1)
2554 {
2555 int was_exact;
2556 int idx;
2557
2558 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2559 if (idx < 0)
2560 break;
2561
2562 if (!was_exact)
2563 {
2564 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2565
2566 if (*best_item == NULL || item->line < (*best_item)->line)
2567 *best_item = item;
2568
2569 break;
2570 }
2571
2572 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2573 start = idx + 1;
2574 }
2575
2576 return result;
2577 }
2578
2579 \f
2580 /* Set the PC value for a given source file and line number and return true.
2581 Returns zero for invalid line number (and sets the PC to 0).
2582 The source file is specified with a struct symtab. */
2583
2584 int
2585 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2586 {
2587 struct linetable *l;
2588 int ind;
2589
2590 *pc = 0;
2591 if (symtab == 0)
2592 return 0;
2593
2594 symtab = find_line_symtab (symtab, line, &ind, NULL);
2595 if (symtab != NULL)
2596 {
2597 l = LINETABLE (symtab);
2598 *pc = l->item[ind].pc;
2599 return 1;
2600 }
2601 else
2602 return 0;
2603 }
2604
2605 /* Find the range of pc values in a line.
2606 Store the starting pc of the line into *STARTPTR
2607 and the ending pc (start of next line) into *ENDPTR.
2608 Returns 1 to indicate success.
2609 Returns 0 if could not find the specified line. */
2610
2611 int
2612 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2613 CORE_ADDR *endptr)
2614 {
2615 CORE_ADDR startaddr;
2616 struct symtab_and_line found_sal;
2617
2618 startaddr = sal.pc;
2619 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2620 return 0;
2621
2622 /* This whole function is based on address. For example, if line 10 has
2623 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2624 "info line *0x123" should say the line goes from 0x100 to 0x200
2625 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2626 This also insures that we never give a range like "starts at 0x134
2627 and ends at 0x12c". */
2628
2629 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2630 if (found_sal.line != sal.line)
2631 {
2632 /* The specified line (sal) has zero bytes. */
2633 *startptr = found_sal.pc;
2634 *endptr = found_sal.pc;
2635 }
2636 else
2637 {
2638 *startptr = found_sal.pc;
2639 *endptr = found_sal.end;
2640 }
2641 return 1;
2642 }
2643
2644 /* Given a line table and a line number, return the index into the line
2645 table for the pc of the nearest line whose number is >= the specified one.
2646 Return -1 if none is found. The value is >= 0 if it is an index.
2647 START is the index at which to start searching the line table.
2648
2649 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2650
2651 static int
2652 find_line_common (struct linetable *l, int lineno,
2653 int *exact_match, int start)
2654 {
2655 int i;
2656 int len;
2657
2658 /* BEST is the smallest linenumber > LINENO so far seen,
2659 or 0 if none has been seen so far.
2660 BEST_INDEX identifies the item for it. */
2661
2662 int best_index = -1;
2663 int best = 0;
2664
2665 *exact_match = 0;
2666
2667 if (lineno <= 0)
2668 return -1;
2669 if (l == 0)
2670 return -1;
2671
2672 len = l->nitems;
2673 for (i = start; i < len; i++)
2674 {
2675 struct linetable_entry *item = &(l->item[i]);
2676
2677 if (item->line == lineno)
2678 {
2679 /* Return the first (lowest address) entry which matches. */
2680 *exact_match = 1;
2681 return i;
2682 }
2683
2684 if (item->line > lineno && (best == 0 || item->line < best))
2685 {
2686 best = item->line;
2687 best_index = i;
2688 }
2689 }
2690
2691 /* If we got here, we didn't get an exact match. */
2692 return best_index;
2693 }
2694
2695 int
2696 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2697 {
2698 struct symtab_and_line sal;
2699
2700 sal = find_pc_line (pc, 0);
2701 *startptr = sal.pc;
2702 *endptr = sal.end;
2703 return sal.symtab != 0;
2704 }
2705
2706 /* Given a function symbol SYM, find the symtab and line for the start
2707 of the function.
2708 If the argument FUNFIRSTLINE is nonzero, we want the first line
2709 of real code inside the function. */
2710
2711 struct symtab_and_line
2712 find_function_start_sal (struct symbol *sym, int funfirstline)
2713 {
2714 struct symtab_and_line sal;
2715
2716 fixup_symbol_section (sym, NULL);
2717 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2718 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2719
2720 /* We always should have a line for the function start address.
2721 If we don't, something is odd. Create a plain SAL refering
2722 just the PC and hope that skip_prologue_sal (if requested)
2723 can find a line number for after the prologue. */
2724 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2725 {
2726 init_sal (&sal);
2727 sal.pspace = current_program_space;
2728 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2729 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2730 }
2731
2732 if (funfirstline)
2733 skip_prologue_sal (&sal);
2734
2735 return sal;
2736 }
2737
2738 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2739 address for that function that has an entry in SYMTAB's line info
2740 table. If such an entry cannot be found, return FUNC_ADDR
2741 unaltered. */
2742
2743 static CORE_ADDR
2744 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2745 {
2746 CORE_ADDR func_start, func_end;
2747 struct linetable *l;
2748 int i;
2749
2750 /* Give up if this symbol has no lineinfo table. */
2751 l = LINETABLE (symtab);
2752 if (l == NULL)
2753 return func_addr;
2754
2755 /* Get the range for the function's PC values, or give up if we
2756 cannot, for some reason. */
2757 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2758 return func_addr;
2759
2760 /* Linetable entries are ordered by PC values, see the commentary in
2761 symtab.h where `struct linetable' is defined. Thus, the first
2762 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2763 address we are looking for. */
2764 for (i = 0; i < l->nitems; i++)
2765 {
2766 struct linetable_entry *item = &(l->item[i]);
2767
2768 /* Don't use line numbers of zero, they mark special entries in
2769 the table. See the commentary on symtab.h before the
2770 definition of struct linetable. */
2771 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2772 return item->pc;
2773 }
2774
2775 return func_addr;
2776 }
2777
2778 /* Adjust SAL to the first instruction past the function prologue.
2779 If the PC was explicitly specified, the SAL is not changed.
2780 If the line number was explicitly specified, at most the SAL's PC
2781 is updated. If SAL is already past the prologue, then do nothing. */
2782
2783 void
2784 skip_prologue_sal (struct symtab_and_line *sal)
2785 {
2786 struct symbol *sym;
2787 struct symtab_and_line start_sal;
2788 struct cleanup *old_chain;
2789 CORE_ADDR pc, saved_pc;
2790 struct obj_section *section;
2791 const char *name;
2792 struct objfile *objfile;
2793 struct gdbarch *gdbarch;
2794 const struct block *b, *function_block;
2795 int force_skip, skip;
2796
2797 /* Do not change the SAL if PC was specified explicitly. */
2798 if (sal->explicit_pc)
2799 return;
2800
2801 old_chain = save_current_space_and_thread ();
2802 switch_to_program_space_and_thread (sal->pspace);
2803
2804 sym = find_pc_sect_function (sal->pc, sal->section);
2805 if (sym != NULL)
2806 {
2807 fixup_symbol_section (sym, NULL);
2808
2809 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2810 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2811 name = SYMBOL_LINKAGE_NAME (sym);
2812 objfile = SYMBOL_SYMTAB (sym)->objfile;
2813 }
2814 else
2815 {
2816 struct bound_minimal_symbol msymbol
2817 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2818
2819 if (msymbol.minsym == NULL)
2820 {
2821 do_cleanups (old_chain);
2822 return;
2823 }
2824
2825 objfile = msymbol.objfile;
2826 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2827 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2828 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2829 }
2830
2831 gdbarch = get_objfile_arch (objfile);
2832
2833 /* Process the prologue in two passes. In the first pass try to skip the
2834 prologue (SKIP is true) and verify there is a real need for it (indicated
2835 by FORCE_SKIP). If no such reason was found run a second pass where the
2836 prologue is not skipped (SKIP is false). */
2837
2838 skip = 1;
2839 force_skip = 1;
2840
2841 /* Be conservative - allow direct PC (without skipping prologue) only if we
2842 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2843 have to be set by the caller so we use SYM instead. */
2844 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2845 force_skip = 0;
2846
2847 saved_pc = pc;
2848 do
2849 {
2850 pc = saved_pc;
2851
2852 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2853 so that gdbarch_skip_prologue has something unique to work on. */
2854 if (section_is_overlay (section) && !section_is_mapped (section))
2855 pc = overlay_unmapped_address (pc, section);
2856
2857 /* Skip "first line" of function (which is actually its prologue). */
2858 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2859 if (gdbarch_skip_entrypoint_p (gdbarch))
2860 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2861 if (skip)
2862 pc = gdbarch_skip_prologue (gdbarch, pc);
2863
2864 /* For overlays, map pc back into its mapped VMA range. */
2865 pc = overlay_mapped_address (pc, section);
2866
2867 /* Calculate line number. */
2868 start_sal = find_pc_sect_line (pc, section, 0);
2869
2870 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2871 line is still part of the same function. */
2872 if (skip && start_sal.pc != pc
2873 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2874 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2875 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2876 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2877 {
2878 /* First pc of next line */
2879 pc = start_sal.end;
2880 /* Recalculate the line number (might not be N+1). */
2881 start_sal = find_pc_sect_line (pc, section, 0);
2882 }
2883
2884 /* On targets with executable formats that don't have a concept of
2885 constructors (ELF with .init has, PE doesn't), gcc emits a call
2886 to `__main' in `main' between the prologue and before user
2887 code. */
2888 if (gdbarch_skip_main_prologue_p (gdbarch)
2889 && name && strcmp_iw (name, "main") == 0)
2890 {
2891 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2892 /* Recalculate the line number (might not be N+1). */
2893 start_sal = find_pc_sect_line (pc, section, 0);
2894 force_skip = 1;
2895 }
2896 }
2897 while (!force_skip && skip--);
2898
2899 /* If we still don't have a valid source line, try to find the first
2900 PC in the lineinfo table that belongs to the same function. This
2901 happens with COFF debug info, which does not seem to have an
2902 entry in lineinfo table for the code after the prologue which has
2903 no direct relation to source. For example, this was found to be
2904 the case with the DJGPP target using "gcc -gcoff" when the
2905 compiler inserted code after the prologue to make sure the stack
2906 is aligned. */
2907 if (!force_skip && sym && start_sal.symtab == NULL)
2908 {
2909 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2910 /* Recalculate the line number. */
2911 start_sal = find_pc_sect_line (pc, section, 0);
2912 }
2913
2914 do_cleanups (old_chain);
2915
2916 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2917 forward SAL to the end of the prologue. */
2918 if (sal->pc >= pc)
2919 return;
2920
2921 sal->pc = pc;
2922 sal->section = section;
2923
2924 /* Unless the explicit_line flag was set, update the SAL line
2925 and symtab to correspond to the modified PC location. */
2926 if (sal->explicit_line)
2927 return;
2928
2929 sal->symtab = start_sal.symtab;
2930 sal->line = start_sal.line;
2931 sal->end = start_sal.end;
2932
2933 /* Check if we are now inside an inlined function. If we can,
2934 use the call site of the function instead. */
2935 b = block_for_pc_sect (sal->pc, sal->section);
2936 function_block = NULL;
2937 while (b != NULL)
2938 {
2939 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2940 function_block = b;
2941 else if (BLOCK_FUNCTION (b) != NULL)
2942 break;
2943 b = BLOCK_SUPERBLOCK (b);
2944 }
2945 if (function_block != NULL
2946 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2947 {
2948 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2949 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2950 }
2951 }
2952
2953 /* Determine if PC is in the prologue of a function. The prologue is the area
2954 between the first instruction of a function, and the first executable line.
