Introduce command_line_up
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64
65 /* Forward declarations for local functions. */
66
67 static void rbreak_command (char *, int);
68
69 static int find_line_common (struct linetable *, int, int *, int);
70
71 static struct block_symbol
72 lookup_symbol_aux (const char *name,
73 const struct block *block,
74 const domain_enum domain,
75 enum language language,
76 struct field_of_this_result *);
77
78 static
79 struct block_symbol lookup_local_symbol (const char *name,
80 const struct block *block,
81 const domain_enum domain,
82 enum language language);
83
84 static struct block_symbol
85 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
86 const char *name, const domain_enum domain);
87
88 /* See symtab.h. */
89 const struct block_symbol null_block_symbol = { NULL, NULL };
90
91 extern initialize_file_ftype _initialize_symtab;
92
93 /* Program space key for finding name and language of "main". */
94
95 static const struct program_space_data *main_progspace_key;
96
97 /* Type of the data stored on the program space. */
98
99 struct main_info
100 {
101 /* Name of "main". */
102
103 char *name_of_main;
104
105 /* Language of "main". */
106
107 enum language language_of_main;
108 };
109
110 /* Program space key for finding its symbol cache. */
111
112 static const struct program_space_data *symbol_cache_key;
113
114 /* The default symbol cache size.
115 There is no extra cpu cost for large N (except when flushing the cache,
116 which is rare). The value here is just a first attempt. A better default
117 value may be higher or lower. A prime number can make up for a bad hash
118 computation, so that's why the number is what it is. */
119 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
120
121 /* The maximum symbol cache size.
122 There's no method to the decision of what value to use here, other than
123 there's no point in allowing a user typo to make gdb consume all memory. */
124 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
125
126 /* symbol_cache_lookup returns this if a previous lookup failed to find the
127 symbol in any objfile. */
128 #define SYMBOL_LOOKUP_FAILED \
129 ((struct block_symbol) {(struct symbol *) 1, NULL})
130 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
131
132 /* Recording lookups that don't find the symbol is just as important, if not
133 more so, than recording found symbols. */
134
135 enum symbol_cache_slot_state
136 {
137 SYMBOL_SLOT_UNUSED,
138 SYMBOL_SLOT_NOT_FOUND,
139 SYMBOL_SLOT_FOUND
140 };
141
142 struct symbol_cache_slot
143 {
144 enum symbol_cache_slot_state state;
145
146 /* The objfile that was current when the symbol was looked up.
147 This is only needed for global blocks, but for simplicity's sake
148 we allocate the space for both. If data shows the extra space used
149 for static blocks is a problem, we can split things up then.
150
151 Global blocks need cache lookup to include the objfile context because
152 we need to account for gdbarch_iterate_over_objfiles_in_search_order
153 which can traverse objfiles in, effectively, any order, depending on
154 the current objfile, thus affecting which symbol is found. Normally,
155 only the current objfile is searched first, and then the rest are
156 searched in recorded order; but putting cache lookup inside
157 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
158 Instead we just make the current objfile part of the context of
159 cache lookup. This means we can record the same symbol multiple times,
160 each with a different "current objfile" that was in effect when the
161 lookup was saved in the cache, but cache space is pretty cheap. */
162 const struct objfile *objfile_context;
163
164 union
165 {
166 struct block_symbol found;
167 struct
168 {
169 char *name;
170 domain_enum domain;
171 } not_found;
172 } value;
173 };
174
175 /* Symbols don't specify global vs static block.
176 So keep them in separate caches. */
177
178 struct block_symbol_cache
179 {
180 unsigned int hits;
181 unsigned int misses;
182 unsigned int collisions;
183
184 /* SYMBOLS is a variable length array of this size.
185 One can imagine that in general one cache (global/static) should be a
186 fraction of the size of the other, but there's no data at the moment
187 on which to decide. */
188 unsigned int size;
189
190 struct symbol_cache_slot symbols[1];
191 };
192
193 /* The symbol cache.
194
195 Searching for symbols in the static and global blocks over multiple objfiles
196 again and again can be slow, as can searching very big objfiles. This is a
197 simple cache to improve symbol lookup performance, which is critical to
198 overall gdb performance.
199
200 Symbols are hashed on the name, its domain, and block.
201 They are also hashed on their objfile for objfile-specific lookups. */
202
203 struct symbol_cache
204 {
205 struct block_symbol_cache *global_symbols;
206 struct block_symbol_cache *static_symbols;
207 };
208
209 /* When non-zero, print debugging messages related to symtab creation. */
210 unsigned int symtab_create_debug = 0;
211
212 /* When non-zero, print debugging messages related to symbol lookup. */
213 unsigned int symbol_lookup_debug = 0;
214
215 /* The size of the cache is staged here. */
216 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
217
218 /* The current value of the symbol cache size.
219 This is saved so that if the user enters a value too big we can restore
220 the original value from here. */
221 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
222
223 /* Non-zero if a file may be known by two different basenames.
224 This is the uncommon case, and significantly slows down gdb.
225 Default set to "off" to not slow down the common case. */
226 int basenames_may_differ = 0;
227
228 /* Allow the user to configure the debugger behavior with respect
229 to multiple-choice menus when more than one symbol matches during
230 a symbol lookup. */
231
232 const char multiple_symbols_ask[] = "ask";
233 const char multiple_symbols_all[] = "all";
234 const char multiple_symbols_cancel[] = "cancel";
235 static const char *const multiple_symbols_modes[] =
236 {
237 multiple_symbols_ask,
238 multiple_symbols_all,
239 multiple_symbols_cancel,
240 NULL
241 };
242 static const char *multiple_symbols_mode = multiple_symbols_all;
243
244 /* Read-only accessor to AUTO_SELECT_MODE. */
245
246 const char *
247 multiple_symbols_select_mode (void)
248 {
249 return multiple_symbols_mode;
250 }
251
252 /* Return the name of a domain_enum. */
253
254 const char *
255 domain_name (domain_enum e)
256 {
257 switch (e)
258 {
259 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
260 case VAR_DOMAIN: return "VAR_DOMAIN";
261 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
262 case MODULE_DOMAIN: return "MODULE_DOMAIN";
263 case LABEL_DOMAIN: return "LABEL_DOMAIN";
264 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
265 default: gdb_assert_not_reached ("bad domain_enum");
266 }
267 }
268
269 /* Return the name of a search_domain . */
270
271 const char *
272 search_domain_name (enum search_domain e)
273 {
274 switch (e)
275 {
276 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
277 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
278 case TYPES_DOMAIN: return "TYPES_DOMAIN";
279 case ALL_DOMAIN: return "ALL_DOMAIN";
280 default: gdb_assert_not_reached ("bad search_domain");
281 }
282 }
283
284 /* See symtab.h. */
285
286 struct symtab *
287 compunit_primary_filetab (const struct compunit_symtab *cust)
288 {
289 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
290
291 /* The primary file symtab is the first one in the list. */
292 return COMPUNIT_FILETABS (cust);
293 }
294
295 /* See symtab.h. */
296
297 enum language
298 compunit_language (const struct compunit_symtab *cust)
299 {
300 struct symtab *symtab = compunit_primary_filetab (cust);
301
302 /* The language of the compunit symtab is the language of its primary
303 source file. */
304 return SYMTAB_LANGUAGE (symtab);
305 }
306
307 /* See whether FILENAME matches SEARCH_NAME using the rule that we
308 advertise to the user. (The manual's description of linespecs
309 describes what we advertise). Returns true if they match, false
310 otherwise. */
311
312 int
313 compare_filenames_for_search (const char *filename, const char *search_name)
314 {
315 int len = strlen (filename);
316 size_t search_len = strlen (search_name);
317
318 if (len < search_len)
319 return 0;
320
321 /* The tail of FILENAME must match. */
322 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
323 return 0;
324
325 /* Either the names must completely match, or the character
326 preceding the trailing SEARCH_NAME segment of FILENAME must be a
327 directory separator.
328
329 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
330 cannot match FILENAME "/path//dir/file.c" - as user has requested
331 absolute path. The sama applies for "c:\file.c" possibly
332 incorrectly hypothetically matching "d:\dir\c:\file.c".
333
334 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
335 compatible with SEARCH_NAME "file.c". In such case a compiler had
336 to put the "c:file.c" name into debug info. Such compatibility
337 works only on GDB built for DOS host. */
338 return (len == search_len
339 || (!IS_ABSOLUTE_PATH (search_name)
340 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
341 || (HAS_DRIVE_SPEC (filename)
342 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
343 }
344
345 /* Same as compare_filenames_for_search, but for glob-style patterns.
346 Heads up on the order of the arguments. They match the order of
347 compare_filenames_for_search, but it's the opposite of the order of
348 arguments to gdb_filename_fnmatch. */
349
350 int
351 compare_glob_filenames_for_search (const char *filename,
352 const char *search_name)
353 {
354 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
355 all /s have to be explicitly specified. */
356 int file_path_elements = count_path_elements (filename);
357 int search_path_elements = count_path_elements (search_name);
358
359 if (search_path_elements > file_path_elements)
360 return 0;
361
362 if (IS_ABSOLUTE_PATH (search_name))
363 {
364 return (search_path_elements == file_path_elements
365 && gdb_filename_fnmatch (search_name, filename,
366 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
367 }
368
369 {
370 const char *file_to_compare
371 = strip_leading_path_elements (filename,
372 file_path_elements - search_path_elements);
373
374 return gdb_filename_fnmatch (search_name, file_to_compare,
375 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
376 }
377 }
378
379 /* Check for a symtab of a specific name by searching some symtabs.
380 This is a helper function for callbacks of iterate_over_symtabs.
381
382 If NAME is not absolute, then REAL_PATH is NULL
383 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
384
385 The return value, NAME, REAL_PATH and CALLBACK are identical to the
386 `map_symtabs_matching_filename' method of quick_symbol_functions.
387
388 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
389 Each symtab within the specified compunit symtab is also searched.
390 AFTER_LAST is one past the last compunit symtab to search; NULL means to
391 search until the end of the list. */
392
393 bool
394 iterate_over_some_symtabs (const char *name,
395 const char *real_path,
396 struct compunit_symtab *first,
397 struct compunit_symtab *after_last,
398 gdb::function_view<bool (symtab *)> callback)
399 {
400 struct compunit_symtab *cust;
401 struct symtab *s;
402 const char* base_name = lbasename (name);
403
404 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
405 {
406 ALL_COMPUNIT_FILETABS (cust, s)
407 {
408 if (compare_filenames_for_search (s->filename, name))
409 {
410 if (callback (s))
411 return true;
412 continue;
413 }
414
415 /* Before we invoke realpath, which can get expensive when many
416 files are involved, do a quick comparison of the basenames. */
417 if (! basenames_may_differ
418 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
419 continue;
420
421 if (compare_filenames_for_search (symtab_to_fullname (s), name))
422 {
423 if (callback (s))
424 return true;
425 continue;
426 }
427
428 /* If the user gave us an absolute path, try to find the file in
429 this symtab and use its absolute path. */
430 if (real_path != NULL)
431 {
432 const char *fullname = symtab_to_fullname (s);
433
434 gdb_assert (IS_ABSOLUTE_PATH (real_path));
435 gdb_assert (IS_ABSOLUTE_PATH (name));
436 if (FILENAME_CMP (real_path, fullname) == 0)
437 {
438 if (callback (s))
439 return true;
440 continue;
441 }
442 }
443 }
444 }
445
446 return false;
447 }
448
449 /* Check for a symtab of a specific name; first in symtabs, then in
450 psymtabs. *If* there is no '/' in the name, a match after a '/'
451 in the symtab filename will also work.
452
453 Calls CALLBACK with each symtab that is found. If CALLBACK returns
454 true, the search stops. */
455
456 void
457 iterate_over_symtabs (const char *name,
458 gdb::function_view<bool (symtab *)> callback)
459 {
460 struct objfile *objfile;
461 gdb::unique_xmalloc_ptr<char> real_path;
462
463 /* Here we are interested in canonicalizing an absolute path, not
464 absolutizing a relative path. */
465 if (IS_ABSOLUTE_PATH (name))
466 {
467 real_path.reset (gdb_realpath (name));
468 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
469 }
470
471 ALL_OBJFILES (objfile)
472 {
473 if (iterate_over_some_symtabs (name, real_path.get (),
474 objfile->compunit_symtabs, NULL,
475 callback))
476 return;
477 }
478
479 /* Same search rules as above apply here, but now we look thru the
480 psymtabs. */
481
482 ALL_OBJFILES (objfile)
483 {
484 if (objfile->sf
485 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
486 name,
487 real_path.get (),
488 callback))
489 return;
490 }
491 }
492
493 /* A wrapper for iterate_over_symtabs that returns the first matching
494 symtab, or NULL. */
495
496 struct symtab *
497 lookup_symtab (const char *name)
498 {
499 struct symtab *result = NULL;
500
501 iterate_over_symtabs (name, [&] (symtab *symtab)
502 {
503 result = symtab;
504 return true;
505 });
506
507 return result;
508 }
509
510 \f
511 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
512 full method name, which consist of the class name (from T), the unadorned
513 method name from METHOD_ID, and the signature for the specific overload,
514 specified by SIGNATURE_ID. Note that this function is g++ specific. */
515
516 char *
517 gdb_mangle_name (struct type *type, int method_id, int signature_id)
518 {
519 int mangled_name_len;
520 char *mangled_name;
521 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
522 struct fn_field *method = &f[signature_id];
523 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
524 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
525 const char *newname = type_name_no_tag (type);
526
527 /* Does the form of physname indicate that it is the full mangled name
528 of a constructor (not just the args)? */
529 int is_full_physname_constructor;
530
531 int is_constructor;
532 int is_destructor = is_destructor_name (physname);
533 /* Need a new type prefix. */
534 const char *const_prefix = method->is_const ? "C" : "";
535 const char *volatile_prefix = method->is_volatile ? "V" : "";
536 char buf[20];
537 int len = (newname == NULL ? 0 : strlen (newname));
538
539 /* Nothing to do if physname already contains a fully mangled v3 abi name
540 or an operator name. */
541 if ((physname[0] == '_' && physname[1] == 'Z')
542 || is_operator_name (field_name))
543 return xstrdup (physname);
544
545 is_full_physname_constructor = is_constructor_name (physname);
546
547 is_constructor = is_full_physname_constructor
548 || (newname && strcmp (field_name, newname) == 0);
549
550 if (!is_destructor)
551 is_destructor = (startswith (physname, "__dt"));
552
553 if (is_destructor || is_full_physname_constructor)
554 {
555 mangled_name = (char *) xmalloc (strlen (physname) + 1);
556 strcpy (mangled_name, physname);
557 return mangled_name;
558 }
559
560 if (len == 0)
561 {
562 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
563 }
564 else if (physname[0] == 't' || physname[0] == 'Q')
565 {
566 /* The physname for template and qualified methods already includes
567 the class name. */
568 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
569 newname = NULL;
570 len = 0;
571 }
572 else
573 {
574 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
575 volatile_prefix, len);
576 }
577 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
578 + strlen (buf) + len + strlen (physname) + 1);
579
580 mangled_name = (char *) xmalloc (mangled_name_len);
581 if (is_constructor)
582 mangled_name[0] = '\0';
583 else
584 strcpy (mangled_name, field_name);
585
586 strcat (mangled_name, buf);
587 /* If the class doesn't have a name, i.e. newname NULL, then we just
588 mangle it using 0 for the length of the class. Thus it gets mangled
589 as something starting with `::' rather than `classname::'. */
590 if (newname != NULL)
591 strcat (mangled_name, newname);
592
593 strcat (mangled_name, physname);
594 return (mangled_name);
595 }
596
597 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
598 correctly allocated. */
599
600 void
601 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
602 const char *name,
603 struct obstack *obstack)
604 {
605 if (gsymbol->language == language_ada)
606 {
607 if (name == NULL)
608 {
609 gsymbol->ada_mangled = 0;
610 gsymbol->language_specific.obstack = obstack;
611 }
612 else
613 {
614 gsymbol->ada_mangled = 1;
615 gsymbol->language_specific.demangled_name = name;
616 }
617 }
618 else
619 gsymbol->language_specific.demangled_name = name;
620 }
621
622 /* Return the demangled name of GSYMBOL. */
623
624 const char *
625 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
626 {
627 if (gsymbol->language == language_ada)
628 {
629 if (!gsymbol->ada_mangled)
630 return NULL;
631 /* Fall through. */
632 }
633
634 return gsymbol->language_specific.demangled_name;
635 }
636
637 \f
638 /* Initialize the language dependent portion of a symbol
639 depending upon the language for the symbol. */
640
641 void
642 symbol_set_language (struct general_symbol_info *gsymbol,
643 enum language language,
644 struct obstack *obstack)
645 {
646 gsymbol->language = language;
647 if (gsymbol->language == language_cplus
648 || gsymbol->language == language_d
649 || gsymbol->language == language_go
650 || gsymbol->language == language_objc
651 || gsymbol->language == language_fortran)
652 {
653 symbol_set_demangled_name (gsymbol, NULL, obstack);
654 }
655 else if (gsymbol->language == language_ada)
656 {
657 gdb_assert (gsymbol->ada_mangled == 0);
658 gsymbol->language_specific.obstack = obstack;
659 }
660 else
661 {
662 memset (&gsymbol->language_specific, 0,
663 sizeof (gsymbol->language_specific));
664 }
665 }
666
667 /* Functions to initialize a symbol's mangled name. */
668
669 /* Objects of this type are stored in the demangled name hash table. */
670 struct demangled_name_entry
671 {
672 const char *mangled;
673 char demangled[1];
674 };
675
676 /* Hash function for the demangled name hash. */
677
678 static hashval_t
679 hash_demangled_name_entry (const void *data)
680 {
681 const struct demangled_name_entry *e
682 = (const struct demangled_name_entry *) data;
683
684 return htab_hash_string (e->mangled);
685 }
686
687 /* Equality function for the demangled name hash. */
688
689 static int
690 eq_demangled_name_entry (const void *a, const void *b)
691 {
692 const struct demangled_name_entry *da
693 = (const struct demangled_name_entry *) a;
694 const struct demangled_name_entry *db
695 = (const struct demangled_name_entry *) b;
696
697 return strcmp (da->mangled, db->mangled) == 0;
698 }
699
700 /* Create the hash table used for demangled names. Each hash entry is
701 a pair of strings; one for the mangled name and one for the demangled
702 name. The entry is hashed via just the mangled name. */
703
704 static void
705 create_demangled_names_hash (struct objfile *objfile)
706 {
707 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
708 The hash table code will round this up to the next prime number.
709 Choosing a much larger table size wastes memory, and saves only about
710 1% in symbol reading. */
711
712 objfile->per_bfd->demangled_names_hash = htab_create_alloc
713 (256, hash_demangled_name_entry, eq_demangled_name_entry,
714 NULL, xcalloc, xfree);
715 }
716
717 /* Try to determine the demangled name for a symbol, based on the
718 language of that symbol. If the language is set to language_auto,
719 it will attempt to find any demangling algorithm that works and
720 then set the language appropriately. The returned name is allocated
721 by the demangler and should be xfree'd. */
722
723 static char *
724 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
725 const char *mangled)
726 {
727 char *demangled = NULL;
728 int i;
729 int recognized;
730
731 if (gsymbol->language == language_unknown)
732 gsymbol->language = language_auto;
733
734 if (gsymbol->language != language_auto)
735 {
736 const struct language_defn *lang = language_def (gsymbol->language);
737
738 language_sniff_from_mangled_name (lang, mangled, &demangled);
739 return demangled;
740 }
741
742 for (i = language_unknown; i < nr_languages; ++i)
743 {
744 enum language l = (enum language) i;
745 const struct language_defn *lang = language_def (l);
746
747 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
748 {
749 gsymbol->language = l;
750 return demangled;
751 }
752 }
753
754 return NULL;
755 }
756
757 /* Set both the mangled and demangled (if any) names for GSYMBOL based
758 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
759 objfile's obstack; but if COPY_NAME is 0 and if NAME is
760 NUL-terminated, then this function assumes that NAME is already
761 correctly saved (either permanently or with a lifetime tied to the
762 objfile), and it will not be copied.
763
764 The hash table corresponding to OBJFILE is used, and the memory
765 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
766 so the pointer can be discarded after calling this function. */
767
768 void
769 symbol_set_names (struct general_symbol_info *gsymbol,
770 const char *linkage_name, int len, int copy_name,
771 struct objfile *objfile)
772 {
773 struct demangled_name_entry **slot;
774 /* A 0-terminated copy of the linkage name. */
775 const char *linkage_name_copy;
776 struct demangled_name_entry entry;
777 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
778
779 if (gsymbol->language == language_ada)
780 {
781 /* In Ada, we do the symbol lookups using the mangled name, so
782 we can save some space by not storing the demangled name. */
783 if (!copy_name)
784 gsymbol->name = linkage_name;
785 else
786 {
787 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
788 len + 1);
789
790 memcpy (name, linkage_name, len);
791 name[len] = '\0';
792 gsymbol->name = name;
793 }
794 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
795
796 return;
797 }
798
799 if (per_bfd->demangled_names_hash == NULL)
800 create_demangled_names_hash (objfile);
801
802 if (linkage_name[len] != '\0')
803 {
804 char *alloc_name;
805
806 alloc_name = (char *) alloca (len + 1);
807 memcpy (alloc_name, linkage_name, len);
808 alloc_name[len] = '\0';
809
810 linkage_name_copy = alloc_name;
811 }
812 else
813 linkage_name_copy = linkage_name;
814
815 entry.mangled = linkage_name_copy;
816 slot = ((struct demangled_name_entry **)
817 htab_find_slot (per_bfd->demangled_names_hash,
818 &entry, INSERT));
819
820 /* If this name is not in the hash table, add it. */
821 if (*slot == NULL
822 /* A C version of the symbol may have already snuck into the table.
823 This happens to, e.g., main.init (__go_init_main). Cope. */
824 || (gsymbol->language == language_go
825 && (*slot)->demangled[0] == '\0'))
826 {
827 char *demangled_name = symbol_find_demangled_name (gsymbol,
828 linkage_name_copy);
829 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
830
831 /* Suppose we have demangled_name==NULL, copy_name==0, and
832 linkage_name_copy==linkage_name. In this case, we already have the
833 mangled name saved, and we don't have a demangled name. So,
834 you might think we could save a little space by not recording
835 this in the hash table at all.
