* write.c (fixup_segment): Do not assume we know the section a
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "ada-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observer.h"
60 #include "gdb_assert.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64
65 #include "psymtab.h"
66
67 /* Prototypes for local functions */
68
69 static void completion_list_add_name (char *, char *, int, char *, char *);
70
71 static void rbreak_command (char *, int);
72
73 static void types_info (char *, int);
74
75 static void functions_info (char *, int);
76
77 static void variables_info (char *, int);
78
79 static void sources_info (char *, int);
80
81 static void output_source_filename (const char *, int *);
82
83 static int find_line_common (struct linetable *, int, int *);
84
85 /* This one is used by linespec.c */
86
87 char *operator_chars (char *p, char **end);
88
89 static struct symbol *lookup_symbol_aux (const char *name,
90 const struct block *block,
91 const domain_enum domain,
92 enum language language,
93 int *is_a_field_of_this);
94
95 static
96 struct symbol *lookup_symbol_aux_local (const char *name,
97 const struct block *block,
98 const domain_enum domain,
99 enum language language);
100
101 static
102 struct symbol *lookup_symbol_aux_symtabs (int block_index,
103 const char *name,
104 const domain_enum domain);
105
106 static
107 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
108 int block_index,
109 const char *name,
110 const domain_enum domain);
111
112 static void print_symbol_info (domain_enum,
113 struct symtab *, struct symbol *, int, char *);
114
115 static void print_msymbol_info (struct minimal_symbol *);
116
117 static void symtab_symbol_info (char *, domain_enum, int);
118
119 void _initialize_symtab (void);
120
121 /* */
122
123 /* Allow the user to configure the debugger behavior with respect
124 to multiple-choice menus when more than one symbol matches during
125 a symbol lookup. */
126
127 const char multiple_symbols_ask[] = "ask";
128 const char multiple_symbols_all[] = "all";
129 const char multiple_symbols_cancel[] = "cancel";
130 static const char *multiple_symbols_modes[] =
131 {
132 multiple_symbols_ask,
133 multiple_symbols_all,
134 multiple_symbols_cancel,
135 NULL
136 };
137 static const char *multiple_symbols_mode = multiple_symbols_all;
138
139 /* Read-only accessor to AUTO_SELECT_MODE. */
140
141 const char *
142 multiple_symbols_select_mode (void)
143 {
144 return multiple_symbols_mode;
145 }
146
147 /* Block in which the most recently searched-for symbol was found.
148 Might be better to make this a parameter to lookup_symbol and
149 value_of_this. */
150
151 const struct block *block_found;
152
153 /* Check for a symtab of a specific name; first in symtabs, then in
154 psymtabs. *If* there is no '/' in the name, a match after a '/'
155 in the symtab filename will also work. */
156
157 struct symtab *
158 lookup_symtab (const char *name)
159 {
160 int found;
161 struct symtab *s = NULL;
162 struct objfile *objfile;
163 char *real_path = NULL;
164 char *full_path = NULL;
165
166 /* Here we are interested in canonicalizing an absolute path, not
167 absolutizing a relative path. */
168 if (IS_ABSOLUTE_PATH (name))
169 {
170 full_path = xfullpath (name);
171 make_cleanup (xfree, full_path);
172 real_path = gdb_realpath (name);
173 make_cleanup (xfree, real_path);
174 }
175
176 got_symtab:
177
178 /* First, search for an exact match */
179
180 ALL_SYMTABS (objfile, s)
181 {
182 if (FILENAME_CMP (name, s->filename) == 0)
183 {
184 return s;
185 }
186
187 /* If the user gave us an absolute path, try to find the file in
188 this symtab and use its absolute path. */
189
190 if (full_path != NULL)
191 {
192 const char *fp = symtab_to_fullname (s);
193 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
194 {
195 return s;
196 }
197 }
198
199 if (real_path != NULL)
200 {
201 char *fullname = symtab_to_fullname (s);
202 if (fullname != NULL)
203 {
204 char *rp = gdb_realpath (fullname);
205 make_cleanup (xfree, rp);
206 if (FILENAME_CMP (real_path, rp) == 0)
207 {
208 return s;
209 }
210 }
211 }
212 }
213
214 /* Now, search for a matching tail (only if name doesn't have any dirs) */
215
216 if (lbasename (name) == name)
217 ALL_SYMTABS (objfile, s)
218 {
219 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
220 return s;
221 }
222
223 /* Same search rules as above apply here, but now we look thru the
224 psymtabs. */
225
226 found = 0;
227 ALL_OBJFILES (objfile)
228 {
229 if (objfile->sf
230 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
231 &s))
232 {
233 found = 1;
234 break;
235 }
236 }
237
238 if (s != NULL)
239 return s;
240 if (!found)
241 return NULL;
242
243 /* At this point, we have located the psymtab for this file, but
244 the conversion to a symtab has failed. This usually happens
245 when we are looking up an include file. In this case,
246 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
247 been created. So, we need to run through the symtabs again in
248 order to find the file.
249 XXX - This is a crock, and should be fixed inside of the the
250 symbol parsing routines. */
251 goto got_symtab;
252 }
253 \f
254 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
255 full method name, which consist of the class name (from T), the unadorned
256 method name from METHOD_ID, and the signature for the specific overload,
257 specified by SIGNATURE_ID. Note that this function is g++ specific. */
258
259 char *
260 gdb_mangle_name (struct type *type, int method_id, int signature_id)
261 {
262 int mangled_name_len;
263 char *mangled_name;
264 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
265 struct fn_field *method = &f[signature_id];
266 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
267 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
268 char *newname = type_name_no_tag (type);
269
270 /* Does the form of physname indicate that it is the full mangled name
271 of a constructor (not just the args)? */
272 int is_full_physname_constructor;
273
274 int is_constructor;
275 int is_destructor = is_destructor_name (physname);
276 /* Need a new type prefix. */
277 char *const_prefix = method->is_const ? "C" : "";
278 char *volatile_prefix = method->is_volatile ? "V" : "";
279 char buf[20];
280 int len = (newname == NULL ? 0 : strlen (newname));
281
282 /* Nothing to do if physname already contains a fully mangled v3 abi name
283 or an operator name. */
284 if ((physname[0] == '_' && physname[1] == 'Z')
285 || is_operator_name (field_name))
286 return xstrdup (physname);
287
288 is_full_physname_constructor = is_constructor_name (physname);
289
290 is_constructor =
291 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
292
293 if (!is_destructor)
294 is_destructor = (strncmp (physname, "__dt", 4) == 0);
295
296 if (is_destructor || is_full_physname_constructor)
297 {
298 mangled_name = (char *) xmalloc (strlen (physname) + 1);
299 strcpy (mangled_name, physname);
300 return mangled_name;
301 }
302
303 if (len == 0)
304 {
305 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
306 }
307 else if (physname[0] == 't' || physname[0] == 'Q')
308 {
309 /* The physname for template and qualified methods already includes
310 the class name. */
311 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
312 newname = NULL;
313 len = 0;
314 }
315 else
316 {
317 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
318 }
319 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
320 + strlen (buf) + len + strlen (physname) + 1);
321
322 {
323 mangled_name = (char *) xmalloc (mangled_name_len);
324 if (is_constructor)
325 mangled_name[0] = '\0';
326 else
327 strcpy (mangled_name, field_name);
328 }
329 strcat (mangled_name, buf);
330 /* If the class doesn't have a name, i.e. newname NULL, then we just
331 mangle it using 0 for the length of the class. Thus it gets mangled
332 as something starting with `::' rather than `classname::'. */
333 if (newname != NULL)
334 strcat (mangled_name, newname);
335
336 strcat (mangled_name, physname);
337 return (mangled_name);
338 }
339
340 \f
341 /* Initialize the language dependent portion of a symbol
342 depending upon the language for the symbol. */
343 void
344 symbol_init_language_specific (struct general_symbol_info *gsymbol,
345 enum language language)
346 {
347 gsymbol->language = language;
348 if (gsymbol->language == language_cplus
349 || gsymbol->language == language_java
350 || gsymbol->language == language_objc)
351 {
352 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
353 }
354 else
355 {
356 memset (&gsymbol->language_specific, 0,
357 sizeof (gsymbol->language_specific));
358 }
359 }
360
361 /* Functions to initialize a symbol's mangled name. */
362
363 /* Objects of this type are stored in the demangled name hash table. */
364 struct demangled_name_entry
365 {
366 char *mangled;
367 char demangled[1];
368 };
369
370 /* Hash function for the demangled name hash. */
371 static hashval_t
372 hash_demangled_name_entry (const void *data)
373 {
374 const struct demangled_name_entry *e = data;
375 return htab_hash_string (e->mangled);
376 }
377
378 /* Equality function for the demangled name hash. */
379 static int
380 eq_demangled_name_entry (const void *a, const void *b)
381 {
382 const struct demangled_name_entry *da = a;
383 const struct demangled_name_entry *db = b;
384 return strcmp (da->mangled, db->mangled) == 0;
385 }
386
387 /* Create the hash table used for demangled names. Each hash entry is
388 a pair of strings; one for the mangled name and one for the demangled
389 name. The entry is hashed via just the mangled name. */
390
391 static void
392 create_demangled_names_hash (struct objfile *objfile)
393 {
394 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
395 The hash table code will round this up to the next prime number.
396 Choosing a much larger table size wastes memory, and saves only about
397 1% in symbol reading. */
398
399 objfile->demangled_names_hash = htab_create_alloc
400 (256, hash_demangled_name_entry, eq_demangled_name_entry,
401 NULL, xcalloc, xfree);
402 }
403
404 /* Try to determine the demangled name for a symbol, based on the
405 language of that symbol. If the language is set to language_auto,
406 it will attempt to find any demangling algorithm that works and
407 then set the language appropriately. The returned name is allocated
408 by the demangler and should be xfree'd. */
409
410 static char *
411 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
412 const char *mangled)
413 {
414 char *demangled = NULL;
415
416 if (gsymbol->language == language_unknown)
417 gsymbol->language = language_auto;
418
419 if (gsymbol->language == language_objc
420 || gsymbol->language == language_auto)
421 {
422 demangled =
423 objc_demangle (mangled, 0);
424 if (demangled != NULL)
425 {
426 gsymbol->language = language_objc;
427 return demangled;
428 }
429 }
430 if (gsymbol->language == language_cplus
431 || gsymbol->language == language_auto)
432 {
433 demangled =
434 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
435 if (demangled != NULL)
436 {
437 gsymbol->language = language_cplus;
438 return demangled;
439 }
440 }
441 if (gsymbol->language == language_java)
442 {
443 demangled =
444 cplus_demangle (mangled,
445 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
446 if (demangled != NULL)
447 {
448 gsymbol->language = language_java;
449 return demangled;
450 }
451 }
452 return NULL;
453 }
454
455 /* Set both the mangled and demangled (if any) names for GSYMBOL based
456 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
457 objfile's obstack; but if COPY_NAME is 0 and if NAME is
458 NUL-terminated, then this function assumes that NAME is already
459 correctly saved (either permanently or with a lifetime tied to the
460 objfile), and it will not be copied.
461
462 The hash table corresponding to OBJFILE is used, and the memory
463 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
464 so the pointer can be discarded after calling this function. */
465
466 /* We have to be careful when dealing with Java names: when we run
467 into a Java minimal symbol, we don't know it's a Java symbol, so it
468 gets demangled as a C++ name. This is unfortunate, but there's not
469 much we can do about it: but when demangling partial symbols and
470 regular symbols, we'd better not reuse the wrong demangled name.
471 (See PR gdb/1039.) We solve this by putting a distinctive prefix
472 on Java names when storing them in the hash table. */
473
474 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
475 don't mind the Java prefix so much: different languages have
476 different demangling requirements, so it's only natural that we
477 need to keep language data around in our demangling cache. But
478 it's not good that the minimal symbol has the wrong demangled name.
479 Unfortunately, I can't think of any easy solution to that
480 problem. */
481
482 #define JAVA_PREFIX "##JAVA$$"
483 #define JAVA_PREFIX_LEN 8
484
485 void
486 symbol_set_names (struct general_symbol_info *gsymbol,
487 const char *linkage_name, int len, int copy_name,
488 struct objfile *objfile)
489 {
490 struct demangled_name_entry **slot;
491 /* A 0-terminated copy of the linkage name. */
492 const char *linkage_name_copy;
493 /* A copy of the linkage name that might have a special Java prefix
494 added to it, for use when looking names up in the hash table. */
495 const char *lookup_name;
496 /* The length of lookup_name. */
497 int lookup_len;
498 struct demangled_name_entry entry;
499
500 if (gsymbol->language == language_ada)
501 {
502 /* In Ada, we do the symbol lookups using the mangled name, so
503 we can save some space by not storing the demangled name.
504
505 As a side note, we have also observed some overlap between
506 the C++ mangling and Ada mangling, similarly to what has
507 been observed with Java. Because we don't store the demangled
508 name with the symbol, we don't need to use the same trick
509 as Java. */
510 if (!copy_name)
511 gsymbol->name = (char *) linkage_name;
512 else
513 {
514 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
515 memcpy (gsymbol->name, linkage_name, len);
516 gsymbol->name[len] = '\0';
517 }
518 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
519
520 return;
521 }
522
523 if (objfile->demangled_names_hash == NULL)
524 create_demangled_names_hash (objfile);
525
526 /* The stabs reader generally provides names that are not
527 NUL-terminated; most of the other readers don't do this, so we
528 can just use the given copy, unless we're in the Java case. */
529 if (gsymbol->language == language_java)
530 {
531 char *alloc_name;
532 lookup_len = len + JAVA_PREFIX_LEN;
533
534 alloc_name = alloca (lookup_len + 1);
535 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
536 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
537 alloc_name[lookup_len] = '\0';
538
539 lookup_name = alloc_name;
540 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
541 }
542 else if (linkage_name[len] != '\0')
543 {
544 char *alloc_name;
545 lookup_len = len;
546
547 alloc_name = alloca (lookup_len + 1);
548 memcpy (alloc_name, linkage_name, len);
549 alloc_name[lookup_len] = '\0';
550
551 lookup_name = alloc_name;
552 linkage_name_copy = alloc_name;
553 }
554 else
555 {
556 lookup_len = len;
557 lookup_name = linkage_name;
558 linkage_name_copy = linkage_name;
559 }
560
561 entry.mangled = (char *) lookup_name;
562 slot = ((struct demangled_name_entry **)
563 htab_find_slot (objfile->demangled_names_hash,
564 &entry, INSERT));
565
566 /* If this name is not in the hash table, add it. */
567 if (*slot == NULL)
568 {
569 char *demangled_name = symbol_find_demangled_name (gsymbol,
570 linkage_name_copy);
571 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
572
573 /* Suppose we have demangled_name==NULL, copy_name==0, and
574 lookup_name==linkage_name. In this case, we already have the
575 mangled name saved, and we don't have a demangled name. So,
576 you might think we could save a little space by not recording
577 this in the hash table at all.
578
579 It turns out that it is actually important to still save such
580 an entry in the hash table, because storing this name gives
581 us better backache hit rates for partial symbols. */
582 if (!copy_name && lookup_name == linkage_name)
583 {
584 *slot = obstack_alloc (&objfile->objfile_obstack,
585 offsetof (struct demangled_name_entry,
586 demangled)
587 + demangled_len + 1);
588 (*slot)->mangled = (char *) lookup_name;
589 }
590 else
591 {
592 /* If we must copy the mangled name, put it directly after
593 the demangled name so we can have a single
594 allocation. */
595 *slot = obstack_alloc (&objfile->objfile_obstack,
596 offsetof (struct demangled_name_entry,
597 demangled)
598 + lookup_len + demangled_len + 2);
599 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
600 strcpy ((*slot)->mangled, lookup_name);
601 }
602
603 if (demangled_name != NULL)
604 {
605 strcpy ((*slot)->demangled, demangled_name);
606 xfree (demangled_name);
607 }
608 else
609 (*slot)->demangled[0] = '\0';
610 }
611
612 gsymbol->name = (*slot)->mangled + lookup_len - len;
613 if ((*slot)->demangled[0] != '\0')
614 gsymbol->language_specific.cplus_specific.demangled_name
615 = (*slot)->demangled;
616 else
617 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
618 }
619
620 /* Return the source code name of a symbol. In languages where
621 demangling is necessary, this is the demangled name. */
622
623 char *
624 symbol_natural_name (const struct general_symbol_info *gsymbol)
625 {
626 switch (gsymbol->language)
627 {
628 case language_cplus:
629 case language_java:
630 case language_objc:
631 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
632 return gsymbol->language_specific.cplus_specific.demangled_name;
633 break;
634 case language_ada:
635 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
636 return gsymbol->language_specific.cplus_specific.demangled_name;
637 else
638 return ada_decode_symbol (gsymbol);
639 break;
640 default:
641 break;
642 }
643 return gsymbol->name;
644 }
645
646 /* Return the demangled name for a symbol based on the language for
647 that symbol. If no demangled name exists, return NULL. */
648 char *
649 symbol_demangled_name (const struct general_symbol_info *gsymbol)
650 {
651 switch (gsymbol->language)
652 {
653 case language_cplus:
654 case language_java:
655 case language_objc:
656 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
657 return gsymbol->language_specific.cplus_specific.demangled_name;
658 break;
659 case language_ada:
660 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
661 return gsymbol->language_specific.cplus_specific.demangled_name;
662 else
663 return ada_decode_symbol (gsymbol);
664 break;
665 default:
666 break;
667 }
668 return NULL;
669 }
670
671 /* Return the search name of a symbol---generally the demangled or
672 linkage name of the symbol, depending on how it will be searched for.