2955 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
2956
2957 If non-zero, func_start is where we think the prologue starts, possibly
2958 by previous examination of symbol table information. */
2959
2960 int
2961 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
2962 {
2963 struct symtab_and_line sal;
2964 CORE_ADDR func_addr, func_end;
2965
2966 /* We have several sources of information we can consult to figure
2967 this out.
2968 - Compilers usually emit line number info that marks the prologue
2969 as its own "source line". So the ending address of that "line"
2970 is the end of the prologue. If available, this is the most
2971 reliable method.
2972 - The minimal symbols and partial symbols, which can usually tell
2973 us the starting and ending addresses of a function.
2974 - If we know the function's start address, we can call the
2975 architecture-defined gdbarch_skip_prologue function to analyze the
2976 instruction stream and guess where the prologue ends.
2977 - Our `func_start' argument; if non-zero, this is the caller's
2978 best guess as to the function's entry point. At the time of
2979 this writing, handle_inferior_event doesn't get this right, so
2980 it should be our last resort. */
2981
2982 /* Consult the partial symbol table, to find which function
2983 the PC is in. */
2984 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2985 {
2986 CORE_ADDR prologue_end;
2987
2988 /* We don't even have minsym information, so fall back to using
2989 func_start, if given. */
2990 if (! func_start)
2991 return 1; /* We *might* be in a prologue. */
2992
2993 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
2994
2995 return func_start <= pc && pc < prologue_end;
2996 }
2997
2998 /* If we have line number information for the function, that's
2999 usually pretty reliable. */
3000 sal = find_pc_line (func_addr, 0);
3001
3002 /* Now sal describes the source line at the function's entry point,
3003 which (by convention) is the prologue. The end of that "line",
3004 sal.end, is the end of the prologue.
3005
3006 Note that, for functions whose source code is all on a single
3007 line, the line number information doesn't always end up this way.
3008 So we must verify that our purported end-of-prologue address is
3009 *within* the function, not at its start or end. */
3010 if (sal.line == 0
3011 || sal.end <= func_addr
3012 || func_end <= sal.end)
3013 {
3014 /* We don't have any good line number info, so use the minsym
3015 information, together with the architecture-specific prologue
3016 scanning code. */
3017 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
3018
3019 return func_addr <= pc && pc < prologue_end;
3020 }
3021
3022 /* We have line number info, and it looks good. */
3023 return func_addr <= pc && pc < sal.end;
3024 }
3025
3026 /* Given PC at the function's start address, attempt to find the
3027 prologue end using SAL information. Return zero if the skip fails.
3028
3029 A non-optimized prologue traditionally has one SAL for the function
3030 and a second for the function body. A single line function has
3031 them both pointing at the same line.
3032
3033 An optimized prologue is similar but the prologue may contain
3034 instructions (SALs) from the instruction body. Need to skip those
3035 while not getting into the function body.
3036
3037 The functions end point and an increasing SAL line are used as
3038 indicators of the prologue's endpoint.
3039
3040 This code is based on the function refine_prologue_limit
3041 (found in ia64). */
3042
3043 CORE_ADDR
3044 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3045 {
3046 struct symtab_and_line prologue_sal;
3047 CORE_ADDR start_pc;
3048 CORE_ADDR end_pc;
3049 const struct block *bl;
3050
3051 /* Get an initial range for the function. */
3052 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3053 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3054
3055 prologue_sal = find_pc_line (start_pc, 0);
3056 if (prologue_sal.line != 0)
3057 {
3058 /* For languages other than assembly, treat two consecutive line
3059 entries at the same address as a zero-instruction prologue.
3060 The GNU assembler emits separate line notes for each instruction
3061 in a multi-instruction macro, but compilers generally will not
3062 do this. */
3063 if (prologue_sal.symtab->language != language_asm)
3064 {
3065 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
3066 int idx = 0;
3067
3068 /* Skip any earlier lines, and any end-of-sequence marker
3069 from a previous function. */
3070 while (linetable->item[idx].pc != prologue_sal.pc
3071 || linetable->item[idx].line == 0)
3072 idx++;
3073
3074 if (idx+1 < linetable->nitems
3075 && linetable->item[idx+1].line != 0
3076 && linetable->item[idx+1].pc == start_pc)
3077 return start_pc;
3078 }
3079
3080 /* If there is only one sal that covers the entire function,
3081 then it is probably a single line function, like
3082 "foo(){}". */
3083 if (prologue_sal.end >= end_pc)
3084 return 0;
3085
3086 while (prologue_sal.end < end_pc)
3087 {
3088 struct symtab_and_line sal;
3089
3090 sal = find_pc_line (prologue_sal.end, 0);
3091 if (sal.line == 0)
3092 break;
3093 /* Assume that a consecutive SAL for the same (or larger)
3094 line mark the prologue -> body transition. */
3095 if (sal.line >= prologue_sal.line)
3096 break;
3097 /* Likewise if we are in a different symtab altogether
3098 (e.g. within a file included via #include).  */
3099 if (sal.symtab != prologue_sal.symtab)
3100 break;
3101
3102 /* The line number is smaller. Check that it's from the
3103 same function, not something inlined. If it's inlined,
3104 then there is no point comparing the line numbers. */
3105 bl = block_for_pc (prologue_sal.end);
3106 while (bl)
3107 {
3108 if (block_inlined_p (bl))
3109 break;
3110 if (BLOCK_FUNCTION (bl))
3111 {
3112 bl = NULL;
3113 break;
3114 }
3115 bl = BLOCK_SUPERBLOCK (bl);
3116 }
3117 if (bl != NULL)
3118 break;
3119
3120 /* The case in which compiler's optimizer/scheduler has
3121 moved instructions into the prologue. We look ahead in
3122 the function looking for address ranges whose
3123 corresponding line number is less the first one that we
3124 found for the function. This is more conservative then
3125 refine_prologue_limit which scans a large number of SALs
3126 looking for any in the prologue. */
3127 prologue_sal = sal;
3128 }
3129 }
3130
3131 if (prologue_sal.end < end_pc)
3132 /* Return the end of this line, or zero if we could not find a
3133 line. */
3134 return prologue_sal.end;
3135 else
3136 /* Don't return END_PC, which is past the end of the function. */
3137 return prologue_sal.pc;
3138 }
3139 \f
3140 /* If P is of the form "operator[ \t]+..." where `...' is
3141 some legitimate operator text, return a pointer to the
3142 beginning of the substring of the operator text.
3143 Otherwise, return "". */
3144
3145 static const char *
3146 operator_chars (const char *p, const char **end)
3147 {
3148 *end = "";
3149 if (strncmp (p, "operator", 8))
3150 return *end;
3151 p += 8;
3152
3153 /* Don't get faked out by `operator' being part of a longer
3154 identifier. */
3155 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3156 return *end;
3157
3158 /* Allow some whitespace between `operator' and the operator symbol. */
3159 while (*p == ' ' || *p == '\t')
3160 p++;
3161
3162 /* Recognize 'operator TYPENAME'. */
3163
3164 if (isalpha (*p) || *p == '_' || *p == '$')
3165 {
3166 const char *q = p + 1;
3167
3168 while (isalnum (*q) || *q == '_' || *q == '$')
3169 q++;
3170 *end = q;
3171 return p;
3172 }
3173
3174 while (*p)
3175 switch (*p)
3176 {
3177 case '\\': /* regexp quoting */
3178 if (p[1] == '*')
3179 {
3180 if (p[2] == '=') /* 'operator\*=' */
3181 *end = p + 3;
3182 else /* 'operator\*' */
3183 *end = p + 2;
3184 return p;
3185 }
3186 else if (p[1] == '[')
3187 {
3188 if (p[2] == ']')
3189 error (_("mismatched quoting on brackets, "
3190 "try 'operator\\[\\]'"));
3191 else if (p[2] == '\\' && p[3] == ']')
3192 {
3193 *end = p + 4; /* 'operator\[\]' */
3194 return p;
3195 }
3196 else
3197 error (_("nothing is allowed between '[' and ']'"));
3198 }
3199 else
3200 {
3201 /* Gratuitous qoute: skip it and move on. */
3202 p++;
3203 continue;
3204 }
3205 break;
3206 case '!':
3207 case '=':
3208 case '*':
3209 case '/':
3210 case '%':
3211 case '^':
3212 if (p[1] == '=')
3213 *end = p + 2;
3214 else
3215 *end = p + 1;
3216 return p;
3217 case '<':
3218 case '>':
3219 case '+':
3220 case '-':
3221 case '&':
3222 case '|':
3223 if (p[0] == '-' && p[1] == '>')
3224 {
3225 /* Struct pointer member operator 'operator->'. */
3226 if (p[2] == '*')
3227 {
3228 *end = p + 3; /* 'operator->*' */
3229 return p;
3230 }
3231 else if (p[2] == '\\')
3232 {
3233 *end = p + 4; /* Hopefully 'operator->\*' */
3234 return p;
3235 }
3236 else
3237 {
3238 *end = p + 2; /* 'operator->' */
3239 return p;
3240 }
3241 }
3242 if (p[1] == '=' || p[1] == p[0])
3243 *end = p + 2;
3244 else
3245 *end = p + 1;
3246 return p;
3247 case '~':
3248 case ',':
3249 *end = p + 1;
3250 return p;
3251 case '(':
3252 if (p[1] != ')')
3253 error (_("`operator ()' must be specified "
3254 "without whitespace in `()'"));
3255 *end = p + 2;
3256 return p;
3257 case '?':
3258 if (p[1] != ':')
3259 error (_("`operator ?:' must be specified "
3260 "without whitespace in `?:'"));
3261 *end = p + 2;
3262 return p;
3263 case '[':
3264 if (p[1] != ']')
3265 error (_("`operator []' must be specified "
3266 "without whitespace in `[]'"));
3267 *end = p + 2;
3268 return p;
3269 default:
3270 error (_("`operator %s' not supported"), p);
3271 break;
3272 }
3273
3274 *end = "";
3275 return *end;
3276 }
3277 \f
3278
3279 /* Cache to watch for file names already seen by filename_seen. */
3280
3281 struct filename_seen_cache
3282 {
3283 /* Table of files seen so far. */
3284 htab_t tab;
3285 /* Initial size of the table. It automagically grows from here. */
3286 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3287 };
3288
3289 /* filename_seen_cache constructor. */
3290
3291 static struct filename_seen_cache *
3292 create_filename_seen_cache (void)
3293 {
3294 struct filename_seen_cache *cache;
3295
3296 cache = XNEW (struct filename_seen_cache);
3297 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3298 filename_hash, filename_eq,
3299 NULL, xcalloc, xfree);
3300
3301 return cache;
3302 }
3303
3304 /* Empty the cache, but do not delete it. */
3305
3306 static void
3307 clear_filename_seen_cache (struct filename_seen_cache *cache)
3308 {
3309 htab_empty (cache->tab);
3310 }
3311
3312 /* filename_seen_cache destructor.
