Fix regression: expression completer and scope operator (PR gdb/22584)
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64 #include "progspace-and-thread.h"
65 #include "common/gdb_optional.h"
66 #include "filename-seen-cache.h"
67 #include "arch-utils.h"
68 #include <algorithm>
69
70 /* Forward declarations for local functions. */
71
72 static void rbreak_command (const char *, int);
73
74 static int find_line_common (struct linetable *, int, int *, int);
75
76 static struct block_symbol
77 lookup_symbol_aux (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language,
81 struct field_of_this_result *);
82
83 static
84 struct block_symbol lookup_local_symbol (const char *name,
85 const struct block *block,
86 const domain_enum domain,
87 enum language language);
88
89 static struct block_symbol
90 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
91 const char *name, const domain_enum domain);
92
93 /* See symtab.h. */
94 const struct block_symbol null_block_symbol = { NULL, NULL };
95
96 /* Program space key for finding name and language of "main". */
97
98 static const struct program_space_data *main_progspace_key;
99
100 /* Type of the data stored on the program space. */
101
102 struct main_info
103 {
104 /* Name of "main". */
105
106 char *name_of_main;
107
108 /* Language of "main". */
109
110 enum language language_of_main;
111 };
112
113 /* Program space key for finding its symbol cache. */
114
115 static const struct program_space_data *symbol_cache_key;
116
117 /* The default symbol cache size.
118 There is no extra cpu cost for large N (except when flushing the cache,
119 which is rare). The value here is just a first attempt. A better default
120 value may be higher or lower. A prime number can make up for a bad hash
121 computation, so that's why the number is what it is. */
122 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
123
124 /* The maximum symbol cache size.
125 There's no method to the decision of what value to use here, other than
126 there's no point in allowing a user typo to make gdb consume all memory. */
127 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
128
129 /* symbol_cache_lookup returns this if a previous lookup failed to find the
130 symbol in any objfile. */
131 #define SYMBOL_LOOKUP_FAILED \
132 ((struct block_symbol) {(struct symbol *) 1, NULL})
133 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
134
135 /* Recording lookups that don't find the symbol is just as important, if not
136 more so, than recording found symbols. */
137
138 enum symbol_cache_slot_state
139 {
140 SYMBOL_SLOT_UNUSED,
141 SYMBOL_SLOT_NOT_FOUND,
142 SYMBOL_SLOT_FOUND
143 };
144
145 struct symbol_cache_slot
146 {
147 enum symbol_cache_slot_state state;
148
149 /* The objfile that was current when the symbol was looked up.
150 This is only needed for global blocks, but for simplicity's sake
151 we allocate the space for both. If data shows the extra space used
152 for static blocks is a problem, we can split things up then.
153
154 Global blocks need cache lookup to include the objfile context because
155 we need to account for gdbarch_iterate_over_objfiles_in_search_order
156 which can traverse objfiles in, effectively, any order, depending on
157 the current objfile, thus affecting which symbol is found. Normally,
158 only the current objfile is searched first, and then the rest are
159 searched in recorded order; but putting cache lookup inside
160 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
161 Instead we just make the current objfile part of the context of
162 cache lookup. This means we can record the same symbol multiple times,
163 each with a different "current objfile" that was in effect when the
164 lookup was saved in the cache, but cache space is pretty cheap. */
165 const struct objfile *objfile_context;
166
167 union
168 {
169 struct block_symbol found;
170 struct
171 {
172 char *name;
173 domain_enum domain;
174 } not_found;
175 } value;
176 };
177
178 /* Symbols don't specify global vs static block.
179 So keep them in separate caches. */
180
181 struct block_symbol_cache
182 {
183 unsigned int hits;
184 unsigned int misses;
185 unsigned int collisions;
186
187 /* SYMBOLS is a variable length array of this size.
188 One can imagine that in general one cache (global/static) should be a
189 fraction of the size of the other, but there's no data at the moment
190 on which to decide. */
191 unsigned int size;
192
193 struct symbol_cache_slot symbols[1];
194 };
195
196 /* The symbol cache.
197
198 Searching for symbols in the static and global blocks over multiple objfiles
199 again and again can be slow, as can searching very big objfiles. This is a
200 simple cache to improve symbol lookup performance, which is critical to
201 overall gdb performance.
202
203 Symbols are hashed on the name, its domain, and block.
204 They are also hashed on their objfile for objfile-specific lookups. */
205
206 struct symbol_cache
207 {
208 struct block_symbol_cache *global_symbols;
209 struct block_symbol_cache *static_symbols;
210 };
211
212 /* When non-zero, print debugging messages related to symtab creation. */
213 unsigned int symtab_create_debug = 0;
214
215 /* When non-zero, print debugging messages related to symbol lookup. */
216 unsigned int symbol_lookup_debug = 0;
217
218 /* The size of the cache is staged here. */
219 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
220
221 /* The current value of the symbol cache size.
222 This is saved so that if the user enters a value too big we can restore
223 the original value from here. */
224 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
225
226 /* Non-zero if a file may be known by two different basenames.
227 This is the uncommon case, and significantly slows down gdb.
228 Default set to "off" to not slow down the common case. */
229 int basenames_may_differ = 0;
230
231 /* Allow the user to configure the debugger behavior with respect
232 to multiple-choice menus when more than one symbol matches during
233 a symbol lookup. */
234
235 const char multiple_symbols_ask[] = "ask";
236 const char multiple_symbols_all[] = "all";
237 const char multiple_symbols_cancel[] = "cancel";
238 static const char *const multiple_symbols_modes[] =
239 {
240 multiple_symbols_ask,
241 multiple_symbols_all,
242 multiple_symbols_cancel,
243 NULL
244 };
245 static const char *multiple_symbols_mode = multiple_symbols_all;
246
247 /* Read-only accessor to AUTO_SELECT_MODE. */
248
249 const char *
250 multiple_symbols_select_mode (void)
251 {
252 return multiple_symbols_mode;
253 }
254
255 /* Return the name of a domain_enum. */
256
257 const char *
258 domain_name (domain_enum e)
259 {
260 switch (e)
261 {
262 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
263 case VAR_DOMAIN: return "VAR_DOMAIN";
264 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
265 case MODULE_DOMAIN: return "MODULE_DOMAIN";
266 case LABEL_DOMAIN: return "LABEL_DOMAIN";
267 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
268 default: gdb_assert_not_reached ("bad domain_enum");
269 }
270 }
271
272 /* Return the name of a search_domain . */
273
274 const char *
275 search_domain_name (enum search_domain e)
276 {
277 switch (e)
278 {
279 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
280 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
281 case TYPES_DOMAIN: return "TYPES_DOMAIN";
282 case ALL_DOMAIN: return "ALL_DOMAIN";
283 default: gdb_assert_not_reached ("bad search_domain");
284 }
285 }
286
287 /* See symtab.h. */
288
289 struct symtab *
290 compunit_primary_filetab (const struct compunit_symtab *cust)
291 {
292 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
293
294 /* The primary file symtab is the first one in the list. */
295 return COMPUNIT_FILETABS (cust);
296 }
297
298 /* See symtab.h. */
299
300 enum language
301 compunit_language (const struct compunit_symtab *cust)
302 {
303 struct symtab *symtab = compunit_primary_filetab (cust);
304
305 /* The language of the compunit symtab is the language of its primary
306 source file. */
307 return SYMTAB_LANGUAGE (symtab);
308 }
309
310 /* See whether FILENAME matches SEARCH_NAME using the rule that we
311 advertise to the user. (The manual's description of linespecs
312 describes what we advertise). Returns true if they match, false
313 otherwise. */
314
315 int
316 compare_filenames_for_search (const char *filename, const char *search_name)
317 {
318 int len = strlen (filename);
319 size_t search_len = strlen (search_name);
320
321 if (len < search_len)
322 return 0;
323
324 /* The tail of FILENAME must match. */
325 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
326 return 0;
327
328 /* Either the names must completely match, or the character
329 preceding the trailing SEARCH_NAME segment of FILENAME must be a
330 directory separator.
331
332 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
333 cannot match FILENAME "/path//dir/file.c" - as user has requested
334 absolute path. The sama applies for "c:\file.c" possibly
335 incorrectly hypothetically matching "d:\dir\c:\file.c".
336
337 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
338 compatible with SEARCH_NAME "file.c". In such case a compiler had
339 to put the "c:file.c" name into debug info. Such compatibility
340 works only on GDB built for DOS host. */
341 return (len == search_len
342 || (!IS_ABSOLUTE_PATH (search_name)
343 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
344 || (HAS_DRIVE_SPEC (filename)
345 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
346 }
347
348 /* Same as compare_filenames_for_search, but for glob-style patterns.
349 Heads up on the order of the arguments. They match the order of
350 compare_filenames_for_search, but it's the opposite of the order of
351 arguments to gdb_filename_fnmatch. */
352
353 int
354 compare_glob_filenames_for_search (const char *filename,
355 const char *search_name)
356 {
357 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
358 all /s have to be explicitly specified. */
359 int file_path_elements = count_path_elements (filename);
360 int search_path_elements = count_path_elements (search_name);
361
362 if (search_path_elements > file_path_elements)
363 return 0;
364
365 if (IS_ABSOLUTE_PATH (search_name))
366 {
367 return (search_path_elements == file_path_elements
368 && gdb_filename_fnmatch (search_name, filename,
369 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
370 }
371
372 {
373 const char *file_to_compare
374 = strip_leading_path_elements (filename,
375 file_path_elements - search_path_elements);
376
377 return gdb_filename_fnmatch (search_name, file_to_compare,
378 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
379 }
380 }
381
382 /* Check for a symtab of a specific name by searching some symtabs.
383 This is a helper function for callbacks of iterate_over_symtabs.
384
385 If NAME is not absolute, then REAL_PATH is NULL
386 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
387
388 The return value, NAME, REAL_PATH and CALLBACK are identical to the
389 `map_symtabs_matching_filename' method of quick_symbol_functions.
390
391 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
392 Each symtab within the specified compunit symtab is also searched.
393 AFTER_LAST is one past the last compunit symtab to search; NULL means to
394 search until the end of the list. */
395
396 bool
397 iterate_over_some_symtabs (const char *name,
398 const char *real_path,
399 struct compunit_symtab *first,
400 struct compunit_symtab *after_last,
401 gdb::function_view<bool (symtab *)> callback)
402 {
403 struct compunit_symtab *cust;
404 struct symtab *s;
405 const char* base_name = lbasename (name);
406
407 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
408 {
409 ALL_COMPUNIT_FILETABS (cust, s)
410 {
411 if (compare_filenames_for_search (s->filename, name))
412 {
413 if (callback (s))
414 return true;
415 continue;
416 }
417
418 /* Before we invoke realpath, which can get expensive when many
419 files are involved, do a quick comparison of the basenames. */
420 if (! basenames_may_differ
421 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
422 continue;
423
424 if (compare_filenames_for_search (symtab_to_fullname (s), name))
425 {
426 if (callback (s))
427 return true;
428 continue;
429 }
430
431 /* If the user gave us an absolute path, try to find the file in
432 this symtab and use its absolute path. */
433 if (real_path != NULL)
434 {
435 const char *fullname = symtab_to_fullname (s);
436
437 gdb_assert (IS_ABSOLUTE_PATH (real_path));
438 gdb_assert (IS_ABSOLUTE_PATH (name));
439 if (FILENAME_CMP (real_path, fullname) == 0)
440 {
441 if (callback (s))
442 return true;
443 continue;
444 }
445 }
446 }
447 }
448
449 return false;
450 }
451
452 /* Check for a symtab of a specific name; first in symtabs, then in
453 psymtabs. *If* there is no '/' in the name, a match after a '/'
454 in the symtab filename will also work.
