* symtab.c: (multiple_symbols_modes, multiple_symbols_ask)
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "ada-lang.h"
43 #include "p-lang.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_stat.h"
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "observer.h"
58 #include "gdb_assert.h"
59 #include "solist.h"
60
61 /* Prototypes for local functions */
62
63 static void completion_list_add_name (char *, char *, int, char *, char *);
64
65 static void rbreak_command (char *, int);
66
67 static void types_info (char *, int);
68
69 static void functions_info (char *, int);
70
71 static void variables_info (char *, int);
72
73 static void sources_info (char *, int);
74
75 static void output_source_filename (const char *, int *);
76
77 static int find_line_common (struct linetable *, int, int *);
78
79 /* This one is used by linespec.c */
80
81 char *operator_chars (char *p, char **end);
82
83 static struct symbol *lookup_symbol_aux (const char *name,
84 const char *linkage_name,
85 const struct block *block,
86 const domain_enum domain,
87 enum language language,
88 int *is_a_field_of_this,
89 struct symtab **symtab);
90
91 static
92 struct symbol *lookup_symbol_aux_local (const char *name,
93 const char *linkage_name,
94 const struct block *block,
95 const domain_enum domain,
96 struct symtab **symtab);
97
98 static
99 struct symbol *lookup_symbol_aux_symtabs (int block_index,
100 const char *name,
101 const char *linkage_name,
102 const domain_enum domain,
103 struct symtab **symtab);
104
105 static
106 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
107 const char *name,
108 const char *linkage_name,
109 const domain_enum domain,
110 struct symtab **symtab);
111
112 static void fixup_section (struct general_symbol_info *, struct objfile *);
113
114 static int file_matches (char *, char **, int);
115
116 static void print_symbol_info (domain_enum,
117 struct symtab *, struct symbol *, int, char *);
118
119 static void print_msymbol_info (struct minimal_symbol *);
120
121 static void symtab_symbol_info (char *, domain_enum, int);
122
123 void _initialize_symtab (void);
124
125 /* */
126
127 /* Allow the user to configure the debugger behavior with respect
128 to multiple-choice menus when more than one symbol matches during
129 a symbol lookup. */
130
131 const char multiple_symbols_ask[] = "ask";
132 const char multiple_symbols_all[] = "all";
133 const char multiple_symbols_cancel[] = "cancel";
134 static const char *multiple_symbols_modes[] =
135 {
136 multiple_symbols_ask,
137 multiple_symbols_all,
138 multiple_symbols_cancel,
139 NULL
140 };
141 static const char *multiple_symbols_mode = multiple_symbols_all;
142
143 /* Read-only accessor to AUTO_SELECT_MODE. */
144
145 const char *
146 multiple_symbols_select_mode (void)
147 {
148 return multiple_symbols_mode;
149 }
150
151 /* The single non-language-specific builtin type */
152 struct type *builtin_type_error;
153
154 /* Block in which the most recently searched-for symbol was found.
155 Might be better to make this a parameter to lookup_symbol and
156 value_of_this. */
157
158 const struct block *block_found;
159
160 /* Check for a symtab of a specific name; first in symtabs, then in
161 psymtabs. *If* there is no '/' in the name, a match after a '/'
162 in the symtab filename will also work. */
163
164 struct symtab *
165 lookup_symtab (const char *name)
166 {
167 struct symtab *s;
168 struct partial_symtab *ps;
169 struct objfile *objfile;
170 char *real_path = NULL;
171 char *full_path = NULL;
172
173 /* Here we are interested in canonicalizing an absolute path, not
174 absolutizing a relative path. */
175 if (IS_ABSOLUTE_PATH (name))
176 {
177 full_path = xfullpath (name);
178 make_cleanup (xfree, full_path);
179 real_path = gdb_realpath (name);
180 make_cleanup (xfree, real_path);
181 }
182
183 got_symtab:
184
185 /* First, search for an exact match */
186
187 ALL_SYMTABS (objfile, s)
188 {
189 if (FILENAME_CMP (name, s->filename) == 0)
190 {
191 return s;
192 }
193
194 /* If the user gave us an absolute path, try to find the file in
195 this symtab and use its absolute path. */
196
197 if (full_path != NULL)
198 {
199 const char *fp = symtab_to_fullname (s);
200 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
201 {
202 return s;
203 }
204 }
205
206 if (real_path != NULL)
207 {
208 char *fullname = symtab_to_fullname (s);
209 if (fullname != NULL)
210 {
211 char *rp = gdb_realpath (fullname);
212 make_cleanup (xfree, rp);
213 if (FILENAME_CMP (real_path, rp) == 0)
214 {
215 return s;
216 }
217 }
218 }
219 }
220
221 /* Now, search for a matching tail (only if name doesn't have any dirs) */
222
223 if (lbasename (name) == name)
224 ALL_SYMTABS (objfile, s)
225 {
226 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
227 return s;
228 }
229
230 /* Same search rules as above apply here, but now we look thru the
231 psymtabs. */
232
233 ps = lookup_partial_symtab (name);
234 if (!ps)
235 return (NULL);
236
237 if (ps->readin)
238 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
239 ps->filename, name);
240
241 s = PSYMTAB_TO_SYMTAB (ps);
242
243 if (s)
244 return s;
245
246 /* At this point, we have located the psymtab for this file, but
247 the conversion to a symtab has failed. This usually happens
248 when we are looking up an include file. In this case,
249 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
250 been created. So, we need to run through the symtabs again in
251 order to find the file.
252 XXX - This is a crock, and should be fixed inside of the the
253 symbol parsing routines. */
254 goto got_symtab;
255 }
256
257 /* Lookup the partial symbol table of a source file named NAME.
258 *If* there is no '/' in the name, a match after a '/'
259 in the psymtab filename will also work. */
260
261 struct partial_symtab *
262 lookup_partial_symtab (const char *name)
263 {
264 struct partial_symtab *pst;
265 struct objfile *objfile;
266 char *full_path = NULL;
267 char *real_path = NULL;
268
269 /* Here we are interested in canonicalizing an absolute path, not
270 absolutizing a relative path. */
271 if (IS_ABSOLUTE_PATH (name))
272 {
273 full_path = xfullpath (name);
274 make_cleanup (xfree, full_path);
275 real_path = gdb_realpath (name);
276 make_cleanup (xfree, real_path);
277 }
278
279 ALL_PSYMTABS (objfile, pst)
280 {
281 if (FILENAME_CMP (name, pst->filename) == 0)
282 {
283 return (pst);
284 }
285
286 /* If the user gave us an absolute path, try to find the file in
287 this symtab and use its absolute path. */
288 if (full_path != NULL)
289 {
290 psymtab_to_fullname (pst);
291 if (pst->fullname != NULL
292 && FILENAME_CMP (full_path, pst->fullname) == 0)
293 {
294 return pst;
295 }
296 }
297
298 if (real_path != NULL)
299 {
300 char *rp = NULL;
301 psymtab_to_fullname (pst);
302 if (pst->fullname != NULL)
303 {
304 rp = gdb_realpath (pst->fullname);
305 make_cleanup (xfree, rp);
306 }
307 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
308 {
309 return pst;
310 }
311 }
312 }
313
314 /* Now, search for a matching tail (only if name doesn't have any dirs) */
315
316 if (lbasename (name) == name)
317 ALL_PSYMTABS (objfile, pst)
318 {
319 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
320 return (pst);
321 }
322
323 return (NULL);
324 }
325 \f
326 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
327 full method name, which consist of the class name (from T), the unadorned
328 method name from METHOD_ID, and the signature for the specific overload,
329 specified by SIGNATURE_ID. Note that this function is g++ specific. */
330
331 char *
332 gdb_mangle_name (struct type *type, int method_id, int signature_id)
333 {
334 int mangled_name_len;
335 char *mangled_name;
336 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
337 struct fn_field *method = &f[signature_id];
338 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
339 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
340 char *newname = type_name_no_tag (type);
341
342 /* Does the form of physname indicate that it is the full mangled name
343 of a constructor (not just the args)? */
344 int is_full_physname_constructor;
345
346 int is_constructor;
347 int is_destructor = is_destructor_name (physname);
348 /* Need a new type prefix. */
349 char *const_prefix = method->is_const ? "C" : "";
350 char *volatile_prefix = method->is_volatile ? "V" : "";
351 char buf[20];
352 int len = (newname == NULL ? 0 : strlen (newname));
353
354 /* Nothing to do if physname already contains a fully mangled v3 abi name
355 or an operator name. */
356 if ((physname[0] == '_' && physname[1] == 'Z')
357 || is_operator_name (field_name))
358 return xstrdup (physname);
359
360 is_full_physname_constructor = is_constructor_name (physname);
361
362 is_constructor =
363 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
364
365 if (!is_destructor)
366 is_destructor = (strncmp (physname, "__dt", 4) == 0);
367
368 if (is_destructor || is_full_physname_constructor)
369 {
370 mangled_name = (char *) xmalloc (strlen (physname) + 1);
371 strcpy (mangled_name, physname);
372 return mangled_name;
373 }
374
375 if (len == 0)
376 {
377 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
378 }
379 else if (physname[0] == 't' || physname[0] == 'Q')
380 {
381 /* The physname for template and qualified methods already includes
382 the class name. */
383 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
384 newname = NULL;
385 len = 0;
386 }
387 else
388 {
389 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
390 }
391 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
392 + strlen (buf) + len + strlen (physname) + 1);
393
394 {
395 mangled_name = (char *) xmalloc (mangled_name_len);
396 if (is_constructor)
397 mangled_name[0] = '\0';
398 else
399 strcpy (mangled_name, field_name);
400 }
401 strcat (mangled_name, buf);
402 /* If the class doesn't have a name, i.e. newname NULL, then we just
403 mangle it using 0 for the length of the class. Thus it gets mangled
404 as something starting with `::' rather than `classname::'. */
405 if (newname != NULL)
406 strcat (mangled_name, newname);
407
408 strcat (mangled_name, physname);
409 return (mangled_name);
410 }
411
412 \f
413 /* Initialize the language dependent portion of a symbol
414 depending upon the language for the symbol. */
415 void
416 symbol_init_language_specific (struct general_symbol_info *gsymbol,
417 enum language language)
418 {
419 gsymbol->language = language;
420 if (gsymbol->language == language_cplus
421 || gsymbol->language == language_java
422 || gsymbol->language == language_objc)
423 {
424 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
425 }
426 else
427 {
428 memset (&gsymbol->language_specific, 0,
429 sizeof (gsymbol->language_specific));
430 }
431 }
432
433 /* Functions to initialize a symbol's mangled name. */
434
435 /* Create the hash table used for demangled names. Each hash entry is
436 a pair of strings; one for the mangled name and one for the demangled
437 name. The entry is hashed via just the mangled name. */
438
439 static void
440 create_demangled_names_hash (struct objfile *objfile)
441 {
442 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
443 The hash table code will round this up to the next prime number.
444 Choosing a much larger table size wastes memory, and saves only about
445 1% in symbol reading. */
446
447 objfile->demangled_names_hash = htab_create_alloc
448 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
449 NULL, xcalloc, xfree);
450 }
451
452 /* Try to determine the demangled name for a symbol, based on the
453 language of that symbol. If the language is set to language_auto,
454 it will attempt to find any demangling algorithm that works and
455 then set the language appropriately. The returned name is allocated
456 by the demangler and should be xfree'd. */
457
458 static char *
459 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
460 const char *mangled)
461 {
462 char *demangled = NULL;
463
464 if (gsymbol->language == language_unknown)
465 gsymbol->language = language_auto;
466
467 if (gsymbol->language == language_objc
468 || gsymbol->language == language_auto)
469 {
470 demangled =
471 objc_demangle (mangled, 0);
472 if (demangled != NULL)
473 {
474 gsymbol->language = language_objc;
475 return demangled;
476 }
477 }
478 if (gsymbol->language == language_cplus
479 || gsymbol->language == language_auto)
480 {
481 demangled =
482 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
483 if (demangled != NULL)
484 {
485 gsymbol->language = language_cplus;
486 return demangled;
487 }
488 }
489 if (gsymbol->language == language_java)
490 {
491 demangled =
492 cplus_demangle (mangled,
493 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
494 if (demangled != NULL)
495 {
496 gsymbol->language = language_java;
497 return demangled;
498 }
499 }
500 return NULL;
501 }
502
503 /* Set both the mangled and demangled (if any) names for GSYMBOL based
504 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
505 is used, and the memory comes from that objfile's objfile_obstack.
506 LINKAGE_NAME is copied, so the pointer can be discarded after
507 calling this function. */
508
509 /* We have to be careful when dealing with Java names: when we run
510 into a Java minimal symbol, we don't know it's a Java symbol, so it
511 gets demangled as a C++ name. This is unfortunate, but there's not
512 much we can do about it: but when demangling partial symbols and
513 regular symbols, we'd better not reuse the wrong demangled name.
514 (See PR gdb/1039.) We solve this by putting a distinctive prefix
515 on Java names when storing them in the hash table. */
516
517 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
518 don't mind the Java prefix so much: different languages have
519 different demangling requirements, so it's only natural that we
520 need to keep language data around in our demangling cache. But
521 it's not good that the minimal symbol has the wrong demangled name.
522 Unfortunately, I can't think of any easy solution to that
523 problem. */
524
525 #define JAVA_PREFIX "##JAVA$$"
526 #define JAVA_PREFIX_LEN 8
527
528 void
529 symbol_set_names (struct general_symbol_info *gsymbol,
530 const char *linkage_name, int len, struct objfile *objfile)
531 {
532 char **slot;
533 /* A 0-terminated copy of the linkage name. */
534 const char *linkage_name_copy;
535 /* A copy of the linkage name that might have a special Java prefix
536 added to it, for use when looking names up in the hash table. */
537 const char *lookup_name;
538 /* The length of lookup_name. */
539 int lookup_len;
540
541 if (objfile->demangled_names_hash == NULL)
542 create_demangled_names_hash (objfile);
543
544 if (gsymbol->language == language_ada)
545 {
546 /* In Ada, we do the symbol lookups using the mangled name, so
547 we can save some space by not storing the demangled name.
548
549 As a side note, we have also observed some overlap between
550 the C++ mangling and Ada mangling, similarly to what has
551 been observed with Java. Because we don't store the demangled
552 name with the symbol, we don't need to use the same trick
553 as Java. */
554 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
555 memcpy (gsymbol->name, linkage_name, len);
556 gsymbol->name[len] = '\0';
557 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
558
559 return;
560 }
561
562 /* The stabs reader generally provides names that are not
563 NUL-terminated; most of the other readers don't do this, so we
564 can just use the given copy, unless we're in the Java case. */
565 if (gsymbol->language == language_java)
566 {
567 char *alloc_name;
568 lookup_len = len + JAVA_PREFIX_LEN;
569
570 alloc_name = alloca (lookup_len + 1);
571 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
572 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
573 alloc_name[lookup_len] = '\0';
574
575 lookup_name = alloc_name;
576 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
577 }
578 else if (linkage_name[len] != '\0')
579 {
580 char *alloc_name;
581 lookup_len = len;
582
583 alloc_name = alloca (lookup_len + 1);
584 memcpy (alloc_name, linkage_name, len);
585 alloc_name[lookup_len] = '\0';
586
587 lookup_name = alloc_name;
588 linkage_name_copy = alloc_name;
589 }
590 else
591 {
592 lookup_len = len;
593 lookup_name = linkage_name;
594 linkage_name_copy = linkage_name;
595 }
596
597 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
598 lookup_name, INSERT);
599
600 /* If this name is not in the hash table, add it. */
601 if (*slot == NULL)
602 {
603 char *demangled_name = symbol_find_demangled_name (gsymbol,
604 linkage_name_copy);
605 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
606
607 /* If there is a demangled name, place it right after the mangled name.