836
837 It turns out that it is actually important to still save such
838 an entry in the hash table, because storing this name gives
839 us better bcache hit rates for partial symbols. */
840 if (!copy_name && linkage_name_copy == linkage_name)
841 {
842 *slot
843 = ((struct demangled_name_entry *)
844 obstack_alloc (&per_bfd->storage_obstack,
845 offsetof (struct demangled_name_entry, demangled)
846 + demangled_len + 1));
847 (*slot)->mangled = linkage_name;
848 }
849 else
850 {
851 char *mangled_ptr;
852
853 /* If we must copy the mangled name, put it directly after
854 the demangled name so we can have a single
855 allocation. */
856 *slot
857 = ((struct demangled_name_entry *)
858 obstack_alloc (&per_bfd->storage_obstack,
859 offsetof (struct demangled_name_entry, demangled)
860 + len + demangled_len + 2));
861 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
862 strcpy (mangled_ptr, linkage_name_copy);
863 (*slot)->mangled = mangled_ptr;
864 }
865
866 if (demangled_name != NULL)
867 {
868 strcpy ((*slot)->demangled, demangled_name);
869 xfree (demangled_name);
870 }
871 else
872 (*slot)->demangled[0] = '\0';
873 }
874
875 gsymbol->name = (*slot)->mangled;
876 if ((*slot)->demangled[0] != '\0')
877 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
878 &per_bfd->storage_obstack);
879 else
880 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
881 }
882
883 /* Return the source code name of a symbol. In languages where
884 demangling is necessary, this is the demangled name. */
885
886 const char *
887 symbol_natural_name (const struct general_symbol_info *gsymbol)
888 {
889 switch (gsymbol->language)
890 {
891 case language_cplus:
892 case language_d:
893 case language_go:
894 case language_objc:
895 case language_fortran:
896 if (symbol_get_demangled_name (gsymbol) != NULL)
897 return symbol_get_demangled_name (gsymbol);
898 break;
899 case language_ada:
900 return ada_decode_symbol (gsymbol);
901 default:
902 break;
903 }
904 return gsymbol->name;
905 }
906
907 /* Return the demangled name for a symbol based on the language for
908 that symbol. If no demangled name exists, return NULL. */
909
910 const char *
911 symbol_demangled_name (const struct general_symbol_info *gsymbol)
912 {
913 const char *dem_name = NULL;
914
915 switch (gsymbol->language)
916 {
917 case language_cplus:
918 case language_d:
919 case language_go:
920 case language_objc:
921 case language_fortran:
922 dem_name = symbol_get_demangled_name (gsymbol);
923 break;
924 case language_ada:
925 dem_name = ada_decode_symbol (gsymbol);
926 break;
927 default:
928 break;
929 }
930 return dem_name;
931 }
932
933 /* Return the search name of a symbol---generally the demangled or
934 linkage name of the symbol, depending on how it will be searched for.
935 If there is no distinct demangled name, then returns the same value
936 (same pointer) as SYMBOL_LINKAGE_NAME. */
937
938 const char *
939 symbol_search_name (const struct general_symbol_info *gsymbol)
940 {
941 if (gsymbol->language == language_ada)
942 return gsymbol->name;
943 else
944 return symbol_natural_name (gsymbol);
945 }
946
947 /* Initialize the structure fields to zero values. */
948
949 void
950 init_sal (struct symtab_and_line *sal)
951 {
952 memset (sal, 0, sizeof (*sal));
953 }
954 \f
955
956 /* Return 1 if the two sections are the same, or if they could
957 plausibly be copies of each other, one in an original object
958 file and another in a separated debug file. */
959
960 int
961 matching_obj_sections (struct obj_section *obj_first,
962 struct obj_section *obj_second)
963 {
964 asection *first = obj_first? obj_first->the_bfd_section : NULL;
965 asection *second = obj_second? obj_second->the_bfd_section : NULL;
966 struct objfile *obj;
967
968 /* If they're the same section, then they match. */
969 if (first == second)
970 return 1;
971
972 /* If either is NULL, give up. */
973 if (first == NULL || second == NULL)
974 return 0;
975
976 /* This doesn't apply to absolute symbols. */
977 if (first->owner == NULL || second->owner == NULL)
978 return 0;
979
980 /* If they're in the same object file, they must be different sections. */
981 if (first->owner == second->owner)
982 return 0;
983
984 /* Check whether the two sections are potentially corresponding. They must
985 have the same size, address, and name. We can't compare section indexes,
986 which would be more reliable, because some sections may have been
987 stripped. */
988 if (bfd_get_section_size (first) != bfd_get_section_size (second))
989 return 0;
990
991 /* In-memory addresses may start at a different offset, relativize them. */
992 if (bfd_get_section_vma (first->owner, first)
993 - bfd_get_start_address (first->owner)
994 != bfd_get_section_vma (second->owner, second)
995 - bfd_get_start_address (second->owner))
996 return 0;
997
998 if (bfd_get_section_name (first->owner, first) == NULL
999 || bfd_get_section_name (second->owner, second) == NULL
1000 || strcmp (bfd_get_section_name (first->owner, first),
1001 bfd_get_section_name (second->owner, second)) != 0)
1002 return 0;
1003
1004 /* Otherwise check that they are in corresponding objfiles. */
1005
1006 ALL_OBJFILES (obj)
1007 if (obj->obfd == first->owner)
1008 break;
1009 gdb_assert (obj != NULL);
1010
1011 if (obj->separate_debug_objfile != NULL
1012 && obj->separate_debug_objfile->obfd == second->owner)
1013 return 1;
1014 if (obj->separate_debug_objfile_backlink != NULL
1015 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1016 return 1;
1017
1018 return 0;
1019 }
1020
1021 /* See symtab.h. */
1022
1023 void
1024 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1025 {
1026 struct objfile *objfile;
1027 struct bound_minimal_symbol msymbol;
1028
1029 /* If we know that this is not a text address, return failure. This is
1030 necessary because we loop based on texthigh and textlow, which do
1031 not include the data ranges. */
1032 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1033 if (msymbol.minsym
1034 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1035 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1036 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1037 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1038 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1039 return;
1040
1041 ALL_OBJFILES (objfile)
1042 {
1043 struct compunit_symtab *cust = NULL;
1044
1045 if (objfile->sf)
1046 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1047 pc, section, 0);
1048 if (cust)
1049 return;
1050 }
1051 }
1052 \f
1053 /* Hash function for the symbol cache. */
1054
1055 static unsigned int
1056 hash_symbol_entry (const struct objfile *objfile_context,
1057 const char *name, domain_enum domain)
1058 {
1059 unsigned int hash = (uintptr_t) objfile_context;
1060
1061 if (name != NULL)
1062 hash += htab_hash_string (name);
1063
1064 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1065 to map to the same slot. */
1066 if (domain == STRUCT_DOMAIN)
1067 hash += VAR_DOMAIN * 7;
1068 else
1069 hash += domain * 7;
1070
1071 return hash;
1072 }
1073
1074 /* Equality function for the symbol cache. */
1075
1076 static int
1077 eq_symbol_entry (const struct symbol_cache_slot *slot,
1078 const struct objfile *objfile_context,
1079 const char *name, domain_enum domain)
1080 {
1081 const char *slot_name;
1082 domain_enum slot_domain;
1083
1084 if (slot->state == SYMBOL_SLOT_UNUSED)
1085 return 0;
1086
1087 if (slot->objfile_context != objfile_context)
1088 return 0;
1089
1090 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1091 {
1092 slot_name = slot->value.not_found.name;
1093 slot_domain = slot->value.not_found.domain;
1094 }
1095 else
1096 {
1097 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1098 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1099 }
1100
1101 /* NULL names match. */
1102 if (slot_name == NULL && name == NULL)
1103 {
1104 /* But there's no point in calling symbol_matches_domain in the
1105 SYMBOL_SLOT_FOUND case. */
1106 if (slot_domain != domain)
1107 return 0;
1108 }
1109 else if (slot_name != NULL && name != NULL)
1110 {
1111 /* It's important that we use the same comparison that was done the
1112 first time through. If the slot records a found symbol, then this
1113 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1114 It also means using symbol_matches_domain for found symbols.
1115 See block.c.
1116
1117 If the slot records a not-found symbol, then require a precise match.
1118 We could still be lax with whitespace like strcmp_iw though. */
1119
1120 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1121 {
1122 if (strcmp (slot_name, name) != 0)
1123 return 0;
1124 if (slot_domain != domain)
1125 return 0;
1126 }
1127 else
1128 {
1129 struct symbol *sym = slot->value.found.symbol;
1130
1131 if (strcmp_iw (slot_name, name) != 0)
1132 return 0;
1133 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1134 slot_domain, domain))
1135 return 0;
1136 }
1137 }
1138 else
1139 {
1140 /* Only one name is NULL. */
1141 return 0;
1142 }
1143
1144 return 1;
1145 }
1146
1147 /* Given a cache of size SIZE, return the size of the struct (with variable
1148 length array) in bytes. */
1149
1150 static size_t
1151 symbol_cache_byte_size (unsigned int size)
1152 {
1153 return (sizeof (struct block_symbol_cache)
1154 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1155 }
1156
1157 /* Resize CACHE. */
1158
1159 static void
1160 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1161 {
1162 /* If there's no change in size, don't do anything.
1163 All caches have the same size, so we can just compare with the size
1164 of the global symbols cache. */
1165 if ((cache->global_symbols != NULL
1166 && cache->global_symbols->size == new_size)
1167 || (cache->global_symbols == NULL
1168 && new_size == 0))
1169 return;
1170
1171 xfree (cache->global_symbols);
1172 xfree (cache->static_symbols);
1173
1174 if (new_size == 0)
1175 {
1176 cache->global_symbols = NULL;
1177 cache->static_symbols = NULL;
1178 }
1179 else
1180 {
1181 size_t total_size = symbol_cache_byte_size (new_size);
1182
1183 cache->global_symbols
1184 = (struct block_symbol_cache *) xcalloc (1, total_size);
1185 cache->static_symbols
1186 = (struct block_symbol_cache *) xcalloc (1, total_size);
1187 cache->global_symbols->size = new_size;
1188 cache->static_symbols->size = new_size;
1189 }
1190 }
1191
1192 /* Make a symbol cache of size SIZE. */
1193
1194 static struct symbol_cache *
1195 make_symbol_cache (unsigned int size)
1196 {
1197 struct symbol_cache *cache;
1198
1199 cache = XCNEW (struct symbol_cache);
1200 resize_symbol_cache (cache, symbol_cache_size);
1201 return cache;
1202 }
1203
1204 /* Free the space used by CACHE. */
1205
1206 static void
1207 free_symbol_cache (struct symbol_cache *cache)
1208 {
1209 xfree (cache->global_symbols);
1210 xfree (cache->static_symbols);
1211 xfree (cache);
1212 }
1213
1214 /* Return the symbol cache of PSPACE.
1215 Create one if it doesn't exist yet. */
1216
1217 static struct symbol_cache *
1218 get_symbol_cache (struct program_space *pspace)
1219 {
1220 struct symbol_cache *cache
1221 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1222
1223 if (cache == NULL)
1224 {
1225 cache = make_symbol_cache (symbol_cache_size);
1226 set_program_space_data (pspace, symbol_cache_key, cache);
1227 }
1228
1229 return cache;
1230 }
1231
1232 /* Delete the symbol cache of PSPACE.
1233 Called when PSPACE is destroyed. */
1234
1235 static void
1236 symbol_cache_cleanup (struct program_space *pspace, void *data)
1237 {
1238 struct symbol_cache *cache = (struct symbol_cache *) data;
1239
1240 free_symbol_cache (cache);
1241 }
1242
1243 /* Set the size of the symbol cache in all program spaces. */
1244
1245 static void
1246 set_symbol_cache_size (unsigned int new_size)
1247 {
1248 struct program_space *pspace;
1249
1250 ALL_PSPACES (pspace)
1251 {
1252 struct symbol_cache *cache
1253 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1254
1255 /* The pspace could have been created but not have a cache yet. */
1256 if (cache != NULL)
1257 resize_symbol_cache (cache, new_size);
1258 }
1259 }
1260
1261 /* Called when symbol-cache-size is set. */
1262
1263 static void
1264 set_symbol_cache_size_handler (char *args, int from_tty,
1265 struct cmd_list_element *c)
1266 {
1267 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1268 {
1269 /* Restore the previous value.
1270 This is the value the "show" command prints. */
1271 new_symbol_cache_size = symbol_cache_size;
1272
1273 error (_("Symbol cache size is too large, max is %u."),
1274 MAX_SYMBOL_CACHE_SIZE);
1275 }
1276 symbol_cache_size = new_symbol_cache_size;
1277
1278 set_symbol_cache_size (symbol_cache_size);
1279 }
1280
1281 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1282 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1283 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1284 failed (and thus this one will too), or NULL if the symbol is not present
1285 in the cache.
1286 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1287 set to the cache and slot of the symbol to save the result of a full lookup
1288 attempt. */
1289
1290 static struct block_symbol
1291 symbol_cache_lookup (struct symbol_cache *cache,
1292 struct objfile *objfile_context, int block,
1293 const char *name, domain_enum domain,
1294 struct block_symbol_cache **bsc_ptr,
1295 struct symbol_cache_slot **slot_ptr)
1296 {
1297 struct block_symbol_cache *bsc;
1298 unsigned int hash;
1299 struct symbol_cache_slot *slot;
1300
1301 if (block == GLOBAL_BLOCK)
1302 bsc = cache->global_symbols;
1303 else
1304 bsc = cache->static_symbols;
1305 if (bsc == NULL)
1306 {
1307 *bsc_ptr = NULL;
1308 *slot_ptr = NULL;
1309 return (struct block_symbol) {NULL, NULL};
1310 }
1311
1312 hash = hash_symbol_entry (objfile_context, name, domain);
1313 slot = bsc->symbols + hash % bsc->size;
1314
1315 if (eq_symbol_entry (slot, objfile_context, name, domain))
1316 {
1317 if (symbol_lookup_debug)
1318 fprintf_unfiltered (gdb_stdlog,
1319 "%s block symbol cache hit%s for %s, %s\n",
1320 block == GLOBAL_BLOCK ? "Global" : "Static",
1321 slot->state == SYMBOL_SLOT_NOT_FOUND
1322 ? " (not found)" : "",
1323 name, domain_name (domain));
1324 ++bsc->hits;
1325 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1326 return SYMBOL_LOOKUP_FAILED;
1327 return slot->value.found;
1328 }
1329
1330 /* Symbol is not present in the cache. */
1331
1332 *bsc_ptr = bsc;
1333 *slot_ptr = slot;
1334
1335 if (symbol_lookup_debug)
1336 {
1337 fprintf_unfiltered (gdb_stdlog,
1338 "%s block symbol cache miss for %s, %s\n",
1339 block == GLOBAL_BLOCK ? "Global" : "Static",
1340 name, domain_name (domain));
1341 }
1342 ++bsc->misses;
1343 return (struct block_symbol) {NULL, NULL};
1344 }
1345
1346 /* Clear out SLOT. */
1347
1348 static void
1349 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1350 {
1351 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1352 xfree (slot->value.not_found.name);
1353 slot->state = SYMBOL_SLOT_UNUSED;
1354 }
1355
1356 /* Mark SYMBOL as found in SLOT.
1357 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1358 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1359 necessarily the objfile the symbol was found in. */
1360
1361 static void
1362 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1363 struct symbol_cache_slot *slot,
1364 struct objfile *objfile_context,
1365 struct symbol *symbol,
1366 const struct block *block)
1367 {
1368 if (bsc == NULL)
1369 return;
1370 if (slot->state != SYMBOL_SLOT_UNUSED)
1371 {
1372 ++bsc->collisions;
1373 symbol_cache_clear_slot (slot);
1374 }
1375 slot->state = SYMBOL_SLOT_FOUND;
1376 slot->objfile_context = objfile_context;
1377 slot->value.found.symbol = symbol;
1378 slot->value.found.block = block;
1379 }
1380
1381 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1382 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1383 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1384
1385 static void
1386 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1387 struct symbol_cache_slot *slot,
1388 struct objfile *objfile_context,
1389 const char *name, domain_enum domain)
1390 {
1391 if (bsc == NULL)
1392 return;
1393 if (slot->state != SYMBOL_SLOT_UNUSED)
1394 {
1395 ++bsc->collisions;
1396 symbol_cache_clear_slot (slot);
1397 }
1398 slot->state = SYMBOL_SLOT_NOT_FOUND;
1399 slot->objfile_context = objfile_context;
1400 slot->value.not_found.name = xstrdup (name);
1401 slot->value.not_found.domain = domain;
1402 }
1403
1404 /* Flush the symbol cache of PSPACE. */
1405
1406 static void
1407 symbol_cache_flush (struct program_space *pspace)
1408 {
1409 struct symbol_cache *cache
1410 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1411 int pass;
1412
1413 if (cache == NULL)
1414 return;
1415 if (cache->global_symbols == NULL)
1416 {
1417 gdb_assert (symbol_cache_size == 0);
1418 gdb_assert (cache->static_symbols == NULL);
1419 return;
1420 }
1421
1422 /* If the cache is untouched since the last flush, early exit.
1423 This is important for performance during the startup of a program linked
1424 with 100s (or 1000s) of shared libraries. */
1425 if (cache->global_symbols->misses == 0
1426 && cache->static_symbols->misses == 0)
1427 return;
1428
1429 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1430 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1431
1432 for (pass = 0; pass < 2; ++pass)
1433 {
1434 struct block_symbol_cache *bsc
1435 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1436 unsigned int i;
1437
1438 for (i = 0; i < bsc->size; ++i)
1439 symbol_cache_clear_slot (&bsc->symbols[i]);
1440 }
1441
1442 cache->global_symbols->hits = 0;
1443 cache->global_symbols->misses = 0;
1444 cache->global_symbols->collisions = 0;
1445 cache->static_symbols->hits = 0;
1446 cache->static_symbols->misses = 0;
1447 cache->static_symbols->collisions = 0;
1448 }
1449
1450 /* Dump CACHE. */
1451
1452 static void
1453 symbol_cache_dump (const struct symbol_cache *cache)
1454 {
1455 int pass;
1456
1457 if (cache->global_symbols == NULL)
1458 {
1459 printf_filtered (" <disabled>\n");
1460 return;
1461 }
1462
1463 for (pass = 0; pass < 2; ++pass)
1464 {
1465 const struct block_symbol_cache *bsc
1466 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1467 unsigned int i;
1468
1469 if (pass == 0)
1470 printf_filtered ("Global symbols:\n");
1471 else
1472 printf_filtered ("Static symbols:\n");
1473
1474 for (i = 0; i < bsc->size; ++i)
1475 {
1476 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1477
1478 QUIT;
1479
1480 switch (slot->state)
1481 {
1482 case SYMBOL_SLOT_UNUSED:
1483 break;
1484 case SYMBOL_SLOT_NOT_FOUND:
1485 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1486 host_address_to_string (slot->objfile_context),
1487 slot->value.not_found.name,
1488 domain_name (slot->value.not_found.domain));
1489 break;
1490 case SYMBOL_SLOT_FOUND:
1491 {
1492 struct symbol *found = slot->value.found.symbol;
1493 const struct objfile *context = slot->objfile_context;
1494
1495 printf_filtered (" [%4u] = %s, %s %s\n", i,
1496 host_address_to_string (context),
1497 SYMBOL_PRINT_NAME (found),
1498 domain_name (SYMBOL_DOMAIN (found)));
1499 break;
1500 }
1501 }
1502 }
1503 }
1504 }
1505
1506 /* The "mt print symbol-cache" command. */
1507
1508 static void
1509 maintenance_print_symbol_cache (char *args, int from_tty)
1510 {
1511 struct program_space *pspace;
1512
1513 ALL_PSPACES (pspace)
1514 {
1515 struct symbol_cache *cache;
1516
1517 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1518 pspace->num,
1519 pspace->symfile_object_file != NULL
1520 ? objfile_name (pspace->symfile_object_file)
1521 : "(no object file)");
1522
1523 /* If the cache hasn't been created yet, avoid creating one. */
1524 cache
1525 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1526 if (cache == NULL)
1527 printf_filtered (" <empty>\n");
1528 else
1529 symbol_cache_dump (cache);
1530 }
1531 }
1532
1533 /* The "mt flush-symbol-cache" command. */
1534
1535 static void
1536 maintenance_flush_symbol_cache (char *args, int from_tty)
1537 {
1538 struct program_space *pspace;
1539
1540 ALL_PSPACES (pspace)
1541 {
1542 symbol_cache_flush (pspace);
1543 }
1544 }
1545
1546 /* Print usage statistics of CACHE. */
1547
1548 static void
1549 symbol_cache_stats (struct symbol_cache *cache)
1550 {
1551 int pass;
1552
1553 if (cache->global_symbols == NULL)
1554 {
1555 printf_filtered (" <disabled>\n");
1556 return;
1557 }
1558
1559 for (pass = 0; pass < 2; ++pass)
1560 {
1561 const struct block_symbol_cache *bsc
1562 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1563
1564 QUIT;
1565
1566 if (pass == 0)
1567 printf_filtered ("Global block cache stats:\n");
1568 else
1569 printf_filtered ("Static block cache stats:\n");
1570
1571 printf_filtered (" size: %u\n", bsc->size);
1572 printf_filtered (" hits: %u\n", bsc->hits);
1573 printf_filtered (" misses: %u\n", bsc->misses);
1574 printf_filtered (" collisions: %u\n", bsc->collisions);
1575 }
1576 }
1577
1578 /* The "mt print symbol-cache-statistics" command. */
1579
1580 static void
1581 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1582 {
1583 struct program_space *pspace;
1584
1585 ALL_PSPACES (pspace)
1586 {
1587 struct symbol_cache *cache;
1588
1589 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1590 pspace->num,
1591 pspace->symfile_object_file != NULL
1592 ? objfile_name (pspace->symfile_object_file)
1593 : "(no object file)");
1594
1595 /* If the cache hasn't been created yet, avoid creating one. */
1596 cache
1597 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1598 if (cache == NULL)
1599 printf_filtered (" empty, no stats available\n");
1600 else
1601 symbol_cache_stats (cache);
1602 }
1603 }
1604
1605 /* This module's 'new_objfile' observer. */
1606
1607 static void
1608 symtab_new_objfile_observer (struct objfile *objfile)
1609 {
1610 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1611 symbol_cache_flush (current_program_space);
1612 }
1613
1614 /* This module's 'free_objfile' observer. */
1615
1616 static void
1617 symtab_free_objfile_observer (struct objfile *objfile)
1618 {
1619 symbol_cache_flush (objfile->pspace);
1620 }
1621 \f
1622 /* Debug symbols usually don't have section information. We need to dig that
1623 out of the minimal symbols and stash that in the debug symbol. */
1624
1625 void
1626 fixup_section (struct general_symbol_info *ginfo,
1627 CORE_ADDR addr, struct objfile *objfile)
1628 {
1629 struct minimal_symbol *msym;
1630
1631 /* First, check whether a minimal symbol with the same name exists
1632 and points to the same address. The address check is required
1633 e.g. on PowerPC64, where the minimal symbol for a function will
1634 point to the function descriptor, while the debug symbol will
1635 point to the actual function code. */
1636 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1637 if (msym)
1638 ginfo->section = MSYMBOL_SECTION (msym);
1639 else
1640 {
1641 /* Static, function-local variables do appear in the linker
1642 (minimal) symbols, but are frequently given names that won't
1643 be found via lookup_minimal_symbol(). E.g., it has been
1644 observed in frv-uclinux (ELF) executables that a static,
1645 function-local variable named "foo" might appear in the
1646 linker symbols as "foo.6" or "foo.3". Thus, there is no
1647 point in attempting to extend the lookup-by-name mechanism to
1648 handle this case due to the fact that there can be multiple
1649 names.