455
456 Calls CALLBACK with each symtab that is found. If CALLBACK returns
457 true, the search stops. */
458
459 void
460 iterate_over_symtabs (const char *name,
461 gdb::function_view<bool (symtab *)> callback)
462 {
463 struct objfile *objfile;
464 gdb::unique_xmalloc_ptr<char> real_path;
465
466 /* Here we are interested in canonicalizing an absolute path, not
467 absolutizing a relative path. */
468 if (IS_ABSOLUTE_PATH (name))
469 {
470 real_path = gdb_realpath (name);
471 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
472 }
473
474 ALL_OBJFILES (objfile)
475 {
476 if (iterate_over_some_symtabs (name, real_path.get (),
477 objfile->compunit_symtabs, NULL,
478 callback))
479 return;
480 }
481
482 /* Same search rules as above apply here, but now we look thru the
483 psymtabs. */
484
485 ALL_OBJFILES (objfile)
486 {
487 if (objfile->sf
488 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
489 name,
490 real_path.get (),
491 callback))
492 return;
493 }
494 }
495
496 /* A wrapper for iterate_over_symtabs that returns the first matching
497 symtab, or NULL. */
498
499 struct symtab *
500 lookup_symtab (const char *name)
501 {
502 struct symtab *result = NULL;
503
504 iterate_over_symtabs (name, [&] (symtab *symtab)
505 {
506 result = symtab;
507 return true;
508 });
509
510 return result;
511 }
512
513 \f
514 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
515 full method name, which consist of the class name (from T), the unadorned
516 method name from METHOD_ID, and the signature for the specific overload,
517 specified by SIGNATURE_ID. Note that this function is g++ specific. */
518
519 char *
520 gdb_mangle_name (struct type *type, int method_id, int signature_id)
521 {
522 int mangled_name_len;
523 char *mangled_name;
524 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
525 struct fn_field *method = &f[signature_id];
526 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
527 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
528 const char *newname = type_name_no_tag (type);
529
530 /* Does the form of physname indicate that it is the full mangled name
531 of a constructor (not just the args)? */
532 int is_full_physname_constructor;
533
534 int is_constructor;
535 int is_destructor = is_destructor_name (physname);
536 /* Need a new type prefix. */
537 const char *const_prefix = method->is_const ? "C" : "";
538 const char *volatile_prefix = method->is_volatile ? "V" : "";
539 char buf[20];
540 int len = (newname == NULL ? 0 : strlen (newname));
541
542 /* Nothing to do if physname already contains a fully mangled v3 abi name
543 or an operator name. */
544 if ((physname[0] == '_' && physname[1] == 'Z')
545 || is_operator_name (field_name))
546 return xstrdup (physname);
547
548 is_full_physname_constructor = is_constructor_name (physname);
549
550 is_constructor = is_full_physname_constructor
551 || (newname && strcmp (field_name, newname) == 0);
552
553 if (!is_destructor)
554 is_destructor = (startswith (physname, "__dt"));
555
556 if (is_destructor || is_full_physname_constructor)
557 {
558 mangled_name = (char *) xmalloc (strlen (physname) + 1);
559 strcpy (mangled_name, physname);
560 return mangled_name;
561 }
562
563 if (len == 0)
564 {
565 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
566 }
567 else if (physname[0] == 't' || physname[0] == 'Q')
568 {
569 /* The physname for template and qualified methods already includes
570 the class name. */
571 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
572 newname = NULL;
573 len = 0;
574 }
575 else
576 {
577 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
578 volatile_prefix, len);
579 }
580 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
581 + strlen (buf) + len + strlen (physname) + 1);
582
583 mangled_name = (char *) xmalloc (mangled_name_len);
584 if (is_constructor)
585 mangled_name[0] = '\0';
586 else
587 strcpy (mangled_name, field_name);
588
589 strcat (mangled_name, buf);
590 /* If the class doesn't have a name, i.e. newname NULL, then we just
591 mangle it using 0 for the length of the class. Thus it gets mangled
592 as something starting with `::' rather than `classname::'. */
593 if (newname != NULL)
594 strcat (mangled_name, newname);
595
596 strcat (mangled_name, physname);
597 return (mangled_name);
598 }
599
600 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
601 correctly allocated. */
602
603 void
604 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
605 const char *name,
606 struct obstack *obstack)
607 {
608 if (gsymbol->language == language_ada)
609 {
610 if (name == NULL)
611 {
612 gsymbol->ada_mangled = 0;
613 gsymbol->language_specific.obstack = obstack;
614 }
615 else
616 {
617 gsymbol->ada_mangled = 1;
618 gsymbol->language_specific.demangled_name = name;
619 }
620 }
621 else
622 gsymbol->language_specific.demangled_name = name;
623 }
624
625 /* Return the demangled name of GSYMBOL. */
626
627 const char *
628 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
629 {
630 if (gsymbol->language == language_ada)
631 {
632 if (!gsymbol->ada_mangled)
633 return NULL;
634 /* Fall through. */
635 }
636
637 return gsymbol->language_specific.demangled_name;
638 }
639
640 \f
641 /* Initialize the language dependent portion of a symbol
642 depending upon the language for the symbol. */
643
644 void
645 symbol_set_language (struct general_symbol_info *gsymbol,
646 enum language language,
647 struct obstack *obstack)
648 {
649 gsymbol->language = language;
650 if (gsymbol->language == language_cplus
651 || gsymbol->language == language_d
652 || gsymbol->language == language_go
653 || gsymbol->language == language_objc
654 || gsymbol->language == language_fortran)
655 {
656 symbol_set_demangled_name (gsymbol, NULL, obstack);
657 }
658 else if (gsymbol->language == language_ada)
659 {
660 gdb_assert (gsymbol->ada_mangled == 0);
661 gsymbol->language_specific.obstack = obstack;
662 }
663 else
664 {
665 memset (&gsymbol->language_specific, 0,
666 sizeof (gsymbol->language_specific));
667 }
668 }
669
670 /* Functions to initialize a symbol's mangled name. */
671
672 /* Objects of this type are stored in the demangled name hash table. */
673 struct demangled_name_entry
674 {
675 const char *mangled;
676 char demangled[1];
677 };
678
679 /* Hash function for the demangled name hash. */
680
681 static hashval_t
682 hash_demangled_name_entry (const void *data)
683 {
684 const struct demangled_name_entry *e
685 = (const struct demangled_name_entry *) data;
686
687 return htab_hash_string (e->mangled);
688 }
689
690 /* Equality function for the demangled name hash. */
691
692 static int
693 eq_demangled_name_entry (const void *a, const void *b)
694 {
695 const struct demangled_name_entry *da
696 = (const struct demangled_name_entry *) a;
697 const struct demangled_name_entry *db
698 = (const struct demangled_name_entry *) b;
699
700 return strcmp (da->mangled, db->mangled) == 0;
701 }
702
703 /* Create the hash table used for demangled names. Each hash entry is
704 a pair of strings; one for the mangled name and one for the demangled
705 name. The entry is hashed via just the mangled name. */
706
707 static void
708 create_demangled_names_hash (struct objfile *objfile)
709 {
710 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
711 The hash table code will round this up to the next prime number.
712 Choosing a much larger table size wastes memory, and saves only about
713 1% in symbol reading. */
714
715 objfile->per_bfd->demangled_names_hash = htab_create_alloc
716 (256, hash_demangled_name_entry, eq_demangled_name_entry,
717 NULL, xcalloc, xfree);
718 }
719
720 /* Try to determine the demangled name for a symbol, based on the
721 language of that symbol. If the language is set to language_auto,
722 it will attempt to find any demangling algorithm that works and
723 then set the language appropriately. The returned name is allocated
724 by the demangler and should be xfree'd. */
725
726 static char *
727 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
728 const char *mangled)
729 {
730 char *demangled = NULL;
731 int i;
732
733 if (gsymbol->language == language_unknown)
734 gsymbol->language = language_auto;
735
736 if (gsymbol->language != language_auto)
737 {
738 const struct language_defn *lang = language_def (gsymbol->language);
739
740 language_sniff_from_mangled_name (lang, mangled, &demangled);
741 return demangled;
742 }
743
744 for (i = language_unknown; i < nr_languages; ++i)
745 {
746 enum language l = (enum language) i;
747 const struct language_defn *lang = language_def (l);
748
749 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
750 {
751 gsymbol->language = l;
752 return demangled;
753 }
754 }
755
756 return NULL;
757 }
758
759 /* Set both the mangled and demangled (if any) names for GSYMBOL based
760 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
761 objfile's obstack; but if COPY_NAME is 0 and if NAME is
762 NUL-terminated, then this function assumes that NAME is already
763 correctly saved (either permanently or with a lifetime tied to the
764 objfile), and it will not be copied.
765
766 The hash table corresponding to OBJFILE is used, and the memory
767 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
768 so the pointer can be discarded after calling this function. */
769
770 void
771 symbol_set_names (struct general_symbol_info *gsymbol,
772 const char *linkage_name, int len, int copy_name,
773 struct objfile *objfile)
774 {
775 struct demangled_name_entry **slot;
776 /* A 0-terminated copy of the linkage name. */
777 const char *linkage_name_copy;
778 struct demangled_name_entry entry;
779 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
780
781 if (gsymbol->language == language_ada)
782 {
783 /* In Ada, we do the symbol lookups using the mangled name, so
784 we can save some space by not storing the demangled name. */
785 if (!copy_name)
786 gsymbol->name = linkage_name;
787 else
788 {
789 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
790 len + 1);
791
792 memcpy (name, linkage_name, len);
793 name[len] = '\0';
794 gsymbol->name = name;
795 }
796 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
797
798 return;
799 }
800
801 if (per_bfd->demangled_names_hash == NULL)
802 create_demangled_names_hash (objfile);
803
804 if (linkage_name[len] != '\0')
805 {
806 char *alloc_name;
807
808 alloc_name = (char *) alloca (len + 1);
809 memcpy (alloc_name, linkage_name, len);
810 alloc_name[len] = '\0';
811
812 linkage_name_copy = alloc_name;
813 }
814 else
815 linkage_name_copy = linkage_name;
816
817 entry.mangled = linkage_name_copy;
818 slot = ((struct demangled_name_entry **)
819 htab_find_slot (per_bfd->demangled_names_hash,
820 &entry, INSERT));
821
822 /* If this name is not in the hash table, add it. */
823 if (*slot == NULL
824 /* A C version of the symbol may have already snuck into the table.
825 This happens to, e.g., main.init (__go_init_main). Cope. */
826 || (gsymbol->language == language_go
827 && (*slot)->demangled[0] == '\0'))
828 {
829 char *demangled_name = symbol_find_demangled_name (gsymbol,
830 linkage_name_copy);
831 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
832
833 /* Suppose we have demangled_name==NULL, copy_name==0, and
834 linkage_name_copy==linkage_name. In this case, we already have the
835 mangled name saved, and we don't have a demangled name. So,
836 you might think we could save a little space by not recording
837 this in the hash table at all.
838
839 It turns out that it is actually important to still save such
840 an entry in the hash table, because storing this name gives
841 us better bcache hit rates for partial symbols. */
842 if (!copy_name && linkage_name_copy == linkage_name)
843 {
844 *slot
845 = ((struct demangled_name_entry *)
846 obstack_alloc (&per_bfd->storage_obstack,
847 offsetof (struct demangled_name_entry, demangled)
848 + demangled_len + 1));
849 (*slot)->mangled = linkage_name;
850 }
851 else
852 {
853 char *mangled_ptr;
854
855 /* If we must copy the mangled name, put it directly after
856 the demangled name so we can have a single
857 allocation. */
858 *slot
859 = ((struct demangled_name_entry *)
860 obstack_alloc (&per_bfd->storage_obstack,
861 offsetof (struct demangled_name_entry, demangled)
862 + len + demangled_len + 2));
863 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
864 strcpy (mangled_ptr, linkage_name_copy);
865 (*slot)->mangled = mangled_ptr;
866 }
867
868 if (demangled_name != NULL)
869 {
870 strcpy ((*slot)->demangled, demangled_name);
871 xfree (demangled_name);
872 }
873 else
874 (*slot)->demangled[0] = '\0';
875 }
876
877 gsymbol->name = (*slot)->mangled;
878 if ((*slot)->demangled[0] != '\0')
879 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
880 &per_bfd->storage_obstack);
881 else
882 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
883 }
884
885 /* Return the source code name of a symbol. In languages where
886 demangling is necessary, this is the demangled name. */
887
888 const char *
889 symbol_natural_name (const struct general_symbol_info *gsymbol)
890 {
891 switch (gsymbol->language)
892 {
893 case language_cplus:
894 case language_d:
895 case language_go:
896 case language_objc:
897 case language_fortran:
898 if (symbol_get_demangled_name (gsymbol) != NULL)
899 return symbol_get_demangled_name (gsymbol);
900 break;
901 case language_ada:
902 return ada_decode_symbol (gsymbol);
903 default:
904 break;
905 }
906 return gsymbol->name;
907 }
908
909 /* Return the demangled name for a symbol based on the language for
910 that symbol. If no demangled name exists, return NULL. */
911
912 const char *
913 symbol_demangled_name (const struct general_symbol_info *gsymbol)
914 {
915 const char *dem_name = NULL;
916
917 switch (gsymbol->language)
918 {
919 case language_cplus:
920 case language_d:
921 case language_go:
922 case language_objc:
923 case language_fortran:
924 dem_name = symbol_get_demangled_name (gsymbol);
925 break;
926 case language_ada:
927 dem_name = ada_decode_symbol (gsymbol);
928 break;
929 default:
930 break;
931 }
932 return dem_name;
933 }
934
935 /* Return the search name of a symbol---generally the demangled or
936 linkage name of the symbol, depending on how it will be searched for.
937 If there is no distinct demangled name, then returns the same value
938 (same pointer) as SYMBOL_LINKAGE_NAME. */
939
940 const char *
941 symbol_search_name (const struct general_symbol_info *gsymbol)
942 {
943 if (gsymbol->language == language_ada)
944 return gsymbol->name;
945 else
946 return symbol_natural_name (gsymbol);
947 }
948
949 /* See symtab.h. */
950
951 bool
952 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
953 const lookup_name_info &name)
954 {
955 symbol_name_matcher_ftype *name_match
956 = language_get_symbol_name_matcher (language_def (gsymbol->language),
957 name);
958 return name_match (symbol_search_name (gsymbol), name, NULL);
959 }
960
961 \f
962
963 /* Return 1 if the two sections are the same, or if they could
964 plausibly be copies of each other, one in an original object
965 file and another in a separated debug file. */
966
967 int
968 matching_obj_sections (struct obj_section *obj_first,
969 struct obj_section *obj_second)
970 {
971 asection *first = obj_first? obj_first->the_bfd_section : NULL;
972 asection *second = obj_second? obj_second->the_bfd_section : NULL;
973 struct objfile *obj;
974
975 /* If they're the same section, then they match. */
976 if (first == second)
977 return 1;
978
979 /* If either is NULL, give up. */
980 if (first == NULL || second == NULL)
981 return 0;
982
983 /* This doesn't apply to absolute symbols. */
984 if (first->owner == NULL || second->owner == NULL)
985 return 0;
986
987 /* If they're in the same object file, they must be different sections. */
988 if (first->owner == second->owner)
989 return 0;
990
991 /* Check whether the two sections are potentially corresponding. They must
992 have the same size, address, and name. We can't compare section indexes,
993 which would be more reliable, because some sections may have been
994 stripped. */
995 if (bfd_get_section_size (first) != bfd_get_section_size (second))
996 return 0;
997
998 /* In-memory addresses may start at a different offset, relativize them. */
999 if (bfd_get_section_vma (first->owner, first)
1000 - bfd_get_start_address (first->owner)
1001 != bfd_get_section_vma (second->owner, second)
1002 - bfd_get_start_address (second->owner))
1003 return 0;
1004
1005 if (bfd_get_section_name (first->owner, first) == NULL
1006 || bfd_get_section_name (second->owner, second) == NULL
1007 || strcmp (bfd_get_section_name (first->owner, first),
1008 bfd_get_section_name (second->owner, second)) != 0)
1009 return 0;
1010
1011 /* Otherwise check that they are in corresponding objfiles. */
1012
1013 ALL_OBJFILES (obj)
1014 if (obj->obfd == first->owner)
1015 break;
1016 gdb_assert (obj != NULL);
1017
1018 if (obj->separate_debug_objfile != NULL
1019 && obj->separate_debug_objfile->obfd == second->owner)
1020 return 1;
1021 if (obj->separate_debug_objfile_backlink != NULL
1022 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1023 return 1;
1024
1025 return 0;
1026 }
1027
1028 /* See symtab.h. */
1029
1030 void
1031 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1032 {
1033 struct objfile *objfile;
1034 struct bound_minimal_symbol msymbol;
1035
1036 /* If we know that this is not a text address, return failure. This is
1037 necessary because we loop based on texthigh and textlow, which do
1038 not include the data ranges. */
1039 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1040 if (msymbol.minsym
1041 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1042 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1043 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1044 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1045 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1046 return;
1047
1048 ALL_OBJFILES (objfile)
1049 {
1050 struct compunit_symtab *cust = NULL;
1051
1052 if (objfile->sf)
1053 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1054 pc, section, 0);
1055 if (cust)
1056 return;
1057 }
1058 }
1059 \f
1060 /* Hash function for the symbol cache. */
1061
1062 static unsigned int
1063 hash_symbol_entry (const struct objfile *objfile_context,
1064 const char *name, domain_enum domain)
1065 {
1066 unsigned int hash = (uintptr_t) objfile_context;
1067
1068 if (name != NULL)
1069 hash += htab_hash_string (name);
1070
1071 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1072 to map to the same slot. */
1073 if (domain == STRUCT_DOMAIN)
1074 hash += VAR_DOMAIN * 7;
1075 else
1076 hash += domain * 7;
1077
1078 return hash;
1079 }
1080
1081 /* Equality function for the symbol cache. */
1082
1083 static int
1084 eq_symbol_entry (const struct symbol_cache_slot *slot,
1085 const struct objfile *objfile_context,
1086 const char *name, domain_enum domain)
1087 {
1088 const char *slot_name;
1089 domain_enum slot_domain;
1090
1091 if (slot->state == SYMBOL_SLOT_UNUSED)
1092 return 0;
1093
1094 if (slot->objfile_context != objfile_context)
1095 return 0;
1096
1097 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1098 {
1099 slot_name = slot->value.not_found.name;
1100 slot_domain = slot->value.not_found.domain;
1101 }
1102 else
1103 {
1104 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1105 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1106 }
1107
1108 /* NULL names match. */
1109 if (slot_name == NULL && name == NULL)
1110 {
1111 /* But there's no point in calling symbol_matches_domain in the
1112 SYMBOL_SLOT_FOUND case. */
1113 if (slot_domain != domain)
1114 return 0;
1115 }
1116 else if (slot_name != NULL && name != NULL)
1117 {
1118 /* It's important that we use the same comparison that was done
1119 the first time through. If the slot records a found symbol,
1120 then this means using the symbol name comparison function of
1121 the symbol's language with SYMBOL_SEARCH_NAME. See
1122 dictionary.c. It also means using symbol_matches_domain for
1123 found symbols. See block.c.