608 Otherwise, just place a second zero byte after the end of the mangled
609 name. */
610 *slot = obstack_alloc (&objfile->objfile_obstack,
611 lookup_len + demangled_len + 2);
612 memcpy (*slot, lookup_name, lookup_len + 1);
613 if (demangled_name != NULL)
614 {
615 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
616 xfree (demangled_name);
617 }
618 else
619 (*slot)[lookup_len + 1] = '\0';
620 }
621
622 gsymbol->name = *slot + lookup_len - len;
623 if ((*slot)[lookup_len + 1] != '\0')
624 gsymbol->language_specific.cplus_specific.demangled_name
625 = &(*slot)[lookup_len + 1];
626 else
627 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
628 }
629
630 /* Initialize the demangled name of GSYMBOL if possible. Any required space
631 to store the name is obtained from the specified obstack. The function
632 symbol_set_names, above, should be used instead where possible for more
633 efficient memory usage. */
634
635 void
636 symbol_init_demangled_name (struct general_symbol_info *gsymbol,
637 struct obstack *obstack)
638 {
639 char *mangled = gsymbol->name;
640 char *demangled = NULL;
641
642 demangled = symbol_find_demangled_name (gsymbol, mangled);
643 if (gsymbol->language == language_cplus
644 || gsymbol->language == language_java
645 || gsymbol->language == language_objc)
646 {
647 if (demangled)
648 {
649 gsymbol->language_specific.cplus_specific.demangled_name
650 = obsavestring (demangled, strlen (demangled), obstack);
651 xfree (demangled);
652 }
653 else
654 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
655 }
656 else
657 {
658 /* Unknown language; just clean up quietly. */
659 if (demangled)
660 xfree (demangled);
661 }
662 }
663
664 /* Return the source code name of a symbol. In languages where
665 demangling is necessary, this is the demangled name. */
666
667 char *
668 symbol_natural_name (const struct general_symbol_info *gsymbol)
669 {
670 switch (gsymbol->language)
671 {
672 case language_cplus:
673 case language_java:
674 case language_objc:
675 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
676 return gsymbol->language_specific.cplus_specific.demangled_name;
677 break;
678 case language_ada:
679 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
680 return gsymbol->language_specific.cplus_specific.demangled_name;
681 else
682 return ada_decode_symbol (gsymbol);
683 break;
684 default:
685 break;
686 }
687 return gsymbol->name;
688 }
689
690 /* Return the demangled name for a symbol based on the language for
691 that symbol. If no demangled name exists, return NULL. */
692 char *
693 symbol_demangled_name (struct general_symbol_info *gsymbol)
694 {
695 switch (gsymbol->language)
696 {
697 case language_cplus:
698 case language_java:
699 case language_objc:
700 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
701 return gsymbol->language_specific.cplus_specific.demangled_name;
702 break;
703 case language_ada:
704 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
705 return gsymbol->language_specific.cplus_specific.demangled_name;
706 else
707 return ada_decode_symbol (gsymbol);
708 break;
709 default:
710 break;
711 }
712 return NULL;
713 }
714
715 /* Return the search name of a symbol---generally the demangled or
716 linkage name of the symbol, depending on how it will be searched for.
717 If there is no distinct demangled name, then returns the same value
718 (same pointer) as SYMBOL_LINKAGE_NAME. */
719 char *
720 symbol_search_name (const struct general_symbol_info *gsymbol)
721 {
722 if (gsymbol->language == language_ada)
723 return gsymbol->name;
724 else
725 return symbol_natural_name (gsymbol);
726 }
727
728 /* Initialize the structure fields to zero values. */
729 void
730 init_sal (struct symtab_and_line *sal)
731 {
732 sal->symtab = 0;
733 sal->section = 0;
734 sal->line = 0;
735 sal->pc = 0;
736 sal->end = 0;
737 sal->explicit_pc = 0;
738 sal->explicit_line = 0;
739 }
740 \f
741
742 /* Return 1 if the two sections are the same, or if they could
743 plausibly be copies of each other, one in an original object
744 file and another in a separated debug file. */
745
746 int
747 matching_bfd_sections (asection *first, asection *second)
748 {
749 struct objfile *obj;
750
751 /* If they're the same section, then they match. */
752 if (first == second)
753 return 1;
754
755 /* If either is NULL, give up. */
756 if (first == NULL || second == NULL)
757 return 0;
758
759 /* This doesn't apply to absolute symbols. */
760 if (first->owner == NULL || second->owner == NULL)
761 return 0;
762
763 /* If they're in the same object file, they must be different sections. */
764 if (first->owner == second->owner)
765 return 0;
766
767 /* Check whether the two sections are potentially corresponding. They must
768 have the same size, address, and name. We can't compare section indexes,
769 which would be more reliable, because some sections may have been
770 stripped. */
771 if (bfd_get_section_size (first) != bfd_get_section_size (second))
772 return 0;
773
774 /* In-memory addresses may start at a different offset, relativize them. */
775 if (bfd_get_section_vma (first->owner, first)
776 - bfd_get_start_address (first->owner)
777 != bfd_get_section_vma (second->owner, second)
778 - bfd_get_start_address (second->owner))
779 return 0;
780
781 if (bfd_get_section_name (first->owner, first) == NULL
782 || bfd_get_section_name (second->owner, second) == NULL
783 || strcmp (bfd_get_section_name (first->owner, first),
784 bfd_get_section_name (second->owner, second)) != 0)
785 return 0;
786
787 /* Otherwise check that they are in corresponding objfiles. */
788
789 ALL_OBJFILES (obj)
790 if (obj->obfd == first->owner)
791 break;
792 gdb_assert (obj != NULL);
793
794 if (obj->separate_debug_objfile != NULL
795 && obj->separate_debug_objfile->obfd == second->owner)
796 return 1;
797 if (obj->separate_debug_objfile_backlink != NULL
798 && obj->separate_debug_objfile_backlink->obfd == second->owner)
799 return 1;
800
801 return 0;
802 }
803
804 /* Find which partial symtab contains PC and SECTION. Return 0 if
805 none. We return the psymtab that contains a symbol whose address
806 exactly matches PC, or, if we cannot find an exact match, the
807 psymtab that contains a symbol whose address is closest to PC. */
808 struct partial_symtab *
809 find_pc_sect_psymtab (CORE_ADDR pc, asection *section)
810 {
811 struct partial_symtab *pst;
812 struct objfile *objfile;
813 struct minimal_symbol *msymbol;
814
815 /* If we know that this is not a text address, return failure. This is
816 necessary because we loop based on texthigh and textlow, which do
817 not include the data ranges. */
818 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
819 if (msymbol
820 && (msymbol->type == mst_data
821 || msymbol->type == mst_bss
822 || msymbol->type == mst_abs
823 || msymbol->type == mst_file_data
824 || msymbol->type == mst_file_bss))
825 return NULL;
826
827 ALL_PSYMTABS (objfile, pst)
828 {
829 if (pc >= pst->textlow && pc < pst->texthigh)
830 {
831 struct partial_symtab *tpst;
832 struct partial_symtab *best_pst = pst;
833 CORE_ADDR best_addr = pst->textlow;
834
835 /* An objfile that has its functions reordered might have
836 many partial symbol tables containing the PC, but
837 we want the partial symbol table that contains the
838 function containing the PC. */
839 if (!(objfile->flags & OBJF_REORDERED) &&
840 section == 0) /* can't validate section this way */
841 return (pst);
842
843 if (msymbol == NULL)
844 return (pst);
845
846 /* The code range of partial symtabs sometimes overlap, so, in
847 the loop below, we need to check all partial symtabs and
848 find the one that fits better for the given PC address. We
849 select the partial symtab that contains a symbol whose
850 address is closest to the PC address. By closest we mean
851 that find_pc_sect_symbol returns the symbol with address
852 that is closest and still less than the given PC. */
853 for (tpst = pst; tpst != NULL; tpst = tpst->next)
854 {
855 if (pc >= tpst->textlow && pc < tpst->texthigh)
856 {
857 struct partial_symbol *p;
858 CORE_ADDR this_addr;
859
860 /* NOTE: This assumes that every psymbol has a
861 corresponding msymbol, which is not necessarily
862 true; the debug info might be much richer than the
863 object's symbol table. */
864 p = find_pc_sect_psymbol (tpst, pc, section);
865 if (p != NULL
866 && SYMBOL_VALUE_ADDRESS (p)
867 == SYMBOL_VALUE_ADDRESS (msymbol))
868 return (tpst);
869
870 /* Also accept the textlow value of a psymtab as a
871 "symbol", to provide some support for partial
872 symbol tables with line information but no debug
873 symbols (e.g. those produced by an assembler). */
874 if (p != NULL)
875 this_addr = SYMBOL_VALUE_ADDRESS (p);
876 else
877 this_addr = tpst->textlow;
878
879 /* Check whether it is closer than our current
880 BEST_ADDR. Since this symbol address is
881 necessarily lower or equal to PC, the symbol closer
882 to PC is the symbol which address is the highest.
883 This way we return the psymtab which contains such
884 best match symbol. This can help in cases where the
885 symbol information/debuginfo is not complete, like
886 for instance on IRIX6 with gcc, where no debug info
887 is emitted for statics. (See also the nodebug.exp
888 testcase.) */
889 if (this_addr > best_addr)
890 {
891 best_addr = this_addr;
892 best_pst = tpst;
893 }
894 }
895 }
896 return (best_pst);
897 }
898 }
899 return (NULL);
900 }
901
902 /* Find which partial symtab contains PC. Return 0 if none.
903 Backward compatibility, no section */
904
905 struct partial_symtab *
906 find_pc_psymtab (CORE_ADDR pc)
907 {
908 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
909 }
910
911 /* Find which partial symbol within a psymtab matches PC and SECTION.
912 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
913
914 struct partial_symbol *
915 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
916 asection *section)
917 {
918 struct partial_symbol *best = NULL, *p, **pp;
919 CORE_ADDR best_pc;
920
921 if (!psymtab)
922 psymtab = find_pc_sect_psymtab (pc, section);
923 if (!psymtab)
924 return 0;
925
926 /* Cope with programs that start at address 0 */
927 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
928
929 /* Search the global symbols as well as the static symbols, so that
930 find_pc_partial_function doesn't use a minimal symbol and thus
931 cache a bad endaddr. */
932 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
933 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
934 < psymtab->n_global_syms);
935 pp++)
936 {
937 p = *pp;
938 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
939 && SYMBOL_CLASS (p) == LOC_BLOCK
940 && pc >= SYMBOL_VALUE_ADDRESS (p)
941 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
942 || (psymtab->textlow == 0
943 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
944 {
945 if (section) /* match on a specific section */
946 {
947 fixup_psymbol_section (p, psymtab->objfile);
948 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
949 continue;
950 }
951 best_pc = SYMBOL_VALUE_ADDRESS (p);
952 best = p;
953 }
954 }
955
956 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
957 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
958 < psymtab->n_static_syms);
959 pp++)
960 {
961 p = *pp;
962 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
963 && SYMBOL_CLASS (p) == LOC_BLOCK
964 && pc >= SYMBOL_VALUE_ADDRESS (p)
965 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
966 || (psymtab->textlow == 0
967 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
968 {
969 if (section) /* match on a specific section */
970 {
971 fixup_psymbol_section (p, psymtab->objfile);
972 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
973 continue;
974 }
975 best_pc = SYMBOL_VALUE_ADDRESS (p);
976 best = p;
977 }
978 }
979
980 return best;
981 }
982
983 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
984 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
985
986 struct partial_symbol *
987 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
988 {
989 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
990 }
991 \f
992 /* Debug symbols usually don't have section information. We need to dig that
993 out of the minimal symbols and stash that in the debug symbol. */
994
995 static void
996 fixup_section (struct general_symbol_info *ginfo, struct objfile *objfile)
997 {
998 struct minimal_symbol *msym;
999 msym = lookup_minimal_symbol (ginfo->name, NULL, objfile);
1000
1001 if (msym)
1002 {
1003 ginfo->bfd_section = SYMBOL_BFD_SECTION (msym);
1004 ginfo->section = SYMBOL_SECTION (msym);
1005 }
1006 else if (objfile)
1007 {
1008 /* Static, function-local variables do appear in the linker
1009 (minimal) symbols, but are frequently given names that won't
1010 be found via lookup_minimal_symbol(). E.g., it has been
1011 observed in frv-uclinux (ELF) executables that a static,
1012 function-local variable named "foo" might appear in the
1013 linker symbols as "foo.6" or "foo.3". Thus, there is no
1014 point in attempting to extend the lookup-by-name mechanism to
1015 handle this case due to the fact that there can be multiple
1016 names.
1017
1018 So, instead, search the section table when lookup by name has
1019 failed. The ``addr'' and ``endaddr'' fields may have already
1020 been relocated. If so, the relocation offset (i.e. the
1021 ANOFFSET value) needs to be subtracted from these values when
1022 performing the comparison. We unconditionally subtract it,
1023 because, when no relocation has been performed, the ANOFFSET
1024 value will simply be zero.
1025
1026 The address of the symbol whose section we're fixing up HAS
1027 NOT BEEN adjusted (relocated) yet. It can't have been since
1028 the section isn't yet known and knowing the section is
1029 necessary in order to add the correct relocation value. In
1030 other words, we wouldn't even be in this function (attempting
1031 to compute the section) if it were already known.
1032
1033 Note that it is possible to search the minimal symbols
1034 (subtracting the relocation value if necessary) to find the
1035 matching minimal symbol, but this is overkill and much less
1036 efficient. It is not necessary to find the matching minimal
1037 symbol, only its section.
1038
1039 Note that this technique (of doing a section table search)
1040 can fail when unrelocated section addresses overlap. For
1041 this reason, we still attempt a lookup by name prior to doing
1042 a search of the section table. */
1043
1044 CORE_ADDR addr;
1045 struct obj_section *s;
1046
1047 addr = ginfo->value.address;
1048
1049 ALL_OBJFILE_OSECTIONS (objfile, s)
1050 {
1051 int idx = s->the_bfd_section->index;
1052 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1053
1054 if (s->addr - offset <= addr && addr < s->endaddr - offset)
1055 {
1056 ginfo->bfd_section = s->the_bfd_section;
1057 ginfo->section = idx;
1058 return;
1059 }
1060 }
1061 }
1062 }
1063
1064 struct symbol *
1065 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1066 {
1067 if (!sym)
1068 return NULL;
1069
1070 if (SYMBOL_BFD_SECTION (sym))
1071 return sym;
1072
1073 fixup_section (&sym->ginfo, objfile);
1074
1075 return sym;
1076 }
1077
1078 struct partial_symbol *
1079 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1080 {
1081 if (!psym)
1082 return NULL;
1083
1084 if (SYMBOL_BFD_SECTION (psym))
1085 return psym;
1086
1087 fixup_section (&psym->ginfo, objfile);
1088
1089 return psym;
1090 }
1091
1092 /* Find the definition for a specified symbol name NAME
1093 in domain DOMAIN, visible from lexical block BLOCK.
1094 Returns the struct symbol pointer, or zero if no symbol is found.
1095 If SYMTAB is non-NULL, store the symbol table in which the
1096 symbol was found there, or NULL if not found.
1097 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1098 NAME is a field of the current implied argument `this'. If so set
1099 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1100 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1101 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1102
1103 /* This function has a bunch of loops in it and it would seem to be
1104 attractive to put in some QUIT's (though I'm not really sure
1105 whether it can run long enough to be really important). But there
1106 are a few calls for which it would appear to be bad news to quit
1107 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1108 that there is C++ code below which can error(), but that probably
1109 doesn't affect these calls since they are looking for a known
1110 variable and thus can probably assume it will never hit the C++
1111 code). */
1112
1113 struct symbol *
1114 lookup_symbol_in_language (const char *name, const struct block *block,
1115 const domain_enum domain, enum language lang,
1116 int *is_a_field_of_this,
1117 struct symtab **symtab)
1118 {
1119 char *demangled_name = NULL;
1120 const char *modified_name = NULL;
1121 const char *mangled_name = NULL;
1122 int needtofreename = 0;
1123 struct symbol *returnval;
1124
1125 modified_name = name;
1126
1127 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1128 we can always binary search. */
1129 if (lang == language_cplus)
1130 {
1131 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1132 if (demangled_name)
1133 {
1134 mangled_name = name;
1135 modified_name = demangled_name;
1136 needtofreename = 1;
1137 }
1138 }
1139 else if (lang == language_java)
1140 {
1141 demangled_name = cplus_demangle (name,
1142 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1143 if (demangled_name)
1144 {
1145 mangled_name = name;
1146 modified_name = demangled_name;
1147 needtofreename = 1;
1148 }
1149 }
1150
1151 if (case_sensitivity == case_sensitive_off)
1152 {
1153 char *copy;
1154 int len, i;
1155
1156 len = strlen (name);
1157 copy = (char *) alloca (len + 1);
1158 for (i= 0; i < len; i++)
1159 copy[i] = tolower (name[i]);
1160 copy[len] = 0;
1161 modified_name = copy;
1162 }
1163
1164 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1165 domain, lang,
1166 is_a_field_of_this, symtab);
1167 if (needtofreename)
1168 xfree (demangled_name);
1169
1170 /* Override the returned symtab with the symbol's specific one. */
1171 if (returnval != NULL && symtab != NULL)
1172 *symtab = SYMBOL_SYMTAB (returnval);
1173
1174 return returnval;
1175 }
1176
1177 /* Behave like lookup_symbol_in_language, but performed with the
1178 current language. */
1179
1180 struct symbol *
1181 lookup_symbol (const char *name, const struct block *block,
1182 domain_enum domain, int *is_a_field_of_this,
1183 struct symtab **symtab)
1184 {
1185 return lookup_symbol_in_language (name, block, domain,
1186 current_language->la_language,
1187 is_a_field_of_this, symtab);
1188 }
1189
1190 /* Behave like lookup_symbol except that NAME is the natural name
1191 of the symbol that we're looking for and, if LINKAGE_NAME is
1192 non-NULL, ensure that the symbol's linkage name matches as
1193 well. */
1194
1195 static struct symbol *
1196 lookup_symbol_aux (const char *name, const char *linkage_name,
1197 const struct block *block, const domain_enum domain,
1198 enum language language,
1199 int *is_a_field_of_this, struct symtab **symtab)
1200 {
1201 struct symbol *sym;
1202 const struct language_defn *langdef;
1203
1204 /* Make sure we do something sensible with is_a_field_of_this, since
1205 the callers that set this parameter to some non-null value will
1206 certainly use it later and expect it to be either 0 or 1.