1650
1651 So, instead, search the section table when lookup by name has
1652 failed. The ``addr'' and ``endaddr'' fields may have already
1653 been relocated. If so, the relocation offset (i.e. the
1654 ANOFFSET value) needs to be subtracted from these values when
1655 performing the comparison. We unconditionally subtract it,
1656 because, when no relocation has been performed, the ANOFFSET
1657 value will simply be zero.
1658
1659 The address of the symbol whose section we're fixing up HAS
1660 NOT BEEN adjusted (relocated) yet. It can't have been since
1661 the section isn't yet known and knowing the section is
1662 necessary in order to add the correct relocation value. In
1663 other words, we wouldn't even be in this function (attempting
1664 to compute the section) if it were already known.
1665
1666 Note that it is possible to search the minimal symbols
1667 (subtracting the relocation value if necessary) to find the
1668 matching minimal symbol, but this is overkill and much less
1669 efficient. It is not necessary to find the matching minimal
1670 symbol, only its section.
1671
1672 Note that this technique (of doing a section table search)
1673 can fail when unrelocated section addresses overlap. For
1674 this reason, we still attempt a lookup by name prior to doing
1675 a search of the section table. */
1676
1677 struct obj_section *s;
1678 int fallback = -1;
1679
1680 ALL_OBJFILE_OSECTIONS (objfile, s)
1681 {
1682 int idx = s - objfile->sections;
1683 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1684
1685 if (fallback == -1)
1686 fallback = idx;
1687
1688 if (obj_section_addr (s) - offset <= addr
1689 && addr < obj_section_endaddr (s) - offset)
1690 {
1691 ginfo->section = idx;
1692 return;
1693 }
1694 }
1695
1696 /* If we didn't find the section, assume it is in the first
1697 section. If there is no allocated section, then it hardly
1698 matters what we pick, so just pick zero. */
1699 if (fallback == -1)
1700 ginfo->section = 0;
1701 else
1702 ginfo->section = fallback;
1703 }
1704 }
1705
1706 struct symbol *
1707 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1708 {
1709 CORE_ADDR addr;
1710
1711 if (!sym)
1712 return NULL;
1713
1714 if (!SYMBOL_OBJFILE_OWNED (sym))
1715 return sym;
1716
1717 /* We either have an OBJFILE, or we can get at it from the sym's
1718 symtab. Anything else is a bug. */
1719 gdb_assert (objfile || symbol_symtab (sym));
1720
1721 if (objfile == NULL)
1722 objfile = symbol_objfile (sym);
1723
1724 if (SYMBOL_OBJ_SECTION (objfile, sym))
1725 return sym;
1726
1727 /* We should have an objfile by now. */
1728 gdb_assert (objfile);
1729
1730 switch (SYMBOL_CLASS (sym))
1731 {
1732 case LOC_STATIC:
1733 case LOC_LABEL:
1734 addr = SYMBOL_VALUE_ADDRESS (sym);
1735 break;
1736 case LOC_BLOCK:
1737 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1738 break;
1739
1740 default:
1741 /* Nothing else will be listed in the minsyms -- no use looking
1742 it up. */
1743 return sym;
1744 }
1745
1746 fixup_section (&sym->ginfo, addr, objfile);
1747
1748 return sym;
1749 }
1750
1751 /* Compute the demangled form of NAME as used by the various symbol
1752 lookup functions. The result can either be the input NAME
1753 directly, or a pointer to a buffer owned by the STORAGE object.
1754
1755 For Ada, this function just returns NAME, unmodified.
1756 Normally, Ada symbol lookups are performed using the encoded name
1757 rather than the demangled name, and so it might seem to make sense
1758 for this function to return an encoded version of NAME.
1759 Unfortunately, we cannot do this, because this function is used in
1760 circumstances where it is not appropriate to try to encode NAME.
1761 For instance, when displaying the frame info, we demangle the name
1762 of each parameter, and then perform a symbol lookup inside our
1763 function using that demangled name. In Ada, certain functions
1764 have internally-generated parameters whose name contain uppercase
1765 characters. Encoding those name would result in those uppercase
1766 characters to become lowercase, and thus cause the symbol lookup
1767 to fail. */
1768
1769 const char *
1770 demangle_for_lookup (const char *name, enum language lang,
1771 demangle_result_storage &storage)
1772 {
1773 /* If we are using C++, D, or Go, demangle the name before doing a
1774 lookup, so we can always binary search. */
1775 if (lang == language_cplus)
1776 {
1777 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1778 if (demangled_name != NULL)
1779 return storage.set_malloc_ptr (demangled_name);
1780
1781 /* If we were given a non-mangled name, canonicalize it
1782 according to the language (so far only for C++). */
1783 std::string canon = cp_canonicalize_string (name);
1784 if (!canon.empty ())
1785 return storage.swap_string (canon);
1786 }
1787 else if (lang == language_d)
1788 {
1789 char *demangled_name = d_demangle (name, 0);
1790 if (demangled_name != NULL)
1791 return storage.set_malloc_ptr (demangled_name);
1792 }
1793 else if (lang == language_go)
1794 {
1795 char *demangled_name = go_demangle (name, 0);
1796 if (demangled_name != NULL)
1797 return storage.set_malloc_ptr (demangled_name);
1798 }
1799
1800 return name;
1801 }
1802
1803 /* See symtab.h.
1804
1805 This function (or rather its subordinates) have a bunch of loops and
1806 it would seem to be attractive to put in some QUIT's (though I'm not really
1807 sure whether it can run long enough to be really important). But there
1808 are a few calls for which it would appear to be bad news to quit
1809 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1810 that there is C++ code below which can error(), but that probably
1811 doesn't affect these calls since they are looking for a known
1812 variable and thus can probably assume it will never hit the C++
1813 code). */
1814
1815 struct block_symbol
1816 lookup_symbol_in_language (const char *name, const struct block *block,
1817 const domain_enum domain, enum language lang,
1818 struct field_of_this_result *is_a_field_of_this)
1819 {
1820 demangle_result_storage storage;
1821 const char *modified_name = demangle_for_lookup (name, lang, storage);
1822
1823 return lookup_symbol_aux (modified_name, block, domain, lang,
1824 is_a_field_of_this);
1825 }
1826
1827 /* See symtab.h. */
1828
1829 struct block_symbol
1830 lookup_symbol (const char *name, const struct block *block,
1831 domain_enum domain,
1832 struct field_of_this_result *is_a_field_of_this)
1833 {
1834 return lookup_symbol_in_language (name, block, domain,
1835 current_language->la_language,
1836 is_a_field_of_this);
1837 }
1838
1839 /* See symtab.h. */
1840
1841 struct block_symbol
1842 lookup_language_this (const struct language_defn *lang,
1843 const struct block *block)
1844 {
1845 if (lang->la_name_of_this == NULL || block == NULL)
1846 return (struct block_symbol) {NULL, NULL};
1847
1848 if (symbol_lookup_debug > 1)
1849 {
1850 struct objfile *objfile = lookup_objfile_from_block (block);
1851
1852 fprintf_unfiltered (gdb_stdlog,
1853 "lookup_language_this (%s, %s (objfile %s))",
1854 lang->la_name, host_address_to_string (block),
1855 objfile_debug_name (objfile));
1856 }
1857
1858 while (block)
1859 {
1860 struct symbol *sym;
1861
1862 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1863 if (sym != NULL)
1864 {
1865 if (symbol_lookup_debug > 1)
1866 {
1867 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1868 SYMBOL_PRINT_NAME (sym),
1869 host_address_to_string (sym),
1870 host_address_to_string (block));
1871 }
1872 return (struct block_symbol) {sym, block};
1873 }
1874 if (BLOCK_FUNCTION (block))
1875 break;
1876 block = BLOCK_SUPERBLOCK (block);
1877 }
1878
1879 if (symbol_lookup_debug > 1)
1880 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1881 return (struct block_symbol) {NULL, NULL};
1882 }
1883
1884 /* Given TYPE, a structure/union,
1885 return 1 if the component named NAME from the ultimate target
1886 structure/union is defined, otherwise, return 0. */
1887
1888 static int
1889 check_field (struct type *type, const char *name,
1890 struct field_of_this_result *is_a_field_of_this)
1891 {
1892 int i;
1893
1894 /* The type may be a stub. */
1895 type = check_typedef (type);
1896
1897 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1898 {
1899 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1900
1901 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1902 {
1903 is_a_field_of_this->type = type;
1904 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1905 return 1;
1906 }
1907 }
1908
1909 /* C++: If it was not found as a data field, then try to return it
1910 as a pointer to a method. */
1911
1912 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1913 {
1914 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1915 {
1916 is_a_field_of_this->type = type;
1917 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1918 return 1;
1919 }
1920 }
1921
1922 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1923 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1924 return 1;
1925
1926 return 0;
1927 }
1928
1929 /* Behave like lookup_symbol except that NAME is the natural name
1930 (e.g., demangled name) of the symbol that we're looking for. */
1931
1932 static struct block_symbol
1933 lookup_symbol_aux (const char *name, const struct block *block,
1934 const domain_enum domain, enum language language,
1935 struct field_of_this_result *is_a_field_of_this)
1936 {
1937 struct block_symbol result;
1938 const struct language_defn *langdef;
1939
1940 if (symbol_lookup_debug)
1941 {
1942 struct objfile *objfile = lookup_objfile_from_block (block);
1943
1944 fprintf_unfiltered (gdb_stdlog,
1945 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
1946 name, host_address_to_string (block),
1947 objfile != NULL
1948 ? objfile_debug_name (objfile) : "NULL",
1949 domain_name (domain), language_str (language));
1950 }
1951
1952 /* Make sure we do something sensible with is_a_field_of_this, since
1953 the callers that set this parameter to some non-null value will
1954 certainly use it later. If we don't set it, the contents of
1955 is_a_field_of_this are undefined. */
1956 if (is_a_field_of_this != NULL)
1957 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1958
1959 /* Search specified block and its superiors. Don't search
1960 STATIC_BLOCK or GLOBAL_BLOCK. */
1961
1962 result = lookup_local_symbol (name, block, domain, language);
1963 if (result.symbol != NULL)
1964 {
1965 if (symbol_lookup_debug)
1966 {
1967 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
1968 host_address_to_string (result.symbol));
1969 }
1970 return result;
1971 }
1972
1973 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1974 check to see if NAME is a field of `this'. */
1975
1976 langdef = language_def (language);
1977
1978 /* Don't do this check if we are searching for a struct. It will
1979 not be found by check_field, but will be found by other
1980 means. */
1981 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1982 {
1983 result = lookup_language_this (langdef, block);
1984
1985 if (result.symbol)
1986 {
1987 struct type *t = result.symbol->type;
1988
1989 /* I'm not really sure that type of this can ever
1990 be typedefed; just be safe. */
1991 t = check_typedef (t);
1992 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
1993 t = TYPE_TARGET_TYPE (t);
1994
1995 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1996 && TYPE_CODE (t) != TYPE_CODE_UNION)
1997 error (_("Internal error: `%s' is not an aggregate"),
1998 langdef->la_name_of_this);
1999
2000 if (check_field (t, name, is_a_field_of_this))
2001 {
2002 if (symbol_lookup_debug)
2003 {
2004 fprintf_unfiltered (gdb_stdlog,
2005 "lookup_symbol_aux (...) = NULL\n");
2006 }
2007 return (struct block_symbol) {NULL, NULL};
2008 }
2009 }
2010 }
2011
2012 /* Now do whatever is appropriate for LANGUAGE to look
2013 up static and global variables. */
2014
2015 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2016 if (result.symbol != NULL)
2017 {
2018 if (symbol_lookup_debug)
2019 {
2020 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2021 host_address_to_string (result.symbol));
2022 }
2023 return result;
2024 }
2025
2026 /* Now search all static file-level symbols. Not strictly correct,
2027 but more useful than an error. */
2028
2029 result = lookup_static_symbol (name, domain);
2030 if (symbol_lookup_debug)
2031 {
2032 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2033 result.symbol != NULL
2034 ? host_address_to_string (result.symbol)
2035 : "NULL");
2036 }
2037 return result;
2038 }
2039
2040 /* Check to see if the symbol is defined in BLOCK or its superiors.
2041 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2042
2043 static struct block_symbol
2044 lookup_local_symbol (const char *name, const struct block *block,
2045 const domain_enum domain,
2046 enum language language)
2047 {
2048 struct symbol *sym;
2049 const struct block *static_block = block_static_block (block);
2050 const char *scope = block_scope (block);
2051
2052 /* Check if either no block is specified or it's a global block. */
2053
2054 if (static_block == NULL)
2055 return (struct block_symbol) {NULL, NULL};
2056
2057 while (block != static_block)
2058 {
2059 sym = lookup_symbol_in_block (name, block, domain);
2060 if (sym != NULL)
2061 return (struct block_symbol) {sym, block};
2062
2063 if (language == language_cplus || language == language_fortran)
2064 {
2065 struct block_symbol sym
2066 = cp_lookup_symbol_imports_or_template (scope, name, block,
2067 domain);
2068
2069 if (sym.symbol != NULL)
2070 return sym;
2071 }
2072
2073 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2074 break;
2075 block = BLOCK_SUPERBLOCK (block);
2076 }
2077
2078 /* We've reached the end of the function without finding a result. */
2079
2080 return (struct block_symbol) {NULL, NULL};
2081 }
2082
2083 /* See symtab.h. */
2084
2085 struct objfile *
2086 lookup_objfile_from_block (const struct block *block)
2087 {
2088 struct objfile *obj;
2089 struct compunit_symtab *cust;
2090
2091 if (block == NULL)
2092 return NULL;
2093
2094 block = block_global_block (block);
2095 /* Look through all blockvectors. */
2096 ALL_COMPUNITS (obj, cust)
2097 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2098 GLOBAL_BLOCK))
2099 {
2100 if (obj->separate_debug_objfile_backlink)
2101 obj = obj->separate_debug_objfile_backlink;
2102
2103 return obj;
2104 }
2105
2106 return NULL;
2107 }
2108
2109 /* See symtab.h. */
2110
2111 struct symbol *
2112 lookup_symbol_in_block (const char *name, const struct block *block,
2113 const domain_enum domain)
2114 {
2115 struct symbol *sym;
2116
2117 if (symbol_lookup_debug > 1)
2118 {
2119 struct objfile *objfile = lookup_objfile_from_block (block);
2120
2121 fprintf_unfiltered (gdb_stdlog,
2122 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2123 name, host_address_to_string (block),
2124 objfile_debug_name (objfile),
2125 domain_name (domain));
2126 }
2127
2128 sym = block_lookup_symbol (block, name, domain);
2129 if (sym)
2130 {
2131 if (symbol_lookup_debug > 1)
2132 {
2133 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2134 host_address_to_string (sym));
2135 }
2136 return fixup_symbol_section (sym, NULL);
2137 }
2138
2139 if (symbol_lookup_debug > 1)
2140 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2141 return NULL;
2142 }
2143
2144 /* See symtab.h. */
2145
2146 struct block_symbol
2147 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2148 const char *name,
2149 const domain_enum domain)
2150 {
2151 struct objfile *objfile;
2152
2153 for (objfile = main_objfile;
2154 objfile;
2155 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2156 {
2157 struct block_symbol result
2158 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2159
2160 if (result.symbol != NULL)
2161 return result;
2162 }
2163
2164 return (struct block_symbol) {NULL, NULL};
2165 }
2166
2167 /* Check to see if the symbol is defined in one of the OBJFILE's
2168 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2169 depending on whether or not we want to search global symbols or
2170 static symbols. */
2171
2172 static struct block_symbol
2173 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2174 const char *name, const domain_enum domain)
2175 {
2176 struct compunit_symtab *cust;
2177
2178 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2179
2180 if (symbol_lookup_debug > 1)
2181 {
2182 fprintf_unfiltered (gdb_stdlog,
2183 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2184 objfile_debug_name (objfile),
2185 block_index == GLOBAL_BLOCK
2186 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2187 name, domain_name (domain));
2188 }
2189
2190 ALL_OBJFILE_COMPUNITS (objfile, cust)
2191 {
2192 const struct blockvector *bv;
2193 const struct block *block;
2194 struct block_symbol result;
2195
2196 bv = COMPUNIT_BLOCKVECTOR (cust);
2197 block = BLOCKVECTOR_BLOCK (bv, block_index);
2198 result.symbol = block_lookup_symbol_primary (block, name, domain);
2199 result.block = block;
2200 if (result.symbol != NULL)
2201 {
2202 if (symbol_lookup_debug > 1)
2203 {
2204 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2205 host_address_to_string (result.symbol),
2206 host_address_to_string (block));
2207 }
2208 result.symbol = fixup_symbol_section (result.symbol, objfile);
2209 return result;
2210
2211 }
2212 }
2213
2214 if (symbol_lookup_debug > 1)
2215 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2216 return (struct block_symbol) {NULL, NULL};
2217 }
2218
2219 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2220 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2221 and all associated separate debug objfiles.
2222
2223 Normally we only look in OBJFILE, and not any separate debug objfiles
2224 because the outer loop will cause them to be searched too. This case is
2225 different. Here we're called from search_symbols where it will only
2226 call us for the the objfile that contains a matching minsym. */
2227
2228 static struct block_symbol
2229 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2230 const char *linkage_name,
2231 domain_enum domain)
2232 {
2233 enum language lang = current_language->la_language;
2234 struct objfile *main_objfile, *cur_objfile;
2235
2236 demangle_result_storage storage;
2237 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2238
2239 if (objfile->separate_debug_objfile_backlink)
2240 main_objfile = objfile->separate_debug_objfile_backlink;
2241 else
2242 main_objfile = objfile;
2243
2244 for (cur_objfile = main_objfile;
2245 cur_objfile;
2246 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2247 {
2248 struct block_symbol result;
2249
2250 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2251 modified_name, domain);
2252 if (result.symbol == NULL)
2253 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2254 modified_name, domain);
2255 if (result.symbol != NULL)
2256 return result;
2257 }
2258
2259 return (struct block_symbol) {NULL, NULL};
2260 }
2261
2262 /* A helper function that throws an exception when a symbol was found
2263 in a psymtab but not in a symtab. */
2264
2265 static void ATTRIBUTE_NORETURN
2266 error_in_psymtab_expansion (int block_index, const char *name,
2267 struct compunit_symtab *cust)
2268 {
2269 error (_("\
2270 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2271 %s may be an inlined function, or may be a template function\n \
2272 (if a template, try specifying an instantiation: %s<type>)."),
2273 block_index == GLOBAL_BLOCK ? "global" : "static",
2274 name,
2275 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2276 name, name);
2277 }
2278
2279 /* A helper function for various lookup routines that interfaces with
2280 the "quick" symbol table functions. */
2281
2282 static struct block_symbol
2283 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2284 const char *name, const domain_enum domain)
2285 {
2286 struct compunit_symtab *cust;
2287 const struct blockvector *bv;
2288 const struct block *block;
2289 struct block_symbol result;
2290
2291 if (!objfile->sf)
2292 return (struct block_symbol) {NULL, NULL};
2293
2294 if (symbol_lookup_debug > 1)
2295 {
2296 fprintf_unfiltered (gdb_stdlog,
2297 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2298 objfile_debug_name (objfile),
2299 block_index == GLOBAL_BLOCK
2300 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2301 name, domain_name (domain));
2302 }
2303
2304 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2305 if (cust == NULL)
2306 {
2307 if (symbol_lookup_debug > 1)
2308 {
2309 fprintf_unfiltered (gdb_stdlog,
2310 "lookup_symbol_via_quick_fns (...) = NULL\n");
2311 }
2312 return (struct block_symbol) {NULL, NULL};
2313 }
2314
2315 bv = COMPUNIT_BLOCKVECTOR (cust);
2316 block = BLOCKVECTOR_BLOCK (bv, block_index);
2317 result.symbol = block_lookup_symbol (block, name, domain);
2318 if (result.symbol == NULL)
2319 error_in_psymtab_expansion (block_index, name, cust);
2320
2321 if (symbol_lookup_debug > 1)
2322 {
2323 fprintf_unfiltered (gdb_stdlog,
2324 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2325 host_address_to_string (result.symbol),
2326 host_address_to_string (block));
2327 }
2328
2329 result.symbol = fixup_symbol_section (result.symbol, objfile);
2330 result.block = block;
2331 return result;
2332 }
2333
2334 /* See symtab.h. */
2335
2336 struct block_symbol
2337 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2338 const char *name,
2339 const struct block *block,
2340 const domain_enum domain)
2341 {
2342 struct block_symbol result;
2343
2344 /* NOTE: carlton/2003-05-19: The comments below were written when
2345 this (or what turned into this) was part of lookup_symbol_aux;
2346 I'm much less worried about these questions now, since these
2347 decisions have turned out well, but I leave these comments here
2348 for posterity. */
2349
2350 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2351 not it would be appropriate to search the current global block
2352 here as well. (That's what this code used to do before the
2353 is_a_field_of_this check was moved up.) On the one hand, it's
2354 redundant with the lookup in all objfiles search that happens
2355 next. On the other hand, if decode_line_1 is passed an argument
2356 like filename:var, then the user presumably wants 'var' to be
2357 searched for in filename. On the third hand, there shouldn't be
2358 multiple global variables all of which are named 'var', and it's
2359 not like decode_line_1 has ever restricted its search to only
2360 global variables in a single filename. All in all, only
2361 searching the static block here seems best: it's correct and it's
2362 cleanest. */
2363
2364 /* NOTE: carlton/2002-12-05: There's also a possible performance
2365 issue here: if you usually search for global symbols in the
2366 current file, then it would be slightly better to search the
2367 current global block before searching all the symtabs. But there
2368 are other factors that have a much greater effect on performance
2369 than that one, so I don't think we should worry about that for
2370 now. */
2371
2372 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2373 the current objfile. Searching the current objfile first is useful
2374 for both matching user expectations as well as performance. */
2375
2376 result = lookup_symbol_in_static_block (name, block, domain);
2377 if (result.symbol != NULL)
2378 return result;
2379
2380 /* If we didn't find a definition for a builtin type in the static block,
2381 search for it now. This is actually the right thing to do and can be
2382 a massive performance win. E.g., when debugging a program with lots of
2383 shared libraries we could search all of them only to find out the
2384 builtin type isn't defined in any of them. This is common for types
2385 like "void". */
2386 if (domain == VAR_DOMAIN)
2387 {
2388 struct gdbarch *gdbarch;
2389
2390 if (block == NULL)
2391 gdbarch = target_gdbarch ();
2392 else
2393 gdbarch = block_gdbarch (block);
2394 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2395 gdbarch, name);
2396 result.block = NULL;
2397 if (result.symbol != NULL)
2398 return result;
2399 }
2400
2401 return lookup_global_symbol (name, block, domain);
2402 }
2403
2404 /* See symtab.h. */
2405
2406 struct block_symbol
2407 lookup_symbol_in_static_block (const char *name,
2408 const struct block *block,
2409 const domain_enum domain)
2410 {
2411 const struct block *static_block = block_static_block (block);
2412 struct symbol *sym;
2413
2414 if (static_block == NULL)
2415 return (struct block_symbol) {NULL, NULL};
2416
2417 if (symbol_lookup_debug)
2418 {
2419 struct objfile *objfile = lookup_objfile_from_block (static_block);
2420
2421 fprintf_unfiltered (gdb_stdlog,
2422 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2423 " %s)\n",
2424 name,
2425 host_address_to_string (block),
2426 objfile_debug_name (objfile),
2427 domain_name (domain));
2428 }
2429
2430 sym = lookup_symbol_in_block (name, static_block, domain);
2431 if (symbol_lookup_debug)
2432 {
2433 fprintf_unfiltered (gdb_stdlog,
2434 "lookup_symbol_in_static_block (...) = %s\n",
2435 sym != NULL ? host_address_to_string (sym) : "NULL");
2436 }
2437 return (struct block_symbol) {sym, static_block};
2438 }
2439
2440 /* Perform the standard symbol lookup of NAME in OBJFILE:
2441 1) First search expanded symtabs, and if not found
2442 2) Search the "quick" symtabs (partial or .gdb_index).