1124
1125 If the slot records a not-found symbol, then require a precise match.
1126 We could still be lax with whitespace like strcmp_iw though. */
1127
1128 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1129 {
1130 if (strcmp (slot_name, name) != 0)
1131 return 0;
1132 if (slot_domain != domain)
1133 return 0;
1134 }
1135 else
1136 {
1137 struct symbol *sym = slot->value.found.symbol;
1138 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1139
1140 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1141 return 0;
1142
1143 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1144 slot_domain, domain))
1145 return 0;
1146 }
1147 }
1148 else
1149 {
1150 /* Only one name is NULL. */
1151 return 0;
1152 }
1153
1154 return 1;
1155 }
1156
1157 /* Given a cache of size SIZE, return the size of the struct (with variable
1158 length array) in bytes. */
1159
1160 static size_t
1161 symbol_cache_byte_size (unsigned int size)
1162 {
1163 return (sizeof (struct block_symbol_cache)
1164 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1165 }
1166
1167 /* Resize CACHE. */
1168
1169 static void
1170 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1171 {
1172 /* If there's no change in size, don't do anything.
1173 All caches have the same size, so we can just compare with the size
1174 of the global symbols cache. */
1175 if ((cache->global_symbols != NULL
1176 && cache->global_symbols->size == new_size)
1177 || (cache->global_symbols == NULL
1178 && new_size == 0))
1179 return;
1180
1181 xfree (cache->global_symbols);
1182 xfree (cache->static_symbols);
1183
1184 if (new_size == 0)
1185 {
1186 cache->global_symbols = NULL;
1187 cache->static_symbols = NULL;
1188 }
1189 else
1190 {
1191 size_t total_size = symbol_cache_byte_size (new_size);
1192
1193 cache->global_symbols
1194 = (struct block_symbol_cache *) xcalloc (1, total_size);
1195 cache->static_symbols
1196 = (struct block_symbol_cache *) xcalloc (1, total_size);
1197 cache->global_symbols->size = new_size;
1198 cache->static_symbols->size = new_size;
1199 }
1200 }
1201
1202 /* Make a symbol cache of size SIZE. */
1203
1204 static struct symbol_cache *
1205 make_symbol_cache (unsigned int size)
1206 {
1207 struct symbol_cache *cache;
1208
1209 cache = XCNEW (struct symbol_cache);
1210 resize_symbol_cache (cache, symbol_cache_size);
1211 return cache;
1212 }
1213
1214 /* Free the space used by CACHE. */
1215
1216 static void
1217 free_symbol_cache (struct symbol_cache *cache)
1218 {
1219 xfree (cache->global_symbols);
1220 xfree (cache->static_symbols);
1221 xfree (cache);
1222 }
1223
1224 /* Return the symbol cache of PSPACE.
1225 Create one if it doesn't exist yet. */
1226
1227 static struct symbol_cache *
1228 get_symbol_cache (struct program_space *pspace)
1229 {
1230 struct symbol_cache *cache
1231 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1232
1233 if (cache == NULL)
1234 {
1235 cache = make_symbol_cache (symbol_cache_size);
1236 set_program_space_data (pspace, symbol_cache_key, cache);
1237 }
1238
1239 return cache;
1240 }
1241
1242 /* Delete the symbol cache of PSPACE.
1243 Called when PSPACE is destroyed. */
1244
1245 static void
1246 symbol_cache_cleanup (struct program_space *pspace, void *data)
1247 {
1248 struct symbol_cache *cache = (struct symbol_cache *) data;
1249
1250 free_symbol_cache (cache);
1251 }
1252
1253 /* Set the size of the symbol cache in all program spaces. */
1254
1255 static void
1256 set_symbol_cache_size (unsigned int new_size)
1257 {
1258 struct program_space *pspace;
1259
1260 ALL_PSPACES (pspace)
1261 {
1262 struct symbol_cache *cache
1263 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1264
1265 /* The pspace could have been created but not have a cache yet. */
1266 if (cache != NULL)
1267 resize_symbol_cache (cache, new_size);
1268 }
1269 }
1270
1271 /* Called when symbol-cache-size is set. */
1272
1273 static void
1274 set_symbol_cache_size_handler (const char *args, int from_tty,
1275 struct cmd_list_element *c)
1276 {
1277 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1278 {
1279 /* Restore the previous value.
1280 This is the value the "show" command prints. */
1281 new_symbol_cache_size = symbol_cache_size;
1282
1283 error (_("Symbol cache size is too large, max is %u."),
1284 MAX_SYMBOL_CACHE_SIZE);
1285 }
1286 symbol_cache_size = new_symbol_cache_size;
1287
1288 set_symbol_cache_size (symbol_cache_size);
1289 }
1290
1291 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1292 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1293 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1294 failed (and thus this one will too), or NULL if the symbol is not present
1295 in the cache.
1296 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1297 set to the cache and slot of the symbol to save the result of a full lookup
1298 attempt. */
1299
1300 static struct block_symbol
1301 symbol_cache_lookup (struct symbol_cache *cache,
1302 struct objfile *objfile_context, int block,
1303 const char *name, domain_enum domain,
1304 struct block_symbol_cache **bsc_ptr,
1305 struct symbol_cache_slot **slot_ptr)
1306 {
1307 struct block_symbol_cache *bsc;
1308 unsigned int hash;
1309 struct symbol_cache_slot *slot;
1310
1311 if (block == GLOBAL_BLOCK)
1312 bsc = cache->global_symbols;
1313 else
1314 bsc = cache->static_symbols;
1315 if (bsc == NULL)
1316 {
1317 *bsc_ptr = NULL;
1318 *slot_ptr = NULL;
1319 return (struct block_symbol) {NULL, NULL};
1320 }
1321
1322 hash = hash_symbol_entry (objfile_context, name, domain);
1323 slot = bsc->symbols + hash % bsc->size;
1324
1325 if (eq_symbol_entry (slot, objfile_context, name, domain))
1326 {
1327 if (symbol_lookup_debug)
1328 fprintf_unfiltered (gdb_stdlog,
1329 "%s block symbol cache hit%s for %s, %s\n",
1330 block == GLOBAL_BLOCK ? "Global" : "Static",
1331 slot->state == SYMBOL_SLOT_NOT_FOUND
1332 ? " (not found)" : "",
1333 name, domain_name (domain));
1334 ++bsc->hits;
1335 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1336 return SYMBOL_LOOKUP_FAILED;
1337 return slot->value.found;
1338 }
1339
1340 /* Symbol is not present in the cache. */
1341
1342 *bsc_ptr = bsc;
1343 *slot_ptr = slot;
1344
1345 if (symbol_lookup_debug)
1346 {
1347 fprintf_unfiltered (gdb_stdlog,
1348 "%s block symbol cache miss for %s, %s\n",
1349 block == GLOBAL_BLOCK ? "Global" : "Static",
1350 name, domain_name (domain));
1351 }
1352 ++bsc->misses;
1353 return (struct block_symbol) {NULL, NULL};
1354 }
1355
1356 /* Clear out SLOT. */
1357
1358 static void
1359 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1360 {
1361 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1362 xfree (slot->value.not_found.name);
1363 slot->state = SYMBOL_SLOT_UNUSED;
1364 }
1365
1366 /* Mark SYMBOL as found in SLOT.
1367 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1368 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1369 necessarily the objfile the symbol was found in. */
1370
1371 static void
1372 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1373 struct symbol_cache_slot *slot,
1374 struct objfile *objfile_context,
1375 struct symbol *symbol,
1376 const struct block *block)
1377 {
1378 if (bsc == NULL)
1379 return;
1380 if (slot->state != SYMBOL_SLOT_UNUSED)
1381 {
1382 ++bsc->collisions;
1383 symbol_cache_clear_slot (slot);
1384 }
1385 slot->state = SYMBOL_SLOT_FOUND;
1386 slot->objfile_context = objfile_context;
1387 slot->value.found.symbol = symbol;
1388 slot->value.found.block = block;
1389 }
1390
1391 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1392 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1393 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1394
1395 static void
1396 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1397 struct symbol_cache_slot *slot,
1398 struct objfile *objfile_context,
1399 const char *name, domain_enum domain)
1400 {
1401 if (bsc == NULL)
1402 return;
1403 if (slot->state != SYMBOL_SLOT_UNUSED)
1404 {
1405 ++bsc->collisions;
1406 symbol_cache_clear_slot (slot);
1407 }
1408 slot->state = SYMBOL_SLOT_NOT_FOUND;
1409 slot->objfile_context = objfile_context;
1410 slot->value.not_found.name = xstrdup (name);
1411 slot->value.not_found.domain = domain;
1412 }
1413
1414 /* Flush the symbol cache of PSPACE. */
1415
1416 static void
1417 symbol_cache_flush (struct program_space *pspace)
1418 {
1419 struct symbol_cache *cache
1420 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1421 int pass;
1422
1423 if (cache == NULL)
1424 return;
1425 if (cache->global_symbols == NULL)
1426 {
1427 gdb_assert (symbol_cache_size == 0);
1428 gdb_assert (cache->static_symbols == NULL);
1429 return;
1430 }
1431
1432 /* If the cache is untouched since the last flush, early exit.