1207 If we don't set it, the contents of is_a_field_of_this are
1208 undefined. */
1209 if (is_a_field_of_this != NULL)
1210 *is_a_field_of_this = 0;
1211
1212 /* Search specified block and its superiors. Don't search
1213 STATIC_BLOCK or GLOBAL_BLOCK. */
1214
1215 sym = lookup_symbol_aux_local (name, linkage_name, block, domain,
1216 symtab);
1217 if (sym != NULL)
1218 return sym;
1219
1220 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1221 check to see if NAME is a field of `this'. */
1222
1223 langdef = language_def (language);
1224
1225 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1226 && block != NULL)
1227 {
1228 struct symbol *sym = NULL;
1229 /* 'this' is only defined in the function's block, so find the
1230 enclosing function block. */
1231 for (; block && !BLOCK_FUNCTION (block);
1232 block = BLOCK_SUPERBLOCK (block));
1233
1234 if (block && !dict_empty (BLOCK_DICT (block)))
1235 sym = lookup_block_symbol (block, langdef->la_name_of_this,
1236 NULL, VAR_DOMAIN);
1237 if (sym)
1238 {
1239 struct type *t = sym->type;
1240
1241 /* I'm not really sure that type of this can ever
1242 be typedefed; just be safe. */
1243 CHECK_TYPEDEF (t);
1244 if (TYPE_CODE (t) == TYPE_CODE_PTR
1245 || TYPE_CODE (t) == TYPE_CODE_REF)
1246 t = TYPE_TARGET_TYPE (t);
1247
1248 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1249 && TYPE_CODE (t) != TYPE_CODE_UNION)
1250 error (_("Internal error: `%s' is not an aggregate"),
1251 langdef->la_name_of_this);
1252
1253 if (check_field (t, name))
1254 {
1255 *is_a_field_of_this = 1;
1256 if (symtab != NULL)
1257 *symtab = NULL;
1258 return NULL;
1259 }
1260 }
1261 }
1262
1263 /* Now do whatever is appropriate for LANGUAGE to look
1264 up static and global variables. */
1265
1266 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name,
1267 block, domain, symtab);
1268 if (sym != NULL)
1269 return sym;
1270
1271 /* Now search all static file-level symbols. Not strictly correct,
1272 but more useful than an error. Do the symtabs first, then check
1273 the psymtabs. If a psymtab indicates the existence of the
1274 desired name as a file-level static, then do psymtab-to-symtab
1275 conversion on the fly and return the found symbol. */
1276
1277 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name,
1278 domain, symtab);
1279 if (sym != NULL)
1280 return sym;
1281
1282 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name,
1283 domain, symtab);
1284 if (sym != NULL)
1285 return sym;
1286
1287 if (symtab != NULL)
1288 *symtab = NULL;
1289 return NULL;
1290 }
1291
1292 /* Check to see if the symbol is defined in BLOCK or its superiors.
1293 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1294
1295 static struct symbol *
1296 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1297 const struct block *block,
1298 const domain_enum domain,
1299 struct symtab **symtab)
1300 {
1301 struct symbol *sym;
1302 const struct block *static_block = block_static_block (block);
1303
1304 /* Check if either no block is specified or it's a global block. */
1305
1306 if (static_block == NULL)
1307 return NULL;
1308
1309 while (block != static_block)
1310 {
1311 sym = lookup_symbol_aux_block (name, linkage_name, block, domain,
1312 symtab);
1313 if (sym != NULL)
1314 return sym;
1315 block = BLOCK_SUPERBLOCK (block);
1316 }
1317
1318 /* We've reached the static block without finding a result. */
1319
1320 return NULL;
1321 }
1322
1323 /* Look up OBJFILE to BLOCK. */
1324
1325 static struct objfile *
1326 lookup_objfile_from_block (const struct block *block)
1327 {
1328 struct objfile *obj;
1329 struct symtab *s;
1330
1331 if (block == NULL)
1332 return NULL;
1333
1334 block = block_global_block (block);
1335 /* Go through SYMTABS. */
1336 ALL_SYMTABS (obj, s)
1337 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1338 return obj;
1339
1340 return NULL;
1341 }
1342
1343 /* Look up a symbol in a block; if found, locate its symtab, fixup the
1344 symbol, and set block_found appropriately. */
1345
1346 struct symbol *
1347 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1348 const struct block *block,
1349 const domain_enum domain,
1350 struct symtab **symtab)
1351 {
1352 struct symbol *sym;
1353 struct objfile *objfile = NULL;
1354 struct blockvector *bv;
1355 struct block *b;
1356 struct symtab *s = NULL;
1357
1358 sym = lookup_block_symbol (block, name, linkage_name, domain);
1359 if (sym)
1360 {
1361 block_found = block;
1362 if (symtab != NULL)
1363 {
1364 /* Search the list of symtabs for one which contains the
1365 address of the start of this block. */
1366 ALL_PRIMARY_SYMTABS (objfile, s)
1367 {
1368 bv = BLOCKVECTOR (s);
1369 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1370 if (BLOCK_START (b) <= BLOCK_START (block)
1371 && BLOCK_END (b) > BLOCK_START (block))
1372 goto found;
1373 }
1374 found:
1375 *symtab = s;
1376 }
1377
1378 return fixup_symbol_section (sym, objfile);
1379 }
1380
1381 return NULL;
1382 }
1383
1384 /* Check all global symbols in OBJFILE in symtabs and
1385 psymtabs. */
1386
1387 struct symbol *
1388 lookup_global_symbol_from_objfile (const struct objfile *objfile,
1389 const char *name,
1390 const char *linkage_name,
1391 const domain_enum domain,
1392 struct symtab **symtab)
1393 {
1394 struct symbol *sym;
1395 struct blockvector *bv;
1396 const struct block *block;
1397 struct symtab *s;
1398 struct partial_symtab *ps;
1399
1400 /* Go through symtabs. */
1401 ALL_OBJFILE_SYMTABS (objfile, s)
1402 {
1403 bv = BLOCKVECTOR (s);
1404 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1405 sym = lookup_block_symbol (block, name, linkage_name, domain);
1406 if (sym)
1407 {
1408 block_found = block;
1409 if (symtab != NULL)
1410 *symtab = s;
1411 return fixup_symbol_section (sym, (struct objfile *)objfile);
1412 }
1413 }
1414
1415 /* Now go through psymtabs. */
1416 ALL_OBJFILE_PSYMTABS (objfile, ps)
1417 {
1418 if (!ps->readin
1419 && lookup_partial_symbol (ps, name, linkage_name,
1420 1, domain))
1421 {
1422 s = PSYMTAB_TO_SYMTAB (ps);
1423 bv = BLOCKVECTOR (s);
1424 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1425 sym = lookup_block_symbol (block, name, linkage_name, domain);
1426 if (symtab != NULL)
1427 *symtab = s;
1428 return fixup_symbol_section (sym, (struct objfile *)objfile);
1429 }
1430 }
1431
1432 if (objfile->separate_debug_objfile)
1433 return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile,
1434 name, linkage_name, domain,
1435 symtab);
1436
1437 return NULL;
1438 }
1439
1440 /* Check to see if the symbol is defined in one of the symtabs.
1441 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1442 depending on whether or not we want to search global symbols or
1443 static symbols. */
1444
1445 static struct symbol *
1446 lookup_symbol_aux_symtabs (int block_index,
1447 const char *name, const char *linkage_name,
1448 const domain_enum domain,
1449 struct symtab **symtab)
1450 {
1451 struct symbol *sym;
1452 struct objfile *objfile;
1453 struct blockvector *bv;
1454 const struct block *block;
1455 struct symtab *s;
1456
1457 ALL_PRIMARY_SYMTABS (objfile, s)
1458 {
1459 bv = BLOCKVECTOR (s);
1460 block = BLOCKVECTOR_BLOCK (bv, block_index);
1461 sym = lookup_block_symbol (block, name, linkage_name, domain);
1462 if (sym)
1463 {
1464 block_found = block;
1465 if (symtab != NULL)
1466 *symtab = s;
1467 return fixup_symbol_section (sym, objfile);
1468 }
1469 }
1470
1471 return NULL;
1472 }
1473
1474 /* Check to see if the symbol is defined in one of the partial
1475 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1476 STATIC_BLOCK, depending on whether or not we want to search global
1477 symbols or static symbols. */
1478
1479 static struct symbol *
1480 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1481 const char *linkage_name,
1482 const domain_enum domain,
1483 struct symtab **symtab)
1484 {
1485 struct symbol *sym;
1486 struct objfile *objfile;
1487 struct blockvector *bv;
1488 const struct block *block;
1489 struct partial_symtab *ps;
1490 struct symtab *s;
1491 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1492
1493 ALL_PSYMTABS (objfile, ps)
1494 {
1495 if (!ps->readin
1496 && lookup_partial_symbol (ps, name, linkage_name,
1497 psymtab_index, domain))
1498 {
1499 s = PSYMTAB_TO_SYMTAB (ps);
1500 bv = BLOCKVECTOR (s);
1501 block = BLOCKVECTOR_BLOCK (bv, block_index);
1502 sym = lookup_block_symbol (block, name, linkage_name, domain);
1503 if (!sym)
1504 {
1505 /* This shouldn't be necessary, but as a last resort try
1506 looking in the statics even though the psymtab claimed
1507 the symbol was global, or vice-versa. It's possible
1508 that the psymtab gets it wrong in some cases. */
1509
1510 /* FIXME: carlton/2002-09-30: Should we really do that?
1511 If that happens, isn't it likely to be a GDB error, in
1512 which case we should fix the GDB error rather than
1513 silently dealing with it here? So I'd vote for
1514 removing the check for the symbol in the other
1515 block. */
1516 block = BLOCKVECTOR_BLOCK (bv,
1517 block_index == GLOBAL_BLOCK ?
1518 STATIC_BLOCK : GLOBAL_BLOCK);
1519 sym = lookup_block_symbol (block, name, linkage_name, domain);
1520 if (!sym)
1521 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1522 block_index == GLOBAL_BLOCK ? "global" : "static",
1523 name, ps->filename, name, name);
1524 }
1525 if (symtab != NULL)
1526 *symtab = s;
1527 return fixup_symbol_section (sym, objfile);
1528 }
1529 }
1530
1531 return NULL;
1532 }
1533
1534 /* A default version of lookup_symbol_nonlocal for use by languages
1535 that can't think of anything better to do. This implements the C
1536 lookup rules. */
1537
1538 struct symbol *
1539 basic_lookup_symbol_nonlocal (const char *name,
1540 const char *linkage_name,
1541 const struct block *block,
1542 const domain_enum domain,
1543 struct symtab **symtab)
1544 {
1545 struct symbol *sym;
1546
1547 /* NOTE: carlton/2003-05-19: The comments below were written when
1548 this (or what turned into this) was part of lookup_symbol_aux;
1549 I'm much less worried about these questions now, since these
1550 decisions have turned out well, but I leave these comments here
1551 for posterity. */
1552
1553 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1554 not it would be appropriate to search the current global block
1555 here as well. (That's what this code used to do before the
1556 is_a_field_of_this check was moved up.) On the one hand, it's
1557 redundant with the lookup_symbol_aux_symtabs search that happens
1558 next. On the other hand, if decode_line_1 is passed an argument
1559 like filename:var, then the user presumably wants 'var' to be
1560 searched for in filename. On the third hand, there shouldn't be
1561 multiple global variables all of which are named 'var', and it's
1562 not like decode_line_1 has ever restricted its search to only
1563 global variables in a single filename. All in all, only
1564 searching the static block here seems best: it's correct and it's
1565 cleanest. */
1566
1567 /* NOTE: carlton/2002-12-05: There's also a possible performance
1568 issue here: if you usually search for global symbols in the
1569 current file, then it would be slightly better to search the
1570 current global block before searching all the symtabs. But there
1571 are other factors that have a much greater effect on performance
1572 than that one, so I don't think we should worry about that for
1573 now. */
1574
1575 sym = lookup_symbol_static (name, linkage_name, block, domain, symtab);
1576 if (sym != NULL)
1577 return sym;
1578
1579 return lookup_symbol_global (name, linkage_name, block, domain, symtab);
1580 }
1581
1582 /* Lookup a symbol in the static block associated to BLOCK, if there
1583 is one; do nothing if BLOCK is NULL or a global block. */
1584
1585 struct symbol *
1586 lookup_symbol_static (const char *name,
1587 const char *linkage_name,
1588 const struct block *block,
1589 const domain_enum domain,
1590 struct symtab **symtab)
1591 {
1592 const struct block *static_block = block_static_block (block);
1593
1594 if (static_block != NULL)
1595 return lookup_symbol_aux_block (name, linkage_name, static_block,
1596 domain, symtab);
1597 else
1598 return NULL;
1599 }
1600
1601 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1602 necessary). */
1603
1604 struct symbol *
1605 lookup_symbol_global (const char *name,
1606 const char *linkage_name,
1607 const struct block *block,
1608 const domain_enum domain,
1609 struct symtab **symtab)
1610 {
1611 struct symbol *sym = NULL;
1612 struct objfile *objfile = NULL;
1613
1614 /* Call library-specific lookup procedure. */
1615 objfile = lookup_objfile_from_block (block);
1616 if (objfile != NULL)
1617 sym = solib_global_lookup (objfile, name, linkage_name, domain, symtab);
1618 if (sym != NULL)
1619 return sym;
1620
1621 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name,
1622 domain, symtab);
1623 if (sym != NULL)
1624 return sym;
1625
1626 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name,
1627 domain, symtab);
1628 }
1629
1630 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1631 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1632 linkage name matches it. Check the global symbols if GLOBAL, the
1633 static symbols if not */
1634
1635 struct partial_symbol *
1636 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1637 const char *linkage_name, int global,
1638 domain_enum domain)
1639 {
1640 struct partial_symbol *temp;
1641 struct partial_symbol **start, **psym;
1642 struct partial_symbol **top, **real_top, **bottom, **center;
1643 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1644 int do_linear_search = 1;
1645
1646 if (length == 0)
1647 {
1648 return (NULL);
1649 }
1650 start = (global ?