673 If there is no distinct demangled name, then returns the same value
674 (same pointer) as SYMBOL_LINKAGE_NAME. */
675 char *
676 symbol_search_name (const struct general_symbol_info *gsymbol)
677 {
678 if (gsymbol->language == language_ada)
679 return gsymbol->name;
680 else
681 return symbol_natural_name (gsymbol);
682 }
683
684 /* Initialize the structure fields to zero values. */
685 void
686 init_sal (struct symtab_and_line *sal)
687 {
688 sal->pspace = NULL;
689 sal->symtab = 0;
690 sal->section = 0;
691 sal->line = 0;
692 sal->pc = 0;
693 sal->end = 0;
694 sal->explicit_pc = 0;
695 sal->explicit_line = 0;
696 }
697 \f
698
699 /* Return 1 if the two sections are the same, or if they could
700 plausibly be copies of each other, one in an original object
701 file and another in a separated debug file. */
702
703 int
704 matching_obj_sections (struct obj_section *obj_first,
705 struct obj_section *obj_second)
706 {
707 asection *first = obj_first? obj_first->the_bfd_section : NULL;
708 asection *second = obj_second? obj_second->the_bfd_section : NULL;
709 struct objfile *obj;
710
711 /* If they're the same section, then they match. */
712 if (first == second)
713 return 1;
714
715 /* If either is NULL, give up. */
716 if (first == NULL || second == NULL)
717 return 0;
718
719 /* This doesn't apply to absolute symbols. */
720 if (first->owner == NULL || second->owner == NULL)
721 return 0;
722
723 /* If they're in the same object file, they must be different sections. */
724 if (first->owner == second->owner)
725 return 0;
726
727 /* Check whether the two sections are potentially corresponding. They must
728 have the same size, address, and name. We can't compare section indexes,
729 which would be more reliable, because some sections may have been
730 stripped. */
731 if (bfd_get_section_size (first) != bfd_get_section_size (second))
732 return 0;
733
734 /* In-memory addresses may start at a different offset, relativize them. */
735 if (bfd_get_section_vma (first->owner, first)
736 - bfd_get_start_address (first->owner)
737 != bfd_get_section_vma (second->owner, second)
738 - bfd_get_start_address (second->owner))
739 return 0;
740
741 if (bfd_get_section_name (first->owner, first) == NULL
742 || bfd_get_section_name (second->owner, second) == NULL
743 || strcmp (bfd_get_section_name (first->owner, first),
744 bfd_get_section_name (second->owner, second)) != 0)
745 return 0;
746
747 /* Otherwise check that they are in corresponding objfiles. */
748
749 ALL_OBJFILES (obj)
750 if (obj->obfd == first->owner)
751 break;
752 gdb_assert (obj != NULL);
753
754 if (obj->separate_debug_objfile != NULL
755 && obj->separate_debug_objfile->obfd == second->owner)
756 return 1;
757 if (obj->separate_debug_objfile_backlink != NULL
758 && obj->separate_debug_objfile_backlink->obfd == second->owner)
759 return 1;
760
761 return 0;
762 }
763
764 struct symtab *
765 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
766 {
767 struct objfile *objfile;
768 struct minimal_symbol *msymbol;
769
770 /* If we know that this is not a text address, return failure. This is
771 necessary because we loop based on texthigh and textlow, which do
772 not include the data ranges. */
773 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
774 if (msymbol
775 && (MSYMBOL_TYPE (msymbol) == mst_data
776 || MSYMBOL_TYPE (msymbol) == mst_bss
777 || MSYMBOL_TYPE (msymbol) == mst_abs
778 || MSYMBOL_TYPE (msymbol) == mst_file_data
779 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
780 return NULL;
781
782 ALL_OBJFILES (objfile)
783 {
784 struct symtab *result = NULL;
785 if (objfile->sf)
786 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
787 pc, section, 0);
788 if (result)
789 return result;
790 }
791
792 return NULL;
793 }
794 \f
795 /* Debug symbols usually don't have section information. We need to dig that
796 out of the minimal symbols and stash that in the debug symbol. */
797
798 void
799 fixup_section (struct general_symbol_info *ginfo,
800 CORE_ADDR addr, struct objfile *objfile)
801 {
802 struct minimal_symbol *msym;
803
804 /* First, check whether a minimal symbol with the same name exists
805 and points to the same address. The address check is required
806 e.g. on PowerPC64, where the minimal symbol for a function will
807 point to the function descriptor, while the debug symbol will
808 point to the actual function code. */
809 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
810 if (msym)
811 {
812 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
813 ginfo->section = SYMBOL_SECTION (msym);
814 }
815 else
816 {
817 /* Static, function-local variables do appear in the linker
818 (minimal) symbols, but are frequently given names that won't
819 be found via lookup_minimal_symbol(). E.g., it has been
820 observed in frv-uclinux (ELF) executables that a static,
821 function-local variable named "foo" might appear in the
822 linker symbols as "foo.6" or "foo.3". Thus, there is no
823 point in attempting to extend the lookup-by-name mechanism to
824 handle this case due to the fact that there can be multiple
825 names.
826
827 So, instead, search the section table when lookup by name has
828 failed. The ``addr'' and ``endaddr'' fields may have already
829 been relocated. If so, the relocation offset (i.e. the
830 ANOFFSET value) needs to be subtracted from these values when
831 performing the comparison. We unconditionally subtract it,
832 because, when no relocation has been performed, the ANOFFSET
833 value will simply be zero.
834
835 The address of the symbol whose section we're fixing up HAS
836 NOT BEEN adjusted (relocated) yet. It can't have been since
837 the section isn't yet known and knowing the section is
838 necessary in order to add the correct relocation value. In
839 other words, we wouldn't even be in this function (attempting
840 to compute the section) if it were already known.
841
842 Note that it is possible to search the minimal symbols
843 (subtracting the relocation value if necessary) to find the
844 matching minimal symbol, but this is overkill and much less
845 efficient. It is not necessary to find the matching minimal
846 symbol, only its section.
847
848 Note that this technique (of doing a section table search)
849 can fail when unrelocated section addresses overlap. For
850 this reason, we still attempt a lookup by name prior to doing
851 a search of the section table. */
852
853 struct obj_section *s;
854 ALL_OBJFILE_OSECTIONS (objfile, s)
855 {
856 int idx = s->the_bfd_section->index;
857 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
858
859 if (obj_section_addr (s) - offset <= addr
860 && addr < obj_section_endaddr (s) - offset)
861 {
862 ginfo->obj_section = s;
863 ginfo->section = idx;
864 return;
865 }
866 }
867 }
868 }
869
870 struct symbol *
871 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
872 {
873 CORE_ADDR addr;
874
875 if (!sym)
876 return NULL;
877
878 if (SYMBOL_OBJ_SECTION (sym))
879 return sym;
880
881 /* We either have an OBJFILE, or we can get at it from the sym's
882 symtab. Anything else is a bug. */
883 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
884
885 if (objfile == NULL)
886 objfile = SYMBOL_SYMTAB (sym)->objfile;
887
888 /* We should have an objfile by now. */
889 gdb_assert (objfile);
890
891 switch (SYMBOL_CLASS (sym))
892 {
893 case LOC_STATIC:
894 case LOC_LABEL:
895 addr = SYMBOL_VALUE_ADDRESS (sym);
896 break;
897 case LOC_BLOCK:
898 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
899 break;
900
901 default:
902 /* Nothing else will be listed in the minsyms -- no use looking
903 it up. */
904 return sym;
905 }
906
907 fixup_section (&sym->ginfo, addr, objfile);
908
909 return sym;
910 }
911
912 /* Find the definition for a specified symbol name NAME
913 in domain DOMAIN, visible from lexical block BLOCK.
914 Returns the struct symbol pointer, or zero if no symbol is found.
915 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
916 NAME is a field of the current implied argument `this'. If so set
917 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
918 BLOCK_FOUND is set to the block in which NAME is found (in the case of
919 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
920
921 /* This function has a bunch of loops in it and it would seem to be
922 attractive to put in some QUIT's (though I'm not really sure
923 whether it can run long enough to be really important). But there
924 are a few calls for which it would appear to be bad news to quit
925 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
926 that there is C++ code below which can error(), but that probably
927 doesn't affect these calls since they are looking for a known
928 variable and thus can probably assume it will never hit the C++
929 code). */
930
931 struct symbol *
932 lookup_symbol_in_language (const char *name, const struct block *block,
933 const domain_enum domain, enum language lang,
934 int *is_a_field_of_this)
935 {
936 char *demangled_name = NULL;
937 const char *modified_name = NULL;
938 struct symbol *returnval;
939 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
940
941 modified_name = name;
942
943 /* If we are using C++ or Java, demangle the name before doing a lookup, so
944 we can always binary search. */
945 if (lang == language_cplus)
946 {
947 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
948 if (demangled_name)
949 {
950 modified_name = demangled_name;
951 make_cleanup (xfree, demangled_name);
952 }
953 else
954 {
955 /* If we were given a non-mangled name, canonicalize it
956 according to the language (so far only for C++). */
957 demangled_name = cp_canonicalize_string (name);
958 if (demangled_name)
959 {
960 modified_name = demangled_name;
961 make_cleanup (xfree, demangled_name);
962 }
963 }
964 }
965 else if (lang == language_java)
966 {
967 demangled_name = cplus_demangle (name,
968 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
969 if (demangled_name)
970 {
971 modified_name = demangled_name;
972 make_cleanup (xfree, demangled_name);
973 }
974 }
975
976 if (case_sensitivity == case_sensitive_off)
977 {
978 char *copy;
979 int len, i;
980
981 len = strlen (name);
982 copy = (char *) alloca (len + 1);
983 for (i= 0; i < len; i++)
984 copy[i] = tolower (name[i]);
985 copy[len] = 0;
986 modified_name = copy;
987 }
988
989 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
990 is_a_field_of_this);
991 do_cleanups (cleanup);
992
993 return returnval;
994 }
995
996 /* Behave like lookup_symbol_in_language, but performed with the
997 current language. */
998
999 struct symbol *
1000 lookup_symbol (const char *name, const struct block *block,
1001 domain_enum domain, int *is_a_field_of_this)
1002 {
1003 return lookup_symbol_in_language (name, block, domain,
1004 current_language->la_language,
1005 is_a_field_of_this);
1006 }
1007
1008 /* Behave like lookup_symbol except that NAME is the natural name
1009 of the symbol that we're looking for and, if LINKAGE_NAME is
1010 non-NULL, ensure that the symbol's linkage name matches as
1011 well. */
1012
1013 static struct symbol *
1014 lookup_symbol_aux (const char *name, const struct block *block,
1015 const domain_enum domain, enum language language,
1016 int *is_a_field_of_this)
1017 {
1018 struct symbol *sym;
1019 const struct language_defn *langdef;
1020 struct objfile *objfile;
1021
1022 /* Make sure we do something sensible with is_a_field_of_this, since
1023 the callers that set this parameter to some non-null value will
1024 certainly use it later and expect it to be either 0 or 1.
1025 If we don't set it, the contents of is_a_field_of_this are
1026 undefined. */
1027 if (is_a_field_of_this != NULL)
1028 *is_a_field_of_this = 0;
1029
1030 /* Search specified block and its superiors. Don't search
1031 STATIC_BLOCK or GLOBAL_BLOCK. */
1032
1033 sym = lookup_symbol_aux_local (name, block, domain, language);
1034 if (sym != NULL)
1035 return sym;
1036
1037 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1038 check to see if NAME is a field of `this'. */
1039
1040 langdef = language_def (language);
1041
1042 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1043 && block != NULL)
1044 {
1045 struct symbol *sym = NULL;
1046 const struct block *function_block = block;
1047 /* 'this' is only defined in the function's block, so find the
1048 enclosing function block. */
1049 for (; function_block && !BLOCK_FUNCTION (function_block);
1050 function_block = BLOCK_SUPERBLOCK (function_block));
1051
1052 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1053 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1054 VAR_DOMAIN);
1055 if (sym)
1056 {
1057 struct type *t = sym->type;
1058
1059 /* I'm not really sure that type of this can ever
1060 be typedefed; just be safe. */
1061 CHECK_TYPEDEF (t);
1062 if (TYPE_CODE (t) == TYPE_CODE_PTR
1063 || TYPE_CODE (t) == TYPE_CODE_REF)
1064 t = TYPE_TARGET_TYPE (t);
1065
1066 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1067 && TYPE_CODE (t) != TYPE_CODE_UNION)
1068 error (_("Internal error: `%s' is not an aggregate"),
1069 langdef->la_name_of_this);
1070
1071 if (check_field (t, name))
1072 {
1073 *is_a_field_of_this = 1;
1074 return NULL;
1075 }
1076 }
1077 }
1078
1079 /* Now do whatever is appropriate for LANGUAGE to look
1080 up static and global variables. */
1081
1082 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1083 if (sym != NULL)
1084 return sym;
1085
1086 /* Now search all static file-level symbols. Not strictly correct,
1087 but more useful than an error. Do the symtabs first, then check
1088 the psymtabs. If a psymtab indicates the existence of the
1089 desired name as a file-level static, then do psymtab-to-symtab
1090 conversion on the fly and return the found symbol. */
1091
1092 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1093 if (sym != NULL)
1094 return sym;
1095
1096 ALL_OBJFILES (objfile)
1097 {
1098 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1099 if (sym != NULL)
1100 return sym;
1101 }
1102
1103 return NULL;
1104 }
1105
1106 /* Check to see if the symbol is defined in BLOCK or its superiors.
1107 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1108
1109 static struct symbol *
1110 lookup_symbol_aux_local (const char *name, const struct block *block,
1111 const domain_enum domain,
1112 enum language language)
1113 {
1114 struct symbol *sym;
1115 const struct block *static_block = block_static_block (block);
1116 const char *scope = block_scope (block);
1117
1118 /* Check if either no block is specified or it's a global block. */
1119
1120 if (static_block == NULL)
1121 return NULL;
1122
1123 while (block != static_block)
1124 {
1125 sym = lookup_symbol_aux_block (name, block, domain);
1126 if (sym != NULL)
1127 return sym;
1128
1129 if (language == language_cplus)
1130 {
1131 sym = cp_lookup_symbol_imports (scope,
1132 name,
1133 block,
1134 domain,
1135 1,
1136 1);
1137 if (sym != NULL)
1138 return sym;
1139 }
1140
1141 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1142 break;
1143 block = BLOCK_SUPERBLOCK (block);
1144 }
1145
1146 /* We've reached the edge of the function without finding a result. */
1147
1148 return NULL;
1149 }
1150
1151 /* Look up OBJFILE to BLOCK. */
1152
1153 struct objfile *
1154 lookup_objfile_from_block (const struct block *block)
1155 {
1156 struct objfile *obj;
1157 struct symtab *s;
1158
1159 if (block == NULL)
1160 return NULL;
1161
1162 block = block_global_block (block);
1163 /* Go through SYMTABS. */
1164 ALL_SYMTABS (obj, s)
1165 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1166 {
1167 if (obj->separate_debug_objfile_backlink)
1168 obj = obj->separate_debug_objfile_backlink;
1169
1170 return obj;
1171 }
1172
1173 return NULL;
1174 }
1175
1176 /* Look up a symbol in a block; if found, fixup the symbol, and set
1177 block_found appropriately. */
1178
1179 struct symbol *
1180 lookup_symbol_aux_block (const char *name, const struct block *block,
1181 const domain_enum domain)
1182 {
1183 struct symbol *sym;
1184
1185 sym = lookup_block_symbol (block, name, domain);
1186 if (sym)
1187 {
1188 block_found = block;
1189 return fixup_symbol_section (sym, NULL);
1190 }
1191
1192 return NULL;
1193 }
1194
1195 /* Check all global symbols in OBJFILE in symtabs and
1196 psymtabs. */
1197
1198 struct symbol *
1199 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1200 const char *name,
1201 const domain_enum domain)
1202 {
1203 const struct objfile *objfile;
1204 struct symbol *sym;
1205 struct blockvector *bv;
1206 const struct block *block;
1207 struct symtab *s;
1208
1209 for (objfile = main_objfile;
1210 objfile;
1211 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1212 {
1213 /* Go through symtabs. */
1214 ALL_OBJFILE_SYMTABS (objfile, s)
1215 {
1216 bv = BLOCKVECTOR (s);
1217 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1218 sym = lookup_block_symbol (block, name, domain);
1219 if (sym)
1220 {
1221 block_found = block;
1222 return fixup_symbol_section (sym, (struct objfile *)objfile);
1223 }
1224 }
1225
1226 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1227 name, domain);
1228 if (sym)
1229 return sym;
1230 }
1231
1232 return NULL;
1233 }
1234
1235 /* Check to see if the symbol is defined in one of the symtabs.