1433 This is important for performance during the startup of a program linked
1434 with 100s (or 1000s) of shared libraries. */
1435 if (cache->global_symbols->misses == 0
1436 && cache->static_symbols->misses == 0)
1437 return;
1438
1439 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1440 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1441
1442 for (pass = 0; pass < 2; ++pass)
1443 {
1444 struct block_symbol_cache *bsc
1445 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1446 unsigned int i;
1447
1448 for (i = 0; i < bsc->size; ++i)
1449 symbol_cache_clear_slot (&bsc->symbols[i]);
1450 }
1451
1452 cache->global_symbols->hits = 0;
1453 cache->global_symbols->misses = 0;
1454 cache->global_symbols->collisions = 0;
1455 cache->static_symbols->hits = 0;
1456 cache->static_symbols->misses = 0;
1457 cache->static_symbols->collisions = 0;
1458 }
1459
1460 /* Dump CACHE. */
1461
1462 static void
1463 symbol_cache_dump (const struct symbol_cache *cache)
1464 {
1465 int pass;
1466
1467 if (cache->global_symbols == NULL)
1468 {
1469 printf_filtered (" <disabled>\n");
1470 return;
1471 }
1472
1473 for (pass = 0; pass < 2; ++pass)
1474 {
1475 const struct block_symbol_cache *bsc
1476 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1477 unsigned int i;
1478
1479 if (pass == 0)
1480 printf_filtered ("Global symbols:\n");
1481 else
1482 printf_filtered ("Static symbols:\n");
1483
1484 for (i = 0; i < bsc->size; ++i)
1485 {
1486 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1487
1488 QUIT;
1489
1490 switch (slot->state)
1491 {
1492 case SYMBOL_SLOT_UNUSED:
1493 break;
1494 case SYMBOL_SLOT_NOT_FOUND:
1495 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1496 host_address_to_string (slot->objfile_context),
1497 slot->value.not_found.name,
1498 domain_name (slot->value.not_found.domain));
1499 break;
1500 case SYMBOL_SLOT_FOUND:
1501 {
1502 struct symbol *found = slot->value.found.symbol;
1503 const struct objfile *context = slot->objfile_context;
1504
1505 printf_filtered (" [%4u] = %s, %s %s\n", i,
1506 host_address_to_string (context),
1507 SYMBOL_PRINT_NAME (found),
1508 domain_name (SYMBOL_DOMAIN (found)));
1509 break;
1510 }
1511 }
1512 }
1513 }
1514 }
1515
1516 /* The "mt print symbol-cache" command. */
1517
1518 static void
1519 maintenance_print_symbol_cache (const char *args, int from_tty)
1520 {
1521 struct program_space *pspace;
1522
1523 ALL_PSPACES (pspace)
1524 {
1525 struct symbol_cache *cache;
1526
1527 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1528 pspace->num,
1529 pspace->symfile_object_file != NULL
1530 ? objfile_name (pspace->symfile_object_file)
1531 : "(no object file)");
1532
1533 /* If the cache hasn't been created yet, avoid creating one. */
1534 cache
1535 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1536 if (cache == NULL)
1537 printf_filtered (" <empty>\n");
1538 else
1539 symbol_cache_dump (cache);
1540 }
1541 }
1542
1543 /* The "mt flush-symbol-cache" command. */
1544
1545 static void
1546 maintenance_flush_symbol_cache (const char *args, int from_tty)
1547 {
1548 struct program_space *pspace;
1549
1550 ALL_PSPACES (pspace)
1551 {
1552 symbol_cache_flush (pspace);
1553 }
1554 }
1555
1556 /* Print usage statistics of CACHE. */
1557
1558 static void
1559 symbol_cache_stats (struct symbol_cache *cache)
1560 {
1561 int pass;
1562
1563 if (cache->global_symbols == NULL)
1564 {
1565 printf_filtered (" <disabled>\n");
1566 return;
1567 }
1568
1569 for (pass = 0; pass < 2; ++pass)
1570 {
1571 const struct block_symbol_cache *bsc
1572 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1573
1574 QUIT;
1575
1576 if (pass == 0)
1577 printf_filtered ("Global block cache stats:\n");
1578 else
1579 printf_filtered ("Static block cache stats:\n");
1580
1581 printf_filtered (" size: %u\n", bsc->size);
1582 printf_filtered (" hits: %u\n", bsc->hits);
1583 printf_filtered (" misses: %u\n", bsc->misses);
1584 printf_filtered (" collisions: %u\n", bsc->collisions);
1585 }
1586 }
1587
1588 /* The "mt print symbol-cache-statistics" command. */
1589
1590 static void
1591 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1592 {
1593 struct program_space *pspace;
1594
1595 ALL_PSPACES (pspace)
1596 {
1597 struct symbol_cache *cache;
1598
1599 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1600 pspace->num,
1601 pspace->symfile_object_file != NULL
1602 ? objfile_name (pspace->symfile_object_file)
1603 : "(no object file)");
1604
1605 /* If the cache hasn't been created yet, avoid creating one. */
1606 cache
1607 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1608 if (cache == NULL)
1609 printf_filtered (" empty, no stats available\n");
1610 else
1611 symbol_cache_stats (cache);
1612 }
1613 }
1614
1615 /* This module's 'new_objfile' observer. */
1616
1617 static void
1618 symtab_new_objfile_observer (struct objfile *objfile)
1619 {
1620 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1621 symbol_cache_flush (current_program_space);
1622 }
1623
1624 /* This module's 'free_objfile' observer. */
1625
1626 static void
1627 symtab_free_objfile_observer (struct objfile *objfile)
1628 {
1629 symbol_cache_flush (objfile->pspace);
1630 }
1631 \f
1632 /* Debug symbols usually don't have section information. We need to dig that
1633 out of the minimal symbols and stash that in the debug symbol. */
1634
1635 void
1636 fixup_section (struct general_symbol_info *ginfo,
1637 CORE_ADDR addr, struct objfile *objfile)
1638 {
1639 struct minimal_symbol *msym;
1640
1641 /* First, check whether a minimal symbol with the same name exists
1642 and points to the same address. The address check is required
1643 e.g. on PowerPC64, where the minimal symbol for a function will
1644 point to the function descriptor, while the debug symbol will
1645 point to the actual function code. */
1646 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1647 if (msym)
1648 ginfo->section = MSYMBOL_SECTION (msym);
1649 else
1650 {
1651 /* Static, function-local variables do appear in the linker
1652 (minimal) symbols, but are frequently given names that won't
1653 be found via lookup_minimal_symbol(). E.g., it has been
1654 observed in frv-uclinux (ELF) executables that a static,
1655 function-local variable named "foo" might appear in the
1656 linker symbols as "foo.6" or "foo.3". Thus, there is no
1657 point in attempting to extend the lookup-by-name mechanism to
1658 handle this case due to the fact that there can be multiple
1659 names.
1660
1661 So, instead, search the section table when lookup by name has
1662 failed. The ``addr'' and ``endaddr'' fields may have already
1663 been relocated. If so, the relocation offset (i.e. the
1664 ANOFFSET value) needs to be subtracted from these values when
1665 performing the comparison. We unconditionally subtract it,
1666 because, when no relocation has been performed, the ANOFFSET
1667 value will simply be zero.
1668
1669 The address of the symbol whose section we're fixing up HAS
1670 NOT BEEN adjusted (relocated) yet. It can't have been since
1671 the section isn't yet known and knowing the section is
1672 necessary in order to add the correct relocation value. In
1673 other words, we wouldn't even be in this function (attempting
1674 to compute the section) if it were already known.
1675
1676 Note that it is possible to search the minimal symbols
1677 (subtracting the relocation value if necessary) to find the
1678 matching minimal symbol, but this is overkill and much less
1679 efficient. It is not necessary to find the matching minimal
1680 symbol, only its section.
1681
1682 Note that this technique (of doing a section table search)
1683 can fail when unrelocated section addresses overlap. For
1684 this reason, we still attempt a lookup by name prior to doing
1685 a search of the section table. */
1686
1687 struct obj_section *s;
1688 int fallback = -1;
1689
1690 ALL_OBJFILE_OSECTIONS (objfile, s)
1691 {
1692 int idx = s - objfile->sections;
1693 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1694
1695 if (fallback == -1)
1696 fallback = idx;
1697
1698 if (obj_section_addr (s) - offset <= addr
1699 && addr < obj_section_endaddr (s) - offset)
1700 {
1701 ginfo->section = idx;
1702 return;
1703 }
1704 }
1705
1706 /* If we didn't find the section, assume it is in the first
1707 section. If there is no allocated section, then it hardly
1708 matters what we pick, so just pick zero. */
1709 if (fallback == -1)
1710 ginfo->section = 0;
1711 else
1712 ginfo->section = fallback;
1713 }
1714 }
1715
1716 struct symbol *
1717 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1718 {
1719 CORE_ADDR addr;
1720
1721 if (!sym)
1722 return NULL;
1723
1724 if (!SYMBOL_OBJFILE_OWNED (sym))
1725 return sym;
1726
1727 /* We either have an OBJFILE, or we can get at it from the sym's
1728 symtab. Anything else is a bug. */
1729 gdb_assert (objfile || symbol_symtab (sym));
1730
1731 if (objfile == NULL)
1732 objfile = symbol_objfile (sym);
1733
1734 if (SYMBOL_OBJ_SECTION (objfile, sym))
1735 return sym;
1736
1737 /* We should have an objfile by now. */
1738 gdb_assert (objfile);
1739
1740 switch (SYMBOL_CLASS (sym))
1741 {
1742 case LOC_STATIC:
1743 case LOC_LABEL:
1744 addr = SYMBOL_VALUE_ADDRESS (sym);
1745 break;
1746 case LOC_BLOCK:
1747 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1748 break;
1749
1750 default:
1751 /* Nothing else will be listed in the minsyms -- no use looking
1752 it up. */
1753 return sym;
1754 }
1755
1756 fixup_section (&sym->ginfo, addr, objfile);
1757
1758 return sym;
1759 }
1760
1761 /* See symtab.h. */
1762
1763 demangle_for_lookup_info::demangle_for_lookup_info
1764 (const lookup_name_info &lookup_name, language lang)
1765 {
1766 demangle_result_storage storage;
1767
1768 if (lookup_name.ignore_parameters () && lang == language_cplus)
1769 {
1770 gdb::unique_xmalloc_ptr<char> without_params
1771 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1772 lookup_name.completion_mode ());
1773
1774 if (without_params != NULL)
1775 {
1776 m_demangled_name = demangle_for_lookup (without_params.get (),
1777 lang, storage);
1778 return;
1779 }
1780 }
1781
1782 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1783 lang, storage);
1784 }
1785
1786 /* See symtab.h. */
1787
1788 const lookup_name_info &
1789 lookup_name_info::match_any ()
1790 {
1791 /* Lookup any symbol that "" would complete. I.e., this matches all
1792 symbol names. */
1793 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1794 true);
1795
1796 return lookup_name;
1797 }
1798
1799 /* Compute the demangled form of NAME as used by the various symbol
1800 lookup functions. The result can either be the input NAME
1801 directly, or a pointer to a buffer owned by the STORAGE object.
1802
1803 For Ada, this function just returns NAME, unmodified.
1804 Normally, Ada symbol lookups are performed using the encoded name
1805 rather than the demangled name, and so it might seem to make sense
1806 for this function to return an encoded version of NAME.
1807 Unfortunately, we cannot do this, because this function is used in
1808 circumstances where it is not appropriate to try to encode NAME.
1809 For instance, when displaying the frame info, we demangle the name
1810 of each parameter, and then perform a symbol lookup inside our
1811 function using that demangled name. In Ada, certain functions
1812 have internally-generated parameters whose name contain uppercase
1813 characters. Encoding those name would result in those uppercase
1814 characters to become lowercase, and thus cause the symbol lookup
1815 to fail. */
1816
1817 const char *
1818 demangle_for_lookup (const char *name, enum language lang,
1819 demangle_result_storage &storage)
1820 {
1821 /* If we are using C++, D, or Go, demangle the name before doing a
1822 lookup, so we can always binary search. */
1823 if (lang == language_cplus)
1824 {
1825 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1826 if (demangled_name != NULL)
1827 return storage.set_malloc_ptr (demangled_name);
1828
1829 /* If we were given a non-mangled name, canonicalize it
1830 according to the language (so far only for C++). */
1831 std::string canon = cp_canonicalize_string (name);
1832 if (!canon.empty ())
1833 return storage.swap_string (canon);
1834 }
1835 else if (lang == language_d)
1836 {
1837 char *demangled_name = d_demangle (name, 0);
1838 if (demangled_name != NULL)
1839 return storage.set_malloc_ptr (demangled_name);
1840 }
1841 else if (lang == language_go)
1842 {
1843 char *demangled_name = go_demangle (name, 0);
1844 if (demangled_name != NULL)
1845 return storage.set_malloc_ptr (demangled_name);
1846 }
1847
1848 return name;
1849 }
1850
1851 /* See symtab.h. */
1852
1853 unsigned int
1854 search_name_hash (enum language language, const char *search_name)
1855 {
1856 return language_def (language)->la_search_name_hash (search_name);
1857 }
1858
1859 /* See symtab.h.
1860
1861 This function (or rather its subordinates) have a bunch of loops and
1862 it would seem to be attractive to put in some QUIT's (though I'm not really
1863 sure whether it can run long enough to be really important). But there
1864 are a few calls for which it would appear to be bad news to quit
1865 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1866 that there is C++ code below which can error(), but that probably
1867 doesn't affect these calls since they are looking for a known
1868 variable and thus can probably assume it will never hit the C++
1869 code). */
1870
1871 struct block_symbol
1872 lookup_symbol_in_language (const char *name, const struct block *block,
1873 const domain_enum domain, enum language lang,
1874 struct field_of_this_result *is_a_field_of_this)
1875 {
1876 demangle_result_storage storage;
1877 const char *modified_name = demangle_for_lookup (name, lang, storage);
1878
1879 return lookup_symbol_aux (modified_name, block, domain, lang,
1880 is_a_field_of_this);
1881 }
1882
1883 /* See symtab.h. */
1884
1885 struct block_symbol
1886 lookup_symbol (const char *name, const struct block *block,
1887 domain_enum domain,
1888 struct field_of_this_result *is_a_field_of_this)
1889 {
1890 return lookup_symbol_in_language (name, block, domain,
1891 current_language->la_language,
1892 is_a_field_of_this);
1893 }
1894
1895 /* See symtab.h. */
1896
1897 struct block_symbol
1898 lookup_language_this (const struct language_defn *lang,
1899 const struct block *block)
1900 {
1901 if (lang->la_name_of_this == NULL || block == NULL)
1902 return (struct block_symbol) {NULL, NULL};
1903
1904 if (symbol_lookup_debug > 1)
1905 {
1906 struct objfile *objfile = lookup_objfile_from_block (block);
1907
1908 fprintf_unfiltered (gdb_stdlog,
1909 "lookup_language_this (%s, %s (objfile %s))",
1910 lang->la_name, host_address_to_string (block),
1911 objfile_debug_name (objfile));
1912 }
1913
1914 while (block)
1915 {
1916 struct symbol *sym;
1917
1918 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1919 if (sym != NULL)
1920 {
1921 if (symbol_lookup_debug > 1)
1922 {
1923 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1924 SYMBOL_PRINT_NAME (sym),
1925 host_address_to_string (sym),
1926 host_address_to_string (block));
1927 }
1928 return (struct block_symbol) {sym, block};
1929 }
1930 if (BLOCK_FUNCTION (block))
1931 break;
1932 block = BLOCK_SUPERBLOCK (block);
1933 }
1934
1935 if (symbol_lookup_debug > 1)
1936 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1937 return (struct block_symbol) {NULL, NULL};
1938 }
1939
1940 /* Given TYPE, a structure/union,
1941 return 1 if the component named NAME from the ultimate target
1942 structure/union is defined, otherwise, return 0. */
1943
1944 static int
1945 check_field (struct type *type, const char *name,
1946 struct field_of_this_result *is_a_field_of_this)
1947 {
1948 int i;
1949
1950 /* The type may be a stub. */
1951 type = check_typedef (type);
1952
1953 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1954 {
1955 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1956
1957 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1958 {
1959 is_a_field_of_this->type = type;
1960 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1961 return 1;
1962 }
1963 }
1964
1965 /* C++: If it was not found as a data field, then try to return it
1966 as a pointer to a method. */
1967
1968 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1969 {
1970 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1971 {
1972 is_a_field_of_this->type = type;
1973 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1974 return 1;
1975 }
1976 }
1977
1978 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1979 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1980 return 1;
1981
1982 return 0;
1983 }
1984
1985 /* Behave like lookup_symbol except that NAME is the natural name
1986 (e.g., demangled name) of the symbol that we're looking for. */
1987
1988 static struct block_symbol
1989 lookup_symbol_aux (const char *name, const struct block *block,
1990 const domain_enum domain, enum language language,
1991 struct field_of_this_result *is_a_field_of_this)
1992 {
1993 struct block_symbol result;
1994 const struct language_defn *langdef;
1995
1996 if (symbol_lookup_debug)
1997 {
1998 struct objfile *objfile = lookup_objfile_from_block (block);
1999
2000 fprintf_unfiltered (gdb_stdlog,
2001 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2002 name, host_address_to_string (block),
2003 objfile != NULL
2004 ? objfile_debug_name (objfile) : "NULL",
2005 domain_name (domain), language_str (language));
2006 }
2007
2008 /* Make sure we do something sensible with is_a_field_of_this, since
2009 the callers that set this parameter to some non-null value will
2010 certainly use it later. If we don't set it, the contents of
2011 is_a_field_of_this are undefined. */
2012 if (is_a_field_of_this != NULL)
2013 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2014
2015 /* Search specified block and its superiors. Don't search
2016 STATIC_BLOCK or GLOBAL_BLOCK. */
2017
2018 result = lookup_local_symbol (name, block, domain, language);
2019 if (result.symbol != NULL)
2020 {
2021 if (symbol_lookup_debug)
2022 {
2023 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2024 host_address_to_string (result.symbol));
2025 }
2026 return result;
2027 }
2028
2029 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2030 check to see if NAME is a field of `this'. */
2031
2032 langdef = language_def (language);
2033
2034 /* Don't do this check if we are searching for a struct. It will
2035 not be found by check_field, but will be found by other
2036 means. */
2037 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2038 {
2039 result = lookup_language_this (langdef, block);
2040
2041 if (result.symbol)
2042 {
2043 struct type *t = result.symbol->type;
2044
2045 /* I'm not really sure that type of this can ever
2046 be typedefed; just be safe. */
2047 t = check_typedef (t);
2048 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2049 t = TYPE_TARGET_TYPE (t);
2050
2051 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2052 && TYPE_CODE (t) != TYPE_CODE_UNION)
2053 error (_("Internal error: `%s' is not an aggregate"),
2054 langdef->la_name_of_this);
2055
2056 if (check_field (t, name, is_a_field_of_this))
2057 {
2058 if (symbol_lookup_debug)
2059 {
2060 fprintf_unfiltered (gdb_stdlog,
2061 "lookup_symbol_aux (...) = NULL\n");
2062 }
2063 return (struct block_symbol) {NULL, NULL};
2064 }
2065 }
2066 }
2067
2068 /* Now do whatever is appropriate for LANGUAGE to look
2069 up static and global variables. */
2070
2071 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2072 if (result.symbol != NULL)
2073 {
2074 if (symbol_lookup_debug)
2075 {
2076 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2077 host_address_to_string (result.symbol));
2078 }
2079 return result;
2080 }
2081
2082 /* Now search all static file-level symbols. Not strictly correct,
2083 but more useful than an error. */
2084
2085 result = lookup_static_symbol (name, domain);
2086 if (symbol_lookup_debug)
2087 {
2088 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2089 result.symbol != NULL
2090 ? host_address_to_string (result.symbol)
2091 : "NULL");
2092 }
2093 return result;
2094 }
2095
2096 /* Check to see if the symbol is defined in BLOCK or its superiors.