1651 pst->objfile->global_psymbols.list + pst->globals_offset :
1652 pst->objfile->static_psymbols.list + pst->statics_offset);
1653
1654 if (global) /* This means we can use a binary search. */
1655 {
1656 do_linear_search = 0;
1657
1658 /* Binary search. This search is guaranteed to end with center
1659 pointing at the earliest partial symbol whose name might be
1660 correct. At that point *all* partial symbols with an
1661 appropriate name will be checked against the correct
1662 domain. */
1663
1664 bottom = start;
1665 top = start + length - 1;
1666 real_top = top;
1667 while (top > bottom)
1668 {
1669 center = bottom + (top - bottom) / 2;
1670 if (!(center < top))
1671 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1672 if (!do_linear_search
1673 && (SYMBOL_LANGUAGE (*center) == language_java))
1674 {
1675 do_linear_search = 1;
1676 }
1677 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1678 {
1679 top = center;
1680 }
1681 else
1682 {
1683 bottom = center + 1;
1684 }
1685 }
1686 if (!(top == bottom))
1687 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1688
1689 while (top <= real_top
1690 && (linkage_name != NULL
1691 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1692 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1693 {
1694 if (SYMBOL_DOMAIN (*top) == domain)
1695 {
1696 return (*top);
1697 }
1698 top++;
1699 }
1700 }
1701
1702 /* Can't use a binary search or else we found during the binary search that
1703 we should also do a linear search. */
1704
1705 if (do_linear_search)
1706 {
1707 for (psym = start; psym < start + length; psym++)
1708 {
1709 if (domain == SYMBOL_DOMAIN (*psym))
1710 {
1711 if (linkage_name != NULL
1712 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1713 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1714 {
1715 return (*psym);
1716 }
1717 }
1718 }
1719 }
1720
1721 return (NULL);
1722 }
1723
1724 /* Look up a type named NAME in the struct_domain. The type returned
1725 must not be opaque -- i.e., must have at least one field
1726 defined. */
1727
1728 struct type *
1729 lookup_transparent_type (const char *name)
1730 {
1731 return current_language->la_lookup_transparent_type (name);
1732 }
1733
1734 /* The standard implementation of lookup_transparent_type. This code
1735 was modeled on lookup_symbol -- the parts not relevant to looking
1736 up types were just left out. In particular it's assumed here that
1737 types are available in struct_domain and only at file-static or
1738 global blocks. */
1739
1740 struct type *
1741 basic_lookup_transparent_type (const char *name)
1742 {
1743 struct symbol *sym;
1744 struct symtab *s = NULL;
1745 struct partial_symtab *ps;
1746 struct blockvector *bv;
1747 struct objfile *objfile;
1748 struct block *block;
1749
1750 /* Now search all the global symbols. Do the symtab's first, then
1751 check the psymtab's. If a psymtab indicates the existence
1752 of the desired name as a global, then do psymtab-to-symtab
1753 conversion on the fly and return the found symbol. */
1754
1755 ALL_PRIMARY_SYMTABS (objfile, s)
1756 {
1757 bv = BLOCKVECTOR (s);
1758 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1759 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1760 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1761 {
1762 return SYMBOL_TYPE (sym);
1763 }
1764 }
1765
1766 ALL_PSYMTABS (objfile, ps)
1767 {
1768 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1769 1, STRUCT_DOMAIN))
1770 {
1771 s = PSYMTAB_TO_SYMTAB (ps);
1772 bv = BLOCKVECTOR (s);
1773 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1774 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1775 if (!sym)
1776 {
1777 /* This shouldn't be necessary, but as a last resort
1778 * try looking in the statics even though the psymtab
1779 * claimed the symbol was global. It's possible that
1780 * the psymtab gets it wrong in some cases.
1781 */
1782 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1783 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1784 if (!sym)
1785 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1786 %s may be an inlined function, or may be a template function\n\
1787 (if a template, try specifying an instantiation: %s<type>)."),
1788 name, ps->filename, name, name);
1789 }
1790 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1791 return SYMBOL_TYPE (sym);
1792 }
1793 }
1794
1795 /* Now search the static file-level symbols.
1796 Not strictly correct, but more useful than an error.
1797 Do the symtab's first, then
1798 check the psymtab's. If a psymtab indicates the existence
1799 of the desired name as a file-level static, then do psymtab-to-symtab
1800 conversion on the fly and return the found symbol.
1801 */
1802
1803 ALL_PRIMARY_SYMTABS (objfile, s)
1804 {
1805 bv = BLOCKVECTOR (s);
1806 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1807 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1808 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1809 {
1810 return SYMBOL_TYPE (sym);
1811 }
1812 }
1813
1814 ALL_PSYMTABS (objfile, ps)
1815 {
1816 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1817 {
1818 s = PSYMTAB_TO_SYMTAB (ps);
1819 bv = BLOCKVECTOR (s);
1820 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1821 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1822 if (!sym)
1823 {
1824 /* This shouldn't be necessary, but as a last resort
1825 * try looking in the globals even though the psymtab
1826 * claimed the symbol was static. It's possible that
1827 * the psymtab gets it wrong in some cases.
1828 */
1829 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1830 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1831 if (!sym)
1832 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1833 %s may be an inlined function, or may be a template function\n\
1834 (if a template, try specifying an instantiation: %s<type>)."),
1835 name, ps->filename, name, name);
1836 }
1837 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1838 return SYMBOL_TYPE (sym);
1839 }
1840 }
1841 return (struct type *) 0;
1842 }
1843
1844
1845 /* Find the psymtab containing main(). */
1846 /* FIXME: What about languages without main() or specially linked
1847 executables that have no main() ? */
1848
1849 struct partial_symtab *
1850 find_main_psymtab (void)
1851 {
1852 struct partial_symtab *pst;
1853 struct objfile *objfile;
1854
1855 ALL_PSYMTABS (objfile, pst)
1856 {
1857 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1858 {
1859 return (pst);
1860 }
1861 }
1862 return (NULL);
1863 }
1864
1865 /* Search BLOCK for symbol NAME in DOMAIN.
1866
1867 Note that if NAME is the demangled form of a C++ symbol, we will fail
1868 to find a match during the binary search of the non-encoded names, but
1869 for now we don't worry about the slight inefficiency of looking for
1870 a match we'll never find, since it will go pretty quick. Once the
1871 binary search terminates, we drop through and do a straight linear
1872 search on the symbols. Each symbol which is marked as being a ObjC/C++
1873 symbol (language_cplus or language_objc set) has both the encoded and
1874 non-encoded names tested for a match.
1875
1876 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1877 particular mangled name.
1878 */
1879
1880 struct symbol *
1881 lookup_block_symbol (const struct block *block, const char *name,
1882 const char *linkage_name,
1883 const domain_enum domain)
1884 {
1885 struct dict_iterator iter;
1886 struct symbol *sym;
1887
1888 if (!BLOCK_FUNCTION (block))
1889 {
1890 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1891 sym != NULL;
1892 sym = dict_iter_name_next (name, &iter))
1893 {
1894 if (SYMBOL_DOMAIN (sym) == domain
1895 && (linkage_name != NULL
1896 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1897 return sym;
1898 }
1899 return NULL;
1900 }
1901 else
1902 {
1903 /* Note that parameter symbols do not always show up last in the
1904 list; this loop makes sure to take anything else other than
1905 parameter symbols first; it only uses parameter symbols as a
1906 last resort. Note that this only takes up extra computation
1907 time on a match. */
1908
1909 struct symbol *sym_found = NULL;
1910
1911 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1912 sym != NULL;
1913 sym = dict_iter_name_next (name, &iter))
1914 {
1915 if (SYMBOL_DOMAIN (sym) == domain
1916 && (linkage_name != NULL
1917 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1918 {
1919 sym_found = sym;
1920 if (SYMBOL_CLASS (sym) != LOC_ARG &&
1921 SYMBOL_CLASS (sym) != LOC_LOCAL_ARG &&
1922 SYMBOL_CLASS (sym) != LOC_REF_ARG &&
1923 SYMBOL_CLASS (sym) != LOC_REGPARM &&
1924 SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR &&
1925 SYMBOL_CLASS (sym) != LOC_BASEREG_ARG &&
1926 SYMBOL_CLASS (sym) != LOC_COMPUTED_ARG)
1927 {
1928 break;
1929 }
1930 }
1931 }
1932 return (sym_found); /* Will be NULL if not found. */
1933 }
1934 }
1935
1936 /* Find the symtab associated with PC and SECTION. Look through the
1937 psymtabs and read in another symtab if necessary. */
1938
1939 struct symtab *
1940 find_pc_sect_symtab (CORE_ADDR pc, asection *section)
1941 {
1942 struct block *b;
1943 struct blockvector *bv;
1944 struct symtab *s = NULL;
1945 struct symtab *best_s = NULL;
1946 struct partial_symtab *ps;
1947 struct objfile *objfile;
1948 CORE_ADDR distance = 0;
1949 struct minimal_symbol *msymbol;
1950
1951 /* If we know that this is not a text address, return failure. This is
1952 necessary because we loop based on the block's high and low code
1953 addresses, which do not include the data ranges, and because
1954 we call find_pc_sect_psymtab which has a similar restriction based
1955 on the partial_symtab's texthigh and textlow. */
1956 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1957 if (msymbol
1958 && (msymbol->type == mst_data
1959 || msymbol->type == mst_bss
1960 || msymbol->type == mst_abs
1961 || msymbol->type == mst_file_data
1962 || msymbol->type == mst_file_bss))
1963 return NULL;
1964
1965 /* Search all symtabs for the one whose file contains our address, and which
1966 is the smallest of all the ones containing the address. This is designed
1967 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1968 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1969 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1970
1971 This happens for native ecoff format, where code from included files
1972 gets its own symtab. The symtab for the included file should have
1973 been read in already via the dependency mechanism.
1974 It might be swifter to create several symtabs with the same name
1975 like xcoff does (I'm not sure).
1976
1977 It also happens for objfiles that have their functions reordered.
1978 For these, the symtab we are looking for is not necessarily read in. */
1979
1980 ALL_PRIMARY_SYMTABS (objfile, s)
1981 {
1982 bv = BLOCKVECTOR (s);
1983 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1984
1985 if (BLOCK_START (b) <= pc
1986 && BLOCK_END (b) > pc
1987 && (distance == 0
1988 || BLOCK_END (b) - BLOCK_START (b) < distance))
1989 {
1990 /* For an objfile that has its functions reordered,
1991 find_pc_psymtab will find the proper partial symbol table
1992 and we simply return its corresponding symtab. */
1993 /* In order to better support objfiles that contain both
1994 stabs and coff debugging info, we continue on if a psymtab
1995 can't be found. */
1996 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
1997 {
1998 ps = find_pc_sect_psymtab (pc, section);
1999 if (ps)
2000 return PSYMTAB_TO_SYMTAB (ps);
2001 }
2002 if (section != 0)
2003 {
2004 struct dict_iterator iter;
2005 struct symbol *sym = NULL;
2006
2007 ALL_BLOCK_SYMBOLS (b, iter, sym)
2008 {
2009 fixup_symbol_section (sym, objfile);
2010 if (matching_bfd_sections (SYMBOL_BFD_SECTION (sym), section))
2011 break;
2012 }
2013 if (sym == NULL)
2014 continue; /* no symbol in this symtab matches section */
2015 }
2016 distance = BLOCK_END (b) - BLOCK_START (b);
2017 best_s = s;
2018 }
2019 }
2020
2021 if (best_s != NULL)
2022 return (best_s);
2023
2024 s = NULL;
2025 ps = find_pc_sect_psymtab (pc, section);
2026 if (ps)
2027 {
2028 if (ps->readin)
2029 /* Might want to error() here (in case symtab is corrupt and
2030 will cause a core dump), but maybe we can successfully
2031 continue, so let's not. */
2032 warning (_("\
2033 (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"),
2034 paddr_nz (pc));
2035 s = PSYMTAB_TO_SYMTAB (ps);
2036 }
2037 return (s);
2038 }
2039
2040 /* Find the symtab associated with PC. Look through the psymtabs and
2041 read in another symtab if necessary. Backward compatibility, no section */
2042
2043 struct symtab *
2044 find_pc_symtab (CORE_ADDR pc)
2045 {
2046 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2047 }
2048 \f
2049
2050 /* Find the source file and line number for a given PC value and SECTION.
2051 Return a structure containing a symtab pointer, a line number,
2052 and a pc range for the entire source line.
2053 The value's .pc field is NOT the specified pc.
2054 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2055 use the line that ends there. Otherwise, in that case, the line
2056 that begins there is used. */
2057
2058 /* The big complication here is that a line may start in one file, and end just
2059 before the start of another file. This usually occurs when you #include
2060 code in the middle of a subroutine. To properly find the end of a line's PC
2061 range, we must search all symtabs associated with this compilation unit, and
2062 find the one whose first PC is closer than that of the next line in this
2063 symtab. */
2064
2065 /* If it's worth the effort, we could be using a binary search. */
2066
2067 struct symtab_and_line
2068 find_pc_sect_line (CORE_ADDR pc, struct bfd_section *section, int notcurrent)
2069 {
2070 struct symtab *s;
2071 struct linetable *l;
2072 int len;
2073 int i;
2074 struct linetable_entry *item;
2075 struct symtab_and_line val;
2076 struct blockvector *bv;
2077 struct minimal_symbol *msymbol;
2078 struct minimal_symbol *mfunsym;
2079
2080 /* Info on best line seen so far, and where it starts, and its file. */
2081
2082 struct linetable_entry *best = NULL;
2083 CORE_ADDR best_end = 0;
2084 struct symtab *best_symtab = 0;
2085
2086 /* Store here the first line number
2087 of a file which contains the line at the smallest pc after PC.
2088 If we don't find a line whose range contains PC,
2089 we will use a line one less than this,
2090 with a range from the start of that file to the first line's pc. */
2091 struct linetable_entry *alt = NULL;
2092 struct symtab *alt_symtab = 0;
2093
2094 /* Info on best line seen in this file. */
2095
2096 struct linetable_entry *prev;
2097
2098 /* If this pc is not from the current frame,
2099 it is the address of the end of a call instruction.
2100 Quite likely that is the start of the following statement.
2101 But what we want is the statement containing the instruction.
2102 Fudge the pc to make sure we get that. */
2103
2104 init_sal (&val); /* initialize to zeroes */
2105
2106 /* It's tempting to assume that, if we can't find debugging info for
2107 any function enclosing PC, that we shouldn't search for line
2108 number info, either. However, GAS can emit line number info for
2109 assembly files --- very helpful when debugging hand-written
2110 assembly code. In such a case, we'd have no debug info for the
2111 function, but we would have line info. */
2112
2113 if (notcurrent)
2114 pc -= 1;
2115
2116 /* elz: added this because this function returned the wrong
2117 information if the pc belongs to a stub (import/export)
2118 to call a shlib function. This stub would be anywhere between
2119 two functions in the target, and the line info was erroneously
2120 taken to be the one of the line before the pc.
2121 */
2122 /* RT: Further explanation:
2123
2124 * We have stubs (trampolines) inserted between procedures.
2125 *
2126 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2127 * exists in the main image.
2128 *
2129 * In the minimal symbol table, we have a bunch of symbols
2130 * sorted by start address. The stubs are marked as "trampoline",
2131 * the others appear as text. E.g.:
2132 *
2133 * Minimal symbol table for main image
2134 * main: code for main (text symbol)
2135 * shr1: stub (trampoline symbol)
2136 * foo: code for foo (text symbol)
2137 * ...
2138 * Minimal symbol table for "shr1" image:
2139 * ...
2140 * shr1: code for shr1 (text symbol)
2141 * ...
2142 *
2143 * So the code below is trying to detect if we are in the stub
2144 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2145 * and if found, do the symbolization from the real-code address
2146 * rather than the stub address.
2147 *
2148 * Assumptions being made about the minimal symbol table:
2149 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2150 * if we're really in the trampoline. If we're beyond it (say
2151 * we're in "foo" in the above example), it'll have a closer
2152 * symbol (the "foo" text symbol for example) and will not
2153 * return the trampoline.
2154 * 2. lookup_minimal_symbol_text() will find a real text symbol
2155 * corresponding to the trampoline, and whose address will
2156 * be different than the trampoline address. I put in a sanity
2157 * check for the address being the same, to avoid an
2158 * infinite recursion.
2159 */
2160 msymbol = lookup_minimal_symbol_by_pc (pc);
2161 if (msymbol != NULL)
2162 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2163 {
2164 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2165 NULL);
2166 if (mfunsym == NULL)
2167 /* I eliminated this warning since it is coming out
2168 * in the following situation:
2169 * gdb shmain // test program with shared libraries
2170 * (gdb) break shr1 // function in shared lib
2171 * Warning: In stub for ...
2172 * In the above situation, the shared lib is not loaded yet,
2173 * so of course we can't find the real func/line info,
2174 * but the "break" still works, and the warning is annoying.
2175 * So I commented out the warning. RT */
2176 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2177 /* fall through */
2178 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2179 /* Avoid infinite recursion */
2180 /* See above comment about why warning is commented out */
2181 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2182 /* fall through */
2183 else
2184 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2185 }
2186
2187
2188 s = find_pc_sect_symtab (pc, section);
2189 if (!s)
2190 {
2191 /* if no symbol information, return previous pc */
2192 if (notcurrent)
2193 pc++;
2194 val.pc = pc;
2195 return val;
2196 }
2197
2198 bv = BLOCKVECTOR (s);
2199
2200 /* Look at all the symtabs that share this blockvector.
2201 They all have the same apriori range, that we found was right;
2202 but they have different line tables. */
2203
2204 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2205 {
2206 /* Find the best line in this symtab. */
2207 l = LINETABLE (s);
2208 if (!l)
2209 continue;
2210 len = l->nitems;
2211 if (len <= 0)
2212 {
2213 /* I think len can be zero if the symtab lacks line numbers
2214 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2215 I'm not sure which, and maybe it depends on the symbol
2216 reader). */
2217 continue;
2218 }
2219
2220 prev = NULL;
2221 item = l->item; /* Get first line info */
2222
2223 /* Is this file's first line closer than the first lines of other files?