1236 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1237 depending on whether or not we want to search global symbols or
1238 static symbols. */
1239
1240 static struct symbol *
1241 lookup_symbol_aux_symtabs (int block_index, const char *name,
1242 const domain_enum domain)
1243 {
1244 struct symbol *sym;
1245 struct objfile *objfile;
1246 struct blockvector *bv;
1247 const struct block *block;
1248 struct symtab *s;
1249
1250 ALL_PRIMARY_SYMTABS (objfile, s)
1251 {
1252 bv = BLOCKVECTOR (s);
1253 block = BLOCKVECTOR_BLOCK (bv, block_index);
1254 sym = lookup_block_symbol (block, name, domain);
1255 if (sym)
1256 {
1257 block_found = block;
1258 return fixup_symbol_section (sym, objfile);
1259 }
1260 }
1261
1262 return NULL;
1263 }
1264
1265 /* A helper function for lookup_symbol_aux that interfaces with the
1266 "quick" symbol table functions. */
1267
1268 static struct symbol *
1269 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1270 const char *name, const domain_enum domain)
1271 {
1272 struct symtab *symtab;
1273 struct blockvector *bv;
1274 const struct block *block;
1275 struct partial_symtab *ps;
1276 struct symbol *sym;
1277
1278 if (!objfile->sf)
1279 return NULL;
1280 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1281 if (!symtab)
1282 return NULL;
1283
1284 bv = BLOCKVECTOR (symtab);
1285 block = BLOCKVECTOR_BLOCK (bv, kind);
1286 sym = lookup_block_symbol (block, name, domain);
1287 if (!sym)
1288 {
1289 /* This shouldn't be necessary, but as a last resort try
1290 looking in the statics even though the psymtab claimed
1291 the symbol was global, or vice-versa. It's possible
1292 that the psymtab gets it wrong in some cases. */
1293
1294 /* FIXME: carlton/2002-09-30: Should we really do that?
1295 If that happens, isn't it likely to be a GDB error, in
1296 which case we should fix the GDB error rather than
1297 silently dealing with it here? So I'd vote for
1298 removing the check for the symbol in the other
1299 block. */
1300 block = BLOCKVECTOR_BLOCK (bv,
1301 kind == GLOBAL_BLOCK ?
1302 STATIC_BLOCK : GLOBAL_BLOCK);
1303 sym = lookup_block_symbol (block, name, domain);
1304 if (!sym)
1305 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1306 kind == GLOBAL_BLOCK ? "global" : "static",
1307 name, symtab->filename, name, name);
1308 }
1309 return fixup_symbol_section (sym, objfile);
1310 }
1311
1312 /* A default version of lookup_symbol_nonlocal for use by languages
1313 that can't think of anything better to do. This implements the C
1314 lookup rules. */
1315
1316 struct symbol *
1317 basic_lookup_symbol_nonlocal (const char *name,
1318 const struct block *block,
1319 const domain_enum domain)
1320 {
1321 struct symbol *sym;
1322
1323 /* NOTE: carlton/2003-05-19: The comments below were written when
1324 this (or what turned into this) was part of lookup_symbol_aux;
1325 I'm much less worried about these questions now, since these
1326 decisions have turned out well, but I leave these comments here
1327 for posterity. */
1328
1329 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1330 not it would be appropriate to search the current global block
1331 here as well. (That's what this code used to do before the
1332 is_a_field_of_this check was moved up.) On the one hand, it's
1333 redundant with the lookup_symbol_aux_symtabs search that happens
1334 next. On the other hand, if decode_line_1 is passed an argument
1335 like filename:var, then the user presumably wants 'var' to be
1336 searched for in filename. On the third hand, there shouldn't be
1337 multiple global variables all of which are named 'var', and it's
1338 not like decode_line_1 has ever restricted its search to only
1339 global variables in a single filename. All in all, only
1340 searching the static block here seems best: it's correct and it's
1341 cleanest. */
1342
1343 /* NOTE: carlton/2002-12-05: There's also a possible performance
1344 issue here: if you usually search for global symbols in the
1345 current file, then it would be slightly better to search the
1346 current global block before searching all the symtabs. But there
1347 are other factors that have a much greater effect on performance
1348 than that one, so I don't think we should worry about that for
1349 now. */
1350
1351 sym = lookup_symbol_static (name, block, domain);
1352 if (sym != NULL)
1353 return sym;
1354
1355 return lookup_symbol_global (name, block, domain);
1356 }
1357
1358 /* Lookup a symbol in the static block associated to BLOCK, if there
1359 is one; do nothing if BLOCK is NULL or a global block. */
1360
1361 struct symbol *
1362 lookup_symbol_static (const char *name,
1363 const struct block *block,
1364 const domain_enum domain)
1365 {
1366 const struct block *static_block = block_static_block (block);
1367
1368 if (static_block != NULL)
1369 return lookup_symbol_aux_block (name, static_block, domain);
1370 else
1371 return NULL;
1372 }
1373
1374 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1375 necessary). */
1376
1377 struct symbol *
1378 lookup_symbol_global (const char *name,
1379 const struct block *block,
1380 const domain_enum domain)
1381 {
1382 struct symbol *sym = NULL;
1383 struct objfile *objfile = NULL;
1384
1385 /* Call library-specific lookup procedure. */
1386 objfile = lookup_objfile_from_block (block);
1387 if (objfile != NULL)
1388 sym = solib_global_lookup (objfile, name, domain);
1389 if (sym != NULL)
1390 return sym;
1391
1392 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1393 if (sym != NULL)
1394 return sym;
1395
1396 ALL_OBJFILES (objfile)
1397 {
1398 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1399 if (sym)
1400 return sym;
1401 }
1402
1403 return NULL;
1404 }
1405
1406 int
1407 symbol_matches_domain (enum language symbol_language,
1408 domain_enum symbol_domain,
1409 domain_enum domain)
1410 {
1411 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1412 A Java class declaration also defines a typedef for the class.
1413 Similarly, any Ada type declaration implicitly defines a typedef. */
1414 if (symbol_language == language_cplus
1415 || symbol_language == language_java
1416 || symbol_language == language_ada)
1417 {
1418 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1419 && symbol_domain == STRUCT_DOMAIN)
1420 return 1;
1421 }
1422 /* For all other languages, strict match is required. */
1423 return (symbol_domain == domain);
1424 }
1425
1426 /* Look up a type named NAME in the struct_domain. The type returned
1427 must not be opaque -- i.e., must have at least one field
1428 defined. */
1429
1430 struct type *
1431 lookup_transparent_type (const char *name)
1432 {
1433 return current_language->la_lookup_transparent_type (name);
1434 }
1435
1436 /* A helper for basic_lookup_transparent_type that interfaces with the
1437 "quick" symbol table functions. */
1438
1439 static struct type *
1440 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1441 const char *name)
1442 {
1443 struct symtab *symtab;
1444 struct blockvector *bv;
1445 struct block *block;
1446 struct symbol *sym;
1447
1448 if (!objfile->sf)
1449 return NULL;
1450 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1451 if (!symtab)
1452 return NULL;
1453
1454 bv = BLOCKVECTOR (symtab);
1455 block = BLOCKVECTOR_BLOCK (bv, kind);
1456 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1457 if (!sym)
1458 {
1459 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1460
1461 /* This shouldn't be necessary, but as a last resort
1462 * try looking in the 'other kind' even though the psymtab
1463 * claimed the symbol was one thing. It's possible that
1464 * the psymtab gets it wrong in some cases.
1465 */
1466 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1467 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1468 if (!sym)
1469 /* FIXME; error is wrong in one case */
1470 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1471 %s may be an inlined function, or may be a template function\n\
1472 (if a template, try specifying an instantiation: %s<type>)."),
1473 name, symtab->filename, name, name);
1474 }
1475 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1476 return SYMBOL_TYPE (sym);
1477
1478 return NULL;
1479 }
1480
1481 /* The standard implementation of lookup_transparent_type. This code
1482 was modeled on lookup_symbol -- the parts not relevant to looking
1483 up types were just left out. In particular it's assumed here that
1484 types are available in struct_domain and only at file-static or
1485 global blocks. */
1486
1487 struct type *
1488 basic_lookup_transparent_type (const char *name)
1489 {
1490 struct symbol *sym;
1491 struct symtab *s = NULL;
1492 struct blockvector *bv;
1493 struct objfile *objfile;
1494 struct block *block;
1495 struct type *t;
1496
1497 /* Now search all the global symbols. Do the symtab's first, then
1498 check the psymtab's. If a psymtab indicates the existence
1499 of the desired name as a global, then do psymtab-to-symtab
1500 conversion on the fly and return the found symbol. */
1501
1502 ALL_PRIMARY_SYMTABS (objfile, s)
1503 {
1504 bv = BLOCKVECTOR (s);
1505 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1506 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1507 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1508 {
1509 return SYMBOL_TYPE (sym);
1510 }
1511 }
1512
1513 ALL_OBJFILES (objfile)
1514 {
1515 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1516 if (t)
1517 return t;
1518 }
1519
1520 /* Now search the static file-level symbols.
1521 Not strictly correct, but more useful than an error.
1522 Do the symtab's first, then
1523 check the psymtab's. If a psymtab indicates the existence
1524 of the desired name as a file-level static, then do psymtab-to-symtab
1525 conversion on the fly and return the found symbol.
1526 */
1527
1528 ALL_PRIMARY_SYMTABS (objfile, s)
1529 {
1530 bv = BLOCKVECTOR (s);
1531 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1532 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1533 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1534 {
1535 return SYMBOL_TYPE (sym);
1536 }
1537 }
1538
1539 ALL_OBJFILES (objfile)
1540 {
1541 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1542 if (t)
1543 return t;
1544 }
1545
1546 return (struct type *) 0;
1547 }
1548
1549
1550 /* Find the name of the file containing main(). */
1551 /* FIXME: What about languages without main() or specially linked
1552 executables that have no main() ? */
1553
1554 char *
1555 find_main_filename (void)
1556 {
1557 struct objfile *objfile;
1558 char *result, *name = main_name ();
1559
1560 ALL_OBJFILES (objfile)
1561 {
1562 if (!objfile->sf)
1563 continue;
1564 result = objfile->sf->qf->find_symbol_file (objfile, name);
1565 if (result)
1566 return result;
1567 }
1568 return (NULL);
1569 }
1570
1571 /* Search BLOCK for symbol NAME in DOMAIN.
1572
1573 Note that if NAME is the demangled form of a C++ symbol, we will fail
1574 to find a match during the binary search of the non-encoded names, but
1575 for now we don't worry about the slight inefficiency of looking for
1576 a match we'll never find, since it will go pretty quick. Once the
1577 binary search terminates, we drop through and do a straight linear
1578 search on the symbols. Each symbol which is marked as being a ObjC/C++
1579 symbol (language_cplus or language_objc set) has both the encoded and
1580 non-encoded names tested for a match.
1581 */
1582
1583 struct symbol *
1584 lookup_block_symbol (const struct block *block, const char *name,
1585 const domain_enum domain)
1586 {
1587 struct dict_iterator iter;
1588 struct symbol *sym;
1589
1590 if (!BLOCK_FUNCTION (block))
1591 {
1592 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1593 sym != NULL;
1594 sym = dict_iter_name_next (name, &iter))
1595 {
1596 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1597 SYMBOL_DOMAIN (sym), domain))
1598 return sym;
1599 }
1600 return NULL;
1601 }
1602 else
1603 {
1604 /* Note that parameter symbols do not always show up last in the
1605 list; this loop makes sure to take anything else other than
1606 parameter symbols first; it only uses parameter symbols as a
1607 last resort. Note that this only takes up extra computation
1608 time on a match. */
1609
1610 struct symbol *sym_found = NULL;
1611
1612 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1613 sym != NULL;
1614 sym = dict_iter_name_next (name, &iter))
1615 {
1616 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1617 SYMBOL_DOMAIN (sym), domain))
1618 {
1619 sym_found = sym;
1620 if (!SYMBOL_IS_ARGUMENT (sym))
1621 {
1622 break;
1623 }
1624 }
1625 }
1626 return (sym_found); /* Will be NULL if not found. */
1627 }
1628 }
1629
1630 /* Find the symtab associated with PC and SECTION. Look through the
1631 psymtabs and read in another symtab if necessary. */
1632
1633 struct symtab *
1634 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1635 {
1636 struct block *b;
1637 struct blockvector *bv;
1638 struct symtab *s = NULL;
1639 struct symtab *best_s = NULL;
1640 struct partial_symtab *ps;
1641 struct objfile *objfile;
1642 struct program_space *pspace;
1643 CORE_ADDR distance = 0;
1644 struct minimal_symbol *msymbol;
1645
1646 pspace = current_program_space;
1647
1648 /* If we know that this is not a text address, return failure. This is
1649 necessary because we loop based on the block's high and low code
1650 addresses, which do not include the data ranges, and because
1651 we call find_pc_sect_psymtab which has a similar restriction based
1652 on the partial_symtab's texthigh and textlow. */
1653 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1654 if (msymbol
1655 && (MSYMBOL_TYPE (msymbol) == mst_data
1656 || MSYMBOL_TYPE (msymbol) == mst_bss
1657 || MSYMBOL_TYPE (msymbol) == mst_abs
1658 || MSYMBOL_TYPE (msymbol) == mst_file_data
1659 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1660 return NULL;
1661
1662 /* Search all symtabs for the one whose file contains our address, and which
1663 is the smallest of all the ones containing the address. This is designed
1664 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1665 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1666 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1667
1668 This happens for native ecoff format, where code from included files
1669 gets its own symtab. The symtab for the included file should have
1670 been read in already via the dependency mechanism.
1671 It might be swifter to create several symtabs with the same name
1672 like xcoff does (I'm not sure).
1673
1674 It also happens for objfiles that have their functions reordered.
1675 For these, the symtab we are looking for is not necessarily read in. */
1676
1677 ALL_PRIMARY_SYMTABS (objfile, s)
1678 {
1679 bv = BLOCKVECTOR (s);
1680 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1681
1682 if (BLOCK_START (b) <= pc
1683 && BLOCK_END (b) > pc
1684 && (distance == 0
1685 || BLOCK_END (b) - BLOCK_START (b) < distance))
1686 {
1687 /* For an objfile that has its functions reordered,
1688 find_pc_psymtab will find the proper partial symbol table
1689 and we simply return its corresponding symtab. */
1690 /* In order to better support objfiles that contain both
1691 stabs and coff debugging info, we continue on if a psymtab
1692 can't be found. */
1693 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1694 {
1695 struct symtab *result;
1696 result
1697 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1698 msymbol,
1699 pc, section,
1700 0);
1701 if (result)
1702 return result;
1703 }
1704 if (section != 0)
1705 {
1706 struct dict_iterator iter;
1707 struct symbol *sym = NULL;
1708
1709 ALL_BLOCK_SYMBOLS (b, iter, sym)
1710 {
1711 fixup_symbol_section (sym, objfile);
1712 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1713 break;
1714 }
1715 if (sym == NULL)
1716 continue; /* no symbol in this symtab matches section */
1717 }
1718 distance = BLOCK_END (b) - BLOCK_START (b);
1719 best_s = s;
1720 }
1721 }
1722
1723 if (best_s != NULL)
1724 return (best_s);
1725
1726 ALL_OBJFILES (objfile)
1727 {
1728 struct symtab *result;
1729 if (!objfile->sf)
1730 continue;
1731 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1732 msymbol,
1733 pc, section,
1734 1);
1735 if (result)
1736 return result;
1737 }
1738
1739 return NULL;
1740 }
1741
1742 /* Find the symtab associated with PC. Look through the psymtabs and
1743 read in another symtab if necessary. Backward compatibility, no section */
1744
1745 struct symtab *
1746 find_pc_symtab (CORE_ADDR pc)
1747 {
1748 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1749 }
1750 \f
1751
1752 /* Find the source file and line number for a given PC value and SECTION.
1753 Return a structure containing a symtab pointer, a line number,
1754 and a pc range for the entire source line.
1755 The value's .pc field is NOT the specified pc.
1756 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1757 use the line that ends there. Otherwise, in that case, the line
1758 that begins there is used. */
1759
1760 /* The big complication here is that a line may start in one file, and end just
1761 before the start of another file. This usually occurs when you #include
1762 code in the middle of a subroutine. To properly find the end of a line's PC
1763 range, we must search all symtabs associated with this compilation unit, and
1764 find the one whose first PC is closer than that of the next line in this
1765 symtab. */
1766
1767 /* If it's worth the effort, we could be using a binary search. */
1768
1769 struct symtab_and_line
1770 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1771 {
1772 struct symtab *s;
1773 struct linetable *l;
1774 int len;
1775 int i;
1776 struct linetable_entry *item;
1777 struct symtab_and_line val;
1778 struct blockvector *bv;
1779 struct minimal_symbol *msymbol;
1780 struct minimal_symbol *mfunsym;
1781
1782 /* Info on best line seen so far, and where it starts, and its file. */
1783
1784 struct linetable_entry *best = NULL;
1785 CORE_ADDR best_end = 0;
1786 struct symtab *best_symtab = 0;
1787
1788 /* Store here the first line number
1789 of a file which contains the line at the smallest pc after PC.