2097 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2098
2099 static struct block_symbol
2100 lookup_local_symbol (const char *name, const struct block *block,
2101 const domain_enum domain,
2102 enum language language)
2103 {
2104 struct symbol *sym;
2105 const struct block *static_block = block_static_block (block);
2106 const char *scope = block_scope (block);
2107
2108 /* Check if either no block is specified or it's a global block. */
2109
2110 if (static_block == NULL)
2111 return (struct block_symbol) {NULL, NULL};
2112
2113 while (block != static_block)
2114 {
2115 sym = lookup_symbol_in_block (name, block, domain);
2116 if (sym != NULL)
2117 return (struct block_symbol) {sym, block};
2118
2119 if (language == language_cplus || language == language_fortran)
2120 {
2121 struct block_symbol sym
2122 = cp_lookup_symbol_imports_or_template (scope, name, block,
2123 domain);
2124
2125 if (sym.symbol != NULL)
2126 return sym;
2127 }
2128
2129 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2130 break;
2131 block = BLOCK_SUPERBLOCK (block);
2132 }
2133
2134 /* We've reached the end of the function without finding a result. */
2135
2136 return (struct block_symbol) {NULL, NULL};
2137 }
2138
2139 /* See symtab.h. */
2140
2141 struct objfile *
2142 lookup_objfile_from_block (const struct block *block)
2143 {
2144 struct objfile *obj;
2145 struct compunit_symtab *cust;
2146
2147 if (block == NULL)
2148 return NULL;
2149
2150 block = block_global_block (block);
2151 /* Look through all blockvectors. */
2152 ALL_COMPUNITS (obj, cust)
2153 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2154 GLOBAL_BLOCK))
2155 {
2156 if (obj->separate_debug_objfile_backlink)
2157 obj = obj->separate_debug_objfile_backlink;
2158
2159 return obj;
2160 }
2161
2162 return NULL;
2163 }
2164
2165 /* See symtab.h. */
2166
2167 struct symbol *
2168 lookup_symbol_in_block (const char *name, const struct block *block,
2169 const domain_enum domain)
2170 {
2171 struct symbol *sym;
2172
2173 if (symbol_lookup_debug > 1)
2174 {
2175 struct objfile *objfile = lookup_objfile_from_block (block);
2176
2177 fprintf_unfiltered (gdb_stdlog,
2178 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2179 name, host_address_to_string (block),
2180 objfile_debug_name (objfile),
2181 domain_name (domain));
2182 }
2183
2184 sym = block_lookup_symbol (block, name, domain);
2185 if (sym)
2186 {
2187 if (symbol_lookup_debug > 1)
2188 {
2189 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2190 host_address_to_string (sym));
2191 }
2192 return fixup_symbol_section (sym, NULL);
2193 }
2194
2195 if (symbol_lookup_debug > 1)
2196 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2197 return NULL;
2198 }
2199
2200 /* See symtab.h. */
2201
2202 struct block_symbol
2203 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2204 const char *name,
2205 const domain_enum domain)
2206 {
2207 struct objfile *objfile;
2208
2209 for (objfile = main_objfile;
2210 objfile;
2211 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2212 {
2213 struct block_symbol result
2214 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2215
2216 if (result.symbol != NULL)
2217 return result;
2218 }
2219
2220 return (struct block_symbol) {NULL, NULL};
2221 }
2222
2223 /* Check to see if the symbol is defined in one of the OBJFILE's
2224 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2225 depending on whether or not we want to search global symbols or
2226 static symbols. */
2227
2228 static struct block_symbol
2229 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2230 const char *name, const domain_enum domain)
2231 {
2232 struct compunit_symtab *cust;
2233
2234 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2235
2236 if (symbol_lookup_debug > 1)
2237 {
2238 fprintf_unfiltered (gdb_stdlog,
2239 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2240 objfile_debug_name (objfile),
2241 block_index == GLOBAL_BLOCK
2242 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2243 name, domain_name (domain));
2244 }
2245
2246 ALL_OBJFILE_COMPUNITS (objfile, cust)
2247 {
2248 const struct blockvector *bv;
2249 const struct block *block;
2250 struct block_symbol result;
2251
2252 bv = COMPUNIT_BLOCKVECTOR (cust);
2253 block = BLOCKVECTOR_BLOCK (bv, block_index);
2254 result.symbol = block_lookup_symbol_primary (block, name, domain);
2255 result.block = block;
2256 if (result.symbol != NULL)
2257 {
2258 if (symbol_lookup_debug > 1)
2259 {
2260 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2261 host_address_to_string (result.symbol),
2262 host_address_to_string (block));
2263 }
2264 result.symbol = fixup_symbol_section (result.symbol, objfile);
2265 return result;
2266
2267 }
2268 }
2269
2270 if (symbol_lookup_debug > 1)
2271 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2272 return (struct block_symbol) {NULL, NULL};
2273 }
2274
2275 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2276 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2277 and all associated separate debug objfiles.
2278
2279 Normally we only look in OBJFILE, and not any separate debug objfiles
2280 because the outer loop will cause them to be searched too. This case is
2281 different. Here we're called from search_symbols where it will only
2282 call us for the the objfile that contains a matching minsym. */
2283
2284 static struct block_symbol
2285 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2286 const char *linkage_name,
2287 domain_enum domain)
2288 {
2289 enum language lang = current_language->la_language;
2290 struct objfile *main_objfile, *cur_objfile;
2291
2292 demangle_result_storage storage;
2293 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2294
2295 if (objfile->separate_debug_objfile_backlink)
2296 main_objfile = objfile->separate_debug_objfile_backlink;
2297 else
2298 main_objfile = objfile;
2299
2300 for (cur_objfile = main_objfile;
2301 cur_objfile;
2302 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2303 {
2304 struct block_symbol result;
2305
2306 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2307 modified_name, domain);
2308 if (result.symbol == NULL)
2309 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2310 modified_name, domain);
2311 if (result.symbol != NULL)
2312 return result;
2313 }
2314
2315 return (struct block_symbol) {NULL, NULL};
2316 }
2317
2318 /* A helper function that throws an exception when a symbol was found
2319 in a psymtab but not in a symtab. */
2320
2321 static void ATTRIBUTE_NORETURN
2322 error_in_psymtab_expansion (int block_index, const char *name,
2323 struct compunit_symtab *cust)
2324 {
2325 error (_("\
2326 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2327 %s may be an inlined function, or may be a template function\n \
2328 (if a template, try specifying an instantiation: %s<type>)."),
2329 block_index == GLOBAL_BLOCK ? "global" : "static",
2330 name,
2331 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2332 name, name);
2333 }
2334
2335 /* A helper function for various lookup routines that interfaces with
2336 the "quick" symbol table functions. */
2337
2338 static struct block_symbol
2339 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2340 const char *name, const domain_enum domain)
2341 {
2342 struct compunit_symtab *cust;
2343 const struct blockvector *bv;
2344 const struct block *block;
2345 struct block_symbol result;
2346
2347 if (!objfile->sf)
2348 return (struct block_symbol) {NULL, NULL};
2349
2350 if (symbol_lookup_debug > 1)
2351 {
2352 fprintf_unfiltered (gdb_stdlog,
2353 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2354 objfile_debug_name (objfile),
2355 block_index == GLOBAL_BLOCK
2356 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2357 name, domain_name (domain));
2358 }
2359
2360 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2361 if (cust == NULL)
2362 {
2363 if (symbol_lookup_debug > 1)
2364 {
2365 fprintf_unfiltered (gdb_stdlog,
2366 "lookup_symbol_via_quick_fns (...) = NULL\n");
2367 }
2368 return (struct block_symbol) {NULL, NULL};
2369 }
2370
2371 bv = COMPUNIT_BLOCKVECTOR (cust);
2372 block = BLOCKVECTOR_BLOCK (bv, block_index);
2373 result.symbol = block_lookup_symbol (block, name, domain);
2374 if (result.symbol == NULL)
2375 error_in_psymtab_expansion (block_index, name, cust);
2376
2377 if (symbol_lookup_debug > 1)
2378 {
2379 fprintf_unfiltered (gdb_stdlog,
2380 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2381 host_address_to_string (result.symbol),
2382 host_address_to_string (block));
2383 }
2384
2385 result.symbol = fixup_symbol_section (result.symbol, objfile);
2386 result.block = block;
2387 return result;
2388 }
2389
2390 /* See symtab.h. */
2391
2392 struct block_symbol
2393 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2394 const char *name,
2395 const struct block *block,
2396 const domain_enum domain)
2397 {
2398 struct block_symbol result;
2399
2400 /* NOTE: carlton/2003-05-19: The comments below were written when
2401 this (or what turned into this) was part of lookup_symbol_aux;
2402 I'm much less worried about these questions now, since these
2403 decisions have turned out well, but I leave these comments here
2404 for posterity. */
2405
2406 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2407 not it would be appropriate to search the current global block
2408 here as well. (That's what this code used to do before the
2409 is_a_field_of_this check was moved up.) On the one hand, it's
2410 redundant with the lookup in all objfiles search that happens
2411 next. On the other hand, if decode_line_1 is passed an argument
2412 like filename:var, then the user presumably wants 'var' to be
2413 searched for in filename. On the third hand, there shouldn't be
2414 multiple global variables all of which are named 'var', and it's
2415 not like decode_line_1 has ever restricted its search to only
2416 global variables in a single filename. All in all, only
2417 searching the static block here seems best: it's correct and it's
2418 cleanest. */
2419
2420 /* NOTE: carlton/2002-12-05: There's also a possible performance
2421 issue here: if you usually search for global symbols in the
2422 current file, then it would be slightly better to search the
2423 current global block before searching all the symtabs. But there
2424 are other factors that have a much greater effect on performance
2425 than that one, so I don't think we should worry about that for
2426 now. */
2427
2428 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2429 the current objfile. Searching the current objfile first is useful
2430 for both matching user expectations as well as performance. */
2431
2432 result = lookup_symbol_in_static_block (name, block, domain);
2433 if (result.symbol != NULL)
2434 return result;
2435
2436 /* If we didn't find a definition for a builtin type in the static block,
2437 search for it now. This is actually the right thing to do and can be
2438 a massive performance win. E.g., when debugging a program with lots of
2439 shared libraries we could search all of them only to find out the
2440 builtin type isn't defined in any of them. This is common for types
2441 like "void". */
2442 if (domain == VAR_DOMAIN)
2443 {
2444 struct gdbarch *gdbarch;
2445
2446 if (block == NULL)
2447 gdbarch = target_gdbarch ();
2448 else
2449 gdbarch = block_gdbarch (block);
2450 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2451 gdbarch, name);
2452 result.block = NULL;
2453 if (result.symbol != NULL)
2454 return result;
2455 }
2456
2457 return lookup_global_symbol (name, block, domain);
2458 }
2459
2460 /* See symtab.h. */
2461
2462 struct block_symbol
2463 lookup_symbol_in_static_block (const char *name,
2464 const struct block *block,
2465 const domain_enum domain)
2466 {
2467 const struct block *static_block = block_static_block (block);
2468 struct symbol *sym;
2469
2470 if (static_block == NULL)
2471 return (struct block_symbol) {NULL, NULL};
2472
2473 if (symbol_lookup_debug)
2474 {
2475 struct objfile *objfile = lookup_objfile_from_block (static_block);
2476
2477 fprintf_unfiltered (gdb_stdlog,
2478 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2479 " %s)\n",
2480 name,
2481 host_address_to_string (block),
2482 objfile_debug_name (objfile),
2483 domain_name (domain));
2484 }
2485
2486 sym = lookup_symbol_in_block (name, static_block, domain);
2487 if (symbol_lookup_debug)
2488 {
2489 fprintf_unfiltered (gdb_stdlog,
2490 "lookup_symbol_in_static_block (...) = %s\n",
2491 sym != NULL ? host_address_to_string (sym) : "NULL");
2492 }
2493 return (struct block_symbol) {sym, static_block};
2494 }
2495
2496 /* Perform the standard symbol lookup of NAME in OBJFILE:
2497 1) First search expanded symtabs, and if not found
2498 2) Search the "quick" symtabs (partial or .gdb_index).