2443 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2444
2445 static struct block_symbol
2446 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2447 const char *name, const domain_enum domain)
2448 {
2449 struct block_symbol result;
2450
2451 if (symbol_lookup_debug)
2452 {
2453 fprintf_unfiltered (gdb_stdlog,
2454 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2455 objfile_debug_name (objfile),
2456 block_index == GLOBAL_BLOCK
2457 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2458 name, domain_name (domain));
2459 }
2460
2461 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2462 name, domain);
2463 if (result.symbol != NULL)
2464 {
2465 if (symbol_lookup_debug)
2466 {
2467 fprintf_unfiltered (gdb_stdlog,
2468 "lookup_symbol_in_objfile (...) = %s"
2469 " (in symtabs)\n",
2470 host_address_to_string (result.symbol));
2471 }
2472 return result;
2473 }
2474
2475 result = lookup_symbol_via_quick_fns (objfile, block_index,
2476 name, domain);
2477 if (symbol_lookup_debug)
2478 {
2479 fprintf_unfiltered (gdb_stdlog,
2480 "lookup_symbol_in_objfile (...) = %s%s\n",
2481 result.symbol != NULL
2482 ? host_address_to_string (result.symbol)
2483 : "NULL",
2484 result.symbol != NULL ? " (via quick fns)" : "");
2485 }
2486 return result;
2487 }
2488
2489 /* See symtab.h. */
2490
2491 struct block_symbol
2492 lookup_static_symbol (const char *name, const domain_enum domain)
2493 {
2494 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2495 struct objfile *objfile;
2496 struct block_symbol result;
2497 struct block_symbol_cache *bsc;
2498 struct symbol_cache_slot *slot;
2499
2500 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2501 NULL for OBJFILE_CONTEXT. */
2502 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2503 &bsc, &slot);
2504 if (result.symbol != NULL)
2505 {
2506 if (SYMBOL_LOOKUP_FAILED_P (result))
2507 return (struct block_symbol) {NULL, NULL};
2508 return result;
2509 }
2510
2511 ALL_OBJFILES (objfile)
2512 {
2513 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2514 if (result.symbol != NULL)
2515 {
2516 /* Still pass NULL for OBJFILE_CONTEXT here. */
2517 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2518 result.block);
2519 return result;
2520 }
2521 }
2522
2523 /* Still pass NULL for OBJFILE_CONTEXT here. */
2524 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2525 return (struct block_symbol) {NULL, NULL};
2526 }
2527
2528 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2529
2530 struct global_sym_lookup_data
2531 {
2532 /* The name of the symbol we are searching for. */
2533 const char *name;
2534
2535 /* The domain to use for our search. */
2536 domain_enum domain;
2537
2538 /* The field where the callback should store the symbol if found.
2539 It should be initialized to {NULL, NULL} before the search is started. */
2540 struct block_symbol result;
2541 };
2542
2543 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2544 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2545 OBJFILE. The arguments for the search are passed via CB_DATA,
2546 which in reality is a pointer to struct global_sym_lookup_data. */
2547
2548 static int
2549 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2550 void *cb_data)
2551 {
2552 struct global_sym_lookup_data *data =
2553 (struct global_sym_lookup_data *) cb_data;
2554
2555 gdb_assert (data->result.symbol == NULL
2556 && data->result.block == NULL);
2557
2558 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2559 data->name, data->domain);
2560
2561 /* If we found a match, tell the iterator to stop. Otherwise,
2562 keep going. */
2563 return (data->result.symbol != NULL);
2564 }
2565
2566 /* See symtab.h. */
2567
2568 struct block_symbol
2569 lookup_global_symbol (const char *name,
2570 const struct block *block,
2571 const domain_enum domain)
2572 {
2573 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2574 struct block_symbol result;
2575 struct objfile *objfile;
2576 struct global_sym_lookup_data lookup_data;
2577 struct block_symbol_cache *bsc;
2578 struct symbol_cache_slot *slot;
2579
2580 objfile = lookup_objfile_from_block (block);
2581
2582 /* First see if we can find the symbol in the cache.
2583 This works because we use the current objfile to qualify the lookup. */
2584 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2585 &bsc, &slot);
2586 if (result.symbol != NULL)
2587 {
2588 if (SYMBOL_LOOKUP_FAILED_P (result))
2589 return (struct block_symbol) {NULL, NULL};
2590 return result;
2591 }
2592
2593 /* Call library-specific lookup procedure. */
2594 if (objfile != NULL)
2595 result = solib_global_lookup (objfile, name, domain);
2596
2597 /* If that didn't work go a global search (of global blocks, heh). */
2598 if (result.symbol == NULL)
2599 {
2600 memset (&lookup_data, 0, sizeof (lookup_data));
2601 lookup_data.name = name;
2602 lookup_data.domain = domain;
2603 gdbarch_iterate_over_objfiles_in_search_order
2604 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2605 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2606 result = lookup_data.result;
2607 }
2608
2609 if (result.symbol != NULL)
2610 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2611 else
2612 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2613
2614 return result;
2615 }
2616
2617 int
2618 symbol_matches_domain (enum language symbol_language,
2619 domain_enum symbol_domain,
2620 domain_enum domain)
2621 {
2622 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2623 Similarly, any Ada type declaration implicitly defines a typedef. */
2624 if (symbol_language == language_cplus
2625 || symbol_language == language_d
2626 || symbol_language == language_ada)
2627 {
2628 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2629 && symbol_domain == STRUCT_DOMAIN)
2630 return 1;
2631 }
2632 /* For all other languages, strict match is required. */
2633 return (symbol_domain == domain);
2634 }
2635
2636 /* See symtab.h. */
2637
2638 struct type *
2639 lookup_transparent_type (const char *name)
2640 {
2641 return current_language->la_lookup_transparent_type (name);
2642 }
2643
2644 /* A helper for basic_lookup_transparent_type that interfaces with the
2645 "quick" symbol table functions. */
2646
2647 static struct type *
2648 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2649 const char *name)
2650 {
2651 struct compunit_symtab *cust;
2652 const struct blockvector *bv;
2653 struct block *block;
2654 struct symbol *sym;
2655
2656 if (!objfile->sf)
2657 return NULL;
2658 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2659 STRUCT_DOMAIN);
2660 if (cust == NULL)
2661 return NULL;
2662
2663 bv = COMPUNIT_BLOCKVECTOR (cust);
2664 block = BLOCKVECTOR_BLOCK (bv, block_index);
2665 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2666 block_find_non_opaque_type, NULL);
2667 if (sym == NULL)
2668 error_in_psymtab_expansion (block_index, name, cust);
2669 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2670 return SYMBOL_TYPE (sym);
2671 }
2672
2673 /* Subroutine of basic_lookup_transparent_type to simplify it.
2674 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2675 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2676
2677 static struct type *
2678 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2679 const char *name)
2680 {
2681 const struct compunit_symtab *cust;
2682 const struct blockvector *bv;
2683 const struct block *block;
2684 const struct symbol *sym;
2685
2686 ALL_OBJFILE_COMPUNITS (objfile, cust)
2687 {
2688 bv = COMPUNIT_BLOCKVECTOR (cust);
2689 block = BLOCKVECTOR_BLOCK (bv, block_index);
2690 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2691 block_find_non_opaque_type, NULL);
2692 if (sym != NULL)
2693 {
2694 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2695 return SYMBOL_TYPE (sym);
2696 }
2697 }
2698
2699 return NULL;
2700 }
2701
2702 /* The standard implementation of lookup_transparent_type. This code
2703 was modeled on lookup_symbol -- the parts not relevant to looking
2704 up types were just left out. In particular it's assumed here that
2705 types are available in STRUCT_DOMAIN and only in file-static or
2706 global blocks. */
2707
2708 struct type *
2709 basic_lookup_transparent_type (const char *name)
2710 {
2711 struct objfile *objfile;
2712 struct type *t;
2713
2714 /* Now search all the global symbols. Do the symtab's first, then
2715 check the psymtab's. If a psymtab indicates the existence
2716 of the desired name as a global, then do psymtab-to-symtab
2717 conversion on the fly and return the found symbol. */
2718
2719 ALL_OBJFILES (objfile)
2720 {
2721 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2722 if (t)
2723 return t;
2724 }
2725
2726 ALL_OBJFILES (objfile)
2727 {
2728 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2729 if (t)
2730 return t;
2731 }
2732
2733 /* Now search the static file-level symbols.
2734 Not strictly correct, but more useful than an error.
2735 Do the symtab's first, then
2736 check the psymtab's. If a psymtab indicates the existence
2737 of the desired name as a file-level static, then do psymtab-to-symtab
2738 conversion on the fly and return the found symbol. */
2739
2740 ALL_OBJFILES (objfile)
2741 {
2742 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2743 if (t)
2744 return t;
2745 }
2746
2747 ALL_OBJFILES (objfile)
2748 {
2749 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2750 if (t)
2751 return t;
2752 }
2753
2754 return (struct type *) 0;
2755 }
2756
2757 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2758
2759 For each symbol that matches, CALLBACK is called. The symbol is
2760 passed to the callback.
2761
2762 If CALLBACK returns false, the iteration ends. Otherwise, the
2763 search continues. */
2764
2765 void
2766 iterate_over_symbols (const struct block *block, const char *name,
2767 const domain_enum domain,
2768 gdb::function_view<symbol_found_callback_ftype> callback)
2769 {
2770 struct block_iterator iter;
2771 struct symbol *sym;
2772
2773 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2774 {
2775 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2776 SYMBOL_DOMAIN (sym), domain))
2777 {
2778 if (!callback (sym))
2779 return;
2780 }
2781 }
2782 }
2783
2784 /* Find the compunit symtab associated with PC and SECTION.
2785 This will read in debug info as necessary. */
2786
2787 struct compunit_symtab *
2788 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2789 {
2790 struct compunit_symtab *cust;
2791 struct compunit_symtab *best_cust = NULL;
2792 struct objfile *objfile;
2793 CORE_ADDR distance = 0;
2794 struct bound_minimal_symbol msymbol;
2795
2796 /* If we know that this is not a text address, return failure. This is
2797 necessary because we loop based on the block's high and low code
2798 addresses, which do not include the data ranges, and because
2799 we call find_pc_sect_psymtab which has a similar restriction based
2800 on the partial_symtab's texthigh and textlow. */
2801 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2802 if (msymbol.minsym
2803 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2804 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2805 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2806 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2807 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2808 return NULL;
2809
2810 /* Search all symtabs for the one whose file contains our address, and which
2811 is the smallest of all the ones containing the address. This is designed
2812 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2813 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2814 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2815
2816 This happens for native ecoff format, where code from included files
2817 gets its own symtab. The symtab for the included file should have
2818 been read in already via the dependency mechanism.
2819 It might be swifter to create several symtabs with the same name
2820 like xcoff does (I'm not sure).
2821
2822 It also happens for objfiles that have their functions reordered.
2823 For these, the symtab we are looking for is not necessarily read in. */
2824
2825 ALL_COMPUNITS (objfile, cust)
2826 {
2827 struct block *b;
2828 const struct blockvector *bv;
2829
2830 bv = COMPUNIT_BLOCKVECTOR (cust);
2831 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2832
2833 if (BLOCK_START (b) <= pc
2834 && BLOCK_END (b) > pc
2835 && (distance == 0
2836 || BLOCK_END (b) - BLOCK_START (b) < distance))
2837 {
2838 /* For an objfile that has its functions reordered,
2839 find_pc_psymtab will find the proper partial symbol table
2840 and we simply return its corresponding symtab. */
2841 /* In order to better support objfiles that contain both
2842 stabs and coff debugging info, we continue on if a psymtab
2843 can't be found. */
2844 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2845 {
2846 struct compunit_symtab *result;
2847
2848 result
2849 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2850 msymbol,
2851 pc, section,
2852 0);
2853 if (result != NULL)
2854 return result;
2855 }
2856 if (section != 0)
2857 {
2858 struct block_iterator iter;
2859 struct symbol *sym = NULL;
2860
2861 ALL_BLOCK_SYMBOLS (b, iter, sym)
2862 {
2863 fixup_symbol_section (sym, objfile);
2864 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2865 section))
2866 break;
2867 }
2868 if (sym == NULL)
2869 continue; /* No symbol in this symtab matches
2870 section. */
2871 }
2872 distance = BLOCK_END (b) - BLOCK_START (b);
2873 best_cust = cust;
2874 }
2875 }
2876
2877 if (best_cust != NULL)
2878 return best_cust;
2879
2880 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2881
2882 ALL_OBJFILES (objfile)
2883 {
2884 struct compunit_symtab *result;
2885
2886 if (!objfile->sf)
2887 continue;
2888 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2889 msymbol,
2890 pc, section,
2891 1);
2892 if (result != NULL)
2893 return result;
2894 }
2895
2896 return NULL;
2897 }
2898
2899 /* Find the compunit symtab associated with PC.
2900 This will read in debug info as necessary.
2901 Backward compatibility, no section. */
2902
2903 struct compunit_symtab *
2904 find_pc_compunit_symtab (CORE_ADDR pc)
2905 {
2906 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2907 }
2908 \f
2909
2910 /* Find the source file and line number for a given PC value and SECTION.
2911 Return a structure containing a symtab pointer, a line number,
2912 and a pc range for the entire source line.
2913 The value's .pc field is NOT the specified pc.
2914 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2915 use the line that ends there. Otherwise, in that case, the line
2916 that begins there is used. */
2917
2918 /* The big complication here is that a line may start in one file, and end just
2919 before the start of another file. This usually occurs when you #include
2920 code in the middle of a subroutine. To properly find the end of a line's PC
2921 range, we must search all symtabs associated with this compilation unit, and
2922 find the one whose first PC is closer than that of the next line in this
2923 symtab. */
2924
2925 /* If it's worth the effort, we could be using a binary search. */
2926
2927 struct symtab_and_line
2928 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2929 {
2930 struct compunit_symtab *cust;
2931 struct symtab *iter_s;
2932 struct linetable *l;
2933 int len;
2934 int i;
2935 struct linetable_entry *item;
2936 struct symtab_and_line val;
2937 const struct blockvector *bv;
2938 struct bound_minimal_symbol msymbol;
2939
2940 /* Info on best line seen so far, and where it starts, and its file. */
2941
2942 struct linetable_entry *best = NULL;
2943 CORE_ADDR best_end = 0;
2944 struct symtab *best_symtab = 0;
2945
2946 /* Store here the first line number
2947 of a file which contains the line at the smallest pc after PC.
2948 If we don't find a line whose range contains PC,
2949 we will use a line one less than this,
2950 with a range from the start of that file to the first line's pc. */
2951 struct linetable_entry *alt = NULL;
2952
2953 /* Info on best line seen in this file. */
2954
2955 struct linetable_entry *prev;
2956
2957 /* If this pc is not from the current frame,
2958 it is the address of the end of a call instruction.
2959 Quite likely that is the start of the following statement.
2960 But what we want is the statement containing the instruction.
2961 Fudge the pc to make sure we get that. */
2962
2963 init_sal (&val); /* initialize to zeroes */
2964
2965 val.pspace = current_program_space;
2966
2967 /* It's tempting to assume that, if we can't find debugging info for
2968 any function enclosing PC, that we shouldn't search for line
2969 number info, either. However, GAS can emit line number info for
2970 assembly files --- very helpful when debugging hand-written
2971 assembly code. In such a case, we'd have no debug info for the
2972 function, but we would have line info. */
2973
2974 if (notcurrent)
2975 pc -= 1;
2976
2977 /* elz: added this because this function returned the wrong
2978 information if the pc belongs to a stub (import/export)
2979 to call a shlib function. This stub would be anywhere between
2980 two functions in the target, and the line info was erroneously
2981 taken to be the one of the line before the pc. */
2982
2983 /* RT: Further explanation:
2984
2985 * We have stubs (trampolines) inserted between procedures.
2986 *
2987 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2988 * exists in the main image.
2989 *
2990 * In the minimal symbol table, we have a bunch of symbols
2991 * sorted by start address. The stubs are marked as "trampoline",
2992 * the others appear as text. E.g.:
2993 *
2994 * Minimal symbol table for main image
2995 * main: code for main (text symbol)
2996 * shr1: stub (trampoline symbol)
2997 * foo: code for foo (text symbol)
2998 * ...
2999 * Minimal symbol table for "shr1" image:
3000 * ...
3001 * shr1: code for shr1 (text symbol)
3002 * ...
3003 *
3004 * So the code below is trying to detect if we are in the stub
3005 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3006 * and if found, do the symbolization from the real-code address
3007 * rather than the stub address.
3008 *
3009 * Assumptions being made about the minimal symbol table:
3010 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3011 * if we're really in the trampoline.s If we're beyond it (say
3012 * we're in "foo" in the above example), it'll have a closer
3013 * symbol (the "foo" text symbol for example) and will not
3014 * return the trampoline.
3015 * 2. lookup_minimal_symbol_text() will find a real text symbol
3016 * corresponding to the trampoline, and whose address will
3017 * be different than the trampoline address. I put in a sanity
3018 * check for the address being the same, to avoid an
3019 * infinite recursion.
3020 */
3021 msymbol = lookup_minimal_symbol_by_pc (pc);
3022 if (msymbol.minsym != NULL)
3023 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3024 {
3025 struct bound_minimal_symbol mfunsym
3026 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3027 NULL);
3028
3029 if (mfunsym.minsym == NULL)
3030 /* I eliminated this warning since it is coming out
3031 * in the following situation:
3032 * gdb shmain // test program with shared libraries
3033 * (gdb) break shr1 // function in shared lib
3034 * Warning: In stub for ...
3035 * In the above situation, the shared lib is not loaded yet,
3036 * so of course we can't find the real func/line info,
3037 * but the "break" still works, and the warning is annoying.
3038 * So I commented out the warning. RT */
3039 /* warning ("In stub for %s; unable to find real function/line info",
3040 SYMBOL_LINKAGE_NAME (msymbol)); */
3041 ;
3042 /* fall through */
3043 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3044 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3045 /* Avoid infinite recursion */
3046 /* See above comment about why warning is commented out. */
3047 /* warning ("In stub for %s; unable to find real function/line info",
3048 SYMBOL_LINKAGE_NAME (msymbol)); */
3049 ;
3050 /* fall through */
3051 else
3052 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3053 }
3054
3055
3056 cust = find_pc_sect_compunit_symtab (pc, section);
3057 if (cust == NULL)
3058 {
3059 /* If no symbol information, return previous pc. */
3060 if (notcurrent)
3061 pc++;
3062 val.pc = pc;
3063 return val;
3064 }
3065
3066 bv = COMPUNIT_BLOCKVECTOR (cust);
3067
3068 /* Look at all the symtabs that share this blockvector.
3069 They all have the same apriori range, that we found was right;
3070 but they have different line tables. */
3071
3072 ALL_COMPUNIT_FILETABS (cust, iter_s)
3073 {
3074 /* Find the best line in this symtab. */
3075 l = SYMTAB_LINETABLE (iter_s);
3076 if (!l)
3077 continue;
3078 len = l->nitems;
3079 if (len <= 0)
3080 {
3081 /* I think len can be zero if the symtab lacks line numbers
3082 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3083 I'm not sure which, and maybe it depends on the symbol
3084 reader). */
3085 continue;
3086 }
3087
3088 prev = NULL;
3089 item = l->item; /* Get first line info. */
3090
3091 /* Is this file's first line closer than the first lines of other files?
3092 If so, record this file, and its first line, as best alternate. */
3093 if (item->pc > pc && (!alt || item->pc < alt->pc))
3094 alt = item;
3095
3096 for (i = 0; i < len; i++, item++)
3097 {
3098 /* Leave prev pointing to the linetable entry for the last line
3099 that started at or before PC. */
3100 if (item->pc > pc)
3101 break;
3102
3103 prev = item;
3104 }
3105
3106 /* At this point, prev points at the line whose start addr is <= pc, and
3107 item points at the next line. If we ran off the end of the linetable
3108 (pc >= start of the last line), then prev == item. If pc < start of
3109 the first line, prev will not be set. */
3110
3111 /* Is this file's best line closer than the best in the other files?