2224 If so, record this file, and its first line, as best alternate. */
2225 if (item->pc > pc && (!alt || item->pc < alt->pc))
2226 {
2227 alt = item;
2228 alt_symtab = s;
2229 }
2230
2231 for (i = 0; i < len; i++, item++)
2232 {
2233 /* Leave prev pointing to the linetable entry for the last line
2234 that started at or before PC. */
2235 if (item->pc > pc)
2236 break;
2237
2238 prev = item;
2239 }
2240
2241 /* At this point, prev points at the line whose start addr is <= pc, and
2242 item points at the next line. If we ran off the end of the linetable
2243 (pc >= start of the last line), then prev == item. If pc < start of
2244 the first line, prev will not be set. */
2245
2246 /* Is this file's best line closer than the best in the other files?
2247 If so, record this file, and its best line, as best so far. Don't
2248 save prev if it represents the end of a function (i.e. line number
2249 0) instead of a real line. */
2250
2251 if (prev && prev->line && (!best || prev->pc > best->pc))
2252 {
2253 best = prev;
2254 best_symtab = s;
2255
2256 /* Discard BEST_END if it's before the PC of the current BEST. */
2257 if (best_end <= best->pc)
2258 best_end = 0;
2259 }
2260
2261 /* If another line (denoted by ITEM) is in the linetable and its
2262 PC is after BEST's PC, but before the current BEST_END, then
2263 use ITEM's PC as the new best_end. */
2264 if (best && i < len && item->pc > best->pc
2265 && (best_end == 0 || best_end > item->pc))
2266 best_end = item->pc;
2267 }
2268
2269 if (!best_symtab)
2270 {
2271 /* If we didn't find any line number info, just return zeros.
2272 We used to return alt->line - 1 here, but that could be
2273 anywhere; if we don't have line number info for this PC,
2274 don't make some up. */
2275 val.pc = pc;
2276 }
2277 else if (best->line == 0)
2278 {
2279 /* If our best fit is in a range of PC's for which no line
2280 number info is available (line number is zero) then we didn't
2281 find any valid line information. */
2282 val.pc = pc;
2283 }
2284 else
2285 {
2286 val.symtab = best_symtab;
2287 val.line = best->line;
2288 val.pc = best->pc;
2289 if (best_end && (!alt || best_end < alt->pc))
2290 val.end = best_end;
2291 else if (alt)
2292 val.end = alt->pc;
2293 else
2294 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2295 }
2296 val.section = section;
2297 return val;
2298 }
2299
2300 /* Backward compatibility (no section) */
2301
2302 struct symtab_and_line
2303 find_pc_line (CORE_ADDR pc, int notcurrent)
2304 {
2305 asection *section;
2306
2307 section = find_pc_overlay (pc);
2308 if (pc_in_unmapped_range (pc, section))
2309 pc = overlay_mapped_address (pc, section);
2310 return find_pc_sect_line (pc, section, notcurrent);
2311 }
2312 \f
2313 /* Find line number LINE in any symtab whose name is the same as
2314 SYMTAB.
2315
2316 If found, return the symtab that contains the linetable in which it was
2317 found, set *INDEX to the index in the linetable of the best entry
2318 found, and set *EXACT_MATCH nonzero if the value returned is an
2319 exact match.
2320
2321 If not found, return NULL. */
2322
2323 struct symtab *
2324 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2325 {
2326 int exact;
2327
2328 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2329 so far seen. */
2330
2331 int best_index;
2332 struct linetable *best_linetable;
2333 struct symtab *best_symtab;
2334
2335 /* First try looking it up in the given symtab. */
2336 best_linetable = LINETABLE (symtab);
2337 best_symtab = symtab;
2338 best_index = find_line_common (best_linetable, line, &exact);
2339 if (best_index < 0 || !exact)
2340 {
2341 /* Didn't find an exact match. So we better keep looking for
2342 another symtab with the same name. In the case of xcoff,
2343 multiple csects for one source file (produced by IBM's FORTRAN
2344 compiler) produce multiple symtabs (this is unavoidable
2345 assuming csects can be at arbitrary places in memory and that
2346 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2347
2348 /* BEST is the smallest linenumber > LINE so far seen,
2349 or 0 if none has been seen so far.
2350 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2351 int best;
2352
2353 struct objfile *objfile;
2354 struct symtab *s;
2355 struct partial_symtab *p;
2356
2357 if (best_index >= 0)
2358 best = best_linetable->item[best_index].line;
2359 else
2360 best = 0;
2361
2362 ALL_PSYMTABS (objfile, p)
2363 {
2364 if (strcmp (symtab->filename, p->filename) != 0)
2365 continue;
2366 PSYMTAB_TO_SYMTAB (p);
2367 }
2368
2369 ALL_SYMTABS (objfile, s)
2370 {
2371 struct linetable *l;
2372 int ind;
2373
2374 if (strcmp (symtab->filename, s->filename) != 0)
2375 continue;
2376 l = LINETABLE (s);
2377 ind = find_line_common (l, line, &exact);
2378 if (ind >= 0)
2379 {
2380 if (exact)
2381 {
2382 best_index = ind;
2383 best_linetable = l;
2384 best_symtab = s;
2385 goto done;
2386 }
2387 if (best == 0 || l->item[ind].line < best)
2388 {
2389 best = l->item[ind].line;
2390 best_index = ind;
2391 best_linetable = l;
2392 best_symtab = s;
2393 }
2394 }
2395 }
2396 }
2397 done:
2398 if (best_index < 0)
2399 return NULL;
2400
2401 if (index)
2402 *index = best_index;
2403 if (exact_match)
2404 *exact_match = exact;
2405
2406 return best_symtab;
2407 }
2408 \f
2409 /* Set the PC value for a given source file and line number and return true.
2410 Returns zero for invalid line number (and sets the PC to 0).
2411 The source file is specified with a struct symtab. */
2412
2413 int
2414 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2415 {
2416 struct linetable *l;
2417 int ind;
2418
2419 *pc = 0;
2420 if (symtab == 0)
2421 return 0;
2422
2423 symtab = find_line_symtab (symtab, line, &ind, NULL);
2424 if (symtab != NULL)
2425 {
2426 l = LINETABLE (symtab);
2427 *pc = l->item[ind].pc;
2428 return 1;
2429 }
2430 else
2431 return 0;
2432 }
2433
2434 /* Find the range of pc values in a line.
2435 Store the starting pc of the line into *STARTPTR
2436 and the ending pc (start of next line) into *ENDPTR.
2437 Returns 1 to indicate success.
2438 Returns 0 if could not find the specified line. */
2439
2440 int
2441 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2442 CORE_ADDR *endptr)
2443 {
2444 CORE_ADDR startaddr;
2445 struct symtab_and_line found_sal;
2446
2447 startaddr = sal.pc;
2448 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2449 return 0;
2450
2451 /* This whole function is based on address. For example, if line 10 has
2452 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2453 "info line *0x123" should say the line goes from 0x100 to 0x200
2454 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2455 This also insures that we never give a range like "starts at 0x134
2456 and ends at 0x12c". */
2457
2458 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2459 if (found_sal.line != sal.line)
2460 {
2461 /* The specified line (sal) has zero bytes. */
2462 *startptr = found_sal.pc;
2463 *endptr = found_sal.pc;
2464 }
2465 else
2466 {
2467 *startptr = found_sal.pc;
2468 *endptr = found_sal.end;
2469 }
2470 return 1;
2471 }
2472
2473 /* Given a line table and a line number, return the index into the line
2474 table for the pc of the nearest line whose number is >= the specified one.
2475 Return -1 if none is found. The value is >= 0 if it is an index.
2476
2477 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2478
2479 static int
2480 find_line_common (struct linetable *l, int lineno,
2481 int *exact_match)
2482 {
2483 int i;
2484 int len;
2485
2486 /* BEST is the smallest linenumber > LINENO so far seen,
2487 or 0 if none has been seen so far.
2488 BEST_INDEX identifies the item for it. */
2489
2490 int best_index = -1;
2491 int best = 0;
2492
2493 *exact_match = 0;
2494
2495 if (lineno <= 0)
2496 return -1;
2497 if (l == 0)
2498 return -1;
2499
2500 len = l->nitems;
2501 for (i = 0; i < len; i++)
2502 {
2503 struct linetable_entry *item = &(l->item[i]);
2504
2505 if (item->line == lineno)
2506 {
2507 /* Return the first (lowest address) entry which matches. */
2508 *exact_match = 1;
2509 return i;
2510 }
2511
2512 if (item->line > lineno && (best == 0 || item->line < best))
2513 {
2514 best = item->line;
2515 best_index = i;
2516 }
2517 }
2518
2519 /* If we got here, we didn't get an exact match. */
2520 return best_index;
2521 }
2522
2523 int
2524 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2525 {
2526 struct symtab_and_line sal;
2527 sal = find_pc_line (pc, 0);
2528 *startptr = sal.pc;
2529 *endptr = sal.end;
2530 return sal.symtab != 0;
2531 }
2532
2533 /* Given a function symbol SYM, find the symtab and line for the start
2534 of the function.
2535 If the argument FUNFIRSTLINE is nonzero, we want the first line
2536 of real code inside the function. */
2537
2538 struct symtab_and_line
2539 find_function_start_sal (struct symbol *sym, int funfirstline)
2540 {
2541 CORE_ADDR pc;
2542 struct symtab_and_line sal;
2543
2544 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2545 fixup_symbol_section (sym, NULL);
2546 if (funfirstline)
2547 { /* skip "first line" of function (which is actually its prologue) */
2548 asection *section = SYMBOL_BFD_SECTION (sym);
2549 /* If function is in an unmapped overlay, use its unmapped LMA
2550 address, so that gdbarch_skip_prologue has something unique to work
2551 on */
2552 if (section_is_overlay (section) &&
2553 !section_is_mapped (section))
2554 pc = overlay_unmapped_address (pc, section);
2555
2556 pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
2557 pc = gdbarch_skip_prologue (current_gdbarch, pc);
2558
2559 /* For overlays, map pc back into its mapped VMA range */
2560 pc = overlay_mapped_address (pc, section);
2561 }
2562 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2563
2564 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2565 line is still part of the same function. */
2566 if (sal.pc != pc
2567 && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= sal.end
2568 && sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2569 {
2570 /* First pc of next line */
2571 pc = sal.end;
2572 /* Recalculate the line number (might not be N+1). */
2573 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2574 }
2575 sal.pc = pc;
2576
2577 return sal;
2578 }
2579
2580 /* If P is of the form "operator[ \t]+..." where `...' is
2581 some legitimate operator text, return a pointer to the
2582 beginning of the substring of the operator text.
2583 Otherwise, return "". */
2584 char *
2585 operator_chars (char *p, char **end)
2586 {
2587 *end = "";
2588 if (strncmp (p, "operator", 8))
2589 return *end;
2590 p += 8;
2591
2592 /* Don't get faked out by `operator' being part of a longer
2593 identifier. */
2594 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2595 return *end;
2596
2597 /* Allow some whitespace between `operator' and the operator symbol. */
2598 while (*p == ' ' || *p == '\t')
2599 p++;
2600
2601 /* Recognize 'operator TYPENAME'. */
2602
2603 if (isalpha (*p) || *p == '_' || *p == '$')
2604 {
2605 char *q = p + 1;
2606 while (isalnum (*q) || *q == '_' || *q == '$')
2607 q++;
2608 *end = q;
2609 return p;
2610 }
2611
2612 while (*p)
2613 switch (*p)
2614 {
2615 case '\\': /* regexp quoting */
2616 if (p[1] == '*')
2617 {
2618 if (p[2] == '=') /* 'operator\*=' */
2619 *end = p + 3;
2620 else /* 'operator\*' */
2621 *end = p + 2;
2622 return p;
2623 }
2624 else if (p[1] == '[')
2625 {
2626 if (p[2] == ']')
2627 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2628 else if (p[2] == '\\' && p[3] == ']')
2629 {
2630 *end = p + 4; /* 'operator\[\]' */
2631 return p;
2632 }
2633 else
2634 error (_("nothing is allowed between '[' and ']'"));
2635 }
2636 else
2637 {
2638 /* Gratuitous qoute: skip it and move on. */
2639 p++;
2640 continue;
2641 }
2642 break;
2643 case '!':
2644 case '=':
2645 case '*':
2646 case '/':
2647 case '%':
2648 case '^':
2649 if (p[1] == '=')
2650 *end = p + 2;
2651 else
2652 *end = p + 1;
2653 return p;
2654 case '<':
2655 case '>':
2656 case '+':
2657 case '-':
2658 case '&':
2659 case '|':
2660 if (p[0] == '-' && p[1] == '>')
2661 {
2662 /* Struct pointer member operator 'operator->'. */
2663 if (p[2] == '*')
2664 {
2665 *end = p + 3; /* 'operator->*' */
2666 return p;
2667 }
2668 else if (p[2] == '\\')
2669 {
2670 *end = p + 4; /* Hopefully 'operator->\*' */
2671 return p;
2672 }
2673 else
2674 {
2675 *end = p + 2; /* 'operator->' */
2676 return p;
2677 }
2678 }
2679 if (p[1] == '=' || p[1] == p[0])
2680 *end = p + 2;
2681 else
2682 *end = p + 1;
2683 return p;
2684 case '~':
2685 case ',':
2686 *end = p + 1;
2687 return p;
2688 case '(':
2689 if (p[1] != ')')
2690 error (_("`operator ()' must be specified without whitespace in `()'"));
2691 *end = p + 2;
2692 return p;
2693 case '?':
2694 if (p[1] != ':')
2695 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2696 *end = p + 2;
2697 return p;
2698 case '[':
2699 if (p[1] != ']')
2700 error (_("`operator []' must be specified without whitespace in `[]'"));
2701 *end = p + 2;
2702 return p;
2703 default:
2704 error (_("`operator %s' not supported"), p);
2705 break;
2706 }
2707
2708 *end = "";
2709 return *end;
2710 }
2711 \f
2712
2713 /* If FILE is not already in the table of files, return zero;
2714 otherwise return non-zero. Optionally add FILE to the table if ADD
2715 is non-zero. If *FIRST is non-zero, forget the old table
2716 contents. */
2717 static int
2718 filename_seen (const char *file, int add, int *first)
2719 {
2720 /* Table of files seen so far. */
2721 static const char **tab = NULL;
2722 /* Allocated size of tab in elements.
2723 Start with one 256-byte block (when using GNU malloc.c).
2724 24 is the malloc overhead when range checking is in effect. */
2725 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2726 /* Current size of tab in elements. */
2727 static int tab_cur_size;
2728 const char **p;
2729
2730 if (*first)
2731 {
2732 if (tab == NULL)
2733 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2734 tab_cur_size = 0;
2735 }
2736
2737 /* Is FILE in tab? */
2738 for (p = tab; p < tab + tab_cur_size; p++)
2739 if (strcmp (*p, file) == 0)
2740 return 1;
2741
2742 /* No; maybe add it to tab. */
2743 if (add)
2744 {
2745 if (tab_cur_size == tab_alloc_size)
2746 {
2747 tab_alloc_size *= 2;
2748 tab = (const char **) xrealloc ((char *) tab,
2749 tab_alloc_size * sizeof (*tab));
2750 }
2751 tab[tab_cur_size++] = file;
2752 }
2753
2754 return 0;
2755 }
2756
2757 /* Slave routine for sources_info. Force line breaks at ,'s.