2499 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2500
2501 static struct block_symbol
2502 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2503 const char *name, const domain_enum domain)
2504 {
2505 struct block_symbol result;
2506
2507 if (symbol_lookup_debug)
2508 {
2509 fprintf_unfiltered (gdb_stdlog,
2510 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2511 objfile_debug_name (objfile),
2512 block_index == GLOBAL_BLOCK
2513 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2514 name, domain_name (domain));
2515 }
2516
2517 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2518 name, domain);
2519 if (result.symbol != NULL)
2520 {
2521 if (symbol_lookup_debug)
2522 {
2523 fprintf_unfiltered (gdb_stdlog,
2524 "lookup_symbol_in_objfile (...) = %s"
2525 " (in symtabs)\n",
2526 host_address_to_string (result.symbol));
2527 }
2528 return result;
2529 }
2530
2531 result = lookup_symbol_via_quick_fns (objfile, block_index,
2532 name, domain);
2533 if (symbol_lookup_debug)
2534 {
2535 fprintf_unfiltered (gdb_stdlog,
2536 "lookup_symbol_in_objfile (...) = %s%s\n",
2537 result.symbol != NULL
2538 ? host_address_to_string (result.symbol)
2539 : "NULL",
2540 result.symbol != NULL ? " (via quick fns)" : "");
2541 }
2542 return result;
2543 }
2544
2545 /* See symtab.h. */
2546
2547 struct block_symbol
2548 lookup_static_symbol (const char *name, const domain_enum domain)
2549 {
2550 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2551 struct objfile *objfile;
2552 struct block_symbol result;
2553 struct block_symbol_cache *bsc;
2554 struct symbol_cache_slot *slot;
2555
2556 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2557 NULL for OBJFILE_CONTEXT. */
2558 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2559 &bsc, &slot);
2560 if (result.symbol != NULL)
2561 {
2562 if (SYMBOL_LOOKUP_FAILED_P (result))
2563 return (struct block_symbol) {NULL, NULL};
2564 return result;
2565 }
2566
2567 ALL_OBJFILES (objfile)
2568 {
2569 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2570 if (result.symbol != NULL)
2571 {
2572 /* Still pass NULL for OBJFILE_CONTEXT here. */
2573 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2574 result.block);
2575 return result;
2576 }
2577 }
2578
2579 /* Still pass NULL for OBJFILE_CONTEXT here. */
2580 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2581 return (struct block_symbol) {NULL, NULL};
2582 }
2583
2584 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2585
2586 struct global_sym_lookup_data
2587 {
2588 /* The name of the symbol we are searching for. */
2589 const char *name;
2590
2591 /* The domain to use for our search. */
2592 domain_enum domain;
2593
2594 /* The field where the callback should store the symbol if found.
2595 It should be initialized to {NULL, NULL} before the search is started. */
2596 struct block_symbol result;
2597 };
2598
2599 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2600 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2601 OBJFILE. The arguments for the search are passed via CB_DATA,
2602 which in reality is a pointer to struct global_sym_lookup_data. */
2603
2604 static int
2605 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2606 void *cb_data)
2607 {
2608 struct global_sym_lookup_data *data =
2609 (struct global_sym_lookup_data *) cb_data;
2610
2611 gdb_assert (data->result.symbol == NULL
2612 && data->result.block == NULL);
2613
2614 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2615 data->name, data->domain);
2616
2617 /* If we found a match, tell the iterator to stop. Otherwise,
2618 keep going. */
2619 return (data->result.symbol != NULL);
2620 }
2621
2622 /* See symtab.h. */
2623
2624 struct block_symbol
2625 lookup_global_symbol (const char *name,
2626 const struct block *block,
2627 const domain_enum domain)
2628 {
2629 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2630 struct block_symbol result;
2631 struct objfile *objfile;
2632 struct global_sym_lookup_data lookup_data;
2633 struct block_symbol_cache *bsc;
2634 struct symbol_cache_slot *slot;
2635
2636 objfile = lookup_objfile_from_block (block);
2637
2638 /* First see if we can find the symbol in the cache.
2639 This works because we use the current objfile to qualify the lookup. */
2640 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2641 &bsc, &slot);
2642 if (result.symbol != NULL)
2643 {
2644 if (SYMBOL_LOOKUP_FAILED_P (result))
2645 return (struct block_symbol) {NULL, NULL};
2646 return result;
2647 }
2648
2649 /* Call library-specific lookup procedure. */
2650 if (objfile != NULL)
2651 result = solib_global_lookup (objfile, name, domain);
2652
2653 /* If that didn't work go a global search (of global blocks, heh). */
2654 if (result.symbol == NULL)
2655 {
2656 memset (&lookup_data, 0, sizeof (lookup_data));
2657 lookup_data.name = name;
2658 lookup_data.domain = domain;
2659 gdbarch_iterate_over_objfiles_in_search_order
2660 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2661 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2662 result = lookup_data.result;
2663 }
2664
2665 if (result.symbol != NULL)
2666 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2667 else
2668 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2669
2670 return result;
2671 }
2672
2673 int
2674 symbol_matches_domain (enum language symbol_language,
2675 domain_enum symbol_domain,
2676 domain_enum domain)
2677 {
2678 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2679 Similarly, any Ada type declaration implicitly defines a typedef. */
2680 if (symbol_language == language_cplus
2681 || symbol_language == language_d
2682 || symbol_language == language_ada
2683 || symbol_language == language_rust)
2684 {
2685 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2686 && symbol_domain == STRUCT_DOMAIN)
2687 return 1;
2688 }
2689 /* For all other languages, strict match is required. */
2690 return (symbol_domain == domain);
2691 }
2692
2693 /* See symtab.h. */
2694
2695 struct type *
2696 lookup_transparent_type (const char *name)
2697 {
2698 return current_language->la_lookup_transparent_type (name);
2699 }
2700
2701 /* A helper for basic_lookup_transparent_type that interfaces with the
2702 "quick" symbol table functions. */
2703
2704 static struct type *
2705 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2706 const char *name)
2707 {
2708 struct compunit_symtab *cust;
2709 const struct blockvector *bv;
2710 struct block *block;
2711 struct symbol *sym;
2712
2713 if (!objfile->sf)
2714 return NULL;
2715 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2716 STRUCT_DOMAIN);
2717 if (cust == NULL)
2718 return NULL;
2719
2720 bv = COMPUNIT_BLOCKVECTOR (cust);
2721 block = BLOCKVECTOR_BLOCK (bv, block_index);
2722 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2723 block_find_non_opaque_type, NULL);
2724 if (sym == NULL)
2725 error_in_psymtab_expansion (block_index, name, cust);
2726 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2727 return SYMBOL_TYPE (sym);
2728 }
2729
2730 /* Subroutine of basic_lookup_transparent_type to simplify it.
2731 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2732 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2733
2734 static struct type *
2735 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2736 const char *name)
2737 {
2738 const struct compunit_symtab *cust;
2739 const struct blockvector *bv;
2740 const struct block *block;
2741 const struct symbol *sym;
2742
2743 ALL_OBJFILE_COMPUNITS (objfile, cust)
2744 {
2745 bv = COMPUNIT_BLOCKVECTOR (cust);
2746 block = BLOCKVECTOR_BLOCK (bv, block_index);
2747 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2748 block_find_non_opaque_type, NULL);
2749 if (sym != NULL)
2750 {
2751 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2752 return SYMBOL_TYPE (sym);
2753 }
2754 }
2755
2756 return NULL;
2757 }
2758
2759 /* The standard implementation of lookup_transparent_type. This code
2760 was modeled on lookup_symbol -- the parts not relevant to looking
2761 up types were just left out. In particular it's assumed here that
2762 types are available in STRUCT_DOMAIN and only in file-static or
2763 global blocks. */
2764
2765 struct type *
2766 basic_lookup_transparent_type (const char *name)
2767 {
2768 struct objfile *objfile;
2769 struct type *t;
2770
2771 /* Now search all the global symbols. Do the symtab's first, then
2772 check the psymtab's. If a psymtab indicates the existence
2773 of the desired name as a global, then do psymtab-to-symtab
2774 conversion on the fly and return the found symbol. */
2775
2776 ALL_OBJFILES (objfile)
2777 {
2778 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2779 if (t)
2780 return t;
2781 }
2782
2783 ALL_OBJFILES (objfile)
2784 {
2785 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2786 if (t)
2787 return t;
2788 }
2789
2790 /* Now search the static file-level symbols.
2791 Not strictly correct, but more useful than an error.
2792 Do the symtab's first, then
2793 check the psymtab's. If a psymtab indicates the existence
2794 of the desired name as a file-level static, then do psymtab-to-symtab
2795 conversion on the fly and return the found symbol. */
2796
2797 ALL_OBJFILES (objfile)
2798 {
2799 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2800 if (t)
2801 return t;
2802 }
2803
2804 ALL_OBJFILES (objfile)
2805 {
2806 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2807 if (t)
2808 return t;
2809 }
2810
2811 return (struct type *) 0;
2812 }
2813
2814 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2815
2816 For each symbol that matches, CALLBACK is called. The symbol is
2817 passed to the callback.
2818
2819 If CALLBACK returns false, the iteration ends. Otherwise, the
2820 search continues. */
2821
2822 void
2823 iterate_over_symbols (const struct block *block,
2824 const lookup_name_info &name,
2825 const domain_enum domain,
2826 gdb::function_view<symbol_found_callback_ftype> callback)
2827 {
2828 struct block_iterator iter;
2829 struct symbol *sym;
2830
2831 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2832 {
2833 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2834 SYMBOL_DOMAIN (sym), domain))
2835 {
2836 if (!callback (sym))
2837 return;
2838 }
2839 }
2840 }
2841
2842 /* Find the compunit symtab associated with PC and SECTION.
2843 This will read in debug info as necessary. */
2844
2845 struct compunit_symtab *
2846 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2847 {
2848 struct compunit_symtab *cust;
2849 struct compunit_symtab *best_cust = NULL;
2850 struct objfile *objfile;
2851 CORE_ADDR distance = 0;
2852 struct bound_minimal_symbol msymbol;
2853
2854 /* If we know that this is not a text address, return failure. This is
2855 necessary because we loop based on the block's high and low code
2856 addresses, which do not include the data ranges, and because
2857 we call find_pc_sect_psymtab which has a similar restriction based
2858 on the partial_symtab's texthigh and textlow. */
2859 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2860 if (msymbol.minsym
2861 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2862 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2863 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2864 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2865 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2866 return NULL;
2867
2868 /* Search all symtabs for the one whose file contains our address, and which
2869 is the smallest of all the ones containing the address. This is designed
2870 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2871 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2872 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2873
2874 This happens for native ecoff format, where code from included files
2875 gets its own symtab. The symtab for the included file should have
2876 been read in already via the dependency mechanism.
2877 It might be swifter to create several symtabs with the same name
2878 like xcoff does (I'm not sure).
2879
2880 It also happens for objfiles that have their functions reordered.
2881 For these, the symtab we are looking for is not necessarily read in. */
2882
2883 ALL_COMPUNITS (objfile, cust)
2884 {
2885 struct block *b;
2886 const struct blockvector *bv;
2887
2888 bv = COMPUNIT_BLOCKVECTOR (cust);
2889 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2890
2891 if (BLOCK_START (b) <= pc
2892 && BLOCK_END (b) > pc
2893 && (distance == 0
2894 || BLOCK_END (b) - BLOCK_START (b) < distance))
2895 {
2896 /* For an objfile that has its functions reordered,
2897 find_pc_psymtab will find the proper partial symbol table
2898 and we simply return its corresponding symtab. */
2899 /* In order to better support objfiles that contain both
2900 stabs and coff debugging info, we continue on if a psymtab
2901 can't be found. */
2902 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2903 {
2904 struct compunit_symtab *result;
2905
2906 result
2907 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2908 msymbol,
2909 pc, section,
2910 0);
2911 if (result != NULL)
2912 return result;
2913 }
2914 if (section != 0)
2915 {
2916 struct block_iterator iter;
2917 struct symbol *sym = NULL;
2918
2919 ALL_BLOCK_SYMBOLS (b, iter, sym)
2920 {
2921 fixup_symbol_section (sym, objfile);
2922 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2923 section))
2924 break;
2925 }
2926 if (sym == NULL)
2927 continue; /* No symbol in this symtab matches
2928 section. */
2929 }
2930 distance = BLOCK_END (b) - BLOCK_START (b);
2931 best_cust = cust;
2932 }
2933 }
2934
2935 if (best_cust != NULL)
2936 return best_cust;
2937
2938 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2939
2940 ALL_OBJFILES (objfile)
2941 {
2942 struct compunit_symtab *result;
2943
2944 if (!objfile->sf)
2945 continue;
2946 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2947 msymbol,
2948 pc, section,
2949 1);
2950 if (result != NULL)
2951 return result;
2952 }
2953
2954 return NULL;
2955 }
2956
2957 /* Find the compunit symtab associated with PC.
2958 This will read in debug info as necessary.
2959 Backward compatibility, no section. */
2960
2961 struct compunit_symtab *
2962 find_pc_compunit_symtab (CORE_ADDR pc)
2963 {
2964 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2965 }
2966
2967 /* See symtab.h. */
2968
2969 struct symbol *
2970 find_symbol_at_address (CORE_ADDR address)
2971 {
2972 struct objfile *objfile;
2973
2974 ALL_OBJFILES (objfile)
2975 {
2976 if (objfile->sf == NULL
2977 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
2978 continue;
2979
2980 struct compunit_symtab *symtab
2981 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
2982 if (symtab != NULL)
2983 {
2984 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
2985
2986 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
2987 {
2988 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
2989 struct block_iterator iter;
2990 struct symbol *sym;
2991
2992 ALL_BLOCK_SYMBOLS (b, iter, sym)
2993 {
2994 if (SYMBOL_CLASS (sym) == LOC_STATIC
2995 && SYMBOL_VALUE_ADDRESS (sym) == address)
2996 return sym;
2997 }
2998 }
2999 }
3000 }
3001
3002 return NULL;
3003 }
3004
3005 \f
3006
3007 /* Find the source file and line number for a given PC value and SECTION.