3112 If so, record this file, and its best line, as best so far. Don't
3113 save prev if it represents the end of a function (i.e. line number
3114 0) instead of a real line. */
3115
3116 if (prev && prev->line && (!best || prev->pc > best->pc))
3117 {
3118 best = prev;
3119 best_symtab = iter_s;
3120
3121 /* Discard BEST_END if it's before the PC of the current BEST. */
3122 if (best_end <= best->pc)
3123 best_end = 0;
3124 }
3125
3126 /* If another line (denoted by ITEM) is in the linetable and its
3127 PC is after BEST's PC, but before the current BEST_END, then
3128 use ITEM's PC as the new best_end. */
3129 if (best && i < len && item->pc > best->pc
3130 && (best_end == 0 || best_end > item->pc))
3131 best_end = item->pc;
3132 }
3133
3134 if (!best_symtab)
3135 {
3136 /* If we didn't find any line number info, just return zeros.
3137 We used to return alt->line - 1 here, but that could be
3138 anywhere; if we don't have line number info for this PC,
3139 don't make some up. */
3140 val.pc = pc;
3141 }
3142 else if (best->line == 0)
3143 {
3144 /* If our best fit is in a range of PC's for which no line
3145 number info is available (line number is zero) then we didn't
3146 find any valid line information. */
3147 val.pc = pc;
3148 }
3149 else
3150 {
3151 val.symtab = best_symtab;
3152 val.line = best->line;
3153 val.pc = best->pc;
3154 if (best_end && (!alt || best_end < alt->pc))
3155 val.end = best_end;
3156 else if (alt)
3157 val.end = alt->pc;
3158 else
3159 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3160 }
3161 val.section = section;
3162 return val;
3163 }
3164
3165 /* Backward compatibility (no section). */
3166
3167 struct symtab_and_line
3168 find_pc_line (CORE_ADDR pc, int notcurrent)
3169 {
3170 struct obj_section *section;
3171
3172 section = find_pc_overlay (pc);
3173 if (pc_in_unmapped_range (pc, section))
3174 pc = overlay_mapped_address (pc, section);
3175 return find_pc_sect_line (pc, section, notcurrent);
3176 }
3177
3178 /* See symtab.h. */
3179
3180 struct symtab *
3181 find_pc_line_symtab (CORE_ADDR pc)
3182 {
3183 struct symtab_and_line sal;
3184
3185 /* This always passes zero for NOTCURRENT to find_pc_line.
3186 There are currently no callers that ever pass non-zero. */
3187 sal = find_pc_line (pc, 0);
3188 return sal.symtab;
3189 }
3190 \f
3191 /* Find line number LINE in any symtab whose name is the same as
3192 SYMTAB.
3193
3194 If found, return the symtab that contains the linetable in which it was
3195 found, set *INDEX to the index in the linetable of the best entry
3196 found, and set *EXACT_MATCH nonzero if the value returned is an
3197 exact match.
3198
3199 If not found, return NULL. */
3200
3201 struct symtab *
3202 find_line_symtab (struct symtab *symtab, int line,
3203 int *index, int *exact_match)
3204 {
3205 int exact = 0; /* Initialized here to avoid a compiler warning. */
3206
3207 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3208 so far seen. */
3209
3210 int best_index;
3211 struct linetable *best_linetable;
3212 struct symtab *best_symtab;
3213
3214 /* First try looking it up in the given symtab. */
3215 best_linetable = SYMTAB_LINETABLE (symtab);
3216 best_symtab = symtab;
3217 best_index = find_line_common (best_linetable, line, &exact, 0);
3218 if (best_index < 0 || !exact)
3219 {
3220 /* Didn't find an exact match. So we better keep looking for
3221 another symtab with the same name. In the case of xcoff,
3222 multiple csects for one source file (produced by IBM's FORTRAN
3223 compiler) produce multiple symtabs (this is unavoidable
3224 assuming csects can be at arbitrary places in memory and that
3225 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3226
3227 /* BEST is the smallest linenumber > LINE so far seen,
3228 or 0 if none has been seen so far.
3229 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3230 int best;
3231
3232 struct objfile *objfile;
3233 struct compunit_symtab *cu;
3234 struct symtab *s;
3235
3236 if (best_index >= 0)
3237 best = best_linetable->item[best_index].line;
3238 else
3239 best = 0;
3240
3241 ALL_OBJFILES (objfile)
3242 {
3243 if (objfile->sf)
3244 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3245 symtab_to_fullname (symtab));
3246 }
3247
3248 ALL_FILETABS (objfile, cu, s)
3249 {
3250 struct linetable *l;
3251 int ind;
3252
3253 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3254 continue;
3255 if (FILENAME_CMP (symtab_to_fullname (symtab),
3256 symtab_to_fullname (s)) != 0)
3257 continue;
3258 l = SYMTAB_LINETABLE (s);
3259 ind = find_line_common (l, line, &exact, 0);
3260 if (ind >= 0)
3261 {
3262 if (exact)
3263 {
3264 best_index = ind;
3265 best_linetable = l;
3266 best_symtab = s;
3267 goto done;
3268 }
3269 if (best == 0 || l->item[ind].line < best)
3270 {
3271 best = l->item[ind].line;
3272 best_index = ind;
3273 best_linetable = l;
3274 best_symtab = s;
3275 }
3276 }
3277 }
3278 }
3279 done:
3280 if (best_index < 0)
3281 return NULL;
3282
3283 if (index)
3284 *index = best_index;
3285 if (exact_match)
3286 *exact_match = exact;
3287
3288 return best_symtab;
3289 }
3290
3291 /* Given SYMTAB, returns all the PCs function in the symtab that
3292 exactly match LINE. Returns NULL if there are no exact matches,
3293 but updates BEST_ITEM in this case. */
3294
3295 VEC (CORE_ADDR) *
3296 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3297 struct linetable_entry **best_item)
3298 {
3299 int start = 0;
3300 VEC (CORE_ADDR) *result = NULL;
3301
3302 /* First, collect all the PCs that are at this line. */
3303 while (1)
3304 {
3305 int was_exact;
3306 int idx;
3307
3308 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3309 start);
3310 if (idx < 0)
3311 break;
3312
3313 if (!was_exact)
3314 {
3315 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3316
3317 if (*best_item == NULL || item->line < (*best_item)->line)
3318 *best_item = item;
3319
3320 break;
3321 }
3322
3323 VEC_safe_push (CORE_ADDR, result,
3324 SYMTAB_LINETABLE (symtab)->item[idx].pc);
3325 start = idx + 1;
3326 }
3327
3328 return result;
3329 }
3330
3331 \f
3332 /* Set the PC value for a given source file and line number and return true.
3333 Returns zero for invalid line number (and sets the PC to 0).
3334 The source file is specified with a struct symtab. */
3335
3336 int
3337 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3338 {
3339 struct linetable *l;
3340 int ind;
3341
3342 *pc = 0;
3343 if (symtab == 0)
3344 return 0;
3345
3346 symtab = find_line_symtab (symtab, line, &ind, NULL);
3347 if (symtab != NULL)
3348 {
3349 l = SYMTAB_LINETABLE (symtab);
3350 *pc = l->item[ind].pc;
3351 return 1;
3352 }
3353 else
3354 return 0;
3355 }
3356
3357 /* Find the range of pc values in a line.
3358 Store the starting pc of the line into *STARTPTR
3359 and the ending pc (start of next line) into *ENDPTR.
3360 Returns 1 to indicate success.
3361 Returns 0 if could not find the specified line. */
3362
3363 int
3364 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3365 CORE_ADDR *endptr)
3366 {
3367 CORE_ADDR startaddr;
3368 struct symtab_and_line found_sal;
3369
3370 startaddr = sal.pc;
3371 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3372 return 0;
3373
3374 /* This whole function is based on address. For example, if line 10 has
3375 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3376 "info line *0x123" should say the line goes from 0x100 to 0x200
3377 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3378 This also insures that we never give a range like "starts at 0x134
3379 and ends at 0x12c". */
3380
3381 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3382 if (found_sal.line != sal.line)
3383 {
3384 /* The specified line (sal) has zero bytes. */
3385 *startptr = found_sal.pc;
3386 *endptr = found_sal.pc;
3387 }
3388 else
3389 {
3390 *startptr = found_sal.pc;
3391 *endptr = found_sal.end;
3392 }
3393 return 1;
3394 }
3395
3396 /* Given a line table and a line number, return the index into the line
3397 table for the pc of the nearest line whose number is >= the specified one.
3398 Return -1 if none is found. The value is >= 0 if it is an index.
3399 START is the index at which to start searching the line table.
3400
3401 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3402
3403 static int
3404 find_line_common (struct linetable *l, int lineno,
3405 int *exact_match, int start)
3406 {
3407 int i;
3408 int len;
3409
3410 /* BEST is the smallest linenumber > LINENO so far seen,
3411 or 0 if none has been seen so far.
3412 BEST_INDEX identifies the item for it. */
3413
3414 int best_index = -1;
3415 int best = 0;
3416
3417 *exact_match = 0;
3418
3419 if (lineno <= 0)
3420 return -1;
3421 if (l == 0)
3422 return -1;
3423
3424 len = l->nitems;
3425 for (i = start; i < len; i++)
3426 {
3427 struct linetable_entry *item = &(l->item[i]);
3428
3429 if (item->line == lineno)
3430 {
3431 /* Return the first (lowest address) entry which matches. */
3432 *exact_match = 1;
3433 return i;
3434 }
3435
3436 if (item->line > lineno && (best == 0 || item->line < best))
3437 {
3438 best = item->line;
3439 best_index = i;
3440 }
3441 }
3442
3443 /* If we got here, we didn't get an exact match. */
3444 return best_index;
3445 }
3446
3447 int
3448 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3449 {
3450 struct symtab_and_line sal;
3451
3452 sal = find_pc_line (pc, 0);
3453 *startptr = sal.pc;
3454 *endptr = sal.end;
3455 return sal.symtab != 0;
3456 }
3457
3458 /* Given a function symbol SYM, find the symtab and line for the start
3459 of the function.
3460 If the argument FUNFIRSTLINE is nonzero, we want the first line
3461 of real code inside the function.
3462 This function should return SALs matching those from minsym_found,
3463 otherwise false multiple-locations breakpoints could be placed. */
3464
3465 struct symtab_and_line
3466 find_function_start_sal (struct symbol *sym, int funfirstline)
3467 {
3468 struct symtab_and_line sal;
3469 struct obj_section *section;
3470
3471 fixup_symbol_section (sym, NULL);
3472 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3473 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3474
3475 if (funfirstline && sal.symtab != NULL
3476 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3477 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3478 {
3479 struct gdbarch *gdbarch = symbol_arch (sym);
3480
3481 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3482 if (gdbarch_skip_entrypoint_p (gdbarch))
3483 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3484 return sal;
3485 }
3486
3487 /* We always should have a line for the function start address.
3488 If we don't, something is odd. Create a plain SAL refering
3489 just the PC and hope that skip_prologue_sal (if requested)
3490 can find a line number for after the prologue. */
3491 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3492 {
3493 init_sal (&sal);
3494 sal.pspace = current_program_space;
3495 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3496 sal.section = section;
3497 }
3498
3499 if (funfirstline)
3500 skip_prologue_sal (&sal);
3501
3502 return sal;
3503 }
3504
3505 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3506 address for that function that has an entry in SYMTAB's line info
3507 table. If such an entry cannot be found, return FUNC_ADDR
3508 unaltered. */
3509
3510 static CORE_ADDR
3511 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3512 {
3513 CORE_ADDR func_start, func_end;
3514 struct linetable *l;
3515 int i;
3516
3517 /* Give up if this symbol has no lineinfo table. */
3518 l = SYMTAB_LINETABLE (symtab);
3519 if (l == NULL)
3520 return func_addr;
3521
3522 /* Get the range for the function's PC values, or give up if we
3523 cannot, for some reason. */
3524 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3525 return func_addr;
3526
3527 /* Linetable entries are ordered by PC values, see the commentary in
3528 symtab.h where `struct linetable' is defined. Thus, the first
3529 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3530 address we are looking for. */
3531 for (i = 0; i < l->nitems; i++)
3532 {
3533 struct linetable_entry *item = &(l->item[i]);
3534
3535 /* Don't use line numbers of zero, they mark special entries in
3536 the table. See the commentary on symtab.h before the
3537 definition of struct linetable. */
3538 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3539 return item->pc;
3540 }
3541
3542 return func_addr;
3543 }
3544
3545 /* Adjust SAL to the first instruction past the function prologue.
3546 If the PC was explicitly specified, the SAL is not changed.
3547 If the line number was explicitly specified, at most the SAL's PC
3548 is updated. If SAL is already past the prologue, then do nothing. */
3549
3550 void
3551 skip_prologue_sal (struct symtab_and_line *sal)
3552 {
3553 struct symbol *sym;
3554 struct symtab_and_line start_sal;
3555 struct cleanup *old_chain;
3556 CORE_ADDR pc, saved_pc;
3557 struct obj_section *section;
3558 const char *name;
3559 struct objfile *objfile;
3560 struct gdbarch *gdbarch;
3561 const struct block *b, *function_block;
3562 int force_skip, skip;
3563
3564 /* Do not change the SAL if PC was specified explicitly. */
3565 if (sal->explicit_pc)
3566 return;
3567
3568 old_chain = save_current_space_and_thread ();
3569 switch_to_program_space_and_thread (sal->pspace);
3570
3571 sym = find_pc_sect_function (sal->pc, sal->section);
3572 if (sym != NULL)
3573 {
3574 fixup_symbol_section (sym, NULL);
3575
3576 objfile = symbol_objfile (sym);
3577 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3578 section = SYMBOL_OBJ_SECTION (objfile, sym);
3579 name = SYMBOL_LINKAGE_NAME (sym);
3580 }
3581 else
3582 {
3583 struct bound_minimal_symbol msymbol
3584 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3585
3586 if (msymbol.minsym == NULL)
3587 {
3588 do_cleanups (old_chain);
3589 return;
3590 }
3591
3592 objfile = msymbol.objfile;
3593 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3594 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3595 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3596 }
3597
3598 gdbarch = get_objfile_arch (objfile);
3599
3600 /* Process the prologue in two passes. In the first pass try to skip the
3601 prologue (SKIP is true) and verify there is a real need for it (indicated
3602 by FORCE_SKIP). If no such reason was found run a second pass where the
3603 prologue is not skipped (SKIP is false). */
3604
3605 skip = 1;
3606 force_skip = 1;
3607
3608 /* Be conservative - allow direct PC (without skipping prologue) only if we
3609 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3610 have to be set by the caller so we use SYM instead. */
3611 if (sym != NULL
3612 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3613 force_skip = 0;
3614
3615 saved_pc = pc;
3616 do
3617 {
3618 pc = saved_pc;
3619
3620 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3621 so that gdbarch_skip_prologue has something unique to work on. */
3622 if (section_is_overlay (section) && !section_is_mapped (section))
3623 pc = overlay_unmapped_address (pc, section);
3624
3625 /* Skip "first line" of function (which is actually its prologue). */
3626 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3627 if (gdbarch_skip_entrypoint_p (gdbarch))
3628 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3629 if (skip)
3630 pc = gdbarch_skip_prologue (gdbarch, pc);
3631
3632 /* For overlays, map pc back into its mapped VMA range. */
3633 pc = overlay_mapped_address (pc, section);
3634
3635 /* Calculate line number. */
3636 start_sal = find_pc_sect_line (pc, section, 0);
3637
3638 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3639 line is still part of the same function. */
3640 if (skip && start_sal.pc != pc
3641 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3642 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3643 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3644 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3645 {
3646 /* First pc of next line */
3647 pc = start_sal.end;
3648 /* Recalculate the line number (might not be N+1). */
3649 start_sal = find_pc_sect_line (pc, section, 0);
3650 }
3651
3652 /* On targets with executable formats that don't have a concept of
3653 constructors (ELF with .init has, PE doesn't), gcc emits a call
3654 to `__main' in `main' between the prologue and before user
3655 code. */
3656 if (gdbarch_skip_main_prologue_p (gdbarch)
3657 && name && strcmp_iw (name, "main") == 0)
3658 {
3659 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3660 /* Recalculate the line number (might not be N+1). */
3661 start_sal = find_pc_sect_line (pc, section, 0);
3662 force_skip = 1;
3663 }
3664 }
3665 while (!force_skip && skip--);
3666
3667 /* If we still don't have a valid source line, try to find the first
3668 PC in the lineinfo table that belongs to the same function. This
3669 happens with COFF debug info, which does not seem to have an
3670 entry in lineinfo table for the code after the prologue which has
3671 no direct relation to source. For example, this was found to be
3672 the case with the DJGPP target using "gcc -gcoff" when the
3673 compiler inserted code after the prologue to make sure the stack
3674 is aligned. */
3675 if (!force_skip && sym && start_sal.symtab == NULL)
3676 {
3677 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3678 /* Recalculate the line number. */
3679 start_sal = find_pc_sect_line (pc, section, 0);
3680 }
3681
3682 do_cleanups (old_chain);
3683
3684 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3685 forward SAL to the end of the prologue. */
3686 if (sal->pc >= pc)
3687 return;
3688
3689 sal->pc = pc;
3690 sal->section = section;
3691
3692 /* Unless the explicit_line flag was set, update the SAL line
3693 and symtab to correspond to the modified PC location. */
3694 if (sal->explicit_line)
3695 return;
3696
3697 sal->symtab = start_sal.symtab;
3698 sal->line = start_sal.line;
3699 sal->end = start_sal.end;
3700
3701 /* Check if we are now inside an inlined function. If we can,
3702 use the call site of the function instead. */
3703 b = block_for_pc_sect (sal->pc, sal->section);
3704 function_block = NULL;
3705 while (b != NULL)
3706 {
3707 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3708 function_block = b;
3709 else if (BLOCK_FUNCTION (b) != NULL)
3710 break;
3711 b = BLOCK_SUPERBLOCK (b);
3712 }
3713 if (function_block != NULL
3714 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3715 {
3716 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3717 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3718 }
3719 }
3720
3721 /* Given PC at the function's start address, attempt to find the
3722 prologue end using SAL information. Return zero if the skip fails.
3723
3724 A non-optimized prologue traditionally has one SAL for the function
3725 and a second for the function body. A single line function has
3726 them both pointing at the same line.
3727
3728 An optimized prologue is similar but the prologue may contain
3729 instructions (SALs) from the instruction body. Need to skip those
3730 while not getting into the function body.
3731
3732 The functions end point and an increasing SAL line are used as
3733 indicators of the prologue's endpoint.
3734
3735 This code is based on the function refine_prologue_limit
3736 (found in ia64). */
3737
3738 CORE_ADDR
3739 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3740 {
3741 struct symtab_and_line prologue_sal;
3742 CORE_ADDR start_pc;
3743 CORE_ADDR end_pc;
3744 const struct block *bl;
3745
3746 /* Get an initial range for the function. */
3747 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3748 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3749
3750 prologue_sal = find_pc_line (start_pc, 0);
3751 if (prologue_sal.line != 0)
3752 {
3753 /* For languages other than assembly, treat two consecutive line
3754 entries at the same address as a zero-instruction prologue.
3755 The GNU assembler emits separate line notes for each instruction
3756 in a multi-instruction macro, but compilers generally will not
3757 do this. */
3758 if (prologue_sal.symtab->language != language_asm)
3759 {
3760 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3761 int idx = 0;
3762
3763 /* Skip any earlier lines, and any end-of-sequence marker
3764 from a previous function. */
3765 while (linetable->item[idx].pc != prologue_sal.pc
3766 || linetable->item[idx].line == 0)
3767 idx++;
3768
3769 if (idx+1 < linetable->nitems
3770 && linetable->item[idx+1].line != 0
3771 && linetable->item[idx+1].pc == start_pc)
3772 return start_pc;
3773 }
3774
3775 /* If there is only one sal that covers the entire function,
3776 then it is probably a single line function, like
3777 "foo(){}". */
3778 if (prologue_sal.end >= end_pc)
3779 return 0;
3780
3781 while (prologue_sal.end < end_pc)
3782 {
3783 struct symtab_and_line sal;
3784
3785 sal = find_pc_line (prologue_sal.end, 0);
3786 if (sal.line == 0)
3787 break;
3788 /* Assume that a consecutive SAL for the same (or larger)
3789 line mark the prologue -> body transition. */
3790 if (sal.line >= prologue_sal.line)
3791 break;
3792 /* Likewise if we are in a different symtab altogether
3793 (e.g. within a file included via #include).  */
3794 if (sal.symtab != prologue_sal.symtab)
3795 break;
3796
3797 /* The line number is smaller. Check that it's from the
3798 same function, not something inlined. If it's inlined,
3799 then there is no point comparing the line numbers. */
3800 bl = block_for_pc (prologue_sal.end);
3801 while (bl)
3802 {
3803 if (block_inlined_p (bl))
3804 break;
3805 if (BLOCK_FUNCTION (bl))
3806 {
3807 bl = NULL;
3808 break;
3809 }
3810 bl = BLOCK_SUPERBLOCK (bl);
3811 }
3812 if (bl != NULL)
3813 break;
3814
3815 /* The case in which compiler's optimizer/scheduler has
3816 moved instructions into the prologue. We look ahead in
3817 the function looking for address ranges whose
3818 corresponding line number is less the first one that we
3819 found for the function. This is more conservative then
3820 refine_prologue_limit which scans a large number of SALs
3821 looking for any in the prologue. */
3822 prologue_sal = sal;
3823 }
3824 }
3825
3826 if (prologue_sal.end < end_pc)
3827 /* Return the end of this line, or zero if we could not find a
3828 line. */
3829 return prologue_sal.end;
3830 else
3831 /* Don't return END_PC, which is past the end of the function. */
3832 return prologue_sal.pc;
3833 }
3834 \f
3835 /* If P is of the form "operator[ \t]+..." where `...' is
3836 some legitimate operator text, return a pointer to the
3837 beginning of the substring of the operator text.