2758 NAME is the name to print and *FIRST is nonzero if this is the first
2759 name printed. Set *FIRST to zero. */
2760 static void
2761 output_source_filename (const char *name, int *first)
2762 {
2763 /* Since a single source file can result in several partial symbol
2764 tables, we need to avoid printing it more than once. Note: if
2765 some of the psymtabs are read in and some are not, it gets
2766 printed both under "Source files for which symbols have been
2767 read" and "Source files for which symbols will be read in on
2768 demand". I consider this a reasonable way to deal with the
2769 situation. I'm not sure whether this can also happen for
2770 symtabs; it doesn't hurt to check. */
2771
2772 /* Was NAME already seen? */
2773 if (filename_seen (name, 1, first))
2774 {
2775 /* Yes; don't print it again. */
2776 return;
2777 }
2778 /* No; print it and reset *FIRST. */
2779 if (*first)
2780 {
2781 *first = 0;
2782 }
2783 else
2784 {
2785 printf_filtered (", ");
2786 }
2787
2788 wrap_here ("");
2789 fputs_filtered (name, gdb_stdout);
2790 }
2791
2792 static void
2793 sources_info (char *ignore, int from_tty)
2794 {
2795 struct symtab *s;
2796 struct partial_symtab *ps;
2797 struct objfile *objfile;
2798 int first;
2799
2800 if (!have_full_symbols () && !have_partial_symbols ())
2801 {
2802 error (_("No symbol table is loaded. Use the \"file\" command."));
2803 }
2804
2805 printf_filtered ("Source files for which symbols have been read in:\n\n");
2806
2807 first = 1;
2808 ALL_SYMTABS (objfile, s)
2809 {
2810 const char *fullname = symtab_to_fullname (s);
2811 output_source_filename (fullname ? fullname : s->filename, &first);
2812 }
2813 printf_filtered ("\n\n");
2814
2815 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2816
2817 first = 1;
2818 ALL_PSYMTABS (objfile, ps)
2819 {
2820 if (!ps->readin)
2821 {
2822 const char *fullname = psymtab_to_fullname (ps);
2823 output_source_filename (fullname ? fullname : ps->filename, &first);
2824 }
2825 }
2826 printf_filtered ("\n");
2827 }
2828
2829 static int
2830 file_matches (char *file, char *files[], int nfiles)
2831 {
2832 int i;
2833
2834 if (file != NULL && nfiles != 0)
2835 {
2836 for (i = 0; i < nfiles; i++)
2837 {
2838 if (strcmp (files[i], lbasename (file)) == 0)
2839 return 1;
2840 }
2841 }
2842 else if (nfiles == 0)
2843 return 1;
2844 return 0;
2845 }
2846
2847 /* Free any memory associated with a search. */
2848 void
2849 free_search_symbols (struct symbol_search *symbols)
2850 {
2851 struct symbol_search *p;
2852 struct symbol_search *next;
2853
2854 for (p = symbols; p != NULL; p = next)
2855 {
2856 next = p->next;
2857 xfree (p);
2858 }
2859 }
2860
2861 static void
2862 do_free_search_symbols_cleanup (void *symbols)
2863 {
2864 free_search_symbols (symbols);
2865 }
2866
2867 struct cleanup *
2868 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2869 {
2870 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2871 }
2872
2873 /* Helper function for sort_search_symbols and qsort. Can only
2874 sort symbols, not minimal symbols. */
2875 static int
2876 compare_search_syms (const void *sa, const void *sb)
2877 {
2878 struct symbol_search **sym_a = (struct symbol_search **) sa;
2879 struct symbol_search **sym_b = (struct symbol_search **) sb;
2880
2881 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2882 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2883 }
2884
2885 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2886 prevtail where it is, but update its next pointer to point to
2887 the first of the sorted symbols. */
2888 static struct symbol_search *
2889 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2890 {
2891 struct symbol_search **symbols, *symp, *old_next;
2892 int i;
2893
2894 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2895 * nfound);
2896 symp = prevtail->next;
2897 for (i = 0; i < nfound; i++)
2898 {
2899 symbols[i] = symp;
2900 symp = symp->next;
2901 }
2902 /* Generally NULL. */
2903 old_next = symp;
2904
2905 qsort (symbols, nfound, sizeof (struct symbol_search *),
2906 compare_search_syms);
2907
2908 symp = prevtail;
2909 for (i = 0; i < nfound; i++)
2910 {
2911 symp->next = symbols[i];
2912 symp = symp->next;
2913 }
2914 symp->next = old_next;
2915
2916 xfree (symbols);
2917 return symp;
2918 }
2919
2920 /* Search the symbol table for matches to the regular expression REGEXP,
2921 returning the results in *MATCHES.
2922
2923 Only symbols of KIND are searched:
2924 FUNCTIONS_DOMAIN - search all functions
2925 TYPES_DOMAIN - search all type names
2926 METHODS_DOMAIN - search all methods NOT IMPLEMENTED
2927 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2928 and constants (enums)
2929
2930 free_search_symbols should be called when *MATCHES is no longer needed.
2931
2932 The results are sorted locally; each symtab's global and static blocks are
2933 separately alphabetized.
2934 */
2935 void
2936 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2937 struct symbol_search **matches)
2938 {
2939 struct symtab *s;
2940 struct partial_symtab *ps;
2941 struct blockvector *bv;
2942 struct block *b;
2943 int i = 0;
2944 struct dict_iterator iter;
2945 struct symbol *sym;
2946 struct partial_symbol **psym;
2947 struct objfile *objfile;
2948 struct minimal_symbol *msymbol;
2949 char *val;
2950 int found_misc = 0;
2951 static enum minimal_symbol_type types[]
2952 =
2953 {mst_data, mst_text, mst_abs, mst_unknown};
2954 static enum minimal_symbol_type types2[]
2955 =
2956 {mst_bss, mst_file_text, mst_abs, mst_unknown};
2957 static enum minimal_symbol_type types3[]
2958 =
2959 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2960 static enum minimal_symbol_type types4[]
2961 =
2962 {mst_file_bss, mst_text, mst_abs, mst_unknown};
2963 enum minimal_symbol_type ourtype;
2964 enum minimal_symbol_type ourtype2;
2965 enum minimal_symbol_type ourtype3;
2966 enum minimal_symbol_type ourtype4;
2967 struct symbol_search *sr;
2968 struct symbol_search *psr;
2969 struct symbol_search *tail;
2970 struct cleanup *old_chain = NULL;
2971
2972 if (kind < VARIABLES_DOMAIN)
2973 error (_("must search on specific domain"));
2974
2975 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
2976 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
2977 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
2978 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
2979
2980 sr = *matches = NULL;
2981 tail = NULL;
2982
2983 if (regexp != NULL)
2984 {
2985 /* Make sure spacing is right for C++ operators.
2986 This is just a courtesy to make the matching less sensitive
2987 to how many spaces the user leaves between 'operator'
2988 and <TYPENAME> or <OPERATOR>. */
2989 char *opend;
2990 char *opname = operator_chars (regexp, &opend);
2991 if (*opname)
2992 {
2993 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
2994 if (isalpha (*opname) || *opname == '_' || *opname == '$')
2995 {
2996 /* There should 1 space between 'operator' and 'TYPENAME'. */
2997 if (opname[-1] != ' ' || opname[-2] == ' ')
2998 fix = 1;
2999 }
3000 else
3001 {
3002 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3003 if (opname[-1] == ' ')
3004 fix = 0;
3005 }
3006 /* If wrong number of spaces, fix it. */
3007 if (fix >= 0)
3008 {
3009 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3010 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3011 regexp = tmp;
3012 }
3013 }
3014
3015 if (0 != (val = re_comp (regexp)))
3016 error (_("Invalid regexp (%s): %s"), val, regexp);
3017 }
3018
3019 /* Search through the partial symtabs *first* for all symbols
3020 matching the regexp. That way we don't have to reproduce all of
3021 the machinery below. */
3022
3023 ALL_PSYMTABS (objfile, ps)
3024 {
3025 struct partial_symbol **bound, **gbound, **sbound;
3026 int keep_going = 1;
3027
3028 if (ps->readin)
3029 continue;
3030
3031 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3032 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3033 bound = gbound;
3034
3035 /* Go through all of the symbols stored in a partial
3036 symtab in one loop. */
3037 psym = objfile->global_psymbols.list + ps->globals_offset;
3038 while (keep_going)
3039 {
3040 if (psym >= bound)
3041 {
3042 if (bound == gbound && ps->n_static_syms != 0)
3043 {
3044 psym = objfile->static_psymbols.list + ps->statics_offset;
3045 bound = sbound;
3046 }
3047 else
3048 keep_going = 0;
3049 continue;
3050 }
3051 else
3052 {
3053 QUIT;
3054
3055 /* If it would match (logic taken from loop below)
3056 load the file and go on to the next one. We check the
3057 filename here, but that's a bit bogus: we don't know
3058 what file it really comes from until we have full
3059 symtabs. The symbol might be in a header file included by
3060 this psymtab. This only affects Insight. */
3061 if (file_matches (ps->filename, files, nfiles)
3062 && ((regexp == NULL
3063 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3064 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3065 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
3066 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3067 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)
3068 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK))))
3069 {
3070 PSYMTAB_TO_SYMTAB (ps);
3071 keep_going = 0;
3072 }
3073 }
3074 psym++;
3075 }
3076 }
3077
3078 /* Here, we search through the minimal symbol tables for functions
3079 and variables that match, and force their symbols to be read.
3080 This is in particular necessary for demangled variable names,
3081 which are no longer put into the partial symbol tables.
3082 The symbol will then be found during the scan of symtabs below.
3083
3084 For functions, find_pc_symtab should succeed if we have debug info
3085 for the function, for variables we have to call lookup_symbol
3086 to determine if the variable has debug info.
3087 If the lookup fails, set found_misc so that we will rescan to print
3088 any matching symbols without debug info.
3089 */
3090
3091 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3092 {
3093 ALL_MSYMBOLS (objfile, msymbol)
3094 {
3095 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3096 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3097 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3098 MSYMBOL_TYPE (msymbol) == ourtype4)
3099 {
3100 if (regexp == NULL
3101 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3102 {
3103 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3104 {
3105 /* FIXME: carlton/2003-02-04: Given that the
3106 semantics of lookup_symbol keeps on changing
3107 slightly, it would be a nice idea if we had a
3108 function lookup_symbol_minsym that found the
3109 symbol associated to a given minimal symbol (if
3110 any). */
3111 if (kind == FUNCTIONS_DOMAIN
3112 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3113 (struct block *) NULL,
3114 VAR_DOMAIN,
3115 0, (struct symtab **) NULL)
3116 == NULL)
3117 found_misc = 1;
3118 }
3119 }
3120 }
3121 }
3122 }
3123
3124 ALL_PRIMARY_SYMTABS (objfile, s)
3125 {
3126 bv = BLOCKVECTOR (s);
3127 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3128 {
3129 struct symbol_search *prevtail = tail;
3130 int nfound = 0;
3131 b = BLOCKVECTOR_BLOCK (bv, i);
3132 ALL_BLOCK_SYMBOLS (b, iter, sym)
3133 {
3134 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3135 QUIT;
3136
3137 if (file_matches (real_symtab->filename, files, nfiles)
3138 && ((regexp == NULL
3139 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3140 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3141 && SYMBOL_CLASS (sym) != LOC_BLOCK
3142 && SYMBOL_CLASS (sym) != LOC_CONST)
3143 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3144 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3145 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK))))
3146 {
3147 /* match */
3148 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3149 psr->block = i;
3150 psr->symtab = real_symtab;
3151 psr->symbol = sym;
3152 psr->msymbol = NULL;
3153 psr->next = NULL;
3154 if (tail == NULL)
3155 sr = psr;
3156 else
3157 tail->next = psr;
3158 tail = psr;
3159 nfound ++;
3160 }
3161 }
3162 if (nfound > 0)
3163 {
3164 if (prevtail == NULL)
3165 {
3166 struct symbol_search dummy;
3167
3168 dummy.next = sr;
3169 tail = sort_search_symbols (&dummy, nfound);
3170 sr = dummy.next;
3171
3172 old_chain = make_cleanup_free_search_symbols (sr);
3173 }
3174 else
3175 tail = sort_search_symbols (prevtail, nfound);
3176 }
3177 }
3178 }
3179
3180 /* If there are no eyes, avoid all contact. I mean, if there are
3181 no debug symbols, then print directly from the msymbol_vector. */
3182
3183 if (found_misc || kind != FUNCTIONS_DOMAIN)
3184 {
3185 ALL_MSYMBOLS (objfile, msymbol)
3186 {
3187 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3188 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3189 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3190 MSYMBOL_TYPE (msymbol) == ourtype4)
3191 {
3192 if (regexp == NULL
3193 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3194 {
3195 /* Functions: Look up by address. */
3196 if (kind != FUNCTIONS_DOMAIN ||
3197 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3198 {
3199 /* Variables/Absolutes: Look up by name */
3200 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3201 (struct block *) NULL, VAR_DOMAIN,
3202 0, (struct symtab **) NULL) == NULL)
3203 {
3204 /* match */
3205 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3206 psr->block = i;
3207 psr->msymbol = msymbol;
3208 psr->symtab = NULL;
3209 psr->symbol = NULL;
3210 psr->next = NULL;
3211 if (tail == NULL)
3212 {
3213 sr = psr;
3214 old_chain = make_cleanup_free_search_symbols (sr);
3215 }
3216 else
3217 tail->next = psr;
3218 tail = psr;
3219 }
3220 }
3221 }
3222 }
3223 }
3224 }
3225
3226 *matches = sr;
3227 if (sr != NULL)
3228 discard_cleanups (old_chain);
3229 }
3230
3231 /* Helper function for symtab_symbol_info, this function uses
3232 the data returned from search_symbols() to print information
3233 regarding the match to gdb_stdout.
3234 */
3235 static void
3236 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3237 int block, char *last)
3238 {
3239 if (last == NULL || strcmp (last, s->filename) != 0)
3240 {
3241 fputs_filtered ("\nFile ", gdb_stdout);
3242 fputs_filtered (s->filename, gdb_stdout);
3243 fputs_filtered (":\n", gdb_stdout);
3244 }
3245
3246 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3247 printf_filtered ("static ");
3248
3249 /* Typedef that is not a C++ class */
3250 if (kind == TYPES_DOMAIN
3251 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3252 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3253 /* variable, func, or typedef-that-is-c++-class */
3254 else if (kind < TYPES_DOMAIN ||
3255 (kind == TYPES_DOMAIN &&
3256 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3257 {
3258 type_print (SYMBOL_TYPE (sym),
3259 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3260 ? "" : SYMBOL_PRINT_NAME (sym)),
3261 gdb_stdout, 0);
3262
3263 printf_filtered (";\n");
3264 }
3265 }
3266
3267 /* This help function for symtab_symbol_info() prints information
3268 for non-debugging symbols to gdb_stdout.
3269 */
3270 static void
3271 print_msymbol_info (struct minimal_symbol *msymbol)
3272 {
3273 char *tmp;
3274
3275 if (gdbarch_addr_bit (current_gdbarch) <= 32)
3276 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3277 & (CORE_ADDR) 0xffffffff,
3278 8);
3279 else
3280 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3281 16);
3282 printf_filtered ("%s %s\n",
3283 tmp, SYMBOL_PRINT_NAME (msymbol));
3284 }
3285
3286 /* This is the guts of the commands "info functions", "info types", and
3287 "info variables". It calls search_symbols to find all matches and then
3288 print_[m]symbol_info to print out some useful information about the
3289 matches.