3313 This takes a void * argument as it is generally used as a cleanup. */
3314
3315 static void
3316 delete_filename_seen_cache (void *ptr)
3317 {
3318 struct filename_seen_cache *cache = ptr;
3319
3320 htab_delete (cache->tab);
3321 xfree (cache);
3322 }
3323
3324 /* If FILE is not already in the table of files in CACHE, return zero;
3325 otherwise return non-zero. Optionally add FILE to the table if ADD
3326 is non-zero.
3327
3328 NOTE: We don't manage space for FILE, we assume FILE lives as long
3329 as the caller needs. */
3330
3331 static int
3332 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3333 {
3334 void **slot;
3335
3336 /* Is FILE in tab? */
3337 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3338 if (*slot != NULL)
3339 return 1;
3340
3341 /* No; maybe add it to tab. */
3342 if (add)
3343 *slot = (char *) file;
3344
3345 return 0;
3346 }
3347
3348 /* Data structure to maintain printing state for output_source_filename. */
3349
3350 struct output_source_filename_data
3351 {
3352 /* Cache of what we've seen so far. */
3353 struct filename_seen_cache *filename_seen_cache;
3354
3355 /* Flag of whether we're printing the first one. */
3356 int first;
3357 };
3358
3359 /* Slave routine for sources_info. Force line breaks at ,'s.
3360 NAME is the name to print.
3361 DATA contains the state for printing and watching for duplicates. */
3362
3363 static void
3364 output_source_filename (const char *name,
3365 struct output_source_filename_data *data)
3366 {
3367 /* Since a single source file can result in several partial symbol
3368 tables, we need to avoid printing it more than once. Note: if
3369 some of the psymtabs are read in and some are not, it gets
3370 printed both under "Source files for which symbols have been
3371 read" and "Source files for which symbols will be read in on
3372 demand". I consider this a reasonable way to deal with the
3373 situation. I'm not sure whether this can also happen for
3374 symtabs; it doesn't hurt to check. */
3375
3376 /* Was NAME already seen? */
3377 if (filename_seen (data->filename_seen_cache, name, 1))
3378 {
3379 /* Yes; don't print it again. */
3380 return;
3381 }
3382
3383 /* No; print it and reset *FIRST. */
3384 if (! data->first)
3385 printf_filtered (", ");
3386 data->first = 0;
3387
3388 wrap_here ("");
3389 fputs_filtered (name, gdb_stdout);
3390 }
3391
3392 /* A callback for map_partial_symbol_filenames. */
3393
3394 static void
3395 output_partial_symbol_filename (const char *filename, const char *fullname,
3396 void *data)
3397 {
3398 output_source_filename (fullname ? fullname : filename, data);
3399 }
3400
3401 static void
3402 sources_info (char *ignore, int from_tty)
3403 {
3404 struct symtab *s;
3405 struct objfile *objfile;
3406 struct output_source_filename_data data;
3407 struct cleanup *cleanups;
3408
3409 if (!have_full_symbols () && !have_partial_symbols ())
3410 {
3411 error (_("No symbol table is loaded. Use the \"file\" command."));
3412 }
3413
3414 data.filename_seen_cache = create_filename_seen_cache ();
3415 cleanups = make_cleanup (delete_filename_seen_cache,
3416 data.filename_seen_cache);
3417
3418 printf_filtered ("Source files for which symbols have been read in:\n\n");
3419
3420 data.first = 1;
3421 ALL_SYMTABS (objfile, s)
3422 {
3423 const char *fullname = symtab_to_fullname (s);
3424
3425 output_source_filename (fullname, &data);
3426 }
3427 printf_filtered ("\n\n");
3428
3429 printf_filtered ("Source files for which symbols "
3430 "will be read in on demand:\n\n");
3431
3432 clear_filename_seen_cache (data.filename_seen_cache);
3433 data.first = 1;
3434 map_symbol_filenames (output_partial_symbol_filename, &data,
3435 1 /*need_fullname*/);
3436 printf_filtered ("\n");
3437
3438 do_cleanups (cleanups);
3439 }
3440
3441 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3442 non-zero compare only lbasename of FILES. */
3443
3444 static int
3445 file_matches (const char *file, const char *files[], int nfiles, int basenames)
3446 {
3447 int i;
3448
3449 if (file != NULL && nfiles != 0)
3450 {
3451 for (i = 0; i < nfiles; i++)
3452 {
3453 if (compare_filenames_for_search (file, (basenames
3454 ? lbasename (files[i])
3455 : files[i])))
3456 return 1;
3457 }
3458 }
3459 else if (nfiles == 0)
3460 return 1;
3461 return 0;
3462 }
3463
3464 /* Free any memory associated with a search. */
3465
3466 void
3467 free_search_symbols (struct symbol_search *symbols)
3468 {
3469 struct symbol_search *p;
3470 struct symbol_search *next;
3471
3472 for (p = symbols; p != NULL; p = next)
3473 {
3474 next = p->next;
3475 xfree (p);
3476 }
3477 }
3478
3479 static void
3480 do_free_search_symbols_cleanup (void *symbolsp)
3481 {
3482 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3483
3484 free_search_symbols (symbols);
3485 }
3486
3487 struct cleanup *
3488 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3489 {
3490 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3491 }
3492
3493 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3494 sort symbols, not minimal symbols. */
3495
3496 static int
3497 compare_search_syms (const void *sa, const void *sb)
3498 {
3499 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3500 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3501 int c;
3502
3503 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3504 if (c != 0)
3505 return c;
3506
3507 if (sym_a->block != sym_b->block)
3508 return sym_a->block - sym_b->block;
3509
3510 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3511 SYMBOL_PRINT_NAME (sym_b->symbol));
3512 }
3513
3514 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3515 The duplicates are freed, and the new list is returned in
3516 *NEW_HEAD, *NEW_TAIL. */
3517
3518 static void
3519 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3520 struct symbol_search **new_head,
3521 struct symbol_search **new_tail)
3522 {
3523 struct symbol_search **symbols, *symp, *old_next;
3524 int i, j, nunique;
3525
3526 gdb_assert (found != NULL && nfound > 0);
3527
3528 /* Build an array out of the list so we can easily sort them. */
3529 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3530 * nfound);
3531 symp = found;
3532 for (i = 0; i < nfound; i++)
3533 {
3534 gdb_assert (symp != NULL);
3535 gdb_assert (symp->block >= 0 && symp->block <= 1);
3536 symbols[i] = symp;
3537 symp = symp->next;
3538 }
3539 gdb_assert (symp == NULL);
3540
3541 qsort (symbols, nfound, sizeof (struct symbol_search *),
3542 compare_search_syms);
3543
3544 /* Collapse out the dups. */
3545 for (i = 1, j = 1; i < nfound; ++i)
3546 {
3547 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3548 symbols[j++] = symbols[i];
3549 else
3550 xfree (symbols[i]);
3551 }
3552 nunique = j;
3553 symbols[j - 1]->next = NULL;
3554
3555 /* Rebuild the linked list. */
3556 for (i = 0; i < nunique - 1; i++)
3557 symbols[i]->next = symbols[i + 1];
3558 symbols[nunique - 1]->next = NULL;
3559
3560 *new_head = symbols[0];
3561 *new_tail = symbols[nunique - 1];
3562 xfree (symbols);
3563 }
3564
3565 /* An object of this type is passed as the user_data to the
3566 expand_symtabs_matching method. */
3567 struct search_symbols_data
3568 {
3569 int nfiles;
3570 const char **files;
3571
3572 /* It is true if PREG contains valid data, false otherwise. */
3573 unsigned preg_p : 1;
3574 regex_t preg;
3575 };
3576
3577 /* A callback for expand_symtabs_matching. */
3578
3579 static int
3580 search_symbols_file_matches (const char *filename, void *user_data,
3581 int basenames)
3582 {
3583 struct search_symbols_data *data = user_data;
3584
3585 return file_matches (filename, data->files, data->nfiles, basenames);
3586 }
3587
3588 /* A callback for expand_symtabs_matching. */
3589
3590 static int
3591 search_symbols_name_matches (const char *symname, void *user_data)
3592 {
3593 struct search_symbols_data *data = user_data;
3594
3595 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3596 }
3597
3598 /* Search the symbol table for matches to the regular expression REGEXP,
3599 returning the results in *MATCHES.
3600
3601 Only symbols of KIND are searched:
3602 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3603 and constants (enums)
3604 FUNCTIONS_DOMAIN - search all functions
3605 TYPES_DOMAIN - search all type names
3606 ALL_DOMAIN - an internal error for this function
3607
3608 free_search_symbols should be called when *MATCHES is no longer needed.