3008 Return a structure containing a symtab pointer, a line number,
3009 and a pc range for the entire source line.
3010 The value's .pc field is NOT the specified pc.
3011 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3012 use the line that ends there. Otherwise, in that case, the line
3013 that begins there is used. */
3014
3015 /* The big complication here is that a line may start in one file, and end just
3016 before the start of another file. This usually occurs when you #include
3017 code in the middle of a subroutine. To properly find the end of a line's PC
3018 range, we must search all symtabs associated with this compilation unit, and
3019 find the one whose first PC is closer than that of the next line in this
3020 symtab. */
3021
3022 /* If it's worth the effort, we could be using a binary search. */
3023
3024 struct symtab_and_line
3025 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3026 {
3027 struct compunit_symtab *cust;
3028 struct symtab *iter_s;
3029 struct linetable *l;
3030 int len;
3031 int i;
3032 struct linetable_entry *item;
3033 const struct blockvector *bv;
3034 struct bound_minimal_symbol msymbol;
3035
3036 /* Info on best line seen so far, and where it starts, and its file. */
3037
3038 struct linetable_entry *best = NULL;
3039 CORE_ADDR best_end = 0;
3040 struct symtab *best_symtab = 0;
3041
3042 /* Store here the first line number
3043 of a file which contains the line at the smallest pc after PC.
3044 If we don't find a line whose range contains PC,
3045 we will use a line one less than this,
3046 with a range from the start of that file to the first line's pc. */
3047 struct linetable_entry *alt = NULL;
3048
3049 /* Info on best line seen in this file. */
3050
3051 struct linetable_entry *prev;
3052
3053 /* If this pc is not from the current frame,
3054 it is the address of the end of a call instruction.
3055 Quite likely that is the start of the following statement.
3056 But what we want is the statement containing the instruction.
3057 Fudge the pc to make sure we get that. */
3058
3059 /* It's tempting to assume that, if we can't find debugging info for
3060 any function enclosing PC, that we shouldn't search for line
3061 number info, either. However, GAS can emit line number info for
3062 assembly files --- very helpful when debugging hand-written
3063 assembly code. In such a case, we'd have no debug info for the
3064 function, but we would have line info. */
3065
3066 if (notcurrent)
3067 pc -= 1;
3068
3069 /* elz: added this because this function returned the wrong
3070 information if the pc belongs to a stub (import/export)
3071 to call a shlib function. This stub would be anywhere between
3072 two functions in the target, and the line info was erroneously
3073 taken to be the one of the line before the pc. */
3074
3075 /* RT: Further explanation:
3076
3077 * We have stubs (trampolines) inserted between procedures.
3078 *
3079 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3080 * exists in the main image.
3081 *
3082 * In the minimal symbol table, we have a bunch of symbols
3083 * sorted by start address. The stubs are marked as "trampoline",
3084 * the others appear as text. E.g.:
3085 *
3086 * Minimal symbol table for main image
3087 * main: code for main (text symbol)
3088 * shr1: stub (trampoline symbol)
3089 * foo: code for foo (text symbol)
3090 * ...
3091 * Minimal symbol table for "shr1" image:
3092 * ...
3093 * shr1: code for shr1 (text symbol)
3094 * ...
3095 *
3096 * So the code below is trying to detect if we are in the stub
3097 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3098 * and if found, do the symbolization from the real-code address
3099 * rather than the stub address.
3100 *
3101 * Assumptions being made about the minimal symbol table:
3102 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3103 * if we're really in the trampoline.s If we're beyond it (say
3104 * we're in "foo" in the above example), it'll have a closer
3105 * symbol (the "foo" text symbol for example) and will not
3106 * return the trampoline.
3107 * 2. lookup_minimal_symbol_text() will find a real text symbol
3108 * corresponding to the trampoline, and whose address will
3109 * be different than the trampoline address. I put in a sanity
3110 * check for the address being the same, to avoid an
3111 * infinite recursion.
3112 */
3113 msymbol = lookup_minimal_symbol_by_pc (pc);
3114 if (msymbol.minsym != NULL)
3115 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3116 {
3117 struct bound_minimal_symbol mfunsym
3118 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3119 NULL);
3120
3121 if (mfunsym.minsym == NULL)
3122 /* I eliminated this warning since it is coming out
3123 * in the following situation:
3124 * gdb shmain // test program with shared libraries
3125 * (gdb) break shr1 // function in shared lib
3126 * Warning: In stub for ...
3127 * In the above situation, the shared lib is not loaded yet,
3128 * so of course we can't find the real func/line info,
3129 * but the "break" still works, and the warning is annoying.
3130 * So I commented out the warning. RT */
3131 /* warning ("In stub for %s; unable to find real function/line info",
3132 SYMBOL_LINKAGE_NAME (msymbol)); */
3133 ;
3134 /* fall through */
3135 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3136 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3137 /* Avoid infinite recursion */
3138 /* See above comment about why warning is commented out. */
3139 /* warning ("In stub for %s; unable to find real function/line info",
3140 SYMBOL_LINKAGE_NAME (msymbol)); */
3141 ;
3142 /* fall through */
3143 else
3144 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3145 }
3146
3147 symtab_and_line val;
3148 val.pspace = current_program_space;
3149
3150 cust = find_pc_sect_compunit_symtab (pc, section);
3151 if (cust == NULL)
3152 {
3153 /* If no symbol information, return previous pc. */
3154 if (notcurrent)
3155 pc++;
3156 val.pc = pc;
3157 return val;
3158 }
3159
3160 bv = COMPUNIT_BLOCKVECTOR (cust);
3161
3162 /* Look at all the symtabs that share this blockvector.
3163 They all have the same apriori range, that we found was right;
3164 but they have different line tables. */
3165
3166 ALL_COMPUNIT_FILETABS (cust, iter_s)
3167 {
3168 /* Find the best line in this symtab. */
3169 l = SYMTAB_LINETABLE (iter_s);
3170 if (!l)
3171 continue;
3172 len = l->nitems;
3173 if (len <= 0)
3174 {
3175 /* I think len can be zero if the symtab lacks line numbers
3176 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3177 I'm not sure which, and maybe it depends on the symbol
3178 reader). */
3179 continue;
3180 }
3181
3182 prev = NULL;
3183 item = l->item; /* Get first line info. */
3184
3185 /* Is this file's first line closer than the first lines of other files?
3186 If so, record this file, and its first line, as best alternate. */
3187 if (item->pc > pc && (!alt || item->pc < alt->pc))
3188 alt = item;
3189
3190 for (i = 0; i < len; i++, item++)
3191 {
3192 /* Leave prev pointing to the linetable entry for the last line
3193 that started at or before PC. */
3194 if (item->pc > pc)
3195 break;
3196
3197 prev = item;
3198 }
3199
3200 /* At this point, prev points at the line whose start addr is <= pc, and
3201 item points at the next line. If we ran off the end of the linetable
3202 (pc >= start of the last line), then prev == item. If pc < start of
3203 the first line, prev will not be set. */
3204
3205 /* Is this file's best line closer than the best in the other files?
3206 If so, record this file, and its best line, as best so far. Don't
3207 save prev if it represents the end of a function (i.e. line number
3208 0) instead of a real line. */
3209
3210 if (prev && prev->line && (!best || prev->pc > best->pc))
3211 {
3212 best = prev;
3213 best_symtab = iter_s;
3214
3215 /* Discard BEST_END if it's before the PC of the current BEST. */
3216 if (best_end <= best->pc)
3217 best_end = 0;
3218 }
3219
3220 /* If another line (denoted by ITEM) is in the linetable and its
3221 PC is after BEST's PC, but before the current BEST_END, then
3222 use ITEM's PC as the new best_end. */
3223 if (best && i < len && item->pc > best->pc
3224 && (best_end == 0 || best_end > item->pc))
3225 best_end = item->pc;
3226 }
3227
3228 if (!best_symtab)
3229 {
3230 /* If we didn't find any line number info, just return zeros.
3231 We used to return alt->line - 1 here, but that could be
3232 anywhere; if we don't have line number info for this PC,
3233 don't make some up. */
3234 val.pc = pc;
3235 }
3236 else if (best->line == 0)
3237 {
3238 /* If our best fit is in a range of PC's for which no line
3239 number info is available (line number is zero) then we didn't
3240 find any valid line information. */
3241 val.pc = pc;
3242 }
3243 else
3244 {
3245 val.symtab = best_symtab;
3246 val.line = best->line;
3247 val.pc = best->pc;
3248 if (best_end && (!alt || best_end < alt->pc))
3249 val.end = best_end;
3250 else if (alt)
3251 val.end = alt->pc;
3252 else
3253 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3254 }
3255 val.section = section;
3256 return val;
3257 }
3258
3259 /* Backward compatibility (no section). */
3260
3261 struct symtab_and_line
3262 find_pc_line (CORE_ADDR pc, int notcurrent)
3263 {
3264 struct obj_section *section;
3265
3266 section = find_pc_overlay (pc);
3267 if (pc_in_unmapped_range (pc, section))
3268 pc = overlay_mapped_address (pc, section);
3269 return find_pc_sect_line (pc, section, notcurrent);
3270 }
3271
3272 /* See symtab.h. */
3273
3274 struct symtab *
3275 find_pc_line_symtab (CORE_ADDR pc)
3276 {
3277 struct symtab_and_line sal;
3278
3279 /* This always passes zero for NOTCURRENT to find_pc_line.
3280 There are currently no callers that ever pass non-zero. */
3281 sal = find_pc_line (pc, 0);
3282 return sal.symtab;
3283 }
3284 \f
3285 /* Find line number LINE in any symtab whose name is the same as
3286 SYMTAB.
3287
3288 If found, return the symtab that contains the linetable in which it was
3289 found, set *INDEX to the index in the linetable of the best entry
3290 found, and set *EXACT_MATCH nonzero if the value returned is an
3291 exact match.
3292
3293 If not found, return NULL. */
3294
3295 struct symtab *
3296 find_line_symtab (struct symtab *symtab, int line,
3297 int *index, int *exact_match)
3298 {
3299 int exact = 0; /* Initialized here to avoid a compiler warning. */
3300
3301 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3302 so far seen. */
3303
3304 int best_index;
3305 struct linetable *best_linetable;
3306 struct symtab *best_symtab;
3307
3308 /* First try looking it up in the given symtab. */
3309 best_linetable = SYMTAB_LINETABLE (symtab);
3310 best_symtab = symtab;
3311 best_index = find_line_common (best_linetable, line, &exact, 0);
3312 if (best_index < 0 || !exact)
3313 {
3314 /* Didn't find an exact match. So we better keep looking for
3315 another symtab with the same name. In the case of xcoff,
3316 multiple csects for one source file (produced by IBM's FORTRAN
3317 compiler) produce multiple symtabs (this is unavoidable
3318 assuming csects can be at arbitrary places in memory and that
3319 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3320
3321 /* BEST is the smallest linenumber > LINE so far seen,
3322 or 0 if none has been seen so far.
3323 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3324 int best;
3325
3326 struct objfile *objfile;
3327 struct compunit_symtab *cu;
3328 struct symtab *s;
3329
3330 if (best_index >= 0)
3331 best = best_linetable->item[best_index].line;
3332 else
3333 best = 0;
3334
3335 ALL_OBJFILES (objfile)
3336 {
3337 if (objfile->sf)
3338 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3339 symtab_to_fullname (symtab));
3340 }
3341
3342 ALL_FILETABS (objfile, cu, s)
3343 {
3344 struct linetable *l;
3345 int ind;
3346
3347 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3348 continue;
3349 if (FILENAME_CMP (symtab_to_fullname (symtab),
3350 symtab_to_fullname (s)) != 0)
3351 continue;
3352 l = SYMTAB_LINETABLE (s);
3353 ind = find_line_common (l, line, &exact, 0);
3354 if (ind >= 0)
3355 {
3356 if (exact)
3357 {
3358 best_index = ind;
3359 best_linetable = l;
3360 best_symtab = s;
3361 goto done;
3362 }
3363 if (best == 0 || l->item[ind].line < best)
3364 {
3365 best = l->item[ind].line;
3366 best_index = ind;
3367 best_linetable = l;
3368 best_symtab = s;
3369 }
3370 }
3371 }
3372 }
3373 done:
3374 if (best_index < 0)
3375 return NULL;
3376
3377 if (index)
3378 *index = best_index;
3379 if (exact_match)
3380 *exact_match = exact;
3381
3382 return best_symtab;
3383 }
3384
3385 /* Given SYMTAB, returns all the PCs function in the symtab that
3386 exactly match LINE. Returns an empty vector if there are no exact
3387 matches, but updates BEST_ITEM in this case. */
3388
3389 std::vector<CORE_ADDR>
3390 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3391 struct linetable_entry **best_item)
3392 {
3393 int start = 0;
3394 std::vector<CORE_ADDR> result;
3395
3396 /* First, collect all the PCs that are at this line. */
3397 while (1)
3398 {
3399 int was_exact;
3400 int idx;
3401
3402 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3403 start);
3404 if (idx < 0)
3405 break;
3406
3407 if (!was_exact)
3408 {
3409 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3410
3411 if (*best_item == NULL || item->line < (*best_item)->line)
3412 *best_item = item;
3413
3414 break;
3415 }
3416
3417 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3418 start = idx + 1;
3419 }
3420
3421 return result;
3422 }
3423
3424 \f
3425 /* Set the PC value for a given source file and line number and return true.
3426 Returns zero for invalid line number (and sets the PC to 0).
3427 The source file is specified with a struct symtab. */
3428
3429 int
3430 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3431 {
3432 struct linetable *l;
3433 int ind;
3434
3435 *pc = 0;
3436 if (symtab == 0)
3437 return 0;
3438
3439 symtab = find_line_symtab (symtab, line, &ind, NULL);
3440 if (symtab != NULL)
3441 {
3442 l = SYMTAB_LINETABLE (symtab);
3443 *pc = l->item[ind].pc;
3444 return 1;
3445 }
3446 else
3447 return 0;
3448 }
3449
3450 /* Find the range of pc values in a line.
3451 Store the starting pc of the line into *STARTPTR
3452 and the ending pc (start of next line) into *ENDPTR.