3290 */
3291 static void
3292 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3293 {
3294 static char *classnames[]
3295 =
3296 {"variable", "function", "type", "method"};
3297 struct symbol_search *symbols;
3298 struct symbol_search *p;
3299 struct cleanup *old_chain;
3300 char *last_filename = NULL;
3301 int first = 1;
3302
3303 /* must make sure that if we're interrupted, symbols gets freed */
3304 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3305 old_chain = make_cleanup_free_search_symbols (symbols);
3306
3307 printf_filtered (regexp
3308 ? "All %ss matching regular expression \"%s\":\n"
3309 : "All defined %ss:\n",
3310 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3311
3312 for (p = symbols; p != NULL; p = p->next)
3313 {
3314 QUIT;
3315
3316 if (p->msymbol != NULL)
3317 {
3318 if (first)
3319 {
3320 printf_filtered ("\nNon-debugging symbols:\n");
3321 first = 0;
3322 }
3323 print_msymbol_info (p->msymbol);
3324 }
3325 else
3326 {
3327 print_symbol_info (kind,
3328 p->symtab,
3329 p->symbol,
3330 p->block,
3331 last_filename);
3332 last_filename = p->symtab->filename;
3333 }
3334 }
3335
3336 do_cleanups (old_chain);
3337 }
3338
3339 static void
3340 variables_info (char *regexp, int from_tty)
3341 {
3342 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3343 }
3344
3345 static void
3346 functions_info (char *regexp, int from_tty)
3347 {
3348 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3349 }
3350
3351
3352 static void
3353 types_info (char *regexp, int from_tty)
3354 {
3355 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3356 }
3357
3358 /* Breakpoint all functions matching regular expression. */
3359
3360 void
3361 rbreak_command_wrapper (char *regexp, int from_tty)
3362 {
3363 rbreak_command (regexp, from_tty);
3364 }
3365
3366 static void
3367 rbreak_command (char *regexp, int from_tty)
3368 {
3369 struct symbol_search *ss;
3370 struct symbol_search *p;
3371 struct cleanup *old_chain;
3372
3373 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3374 old_chain = make_cleanup_free_search_symbols (ss);
3375
3376 for (p = ss; p != NULL; p = p->next)
3377 {
3378 if (p->msymbol == NULL)
3379 {
3380 char *string = alloca (strlen (p->symtab->filename)
3381 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3382 + 4);
3383 strcpy (string, p->symtab->filename);
3384 strcat (string, ":'");
3385 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3386 strcat (string, "'");
3387 break_command (string, from_tty);
3388 print_symbol_info (FUNCTIONS_DOMAIN,
3389 p->symtab,
3390 p->symbol,
3391 p->block,
3392 p->symtab->filename);
3393 }
3394 else
3395 {
3396 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3397 + 3);
3398 strcpy (string, "'");
3399 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3400 strcat (string, "'");
3401
3402 break_command (string, from_tty);
3403 printf_filtered ("<function, no debug info> %s;\n",
3404 SYMBOL_PRINT_NAME (p->msymbol));
3405 }
3406 }
3407
3408 do_cleanups (old_chain);
3409 }
3410 \f
3411
3412 /* Helper routine for make_symbol_completion_list. */
3413
3414 static int return_val_size;
3415 static int return_val_index;
3416 static char **return_val;
3417
3418 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3419 completion_list_add_name \
3420 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3421
3422 /* Test to see if the symbol specified by SYMNAME (which is already
3423 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3424 characters. If so, add it to the current completion list. */
3425
3426 static void
3427 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3428 char *text, char *word)
3429 {
3430 int newsize;
3431 int i;
3432
3433 /* clip symbols that cannot match */
3434
3435 if (strncmp (symname, sym_text, sym_text_len) != 0)
3436 {
3437 return;
3438 }
3439
3440 /* We have a match for a completion, so add SYMNAME to the current list
3441 of matches. Note that the name is moved to freshly malloc'd space. */
3442
3443 {
3444 char *new;
3445 if (word == sym_text)
3446 {
3447 new = xmalloc (strlen (symname) + 5);
3448 strcpy (new, symname);
3449 }
3450 else if (word > sym_text)
3451 {
3452 /* Return some portion of symname. */
3453 new = xmalloc (strlen (symname) + 5);
3454 strcpy (new, symname + (word - sym_text));
3455 }
3456 else
3457 {
3458 /* Return some of SYM_TEXT plus symname. */
3459 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3460 strncpy (new, word, sym_text - word);
3461 new[sym_text - word] = '\0';
3462 strcat (new, symname);
3463 }
3464
3465 if (return_val_index + 3 > return_val_size)
3466 {
3467 newsize = (return_val_size *= 2) * sizeof (char *);
3468 return_val = (char **) xrealloc ((char *) return_val, newsize);
3469 }
3470 return_val[return_val_index++] = new;
3471 return_val[return_val_index] = NULL;
3472 }
3473 }
3474
3475 /* ObjC: In case we are completing on a selector, look as the msymbol
3476 again and feed all the selectors into the mill. */
3477
3478 static void
3479 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3480 int sym_text_len, char *text, char *word)
3481 {
3482 static char *tmp = NULL;
3483 static unsigned int tmplen = 0;
3484
3485 char *method, *category, *selector;
3486 char *tmp2 = NULL;
3487
3488 method = SYMBOL_NATURAL_NAME (msymbol);
3489
3490 /* Is it a method? */
3491 if ((method[0] != '-') && (method[0] != '+'))
3492 return;
3493
3494 if (sym_text[0] == '[')
3495 /* Complete on shortened method method. */
3496 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3497
3498 while ((strlen (method) + 1) >= tmplen)
3499 {
3500 if (tmplen == 0)
3501 tmplen = 1024;
3502 else
3503 tmplen *= 2;
3504 tmp = xrealloc (tmp, tmplen);
3505 }
3506 selector = strchr (method, ' ');
3507 if (selector != NULL)
3508 selector++;
3509
3510 category = strchr (method, '(');
3511
3512 if ((category != NULL) && (selector != NULL))
3513 {
3514 memcpy (tmp, method, (category - method));
3515 tmp[category - method] = ' ';
3516 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3517 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3518 if (sym_text[0] == '[')
3519 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3520 }
3521
3522 if (selector != NULL)
3523 {
3524 /* Complete on selector only. */
3525 strcpy (tmp, selector);
3526 tmp2 = strchr (tmp, ']');
3527 if (tmp2 != NULL)
3528 *tmp2 = '\0';
3529
3530 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3531 }
3532 }
3533
3534 /* Break the non-quoted text based on the characters which are in
3535 symbols. FIXME: This should probably be language-specific. */
3536
3537 static char *
3538 language_search_unquoted_string (char *text, char *p)
3539 {
3540 for (; p > text; --p)
3541 {
3542 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3543 continue;
3544 else
3545 {
3546 if ((current_language->la_language == language_objc))
3547 {
3548 if (p[-1] == ':') /* might be part of a method name */
3549 continue;
3550 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3551 p -= 2; /* beginning of a method name */
3552 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3553 { /* might be part of a method name */
3554 char *t = p;
3555
3556 /* Seeing a ' ' or a '(' is not conclusive evidence
3557 that we are in the middle of a method name. However,
3558 finding "-[" or "+[" should be pretty un-ambiguous.
3559 Unfortunately we have to find it now to decide. */
3560
3561 while (t > text)
3562 if (isalnum (t[-1]) || t[-1] == '_' ||
3563 t[-1] == ' ' || t[-1] == ':' ||
3564 t[-1] == '(' || t[-1] == ')')
3565 --t;
3566 else
3567 break;
3568
3569 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3570 p = t - 2; /* method name detected */
3571 /* else we leave with p unchanged */
3572 }
3573 }
3574 break;
3575 }
3576 }
3577 return p;
3578 }
3579
3580 char **
3581 default_make_symbol_completion_list (char *text, char *word)
3582 {
3583 /* Problem: All of the symbols have to be copied because readline
3584 frees them. I'm not going to worry about this; hopefully there
3585 won't be that many. */
3586
3587 struct symbol *sym;
3588 struct symtab *s;
3589 struct partial_symtab *ps;
3590 struct minimal_symbol *msymbol;
3591 struct objfile *objfile;
3592 struct block *b, *surrounding_static_block = 0;
3593 struct dict_iterator iter;
3594 int j;
3595 struct partial_symbol **psym;
3596 /* The symbol we are completing on. Points in same buffer as text. */
3597 char *sym_text;
3598 /* Length of sym_text. */
3599 int sym_text_len;
3600
3601 /* Now look for the symbol we are supposed to complete on. */
3602 {
3603 char *p;
3604 char quote_found;
3605 char *quote_pos = NULL;
3606
3607 /* First see if this is a quoted string. */
3608 quote_found = '\0';
3609 for (p = text; *p != '\0'; ++p)
3610 {
3611 if (quote_found != '\0')
3612 {
3613 if (*p == quote_found)
3614 /* Found close quote. */
3615 quote_found = '\0';
3616 else if (*p == '\\' && p[1] == quote_found)
3617 /* A backslash followed by the quote character
3618 doesn't end the string. */
3619 ++p;
3620 }
3621 else if (*p == '\'' || *p == '"')
3622 {
3623 quote_found = *p;
3624 quote_pos = p;
3625 }
3626 }
3627 if (quote_found == '\'')
3628 /* A string within single quotes can be a symbol, so complete on it. */
3629 sym_text = quote_pos + 1;
3630 else if (quote_found == '"')
3631 /* A double-quoted string is never a symbol, nor does it make sense
3632 to complete it any other way. */
3633 {
3634 return_val = (char **) xmalloc (sizeof (char *));
3635 return_val[0] = NULL;
3636 return return_val;
3637 }
3638 else
3639 {
3640 /* It is not a quoted string. Break it based on the characters
3641 which are in symbols. */
3642 while (p > text)
3643 {
3644 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3645 --p;
3646 else
3647 break;
3648 }
3649 sym_text = p;
3650 }
3651 }
3652
3653 sym_text_len = strlen (sym_text);
3654
3655 return_val_size = 100;
3656 return_val_index = 0;
3657 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3658 return_val[0] = NULL;
3659
3660 /* Look through the partial symtabs for all symbols which begin
3661 by matching SYM_TEXT. Add each one that you find to the list. */
3662
3663 ALL_PSYMTABS (objfile, ps)
3664 {
3665 /* If the psymtab's been read in we'll get it when we search
3666 through the blockvector. */
3667 if (ps->readin)
3668 continue;
3669
3670 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3671 psym < (objfile->global_psymbols.list + ps->globals_offset
3672 + ps->n_global_syms);
3673 psym++)
3674 {
3675 /* If interrupted, then quit. */
3676 QUIT;
3677 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3678 }
3679
3680 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3681 psym < (objfile->static_psymbols.list + ps->statics_offset
3682 + ps->n_static_syms);
3683 psym++)
3684 {
3685 QUIT;
3686 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3687 }
3688 }
3689
3690 /* At this point scan through the misc symbol vectors and add each
3691 symbol you find to the list. Eventually we want to ignore
3692 anything that isn't a text symbol (everything else will be
3693 handled by the psymtab code above). */
3694
3695 ALL_MSYMBOLS (objfile, msymbol)
3696 {
3697 QUIT;
3698 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3699
3700 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3701 }
3702
3703 /* Search upwards from currently selected frame (so that we can
3704 complete on local vars. */
3705
3706 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
3707 {
3708 if (!BLOCK_SUPERBLOCK (b))
3709 {
3710 surrounding_static_block = b; /* For elmin of dups */
3711 }
3712
3713 /* Also catch fields of types defined in this places which match our
3714 text string. Only complete on types visible from current context. */
3715
3716 ALL_BLOCK_SYMBOLS (b, iter, sym)
3717 {
3718 QUIT;
3719 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3720 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3721 {
3722 struct type *t = SYMBOL_TYPE (sym);
3723 enum type_code c = TYPE_CODE (t);
3724
3725 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3726 {
3727 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3728 {
3729 if (TYPE_FIELD_NAME (t, j))
3730 {
3731 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3732 sym_text, sym_text_len, text, word);
3733 }
3734 }
3735 }
3736 }
3737 }
3738 }
3739
3740 /* Go through the symtabs and check the externs and statics for
3741 symbols which match. */
3742
3743 ALL_PRIMARY_SYMTABS (objfile, s)
3744 {
3745 QUIT;
3746 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3747 ALL_BLOCK_SYMBOLS (b, iter, sym)
3748 {
3749 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3750 }
3751 }
3752
3753 ALL_PRIMARY_SYMTABS (objfile, s)
3754 {
3755 QUIT;
3756 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3757 /* Don't do this block twice. */
3758 if (b == surrounding_static_block)
3759 continue;
3760 ALL_BLOCK_SYMBOLS (b, iter, sym)
3761 {
3762 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3763 }
3764 }
3765
3766 return (return_val);
3767 }
3768
3769 /* Return a NULL terminated array of all symbols (regardless of class)
3770 which begin by matching TEXT. If the answer is no symbols, then
3771 the return value is an array which contains only a NULL pointer. */
3772
3773 char **
3774 make_symbol_completion_list (char *text, char *word)
3775 {
3776 return current_language->la_make_symbol_completion_list (text, word);
3777 }
3778
3779 /* Like make_symbol_completion_list, but returns a list of symbols
3780 defined in a source file FILE. */
3781
3782 char **
3783 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3784 {
3785 struct symbol *sym;
3786 struct symtab *s;
3787 struct block *b;
3788 struct dict_iterator iter;
3789 /* The symbol we are completing on. Points in same buffer as text. */
3790 char *sym_text;
3791 /* Length of sym_text. */
3792 int sym_text_len;
3793
3794 /* Now look for the symbol we are supposed to complete on.
3795 FIXME: This should be language-specific. */
3796 {
3797 char *p;
3798 char quote_found;
3799 char *quote_pos = NULL;
3800
3801 /* First see if this is a quoted string. */
3802 quote_found = '\0';
3803 for (p = text; *p != '\0'; ++p)
3804 {
3805 if (quote_found != '\0')
3806 {
3807 if (*p == quote_found)
3808 /* Found close quote. */
3809 quote_found = '\0';
3810 else if (*p == '\\' && p[1] == quote_found)
3811 /* A backslash followed by the quote character
3812 doesn't end the string. */
3813 ++p;
3814 }
3815 else if (*p == '\'' || *p == '"')
3816 {
3817 quote_found = *p;
3818 quote_pos = p;
3819 }
3820 }
3821 if (quote_found == '\'')
3822 /* A string within single quotes can be a symbol, so complete on it. */
3823 sym_text = quote_pos + 1;
3824 else if (quote_found == '"')
3825 /* A double-quoted string is never a symbol, nor does it make sense
3826 to complete it any other way. */
3827 {
3828 return_val = (char **) xmalloc (sizeof (char *));
3829 return_val[0] = NULL;
3830 return return_val;
3831 }
3832 else
3833 {
3834 /* Not a quoted string. */
3835 sym_text = language_search_unquoted_string (text, p);
3836 }
3837 }
3838
3839 sym_text_len = strlen (sym_text);
3840
3841 return_val_size = 10;
3842 return_val_index = 0;
3843 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3844 return_val[0] = NULL;
3845
3846 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3847 in). */
3848 s = lookup_symtab (srcfile);
3849 if (s == NULL)
3850 {
3851 /* Maybe they typed the file with leading directories, while the
3852 symbol tables record only its basename. */
3853 const char *tail = lbasename (srcfile);
3854
3855 if (tail > srcfile)
3856 s = lookup_symtab (tail);
3857 }
3858
3859 /* If we have no symtab for that file, return an empty list. */
3860 if (s == NULL)
3861 return (return_val);
3862
3863 /* Go through this symtab and check the externs and statics for
3864 symbols which match. */
3865
3866 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3867 ALL_BLOCK_SYMBOLS (b, iter, sym)
3868 {
3869 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3870 }
3871
3872 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3873 ALL_BLOCK_SYMBOLS (b, iter, sym)
3874 {
3875 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3876 }
3877
3878 return (return_val);
3879 }
3880
3881 /* A helper function for make_source_files_completion_list. It adds
3882 another file name to a list of possible completions, growing the
3883 list as necessary. */
3884
3885 static void
3886 add_filename_to_list (const char *fname, char *text, char *word,
3887 char ***list, int *list_used, int *list_alloced)
3888 {
3889 char *new;
3890 size_t fnlen = strlen (fname);
3891
3892 if (*list_used + 1 >= *list_alloced)
3893 {
3894 *list_alloced *= 2;
3895 *list = (char **) xrealloc ((char *) *list,
3896 *list_alloced * sizeof (char *));
3897 }
3898
3899 if (word == text)
3900 {
3901 /* Return exactly fname. */
3902 new = xmalloc (fnlen + 5);
3903 strcpy (new, fname);
3904 }
3905 else if (word > text)
3906 {
3907 /* Return some portion of fname. */
3908 new = xmalloc (fnlen + 5);
3909 strcpy (new, fname + (word - text));
3910 }
3911 else
3912 {
3913 /* Return some of TEXT plus fname. */
3914 new = xmalloc (fnlen + (text - word) + 5);
3915 strncpy (new, word, text - word);
3916 new[text - word] = '\0';
3917 strcat (new, fname);
3918 }
3919 (*list)[*list_used] = new;
3920 (*list)[++*list_used] = NULL;
3921 }
3922
3923 static int
3924 not_interesting_fname (const char *fname)
3925 {
3926 static const char *illegal_aliens[] = {
3927 "_globals_", /* inserted by coff_symtab_read */
3928 NULL
3929 };
3930 int i;
3931
3932 for (i = 0; illegal_aliens[i]; i++)
3933 {
3934 if (strcmp (fname, illegal_aliens[i]) == 0)
3935 return 1;
3936 }
3937 return 0;
3938 }
3939
3940 /* Return a NULL terminated array of all source files whose names
3941 begin with matching TEXT. The file names are looked up in the
3942 symbol tables of this program. If the answer is no matchess, then
3943 the return value is an array which contains only a NULL pointer. */
3944
3945 char **
3946 make_source_files_completion_list (char *text, char *word)
3947 {
3948 struct symtab *s;
3949 struct partial_symtab *ps;
3950 struct objfile *objfile;
3951 int first = 1;
3952 int list_alloced = 1;
3953 int list_used = 0;
3954 size_t text_len = strlen (text);
3955 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
3956 const char *base_name;
3957
3958 list[0] = NULL;
3959
3960 if (!have_full_symbols () && !have_partial_symbols ())
3961 return list;
3962
3963 ALL_SYMTABS (objfile, s)
3964 {
3965 if (not_interesting_fname (s->filename))
3966 continue;
3967 if (!filename_seen (s->filename, 1, &first)
3968 #if HAVE_DOS_BASED_FILE_SYSTEM
3969 && strncasecmp (s->filename, text, text_len) == 0
3970 #else
3971 && strncmp (s->filename, text, text_len) == 0
3972 #endif
3973 )
3974 {
3975 /* This file matches for a completion; add it to the current
3976 list of matches. */
3977 add_filename_to_list (s->filename, text, word,
3978 &list, &list_used, &list_alloced);
3979 }
3980 else
3981 {
3982 /* NOTE: We allow the user to type a base name when the
3983 debug info records leading directories, but not the other
3984 way around. This is what subroutines of breakpoint
3985 command do when they parse file names. */
3986 base_name = lbasename (s->filename);
3987 if (base_name != s->filename
3988 && !filename_seen (base_name, 1, &first)
3989 #if HAVE_DOS_BASED_FILE_SYSTEM
3990 && strncasecmp (base_name, text, text_len) == 0
3991 #else
3992 && strncmp (base_name, text, text_len) == 0
3993 #endif
3994 )
3995 add_filename_to_list (base_name, text, word,
3996 &list, &list_used, &list_alloced);
3997 }
3998 }
3999
4000 ALL_PSYMTABS (objfile, ps)
4001 {
4002 if (not_interesting_fname (ps->filename))
4003 continue;
4004 if (!ps->readin)
4005 {
4006 if (!filename_seen (ps->filename, 1, &first)
4007 #if HAVE_DOS_BASED_FILE_SYSTEM
4008 && strncasecmp (ps->filename, text, text_len) == 0
4009 #else
4010 && strncmp (ps->filename, text, text_len) == 0
4011 #endif
4012 )
4013 {
4014 /* This file matches for a completion; add it to the
4015 current list of matches. */
4016 add_filename_to_list (ps->filename, text, word,
4017 &list, &list_used, &list_alloced);
4018
4019 }
4020 else
4021 {
4022 base_name = lbasename (ps->filename);
4023 if (base_name != ps->filename
4024 && !filename_seen (base_name, 1, &first)
4025 #if HAVE_DOS_BASED_FILE_SYSTEM
4026 && strncasecmp (base_name, text, text_len) == 0
4027 #else
4028 && strncmp (base_name, text, text_len) == 0
4029 #endif
4030 )
4031 add_filename_to_list (base_name, text, word,
4032 &list, &list_used, &list_alloced);
4033 }
4034 }
4035 }
4036
4037 return list;
4038 }
4039
4040 /* Determine if PC is in the prologue of a function. The prologue is the area
4041 between the first instruction of a function, and the first executable line.