3838 Otherwise, return "". */
3839
3840 static const char *
3841 operator_chars (const char *p, const char **end)
3842 {
3843 *end = "";
3844 if (!startswith (p, "operator"))
3845 return *end;
3846 p += 8;
3847
3848 /* Don't get faked out by `operator' being part of a longer
3849 identifier. */
3850 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3851 return *end;
3852
3853 /* Allow some whitespace between `operator' and the operator symbol. */
3854 while (*p == ' ' || *p == '\t')
3855 p++;
3856
3857 /* Recognize 'operator TYPENAME'. */
3858
3859 if (isalpha (*p) || *p == '_' || *p == '$')
3860 {
3861 const char *q = p + 1;
3862
3863 while (isalnum (*q) || *q == '_' || *q == '$')
3864 q++;
3865 *end = q;
3866 return p;
3867 }
3868
3869 while (*p)
3870 switch (*p)
3871 {
3872 case '\\': /* regexp quoting */
3873 if (p[1] == '*')
3874 {
3875 if (p[2] == '=') /* 'operator\*=' */
3876 *end = p + 3;
3877 else /* 'operator\*' */
3878 *end = p + 2;
3879 return p;
3880 }
3881 else if (p[1] == '[')
3882 {
3883 if (p[2] == ']')
3884 error (_("mismatched quoting on brackets, "
3885 "try 'operator\\[\\]'"));
3886 else if (p[2] == '\\' && p[3] == ']')
3887 {
3888 *end = p + 4; /* 'operator\[\]' */
3889 return p;
3890 }
3891 else
3892 error (_("nothing is allowed between '[' and ']'"));
3893 }
3894 else
3895 {
3896 /* Gratuitous qoute: skip it and move on. */
3897 p++;
3898 continue;
3899 }
3900 break;
3901 case '!':
3902 case '=':
3903 case '*':
3904 case '/':
3905 case '%':
3906 case '^':
3907 if (p[1] == '=')
3908 *end = p + 2;
3909 else
3910 *end = p + 1;
3911 return p;
3912 case '<':
3913 case '>':
3914 case '+':
3915 case '-':
3916 case '&':
3917 case '|':
3918 if (p[0] == '-' && p[1] == '>')
3919 {
3920 /* Struct pointer member operator 'operator->'. */
3921 if (p[2] == '*')
3922 {
3923 *end = p + 3; /* 'operator->*' */
3924 return p;
3925 }
3926 else if (p[2] == '\\')
3927 {
3928 *end = p + 4; /* Hopefully 'operator->\*' */
3929 return p;
3930 }
3931 else
3932 {
3933 *end = p + 2; /* 'operator->' */
3934 return p;
3935 }
3936 }
3937 if (p[1] == '=' || p[1] == p[0])
3938 *end = p + 2;
3939 else
3940 *end = p + 1;
3941 return p;
3942 case '~':
3943 case ',':
3944 *end = p + 1;
3945 return p;
3946 case '(':
3947 if (p[1] != ')')
3948 error (_("`operator ()' must be specified "
3949 "without whitespace in `()'"));
3950 *end = p + 2;
3951 return p;
3952 case '?':
3953 if (p[1] != ':')
3954 error (_("`operator ?:' must be specified "
3955 "without whitespace in `?:'"));
3956 *end = p + 2;
3957 return p;
3958 case '[':
3959 if (p[1] != ']')
3960 error (_("`operator []' must be specified "
3961 "without whitespace in `[]'"));
3962 *end = p + 2;
3963 return p;
3964 default:
3965 error (_("`operator %s' not supported"), p);
3966 break;
3967 }
3968
3969 *end = "";
3970 return *end;
3971 }
3972 \f
3973
3974 /* Cache to watch for file names already seen by filename_seen. */
3975
3976 struct filename_seen_cache
3977 {
3978 /* Table of files seen so far. */
3979 htab_t tab;
3980 /* Initial size of the table. It automagically grows from here. */
3981 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3982 };
3983
3984 /* filename_seen_cache constructor. */
3985
3986 static struct filename_seen_cache *
3987 create_filename_seen_cache (void)
3988 {
3989 struct filename_seen_cache *cache = XNEW (struct filename_seen_cache);
3990
3991 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3992 filename_hash, filename_eq,
3993 NULL, xcalloc, xfree);
3994
3995 return cache;
3996 }
3997
3998 /* Empty the cache, but do not delete it. */
3999
4000 static void
4001 clear_filename_seen_cache (struct filename_seen_cache *cache)
4002 {
4003 htab_empty (cache->tab);
4004 }
4005
4006 /* filename_seen_cache destructor.
4007 This takes a void * argument as it is generally used as a cleanup. */
4008
4009 static void
4010 delete_filename_seen_cache (void *ptr)
4011 {
4012 struct filename_seen_cache *cache = (struct filename_seen_cache *) ptr;
4013
4014 htab_delete (cache->tab);
4015 xfree (cache);
4016 }
4017
4018 /* If FILE is not already in the table of files in CACHE, return zero;
4019 otherwise return non-zero. Optionally add FILE to the table if ADD
4020 is non-zero.
4021
4022 NOTE: We don't manage space for FILE, we assume FILE lives as long
4023 as the caller needs. */
4024
4025 static int
4026 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
4027 {
4028 void **slot;
4029
4030 /* Is FILE in tab? */
4031 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
4032 if (*slot != NULL)
4033 return 1;
4034
4035 /* No; maybe add it to tab. */
4036 if (add)
4037 *slot = (char *) file;
4038
4039 return 0;
4040 }
4041
4042 /* Data structure to maintain printing state for output_source_filename. */
4043
4044 struct output_source_filename_data
4045 {
4046 /* Cache of what we've seen so far. */
4047 struct filename_seen_cache *filename_seen_cache;
4048
4049 /* Flag of whether we're printing the first one. */
4050 int first;
4051 };
4052
4053 /* Slave routine for sources_info. Force line breaks at ,'s.
4054 NAME is the name to print.
4055 DATA contains the state for printing and watching for duplicates. */
4056
4057 static void
4058 output_source_filename (const char *name,
4059 struct output_source_filename_data *data)
4060 {
4061 /* Since a single source file can result in several partial symbol
4062 tables, we need to avoid printing it more than once. Note: if
4063 some of the psymtabs are read in and some are not, it gets
4064 printed both under "Source files for which symbols have been
4065 read" and "Source files for which symbols will be read in on
4066 demand". I consider this a reasonable way to deal with the
4067 situation. I'm not sure whether this can also happen for
4068 symtabs; it doesn't hurt to check. */
4069
4070 /* Was NAME already seen? */
4071 if (filename_seen (data->filename_seen_cache, name, 1))
4072 {
4073 /* Yes; don't print it again. */
4074 return;
4075 }
4076
4077 /* No; print it and reset *FIRST. */
4078 if (! data->first)
4079 printf_filtered (", ");
4080 data->first = 0;
4081
4082 wrap_here ("");
4083 fputs_filtered (name, gdb_stdout);
4084 }
4085
4086 /* A callback for map_partial_symbol_filenames. */
4087
4088 static void
4089 output_partial_symbol_filename (const char *filename, const char *fullname,
4090 void *data)
4091 {
4092 output_source_filename (fullname ? fullname : filename,
4093 (struct output_source_filename_data *) data);
4094 }
4095
4096 static void
4097 sources_info (char *ignore, int from_tty)
4098 {
4099 struct compunit_symtab *cu;
4100 struct symtab *s;
4101 struct objfile *objfile;
4102 struct output_source_filename_data data;
4103 struct cleanup *cleanups;
4104
4105 if (!have_full_symbols () && !have_partial_symbols ())
4106 {
4107 error (_("No symbol table is loaded. Use the \"file\" command."));
4108 }
4109
4110 data.filename_seen_cache = create_filename_seen_cache ();
4111 cleanups = make_cleanup (delete_filename_seen_cache,
4112 data.filename_seen_cache);
4113
4114 printf_filtered ("Source files for which symbols have been read in:\n\n");
4115
4116 data.first = 1;
4117 ALL_FILETABS (objfile, cu, s)
4118 {
4119 const char *fullname = symtab_to_fullname (s);
4120
4121 output_source_filename (fullname, &data);
4122 }
4123 printf_filtered ("\n\n");
4124
4125 printf_filtered ("Source files for which symbols "
4126 "will be read in on demand:\n\n");
4127
4128 clear_filename_seen_cache (data.filename_seen_cache);
4129 data.first = 1;
4130 map_symbol_filenames (output_partial_symbol_filename, &data,
4131 1 /*need_fullname*/);
4132 printf_filtered ("\n");
4133
4134 do_cleanups (cleanups);
4135 }
4136
4137 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4138 non-zero compare only lbasename of FILES. */
4139
4140 static int
4141 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4142 {
4143 int i;
4144
4145 if (file != NULL && nfiles != 0)
4146 {
4147 for (i = 0; i < nfiles; i++)
4148 {
4149 if (compare_filenames_for_search (file, (basenames
4150 ? lbasename (files[i])
4151 : files[i])))
4152 return 1;
4153 }
4154 }
4155 else if (nfiles == 0)
4156 return 1;
4157 return 0;
4158 }
4159
4160 /* Free any memory associated with a search. */
4161
4162 void
4163 free_search_symbols (struct symbol_search *symbols)
4164 {
4165 struct symbol_search *p;
4166 struct symbol_search *next;
4167
4168 for (p = symbols; p != NULL; p = next)
4169 {
4170 next = p->next;
4171 xfree (p);
4172 }
4173 }
4174
4175 static void
4176 do_free_search_symbols_cleanup (void *symbolsp)
4177 {
4178 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4179
4180 free_search_symbols (symbols);
4181 }
4182
4183 struct cleanup *
4184 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4185 {
4186 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4187 }
4188
4189 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4190 sort symbols, not minimal symbols. */
4191
4192 static int
4193 compare_search_syms (const void *sa, const void *sb)
4194 {
4195 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4196 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4197 int c;
4198
4199 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4200 symbol_symtab (sym_b->symbol)->filename);
4201 if (c != 0)
4202 return c;
4203
4204 if (sym_a->block != sym_b->block)
4205 return sym_a->block - sym_b->block;
4206
4207 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4208 SYMBOL_PRINT_NAME (sym_b->symbol));
4209 }
4210
4211 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4212 The duplicates are freed, and the new list is returned in
4213 *NEW_HEAD, *NEW_TAIL. */
4214
4215 static void
4216 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4217 struct symbol_search **new_head,
4218 struct symbol_search **new_tail)
4219 {
4220 struct symbol_search **symbols, *symp;
4221 int i, j, nunique;
4222
4223 gdb_assert (found != NULL && nfound > 0);
4224
4225 /* Build an array out of the list so we can easily sort them. */
4226 symbols = XNEWVEC (struct symbol_search *, nfound);
4227
4228 symp = found;
4229 for (i = 0; i < nfound; i++)
4230 {
4231 gdb_assert (symp != NULL);
4232 gdb_assert (symp->block >= 0 && symp->block <= 1);
4233 symbols[i] = symp;
4234 symp = symp->next;
4235 }
4236 gdb_assert (symp == NULL);
4237
4238 qsort (symbols, nfound, sizeof (struct symbol_search *),
4239 compare_search_syms);
4240
4241 /* Collapse out the dups. */
4242 for (i = 1, j = 1; i < nfound; ++i)
4243 {
4244 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4245 symbols[j++] = symbols[i];
4246 else
4247 xfree (symbols[i]);
4248 }
4249 nunique = j;
4250 symbols[j - 1]->next = NULL;
4251
4252 /* Rebuild the linked list. */
4253 for (i = 0; i < nunique - 1; i++)
4254 symbols[i]->next = symbols[i + 1];
4255 symbols[nunique - 1]->next = NULL;
4256
4257 *new_head = symbols[0];
4258 *new_tail = symbols[nunique - 1];
4259 xfree (symbols);
4260 }
4261
4262 /* Search the symbol table for matches to the regular expression REGEXP,
4263 returning the results in *MATCHES.
4264
4265 Only symbols of KIND are searched:
4266 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4267 and constants (enums)
4268 FUNCTIONS_DOMAIN - search all functions
4269 TYPES_DOMAIN - search all type names
4270 ALL_DOMAIN - an internal error for this function
4271
4272 free_search_symbols should be called when *MATCHES is no longer needed.
4273
4274 Within each file the results are sorted locally; each symtab's global and
4275 static blocks are separately alphabetized.
4276 Duplicate entries are removed. */
4277
4278 void
4279 search_symbols (const char *regexp, enum search_domain kind,
4280 int nfiles, const char *files[],
4281 struct symbol_search **matches)
4282 {
4283 struct compunit_symtab *cust;
4284 const struct blockvector *bv;
4285 struct block *b;
4286 int i = 0;
4287 struct block_iterator iter;
4288 struct symbol *sym;
4289 struct objfile *objfile;
4290 struct minimal_symbol *msymbol;
4291 int found_misc = 0;
4292 static const enum minimal_symbol_type types[]
4293 = {mst_data, mst_text, mst_abs};
4294 static const enum minimal_symbol_type types2[]
4295 = {mst_bss, mst_file_text, mst_abs};
4296 static const enum minimal_symbol_type types3[]
4297 = {mst_file_data, mst_solib_trampoline, mst_abs};
4298 static const enum minimal_symbol_type types4[]
4299 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4300 enum minimal_symbol_type ourtype;
4301 enum minimal_symbol_type ourtype2;
4302 enum minimal_symbol_type ourtype3;
4303 enum minimal_symbol_type ourtype4;
4304 struct symbol_search *found;
4305 struct symbol_search *tail;
4306 int nfound;
4307 /* This is true if PREG contains valid data, false otherwise. */
4308 bool preg_p;
4309 regex_t preg;
4310
4311 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4312 CLEANUP_CHAIN is freed only in the case of an error. */
4313 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4314 struct cleanup *retval_chain;
4315
4316 gdb_assert (kind <= TYPES_DOMAIN);
4317
4318 ourtype = types[kind];
4319 ourtype2 = types2[kind];
4320 ourtype3 = types3[kind];
4321 ourtype4 = types4[kind];
4322
4323 *matches = NULL;
4324 preg_p = false;
4325
4326 if (regexp != NULL)
4327 {
4328 /* Make sure spacing is right for C++ operators.
4329 This is just a courtesy to make the matching less sensitive
4330 to how many spaces the user leaves between 'operator'
4331 and <TYPENAME> or <OPERATOR>. */
4332 const char *opend;
4333 const char *opname = operator_chars (regexp, &opend);
4334 int errcode;
4335
4336 if (*opname)
4337 {
4338 int fix = -1; /* -1 means ok; otherwise number of
4339 spaces needed. */
4340
4341 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4342 {
4343 /* There should 1 space between 'operator' and 'TYPENAME'. */
4344 if (opname[-1] != ' ' || opname[-2] == ' ')
4345 fix = 1;
4346 }
4347 else
4348 {
4349 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4350 if (opname[-1] == ' ')
4351 fix = 0;
4352 }
4353 /* If wrong number of spaces, fix it. */
4354 if (fix >= 0)
4355 {
4356 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4357
4358 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4359 regexp = tmp;
4360 }
4361 }
4362
4363 errcode = regcomp (&preg, regexp,
4364 REG_NOSUB | (case_sensitivity == case_sensitive_off
4365 ? REG_ICASE : 0));
4366 if (errcode != 0)
4367 {
4368 char *err = get_regcomp_error (errcode, &preg);
4369
4370 make_cleanup (xfree, err);
4371 error (_("Invalid regexp (%s): %s"), err, regexp);
4372 }
4373 preg_p = true;
4374 make_regfree_cleanup (&preg);
4375 }
4376
4377 /* Search through the partial symtabs *first* for all symbols
4378 matching the regexp. That way we don't have to reproduce all of
4379 the machinery below. */
4380 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4381 {
4382 return file_matches (filename, files, nfiles,
4383 basenames);
4384 },
4385 [&] (const char *symname)
4386 {
4387 return (!preg_p || regexec (&preg, symname,
4388 0, NULL, 0) == 0);
4389 },
4390 NULL,
4391 kind);
4392
4393 /* Here, we search through the minimal symbol tables for functions
4394 and variables that match, and force their symbols to be read.
4395 This is in particular necessary for demangled variable names,
4396 which are no longer put into the partial symbol tables.
4397 The symbol will then be found during the scan of symtabs below.
4398
4399 For functions, find_pc_symtab should succeed if we have debug info
4400 for the function, for variables we have to call
4401 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4402 has debug info.
4403 If the lookup fails, set found_misc so that we will rescan to print
4404 any matching symbols without debug info.
4405 We only search the objfile the msymbol came from, we no longer search
4406 all objfiles. In large programs (1000s of shared libs) searching all
4407 objfiles is not worth the pain. */
4408
4409 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4410 {
4411 ALL_MSYMBOLS (objfile, msymbol)
4412 {
4413 QUIT;
4414
4415 if (msymbol->created_by_gdb)
4416 continue;
4417
4418 if (MSYMBOL_TYPE (msymbol) == ourtype
4419 || MSYMBOL_TYPE (msymbol) == ourtype2
4420 || MSYMBOL_TYPE (msymbol) == ourtype3
4421 || MSYMBOL_TYPE (msymbol) == ourtype4)
4422 {
4423 if (!preg_p
4424 || regexec (&preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4425 NULL, 0) == 0)
4426 {
4427 /* Note: An important side-effect of these lookup functions
4428 is to expand the symbol table if msymbol is found, for the
4429 benefit of the next loop on ALL_COMPUNITS. */
4430 if (kind == FUNCTIONS_DOMAIN
4431 ? (find_pc_compunit_symtab
4432 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4433 : (lookup_symbol_in_objfile_from_linkage_name
4434 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4435 .symbol == NULL))
4436 found_misc = 1;
4437 }
4438 }
4439 }
4440 }
4441
4442 found = NULL;
4443 tail = NULL;
4444 nfound = 0;
4445 retval_chain = make_cleanup_free_search_symbols (&found);
4446
4447 ALL_COMPUNITS (objfile, cust)
4448 {
4449 bv = COMPUNIT_BLOCKVECTOR (cust);
4450 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4451 {
4452 b = BLOCKVECTOR_BLOCK (bv, i);
4453 ALL_BLOCK_SYMBOLS (b, iter, sym)
4454 {
4455 struct symtab *real_symtab = symbol_symtab (sym);
4456
4457 QUIT;
4458
4459 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4460 a substring of symtab_to_fullname as it may contain "./" etc. */
4461 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4462 || ((basenames_may_differ
4463 || file_matches (lbasename (real_symtab->filename),
4464 files, nfiles, 1))
4465 && file_matches (symtab_to_fullname (real_symtab),
4466 files, nfiles, 0)))
4467 && ((!preg_p
4468 || regexec (&preg, SYMBOL_NATURAL_NAME (sym), 0,
4469 NULL, 0) == 0)
4470 && ((kind == VARIABLES_DOMAIN
4471 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4472 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4473 && SYMBOL_CLASS (sym) != LOC_BLOCK
4474 /* LOC_CONST can be used for more than just enums,
4475 e.g., c++ static const members.