1790 If we don't find a line whose range contains PC,
1791 we will use a line one less than this,
1792 with a range from the start of that file to the first line's pc. */
1793 struct linetable_entry *alt = NULL;
1794 struct symtab *alt_symtab = 0;
1795
1796 /* Info on best line seen in this file. */
1797
1798 struct linetable_entry *prev;
1799
1800 /* If this pc is not from the current frame,
1801 it is the address of the end of a call instruction.
1802 Quite likely that is the start of the following statement.
1803 But what we want is the statement containing the instruction.
1804 Fudge the pc to make sure we get that. */
1805
1806 init_sal (&val); /* initialize to zeroes */
1807
1808 val.pspace = current_program_space;
1809
1810 /* It's tempting to assume that, if we can't find debugging info for
1811 any function enclosing PC, that we shouldn't search for line
1812 number info, either. However, GAS can emit line number info for
1813 assembly files --- very helpful when debugging hand-written
1814 assembly code. In such a case, we'd have no debug info for the
1815 function, but we would have line info. */
1816
1817 if (notcurrent)
1818 pc -= 1;
1819
1820 /* elz: added this because this function returned the wrong
1821 information if the pc belongs to a stub (import/export)
1822 to call a shlib function. This stub would be anywhere between
1823 two functions in the target, and the line info was erroneously
1824 taken to be the one of the line before the pc.
1825 */
1826 /* RT: Further explanation:
1827
1828 * We have stubs (trampolines) inserted between procedures.
1829 *
1830 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1831 * exists in the main image.
1832 *
1833 * In the minimal symbol table, we have a bunch of symbols
1834 * sorted by start address. The stubs are marked as "trampoline",
1835 * the others appear as text. E.g.:
1836 *
1837 * Minimal symbol table for main image
1838 * main: code for main (text symbol)
1839 * shr1: stub (trampoline symbol)
1840 * foo: code for foo (text symbol)
1841 * ...
1842 * Minimal symbol table for "shr1" image:
1843 * ...
1844 * shr1: code for shr1 (text symbol)
1845 * ...
1846 *
1847 * So the code below is trying to detect if we are in the stub
1848 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1849 * and if found, do the symbolization from the real-code address
1850 * rather than the stub address.
1851 *
1852 * Assumptions being made about the minimal symbol table:
1853 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1854 * if we're really in the trampoline. If we're beyond it (say
1855 * we're in "foo" in the above example), it'll have a closer
1856 * symbol (the "foo" text symbol for example) and will not
1857 * return the trampoline.
1858 * 2. lookup_minimal_symbol_text() will find a real text symbol
1859 * corresponding to the trampoline, and whose address will
1860 * be different than the trampoline address. I put in a sanity
1861 * check for the address being the same, to avoid an
1862 * infinite recursion.
1863 */
1864 msymbol = lookup_minimal_symbol_by_pc (pc);
1865 if (msymbol != NULL)
1866 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1867 {
1868 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
1869 NULL);
1870 if (mfunsym == NULL)
1871 /* I eliminated this warning since it is coming out
1872 * in the following situation:
1873 * gdb shmain // test program with shared libraries
1874 * (gdb) break shr1 // function in shared lib
1875 * Warning: In stub for ...
1876 * In the above situation, the shared lib is not loaded yet,
1877 * so of course we can't find the real func/line info,
1878 * but the "break" still works, and the warning is annoying.
1879 * So I commented out the warning. RT */
1880 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
1881 /* fall through */
1882 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
1883 /* Avoid infinite recursion */
1884 /* See above comment about why warning is commented out */
1885 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
1886 /* fall through */
1887 else
1888 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
1889 }
1890
1891
1892 s = find_pc_sect_symtab (pc, section);
1893 if (!s)
1894 {
1895 /* if no symbol information, return previous pc */
1896 if (notcurrent)
1897 pc++;
1898 val.pc = pc;
1899 return val;
1900 }
1901
1902 bv = BLOCKVECTOR (s);
1903
1904 /* Look at all the symtabs that share this blockvector.
1905 They all have the same apriori range, that we found was right;
1906 but they have different line tables. */
1907
1908 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
1909 {
1910 /* Find the best line in this symtab. */
1911 l = LINETABLE (s);
1912 if (!l)
1913 continue;
1914 len = l->nitems;
1915 if (len <= 0)
1916 {
1917 /* I think len can be zero if the symtab lacks line numbers
1918 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
1919 I'm not sure which, and maybe it depends on the symbol
1920 reader). */
1921 continue;
1922 }
1923
1924 prev = NULL;
1925 item = l->item; /* Get first line info */
1926
1927 /* Is this file's first line closer than the first lines of other files?
1928 If so, record this file, and its first line, as best alternate. */
1929 if (item->pc > pc && (!alt || item->pc < alt->pc))
1930 {
1931 alt = item;
1932 alt_symtab = s;
1933 }
1934
1935 for (i = 0; i < len; i++, item++)
1936 {
1937 /* Leave prev pointing to the linetable entry for the last line
1938 that started at or before PC. */
1939 if (item->pc > pc)
1940 break;
1941
1942 prev = item;
1943 }
1944
1945 /* At this point, prev points at the line whose start addr is <= pc, and
1946 item points at the next line. If we ran off the end of the linetable
1947 (pc >= start of the last line), then prev == item. If pc < start of
1948 the first line, prev will not be set. */
1949
1950 /* Is this file's best line closer than the best in the other files?
1951 If so, record this file, and its best line, as best so far. Don't
1952 save prev if it represents the end of a function (i.e. line number
1953 0) instead of a real line. */
1954
1955 if (prev && prev->line && (!best || prev->pc > best->pc))
1956 {
1957 best = prev;
1958 best_symtab = s;
1959
1960 /* Discard BEST_END if it's before the PC of the current BEST. */
1961 if (best_end <= best->pc)
1962 best_end = 0;
1963 }
1964
1965 /* If another line (denoted by ITEM) is in the linetable and its
1966 PC is after BEST's PC, but before the current BEST_END, then
1967 use ITEM's PC as the new best_end. */
1968 if (best && i < len && item->pc > best->pc
1969 && (best_end == 0 || best_end > item->pc))
1970 best_end = item->pc;
1971 }
1972
1973 if (!best_symtab)
1974 {
1975 /* If we didn't find any line number info, just return zeros.
1976 We used to return alt->line - 1 here, but that could be
1977 anywhere; if we don't have line number info for this PC,
1978 don't make some up. */
1979 val.pc = pc;
1980 }
1981 else if (best->line == 0)
1982 {
1983 /* If our best fit is in a range of PC's for which no line
1984 number info is available (line number is zero) then we didn't
1985 find any valid line information. */
1986 val.pc = pc;
1987 }
1988 else
1989 {
1990 val.symtab = best_symtab;
1991 val.line = best->line;
1992 val.pc = best->pc;
1993 if (best_end && (!alt || best_end < alt->pc))
1994 val.end = best_end;
1995 else if (alt)
1996 val.end = alt->pc;
1997 else
1998 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
1999 }
2000 val.section = section;
2001 return val;
2002 }
2003
2004 /* Backward compatibility (no section) */
2005
2006 struct symtab_and_line
2007 find_pc_line (CORE_ADDR pc, int notcurrent)
2008 {
2009 struct obj_section *section;
2010
2011 section = find_pc_overlay (pc);
2012 if (pc_in_unmapped_range (pc, section))
2013 pc = overlay_mapped_address (pc, section);
2014 return find_pc_sect_line (pc, section, notcurrent);
2015 }
2016 \f
2017 /* Find line number LINE in any symtab whose name is the same as
2018 SYMTAB.
2019
2020 If found, return the symtab that contains the linetable in which it was
2021 found, set *INDEX to the index in the linetable of the best entry
2022 found, and set *EXACT_MATCH nonzero if the value returned is an
2023 exact match.
2024
2025 If not found, return NULL. */
2026
2027 struct symtab *
2028 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2029 {
2030 int exact = 0; /* Initialized here to avoid a compiler warning. */
2031
2032 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2033 so far seen. */
2034
2035 int best_index;
2036 struct linetable *best_linetable;
2037 struct symtab *best_symtab;
2038
2039 /* First try looking it up in the given symtab. */
2040 best_linetable = LINETABLE (symtab);
2041 best_symtab = symtab;
2042 best_index = find_line_common (best_linetable, line, &exact);
2043 if (best_index < 0 || !exact)
2044 {
2045 /* Didn't find an exact match. So we better keep looking for
2046 another symtab with the same name. In the case of xcoff,
2047 multiple csects for one source file (produced by IBM's FORTRAN
2048 compiler) produce multiple symtabs (this is unavoidable
2049 assuming csects can be at arbitrary places in memory and that
2050 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2051
2052 /* BEST is the smallest linenumber > LINE so far seen,
2053 or 0 if none has been seen so far.
2054 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2055 int best;
2056
2057 struct objfile *objfile;
2058 struct symtab *s;
2059
2060 if (best_index >= 0)
2061 best = best_linetable->item[best_index].line;
2062 else
2063 best = 0;
2064
2065 ALL_OBJFILES (objfile)
2066 {
2067 if (objfile->sf)
2068 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2069 symtab->filename);
2070 }
2071
2072 /* Get symbol full file name if possible. */
2073 symtab_to_fullname (symtab);
2074
2075 ALL_SYMTABS (objfile, s)
2076 {
2077 struct linetable *l;
2078 int ind;
2079
2080 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2081 continue;
2082 if (symtab->fullname != NULL
2083 && symtab_to_fullname (s) != NULL
2084 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2085 continue;
2086 l = LINETABLE (s);
2087 ind = find_line_common (l, line, &exact);
2088 if (ind >= 0)
2089 {
2090 if (exact)
2091 {
2092 best_index = ind;
2093 best_linetable = l;
2094 best_symtab = s;
2095 goto done;
2096 }
2097 if (best == 0 || l->item[ind].line < best)
2098 {
2099 best = l->item[ind].line;
2100 best_index = ind;
2101 best_linetable = l;
2102 best_symtab = s;
2103 }
2104 }
2105 }
2106 }
2107 done:
2108 if (best_index < 0)
2109 return NULL;
2110
2111 if (index)
2112 *index = best_index;
2113 if (exact_match)
2114 *exact_match = exact;
2115
2116 return best_symtab;
2117 }
2118 \f
2119 /* Set the PC value for a given source file and line number and return true.
2120 Returns zero for invalid line number (and sets the PC to 0).
2121 The source file is specified with a struct symtab. */
2122
2123 int
2124 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2125 {
2126 struct linetable *l;
2127 int ind;
2128
2129 *pc = 0;
2130 if (symtab == 0)
2131 return 0;
2132
2133 symtab = find_line_symtab (symtab, line, &ind, NULL);
2134 if (symtab != NULL)
2135 {
2136 l = LINETABLE (symtab);
2137 *pc = l->item[ind].pc;
2138 return 1;
2139 }
2140 else
2141 return 0;
2142 }
2143
2144 /* Find the range of pc values in a line.
2145 Store the starting pc of the line into *STARTPTR
2146 and the ending pc (start of next line) into *ENDPTR.
2147 Returns 1 to indicate success.
2148 Returns 0 if could not find the specified line. */
2149
2150 int
2151 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2152 CORE_ADDR *endptr)
2153 {
2154 CORE_ADDR startaddr;
2155 struct symtab_and_line found_sal;
2156
2157 startaddr = sal.pc;
2158 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2159 return 0;
2160
2161 /* This whole function is based on address. For example, if line 10 has
2162 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2163 "info line *0x123" should say the line goes from 0x100 to 0x200
2164 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2165 This also insures that we never give a range like "starts at 0x134
2166 and ends at 0x12c". */
2167
2168 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2169 if (found_sal.line != sal.line)
2170 {
2171 /* The specified line (sal) has zero bytes. */
2172 *startptr = found_sal.pc;
2173 *endptr = found_sal.pc;
2174 }
2175 else
2176 {
2177 *startptr = found_sal.pc;
2178 *endptr = found_sal.end;
2179 }
2180 return 1;
2181 }
2182
2183 /* Given a line table and a line number, return the index into the line
2184 table for the pc of the nearest line whose number is >= the specified one.
2185 Return -1 if none is found. The value is >= 0 if it is an index.
2186
2187 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2188
2189 static int
2190 find_line_common (struct linetable *l, int lineno,
2191 int *exact_match)
2192 {
2193 int i;
2194 int len;
2195
2196 /* BEST is the smallest linenumber > LINENO so far seen,
2197 or 0 if none has been seen so far.
2198 BEST_INDEX identifies the item for it. */
2199
2200 int best_index = -1;
2201 int best = 0;
2202
2203 *exact_match = 0;
2204
2205 if (lineno <= 0)
2206 return -1;
2207 if (l == 0)
2208 return -1;
2209
2210 len = l->nitems;
2211 for (i = 0; i < len; i++)
2212 {
2213 struct linetable_entry *item = &(l->item[i]);
2214
2215 if (item->line == lineno)
2216 {
2217 /* Return the first (lowest address) entry which matches. */
2218 *exact_match = 1;
2219 return i;
2220 }
2221
2222 if (item->line > lineno && (best == 0 || item->line < best))
2223 {
2224 best = item->line;
2225 best_index = i;
2226 }
2227 }
2228
2229 /* If we got here, we didn't get an exact match. */
2230 return best_index;
2231 }
2232
2233 int
2234 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2235 {
2236 struct symtab_and_line sal;
2237 sal = find_pc_line (pc, 0);
2238 *startptr = sal.pc;
2239 *endptr = sal.end;
2240 return sal.symtab != 0;
2241 }
2242
2243 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2244 address for that function that has an entry in SYMTAB's line info
2245 table. If such an entry cannot be found, return FUNC_ADDR
2246 unaltered. */
2247 CORE_ADDR
2248 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2249 {
2250 CORE_ADDR func_start, func_end;
2251 struct linetable *l;
2252 int ind, i, len;
2253 int best_lineno = 0;
2254 CORE_ADDR best_pc = func_addr;
2255
2256 /* Give up if this symbol has no lineinfo table. */
2257 l = LINETABLE (symtab);
2258 if (l == NULL)
2259 return func_addr;
2260
2261 /* Get the range for the function's PC values, or give up if we
2262 cannot, for some reason. */
2263 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2264 return func_addr;
2265
2266 /* Linetable entries are ordered by PC values, see the commentary in
2267 symtab.h where `struct linetable' is defined. Thus, the first
2268 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2269 address we are looking for. */
2270 for (i = 0; i < l->nitems; i++)
2271 {
2272 struct linetable_entry *item = &(l->item[i]);
2273
2274 /* Don't use line numbers of zero, they mark special entries in
2275 the table. See the commentary on symtab.h before the
2276 definition of struct linetable. */
2277 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2278 return item->pc;
2279 }
2280
2281 return func_addr;
2282 }
2283
2284 /* Given a function symbol SYM, find the symtab and line for the start
2285 of the function.
2286 If the argument FUNFIRSTLINE is nonzero, we want the first line
2287 of real code inside the function. */
2288
2289 struct symtab_and_line
2290 find_function_start_sal (struct symbol *sym, int funfirstline)
2291 {
2292 struct symtab_and_line sal;
2293
2294 fixup_symbol_section (sym, NULL);
2295 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2296 SYMBOL_OBJ_SECTION (sym), 0);
2297
2298 /* We always should have a line for the function start address.
2299 If we don't, something is odd. Create a plain SAL refering
2300 just the PC and hope that skip_prologue_sal (if requested)
2301 can find a line number for after the prologue. */
2302 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2303 {
2304 init_sal (&sal);
2305 sal.pspace = current_program_space;
2306 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2307 sal.section = SYMBOL_OBJ_SECTION (sym);
2308 }
2309
2310 if (funfirstline)
2311 skip_prologue_sal (&sal);
2312
2313 return sal;
2314 }
2315
2316 /* Adjust SAL to the first instruction past the function prologue.