3609
3610 Within each file the results are sorted locally; each symtab's global and
3611 static blocks are separately alphabetized.
3612 Duplicate entries are removed. */
3613
3614 void
3615 search_symbols (const char *regexp, enum search_domain kind,
3616 int nfiles, const char *files[],
3617 struct symbol_search **matches)
3618 {
3619 struct symtab *s;
3620 const struct blockvector *bv;
3621 struct block *b;
3622 int i = 0;
3623 struct block_iterator iter;
3624 struct symbol *sym;
3625 struct objfile *objfile;
3626 struct minimal_symbol *msymbol;
3627 int found_misc = 0;
3628 static const enum minimal_symbol_type types[]
3629 = {mst_data, mst_text, mst_abs};
3630 static const enum minimal_symbol_type types2[]
3631 = {mst_bss, mst_file_text, mst_abs};
3632 static const enum minimal_symbol_type types3[]
3633 = {mst_file_data, mst_solib_trampoline, mst_abs};
3634 static const enum minimal_symbol_type types4[]
3635 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3636 enum minimal_symbol_type ourtype;
3637 enum minimal_symbol_type ourtype2;
3638 enum minimal_symbol_type ourtype3;
3639 enum minimal_symbol_type ourtype4;
3640 struct symbol_search *found;
3641 struct symbol_search *tail;
3642 struct search_symbols_data datum;
3643 int nfound;
3644
3645 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3646 CLEANUP_CHAIN is freed only in the case of an error. */
3647 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3648 struct cleanup *retval_chain;
3649
3650 gdb_assert (kind <= TYPES_DOMAIN);
3651
3652 ourtype = types[kind];
3653 ourtype2 = types2[kind];
3654 ourtype3 = types3[kind];
3655 ourtype4 = types4[kind];
3656
3657 *matches = NULL;
3658 datum.preg_p = 0;
3659
3660 if (regexp != NULL)
3661 {
3662 /* Make sure spacing is right for C++ operators.
3663 This is just a courtesy to make the matching less sensitive
3664 to how many spaces the user leaves between 'operator'
3665 and <TYPENAME> or <OPERATOR>. */
3666 const char *opend;
3667 const char *opname = operator_chars (regexp, &opend);
3668 int errcode;
3669
3670 if (*opname)
3671 {
3672 int fix = -1; /* -1 means ok; otherwise number of
3673 spaces needed. */
3674
3675 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3676 {
3677 /* There should 1 space between 'operator' and 'TYPENAME'. */
3678 if (opname[-1] != ' ' || opname[-2] == ' ')
3679 fix = 1;
3680 }
3681 else
3682 {
3683 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3684 if (opname[-1] == ' ')
3685 fix = 0;
3686 }
3687 /* If wrong number of spaces, fix it. */
3688 if (fix >= 0)
3689 {
3690 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3691
3692 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3693 regexp = tmp;
3694 }
3695 }
3696
3697 errcode = regcomp (&datum.preg, regexp,
3698 REG_NOSUB | (case_sensitivity == case_sensitive_off
3699 ? REG_ICASE : 0));
3700 if (errcode != 0)
3701 {
3702 char *err = get_regcomp_error (errcode, &datum.preg);
3703
3704 make_cleanup (xfree, err);
3705 error (_("Invalid regexp (%s): %s"), err, regexp);
3706 }
3707 datum.preg_p = 1;
3708 make_regfree_cleanup (&datum.preg);
3709 }
3710
3711 /* Search through the partial symtabs *first* for all symbols
3712 matching the regexp. That way we don't have to reproduce all of
3713 the machinery below. */
3714
3715 datum.nfiles = nfiles;
3716 datum.files = files;
3717 expand_symtabs_matching ((nfiles == 0
3718 ? NULL
3719 : search_symbols_file_matches),
3720 search_symbols_name_matches,
3721 kind, &datum);
3722
3723 /* Here, we search through the minimal symbol tables for functions
3724 and variables that match, and force their symbols to be read.
3725 This is in particular necessary for demangled variable names,
3726 which are no longer put into the partial symbol tables.
3727 The symbol will then be found during the scan of symtabs below.
3728
3729 For functions, find_pc_symtab should succeed if we have debug info
3730 for the function, for variables we have to call
3731 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3732 has debug info.
3733 If the lookup fails, set found_misc so that we will rescan to print
3734 any matching symbols without debug info.
3735 We only search the objfile the msymbol came from, we no longer search
3736 all objfiles. In large programs (1000s of shared libs) searching all
3737 objfiles is not worth the pain. */
3738
3739 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3740 {
3741 ALL_MSYMBOLS (objfile, msymbol)
3742 {
3743 QUIT;
3744
3745 if (msymbol->created_by_gdb)
3746 continue;
3747
3748 if (MSYMBOL_TYPE (msymbol) == ourtype
3749 || MSYMBOL_TYPE (msymbol) == ourtype2
3750 || MSYMBOL_TYPE (msymbol) == ourtype3
3751 || MSYMBOL_TYPE (msymbol) == ourtype4)
3752 {
3753 if (!datum.preg_p
3754 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3755 NULL, 0) == 0)
3756 {
3757 /* Note: An important side-effect of these lookup functions
3758 is to expand the symbol table if msymbol is found, for the
3759 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3760 if (kind == FUNCTIONS_DOMAIN
3761 ? find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3762 msymbol)) == NULL
3763 : (lookup_symbol_in_objfile_from_linkage_name
3764 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3765 == NULL))
3766 found_misc = 1;
3767 }
3768 }
3769 }
3770 }
3771
3772 found = NULL;
3773 tail = NULL;
3774 nfound = 0;
3775 retval_chain = make_cleanup_free_search_symbols (&found);
3776
3777 ALL_PRIMARY_SYMTABS (objfile, s)
3778 {
3779 bv = BLOCKVECTOR (s);
3780 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3781 {
3782 b = BLOCKVECTOR_BLOCK (bv, i);
3783 ALL_BLOCK_SYMBOLS (b, iter, sym)
3784 {
3785 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3786
3787 QUIT;
3788
3789 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3790 a substring of symtab_to_fullname as it may contain "./" etc. */
3791 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3792 || ((basenames_may_differ
3793 || file_matches (lbasename (real_symtab->filename),
3794 files, nfiles, 1))
3795 && file_matches (symtab_to_fullname (real_symtab),
3796 files, nfiles, 0)))
3797 && ((!datum.preg_p
3798 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3799 NULL, 0) == 0)
3800 && ((kind == VARIABLES_DOMAIN
3801 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3802 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3803 && SYMBOL_CLASS (sym) != LOC_BLOCK
3804 /* LOC_CONST can be used for more than just enums,
3805 e.g., c++ static const members.
3806 We only want to skip enums here. */
3807 && !(SYMBOL_CLASS (sym) == LOC_CONST
3808 && TYPE_CODE (SYMBOL_TYPE (sym))
3809 == TYPE_CODE_ENUM))
3810 || (kind == FUNCTIONS_DOMAIN
3811 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3812 || (kind == TYPES_DOMAIN
3813 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3814 {
3815 /* match */
3816 struct symbol_search *psr = (struct symbol_search *)
3817 xmalloc (sizeof (struct symbol_search));
3818 psr->block = i;
3819 psr->symtab = real_symtab;
3820 psr->symbol = sym;
3821 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3822 psr->next = NULL;
3823 if (tail == NULL)
3824 found = psr;
3825 else
3826 tail->next = psr;
3827 tail = psr;
3828 nfound ++;
3829 }
3830 }
3831 }
3832 }
3833
3834 if (found != NULL)
3835 {
3836 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3837 /* Note: nfound is no longer useful beyond this point. */
3838 }
3839
3840 /* If there are no eyes, avoid all contact. I mean, if there are
3841 no debug symbols, then print directly from the msymbol_vector. */
3842
3843 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3844 {
3845 ALL_MSYMBOLS (objfile, msymbol)
3846 {
3847 QUIT;
3848
3849 if (msymbol->created_by_gdb)
3850 continue;
3851
3852 if (MSYMBOL_TYPE (msymbol) == ourtype
3853 || MSYMBOL_TYPE (msymbol) == ourtype2
3854 || MSYMBOL_TYPE (msymbol) == ourtype3
3855 || MSYMBOL_TYPE (msymbol) == ourtype4)
3856 {
3857 if (!datum.preg_p
3858 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3859 NULL, 0) == 0)
3860 {
3861 /* For functions we can do a quick check of whether the
3862 symbol might be found via find_pc_symtab. */
3863 if (kind != FUNCTIONS_DOMAIN
3864 || find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3865 msymbol)) == NULL)
3866 {
3867 if (lookup_symbol_in_objfile_from_linkage_name
3868 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3869 == NULL)
3870 {
3871 /* match */
3872 struct symbol_search *psr = (struct symbol_search *)
3873 xmalloc (sizeof (struct symbol_search));
3874 psr->block = i;
3875 psr->msymbol.minsym = msymbol;
3876 psr->msymbol.objfile = objfile;
3877 psr->symtab = NULL;
3878 psr->symbol = NULL;
3879 psr->next = NULL;
3880 if (tail == NULL)
3881 found = psr;
3882 else
3883 tail->next = psr;
3884 tail = psr;
3885 }
3886 }
3887 }
3888 }
3889 }
3890 }
3891
3892 discard_cleanups (retval_chain);
3893 do_cleanups (old_chain);
3894 *matches = found;
3895 }
3896
3897 /* Helper function for symtab_symbol_info, this function uses
3898 the data returned from search_symbols() to print information
3899 regarding the match to gdb_stdout. */
3900
3901 static void
3902 print_symbol_info (enum search_domain kind,
3903 struct symtab *s, struct symbol *sym,
3904 int block, const char *last)
3905 {
3906 const char *s_filename = symtab_to_filename_for_display (s);
3907
3908 if (last == NULL || filename_cmp (last, s_filename) != 0)
3909 {
3910 fputs_filtered ("\nFile ", gdb_stdout);
3911 fputs_filtered (s_filename, gdb_stdout);
3912 fputs_filtered (":\n", gdb_stdout);
3913 }
3914
3915 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3916 printf_filtered ("static ");
3917
3918 /* Typedef that is not a C++ class. */
3919 if (kind == TYPES_DOMAIN
3920 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3921 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3922 /* variable, func, or typedef-that-is-c++-class. */
3923 else if (kind < TYPES_DOMAIN
3924 || (kind == TYPES_DOMAIN
3925 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3926 {
3927 type_print (SYMBOL_TYPE (sym),
3928 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3929 ? "" : SYMBOL_PRINT_NAME (sym)),
3930 gdb_stdout, 0);
3931
3932 printf_filtered (";\n");
3933 }
3934 }
3935
3936 /* This help function for symtab_symbol_info() prints information
3937 for non-debugging symbols to gdb_stdout. */
3938
3939 static void
3940 print_msymbol_info (struct bound_minimal_symbol msymbol)
3941 {
3942 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3943 char *tmp;
3944
3945 if (gdbarch_addr_bit (gdbarch) <= 32)
3946 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
3947 & (CORE_ADDR) 0xffffffff,