4476 We only want to skip enums here. */
4477 && !(SYMBOL_CLASS (sym) == LOC_CONST
4478 && (TYPE_CODE (SYMBOL_TYPE (sym))
4479 == TYPE_CODE_ENUM)))
4480 || (kind == FUNCTIONS_DOMAIN
4481 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4482 || (kind == TYPES_DOMAIN
4483 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4484 {
4485 /* match */
4486 struct symbol_search *psr = XCNEW (struct symbol_search);
4487
4488 psr->block = i;
4489 psr->symbol = sym;
4490 psr->next = NULL;
4491 if (tail == NULL)
4492 found = psr;
4493 else
4494 tail->next = psr;
4495 tail = psr;
4496 nfound ++;
4497 }
4498 }
4499 }
4500 }
4501
4502 if (found != NULL)
4503 {
4504 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4505 /* Note: nfound is no longer useful beyond this point. */
4506 }
4507
4508 /* If there are no eyes, avoid all contact. I mean, if there are
4509 no debug symbols, then add matching minsyms. */
4510
4511 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4512 {
4513 ALL_MSYMBOLS (objfile, msymbol)
4514 {
4515 QUIT;
4516
4517 if (msymbol->created_by_gdb)
4518 continue;
4519
4520 if (MSYMBOL_TYPE (msymbol) == ourtype
4521 || MSYMBOL_TYPE (msymbol) == ourtype2
4522 || MSYMBOL_TYPE (msymbol) == ourtype3
4523 || MSYMBOL_TYPE (msymbol) == ourtype4)
4524 {
4525 if (!preg_p
4526 || regexec (&preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4527 NULL, 0) == 0)
4528 {
4529 /* For functions we can do a quick check of whether the
4530 symbol might be found via find_pc_symtab. */
4531 if (kind != FUNCTIONS_DOMAIN
4532 || (find_pc_compunit_symtab
4533 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4534 {
4535 if (lookup_symbol_in_objfile_from_linkage_name
4536 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4537 .symbol == NULL)
4538 {
4539 /* match */
4540 struct symbol_search *psr = XNEW (struct symbol_search);
4541 psr->block = i;
4542 psr->msymbol.minsym = msymbol;
4543 psr->msymbol.objfile = objfile;
4544 psr->symbol = NULL;
4545 psr->next = NULL;
4546 if (tail == NULL)
4547 found = psr;
4548 else
4549 tail->next = psr;
4550 tail = psr;
4551 }
4552 }
4553 }
4554 }
4555 }
4556 }
4557
4558 discard_cleanups (retval_chain);
4559 do_cleanups (old_chain);
4560 *matches = found;
4561 }
4562
4563 /* Helper function for symtab_symbol_info, this function uses
4564 the data returned from search_symbols() to print information
4565 regarding the match to gdb_stdout. */
4566
4567 static void
4568 print_symbol_info (enum search_domain kind,
4569 struct symbol *sym,
4570 int block, const char *last)
4571 {
4572 struct symtab *s = symbol_symtab (sym);
4573 const char *s_filename = symtab_to_filename_for_display (s);
4574
4575 if (last == NULL || filename_cmp (last, s_filename) != 0)
4576 {
4577 fputs_filtered ("\nFile ", gdb_stdout);
4578 fputs_filtered (s_filename, gdb_stdout);
4579 fputs_filtered (":\n", gdb_stdout);
4580 }
4581
4582 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4583 printf_filtered ("static ");
4584
4585 /* Typedef that is not a C++ class. */
4586 if (kind == TYPES_DOMAIN
4587 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4588 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4589 /* variable, func, or typedef-that-is-c++-class. */
4590 else if (kind < TYPES_DOMAIN
4591 || (kind == TYPES_DOMAIN
4592 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4593 {
4594 type_print (SYMBOL_TYPE (sym),
4595 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4596 ? "" : SYMBOL_PRINT_NAME (sym)),
4597 gdb_stdout, 0);
4598
4599 printf_filtered (";\n");
4600 }
4601 }
4602
4603 /* This help function for symtab_symbol_info() prints information
4604 for non-debugging symbols to gdb_stdout. */
4605
4606 static void
4607 print_msymbol_info (struct bound_minimal_symbol msymbol)
4608 {
4609 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4610 char *tmp;
4611
4612 if (gdbarch_addr_bit (gdbarch) <= 32)
4613 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4614 & (CORE_ADDR) 0xffffffff,
4615 8);
4616 else
4617 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4618 16);
4619 printf_filtered ("%s %s\n",
4620 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4621 }
4622
4623 /* This is the guts of the commands "info functions", "info types", and
4624 "info variables". It calls search_symbols to find all matches and then
4625 print_[m]symbol_info to print out some useful information about the
4626 matches. */
4627
4628 static void
4629 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4630 {
4631 static const char * const classnames[] =
4632 {"variable", "function", "type"};
4633 struct symbol_search *symbols;
4634 struct symbol_search *p;
4635 struct cleanup *old_chain;
4636 const char *last_filename = NULL;
4637 int first = 1;
4638
4639 gdb_assert (kind <= TYPES_DOMAIN);
4640
4641 /* Must make sure that if we're interrupted, symbols gets freed. */
4642 search_symbols (regexp, kind, 0, NULL, &symbols);
4643 old_chain = make_cleanup_free_search_symbols (&symbols);
4644
4645 if (regexp != NULL)
4646 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4647 classnames[kind], regexp);
4648 else
4649 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4650
4651 for (p = symbols; p != NULL; p = p->next)
4652 {
4653 QUIT;
4654
4655 if (p->msymbol.minsym != NULL)
4656 {
4657 if (first)
4658 {
4659 printf_filtered (_("\nNon-debugging symbols:\n"));
4660 first = 0;
4661 }
4662 print_msymbol_info (p->msymbol);
4663 }
4664 else
4665 {
4666 print_symbol_info (kind,
4667 p->symbol,
4668 p->block,
4669 last_filename);
4670 last_filename
4671 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4672 }
4673 }
4674
4675 do_cleanups (old_chain);
4676 }
4677
4678 static void
4679 variables_info (char *regexp, int from_tty)
4680 {
4681 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4682 }
4683
4684 static void
4685 functions_info (char *regexp, int from_tty)
4686 {
4687 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4688 }
4689
4690
4691 static void
4692 types_info (char *regexp, int from_tty)
4693 {
4694 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4695 }
4696
4697 /* Breakpoint all functions matching regular expression. */
4698
4699 void
4700 rbreak_command_wrapper (char *regexp, int from_tty)
4701 {
4702 rbreak_command (regexp, from_tty);
4703 }
4704
4705 /* A cleanup function that calls end_rbreak_breakpoints. */
4706
4707 static void
4708 do_end_rbreak_breakpoints (void *ignore)
4709 {
4710 end_rbreak_breakpoints ();
4711 }
4712
4713 static void
4714 rbreak_command (char *regexp, int from_tty)
4715 {
4716 struct symbol_search *ss;
4717 struct symbol_search *p;
4718 struct cleanup *old_chain;
4719 char *string = NULL;
4720 int len = 0;
4721 const char **files = NULL;
4722 const char *file_name;
4723 int nfiles = 0;
4724
4725 if (regexp)
4726 {
4727 char *colon = strchr (regexp, ':');
4728
4729 if (colon && *(colon + 1) != ':')
4730 {
4731 int colon_index;
4732 char *local_name;
4733
4734 colon_index = colon - regexp;
4735 local_name = (char *) alloca (colon_index + 1);
4736 memcpy (local_name, regexp, colon_index);
4737 local_name[colon_index--] = 0;
4738 while (isspace (local_name[colon_index]))
4739 local_name[colon_index--] = 0;
4740 file_name = local_name;
4741 files = &file_name;
4742 nfiles = 1;
4743 regexp = skip_spaces (colon + 1);
4744 }
4745 }
4746
4747 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4748 old_chain = make_cleanup_free_search_symbols (&ss);
4749 make_cleanup (free_current_contents, &string);
4750
4751 start_rbreak_breakpoints ();
4752 make_cleanup (do_end_rbreak_breakpoints, NULL);
4753 for (p = ss; p != NULL; p = p->next)
4754 {
4755 if (p->msymbol.minsym == NULL)
4756 {
4757 struct symtab *symtab = symbol_symtab (p->symbol);
4758 const char *fullname = symtab_to_fullname (symtab);
4759
4760 int newlen = (strlen (fullname)
4761 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4762 + 4);
4763
4764 if (newlen > len)
4765 {
4766 string = (char *) xrealloc (string, newlen);
4767 len = newlen;
4768 }
4769 strcpy (string, fullname);
4770 strcat (string, ":'");
4771 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4772 strcat (string, "'");
4773 break_command (string, from_tty);
4774 print_symbol_info (FUNCTIONS_DOMAIN,
4775 p->symbol,
4776 p->block,
4777 symtab_to_filename_for_display (symtab));
4778 }
4779 else
4780 {
4781 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4782
4783 if (newlen > len)
4784 {
4785 string = (char *) xrealloc (string, newlen);
4786 len = newlen;
4787 }
4788 strcpy (string, "'");
4789 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4790 strcat (string, "'");
4791
4792 break_command (string, from_tty);
4793 printf_filtered ("<function, no debug info> %s;\n",
4794 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4795 }
4796 }
4797
4798 do_cleanups (old_chain);
4799 }
4800 \f
4801
4802 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4803
4804 Either sym_text[sym_text_len] != '(' and then we search for any
4805 symbol starting with SYM_TEXT text.
4806
4807 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4808 be terminated at that point. Partial symbol tables do not have parameters
4809 information. */
4810
4811 static int
4812 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4813 {
4814 int (*ncmp) (const char *, const char *, size_t);
4815
4816 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4817
4818 if (ncmp (name, sym_text, sym_text_len) != 0)
4819 return 0;
4820
4821 if (sym_text[sym_text_len] == '(')
4822 {
4823 /* User searches for `name(someth...'. Require NAME to be terminated.
4824 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4825 present but accept even parameters presence. In this case this
4826 function is in fact strcmp_iw but whitespace skipping is not supported
4827 for tab completion. */
4828
4829 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4830 return 0;
4831 }
4832
4833 return 1;
4834 }
4835
4836 /* Free any memory associated with a completion list. */
4837
4838 static void
4839 free_completion_list (VEC (char_ptr) **list_ptr)
4840 {
4841 int i;
4842 char *p;
4843
4844 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4845 xfree (p);
4846 VEC_free (char_ptr, *list_ptr);
4847 }
4848
4849 /* Callback for make_cleanup. */
4850
4851 static void
4852 do_free_completion_list (void *list)
4853 {
4854 free_completion_list ((VEC (char_ptr) **) list);
4855 }
4856
4857 /* Helper routine for make_symbol_completion_list. */
4858
4859 static VEC (char_ptr) *return_val;
4860
4861 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4862 completion_list_add_name \
4863 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4864
4865 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4866 completion_list_add_name \
4867 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4868
4869 /* Tracker for how many unique completions have been generated. Used
4870 to terminate completion list generation early if the list has grown
4871 to a size so large as to be useless. This helps avoid GDB seeming
4872 to lock up in the event the user requests to complete on something
4873 vague that necessitates the time consuming expansion of many symbol
4874 tables. */
4875
4876 static completion_tracker_t completion_tracker;
4877
4878 /* Test to see if the symbol specified by SYMNAME (which is already
4879 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4880 characters. If so, add it to the current completion list. */
4881
4882 static void
4883 completion_list_add_name (const char *symname,
4884 const char *sym_text, int sym_text_len,
4885 const char *text, const char *word)
4886 {
4887 /* Clip symbols that cannot match. */
4888 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4889 return;
4890
4891 /* We have a match for a completion, so add SYMNAME to the current list
4892 of matches. Note that the name is moved to freshly malloc'd space. */
4893
4894 {
4895 char *newobj;
4896 enum maybe_add_completion_enum add_status;
4897
4898 if (word == sym_text)
4899 {
4900 newobj = (char *) xmalloc (strlen (symname) + 5);
4901 strcpy (newobj, symname);
4902 }
4903 else if (word > sym_text)
4904 {
4905 /* Return some portion of symname. */
4906 newobj = (char *) xmalloc (strlen (symname) + 5);
4907 strcpy (newobj, symname + (word - sym_text));
4908 }
4909 else
4910 {
4911 /* Return some of SYM_TEXT plus symname. */
4912 newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
4913 strncpy (newobj, word, sym_text - word);
4914 newobj[sym_text - word] = '\0';
4915 strcat (newobj, symname);
4916 }
4917
4918 add_status = maybe_add_completion (completion_tracker, newobj);
4919
4920 switch (add_status)
4921 {
4922 case MAYBE_ADD_COMPLETION_OK:
4923 VEC_safe_push (char_ptr, return_val, newobj);
4924 break;
4925 case MAYBE_ADD_COMPLETION_OK_MAX_REACHED:
4926 VEC_safe_push (char_ptr, return_val, newobj);
4927 throw_max_completions_reached_error ();
4928 case MAYBE_ADD_COMPLETION_MAX_REACHED:
4929 xfree (newobj);
4930 throw_max_completions_reached_error ();
4931 case MAYBE_ADD_COMPLETION_DUPLICATE:
4932 xfree (newobj);
4933 break;
4934 }
4935 }
4936 }
4937
4938 /* ObjC: In case we are completing on a selector, look as the msymbol
4939 again and feed all the selectors into the mill. */
4940
4941 static void
4942 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4943 const char *sym_text, int sym_text_len,
4944 const char *text, const char *word)
4945 {
4946 static char *tmp = NULL;
4947 static unsigned int tmplen = 0;
4948
4949 const char *method, *category, *selector;
4950 char *tmp2 = NULL;
4951
4952 method = MSYMBOL_NATURAL_NAME (msymbol);
4953
4954 /* Is it a method? */
4955 if ((method[0] != '-') && (method[0] != '+'))
4956 return;
4957
4958 if (sym_text[0] == '[')
4959 /* Complete on shortened method method. */
4960 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4961
4962 while ((strlen (method) + 1) >= tmplen)
4963 {
4964 if (tmplen == 0)
4965 tmplen = 1024;
4966 else
4967 tmplen *= 2;
4968 tmp = (char *) xrealloc (tmp, tmplen);
4969 }
4970 selector = strchr (method, ' ');
4971 if (selector != NULL)
4972 selector++;
4973
4974 category = strchr (method, '(');
4975
4976 if ((category != NULL) && (selector != NULL))
4977 {
4978 memcpy (tmp, method, (category - method));
4979 tmp[category - method] = ' ';
4980 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4981 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4982 if (sym_text[0] == '[')
4983 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4984 }
4985
4986 if (selector != NULL)
4987 {
4988 /* Complete on selector only. */
4989 strcpy (tmp, selector);
4990 tmp2 = strchr (tmp, ']');
4991 if (tmp2 != NULL)
4992 *tmp2 = '\0';
4993
4994 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4995 }
4996 }
4997
4998 /* Break the non-quoted text based on the characters which are in
4999 symbols. FIXME: This should probably be language-specific. */
5000
5001 static const char *
5002 language_search_unquoted_string (const char *text, const char *p)
5003 {
5004 for (; p > text; --p)
5005 {
5006 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5007 continue;
5008 else
5009 {
5010 if ((current_language->la_language == language_objc))
5011 {
5012 if (p[-1] == ':') /* Might be part of a method name. */
5013 continue;
5014 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5015 p -= 2; /* Beginning of a method name. */
5016 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5017 { /* Might be part of a method name. */
5018 const char *t = p;
5019
5020 /* Seeing a ' ' or a '(' is not conclusive evidence
5021 that we are in the middle of a method name. However,
5022 finding "-[" or "+[" should be pretty un-ambiguous.
5023 Unfortunately we have to find it now to decide. */
5024
5025 while (t > text)
5026 if (isalnum (t[-1]) || t[-1] == '_' ||
5027 t[-1] == ' ' || t[-1] == ':' ||
5028 t[-1] == '(' || t[-1] == ')')
5029 --t;
5030 else
5031 break;
5032
5033 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5034 p = t - 2; /* Method name detected. */
5035 /* Else we leave with p unchanged. */
5036 }
5037 }
5038 break;
5039 }
5040 }
5041 return p;
5042 }
5043
5044 static void
5045 completion_list_add_fields (struct symbol *sym, const char *sym_text,
5046 int sym_text_len, const char *text,
5047 const char *word)
5048 {
5049 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5050 {
5051 struct type *t = SYMBOL_TYPE (sym);
5052 enum type_code c = TYPE_CODE (t);
5053 int j;
5054
5055 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5056 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5057 if (TYPE_FIELD_NAME (t, j))
5058 completion_list_add_name (TYPE_FIELD_NAME (t, j),
5059 sym_text, sym_text_len, text, word);
5060 }
5061 }
5062
5063 /* Add matching symbols from SYMTAB to the current completion list. */
5064
5065 static void
5066 add_symtab_completions (struct compunit_symtab *cust,
5067 const char *sym_text, int sym_text_len,
5068 const char *text, const char *word,
5069 enum type_code code)
5070 {
5071 struct symbol *sym;
5072 const struct block *b;
5073 struct block_iterator iter;
5074 int i;
5075
5076 if (cust == NULL)
5077 return;
5078
5079 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5080 {
5081 QUIT;
5082 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5083 ALL_BLOCK_SYMBOLS (b, iter, sym)
5084 {
5085 if (code == TYPE_CODE_UNDEF
5086 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5087 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5088 COMPLETION_LIST_ADD_SYMBOL (sym,
5089 sym_text, sym_text_len,
5090 text, word);
5091 }
5092 }
5093 }
5094
5095 static void
5096 default_make_symbol_completion_list_break_on_1 (const char *text,
5097 const char *word,
5098 const char *break_on,
5099 enum type_code code)
5100 {
5101 /* Problem: All of the symbols have to be copied because readline
5102 frees them. I'm not going to worry about this; hopefully there
5103 won't be that many. */
5104
5105 struct symbol *sym;
5106 struct compunit_symtab *cust;
5107 struct minimal_symbol *msymbol;
5108 struct objfile *objfile;
5109 const struct block *b;
5110 const struct block *surrounding_static_block, *surrounding_global_block;
5111 struct block_iterator iter;
5112 /* The symbol we are completing on. Points in same buffer as text. */
5113 const char *sym_text;
5114 /* Length of sym_text. */
5115 int sym_text_len;
5116 struct cleanup *cleanups;
5117
5118 /* Now look for the symbol we are supposed to complete on. */
5119 {
5120 const char *p;
5121 char quote_found;
5122 const char *quote_pos = NULL;
5123
5124 /* First see if this is a quoted string. */
5125 quote_found = '\0';
5126 for (p = text; *p != '\0'; ++p)
5127 {
5128 if (quote_found != '\0')
5129 {
5130 if (*p == quote_found)
5131 /* Found close quote. */
5132 quote_found = '\0';
5133 else if (*p == '\\' && p[1] == quote_found)
5134 /* A backslash followed by the quote character
5135 doesn't end the string. */
5136 ++p;
5137 }
5138 else if (*p == '\'' || *p == '"')
5139 {
5140 quote_found = *p;
5141 quote_pos = p;
5142 }
5143 }
5144 if (quote_found == '\'')
5145 /* A string within single quotes can be a symbol, so complete on it. */
5146 sym_text = quote_pos + 1;
5147 else if (quote_found == '"')
5148 /* A double-quoted string is never a symbol, nor does it make sense
5149 to complete it any other way. */
5150 {
5151 return;
5152 }
5153 else
5154 {
5155 /* It is not a quoted string. Break it based on the characters
5156 which are in symbols. */
5157 while (p > text)
5158 {
5159 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5160 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5161 --p;
5162 else
5163 break;
5164 }
5165 sym_text = p;
5166 }
5167 }
5168
5169 sym_text_len = strlen (sym_text);
5170
5171 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5172
5173 if (current_language->la_language == language_cplus
5174 || current_language->la_language == language_fortran)
5175 {
5176 /* These languages may have parameters entered by user but they are never
5177 present in the partial symbol tables. */
5178
5179 const char *cs = (const char *) memchr (sym_text, '(', sym_text_len);
5180
5181 if (cs)
5182 sym_text_len = cs - sym_text;
5183 }
5184 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5185
5186 completion_tracker = new_completion_tracker ();
5187 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5188
5189 /* At this point scan through the misc symbol vectors and add each
5190 symbol you find to the list. Eventually we want to ignore
5191 anything that isn't a text symbol (everything else will be
5192 handled by the psymtab code below). */
5193
5194 if (code == TYPE_CODE_UNDEF)
5195 {
5196 ALL_MSYMBOLS (objfile, msymbol)
5197 {
5198 QUIT;
5199 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
5200 word);
5201
5202 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
5203 word);
5204 }
5205 }
5206
5207 /* Add completions for all currently loaded symbol tables. */
5208 ALL_COMPUNITS (objfile, cust)
5209 add_symtab_completions (cust, sym_text, sym_text_len, text, word,
5210 code);
5211
5212 /* Look through the partial symtabs for all symbols which begin by
5213 matching SYM_TEXT. Expand all CUs that you find to the list. */
5214 expand_symtabs_matching (NULL,
5215 [&] (const char *name) /* symbol matcher */
5216 {
5217 return compare_symbol_name (name,
5218 sym_text,
5219 sym_text_len);
5220 },
5221 [&] (compunit_symtab *symtab) /* expansion notify */
5222 {
5223 add_symtab_completions (symtab,
5224 sym_text, sym_text_len,
5225 text, word, code);
5226 },
5227 ALL_DOMAIN);
5228
5229 /* Search upwards from currently selected frame (so that we can
5230 complete on local vars). Also catch fields of types defined in
5231 this places which match our text string. Only complete on types
5232 visible from current context. */
5233
5234 b = get_selected_block (0);
5235 surrounding_static_block = block_static_block (b);
5236 surrounding_global_block = block_global_block (b);
5237 if (surrounding_static_block != NULL)
5238 while (b != surrounding_static_block)
5239 {
5240 QUIT;
5241
5242 ALL_BLOCK_SYMBOLS (b, iter, sym)
5243 {
5244 if (code == TYPE_CODE_UNDEF)
5245 {
5246 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5247 word);
5248 completion_list_add_fields (sym, sym_text, sym_text_len, text,
5249 word);
5250 }
5251 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5252 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5253 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5254 word);
5255 }
5256
5257 /* Stop when we encounter an enclosing function. Do not stop for
5258 non-inlined functions - the locals of the enclosing function
5259 are in scope for a nested function. */
5260 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5261 break;
5262 b = BLOCK_SUPERBLOCK (b);
5263 }
5264
5265 /* Add fields from the file's types; symbols will be added below. */
5266
5267 if (code == TYPE_CODE_UNDEF)
5268 {
5269 if (surrounding_static_block != NULL)
5270 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5271 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5272
5273 if (surrounding_global_block != NULL)
5274 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5275 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5276 }
5277
5278 /* Skip macros if we are completing a struct tag -- arguable but
5279 usually what is expected. */
5280 if (current_language->la_macro_expansion == macro_expansion_c
5281 && code == TYPE_CODE_UNDEF)
5282 {
5283 struct macro_scope *scope;
5284
5285 /* This adds a macro's name to the current completion list. */
5286 auto add_macro_name = [&] (const char *macro_name,
5287 const macro_definition *,
5288 macro_source_file *,
5289 int)
5290 {
5291 completion_list_add_name (macro_name,
5292 sym_text, sym_text_len,
5293 text, word);
5294 };
5295
5296 /* Add any macros visible in the default scope. Note that this
5297 may yield the occasional wrong result, because an expression
5298 might be evaluated in a scope other than the default. For
5299 example, if the user types "break file:line if <TAB>", the
5300 resulting expression will be evaluated at "file:line" -- but
5301 at there does not seem to be a way to detect this at
5302 completion time. */
5303 scope = default_macro_scope ();
5304 if (scope)
5305 {
5306 macro_for_each_in_scope (scope->file, scope->line,
5307 add_macro_name);
5308 xfree (scope);
5309 }
5310
5311 /* User-defined macros are always visible. */
5312 macro_for_each (macro_user_macros, add_macro_name);
5313 }
5314
5315 do_cleanups (cleanups);
5316 }
5317
5318 VEC (char_ptr) *
5319 default_make_symbol_completion_list_break_on (const char *text,
5320 const char *word,
5321 const char *break_on,
5322 enum type_code code)
5323 {
5324 struct cleanup *back_to;
5325
5326 return_val = NULL;
5327 back_to = make_cleanup (do_free_completion_list, &return_val);
5328
5329 TRY
5330 {
5331 default_make_symbol_completion_list_break_on_1 (text, word,
5332 break_on, code);
5333 }
5334 CATCH (except, RETURN_MASK_ERROR)
5335 {
5336 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5337 throw_exception (except);
5338 }
5339 END_CATCH
5340
5341 discard_cleanups (back_to);
5342 return return_val;
5343 }
5344
5345 VEC (char_ptr) *
5346 default_make_symbol_completion_list (const char *text, const char *word,
5347 enum type_code code)
5348 {
5349 return default_make_symbol_completion_list_break_on (text, word, "", code);
5350 }
5351
5352 /* Return a vector of all symbols (regardless of class) which begin by
5353 matching TEXT. If the answer is no symbols, then the return value
5354 is NULL. */
5355
5356 VEC (char_ptr) *
5357 make_symbol_completion_list (const char *text, const char *word)
5358 {
5359 return current_language->la_make_symbol_completion_list (text, word,
5360 TYPE_CODE_UNDEF);
5361 }
5362
5363 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
5364 symbols whose type code is CODE. */
5365
5366 VEC (char_ptr) *
5367 make_symbol_completion_type (const char *text, const char *word,
5368 enum type_code code)
5369 {
5370 gdb_assert (code == TYPE_CODE_UNION
5371 || code == TYPE_CODE_STRUCT
5372 || code == TYPE_CODE_ENUM);
5373 return current_language->la_make_symbol_completion_list (text, word, code);
5374 }
5375
5376 /* Like make_symbol_completion_list, but suitable for use as a
5377 completion function. */
5378
5379 VEC (char_ptr) *
5380 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
5381 const char *text, const char *word)
5382 {
5383 return make_symbol_completion_list (text, word);
5384 }
5385
5386 /* Like make_symbol_completion_list, but returns a list of symbols
5387 defined in a source file FILE. */
5388
5389 static VEC (char_ptr) *
5390 make_file_symbol_completion_list_1 (const char *text, const char *word,
5391 const char *srcfile)
5392 {
5393 struct symtab *s;
5394 /* The symbol we are completing on. Points in same buffer as text. */
5395 const char *sym_text;
5396 /* Length of sym_text. */
5397 int sym_text_len;
5398
5399 /* Now look for the symbol we are supposed to complete on.