2317 If the PC was explicitly specified, the SAL is not changed.
2318 If the line number was explicitly specified, at most the SAL's PC
2319 is updated. If SAL is already past the prologue, then do nothing. */
2320 void
2321 skip_prologue_sal (struct symtab_and_line *sal)
2322 {
2323 struct symbol *sym;
2324 struct symtab_and_line start_sal;
2325 struct cleanup *old_chain;
2326 CORE_ADDR pc;
2327 struct obj_section *section;
2328 const char *name;
2329 struct objfile *objfile;
2330 struct gdbarch *gdbarch;
2331 struct block *b, *function_block;
2332
2333 /* Do not change the SAL is PC was specified explicitly. */
2334 if (sal->explicit_pc)
2335 return;
2336
2337 old_chain = save_current_space_and_thread ();
2338 switch_to_program_space_and_thread (sal->pspace);
2339
2340 sym = find_pc_sect_function (sal->pc, sal->section);
2341 if (sym != NULL)
2342 {
2343 fixup_symbol_section (sym, NULL);
2344
2345 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2346 section = SYMBOL_OBJ_SECTION (sym);
2347 name = SYMBOL_LINKAGE_NAME (sym);
2348 objfile = SYMBOL_SYMTAB (sym)->objfile;
2349 }
2350 else
2351 {
2352 struct minimal_symbol *msymbol
2353 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2354 if (msymbol == NULL)
2355 {
2356 do_cleanups (old_chain);
2357 return;
2358 }
2359
2360 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2361 section = SYMBOL_OBJ_SECTION (msymbol);
2362 name = SYMBOL_LINKAGE_NAME (msymbol);
2363 objfile = msymbol_objfile (msymbol);
2364 }
2365
2366 gdbarch = get_objfile_arch (objfile);
2367
2368 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2369 so that gdbarch_skip_prologue has something unique to work on. */
2370 if (section_is_overlay (section) && !section_is_mapped (section))
2371 pc = overlay_unmapped_address (pc, section);
2372
2373 /* Skip "first line" of function (which is actually its prologue). */
2374 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2375 pc = gdbarch_skip_prologue (gdbarch, pc);
2376
2377 /* For overlays, map pc back into its mapped VMA range. */
2378 pc = overlay_mapped_address (pc, section);
2379
2380 /* Calculate line number. */
2381 start_sal = find_pc_sect_line (pc, section, 0);
2382
2383 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2384 line is still part of the same function. */
2385 if (start_sal.pc != pc
2386 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2387 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2388 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2389 == lookup_minimal_symbol_by_pc_section (pc, section))))
2390 {
2391 /* First pc of next line */
2392 pc = start_sal.end;
2393 /* Recalculate the line number (might not be N+1). */
2394 start_sal = find_pc_sect_line (pc, section, 0);
2395 }
2396
2397 /* On targets with executable formats that don't have a concept of
2398 constructors (ELF with .init has, PE doesn't), gcc emits a call
2399 to `__main' in `main' between the prologue and before user
2400 code. */
2401 if (gdbarch_skip_main_prologue_p (gdbarch)
2402 && name && strcmp (name, "main") == 0)
2403 {
2404 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2405 /* Recalculate the line number (might not be N+1). */
2406 start_sal = find_pc_sect_line (pc, section, 0);
2407 }
2408
2409 /* If we still don't have a valid source line, try to find the first
2410 PC in the lineinfo table that belongs to the same function. This
2411 happens with COFF debug info, which does not seem to have an
2412 entry in lineinfo table for the code after the prologue which has
2413 no direct relation to source. For example, this was found to be
2414 the case with the DJGPP target using "gcc -gcoff" when the
2415 compiler inserted code after the prologue to make sure the stack
2416 is aligned. */
2417 if (sym && start_sal.symtab == NULL)
2418 {
2419 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2420 /* Recalculate the line number. */
2421 start_sal = find_pc_sect_line (pc, section, 0);
2422 }
2423
2424 do_cleanups (old_chain);
2425
2426 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2427 forward SAL to the end of the prologue. */
2428 if (sal->pc >= pc)
2429 return;
2430
2431 sal->pc = pc;
2432 sal->section = section;
2433
2434 /* Unless the explicit_line flag was set, update the SAL line
2435 and symtab to correspond to the modified PC location. */
2436 if (sal->explicit_line)
2437 return;
2438
2439 sal->symtab = start_sal.symtab;
2440 sal->line = start_sal.line;
2441 sal->end = start_sal.end;
2442
2443 /* Check if we are now inside an inlined function. If we can,
2444 use the call site of the function instead. */
2445 b = block_for_pc_sect (sal->pc, sal->section);
2446 function_block = NULL;
2447 while (b != NULL)
2448 {
2449 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2450 function_block = b;
2451 else if (BLOCK_FUNCTION (b) != NULL)
2452 break;
2453 b = BLOCK_SUPERBLOCK (b);
2454 }
2455 if (function_block != NULL
2456 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2457 {
2458 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2459 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2460 }
2461 }
2462
2463 /* If P is of the form "operator[ \t]+..." where `...' is
2464 some legitimate operator text, return a pointer to the
2465 beginning of the substring of the operator text.
2466 Otherwise, return "". */
2467 char *
2468 operator_chars (char *p, char **end)
2469 {
2470 *end = "";
2471 if (strncmp (p, "operator", 8))
2472 return *end;
2473 p += 8;
2474
2475 /* Don't get faked out by `operator' being part of a longer
2476 identifier. */
2477 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2478 return *end;
2479
2480 /* Allow some whitespace between `operator' and the operator symbol. */
2481 while (*p == ' ' || *p == '\t')
2482 p++;
2483
2484 /* Recognize 'operator TYPENAME'. */
2485
2486 if (isalpha (*p) || *p == '_' || *p == '$')
2487 {
2488 char *q = p + 1;
2489 while (isalnum (*q) || *q == '_' || *q == '$')
2490 q++;
2491 *end = q;
2492 return p;
2493 }
2494
2495 while (*p)
2496 switch (*p)
2497 {
2498 case '\\': /* regexp quoting */
2499 if (p[1] == '*')
2500 {
2501 if (p[2] == '=') /* 'operator\*=' */
2502 *end = p + 3;
2503 else /* 'operator\*' */
2504 *end = p + 2;
2505 return p;
2506 }
2507 else if (p[1] == '[')
2508 {
2509 if (p[2] == ']')
2510 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2511 else if (p[2] == '\\' && p[3] == ']')
2512 {
2513 *end = p + 4; /* 'operator\[\]' */
2514 return p;
2515 }
2516 else
2517 error (_("nothing is allowed between '[' and ']'"));
2518 }
2519 else
2520 {
2521 /* Gratuitous qoute: skip it and move on. */
2522 p++;
2523 continue;
2524 }
2525 break;
2526 case '!':
2527 case '=':
2528 case '*':
2529 case '/':
2530 case '%':
2531 case '^':
2532 if (p[1] == '=')
2533 *end = p + 2;
2534 else
2535 *end = p + 1;
2536 return p;
2537 case '<':
2538 case '>':
2539 case '+':
2540 case '-':
2541 case '&':
2542 case '|':
2543 if (p[0] == '-' && p[1] == '>')
2544 {
2545 /* Struct pointer member operator 'operator->'. */
2546 if (p[2] == '*')
2547 {
2548 *end = p + 3; /* 'operator->*' */
2549 return p;
2550 }
2551 else if (p[2] == '\\')
2552 {
2553 *end = p + 4; /* Hopefully 'operator->\*' */
2554 return p;
2555 }
2556 else
2557 {
2558 *end = p + 2; /* 'operator->' */
2559 return p;
2560 }
2561 }
2562 if (p[1] == '=' || p[1] == p[0])
2563 *end = p + 2;
2564 else
2565 *end = p + 1;
2566 return p;
2567 case '~':
2568 case ',':
2569 *end = p + 1;
2570 return p;
2571 case '(':
2572 if (p[1] != ')')
2573 error (_("`operator ()' must be specified without whitespace in `()'"));
2574 *end = p + 2;
2575 return p;
2576 case '?':
2577 if (p[1] != ':')
2578 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2579 *end = p + 2;
2580 return p;
2581 case '[':
2582 if (p[1] != ']')
2583 error (_("`operator []' must be specified without whitespace in `[]'"));
2584 *end = p + 2;
2585 return p;
2586 default:
2587 error (_("`operator %s' not supported"), p);
2588 break;
2589 }
2590
2591 *end = "";
2592 return *end;
2593 }
2594 \f
2595
2596 /* If FILE is not already in the table of files, return zero;
2597 otherwise return non-zero. Optionally add FILE to the table if ADD
2598 is non-zero. If *FIRST is non-zero, forget the old table
2599 contents. */
2600 static int
2601 filename_seen (const char *file, int add, int *first)
2602 {
2603 /* Table of files seen so far. */
2604 static const char **tab = NULL;
2605 /* Allocated size of tab in elements.
2606 Start with one 256-byte block (when using GNU malloc.c).
2607 24 is the malloc overhead when range checking is in effect. */
2608 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2609 /* Current size of tab in elements. */
2610 static int tab_cur_size;
2611 const char **p;
2612
2613 if (*first)
2614 {
2615 if (tab == NULL)
2616 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2617 tab_cur_size = 0;
2618 }
2619
2620 /* Is FILE in tab? */
2621 for (p = tab; p < tab + tab_cur_size; p++)
2622 if (strcmp (*p, file) == 0)
2623 return 1;
2624
2625 /* No; maybe add it to tab. */
2626 if (add)
2627 {
2628 if (tab_cur_size == tab_alloc_size)
2629 {
2630 tab_alloc_size *= 2;
2631 tab = (const char **) xrealloc ((char *) tab,
2632 tab_alloc_size * sizeof (*tab));
2633 }
2634 tab[tab_cur_size++] = file;
2635 }
2636
2637 return 0;
2638 }
2639
2640 /* Slave routine for sources_info. Force line breaks at ,'s.
2641 NAME is the name to print and *FIRST is nonzero if this is the first
2642 name printed. Set *FIRST to zero. */
2643 static void
2644 output_source_filename (const char *name, int *first)
2645 {
2646 /* Since a single source file can result in several partial symbol
2647 tables, we need to avoid printing it more than once. Note: if
2648 some of the psymtabs are read in and some are not, it gets
2649 printed both under "Source files for which symbols have been
2650 read" and "Source files for which symbols will be read in on
2651 demand". I consider this a reasonable way to deal with the
2652 situation. I'm not sure whether this can also happen for
2653 symtabs; it doesn't hurt to check. */
2654
2655 /* Was NAME already seen? */
2656 if (filename_seen (name, 1, first))
2657 {
2658 /* Yes; don't print it again. */
2659 return;
2660 }
2661 /* No; print it and reset *FIRST. */
2662 if (*first)
2663 {
2664 *first = 0;
2665 }
2666 else
2667 {
2668 printf_filtered (", ");
2669 }
2670
2671 wrap_here ("");
2672 fputs_filtered (name, gdb_stdout);
2673 }
2674
2675 /* A callback for map_partial_symbol_filenames. */
2676 static void
2677 output_partial_symbol_filename (const char *fullname, const char *filename,
2678 void *data)
2679 {
2680 output_source_filename (fullname ? fullname : filename, data);
2681 }
2682
2683 static void
2684 sources_info (char *ignore, int from_tty)
2685 {
2686 struct symtab *s;
2687 struct partial_symtab *ps;
2688 struct objfile *objfile;
2689 int first;
2690
2691 if (!have_full_symbols () && !have_partial_symbols ())
2692 {
2693 error (_("No symbol table is loaded. Use the \"file\" command."));
2694 }
2695
2696 printf_filtered ("Source files for which symbols have been read in:\n\n");
2697
2698 first = 1;
2699 ALL_SYMTABS (objfile, s)
2700 {
2701 const char *fullname = symtab_to_fullname (s);
2702 output_source_filename (fullname ? fullname : s->filename, &first);
2703 }
2704 printf_filtered ("\n\n");
2705
2706 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2707
2708 first = 1;
2709 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2710 printf_filtered ("\n");
2711 }
2712
2713 static int
2714 file_matches (const char *file, char *files[], int nfiles)
2715 {
2716 int i;
2717
2718 if (file != NULL && nfiles != 0)
2719 {
2720 for (i = 0; i < nfiles; i++)
2721 {
2722 if (strcmp (files[i], lbasename (file)) == 0)
2723 return 1;
2724 }
2725 }
2726 else if (nfiles == 0)
2727 return 1;
2728 return 0;
2729 }
2730
2731 /* Free any memory associated with a search. */
2732 void
2733 free_search_symbols (struct symbol_search *symbols)
2734 {
2735 struct symbol_search *p;
2736 struct symbol_search *next;
2737
2738 for (p = symbols; p != NULL; p = next)
2739 {
2740 next = p->next;
2741 xfree (p);
2742 }
2743 }
2744
2745 static void
2746 do_free_search_symbols_cleanup (void *symbols)
2747 {
2748 free_search_symbols (symbols);
2749 }
2750
2751 struct cleanup *
2752 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2753 {
2754 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2755 }
2756
2757 /* Helper function for sort_search_symbols and qsort. Can only
2758 sort symbols, not minimal symbols. */
2759 static int
2760 compare_search_syms (const void *sa, const void *sb)
2761 {
2762 struct symbol_search **sym_a = (struct symbol_search **) sa;
2763 struct symbol_search **sym_b = (struct symbol_search **) sb;
2764
2765 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2766 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2767 }
2768
2769 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2770 prevtail where it is, but update its next pointer to point to
2771 the first of the sorted symbols. */
2772 static struct symbol_search *
2773 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2774 {
2775 struct symbol_search **symbols, *symp, *old_next;
2776 int i;
2777
2778 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2779 * nfound);
2780 symp = prevtail->next;
2781 for (i = 0; i < nfound; i++)
2782 {
2783 symbols[i] = symp;
2784 symp = symp->next;
2785 }
2786 /* Generally NULL. */
2787 old_next = symp;
2788
2789 qsort (symbols, nfound, sizeof (struct symbol_search *),
2790 compare_search_syms);
2791
2792 symp = prevtail;
2793 for (i = 0; i < nfound; i++)
2794 {
2795 symp->next = symbols[i];
2796 symp = symp->next;
2797 }
2798 symp->next = old_next;
2799
2800 xfree (symbols);
2801 return symp;
2802 }
2803
2804 /* An object of this type is passed as the user_data to the
2805 expand_symtabs_matching method. */
2806 struct search_symbols_data
2807 {
2808 int nfiles;
2809 char **files;
2810 char *regexp;
2811 };
2812
2813 /* A callback for expand_symtabs_matching. */
2814 static int
2815 search_symbols_file_matches (const char *filename, void *user_data)
2816 {
2817 struct search_symbols_data *data = user_data;
2818 return file_matches (filename, data->files, data->nfiles);
2819 }
2820
2821 /* A callback for expand_symtabs_matching. */
2822 static int
2823 search_symbols_name_matches (const char *symname, void *user_data)
2824 {
2825 struct search_symbols_data *data = user_data;
2826 return data->regexp == NULL || re_exec (symname);
2827 }
2828
2829 /* Search the symbol table for matches to the regular expression REGEXP,
2830 returning the results in *MATCHES.
2831
2832 Only symbols of KIND are searched:
2833 FUNCTIONS_DOMAIN - search all functions
2834 TYPES_DOMAIN - search all type names
2835 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2836 and constants (enums)
2837
2838 free_search_symbols should be called when *MATCHES is no longer needed.
2839
2840 The results are sorted locally; each symtab's global and static blocks are
2841 separately alphabetized.
2842 */
2843 void
2844 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2845 struct symbol_search **matches)
2846 {
2847 struct symtab *s;
2848 struct blockvector *bv;
2849 struct block *b;
2850 int i = 0;
2851 struct dict_iterator iter;
2852 struct symbol *sym;
2853 struct objfile *objfile;
2854 struct minimal_symbol *msymbol;
2855 char *val;
2856 int found_misc = 0;
2857 static enum minimal_symbol_type types[]
2858 =
2859 {mst_data, mst_text, mst_abs, mst_unknown};
2860 static enum minimal_symbol_type types2[]
2861 =
2862 {mst_bss, mst_file_text, mst_abs, mst_unknown};
2863 static enum minimal_symbol_type types3[]
2864 =
2865 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2866 static enum minimal_symbol_type types4[]
2867 =
2868 {mst_file_bss, mst_text, mst_abs, mst_unknown};
2869 enum minimal_symbol_type ourtype;
2870 enum minimal_symbol_type ourtype2;
2871 enum minimal_symbol_type ourtype3;
2872 enum minimal_symbol_type ourtype4;
2873 struct symbol_search *sr;
2874 struct symbol_search *psr;
2875 struct symbol_search *tail;
2876 struct cleanup *old_chain = NULL;
2877 struct search_symbols_data datum;
2878
2879 if (kind < VARIABLES_DOMAIN)
2880 error (_("must search on specific domain"));
2881
2882 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
2883 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
2884 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
2885 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
2886
2887 sr = *matches = NULL;
2888 tail = NULL;
2889
2890 if (regexp != NULL)
2891 {
2892 /* Make sure spacing is right for C++ operators.
2893 This is just a courtesy to make the matching less sensitive
2894 to how many spaces the user leaves between 'operator'
2895 and <TYPENAME> or <OPERATOR>. */
2896 char *opend;
2897 char *opname = operator_chars (regexp, &opend);
2898 if (*opname)
2899 {
2900 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
2901 if (isalpha (*opname) || *opname == '_' || *opname == '$')
2902 {
2903 /* There should 1 space between 'operator' and 'TYPENAME'. */
2904 if (opname[-1] != ' ' || opname[-2] == ' ')
2905 fix = 1;
2906 }
2907 else
2908 {
2909 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
2910 if (opname[-1] == ' ')
2911 fix = 0;
2912 }
2913 /* If wrong number of spaces, fix it. */
2914 if (fix >= 0)
2915 {
2916 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
2917 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
2918 regexp = tmp;
2919 }
2920 }
2921
2922 if (0 != (val = re_comp (regexp)))
2923 error (_("Invalid regexp (%s): %s"), val, regexp);
2924 }
2925
2926 /* Search through the partial symtabs *first* for all symbols
2927 matching the regexp. That way we don't have to reproduce all of
2928 the machinery below. */
2929
2930 datum.nfiles = nfiles;
2931 datum.files = files;
2932 datum.regexp = regexp;
2933 ALL_OBJFILES (objfile)
2934 {
2935 if (objfile->sf)
2936 objfile->sf->qf->expand_symtabs_matching (objfile,
2937 search_symbols_file_matches,
2938 search_symbols_name_matches,
2939 kind,
2940 &datum);
2941 }
2942
2943 /* Here, we search through the minimal symbol tables for functions
2944 and variables that match, and force their symbols to be read.