3948 8);
3949 else
3950 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
3951 16);
3952 printf_filtered ("%s %s\n",
3953 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
3954 }
3955
3956 /* This is the guts of the commands "info functions", "info types", and
3957 "info variables". It calls search_symbols to find all matches and then
3958 print_[m]symbol_info to print out some useful information about the
3959 matches. */
3960
3961 static void
3962 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3963 {
3964 static const char * const classnames[] =
3965 {"variable", "function", "type"};
3966 struct symbol_search *symbols;
3967 struct symbol_search *p;
3968 struct cleanup *old_chain;
3969 const char *last_filename = NULL;
3970 int first = 1;
3971
3972 gdb_assert (kind <= TYPES_DOMAIN);
3973
3974 /* Must make sure that if we're interrupted, symbols gets freed. */
3975 search_symbols (regexp, kind, 0, NULL, &symbols);
3976 old_chain = make_cleanup_free_search_symbols (&symbols);
3977
3978 if (regexp != NULL)
3979 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3980 classnames[kind], regexp);
3981 else
3982 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3983
3984 for (p = symbols; p != NULL; p = p->next)
3985 {
3986 QUIT;
3987
3988 if (p->msymbol.minsym != NULL)
3989 {
3990 if (first)
3991 {
3992 printf_filtered (_("\nNon-debugging symbols:\n"));
3993 first = 0;
3994 }
3995 print_msymbol_info (p->msymbol);
3996 }
3997 else
3998 {
3999 print_symbol_info (kind,
4000 p->symtab,
4001 p->symbol,
4002 p->block,
4003 last_filename);
4004 last_filename = symtab_to_filename_for_display (p->symtab);
4005 }
4006 }
4007
4008 do_cleanups (old_chain);
4009 }
4010
4011 static void
4012 variables_info (char *regexp, int from_tty)
4013 {
4014 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4015 }
4016
4017 static void
4018 functions_info (char *regexp, int from_tty)
4019 {
4020 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4021 }
4022
4023
4024 static void
4025 types_info (char *regexp, int from_tty)
4026 {
4027 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4028 }
4029
4030 /* Breakpoint all functions matching regular expression. */
4031
4032 void
4033 rbreak_command_wrapper (char *regexp, int from_tty)
4034 {
4035 rbreak_command (regexp, from_tty);
4036 }
4037
4038 /* A cleanup function that calls end_rbreak_breakpoints. */
4039
4040 static void
4041 do_end_rbreak_breakpoints (void *ignore)
4042 {
4043 end_rbreak_breakpoints ();
4044 }
4045
4046 static void
4047 rbreak_command (char *regexp, int from_tty)
4048 {
4049 struct symbol_search *ss;
4050 struct symbol_search *p;
4051 struct cleanup *old_chain;
4052 char *string = NULL;
4053 int len = 0;
4054 const char **files = NULL;
4055 const char *file_name;
4056 int nfiles = 0;
4057
4058 if (regexp)
4059 {
4060 char *colon = strchr (regexp, ':');
4061
4062 if (colon && *(colon + 1) != ':')
4063 {
4064 int colon_index;
4065 char *local_name;
4066
4067 colon_index = colon - regexp;
4068 local_name = alloca (colon_index + 1);
4069 memcpy (local_name, regexp, colon_index);
4070 local_name[colon_index--] = 0;
4071 while (isspace (local_name[colon_index]))
4072 local_name[colon_index--] = 0;
4073 file_name = local_name;
4074 files = &file_name;
4075 nfiles = 1;
4076 regexp = skip_spaces (colon + 1);
4077 }
4078 }
4079
4080 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4081 old_chain = make_cleanup_free_search_symbols (&ss);
4082 make_cleanup (free_current_contents, &string);
4083
4084 start_rbreak_breakpoints ();
4085 make_cleanup (do_end_rbreak_breakpoints, NULL);
4086 for (p = ss; p != NULL; p = p->next)
4087 {
4088 if (p->msymbol.minsym == NULL)
4089 {
4090 const char *fullname = symtab_to_fullname (p->symtab);
4091
4092 int newlen = (strlen (fullname)
4093 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4094 + 4);
4095
4096 if (newlen > len)
4097 {
4098 string = xrealloc (string, newlen);
4099 len = newlen;
4100 }
4101 strcpy (string, fullname);
4102 strcat (string, ":'");
4103 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4104 strcat (string, "'");
4105 break_command (string, from_tty);
4106 print_symbol_info (FUNCTIONS_DOMAIN,
4107 p->symtab,
4108 p->symbol,
4109 p->block,
4110 symtab_to_filename_for_display (p->symtab));
4111 }
4112 else
4113 {
4114 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4115
4116 if (newlen > len)
4117 {
4118 string = xrealloc (string, newlen);
4119 len = newlen;
4120 }
4121 strcpy (string, "'");
4122 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4123 strcat (string, "'");
4124
4125 break_command (string, from_tty);
4126 printf_filtered ("<function, no debug info> %s;\n",
4127 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4128 }
4129 }
4130
4131 do_cleanups (old_chain);
4132 }
4133 \f
4134
4135 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4136
4137 Either sym_text[sym_text_len] != '(' and then we search for any
4138 symbol starting with SYM_TEXT text.
4139
4140 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4141 be terminated at that point. Partial symbol tables do not have parameters
4142 information. */
4143
4144 static int
4145 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4146 {
4147 int (*ncmp) (const char *, const char *, size_t);
4148
4149 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4150
4151 if (ncmp (name, sym_text, sym_text_len) != 0)
4152 return 0;
4153
4154 if (sym_text[sym_text_len] == '(')
4155 {
4156 /* User searches for `name(someth...'. Require NAME to be terminated.
4157 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4158 present but accept even parameters presence. In this case this
4159 function is in fact strcmp_iw but whitespace skipping is not supported
4160 for tab completion. */
4161
4162 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4163 return 0;
4164 }
4165
4166 return 1;
4167 }
4168
4169 /* Free any memory associated with a completion list. */
4170
4171 static void
4172 free_completion_list (VEC (char_ptr) **list_ptr)
4173 {
4174 int i;
4175 char *p;
4176
4177 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4178 xfree (p);
4179 VEC_free (char_ptr, *list_ptr);
4180 }
4181
4182 /* Callback for make_cleanup. */
4183
4184 static void
4185 do_free_completion_list (void *list)
4186 {
4187 free_completion_list (list);
4188 }
4189
4190 /* Helper routine for make_symbol_completion_list. */
4191
4192 static VEC (char_ptr) *return_val;
4193
4194 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4195 completion_list_add_name \
4196 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4197
4198 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4199 completion_list_add_name \
4200 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4201
4202 /* Test to see if the symbol specified by SYMNAME (which is already
4203 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4204 characters. If so, add it to the current completion list. */
4205
4206 static void
4207 completion_list_add_name (const char *symname,
4208 const char *sym_text, int sym_text_len,
4209 const char *text, const char *word)
4210 {
4211 /* Clip symbols that cannot match. */
4212 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4213 return;
4214
4215 /* We have a match for a completion, so add SYMNAME to the current list
4216 of matches. Note that the name is moved to freshly malloc'd space. */
4217
4218 {
4219 char *new;
4220
4221 if (word == sym_text)
4222 {
4223 new = xmalloc (strlen (symname) + 5);
4224 strcpy (new, symname);
4225 }
4226 else if (word > sym_text)
4227 {
4228 /* Return some portion of symname. */
4229 new = xmalloc (strlen (symname) + 5);
4230 strcpy (new, symname + (word - sym_text));
4231 }
4232 else
4233 {
4234 /* Return some of SYM_TEXT plus symname. */
4235 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4236 strncpy (new, word, sym_text - word);
4237 new[sym_text - word] = '\0';
4238 strcat (new, symname);
4239 }
4240
4241 VEC_safe_push (char_ptr, return_val, new);
4242 }
4243 }
4244
4245 /* ObjC: In case we are completing on a selector, look as the msymbol
4246 again and feed all the selectors into the mill. */
4247
4248 static void
4249 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4250 const char *sym_text, int sym_text_len,
4251 const char *text, const char *word)
4252 {
4253 static char *tmp = NULL;
4254 static unsigned int tmplen = 0;
4255
4256 const char *method, *category, *selector;
4257 char *tmp2 = NULL;
4258
4259 method = MSYMBOL_NATURAL_NAME (msymbol);
4260
4261 /* Is it a method? */
4262 if ((method[0] != '-') && (method[0] != '+'))
4263 return;
4264
4265 if (sym_text[0] == '[')
4266 /* Complete on shortened method method. */
4267 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4268
4269 while ((strlen (method) + 1) >= tmplen)
4270 {
4271 if (tmplen == 0)
4272 tmplen = 1024;
4273 else
4274 tmplen *= 2;
4275 tmp = xrealloc (tmp, tmplen);
4276 }
4277 selector = strchr (method, ' ');
4278 if (selector != NULL)
4279 selector++;
4280
4281 category = strchr (method, '(');
4282
4283 if ((category != NULL) && (selector != NULL))
4284 {
4285 memcpy (tmp, method, (category - method));
4286 tmp[category - method] = ' ';
4287 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4288 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4289 if (sym_text[0] == '[')
4290 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4291 }
4292
4293 if (selector != NULL)
4294 {
4295 /* Complete on selector only. */
4296 strcpy (tmp, selector);
4297 tmp2 = strchr (tmp, ']');
4298 if (tmp2 != NULL)
4299 *tmp2 = '\0';
4300
4301 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4302 }
4303 }
4304
4305 /* Break the non-quoted text based on the characters which are in
4306 symbols. FIXME: This should probably be language-specific. */
4307
4308 static const char *
4309 language_search_unquoted_string (const char *text, const char *p)
4310 {
4311 for (; p > text; --p)
4312 {
4313 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4314 continue;
4315 else
4316 {
4317 if ((current_language->la_language == language_objc))
4318 {
4319 if (p[-1] == ':') /* Might be part of a method name. */
4320 continue;
4321 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4322 p -= 2; /* Beginning of a method name. */
4323 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4324 { /* Might be part of a method name. */
4325 const char *t = p;
4326
4327 /* Seeing a ' ' or a '(' is not conclusive evidence
4328 that we are in the middle of a method name. However,
4329 finding "-[" or "+[" should be pretty un-ambiguous.