5400 FIXME: This should be language-specific. */
5401 {
5402 const char *p;
5403 char quote_found;
5404 const char *quote_pos = NULL;
5405
5406 /* First see if this is a quoted string. */
5407 quote_found = '\0';
5408 for (p = text; *p != '\0'; ++p)
5409 {
5410 if (quote_found != '\0')
5411 {
5412 if (*p == quote_found)
5413 /* Found close quote. */
5414 quote_found = '\0';
5415 else if (*p == '\\' && p[1] == quote_found)
5416 /* A backslash followed by the quote character
5417 doesn't end the string. */
5418 ++p;
5419 }
5420 else if (*p == '\'' || *p == '"')
5421 {
5422 quote_found = *p;
5423 quote_pos = p;
5424 }
5425 }
5426 if (quote_found == '\'')
5427 /* A string within single quotes can be a symbol, so complete on it. */
5428 sym_text = quote_pos + 1;
5429 else if (quote_found == '"')
5430 /* A double-quoted string is never a symbol, nor does it make sense
5431 to complete it any other way. */
5432 {
5433 return NULL;
5434 }
5435 else
5436 {
5437 /* Not a quoted string. */
5438 sym_text = language_search_unquoted_string (text, p);
5439 }
5440 }
5441
5442 sym_text_len = strlen (sym_text);
5443
5444 /* Find the symtab for SRCFILE (this loads it if it was not yet read
5445 in). */
5446 s = lookup_symtab (srcfile);
5447 if (s == NULL)
5448 {
5449 /* Maybe they typed the file with leading directories, while the
5450 symbol tables record only its basename. */
5451 const char *tail = lbasename (srcfile);
5452
5453 if (tail > srcfile)
5454 s = lookup_symtab (tail);
5455 }
5456
5457 /* If we have no symtab for that file, return an empty list. */
5458 if (s == NULL)
5459 return (return_val);
5460
5461 /* Go through this symtab and check the externs and statics for
5462 symbols which match. */
5463 add_symtab_completions (SYMTAB_COMPUNIT (s),
5464 sym_text, sym_text_len,
5465 text, word, TYPE_CODE_UNDEF);
5466
5467 return (return_val);
5468 }
5469
5470 /* Wrapper around make_file_symbol_completion_list_1
5471 to handle MAX_COMPLETIONS_REACHED_ERROR. */
5472
5473 VEC (char_ptr) *
5474 make_file_symbol_completion_list (const char *text, const char *word,
5475 const char *srcfile)
5476 {
5477 struct cleanup *back_to, *cleanups;
5478
5479 completion_tracker = new_completion_tracker ();
5480 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5481 return_val = NULL;
5482 back_to = make_cleanup (do_free_completion_list, &return_val);
5483
5484 TRY
5485 {
5486 make_file_symbol_completion_list_1 (text, word, srcfile);
5487 }
5488 CATCH (except, RETURN_MASK_ERROR)
5489 {
5490 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5491 throw_exception (except);
5492 }
5493 END_CATCH
5494
5495 discard_cleanups (back_to);
5496 do_cleanups (cleanups);
5497 return return_val;
5498 }
5499
5500 /* A helper function for make_source_files_completion_list. It adds
5501 another file name to a list of possible completions, growing the
5502 list as necessary. */
5503
5504 static void
5505 add_filename_to_list (const char *fname, const char *text, const char *word,
5506 VEC (char_ptr) **list)
5507 {
5508 char *newobj;
5509 size_t fnlen = strlen (fname);
5510
5511 if (word == text)
5512 {
5513 /* Return exactly fname. */
5514 newobj = (char *) xmalloc (fnlen + 5);
5515 strcpy (newobj, fname);
5516 }
5517 else if (word > text)
5518 {
5519 /* Return some portion of fname. */
5520 newobj = (char *) xmalloc (fnlen + 5);
5521 strcpy (newobj, fname + (word - text));
5522 }
5523 else
5524 {
5525 /* Return some of TEXT plus fname. */
5526 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5527 strncpy (newobj, word, text - word);
5528 newobj[text - word] = '\0';
5529 strcat (newobj, fname);
5530 }
5531 VEC_safe_push (char_ptr, *list, newobj);
5532 }
5533
5534 static int
5535 not_interesting_fname (const char *fname)
5536 {
5537 static const char *illegal_aliens[] = {
5538 "_globals_", /* inserted by coff_symtab_read */
5539 NULL
5540 };
5541 int i;
5542
5543 for (i = 0; illegal_aliens[i]; i++)
5544 {
5545 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5546 return 1;
5547 }
5548 return 0;
5549 }
5550
5551 /* An object of this type is passed as the user_data argument to
5552 map_partial_symbol_filenames. */
5553 struct add_partial_filename_data
5554 {
5555 struct filename_seen_cache *filename_seen_cache;
5556 const char *text;
5557 const char *word;
5558 int text_len;
5559 VEC (char_ptr) **list;
5560 };
5561
5562 /* A callback for map_partial_symbol_filenames. */
5563
5564 static void
5565 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5566 void *user_data)
5567 {
5568 struct add_partial_filename_data *data
5569 = (struct add_partial_filename_data *) user_data;
5570
5571 if (not_interesting_fname (filename))
5572 return;
5573 if (!filename_seen (data->filename_seen_cache, filename, 1)
5574 && filename_ncmp (filename, data->text, data->text_len) == 0)
5575 {
5576 /* This file matches for a completion; add it to the
5577 current list of matches. */
5578 add_filename_to_list (filename, data->text, data->word, data->list);
5579 }
5580 else
5581 {
5582 const char *base_name = lbasename (filename);
5583
5584 if (base_name != filename
5585 && !filename_seen (data->filename_seen_cache, base_name, 1)
5586 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5587 add_filename_to_list (base_name, data->text, data->word, data->list);
5588 }
5589 }
5590
5591 /* Return a vector of all source files whose names begin with matching
5592 TEXT. The file names are looked up in the symbol tables of this
5593 program. If the answer is no matchess, then the return value is
5594 NULL. */
5595
5596 VEC (char_ptr) *
5597 make_source_files_completion_list (const char *text, const char *word)
5598 {
5599 struct compunit_symtab *cu;
5600 struct symtab *s;
5601 struct objfile *objfile;
5602 size_t text_len = strlen (text);
5603 VEC (char_ptr) *list = NULL;
5604 const char *base_name;
5605 struct add_partial_filename_data datum;
5606 struct filename_seen_cache *filename_seen_cache;
5607 struct cleanup *back_to, *cache_cleanup;
5608
5609 if (!have_full_symbols () && !have_partial_symbols ())
5610 return list;
5611
5612 back_to = make_cleanup (do_free_completion_list, &list);
5613
5614 filename_seen_cache = create_filename_seen_cache ();
5615 cache_cleanup = make_cleanup (delete_filename_seen_cache,
5616 filename_seen_cache);
5617
5618 ALL_FILETABS (objfile, cu, s)
5619 {
5620 if (not_interesting_fname (s->filename))
5621 continue;
5622 if (!filename_seen (filename_seen_cache, s->filename, 1)
5623 && filename_ncmp (s->filename, text, text_len) == 0)
5624 {
5625 /* This file matches for a completion; add it to the current
5626 list of matches. */
5627 add_filename_to_list (s->filename, text, word, &list);
5628 }
5629 else
5630 {
5631 /* NOTE: We allow the user to type a base name when the
5632 debug info records leading directories, but not the other
5633 way around. This is what subroutines of breakpoint
5634 command do when they parse file names. */
5635 base_name = lbasename (s->filename);
5636 if (base_name != s->filename
5637 && !filename_seen (filename_seen_cache, base_name, 1)
5638 && filename_ncmp (base_name, text, text_len) == 0)
5639 add_filename_to_list (base_name, text, word, &list);
5640 }
5641 }
5642
5643 datum.filename_seen_cache = filename_seen_cache;
5644 datum.text = text;
5645 datum.word = word;
5646 datum.text_len = text_len;
5647 datum.list = &list;
5648 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5649 0 /*need_fullname*/);
5650
5651 do_cleanups (cache_cleanup);
5652 discard_cleanups (back_to);
5653
5654 return list;
5655 }
5656 \f
5657 /* Track MAIN */
5658
5659 /* Return the "main_info" object for the current program space. If
5660 the object has not yet been created, create it and fill in some
5661 default values. */
5662
5663 static struct main_info *
5664 get_main_info (void)
5665 {
5666 struct main_info *info
5667 = (struct main_info *) program_space_data (current_program_space,
5668 main_progspace_key);
5669
5670 if (info == NULL)
5671 {
5672 /* It may seem strange to store the main name in the progspace
5673 and also in whatever objfile happens to see a main name in
5674 its debug info. The reason for this is mainly historical:
5675 gdb returned "main" as the name even if no function named
5676 "main" was defined the program; and this approach lets us
5677 keep compatibility. */
5678 info = XCNEW (struct main_info);
5679 info->language_of_main = language_unknown;
5680 set_program_space_data (current_program_space, main_progspace_key,
5681 info);
5682 }
5683
5684 return info;
5685 }
5686
5687 /* A cleanup to destroy a struct main_info when a progspace is
5688 destroyed. */
5689
5690 static void
5691 main_info_cleanup (struct program_space *pspace, void *data)
5692 {
5693 struct main_info *info = (struct main_info *) data;
5694
5695 if (info != NULL)
5696 xfree (info->name_of_main);
5697 xfree (info);
5698 }
5699
5700 static void
5701 set_main_name (const char *name, enum language lang)
5702 {
5703 struct main_info *info = get_main_info ();
5704
5705 if (info->name_of_main != NULL)
5706 {
5707 xfree (info->name_of_main);
5708 info->name_of_main = NULL;
5709 info->language_of_main = language_unknown;
5710 }
5711 if (name != NULL)
5712 {
5713 info->name_of_main = xstrdup (name);
5714 info->language_of_main = lang;
5715 }
5716 }
5717
5718 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5719 accordingly. */
5720
5721 static void
5722 find_main_name (void)
5723 {
5724 const char *new_main_name;
5725 struct objfile *objfile;
5726
5727 /* First check the objfiles to see whether a debuginfo reader has
5728 picked up the appropriate main name. Historically the main name
5729 was found in a more or less random way; this approach instead
5730 relies on the order of objfile creation -- which still isn't
5731 guaranteed to get the correct answer, but is just probably more
5732 accurate. */
5733 ALL_OBJFILES (objfile)
5734 {
5735 if (objfile->per_bfd->name_of_main != NULL)
5736 {
5737 set_main_name (objfile->per_bfd->name_of_main,
5738 objfile->per_bfd->language_of_main);
5739 return;
5740 }
5741 }
5742
5743 /* Try to see if the main procedure is in Ada. */
5744 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5745 be to add a new method in the language vector, and call this
5746 method for each language until one of them returns a non-empty
5747 name. This would allow us to remove this hard-coded call to
5748 an Ada function. It is not clear that this is a better approach
5749 at this point, because all methods need to be written in a way
5750 such that false positives never be returned. For instance, it is
5751 important that a method does not return a wrong name for the main
5752 procedure if the main procedure is actually written in a different
5753 language. It is easy to guaranty this with Ada, since we use a
5754 special symbol generated only when the main in Ada to find the name
5755 of the main procedure. It is difficult however to see how this can
5756 be guarantied for languages such as C, for instance. This suggests
5757 that order of call for these methods becomes important, which means
5758 a more complicated approach. */
5759 new_main_name = ada_main_name ();
5760 if (new_main_name != NULL)
5761 {
5762 set_main_name (new_main_name, language_ada);
5763 return;
5764 }
5765
5766 new_main_name = d_main_name ();
5767 if (new_main_name != NULL)
5768 {
5769 set_main_name (new_main_name, language_d);
5770 return;
5771 }
5772
5773 new_main_name = go_main_name ();
5774 if (new_main_name != NULL)
5775 {
5776 set_main_name (new_main_name, language_go);
5777 return;
5778 }
5779
5780 new_main_name = pascal_main_name ();
5781 if (new_main_name != NULL)
5782 {
5783 set_main_name (new_main_name, language_pascal);
5784 return;
5785 }
5786
5787 /* The languages above didn't identify the name of the main procedure.
5788 Fallback to "main". */
5789 set_main_name ("main", language_unknown);
5790 }
5791
5792 char *
5793 main_name (void)
5794 {
5795 struct main_info *info = get_main_info ();
5796
5797 if (info->name_of_main == NULL)
5798 find_main_name ();
5799
5800 return info->name_of_main;
5801 }
5802
5803 /* Return the language of the main function. If it is not known,
5804 return language_unknown. */
5805
5806 enum language
5807 main_language (void)
5808 {
5809 struct main_info *info = get_main_info ();
5810
5811 if (info->name_of_main == NULL)
5812 find_main_name ();
5813
5814 return info->language_of_main;
5815 }
5816
5817 /* Handle ``executable_changed'' events for the symtab module. */
5818
5819 static void
5820 symtab_observer_executable_changed (void)
5821 {
5822 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5823 set_main_name (NULL, language_unknown);
5824 }
5825
5826 /* Return 1 if the supplied producer string matches the ARM RealView
5827 compiler (armcc). */
5828
5829 int
5830 producer_is_realview (const char *producer)
5831 {
5832 static const char *const arm_idents[] = {
5833 "ARM C Compiler, ADS",
5834 "Thumb C Compiler, ADS",
5835 "ARM C++ Compiler, ADS",
5836 "Thumb C++ Compiler, ADS",
5837 "ARM/Thumb C/C++ Compiler, RVCT",
5838 "ARM C/C++ Compiler, RVCT"
5839 };
5840 int i;
5841
5842 if (producer == NULL)
5843 return 0;
5844
5845 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5846 if (startswith (producer, arm_idents[i]))
5847 return 1;
5848
5849 return 0;
5850 }
5851
5852 \f
5853
5854 /* The next index to hand out in response to a registration request. */
5855
5856 static int next_aclass_value = LOC_FINAL_VALUE;
5857
5858 /* The maximum number of "aclass" registrations we support. This is
5859 constant for convenience. */
5860 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5861
5862 /* The objects representing the various "aclass" values. The elements
5863 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5864 elements are those registered at gdb initialization time. */
5865
5866 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5867
5868 /* The globally visible pointer. This is separate from 'symbol_impl'
5869 so that it can be const. */
5870
5871 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5872
5873 /* Make sure we saved enough room in struct symbol. */
5874
5875 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5876
5877 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5878 is the ops vector associated with this index. This returns the new
5879 index, which should be used as the aclass_index field for symbols
5880 of this type. */
5881
5882 int
5883 register_symbol_computed_impl (enum address_class aclass,
5884 const struct symbol_computed_ops *ops)
5885 {
5886 int result = next_aclass_value++;
5887
5888 gdb_assert (aclass == LOC_COMPUTED);
5889 gdb_assert (result < MAX_SYMBOL_IMPLS);
5890 symbol_impl[result].aclass = aclass;
5891 symbol_impl[result].ops_computed = ops;
5892
5893 /* Sanity check OPS. */
5894 gdb_assert (ops != NULL);
5895 gdb_assert (ops->tracepoint_var_ref != NULL);
5896 gdb_assert (ops->describe_location != NULL);
5897 gdb_assert (ops->get_symbol_read_needs != NULL);
5898 gdb_assert (ops->read_variable != NULL);
5899
5900 return result;
5901 }
5902
5903 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5904 OPS is the ops vector associated with this index. This returns the
5905 new index, which should be used as the aclass_index field for symbols
5906 of this type. */
5907
5908 int
5909 register_symbol_block_impl (enum address_class aclass,
5910 const struct symbol_block_ops *ops)
5911 {
5912 int result = next_aclass_value++;
5913
5914 gdb_assert (aclass == LOC_BLOCK);
5915 gdb_assert (result < MAX_SYMBOL_IMPLS);
5916 symbol_impl[result].aclass = aclass;
5917 symbol_impl[result].ops_block = ops;
5918
5919 /* Sanity check OPS. */
5920 gdb_assert (ops != NULL);
5921 gdb_assert (ops->find_frame_base_location != NULL);
5922
5923 return result;
5924 }
5925
5926 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5927 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5928 this index. This returns the new index, which should be used as
5929 the aclass_index field for symbols of this type. */
5930
5931 int
5932 register_symbol_register_impl (enum address_class aclass,
5933 const struct symbol_register_ops *ops)
5934 {
5935 int result = next_aclass_value++;
5936
5937 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5938 gdb_assert (result < MAX_SYMBOL_IMPLS);
5939 symbol_impl[result].aclass = aclass;
5940 symbol_impl[result].ops_register = ops;
5941
5942 return result;
5943 }
5944
5945 /* Initialize elements of 'symbol_impl' for the constants in enum
5946 address_class. */
5947
5948 static void
5949 initialize_ordinary_address_classes (void)
5950 {
5951 int i;
5952
5953 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5954 symbol_impl[i].aclass = (enum address_class) i;
5955 }
5956
5957 \f
5958
5959 /* Helper function to initialize the fields of an objfile-owned symbol.
5960 It assumed that *SYM is already all zeroes. */
5961
5962 static void
5963 initialize_objfile_symbol_1 (struct symbol *sym)
5964 {
5965 SYMBOL_OBJFILE_OWNED (sym) = 1;
5966 SYMBOL_SECTION (sym) = -1;
5967 }
5968
5969 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5970
5971 void
5972 initialize_objfile_symbol (struct symbol *sym)
5973 {
5974 memset (sym, 0, sizeof (*sym));
5975 initialize_objfile_symbol_1 (sym);
5976 }
5977
5978 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5979 obstack. */
5980
5981 struct symbol *
5982 allocate_symbol (struct objfile *objfile)
5983 {
5984 struct symbol *result;
5985
5986 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5987 initialize_objfile_symbol_1 (result);
5988
5989 return result;
5990 }
5991
5992 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5993 obstack. */
5994
5995 struct template_symbol *
5996 allocate_template_symbol (struct objfile *objfile)
5997 {
5998 struct template_symbol *result;
5999
6000 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6001 initialize_objfile_symbol_1 (&result->base);
6002
6003 return result;
6004 }
6005
6006 /* See symtab.h. */
6007
6008 struct objfile *
6009 symbol_objfile (const struct symbol *symbol)
6010 {
6011 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6012 return SYMTAB_OBJFILE (symbol->owner.symtab);
6013 }
6014
6015 /* See symtab.h. */
6016
6017 struct gdbarch *
6018 symbol_arch (const struct symbol *symbol)
6019 {
6020 if (!SYMBOL_OBJFILE_OWNED (symbol))
6021 return symbol->owner.arch;
6022 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6023 }
6024
6025 /* See symtab.h. */
6026
6027 struct symtab *
6028 symbol_symtab (const struct symbol *symbol)
6029 {
6030 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6031 return symbol->owner.symtab;
6032 }
6033
6034 /* See symtab.h. */
6035
6036 void
6037 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6038 {
6039 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6040 symbol->owner.symtab = symtab;
6041 }
6042
6043 \f
6044
6045 void
6046 _initialize_symtab (void)
6047 {
6048 initialize_ordinary_address_classes ();
6049
6050 main_progspace_key
6051 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6052
6053 symbol_cache_key
6054 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6055
6056 add_info ("variables", variables_info, _("\
6057 All global and static variable names, or those matching REGEXP."));
6058 if (dbx_commands)
6059 add_com ("whereis", class_info, variables_info, _("\
6060 All global and static variable names, or those matching REGEXP."));
6061
6062 add_info ("functions", functions_info,
6063 _("All function names, or those matching REGEXP."));
6064
6065 /* FIXME: This command has at least the following problems:
6066 1. It prints builtin types (in a very strange and confusing fashion).
6067 2. It doesn't print right, e.g. with
6068 typedef struct foo *FOO
6069 type_print prints "FOO" when we want to make it (in this situation)
6070 print "struct foo *".
6071 I also think "ptype" or "whatis" is more likely to be useful (but if
6072 there is much disagreement "info types" can be fixed). */
6073 add_info ("types", types_info,
6074 _("All type names, or those matching REGEXP."));
6075
6076 add_info ("sources", sources_info,
6077 _("Source files in the program."));
6078
6079 add_com ("rbreak", class_breakpoint, rbreak_command,
6080 _("Set a breakpoint for all functions matching REGEXP."));
6081
6082 add_setshow_enum_cmd ("multiple-symbols", no_class,
6083 multiple_symbols_modes, &multiple_symbols_mode,
6084 _("\
6085 Set the debugger behavior when more than one symbol are possible matches\n\
6086 in an expression."), _("\
6087 Show how the debugger handles ambiguities in expressions."), _("\
6088 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6089 NULL, NULL, &setlist, &showlist);
6090
6091 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6092 &basenames_may_differ, _("\
6093 Set whether a source file may have multiple base names."), _("\
6094 Show whether a source file may have multiple base names."), _("\
6095 (A \"base name\" is the name of a file with the directory part removed.\n\
6096 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6097 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6098 before comparing them. Canonicalization is an expensive operation,\n\
6099 but it allows the same file be known by more than one base name.\n\
6100 If not set (the default), all source files are assumed to have just\n\
6101 one base name, and gdb will do file name comparisons more efficiently."),
6102 NULL, NULL,
6103 &setlist, &showlist);
6104
6105 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6106 _("Set debugging of symbol table creation."),
6107 _("Show debugging of symbol table creation."), _("\
6108 When enabled (non-zero), debugging messages are printed when building\n\
6109 symbol tables. A value of 1 (one) normally provides enough information.\n\
6110 A value greater than 1 provides more verbose information."),
6111 NULL,
6112 NULL,
6113 &setdebuglist, &showdebuglist);
6114
6115 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6116 _("\
6117 Set debugging of symbol lookup."), _("\
6118 Show debugging of symbol lookup."), _("\
6119 When enabled (non-zero), symbol lookups are logged."),
6120 NULL, NULL,
6121 &setdebuglist, &showdebuglist);
6122
6123 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6124 &new_symbol_cache_size,
6125 _("Set the size of the symbol cache."),
6126 _("Show the size of the symbol cache."), _("\
6127 The size of the symbol cache.\n\
6128 If zero then the symbol cache is disabled."),
6129 set_symbol_cache_size_handler, NULL,
6130 &maintenance_set_cmdlist,
6131 &maintenance_show_cmdlist);
6132
6133 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6134 _("Dump the symbol cache for each program space."),
6135 &maintenanceprintlist);
6136
6137 add_cmd ("symbol-cache-statistics", class_maintenance,
6138 maintenance_print_symbol_cache_statistics,
6139 _("Print symbol cache statistics for each program space."),
6140 &maintenanceprintlist);
6141
6142 add_cmd ("flush-symbol-cache", class_maintenance,
6143 maintenance_flush_symbol_cache,
6144 _("Flush the symbol cache for each program space."),
6145 &maintenancelist);
6146
6147 observer_attach_executable_changed (symtab_observer_executable_changed);
6148 observer_attach_new_objfile (symtab_new_objfile_observer);
6149 observer_attach_free_objfile (symtab_free_objfile_observer);
6150 }
This page took 0.148936 seconds and 5 git commands to generate.