2945 This is in particular necessary for demangled variable names,
2946 which are no longer put into the partial symbol tables.
2947 The symbol will then be found during the scan of symtabs below.
2948
2949 For functions, find_pc_symtab should succeed if we have debug info
2950 for the function, for variables we have to call lookup_symbol
2951 to determine if the variable has debug info.
2952 If the lookup fails, set found_misc so that we will rescan to print
2953 any matching symbols without debug info.
2954 */
2955
2956 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
2957 {
2958 ALL_MSYMBOLS (objfile, msymbol)
2959 {
2960 QUIT;
2961
2962 if (MSYMBOL_TYPE (msymbol) == ourtype ||
2963 MSYMBOL_TYPE (msymbol) == ourtype2 ||
2964 MSYMBOL_TYPE (msymbol) == ourtype3 ||
2965 MSYMBOL_TYPE (msymbol) == ourtype4)
2966 {
2967 if (regexp == NULL
2968 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
2969 {
2970 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
2971 {
2972 /* FIXME: carlton/2003-02-04: Given that the
2973 semantics of lookup_symbol keeps on changing
2974 slightly, it would be a nice idea if we had a
2975 function lookup_symbol_minsym that found the
2976 symbol associated to a given minimal symbol (if
2977 any). */
2978 if (kind == FUNCTIONS_DOMAIN
2979 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
2980 (struct block *) NULL,
2981 VAR_DOMAIN, 0)
2982 == NULL)
2983 found_misc = 1;
2984 }
2985 }
2986 }
2987 }
2988 }
2989
2990 ALL_PRIMARY_SYMTABS (objfile, s)
2991 {
2992 bv = BLOCKVECTOR (s);
2993 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
2994 {
2995 struct symbol_search *prevtail = tail;
2996 int nfound = 0;
2997 b = BLOCKVECTOR_BLOCK (bv, i);
2998 ALL_BLOCK_SYMBOLS (b, iter, sym)
2999 {
3000 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3001 QUIT;
3002
3003 if (file_matches (real_symtab->filename, files, nfiles)
3004 && ((regexp == NULL
3005 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3006 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3007 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3008 && SYMBOL_CLASS (sym) != LOC_BLOCK
3009 && SYMBOL_CLASS (sym) != LOC_CONST)
3010 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3011 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3012 {
3013 /* match */
3014 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3015 psr->block = i;
3016 psr->symtab = real_symtab;
3017 psr->symbol = sym;
3018 psr->msymbol = NULL;
3019 psr->next = NULL;
3020 if (tail == NULL)
3021 sr = psr;
3022 else
3023 tail->next = psr;
3024 tail = psr;
3025 nfound ++;
3026 }
3027 }
3028 if (nfound > 0)
3029 {
3030 if (prevtail == NULL)
3031 {
3032 struct symbol_search dummy;
3033
3034 dummy.next = sr;
3035 tail = sort_search_symbols (&dummy, nfound);
3036 sr = dummy.next;
3037
3038 old_chain = make_cleanup_free_search_symbols (sr);
3039 }
3040 else
3041 tail = sort_search_symbols (prevtail, nfound);
3042 }
3043 }
3044 }
3045
3046 /* If there are no eyes, avoid all contact. I mean, if there are
3047 no debug symbols, then print directly from the msymbol_vector. */
3048
3049 if (found_misc || kind != FUNCTIONS_DOMAIN)
3050 {
3051 ALL_MSYMBOLS (objfile, msymbol)
3052 {
3053 QUIT;
3054
3055 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3056 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3057 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3058 MSYMBOL_TYPE (msymbol) == ourtype4)
3059 {
3060 if (regexp == NULL
3061 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3062 {
3063 /* Functions: Look up by address. */
3064 if (kind != FUNCTIONS_DOMAIN ||
3065 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3066 {
3067 /* Variables/Absolutes: Look up by name */
3068 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3069 (struct block *) NULL, VAR_DOMAIN, 0)
3070 == NULL)
3071 {
3072 /* match */
3073 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3074 psr->block = i;
3075 psr->msymbol = msymbol;
3076 psr->symtab = NULL;
3077 psr->symbol = NULL;
3078 psr->next = NULL;
3079 if (tail == NULL)
3080 {
3081 sr = psr;
3082 old_chain = make_cleanup_free_search_symbols (sr);
3083 }
3084 else
3085 tail->next = psr;
3086 tail = psr;
3087 }
3088 }
3089 }
3090 }
3091 }
3092 }
3093
3094 *matches = sr;
3095 if (sr != NULL)
3096 discard_cleanups (old_chain);
3097 }
3098
3099 /* Helper function for symtab_symbol_info, this function uses
3100 the data returned from search_symbols() to print information
3101 regarding the match to gdb_stdout.
3102 */
3103 static void
3104 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3105 int block, char *last)
3106 {
3107 if (last == NULL || strcmp (last, s->filename) != 0)
3108 {
3109 fputs_filtered ("\nFile ", gdb_stdout);
3110 fputs_filtered (s->filename, gdb_stdout);
3111 fputs_filtered (":\n", gdb_stdout);
3112 }
3113
3114 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3115 printf_filtered ("static ");
3116
3117 /* Typedef that is not a C++ class */
3118 if (kind == TYPES_DOMAIN
3119 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3120 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3121 /* variable, func, or typedef-that-is-c++-class */
3122 else if (kind < TYPES_DOMAIN ||
3123 (kind == TYPES_DOMAIN &&
3124 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3125 {
3126 type_print (SYMBOL_TYPE (sym),
3127 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3128 ? "" : SYMBOL_PRINT_NAME (sym)),
3129 gdb_stdout, 0);
3130
3131 printf_filtered (";\n");
3132 }
3133 }
3134
3135 /* This help function for symtab_symbol_info() prints information
3136 for non-debugging symbols to gdb_stdout.
3137 */
3138 static void
3139 print_msymbol_info (struct minimal_symbol *msymbol)
3140 {
3141 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3142 char *tmp;
3143
3144 if (gdbarch_addr_bit (gdbarch) <= 32)
3145 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3146 & (CORE_ADDR) 0xffffffff,
3147 8);
3148 else
3149 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3150 16);
3151 printf_filtered ("%s %s\n",
3152 tmp, SYMBOL_PRINT_NAME (msymbol));
3153 }
3154
3155 /* This is the guts of the commands "info functions", "info types", and
3156 "info variables". It calls search_symbols to find all matches and then
3157 print_[m]symbol_info to print out some useful information about the
3158 matches.
3159 */
3160 static void
3161 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3162 {
3163 static char *classnames[]
3164 =
3165 {"variable", "function", "type", "method"};
3166 struct symbol_search *symbols;
3167 struct symbol_search *p;
3168 struct cleanup *old_chain;
3169 char *last_filename = NULL;
3170 int first = 1;
3171
3172 /* must make sure that if we're interrupted, symbols gets freed */
3173 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3174 old_chain = make_cleanup_free_search_symbols (symbols);
3175
3176 printf_filtered (regexp
3177 ? "All %ss matching regular expression \"%s\":\n"
3178 : "All defined %ss:\n",
3179 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3180
3181 for (p = symbols; p != NULL; p = p->next)
3182 {
3183 QUIT;
3184
3185 if (p->msymbol != NULL)
3186 {
3187 if (first)
3188 {
3189 printf_filtered ("\nNon-debugging symbols:\n");
3190 first = 0;
3191 }
3192 print_msymbol_info (p->msymbol);
3193 }
3194 else
3195 {
3196 print_symbol_info (kind,
3197 p->symtab,
3198 p->symbol,
3199 p->block,
3200 last_filename);
3201 last_filename = p->symtab->filename;
3202 }
3203 }
3204
3205 do_cleanups (old_chain);
3206 }
3207
3208 static void
3209 variables_info (char *regexp, int from_tty)
3210 {
3211 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3212 }
3213
3214 static void
3215 functions_info (char *regexp, int from_tty)
3216 {
3217 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3218 }
3219
3220
3221 static void
3222 types_info (char *regexp, int from_tty)
3223 {
3224 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3225 }
3226
3227 /* Breakpoint all functions matching regular expression. */
3228
3229 void
3230 rbreak_command_wrapper (char *regexp, int from_tty)
3231 {
3232 rbreak_command (regexp, from_tty);
3233 }
3234
3235 /* A cleanup function that calls end_rbreak_breakpoints. */
3236
3237 static void
3238 do_end_rbreak_breakpoints (void *ignore)
3239 {
3240 end_rbreak_breakpoints ();
3241 }
3242
3243 static void
3244 rbreak_command (char *regexp, int from_tty)
3245 {
3246 struct symbol_search *ss;
3247 struct symbol_search *p;
3248 struct cleanup *old_chain;
3249 char *string = NULL;
3250 int len = 0;
3251 char **files = NULL;
3252 int nfiles = 0;
3253
3254 if (regexp)
3255 {
3256 char *colon = strchr (regexp, ':');
3257 if (colon && *(colon + 1) != ':')
3258 {
3259 int colon_index;
3260 char * file_name;
3261
3262 colon_index = colon - regexp;
3263 file_name = alloca (colon_index + 1);
3264 memcpy (file_name, regexp, colon_index);
3265 file_name[colon_index--] = 0;
3266 while (isspace (file_name[colon_index]))
3267 file_name[colon_index--] = 0;
3268 files = &file_name;
3269 nfiles = 1;
3270 regexp = colon + 1;
3271 while (isspace (*regexp)) regexp++;
3272 }
3273 }
3274
3275 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3276 old_chain = make_cleanup_free_search_symbols (ss);
3277 make_cleanup (free_current_contents, &string);
3278
3279 start_rbreak_breakpoints ();
3280 make_cleanup (do_end_rbreak_breakpoints, NULL);
3281 for (p = ss; p != NULL; p = p->next)
3282 {
3283 if (p->msymbol == NULL)
3284 {
3285 int newlen = (strlen (p->symtab->filename)
3286 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3287 + 4);
3288 if (newlen > len)
3289 {
3290 string = xrealloc (string, newlen);
3291 len = newlen;
3292 }
3293 strcpy (string, p->symtab->filename);
3294 strcat (string, ":'");
3295 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3296 strcat (string, "'");
3297 break_command (string, from_tty);
3298 print_symbol_info (FUNCTIONS_DOMAIN,
3299 p->symtab,
3300 p->symbol,
3301 p->block,
3302 p->symtab->filename);
3303 }
3304 else
3305 {
3306 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3307 + 3);
3308 if (newlen > len)
3309 {
3310 string = xrealloc (string, newlen);
3311 len = newlen;
3312 }
3313 strcpy (string, "'");
3314 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3315 strcat (string, "'");
3316
3317 break_command (string, from_tty);
3318 printf_filtered ("<function, no debug info> %s;\n",
3319 SYMBOL_PRINT_NAME (p->msymbol));
3320 }
3321 }
3322
3323 do_cleanups (old_chain);
3324 }
3325 \f
3326
3327 /* Helper routine for make_symbol_completion_list. */
3328
3329 static int return_val_size;
3330 static int return_val_index;
3331 static char **return_val;
3332
3333 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3334 completion_list_add_name \
3335 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3336
3337 /* Test to see if the symbol specified by SYMNAME (which is already
3338 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3339 characters. If so, add it to the current completion list. */
3340
3341 static void
3342 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3343 char *text, char *word)
3344 {
3345 int newsize;
3346 int i;
3347
3348 /* clip symbols that cannot match */
3349
3350 if (strncmp (symname, sym_text, sym_text_len) != 0)
3351 {
3352 return;
3353 }
3354
3355 /* We have a match for a completion, so add SYMNAME to the current list
3356 of matches. Note that the name is moved to freshly malloc'd space. */
3357
3358 {
3359 char *new;
3360 if (word == sym_text)
3361 {
3362 new = xmalloc (strlen (symname) + 5);
3363 strcpy (new, symname);
3364 }
3365 else if (word > sym_text)
3366 {
3367 /* Return some portion of symname. */
3368 new = xmalloc (strlen (symname) + 5);
3369 strcpy (new, symname + (word - sym_text));
3370 }
3371 else
3372 {
3373 /* Return some of SYM_TEXT plus symname. */
3374 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3375 strncpy (new, word, sym_text - word);
3376 new[sym_text - word] = '\0';
3377 strcat (new, symname);
3378 }
3379
3380 if (return_val_index + 3 > return_val_size)
3381 {
3382 newsize = (return_val_size *= 2) * sizeof (char *);
3383 return_val = (char **) xrealloc ((char *) return_val, newsize);
3384 }
3385 return_val[return_val_index++] = new;
3386 return_val[return_val_index] = NULL;
3387 }
3388 }
3389
3390 /* ObjC: In case we are completing on a selector, look as the msymbol
3391 again and feed all the selectors into the mill. */
3392
3393 static void
3394 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3395 int sym_text_len, char *text, char *word)
3396 {
3397 static char *tmp = NULL;
3398 static unsigned int tmplen = 0;
3399
3400 char *method, *category, *selector;
3401 char *tmp2 = NULL;
3402
3403 method = SYMBOL_NATURAL_NAME (msymbol);
3404
3405 /* Is it a method? */
3406 if ((method[0] != '-') && (method[0] != '+'))
3407 return;
3408
3409 if (sym_text[0] == '[')
3410 /* Complete on shortened method method. */
3411 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3412
3413 while ((strlen (method) + 1) >= tmplen)
3414 {
3415 if (tmplen == 0)
3416 tmplen = 1024;
3417 else
3418 tmplen *= 2;
3419 tmp = xrealloc (tmp, tmplen);
3420 }
3421 selector = strchr (method, ' ');
3422 if (selector != NULL)
3423 selector++;
3424
3425 category = strchr (method, '(');
3426
3427 if ((category != NULL) && (selector != NULL))
3428 {
3429 memcpy (tmp, method, (category - method));
3430 tmp[category - method] = ' ';
3431 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3432 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3433 if (sym_text[0] == '[')
3434 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3435 }
3436
3437 if (selector != NULL)
3438 {
3439 /* Complete on selector only. */
3440 strcpy (tmp, selector);
3441 tmp2 = strchr (tmp, ']');
3442 if (tmp2 != NULL)
3443 *tmp2 = '\0';
3444
3445 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3446 }
3447 }
3448
3449 /* Break the non-quoted text based on the characters which are in
3450 symbols. FIXME: This should probably be language-specific. */
3451
3452 static char *
3453 language_search_unquoted_string (char *text, char *p)
3454 {
3455 for (; p > text; --p)
3456 {
3457 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3458 continue;
3459 else
3460 {
3461 if ((current_language->la_language == language_objc))
3462 {
3463 if (p[-1] == ':') /* might be part of a method name */
3464 continue;
3465 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3466 p -= 2; /* beginning of a method name */
3467 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3468 { /* might be part of a method name */
3469 char *t = p;
3470
3471 /* Seeing a ' ' or a '(' is not conclusive evidence
3472 that we are in the middle of a method name. However,
3473 finding "-[" or "+[" should be pretty un-ambiguous.
3474 Unfortunately we have to find it now to decide. */
3475
3476 while (t > text)
3477 if (isalnum (t[-1]) || t[-1] == '_' ||
3478 t[-1] == ' ' || t[-1] == ':' ||
3479 t[-1] == '(' || t[-1] == ')')
3480 --t;
3481 else
3482 break;
3483
3484 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3485 p = t - 2; /* method name detected */
3486 /* else we leave with p unchanged */
3487 }
3488 }
3489 break;
3490 }
3491 }
3492 return p;
3493 }
3494
3495 static void
3496 completion_list_add_fields (struct symbol *sym, char *sym_text,
3497 int sym_text_len, char *text, char *word)
3498 {
3499 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3500 {
3501 struct type *t = SYMBOL_TYPE (sym);
3502 enum type_code c = TYPE_CODE (t);
3503 int j;
3504
3505 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3506 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3507 if (TYPE_FIELD_NAME (t, j))
3508 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3509 sym_text, sym_text_len, text, word);
3510 }
3511 }
3512
3513 /* Type of the user_data argument passed to add_macro_name or
3514 add_partial_symbol_name. The contents are simply whatever is
3515 needed by completion_list_add_name. */
3516 struct add_name_data
3517 {
3518 char *sym_text;
3519 int sym_text_len;
3520 char *text;
3521 char *word;
3522 };
3523
3524 /* A callback used with macro_for_each and macro_for_each_in_scope.