4330 Unfortunately we have to find it now to decide. */
4331
4332 while (t > text)
4333 if (isalnum (t[-1]) || t[-1] == '_' ||
4334 t[-1] == ' ' || t[-1] == ':' ||
4335 t[-1] == '(' || t[-1] == ')')
4336 --t;
4337 else
4338 break;
4339
4340 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4341 p = t - 2; /* Method name detected. */
4342 /* Else we leave with p unchanged. */
4343 }
4344 }
4345 break;
4346 }
4347 }
4348 return p;
4349 }
4350
4351 static void
4352 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4353 int sym_text_len, const char *text,
4354 const char *word)
4355 {
4356 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4357 {
4358 struct type *t = SYMBOL_TYPE (sym);
4359 enum type_code c = TYPE_CODE (t);
4360 int j;
4361
4362 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4363 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4364 if (TYPE_FIELD_NAME (t, j))
4365 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4366 sym_text, sym_text_len, text, word);
4367 }
4368 }
4369
4370 /* Type of the user_data argument passed to add_macro_name or
4371 symbol_completion_matcher. The contents are simply whatever is
4372 needed by completion_list_add_name. */
4373 struct add_name_data
4374 {
4375 const char *sym_text;
4376 int sym_text_len;
4377 const char *text;
4378 const char *word;
4379 };
4380
4381 /* A callback used with macro_for_each and macro_for_each_in_scope.
4382 This adds a macro's name to the current completion list. */
4383
4384 static void
4385 add_macro_name (const char *name, const struct macro_definition *ignore,
4386 struct macro_source_file *ignore2, int ignore3,
4387 void *user_data)
4388 {
4389 struct add_name_data *datum = (struct add_name_data *) user_data;
4390
4391 completion_list_add_name (name,
4392 datum->sym_text, datum->sym_text_len,
4393 datum->text, datum->word);
4394 }
4395
4396 /* A callback for expand_symtabs_matching. */
4397
4398 static int
4399 symbol_completion_matcher (const char *name, void *user_data)
4400 {
4401 struct add_name_data *datum = (struct add_name_data *) user_data;
4402
4403 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4404 }
4405
4406 VEC (char_ptr) *
4407 default_make_symbol_completion_list_break_on (const char *text,
4408 const char *word,
4409 const char *break_on,
4410 enum type_code code)
4411 {
4412 /* Problem: All of the symbols have to be copied because readline
4413 frees them. I'm not going to worry about this; hopefully there
4414 won't be that many. */
4415
4416 struct symbol *sym;
4417 struct symtab *s;
4418 struct minimal_symbol *msymbol;
4419 struct objfile *objfile;
4420 const struct block *b;
4421 const struct block *surrounding_static_block, *surrounding_global_block;
4422 struct block_iterator iter;
4423 /* The symbol we are completing on. Points in same buffer as text. */
4424 const char *sym_text;
4425 /* Length of sym_text. */
4426 int sym_text_len;
4427 struct add_name_data datum;
4428 struct cleanup *back_to;
4429
4430 /* Now look for the symbol we are supposed to complete on. */
4431 {
4432 const char *p;
4433 char quote_found;
4434 const char *quote_pos = NULL;
4435
4436 /* First see if this is a quoted string. */
4437 quote_found = '\0';
4438 for (p = text; *p != '\0'; ++p)
4439 {
4440 if (quote_found != '\0')
4441 {
4442 if (*p == quote_found)
4443 /* Found close quote. */
4444 quote_found = '\0';
4445 else if (*p == '\\' && p[1] == quote_found)
4446 /* A backslash followed by the quote character
4447 doesn't end the string. */
4448 ++p;
4449 }
4450 else if (*p == '\'' || *p == '"')
4451 {
4452 quote_found = *p;
4453 quote_pos = p;
4454 }
4455 }
4456 if (quote_found == '\'')
4457 /* A string within single quotes can be a symbol, so complete on it. */
4458 sym_text = quote_pos + 1;
4459 else if (quote_found == '"')
4460 /* A double-quoted string is never a symbol, nor does it make sense
4461 to complete it any other way. */
4462 {
4463 return NULL;
4464 }
4465 else
4466 {
4467 /* It is not a quoted string. Break it based on the characters
4468 which are in symbols. */
4469 while (p > text)
4470 {
4471 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4472 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4473 --p;
4474 else
4475 break;
4476 }
4477 sym_text = p;
4478 }
4479 }
4480
4481 sym_text_len = strlen (sym_text);
4482
4483 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4484
4485 if (current_language->la_language == language_cplus
4486 || current_language->la_language == language_java
4487 || current_language->la_language == language_fortran)
4488 {
4489 /* These languages may have parameters entered by user but they are never
4490 present in the partial symbol tables. */
4491
4492 const char *cs = memchr (sym_text, '(', sym_text_len);
4493
4494 if (cs)
4495 sym_text_len = cs - sym_text;
4496 }
4497 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4498
4499 return_val = NULL;
4500 back_to = make_cleanup (do_free_completion_list, &return_val);
4501
4502 datum.sym_text = sym_text;
4503 datum.sym_text_len = sym_text_len;
4504 datum.text = text;
4505 datum.word = word;
4506
4507 /* Look through the partial symtabs for all symbols which begin
4508 by matching SYM_TEXT. Expand all CUs that you find to the list.
4509 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4510 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4511 &datum);
4512
4513 /* At this point scan through the misc symbol vectors and add each
4514 symbol you find to the list. Eventually we want to ignore
4515 anything that isn't a text symbol (everything else will be
4516 handled by the psymtab code above). */
4517
4518 if (code == TYPE_CODE_UNDEF)
4519 {
4520 ALL_MSYMBOLS (objfile, msymbol)
4521 {
4522 QUIT;
4523 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4524 word);
4525
4526 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4527 word);
4528 }
4529 }
4530
4531 /* Search upwards from currently selected frame (so that we can
4532 complete on local vars). Also catch fields of types defined in
4533 this places which match our text string. Only complete on types
4534 visible from current context. */
4535
4536 b = get_selected_block (0);
4537 surrounding_static_block = block_static_block (b);
4538 surrounding_global_block = block_global_block (b);
4539 if (surrounding_static_block != NULL)
4540 while (b != surrounding_static_block)
4541 {
4542 QUIT;
4543
4544 ALL_BLOCK_SYMBOLS (b, iter, sym)
4545 {
4546 if (code == TYPE_CODE_UNDEF)
4547 {
4548 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4549 word);
4550 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4551 word);
4552 }
4553 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4554 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4555 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4556 word);
4557 }
4558
4559 /* Stop when we encounter an enclosing function. Do not stop for
4560 non-inlined functions - the locals of the enclosing function
4561 are in scope for a nested function. */
4562 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4563 break;
4564 b = BLOCK_SUPERBLOCK (b);
4565 }
4566
4567 /* Add fields from the file's types; symbols will be added below. */
4568
4569 if (code == TYPE_CODE_UNDEF)
4570 {
4571 if (surrounding_static_block != NULL)
4572 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4573 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4574
4575 if (surrounding_global_block != NULL)
4576 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4577 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4578 }
4579
4580 /* Go through the symtabs and check the externs and statics for
4581 symbols which match. */
4582
4583 ALL_PRIMARY_SYMTABS (objfile, s)
4584 {
4585 QUIT;
4586 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4587 ALL_BLOCK_SYMBOLS (b, iter, sym)
4588 {
4589 if (code == TYPE_CODE_UNDEF
4590 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4591 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4592 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4593 }
4594 }
4595
4596 ALL_PRIMARY_SYMTABS (objfile, s)
4597 {
4598 QUIT;
4599 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4600 ALL_BLOCK_SYMBOLS (b, iter, sym)
4601 {
4602 if (code == TYPE_CODE_UNDEF
4603 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4604 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4605 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4606 }
4607 }
4608
4609 /* Skip macros if we are completing a struct tag -- arguable but
4610 usually what is expected. */
4611 if (current_language->la_macro_expansion == macro_expansion_c
4612 && code == TYPE_CODE_UNDEF)
4613 {
4614 struct macro_scope *scope;
4615
4616 /* Add any macros visible in the default scope. Note that this
4617 may yield the occasional wrong result, because an expression
4618 might be evaluated in a scope other than the default. For
4619 example, if the user types "break file:line if <TAB>", the
4620 resulting expression will be evaluated at "file:line" -- but
4621 at there does not seem to be a way to detect this at
4622 completion time. */
4623 scope = default_macro_scope ();
4624 if (scope)
4625 {
4626 macro_for_each_in_scope (scope->file, scope->line,
4627 add_macro_name, &datum);
4628 xfree (scope);
4629 }
4630
4631 /* User-defined macros are always visible. */
4632 macro_for_each (macro_user_macros, add_macro_name, &datum);
4633 }
4634
4635 discard_cleanups (back_to);
4636 return (return_val);
4637 }
4638
4639 VEC (char_ptr) *
4640 default_make_symbol_completion_list (const char *text, const char *word,
4641 enum type_code code)
4642 {
4643 return default_make_symbol_completion_list_break_on (text, word, "", code);
4644 }
4645
4646 /* Return a vector of all symbols (regardless of class) which begin by
4647 matching TEXT. If the answer is no symbols, then the return value
4648 is NULL. */
4649
4650 VEC (char_ptr) *
4651 make_symbol_completion_list (const char *text, const char *word)
4652 {
4653 return current_language->la_make_symbol_completion_list (text, word,
4654 TYPE_CODE_UNDEF);
4655 }
4656
4657 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4658 symbols whose type code is CODE. */
4659
4660 VEC (char_ptr) *
4661 make_symbol_completion_type (const char *text, const char *word,
4662 enum type_code code)
4663 {
4664 gdb_assert (code == TYPE_CODE_UNION
4665 || code == TYPE_CODE_STRUCT
4666 || code == TYPE_CODE_ENUM);
4667 return current_language->la_make_symbol_completion_list (text, word, code);
4668 }
4669
4670 /* Like make_symbol_completion_list, but suitable for use as a
4671 completion function. */
4672
4673 VEC (char_ptr) *
4674 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4675 const char *text, const char *word)
4676 {
4677 return make_symbol_completion_list (text, word);
4678 }
4679
4680 /* Like make_symbol_completion_list, but returns a list of symbols
4681 defined in a source file FILE. */
4682
4683 VEC (char_ptr) *
4684 make_file_symbol_completion_list (const char *text, const char *word,
4685 const char *srcfile)
4686 {
4687 struct symbol *sym;
4688 struct symtab *s;
4689 struct block *b;
4690 struct block_iterator iter;
4691 /* The symbol we are completing on. Points in same buffer as text. */
4692 const char *sym_text;
4693 /* Length of sym_text. */
4694 int sym_text_len;
4695
4696 /* Now look for the symbol we are supposed to complete on.