4042 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4043
4044 If non-zero, func_start is where we think the prologue starts, possibly
4045 by previous examination of symbol table information.
4046 */
4047
4048 int
4049 in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
4050 {
4051 struct symtab_and_line sal;
4052 CORE_ADDR func_addr, func_end;
4053
4054 /* We have several sources of information we can consult to figure
4055 this out.
4056 - Compilers usually emit line number info that marks the prologue
4057 as its own "source line". So the ending address of that "line"
4058 is the end of the prologue. If available, this is the most
4059 reliable method.
4060 - The minimal symbols and partial symbols, which can usually tell
4061 us the starting and ending addresses of a function.
4062 - If we know the function's start address, we can call the
4063 architecture-defined gdbarch_skip_prologue function to analyze the
4064 instruction stream and guess where the prologue ends.
4065 - Our `func_start' argument; if non-zero, this is the caller's
4066 best guess as to the function's entry point. At the time of
4067 this writing, handle_inferior_event doesn't get this right, so
4068 it should be our last resort. */
4069
4070 /* Consult the partial symbol table, to find which function
4071 the PC is in. */
4072 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4073 {
4074 CORE_ADDR prologue_end;
4075
4076 /* We don't even have minsym information, so fall back to using
4077 func_start, if given. */
4078 if (! func_start)
4079 return 1; /* We *might* be in a prologue. */
4080
4081 prologue_end = gdbarch_skip_prologue (current_gdbarch, func_start);
4082
4083 return func_start <= pc && pc < prologue_end;
4084 }
4085
4086 /* If we have line number information for the function, that's
4087 usually pretty reliable. */
4088 sal = find_pc_line (func_addr, 0);
4089
4090 /* Now sal describes the source line at the function's entry point,
4091 which (by convention) is the prologue. The end of that "line",
4092 sal.end, is the end of the prologue.
4093
4094 Note that, for functions whose source code is all on a single
4095 line, the line number information doesn't always end up this way.
4096 So we must verify that our purported end-of-prologue address is
4097 *within* the function, not at its start or end. */
4098 if (sal.line == 0
4099 || sal.end <= func_addr
4100 || func_end <= sal.end)
4101 {
4102 /* We don't have any good line number info, so use the minsym
4103 information, together with the architecture-specific prologue
4104 scanning code. */
4105 CORE_ADDR prologue_end = gdbarch_skip_prologue
4106 (current_gdbarch, func_addr);
4107
4108 return func_addr <= pc && pc < prologue_end;
4109 }
4110
4111 /* We have line number info, and it looks good. */
4112 return func_addr <= pc && pc < sal.end;
4113 }
4114
4115 /* Given PC at the function's start address, attempt to find the
4116 prologue end using SAL information. Return zero if the skip fails.
4117
4118 A non-optimized prologue traditionally has one SAL for the function
4119 and a second for the function body. A single line function has
4120 them both pointing at the same line.
4121
4122 An optimized prologue is similar but the prologue may contain
4123 instructions (SALs) from the instruction body. Need to skip those
4124 while not getting into the function body.
4125
4126 The functions end point and an increasing SAL line are used as
4127 indicators of the prologue's endpoint.
4128
4129 This code is based on the function refine_prologue_limit (versions
4130 found in both ia64 and ppc). */
4131
4132 CORE_ADDR
4133 skip_prologue_using_sal (CORE_ADDR func_addr)
4134 {
4135 struct symtab_and_line prologue_sal;
4136 CORE_ADDR start_pc;
4137 CORE_ADDR end_pc;
4138
4139 /* Get an initial range for the function. */
4140 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4141 start_pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
4142
4143 prologue_sal = find_pc_line (start_pc, 0);
4144 if (prologue_sal.line != 0)
4145 {
4146 /* If there is only one sal that covers the entire function,
4147 then it is probably a single line function, like
4148 "foo(){}". */
4149 if (prologue_sal.end >= end_pc)
4150 return 0;
4151 while (prologue_sal.end < end_pc)
4152 {
4153 struct symtab_and_line sal;
4154
4155 sal = find_pc_line (prologue_sal.end, 0);
4156 if (sal.line == 0)
4157 break;
4158 /* Assume that a consecutive SAL for the same (or larger)
4159 line mark the prologue -> body transition. */
4160 if (sal.line >= prologue_sal.line)
4161 break;
4162 /* The case in which compiler's optimizer/scheduler has
4163 moved instructions into the prologue. We look ahead in
4164 the function looking for address ranges whose
4165 corresponding line number is less the first one that we
4166 found for the function. This is more conservative then
4167 refine_prologue_limit which scans a large number of SALs
4168 looking for any in the prologue */
4169 prologue_sal = sal;
4170 }
4171 }
4172 return prologue_sal.end;
4173 }
4174 \f
4175 struct symtabs_and_lines
4176 decode_line_spec (char *string, int funfirstline)
4177 {
4178 struct symtabs_and_lines sals;
4179 struct symtab_and_line cursal;
4180
4181 if (string == 0)
4182 error (_("Empty line specification."));
4183
4184 /* We use whatever is set as the current source line. We do not try
4185 and get a default or it will recursively call us! */
4186 cursal = get_current_source_symtab_and_line ();
4187
4188 sals = decode_line_1 (&string, funfirstline,
4189 cursal.symtab, cursal.line,
4190 (char ***) NULL, NULL);
4191
4192 if (*string)
4193 error (_("Junk at end of line specification: %s"), string);
4194 return sals;
4195 }
4196
4197 /* Track MAIN */
4198 static char *name_of_main;
4199
4200 void
4201 set_main_name (const char *name)
4202 {
4203 if (name_of_main != NULL)
4204 {
4205 xfree (name_of_main);
4206 name_of_main = NULL;
4207 }
4208 if (name != NULL)
4209 {
4210 name_of_main = xstrdup (name);
4211 }
4212 }
4213
4214 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4215 accordingly. */
4216
4217 static void
4218 find_main_name (void)
4219 {
4220 const char *new_main_name;
4221
4222 /* Try to see if the main procedure is in Ada. */
4223 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4224 be to add a new method in the language vector, and call this
4225 method for each language until one of them returns a non-empty
4226 name. This would allow us to remove this hard-coded call to
4227 an Ada function. It is not clear that this is a better approach
4228 at this point, because all methods need to be written in a way
4229 such that false positives never be returned. For instance, it is
4230 important that a method does not return a wrong name for the main
4231 procedure if the main procedure is actually written in a different
4232 language. It is easy to guaranty this with Ada, since we use a
4233 special symbol generated only when the main in Ada to find the name
4234 of the main procedure. It is difficult however to see how this can
4235 be guarantied for languages such as C, for instance. This suggests
4236 that order of call for these methods becomes important, which means
4237 a more complicated approach. */
4238 new_main_name = ada_main_name ();
4239 if (new_main_name != NULL)
4240 {
4241 set_main_name (new_main_name);
4242 return;
4243 }
4244
4245 new_main_name = pascal_main_name ();
4246 if (new_main_name != NULL)
4247 {
4248 set_main_name (new_main_name);
4249 return;
4250 }
4251
4252 /* The languages above didn't identify the name of the main procedure.
4253 Fallback to "main". */
4254 set_main_name ("main");
4255 }
4256
4257 char *
4258 main_name (void)
4259 {
4260 if (name_of_main == NULL)
4261 find_main_name ();
4262
4263 return name_of_main;
4264 }
4265
4266 /* Handle ``executable_changed'' events for the symtab module. */
4267
4268 static void
4269 symtab_observer_executable_changed (void *unused)
4270 {
4271 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4272 set_main_name (NULL);
4273 }
4274
4275 /* Helper to expand_line_sal below. Appends new sal to SAL,
4276 initializing it from SYMTAB, LINENO and PC. */
4277 static void
4278 append_expanded_sal (struct symtabs_and_lines *sal,
4279 struct symtab *symtab,
4280 int lineno, CORE_ADDR pc)
4281 {
4282 CORE_ADDR func_addr, func_end;
4283
4284 sal->sals = xrealloc (sal->sals,
4285 sizeof (sal->sals[0])
4286 * (sal->nelts + 1));
4287 init_sal (sal->sals + sal->nelts);
4288 sal->sals[sal->nelts].symtab = symtab;
4289 sal->sals[sal->nelts].section = NULL;
4290 sal->sals[sal->nelts].end = 0;
4291 sal->sals[sal->nelts].line = lineno;
4292 sal->sals[sal->nelts].pc = pc;
4293 ++sal->nelts;
4294 }
4295
4296 /* Compute a set of all sals in
4297 the entire program that correspond to same file
4298 and line as SAL and return those. If there
4299 are several sals that belong to the same block,
4300 only one sal for the block is included in results. */
4301
4302 struct symtabs_and_lines
4303 expand_line_sal (struct symtab_and_line sal)
4304 {
4305 struct symtabs_and_lines ret, this_line;
4306 int i, j;
4307 struct objfile *objfile;
4308 struct partial_symtab *psymtab;
4309 struct symtab *symtab;
4310 int lineno;
4311 int deleted = 0;
4312 struct block **blocks = NULL;
4313 int *filter;
4314
4315 ret.nelts = 0;
4316 ret.sals = NULL;
4317
4318 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4319 {
4320 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4321 ret.sals[0] = sal;
4322 ret.nelts = 1;
4323 return ret;
4324 }
4325 else
4326 {
4327 struct linetable_entry *best_item = 0;
4328 struct symtab *best_symtab = 0;
4329 int exact = 0;
4330
4331 lineno = sal.line;
4332
4333 /* We meed to find all symtabs for a file which name
4334 is described by sal. We cannot just directly
4335 iterate over symtabs, since a symtab might not be
4336 yet created. We also cannot iterate over psymtabs,
4337 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4338 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4339 corresponding to an included file. Therefore, we do
4340 first pass over psymtabs, reading in those with
4341 the right name. Then, we iterate over symtabs, knowing
4342 that all symtabs we're interested in are loaded. */
4343
4344 ALL_PSYMTABS (objfile, psymtab)
4345 {
4346 if (strcmp (sal.symtab->filename,
4347 psymtab->filename) == 0)
4348 PSYMTAB_TO_SYMTAB (psymtab);
4349 }
4350
4351
4352 /* For each symtab, we add all pcs to ret.sals. I'm actually
4353 not sure what to do if we have exact match in one symtab,
4354 and non-exact match on another symtab.
4355 */
4356 ALL_SYMTABS (objfile, symtab)
4357 {
4358 if (strcmp (sal.symtab->filename,
4359 symtab->filename) == 0)
4360 {
4361 struct linetable *l;
4362 int len;
4363 l = LINETABLE (symtab);
4364 if (!l)
4365 continue;
4366 len = l->nitems;
4367
4368 for (j = 0; j < len; j++)
4369 {
4370 struct linetable_entry *item = &(l->item[j]);
4371
4372 if (item->line == lineno)
4373 {
4374 exact = 1;
4375 append_expanded_sal (&ret, symtab, lineno, item->pc);
4376 }
4377 else if (!exact && item->line > lineno
4378 && (best_item == NULL || item->line < best_item->line))
4379
4380 {
4381 best_item = item;
4382 best_symtab = symtab;
4383 }
4384 }
4385 }
4386 }
4387 if (!exact && best_item)
4388 append_expanded_sal (&ret, best_symtab, lineno, best_item->pc);
4389 }
4390
4391 /* For optimized code, compiler can scatter one source line accross
4392 disjoint ranges of PC values, even when no duplicate functions
4393 or inline functions are involved. For example, 'for (;;)' inside
4394 non-template non-inline non-ctor-or-dtor function can result
4395 in two PC ranges. In this case, we don't want to set breakpoint
4396 on first PC of each range. To filter such cases, we use containing
4397 blocks -- for each PC found above we see if there are other PCs
4398 that are in the same block. If yes, the other PCs are filtered out. */
4399
4400 filter = xmalloc (ret.nelts * sizeof (int));
4401 blocks = xmalloc (ret.nelts * sizeof (struct block *));
4402 for (i = 0; i < ret.nelts; ++i)
4403 {
4404 filter[i] = 1;
4405 blocks[i] = block_for_pc (ret.sals[i].pc);
4406 }
4407
4408 for (i = 0; i < ret.nelts; ++i)
4409 if (blocks[i] != NULL)
4410 for (j = i+1; j < ret.nelts; ++j)
4411 if (blocks[j] == blocks[i])
4412 {
4413 filter[j] = 0;
4414 ++deleted;
4415 break;
4416 }
4417
4418 {
4419 struct symtab_and_line *final =
4420 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4421
4422 for (i = 0, j = 0; i < ret.nelts; ++i)
4423 if (filter[i])
4424 final[j++] = ret.sals[i];
4425
4426 ret.nelts -= deleted;
4427 xfree (ret.sals);
4428 ret.sals = final;
4429 }
4430
4431 return ret;
4432 }
4433
4434
4435 void
4436 _initialize_symtab (void)
4437 {
4438 add_info ("variables", variables_info, _("\
4439 All global and static variable names, or those matching REGEXP."));
4440 if (dbx_commands)
4441 add_com ("whereis", class_info, variables_info, _("\
4442 All global and static variable names, or those matching REGEXP."));
4443
4444 add_info ("functions", functions_info,
4445 _("All function names, or those matching REGEXP."));
4446
4447
4448 /* FIXME: This command has at least the following problems:
4449 1. It prints builtin types (in a very strange and confusing fashion).
4450 2. It doesn't print right, e.g. with
4451 typedef struct foo *FOO
4452 type_print prints "FOO" when we want to make it (in this situation)
4453 print "struct foo *".
4454 I also think "ptype" or "whatis" is more likely to be useful (but if
4455 there is much disagreement "info types" can be fixed). */
4456 add_info ("types", types_info,
4457 _("All type names, or those matching REGEXP."));
4458
4459 add_info ("sources", sources_info,
4460 _("Source files in the program."));
4461
4462 add_com ("rbreak", class_breakpoint, rbreak_command,
4463 _("Set a breakpoint for all functions matching REGEXP."));
4464
4465 if (xdb_commands)
4466 {
4467 add_com ("lf", class_info, sources_info,
4468 _("Source files in the program"));
4469 add_com ("lg", class_info, variables_info, _("\
4470 All global and static variable names, or those matching REGEXP."));
4471 }
4472
4473 add_setshow_enum_cmd ("multiple-symbols", no_class,
4474 multiple_symbols_modes, &multiple_symbols_mode,
4475 _("\
4476 Set the debugger behavior when more than one symbol are possible matches\n\
4477 in an expression."), _("\
4478 Show how the debugger handles ambiguities in expressions."), _("\
4479 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4480 NULL, NULL, &setlist, &showlist);
4481
4482 /* Initialize the one built-in type that isn't language dependent... */
4483 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4484 "<unknown type>", (struct objfile *) NULL);
4485
4486 observer_attach_executable_changed (symtab_observer_executable_changed);
4487 }
This page took 0.117493 seconds and 5 git commands to generate.