3525 This adds a macro's name to the current completion list. */
3526 static void
3527 add_macro_name (const char *name, const struct macro_definition *ignore,
3528 void *user_data)
3529 {
3530 struct add_name_data *datum = (struct add_name_data *) user_data;
3531 completion_list_add_name ((char *) name,
3532 datum->sym_text, datum->sym_text_len,
3533 datum->text, datum->word);
3534 }
3535
3536 /* A callback for map_partial_symbol_names. */
3537 static void
3538 add_partial_symbol_name (const char *name, void *user_data)
3539 {
3540 struct add_name_data *datum = (struct add_name_data *) user_data;
3541 completion_list_add_name ((char *) name,
3542 datum->sym_text, datum->sym_text_len,
3543 datum->text, datum->word);
3544 }
3545
3546 char **
3547 default_make_symbol_completion_list (char *text, char *word)
3548 {
3549 /* Problem: All of the symbols have to be copied because readline
3550 frees them. I'm not going to worry about this; hopefully there
3551 won't be that many. */
3552
3553 struct symbol *sym;
3554 struct symtab *s;
3555 struct minimal_symbol *msymbol;
3556 struct objfile *objfile;
3557 struct block *b;
3558 const struct block *surrounding_static_block, *surrounding_global_block;
3559 struct dict_iterator iter;
3560 /* The symbol we are completing on. Points in same buffer as text. */
3561 char *sym_text;
3562 /* Length of sym_text. */
3563 int sym_text_len;
3564 struct add_name_data datum;
3565
3566 /* Now look for the symbol we are supposed to complete on. */
3567 {
3568 char *p;
3569 char quote_found;
3570 char *quote_pos = NULL;
3571
3572 /* First see if this is a quoted string. */
3573 quote_found = '\0';
3574 for (p = text; *p != '\0'; ++p)
3575 {
3576 if (quote_found != '\0')
3577 {
3578 if (*p == quote_found)
3579 /* Found close quote. */
3580 quote_found = '\0';
3581 else if (*p == '\\' && p[1] == quote_found)
3582 /* A backslash followed by the quote character
3583 doesn't end the string. */
3584 ++p;
3585 }
3586 else if (*p == '\'' || *p == '"')
3587 {
3588 quote_found = *p;
3589 quote_pos = p;
3590 }
3591 }
3592 if (quote_found == '\'')
3593 /* A string within single quotes can be a symbol, so complete on it. */
3594 sym_text = quote_pos + 1;
3595 else if (quote_found == '"')
3596 /* A double-quoted string is never a symbol, nor does it make sense
3597 to complete it any other way. */
3598 {
3599 return_val = (char **) xmalloc (sizeof (char *));
3600 return_val[0] = NULL;
3601 return return_val;
3602 }
3603 else
3604 {
3605 /* It is not a quoted string. Break it based on the characters
3606 which are in symbols. */
3607 while (p > text)
3608 {
3609 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3610 || p[-1] == ':')
3611 --p;
3612 else
3613 break;
3614 }
3615 sym_text = p;
3616 }
3617 }
3618
3619 sym_text_len = strlen (sym_text);
3620
3621 return_val_size = 100;
3622 return_val_index = 0;
3623 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3624 return_val[0] = NULL;
3625
3626 datum.sym_text = sym_text;
3627 datum.sym_text_len = sym_text_len;
3628 datum.text = text;
3629 datum.word = word;
3630
3631 /* Look through the partial symtabs for all symbols which begin
3632 by matching SYM_TEXT. Add each one that you find to the list. */
3633 map_partial_symbol_names (add_partial_symbol_name, &datum);
3634
3635 /* At this point scan through the misc symbol vectors and add each
3636 symbol you find to the list. Eventually we want to ignore
3637 anything that isn't a text symbol (everything else will be
3638 handled by the psymtab code above). */
3639
3640 ALL_MSYMBOLS (objfile, msymbol)
3641 {
3642 QUIT;
3643 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3644
3645 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3646 }
3647
3648 /* Search upwards from currently selected frame (so that we can
3649 complete on local vars). Also catch fields of types defined in
3650 this places which match our text string. Only complete on types
3651 visible from current context. */
3652
3653 b = get_selected_block (0);
3654 surrounding_static_block = block_static_block (b);
3655 surrounding_global_block = block_global_block (b);
3656 if (surrounding_static_block != NULL)
3657 while (b != surrounding_static_block)
3658 {
3659 QUIT;
3660
3661 ALL_BLOCK_SYMBOLS (b, iter, sym)
3662 {
3663 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3664 word);
3665 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3666 word);
3667 }
3668
3669 /* Stop when we encounter an enclosing function. Do not stop for
3670 non-inlined functions - the locals of the enclosing function
3671 are in scope for a nested function. */
3672 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3673 break;
3674 b = BLOCK_SUPERBLOCK (b);
3675 }
3676
3677 /* Add fields from the file's types; symbols will be added below. */
3678
3679 if (surrounding_static_block != NULL)
3680 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3681 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3682
3683 if (surrounding_global_block != NULL)
3684 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3685 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3686
3687 /* Go through the symtabs and check the externs and statics for
3688 symbols which match. */
3689
3690 ALL_PRIMARY_SYMTABS (objfile, s)
3691 {
3692 QUIT;
3693 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3694 ALL_BLOCK_SYMBOLS (b, iter, sym)
3695 {
3696 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3697 }
3698 }
3699
3700 ALL_PRIMARY_SYMTABS (objfile, s)
3701 {
3702 QUIT;
3703 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3704 ALL_BLOCK_SYMBOLS (b, iter, sym)
3705 {
3706 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3707 }
3708 }
3709
3710 if (current_language->la_macro_expansion == macro_expansion_c)
3711 {
3712 struct macro_scope *scope;
3713
3714 /* Add any macros visible in the default scope. Note that this
3715 may yield the occasional wrong result, because an expression
3716 might be evaluated in a scope other than the default. For
3717 example, if the user types "break file:line if <TAB>", the
3718 resulting expression will be evaluated at "file:line" -- but
3719 at there does not seem to be a way to detect this at
3720 completion time. */
3721 scope = default_macro_scope ();
3722 if (scope)
3723 {
3724 macro_for_each_in_scope (scope->file, scope->line,
3725 add_macro_name, &datum);
3726 xfree (scope);
3727 }
3728
3729 /* User-defined macros are always visible. */
3730 macro_for_each (macro_user_macros, add_macro_name, &datum);
3731 }
3732
3733 return (return_val);
3734 }
3735
3736 /* Return a NULL terminated array of all symbols (regardless of class)
3737 which begin by matching TEXT. If the answer is no symbols, then
3738 the return value is an array which contains only a NULL pointer. */
3739
3740 char **
3741 make_symbol_completion_list (char *text, char *word)
3742 {
3743 return current_language->la_make_symbol_completion_list (text, word);
3744 }
3745
3746 /* Like make_symbol_completion_list, but suitable for use as a
3747 completion function. */
3748
3749 char **
3750 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3751 char *text, char *word)
3752 {
3753 return make_symbol_completion_list (text, word);
3754 }
3755
3756 /* Like make_symbol_completion_list, but returns a list of symbols
3757 defined in a source file FILE. */
3758
3759 char **
3760 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3761 {
3762 struct symbol *sym;
3763 struct symtab *s;
3764 struct block *b;
3765 struct dict_iterator iter;
3766 /* The symbol we are completing on. Points in same buffer as text. */
3767 char *sym_text;
3768 /* Length of sym_text. */
3769 int sym_text_len;
3770
3771 /* Now look for the symbol we are supposed to complete on.
3772 FIXME: This should be language-specific. */
3773 {
3774 char *p;
3775 char quote_found;
3776 char *quote_pos = NULL;
3777
3778 /* First see if this is a quoted string. */
3779 quote_found = '\0';
3780 for (p = text; *p != '\0'; ++p)
3781 {
3782 if (quote_found != '\0')
3783 {
3784 if (*p == quote_found)
3785 /* Found close quote. */
3786 quote_found = '\0';
3787 else if (*p == '\\' && p[1] == quote_found)
3788 /* A backslash followed by the quote character
3789 doesn't end the string. */
3790 ++p;
3791 }
3792 else if (*p == '\'' || *p == '"')
3793 {
3794 quote_found = *p;
3795 quote_pos = p;
3796 }
3797 }
3798 if (quote_found == '\'')
3799 /* A string within single quotes can be a symbol, so complete on it. */
3800 sym_text = quote_pos + 1;
3801 else if (quote_found == '"')
3802 /* A double-quoted string is never a symbol, nor does it make sense
3803 to complete it any other way. */
3804 {
3805 return_val = (char **) xmalloc (sizeof (char *));
3806 return_val[0] = NULL;
3807 return return_val;
3808 }
3809 else
3810 {
3811 /* Not a quoted string. */
3812 sym_text = language_search_unquoted_string (text, p);
3813 }
3814 }
3815
3816 sym_text_len = strlen (sym_text);
3817
3818 return_val_size = 10;
3819 return_val_index = 0;
3820 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3821 return_val[0] = NULL;
3822
3823 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3824 in). */
3825 s = lookup_symtab (srcfile);
3826 if (s == NULL)
3827 {
3828 /* Maybe they typed the file with leading directories, while the
3829 symbol tables record only its basename. */
3830 const char *tail = lbasename (srcfile);
3831
3832 if (tail > srcfile)
3833 s = lookup_symtab (tail);
3834 }
3835
3836 /* If we have no symtab for that file, return an empty list. */
3837 if (s == NULL)
3838 return (return_val);
3839
3840 /* Go through this symtab and check the externs and statics for
3841 symbols which match. */
3842
3843 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3844 ALL_BLOCK_SYMBOLS (b, iter, sym)
3845 {
3846 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3847 }
3848
3849 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3850 ALL_BLOCK_SYMBOLS (b, iter, sym)
3851 {
3852 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3853 }
3854
3855 return (return_val);
3856 }
3857
3858 /* A helper function for make_source_files_completion_list. It adds
3859 another file name to a list of possible completions, growing the
3860 list as necessary. */
3861
3862 static void
3863 add_filename_to_list (const char *fname, char *text, char *word,
3864 char ***list, int *list_used, int *list_alloced)
3865 {
3866 char *new;
3867 size_t fnlen = strlen (fname);
3868
3869 if (*list_used + 1 >= *list_alloced)
3870 {
3871 *list_alloced *= 2;
3872 *list = (char **) xrealloc ((char *) *list,
3873 *list_alloced * sizeof (char *));
3874 }
3875
3876 if (word == text)
3877 {
3878 /* Return exactly fname. */
3879 new = xmalloc (fnlen + 5);
3880 strcpy (new, fname);
3881 }
3882 else if (word > text)
3883 {
3884 /* Return some portion of fname. */
3885 new = xmalloc (fnlen + 5);
3886 strcpy (new, fname + (word - text));
3887 }
3888 else
3889 {
3890 /* Return some of TEXT plus fname. */
3891 new = xmalloc (fnlen + (text - word) + 5);
3892 strncpy (new, word, text - word);
3893 new[text - word] = '\0';
3894 strcat (new, fname);
3895 }
3896 (*list)[*list_used] = new;
3897 (*list)[++*list_used] = NULL;
3898 }
3899
3900 static int
3901 not_interesting_fname (const char *fname)
3902 {
3903 static const char *illegal_aliens[] = {
3904 "_globals_", /* inserted by coff_symtab_read */
3905 NULL
3906 };
3907 int i;
3908
3909 for (i = 0; illegal_aliens[i]; i++)
3910 {
3911 if (strcmp (fname, illegal_aliens[i]) == 0)
3912 return 1;
3913 }
3914 return 0;
3915 }
3916
3917 /* An object of this type is passed as the user_data argument to
3918 map_partial_symbol_filenames. */
3919 struct add_partial_filename_data
3920 {
3921 int *first;
3922 char *text;
3923 char *word;
3924 int text_len;
3925 char ***list;
3926 int *list_used;
3927 int *list_alloced;
3928 };
3929
3930 /* A callback for map_partial_symbol_filenames. */
3931 static void
3932 maybe_add_partial_symtab_filename (const char *fullname, const char *filename,
3933 void *user_data)
3934 {
3935 struct add_partial_filename_data *data = user_data;
3936
3937 if (not_interesting_fname (filename))
3938 return;
3939 if (!filename_seen (filename, 1, data->first)
3940 #if HAVE_DOS_BASED_FILE_SYSTEM
3941 && strncasecmp (filename, data->text, data->text_len) == 0
3942 #else
3943 && strncmp (filename, data->text, data->text_len) == 0
3944 #endif
3945 )
3946 {
3947 /* This file matches for a completion; add it to the
3948 current list of matches. */
3949 add_filename_to_list (filename, data->text, data->word,
3950 data->list, data->list_used, data->list_alloced);
3951 }
3952 else
3953 {
3954 const char *base_name = lbasename (filename);
3955 if (base_name != filename
3956 && !filename_seen (base_name, 1, data->first)
3957 #if HAVE_DOS_BASED_FILE_SYSTEM
3958 && strncasecmp (base_name, data->text, data->text_len) == 0
3959 #else
3960 && strncmp (base_name, data->text, data->text_len) == 0
3961 #endif
3962 )
3963 add_filename_to_list (base_name, data->text, data->word,
3964 data->list, data->list_used, data->list_alloced);
3965 }
3966 }
3967
3968 /* Return a NULL terminated array of all source files whose names
3969 begin with matching TEXT. The file names are looked up in the
3970 symbol tables of this program. If the answer is no matchess, then
3971 the return value is an array which contains only a NULL pointer. */
3972
3973 char **
3974 make_source_files_completion_list (char *text, char *word)
3975 {
3976 struct symtab *s;
3977 struct objfile *objfile;
3978 int first = 1;
3979 int list_alloced = 1;
3980 int list_used = 0;
3981 size_t text_len = strlen (text);
3982 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
3983 const char *base_name;
3984 struct add_partial_filename_data datum;
3985
3986 list[0] = NULL;
3987
3988 if (!have_full_symbols () && !have_partial_symbols ())
3989 return list;
3990
3991 ALL_SYMTABS (objfile, s)
3992 {
3993 if (not_interesting_fname (s->filename))
3994 continue;
3995 if (!filename_seen (s->filename, 1, &first)
3996 #if HAVE_DOS_BASED_FILE_SYSTEM
3997 && strncasecmp (s->filename, text, text_len) == 0
3998 #else
3999 && strncmp (s->filename, text, text_len) == 0
4000 #endif
4001 )
4002 {
4003 /* This file matches for a completion; add it to the current
4004 list of matches. */
4005 add_filename_to_list (s->filename, text, word,
4006 &list, &list_used, &list_alloced);
4007 }
4008 else
4009 {
4010 /* NOTE: We allow the user to type a base name when the
4011 debug info records leading directories, but not the other
4012 way around. This is what subroutines of breakpoint
4013 command do when they parse file names. */
4014 base_name = lbasename (s->filename);
4015 if (base_name != s->filename
4016 && !filename_seen (base_name, 1, &first)
4017 #if HAVE_DOS_BASED_FILE_SYSTEM
4018 && strncasecmp (base_name, text, text_len) == 0
4019 #else
4020 && strncmp (base_name, text, text_len) == 0
4021 #endif
4022 )
4023 add_filename_to_list (base_name, text, word,
4024 &list, &list_used, &list_alloced);
4025 }
4026 }
4027
4028 datum.first = &first;
4029 datum.text = text;
4030 datum.word = word;
4031 datum.text_len = text_len;
4032 datum.list = &list;
4033 datum.list_used = &list_used;
4034 datum.list_alloced = &list_alloced;
4035 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4036
4037 return list;
4038 }
4039
4040 /* Determine if PC is in the prologue of a function. The prologue is the area
4041 between the first instruction of a function, and the first executable line.
4042 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4043
4044 If non-zero, func_start is where we think the prologue starts, possibly
4045 by previous examination of symbol table information.
4046 */
4047
4048 int
4049 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4050 {
4051 struct symtab_and_line sal;
4052 CORE_ADDR func_addr, func_end;
4053
4054 /* We have several sources of information we can consult to figure
4055 this out.
4056 - Compilers usually emit line number info that marks the prologue
4057 as its own "source line". So the ending address of that "line"
4058 is the end of the prologue. If available, this is the most
4059 reliable method.
4060 - The minimal symbols and partial symbols, which can usually tell
4061 us the starting and ending addresses of a function.
4062 - If we know the function's start address, we can call the
4063 architecture-defined gdbarch_skip_prologue function to analyze the
4064 instruction stream and guess where the prologue ends.
4065 - Our `func_start' argument; if non-zero, this is the caller's
4066 best guess as to the function's entry point. At the time of
4067 this writing, handle_inferior_event doesn't get this right, so
4068 it should be our last resort. */
4069
4070 /* Consult the partial symbol table, to find which function
4071 the PC is in. */
4072 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4073 {
4074 CORE_ADDR prologue_end;
4075
4076 /* We don't even have minsym information, so fall back to using
4077 func_start, if given. */
4078 if (! func_start)
4079 return 1; /* We *might* be in a prologue. */
4080
4081 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4082
4083 return func_start <= pc && pc < prologue_end;
4084 }
4085
4086 /* If we have line number information for the function, that's
4087 usually pretty reliable. */
4088 sal = find_pc_line (func_addr, 0);
4089
4090 /* Now sal describes the source line at the function's entry point,
4091 which (by convention) is the prologue. The end of that "line",
4092 sal.end, is the end of the prologue.