4697 FIXME: This should be language-specific. */
4698 {
4699 const char *p;
4700 char quote_found;
4701 const char *quote_pos = NULL;
4702
4703 /* First see if this is a quoted string. */
4704 quote_found = '\0';
4705 for (p = text; *p != '\0'; ++p)
4706 {
4707 if (quote_found != '\0')
4708 {
4709 if (*p == quote_found)
4710 /* Found close quote. */
4711 quote_found = '\0';
4712 else if (*p == '\\' && p[1] == quote_found)
4713 /* A backslash followed by the quote character
4714 doesn't end the string. */
4715 ++p;
4716 }
4717 else if (*p == '\'' || *p == '"')
4718 {
4719 quote_found = *p;
4720 quote_pos = p;
4721 }
4722 }
4723 if (quote_found == '\'')
4724 /* A string within single quotes can be a symbol, so complete on it. */
4725 sym_text = quote_pos + 1;
4726 else if (quote_found == '"')
4727 /* A double-quoted string is never a symbol, nor does it make sense
4728 to complete it any other way. */
4729 {
4730 return NULL;
4731 }
4732 else
4733 {
4734 /* Not a quoted string. */
4735 sym_text = language_search_unquoted_string (text, p);
4736 }
4737 }
4738
4739 sym_text_len = strlen (sym_text);
4740
4741 return_val = NULL;
4742
4743 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4744 in). */
4745 s = lookup_symtab (srcfile);
4746 if (s == NULL)
4747 {
4748 /* Maybe they typed the file with leading directories, while the
4749 symbol tables record only its basename. */
4750 const char *tail = lbasename (srcfile);
4751
4752 if (tail > srcfile)
4753 s = lookup_symtab (tail);
4754 }
4755
4756 /* If we have no symtab for that file, return an empty list. */
4757 if (s == NULL)
4758 return (return_val);
4759
4760 /* Go through this symtab and check the externs and statics for
4761 symbols which match. */
4762
4763 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4764 ALL_BLOCK_SYMBOLS (b, iter, sym)
4765 {
4766 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4767 }
4768
4769 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4770 ALL_BLOCK_SYMBOLS (b, iter, sym)
4771 {
4772 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4773 }
4774
4775 return (return_val);
4776 }
4777
4778 /* A helper function for make_source_files_completion_list. It adds
4779 another file name to a list of possible completions, growing the
4780 list as necessary. */
4781
4782 static void
4783 add_filename_to_list (const char *fname, const char *text, const char *word,
4784 VEC (char_ptr) **list)
4785 {
4786 char *new;
4787 size_t fnlen = strlen (fname);
4788
4789 if (word == text)
4790 {
4791 /* Return exactly fname. */
4792 new = xmalloc (fnlen + 5);
4793 strcpy (new, fname);
4794 }
4795 else if (word > text)
4796 {
4797 /* Return some portion of fname. */
4798 new = xmalloc (fnlen + 5);
4799 strcpy (new, fname + (word - text));
4800 }
4801 else
4802 {
4803 /* Return some of TEXT plus fname. */
4804 new = xmalloc (fnlen + (text - word) + 5);
4805 strncpy (new, word, text - word);
4806 new[text - word] = '\0';
4807 strcat (new, fname);
4808 }
4809 VEC_safe_push (char_ptr, *list, new);
4810 }
4811
4812 static int
4813 not_interesting_fname (const char *fname)
4814 {
4815 static const char *illegal_aliens[] = {
4816 "_globals_", /* inserted by coff_symtab_read */
4817 NULL
4818 };
4819 int i;
4820
4821 for (i = 0; illegal_aliens[i]; i++)
4822 {
4823 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4824 return 1;
4825 }
4826 return 0;
4827 }
4828
4829 /* An object of this type is passed as the user_data argument to
4830 map_partial_symbol_filenames. */
4831 struct add_partial_filename_data
4832 {
4833 struct filename_seen_cache *filename_seen_cache;
4834 const char *text;
4835 const char *word;
4836 int text_len;
4837 VEC (char_ptr) **list;
4838 };
4839
4840 /* A callback for map_partial_symbol_filenames. */
4841
4842 static void
4843 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4844 void *user_data)
4845 {
4846 struct add_partial_filename_data *data = user_data;
4847
4848 if (not_interesting_fname (filename))
4849 return;
4850 if (!filename_seen (data->filename_seen_cache, filename, 1)
4851 && filename_ncmp (filename, data->text, data->text_len) == 0)
4852 {
4853 /* This file matches for a completion; add it to the
4854 current list of matches. */
4855 add_filename_to_list (filename, data->text, data->word, data->list);
4856 }
4857 else
4858 {
4859 const char *base_name = lbasename (filename);
4860
4861 if (base_name != filename
4862 && !filename_seen (data->filename_seen_cache, base_name, 1)
4863 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4864 add_filename_to_list (base_name, data->text, data->word, data->list);
4865 }
4866 }
4867
4868 /* Return a vector of all source files whose names begin with matching
4869 TEXT. The file names are looked up in the symbol tables of this
4870 program. If the answer is no matchess, then the return value is
4871 NULL. */
4872
4873 VEC (char_ptr) *
4874 make_source_files_completion_list (const char *text, const char *word)
4875 {
4876 struct symtab *s;
4877 struct objfile *objfile;
4878 size_t text_len = strlen (text);
4879 VEC (char_ptr) *list = NULL;
4880 const char *base_name;
4881 struct add_partial_filename_data datum;
4882 struct filename_seen_cache *filename_seen_cache;
4883 struct cleanup *back_to, *cache_cleanup;
4884
4885 if (!have_full_symbols () && !have_partial_symbols ())
4886 return list;
4887
4888 back_to = make_cleanup (do_free_completion_list, &list);
4889
4890 filename_seen_cache = create_filename_seen_cache ();
4891 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4892 filename_seen_cache);
4893
4894 ALL_SYMTABS (objfile, s)
4895 {
4896 if (not_interesting_fname (s->filename))
4897 continue;
4898 if (!filename_seen (filename_seen_cache, s->filename, 1)
4899 && filename_ncmp (s->filename, text, text_len) == 0)
4900 {
4901 /* This file matches for a completion; add it to the current
4902 list of matches. */
4903 add_filename_to_list (s->filename, text, word, &list);
4904 }
4905 else
4906 {
4907 /* NOTE: We allow the user to type a base name when the
4908 debug info records leading directories, but not the other
4909 way around. This is what subroutines of breakpoint
4910 command do when they parse file names. */
4911 base_name = lbasename (s->filename);
4912 if (base_name != s->filename
4913 && !filename_seen (filename_seen_cache, base_name, 1)
4914 && filename_ncmp (base_name, text, text_len) == 0)
4915 add_filename_to_list (base_name, text, word, &list);
4916 }
4917 }
4918
4919 datum.filename_seen_cache = filename_seen_cache;
4920 datum.text = text;
4921 datum.word = word;
4922 datum.text_len = text_len;
4923 datum.list = &list;
4924 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4925 0 /*need_fullname*/);
4926
4927 do_cleanups (cache_cleanup);
4928 discard_cleanups (back_to);
4929
4930 return list;
4931 }
4932 \f
4933 /* Track MAIN */
4934
4935 /* Return the "main_info" object for the current program space. If
4936 the object has not yet been created, create it and fill in some
4937 default values. */
4938
4939 static struct main_info *
4940 get_main_info (void)
4941 {
4942 struct main_info *info = program_space_data (current_program_space,
4943 main_progspace_key);
4944
4945 if (info == NULL)
4946 {
4947 /* It may seem strange to store the main name in the progspace
4948 and also in whatever objfile happens to see a main name in
4949 its debug info. The reason for this is mainly historical:
4950 gdb returned "main" as the name even if no function named
4951 "main" was defined the program; and this approach lets us
4952 keep compatibility. */
4953 info = XCNEW (struct main_info);
4954 info->language_of_main = language_unknown;
4955 set_program_space_data (current_program_space, main_progspace_key,
4956 info);
4957 }
4958
4959 return info;
4960 }
4961
4962 /* A cleanup to destroy a struct main_info when a progspace is
4963 destroyed. */
4964
4965 static void
4966 main_info_cleanup (struct program_space *pspace, void *data)
4967 {
4968 struct main_info *info = data;
4969
4970 if (info != NULL)
4971 xfree (info->name_of_main);
4972 xfree (info);
4973 }
4974
4975 static void
4976 set_main_name (const char *name, enum language lang)
4977 {
4978 struct main_info *info = get_main_info ();
4979
4980 if (info->name_of_main != NULL)
4981 {
4982 xfree (info->name_of_main);
4983 info->name_of_main = NULL;
4984 info->language_of_main = language_unknown;
4985 }
4986 if (name != NULL)
4987 {
4988 info->name_of_main = xstrdup (name);
4989 info->language_of_main = lang;
4990 }
4991 }
4992
4993 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4994 accordingly. */
4995
4996 static void
4997 find_main_name (void)
4998 {
4999 const char *new_main_name;
5000 struct objfile *objfile;
5001
5002 /* First check the objfiles to see whether a debuginfo reader has
5003 picked up the appropriate main name. Historically the main name
5004 was found in a more or less random way; this approach instead
5005 relies on the order of objfile creation -- which still isn't
5006 guaranteed to get the correct answer, but is just probably more
5007 accurate. */
5008 ALL_OBJFILES (objfile)
5009 {
5010 if (objfile->per_bfd->name_of_main != NULL)
5011 {
5012 set_main_name (objfile->per_bfd->name_of_main,
5013 objfile->per_bfd->language_of_main);
5014 return;
5015 }
5016 }
5017
5018 /* Try to see if the main procedure is in Ada. */
5019 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5020 be to add a new method in the language vector, and call this
5021 method for each language until one of them returns a non-empty
5022 name. This would allow us to remove this hard-coded call to
5023 an Ada function. It is not clear that this is a better approach
5024 at this point, because all methods need to be written in a way
5025 such that false positives never be returned. For instance, it is
5026 important that a method does not return a wrong name for the main
5027 procedure if the main procedure is actually written in a different
5028 language. It is easy to guaranty this with Ada, since we use a
5029 special symbol generated only when the main in Ada to find the name
5030 of the main procedure. It is difficult however to see how this can
5031 be guarantied for languages such as C, for instance. This suggests
5032 that order of call for these methods becomes important, which means
5033 a more complicated approach. */
5034 new_main_name = ada_main_name ();
5035 if (new_main_name != NULL)
5036 {
5037 set_main_name (new_main_name, language_ada);
5038 return;
5039 }
5040
5041 new_main_name = d_main_name ();
5042 if (new_main_name != NULL)
5043 {
5044 set_main_name (new_main_name, language_d);
5045 return;
5046 }
5047
5048 new_main_name = go_main_name ();
5049 if (new_main_name != NULL)
5050 {
5051 set_main_name (new_main_name, language_go);
5052 return;
5053 }
5054
5055 new_main_name = pascal_main_name ();
5056 if (new_main_name != NULL)
5057 {
5058 set_main_name (new_main_name, language_pascal);
5059 return;
5060 }
5061
5062 /* The languages above didn't identify the name of the main procedure.