4093
4094 Note that, for functions whose source code is all on a single
4095 line, the line number information doesn't always end up this way.
4096 So we must verify that our purported end-of-prologue address is
4097 *within* the function, not at its start or end. */
4098 if (sal.line == 0
4099 || sal.end <= func_addr
4100 || func_end <= sal.end)
4101 {
4102 /* We don't have any good line number info, so use the minsym
4103 information, together with the architecture-specific prologue
4104 scanning code. */
4105 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4106
4107 return func_addr <= pc && pc < prologue_end;
4108 }
4109
4110 /* We have line number info, and it looks good. */
4111 return func_addr <= pc && pc < sal.end;
4112 }
4113
4114 /* Given PC at the function's start address, attempt to find the
4115 prologue end using SAL information. Return zero if the skip fails.
4116
4117 A non-optimized prologue traditionally has one SAL for the function
4118 and a second for the function body. A single line function has
4119 them both pointing at the same line.
4120
4121 An optimized prologue is similar but the prologue may contain
4122 instructions (SALs) from the instruction body. Need to skip those
4123 while not getting into the function body.
4124
4125 The functions end point and an increasing SAL line are used as
4126 indicators of the prologue's endpoint.
4127
4128 This code is based on the function refine_prologue_limit (versions
4129 found in both ia64 and ppc). */
4130
4131 CORE_ADDR
4132 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4133 {
4134 struct symtab_and_line prologue_sal;
4135 CORE_ADDR start_pc;
4136 CORE_ADDR end_pc;
4137 struct block *bl;
4138
4139 /* Get an initial range for the function. */
4140 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4141 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4142
4143 prologue_sal = find_pc_line (start_pc, 0);
4144 if (prologue_sal.line != 0)
4145 {
4146 /* For langauges other than assembly, treat two consecutive line
4147 entries at the same address as a zero-instruction prologue.
4148 The GNU assembler emits separate line notes for each instruction
4149 in a multi-instruction macro, but compilers generally will not
4150 do this. */
4151 if (prologue_sal.symtab->language != language_asm)
4152 {
4153 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4154 int exact;
4155 int idx = 0;
4156
4157 /* Skip any earlier lines, and any end-of-sequence marker
4158 from a previous function. */
4159 while (linetable->item[idx].pc != prologue_sal.pc
4160 || linetable->item[idx].line == 0)
4161 idx++;
4162
4163 if (idx+1 < linetable->nitems
4164 && linetable->item[idx+1].line != 0
4165 && linetable->item[idx+1].pc == start_pc)
4166 return start_pc;
4167 }
4168
4169 /* If there is only one sal that covers the entire function,
4170 then it is probably a single line function, like
4171 "foo(){}". */
4172 if (prologue_sal.end >= end_pc)
4173 return 0;
4174
4175 while (prologue_sal.end < end_pc)
4176 {
4177 struct symtab_and_line sal;
4178
4179 sal = find_pc_line (prologue_sal.end, 0);
4180 if (sal.line == 0)
4181 break;
4182 /* Assume that a consecutive SAL for the same (or larger)
4183 line mark the prologue -> body transition. */
4184 if (sal.line >= prologue_sal.line)
4185 break;
4186
4187 /* The line number is smaller. Check that it's from the
4188 same function, not something inlined. If it's inlined,
4189 then there is no point comparing the line numbers. */
4190 bl = block_for_pc (prologue_sal.end);
4191 while (bl)
4192 {
4193 if (block_inlined_p (bl))
4194 break;
4195 if (BLOCK_FUNCTION (bl))
4196 {
4197 bl = NULL;
4198 break;
4199 }
4200 bl = BLOCK_SUPERBLOCK (bl);
4201 }
4202 if (bl != NULL)
4203 break;
4204
4205 /* The case in which compiler's optimizer/scheduler has
4206 moved instructions into the prologue. We look ahead in
4207 the function looking for address ranges whose
4208 corresponding line number is less the first one that we
4209 found for the function. This is more conservative then
4210 refine_prologue_limit which scans a large number of SALs
4211 looking for any in the prologue */
4212 prologue_sal = sal;
4213 }
4214 }
4215
4216 if (prologue_sal.end < end_pc)
4217 /* Return the end of this line, or zero if we could not find a
4218 line. */
4219 return prologue_sal.end;
4220 else
4221 /* Don't return END_PC, which is past the end of the function. */
4222 return prologue_sal.pc;
4223 }
4224 \f
4225 struct symtabs_and_lines
4226 decode_line_spec (char *string, int funfirstline)
4227 {
4228 struct symtabs_and_lines sals;
4229 struct symtab_and_line cursal;
4230
4231 if (string == 0)
4232 error (_("Empty line specification."));
4233
4234 /* We use whatever is set as the current source line. We do not try
4235 and get a default or it will recursively call us! */
4236 cursal = get_current_source_symtab_and_line ();
4237
4238 sals = decode_line_1 (&string, funfirstline,
4239 cursal.symtab, cursal.line,
4240 (char ***) NULL, NULL);
4241
4242 if (*string)
4243 error (_("Junk at end of line specification: %s"), string);
4244 return sals;
4245 }
4246
4247 /* Track MAIN */
4248 static char *name_of_main;
4249
4250 void
4251 set_main_name (const char *name)
4252 {
4253 if (name_of_main != NULL)
4254 {
4255 xfree (name_of_main);
4256 name_of_main = NULL;
4257 }
4258 if (name != NULL)
4259 {
4260 name_of_main = xstrdup (name);
4261 }
4262 }
4263
4264 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4265 accordingly. */
4266
4267 static void
4268 find_main_name (void)
4269 {
4270 const char *new_main_name;
4271
4272 /* Try to see if the main procedure is in Ada. */
4273 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4274 be to add a new method in the language vector, and call this
4275 method for each language until one of them returns a non-empty
4276 name. This would allow us to remove this hard-coded call to
4277 an Ada function. It is not clear that this is a better approach
4278 at this point, because all methods need to be written in a way
4279 such that false positives never be returned. For instance, it is
4280 important that a method does not return a wrong name for the main
4281 procedure if the main procedure is actually written in a different
4282 language. It is easy to guaranty this with Ada, since we use a
4283 special symbol generated only when the main in Ada to find the name
4284 of the main procedure. It is difficult however to see how this can
4285 be guarantied for languages such as C, for instance. This suggests
4286 that order of call for these methods becomes important, which means
4287 a more complicated approach. */
4288 new_main_name = ada_main_name ();
4289 if (new_main_name != NULL)
4290 {
4291 set_main_name (new_main_name);
4292 return;
4293 }
4294
4295 new_main_name = pascal_main_name ();
4296 if (new_main_name != NULL)
4297 {
4298 set_main_name (new_main_name);
4299 return;
4300 }
4301
4302 /* The languages above didn't identify the name of the main procedure.
4303 Fallback to "main". */
4304 set_main_name ("main");
4305 }
4306
4307 char *
4308 main_name (void)
4309 {
4310 if (name_of_main == NULL)
4311 find_main_name ();
4312
4313 return name_of_main;
4314 }
4315
4316 /* Handle ``executable_changed'' events for the symtab module. */
4317
4318 static void
4319 symtab_observer_executable_changed (void)
4320 {
4321 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4322 set_main_name (NULL);
4323 }
4324
4325 /* Helper to expand_line_sal below. Appends new sal to SAL,
4326 initializing it from SYMTAB, LINENO and PC. */
4327 static void
4328 append_expanded_sal (struct symtabs_and_lines *sal,
4329 struct program_space *pspace,
4330 struct symtab *symtab,
4331 int lineno, CORE_ADDR pc)
4332 {
4333 sal->sals = xrealloc (sal->sals,
4334 sizeof (sal->sals[0])
4335 * (sal->nelts + 1));
4336 init_sal (sal->sals + sal->nelts);
4337 sal->sals[sal->nelts].pspace = pspace;
4338 sal->sals[sal->nelts].symtab = symtab;
4339 sal->sals[sal->nelts].section = NULL;
4340 sal->sals[sal->nelts].end = 0;
4341 sal->sals[sal->nelts].line = lineno;
4342 sal->sals[sal->nelts].pc = pc;
4343 ++sal->nelts;
4344 }
4345
4346 /* Helper to expand_line_sal below. Search in the symtabs for any
4347 linetable entry that exactly matches FULLNAME and LINENO and append
4348 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4349 use FILENAME and LINENO instead. If there is at least one match,
4350 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4351 and BEST_SYMTAB. */
4352
4353 static int
4354 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4355 struct symtabs_and_lines *ret,
4356 struct linetable_entry **best_item,
4357 struct symtab **best_symtab)
4358 {
4359 struct program_space *pspace;
4360 struct objfile *objfile;
4361 struct symtab *symtab;
4362 int exact = 0;
4363 int j;
4364 *best_item = 0;
4365 *best_symtab = 0;
4366
4367 ALL_PSPACES (pspace)
4368 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4369 {
4370 if (FILENAME_CMP (filename, symtab->filename) == 0)
4371 {
4372 struct linetable *l;
4373 int len;
4374 if (fullname != NULL
4375 && symtab_to_fullname (symtab) != NULL
4376 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4377 continue;
4378 l = LINETABLE (symtab);
4379 if (!l)
4380 continue;
4381 len = l->nitems;
4382
4383 for (j = 0; j < len; j++)
4384 {
4385 struct linetable_entry *item = &(l->item[j]);
4386
4387 if (item->line == lineno)
4388 {
4389 exact = 1;
4390 append_expanded_sal (ret, objfile->pspace,
4391 symtab, lineno, item->pc);
4392 }
4393 else if (!exact && item->line > lineno
4394 && (*best_item == NULL
4395 || item->line < (*best_item)->line))
4396 {
4397 *best_item = item;
4398 *best_symtab = symtab;
4399 }
4400 }
4401 }
4402 }
4403 return exact;
4404 }
4405
4406 /* Compute a set of all sals in all program spaces that correspond to
4407 same file and line as SAL and return those. If there are several
4408 sals that belong to the same block, only one sal for the block is
4409 included in results. */
4410
4411 struct symtabs_and_lines
4412 expand_line_sal (struct symtab_and_line sal)
4413 {
4414 struct symtabs_and_lines ret, this_line;
4415 int i, j;
4416 struct objfile *objfile;
4417 struct partial_symtab *psymtab;
4418 struct symtab *symtab;
4419 int lineno;
4420 int deleted = 0;
4421 struct block **blocks = NULL;
4422 int *filter;
4423 struct cleanup *old_chain;
4424
4425 ret.nelts = 0;
4426 ret.sals = NULL;
4427
4428 /* Only expand sals that represent file.c:line. */
4429 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4430 {
4431 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4432 ret.sals[0] = sal;
4433 ret.nelts = 1;
4434 return ret;
4435 }
4436 else
4437 {
4438 struct program_space *pspace;
4439 struct linetable_entry *best_item = 0;
4440 struct symtab *best_symtab = 0;
4441 int exact = 0;
4442 char *match_filename;
4443
4444 lineno = sal.line;
4445 match_filename = sal.symtab->filename;
4446
4447 /* We need to find all symtabs for a file which name
4448 is described by sal. We cannot just directly
4449 iterate over symtabs, since a symtab might not be
4450 yet created. We also cannot iterate over psymtabs,
4451 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4452 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4453 corresponding to an included file. Therefore, we do
4454 first pass over psymtabs, reading in those with
4455 the right name. Then, we iterate over symtabs, knowing
4456 that all symtabs we're interested in are loaded. */
4457
4458 old_chain = save_current_program_space ();
4459 ALL_PSPACES (pspace)
4460 {
4461 set_current_program_space (pspace);
4462 ALL_PSPACE_OBJFILES (pspace, objfile)
4463 {
4464 if (objfile->sf)
4465 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4466 sal.symtab->filename);
4467 }
4468 }
4469 do_cleanups (old_chain);
4470
4471 /* Now search the symtab for exact matches and append them. If
4472 none is found, append the best_item and all its exact
4473 matches. */
4474 symtab_to_fullname (sal.symtab);
4475 exact = append_exact_match_to_sals (sal.symtab->filename,
4476 sal.symtab->fullname, lineno,
4477 &ret, &best_item, &best_symtab);
4478 if (!exact && best_item)
4479 append_exact_match_to_sals (best_symtab->filename,
4480 best_symtab->fullname, best_item->line,
4481 &ret, &best_item, &best_symtab);
4482 }
4483
4484 /* For optimized code, compiler can scatter one source line accross
4485 disjoint ranges of PC values, even when no duplicate functions
4486 or inline functions are involved. For example, 'for (;;)' inside
4487 non-template non-inline non-ctor-or-dtor function can result
4488 in two PC ranges. In this case, we don't want to set breakpoint
4489 on first PC of each range. To filter such cases, we use containing
4490 blocks -- for each PC found above we see if there are other PCs
4491 that are in the same block. If yes, the other PCs are filtered out. */
4492
4493 old_chain = save_current_program_space ();
4494 filter = alloca (ret.nelts * sizeof (int));
4495 blocks = alloca (ret.nelts * sizeof (struct block *));
4496 for (i = 0; i < ret.nelts; ++i)
4497 {
4498 struct blockvector *bl;
4499 struct block *b;
4500
4501 set_current_program_space (ret.sals[i].pspace);
4502
4503 filter[i] = 1;
4504 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4505
4506 }
4507 do_cleanups (old_chain);
4508
4509 for (i = 0; i < ret.nelts; ++i)
4510 if (blocks[i] != NULL)
4511 for (j = i+1; j < ret.nelts; ++j)
4512 if (blocks[j] == blocks[i])
4513 {
4514 filter[j] = 0;
4515 ++deleted;
4516 break;
4517 }
4518
4519 {
4520 struct symtab_and_line *final =
4521 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4522
4523 for (i = 0, j = 0; i < ret.nelts; ++i)
4524 if (filter[i])
4525 final[j++] = ret.sals[i];
4526
4527 ret.nelts -= deleted;
4528 xfree (ret.sals);
4529 ret.sals = final;
4530 }
4531
4532 return ret;
4533 }
4534
4535 /* Return 1 if the supplied producer string matches the ARM RealView
4536 compiler (armcc). */
4537
4538 int
4539 producer_is_realview (const char *producer)
4540 {
4541 static const char *const arm_idents[] = {
4542 "ARM C Compiler, ADS",
4543 "Thumb C Compiler, ADS",
4544 "ARM C++ Compiler, ADS",
4545 "Thumb C++ Compiler, ADS",
4546 "ARM/Thumb C/C++ Compiler, RVCT",
4547 "ARM C/C++ Compiler, RVCT"
4548 };
4549 int i;
4550
4551 if (producer == NULL)
4552 return 0;
4553
4554 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4555 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4556 return 1;
4557
4558 return 0;
4559 }
4560
4561 void
4562 _initialize_symtab (void)
4563 {
4564 add_info ("variables", variables_info, _("\
4565 All global and static variable names, or those matching REGEXP."));
4566 if (dbx_commands)
4567 add_com ("whereis", class_info, variables_info, _("\
4568 All global and static variable names, or those matching REGEXP."));
4569
4570 add_info ("functions", functions_info,
4571 _("All function names, or those matching REGEXP."));
4572
4573 /* FIXME: This command has at least the following problems:
4574 1. It prints builtin types (in a very strange and confusing fashion).
4575 2. It doesn't print right, e.g. with
4576 typedef struct foo *FOO
4577 type_print prints "FOO" when we want to make it (in this situation)
4578 print "struct foo *".
4579 I also think "ptype" or "whatis" is more likely to be useful (but if
4580 there is much disagreement "info types" can be fixed). */
4581 add_info ("types", types_info,
4582 _("All type names, or those matching REGEXP."));
4583
4584 add_info ("sources", sources_info,
4585 _("Source files in the program."));
4586
4587 add_com ("rbreak", class_breakpoint, rbreak_command,
4588 _("Set a breakpoint for all functions matching REGEXP."));
4589
4590 if (xdb_commands)
4591 {
4592 add_com ("lf", class_info, sources_info,
4593 _("Source files in the program"));
4594 add_com ("lg", class_info, variables_info, _("\
4595 All global and static variable names, or those matching REGEXP."));
4596 }
4597
4598 add_setshow_enum_cmd ("multiple-symbols", no_class,
4599 multiple_symbols_modes, &multiple_symbols_mode,
4600 _("\
4601 Set the debugger behavior when more than one symbol are possible matches\n\
4602 in an expression."), _("\
4603 Show how the debugger handles ambiguities in expressions."), _("\
4604 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4605 NULL, NULL, &setlist, &showlist);
4606
4607 observer_attach_executable_changed (symtab_observer_executable_changed);
4608 }
This page took 0.182303 seconds and 5 git commands to generate.