5063 Fallback to "main". */
5064 set_main_name ("main", language_unknown);
5065 }
5066
5067 char *
5068 main_name (void)
5069 {
5070 struct main_info *info = get_main_info ();
5071
5072 if (info->name_of_main == NULL)
5073 find_main_name ();
5074
5075 return info->name_of_main;
5076 }
5077
5078 /* Return the language of the main function. If it is not known,
5079 return language_unknown. */
5080
5081 enum language
5082 main_language (void)
5083 {
5084 struct main_info *info = get_main_info ();
5085
5086 if (info->name_of_main == NULL)
5087 find_main_name ();
5088
5089 return info->language_of_main;
5090 }
5091
5092 /* Handle ``executable_changed'' events for the symtab module. */
5093
5094 static void
5095 symtab_observer_executable_changed (void)
5096 {
5097 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5098 set_main_name (NULL, language_unknown);
5099 }
5100
5101 /* Return 1 if the supplied producer string matches the ARM RealView
5102 compiler (armcc). */
5103
5104 int
5105 producer_is_realview (const char *producer)
5106 {
5107 static const char *const arm_idents[] = {
5108 "ARM C Compiler, ADS",
5109 "Thumb C Compiler, ADS",
5110 "ARM C++ Compiler, ADS",
5111 "Thumb C++ Compiler, ADS",
5112 "ARM/Thumb C/C++ Compiler, RVCT",
5113 "ARM C/C++ Compiler, RVCT"
5114 };
5115 int i;
5116
5117 if (producer == NULL)
5118 return 0;
5119
5120 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5121 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5122 return 1;
5123
5124 return 0;
5125 }
5126
5127 \f
5128
5129 /* The next index to hand out in response to a registration request. */
5130
5131 static int next_aclass_value = LOC_FINAL_VALUE;
5132
5133 /* The maximum number of "aclass" registrations we support. This is
5134 constant for convenience. */
5135 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5136
5137 /* The objects representing the various "aclass" values. The elements
5138 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5139 elements are those registered at gdb initialization time. */
5140
5141 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5142
5143 /* The globally visible pointer. This is separate from 'symbol_impl'
5144 so that it can be const. */
5145
5146 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5147
5148 /* Make sure we saved enough room in struct symbol. */
5149
5150 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5151
5152 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5153 is the ops vector associated with this index. This returns the new
5154 index, which should be used as the aclass_index field for symbols
5155 of this type. */
5156
5157 int
5158 register_symbol_computed_impl (enum address_class aclass,
5159 const struct symbol_computed_ops *ops)
5160 {
5161 int result = next_aclass_value++;
5162
5163 gdb_assert (aclass == LOC_COMPUTED);
5164 gdb_assert (result < MAX_SYMBOL_IMPLS);
5165 symbol_impl[result].aclass = aclass;
5166 symbol_impl[result].ops_computed = ops;
5167
5168 /* Sanity check OPS. */
5169 gdb_assert (ops != NULL);
5170 gdb_assert (ops->tracepoint_var_ref != NULL);
5171 gdb_assert (ops->describe_location != NULL);
5172 gdb_assert (ops->read_needs_frame != NULL);
5173 gdb_assert (ops->read_variable != NULL);
5174
5175 return result;
5176 }
5177
5178 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5179 OPS is the ops vector associated with this index. This returns the
5180 new index, which should be used as the aclass_index field for symbols
5181 of this type. */
5182
5183 int
5184 register_symbol_block_impl (enum address_class aclass,
5185 const struct symbol_block_ops *ops)
5186 {
5187 int result = next_aclass_value++;
5188
5189 gdb_assert (aclass == LOC_BLOCK);
5190 gdb_assert (result < MAX_SYMBOL_IMPLS);
5191 symbol_impl[result].aclass = aclass;
5192 symbol_impl[result].ops_block = ops;
5193
5194 /* Sanity check OPS. */
5195 gdb_assert (ops != NULL);
5196 gdb_assert (ops->find_frame_base_location != NULL);
5197
5198 return result;
5199 }
5200
5201 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5202 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5203 this index. This returns the new index, which should be used as
5204 the aclass_index field for symbols of this type. */
5205
5206 int
5207 register_symbol_register_impl (enum address_class aclass,
5208 const struct symbol_register_ops *ops)
5209 {
5210 int result = next_aclass_value++;
5211
5212 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5213 gdb_assert (result < MAX_SYMBOL_IMPLS);
5214 symbol_impl[result].aclass = aclass;
5215 symbol_impl[result].ops_register = ops;
5216
5217 return result;
5218 }
5219
5220 /* Initialize elements of 'symbol_impl' for the constants in enum
5221 address_class. */
5222
5223 static void
5224 initialize_ordinary_address_classes (void)
5225 {
5226 int i;
5227
5228 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5229 symbol_impl[i].aclass = i;
5230 }
5231
5232 \f
5233
5234 /* Initialize the symbol SYM. */
5235
5236 void
5237 initialize_symbol (struct symbol *sym)
5238 {
5239 memset (sym, 0, sizeof (*sym));
5240 SYMBOL_SECTION (sym) = -1;
5241 }
5242
5243 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5244 obstack. */
5245
5246 struct symbol *
5247 allocate_symbol (struct objfile *objfile)
5248 {
5249 struct symbol *result;
5250
5251 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5252 SYMBOL_SECTION (result) = -1;
5253
5254 return result;
5255 }
5256
5257 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5258 obstack. */
5259
5260 struct template_symbol *
5261 allocate_template_symbol (struct objfile *objfile)
5262 {
5263 struct template_symbol *result;
5264
5265 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5266 SYMBOL_SECTION (&result->base) = -1;
5267
5268 return result;
5269 }
5270
5271 \f
5272
5273 void
5274 _initialize_symtab (void)
5275 {
5276 initialize_ordinary_address_classes ();
5277
5278 main_progspace_key
5279 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5280
5281 add_info ("variables", variables_info, _("\
5282 All global and static variable names, or those matching REGEXP."));
5283 if (dbx_commands)
5284 add_com ("whereis", class_info, variables_info, _("\
5285 All global and static variable names, or those matching REGEXP."));
5286
5287 add_info ("functions", functions_info,
5288 _("All function names, or those matching REGEXP."));
5289
5290 /* FIXME: This command has at least the following problems:
5291 1. It prints builtin types (in a very strange and confusing fashion).
5292 2. It doesn't print right, e.g. with
5293 typedef struct foo *FOO
5294 type_print prints "FOO" when we want to make it (in this situation)
5295 print "struct foo *".
5296 I also think "ptype" or "whatis" is more likely to be useful (but if
5297 there is much disagreement "info types" can be fixed). */
5298 add_info ("types", types_info,
5299 _("All type names, or those matching REGEXP."));
5300
5301 add_info ("sources", sources_info,
5302 _("Source files in the program."));
5303
5304 add_com ("rbreak", class_breakpoint, rbreak_command,
5305 _("Set a breakpoint for all functions matching REGEXP."));
5306
5307 if (xdb_commands)
5308 {
5309 add_com ("lf", class_info, sources_info,
5310 _("Source files in the program"));
5311 add_com ("lg", class_info, variables_info, _("\
5312 All global and static variable names, or those matching REGEXP."));
5313 }
5314
5315 add_setshow_enum_cmd ("multiple-symbols", no_class,
5316 multiple_symbols_modes, &multiple_symbols_mode,
5317 _("\
5318 Set the debugger behavior when more than one symbol are possible matches\n\
5319 in an expression."), _("\
5320 Show how the debugger handles ambiguities in expressions."), _("\
5321 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5322 NULL, NULL, &setlist, &showlist);
5323
5324 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5325 &basenames_may_differ, _("\
5326 Set whether a source file may have multiple base names."), _("\
5327 Show whether a source file may have multiple base names."), _("\
5328 (A \"base name\" is the name of a file with the directory part removed.\n\
5329 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5330 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5331 before comparing them. Canonicalization is an expensive operation,\n\
5332 but it allows the same file be known by more than one base name.\n\
5333 If not set (the default), all source files are assumed to have just\n\
5334 one base name, and gdb will do file name comparisons more efficiently."),
5335 NULL, NULL,
5336 &setlist, &showlist);
5337
5338 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5339 _("Set debugging of symbol table creation."),
5340 _("Show debugging of symbol table creation."), _("\
5341 When enabled (non-zero), debugging messages are printed when building\n\
5342 symbol tables. A value of 1 (one) normally provides enough information.\n\
5343 A value greater than 1 provides more verbose information."),
5344 NULL,
5345 NULL,
5346 &setdebuglist, &showdebuglist);
5347
5348 observer_attach_executable_changed (symtab_observer_executable_changed);
5349 }
This page took 0.148021 seconds and 5 git commands to generate.