3453 Returns 1 to indicate success.
3454 Returns 0 if could not find the specified line. */
3455
3456 int
3457 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3458 CORE_ADDR *endptr)
3459 {
3460 CORE_ADDR startaddr;
3461 struct symtab_and_line found_sal;
3462
3463 startaddr = sal.pc;
3464 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3465 return 0;
3466
3467 /* This whole function is based on address. For example, if line 10 has
3468 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3469 "info line *0x123" should say the line goes from 0x100 to 0x200
3470 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3471 This also insures that we never give a range like "starts at 0x134
3472 and ends at 0x12c". */
3473
3474 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3475 if (found_sal.line != sal.line)
3476 {
3477 /* The specified line (sal) has zero bytes. */
3478 *startptr = found_sal.pc;
3479 *endptr = found_sal.pc;
3480 }
3481 else
3482 {
3483 *startptr = found_sal.pc;
3484 *endptr = found_sal.end;
3485 }
3486 return 1;
3487 }
3488
3489 /* Given a line table and a line number, return the index into the line
3490 table for the pc of the nearest line whose number is >= the specified one.
3491 Return -1 if none is found. The value is >= 0 if it is an index.
3492 START is the index at which to start searching the line table.
3493
3494 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3495
3496 static int
3497 find_line_common (struct linetable *l, int lineno,
3498 int *exact_match, int start)
3499 {
3500 int i;
3501 int len;
3502
3503 /* BEST is the smallest linenumber > LINENO so far seen,
3504 or 0 if none has been seen so far.
3505 BEST_INDEX identifies the item for it. */
3506
3507 int best_index = -1;
3508 int best = 0;
3509
3510 *exact_match = 0;
3511
3512 if (lineno <= 0)
3513 return -1;
3514 if (l == 0)
3515 return -1;
3516
3517 len = l->nitems;
3518 for (i = start; i < len; i++)
3519 {
3520 struct linetable_entry *item = &(l->item[i]);
3521
3522 if (item->line == lineno)
3523 {
3524 /* Return the first (lowest address) entry which matches. */
3525 *exact_match = 1;
3526 return i;
3527 }
3528
3529 if (item->line > lineno && (best == 0 || item->line < best))
3530 {
3531 best = item->line;
3532 best_index = i;
3533 }
3534 }
3535
3536 /* If we got here, we didn't get an exact match. */
3537 return best_index;
3538 }
3539
3540 int
3541 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3542 {
3543 struct symtab_and_line sal;
3544
3545 sal = find_pc_line (pc, 0);
3546 *startptr = sal.pc;
3547 *endptr = sal.end;
3548 return sal.symtab != 0;
3549 }
3550
3551 /* Given a function symbol SYM, find the symtab and line for the start
3552 of the function.
3553 If the argument FUNFIRSTLINE is nonzero, we want the first line
3554 of real code inside the function.
3555 This function should return SALs matching those from minsym_found,
3556 otherwise false multiple-locations breakpoints could be placed. */
3557
3558 struct symtab_and_line
3559 find_function_start_sal (struct symbol *sym, int funfirstline)
3560 {
3561 fixup_symbol_section (sym, NULL);
3562
3563 obj_section *section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3564 symtab_and_line sal
3565 = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3566 sal.symbol = sym;
3567
3568 if (funfirstline && sal.symtab != NULL
3569 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3570 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3571 {
3572 struct gdbarch *gdbarch = symbol_arch (sym);
3573
3574 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3575 if (gdbarch_skip_entrypoint_p (gdbarch))
3576 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3577 return sal;
3578 }
3579
3580 /* We always should have a line for the function start address.
3581 If we don't, something is odd. Create a plain SAL refering
3582 just the PC and hope that skip_prologue_sal (if requested)
3583 can find a line number for after the prologue. */
3584 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3585 {
3586 sal = {};
3587 sal.pspace = current_program_space;
3588 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3589 sal.section = section;
3590 sal.symbol = sym;
3591 }
3592
3593 if (funfirstline)
3594 skip_prologue_sal (&sal);
3595
3596 return sal;
3597 }
3598
3599 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3600 address for that function that has an entry in SYMTAB's line info
3601 table. If such an entry cannot be found, return FUNC_ADDR
3602 unaltered. */
3603
3604 static CORE_ADDR
3605 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3606 {
3607 CORE_ADDR func_start, func_end;
3608 struct linetable *l;
3609 int i;
3610
3611 /* Give up if this symbol has no lineinfo table. */
3612 l = SYMTAB_LINETABLE (symtab);
3613 if (l == NULL)
3614 return func_addr;
3615
3616 /* Get the range for the function's PC values, or give up if we
3617 cannot, for some reason. */
3618 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3619 return func_addr;
3620
3621 /* Linetable entries are ordered by PC values, see the commentary in
3622 symtab.h where `struct linetable' is defined. Thus, the first
3623 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3624 address we are looking for. */
3625 for (i = 0; i < l->nitems; i++)
3626 {
3627 struct linetable_entry *item = &(l->item[i]);
3628
3629 /* Don't use line numbers of zero, they mark special entries in
3630 the table. See the commentary on symtab.h before the
3631 definition of struct linetable. */
3632 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3633 return item->pc;
3634 }
3635
3636 return func_addr;
3637 }
3638
3639 /* Adjust SAL to the first instruction past the function prologue.
3640 If the PC was explicitly specified, the SAL is not changed.
3641 If the line number was explicitly specified, at most the SAL's PC
3642 is updated. If SAL is already past the prologue, then do nothing. */
3643
3644 void
3645 skip_prologue_sal (struct symtab_and_line *sal)
3646 {
3647 struct symbol *sym;
3648 struct symtab_and_line start_sal;
3649 CORE_ADDR pc, saved_pc;
3650 struct obj_section *section;
3651 const char *name;
3652 struct objfile *objfile;
3653 struct gdbarch *gdbarch;
3654 const struct block *b, *function_block;
3655 int force_skip, skip;
3656
3657 /* Do not change the SAL if PC was specified explicitly. */
3658 if (sal->explicit_pc)
3659 return;
3660
3661 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3662
3663 switch_to_program_space_and_thread (sal->pspace);
3664
3665 sym = find_pc_sect_function (sal->pc, sal->section);
3666 if (sym != NULL)
3667 {
3668 fixup_symbol_section (sym, NULL);
3669
3670 objfile = symbol_objfile (sym);
3671 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3672 section = SYMBOL_OBJ_SECTION (objfile, sym);
3673 name = SYMBOL_LINKAGE_NAME (sym);
3674 }
3675 else
3676 {
3677 struct bound_minimal_symbol msymbol
3678 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3679
3680 if (msymbol.minsym == NULL)
3681 return;
3682
3683 objfile = msymbol.objfile;
3684 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3685 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3686 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3687 }
3688
3689 gdbarch = get_objfile_arch (objfile);
3690
3691 /* Process the prologue in two passes. In the first pass try to skip the
3692 prologue (SKIP is true) and verify there is a real need for it (indicated
3693 by FORCE_SKIP). If no such reason was found run a second pass where the
3694 prologue is not skipped (SKIP is false). */
3695
3696 skip = 1;
3697 force_skip = 1;
3698
3699 /* Be conservative - allow direct PC (without skipping prologue) only if we
3700 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3701 have to be set by the caller so we use SYM instead. */
3702 if (sym != NULL
3703 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3704 force_skip = 0;
3705
3706 saved_pc = pc;
3707 do
3708 {
3709 pc = saved_pc;
3710
3711 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3712 so that gdbarch_skip_prologue has something unique to work on. */
3713 if (section_is_overlay (section) && !section_is_mapped (section))
3714 pc = overlay_unmapped_address (pc, section);
3715
3716 /* Skip "first line" of function (which is actually its prologue). */
3717 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3718 if (gdbarch_skip_entrypoint_p (gdbarch))
3719 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3720 if (skip)
3721 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3722
3723 /* For overlays, map pc back into its mapped VMA range. */
3724 pc = overlay_mapped_address (pc, section);
3725
3726 /* Calculate line number. */
3727 start_sal = find_pc_sect_line (pc, section, 0);
3728
3729 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3730 line is still part of the same function. */
3731 if (skip && start_sal.pc != pc
3732 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3733 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3734 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3735 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3736 {
3737 /* First pc of next line */
3738 pc = start_sal.end;
3739 /* Recalculate the line number (might not be N+1). */
3740 start_sal = find_pc_sect_line (pc, section, 0);
3741 }
3742
3743 /* On targets with executable formats that don't have a concept of
3744 constructors (ELF with .init has, PE doesn't), gcc emits a call
3745 to `__main' in `main' between the prologue and before user
3746 code. */
3747 if (gdbarch_skip_main_prologue_p (gdbarch)
3748 && name && strcmp_iw (name, "main") == 0)
3749 {
3750 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3751 /* Recalculate the line number (might not be N+1). */
3752 start_sal = find_pc_sect_line (pc, section, 0);
3753 force_skip = 1;
3754 }
3755 }
3756 while (!force_skip && skip--);
3757
3758 /* If we still don't have a valid source line, try to find the first
3759 PC in the lineinfo table that belongs to the same function. This
3760 happens with COFF debug info, which does not seem to have an
3761 entry in lineinfo table for the code after the prologue which has
3762 no direct relation to source. For example, this was found to be
3763 the case with the DJGPP target using "gcc -gcoff" when the
3764 compiler inserted code after the prologue to make sure the stack
3765 is aligned. */
3766 if (!force_skip && sym && start_sal.symtab == NULL)
3767 {
3768 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3769 /* Recalculate the line number. */
3770 start_sal = find_pc_sect_line (pc, section, 0);
3771 }
3772
3773 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3774 forward SAL to the end of the prologue. */
3775 if (sal->pc >= pc)
3776 return;
3777
3778 sal->pc = pc;
3779 sal->section = section;
3780
3781 /* Unless the explicit_line flag was set, update the SAL line
3782 and symtab to correspond to the modified PC location. */
3783 if (sal->explicit_line)
3784 return;
3785
3786 sal->symtab = start_sal.symtab;
3787 sal->line = start_sal.line;
3788 sal->end = start_sal.end;
3789
3790 /* Check if we are now inside an inlined function. If we can,
3791 use the call site of the function instead. */
3792 b = block_for_pc_sect (sal->pc, sal->section);
3793 function_block = NULL;
3794 while (b != NULL)
3795 {
3796 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3797 function_block = b;
3798 else if (BLOCK_FUNCTION (b) != NULL)
3799 break;
3800 b = BLOCK_SUPERBLOCK (b);
3801 }
3802 if (function_block != NULL
3803 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3804 {
3805 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3806 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3807 }
3808 }
3809
3810 /* Given PC at the function's start address, attempt to find the
3811 prologue end using SAL information. Return zero if the skip fails.
3812
3813 A non-optimized prologue traditionally has one SAL for the function
3814 and a second for the function body. A single line function has
3815 them both pointing at the same line.
3816
3817 An optimized prologue is similar but the prologue may contain
3818 instructions (SALs) from the instruction body. Need to skip those
3819 while not getting into the function body.
3820
3821 The functions end point and an increasing SAL line are used as
3822 indicators of the prologue's endpoint.
3823
3824 This code is based on the function refine_prologue_limit
3825 (found in ia64). */
3826
3827 CORE_ADDR
3828 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3829 {
3830 struct symtab_and_line prologue_sal;
3831 CORE_ADDR start_pc;
3832 CORE_ADDR end_pc;
3833 const struct block *bl;
3834
3835 /* Get an initial range for the function. */
3836 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3837 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3838
3839 prologue_sal = find_pc_line (start_pc, 0);
3840 if (prologue_sal.line != 0)
3841 {
3842 /* For languages other than assembly, treat two consecutive line
3843 entries at the same address as a zero-instruction prologue.
3844 The GNU assembler emits separate line notes for each instruction
3845 in a multi-instruction macro, but compilers generally will not
3846 do this. */
3847 if (prologue_sal.symtab->language != language_asm)
3848 {
3849 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3850 int idx = 0;
3851
3852 /* Skip any earlier lines, and any end-of-sequence marker
3853 from a previous function. */
3854 while (linetable->item[idx].pc != prologue_sal.pc
3855 || linetable->item[idx].line == 0)
3856 idx++;
3857
3858 if (idx+1 < linetable->nitems
3859 && linetable->item[idx+1].line != 0
3860 && linetable->item[idx+1].pc == start_pc)
3861 return start_pc;
3862 }
3863
3864 /* If there is only one sal that covers the entire function,
3865 then it is probably a single line function, like
3866 "foo(){}". */
3867 if (prologue_sal.end >= end_pc)
3868 return 0;
3869
3870 while (prologue_sal.end < end_pc)
3871 {
3872 struct symtab_and_line sal;
3873
3874 sal = find_pc_line (prologue_sal.end, 0);
3875 if (sal.line == 0)
3876 break;
3877 /* Assume that a consecutive SAL for the same (or larger)
3878 line mark the prologue -> body transition. */
3879 if (sal.line >= prologue_sal.line)
3880 break;
3881 /* Likewise if we are in a different symtab altogether
3882 (e.g. within a file included via #include).  */
3883 if (sal.symtab != prologue_sal.symtab)
3884 break;
3885
3886 /* The line number is smaller. Check that it's from the
3887 same function, not something inlined. If it's inlined,
3888 then there is no point comparing the line numbers. */
3889 bl = block_for_pc (prologue_sal.end);
3890 while (bl)
3891 {
3892 if (block_inlined_p (bl))
3893 break;
3894 if (BLOCK_FUNCTION (bl))
3895 {
3896 bl = NULL;
3897 break;
3898 }
3899 bl = BLOCK_SUPERBLOCK (bl);
3900 }
3901 if (bl != NULL)
3902 break;
3903
3904 /* The case in which compiler's optimizer/scheduler has
3905 moved instructions into the prologue. We look ahead in
3906 the function looking for address ranges whose
3907 corresponding line number is less the first one that we
3908 found for the function. This is more conservative then
3909 refine_prologue_limit which scans a large number of SALs
3910 looking for any in the prologue. */
3911 prologue_sal = sal;
3912 }
3913 }
3914
3915 if (prologue_sal.end < end_pc)
3916 /* Return the end of this line, or zero if we could not find a
3917 line. */
3918 return prologue_sal.end;
3919 else
3920 /* Don't return END_PC, which is past the end of the function. */
3921 return prologue_sal.pc;
3922 }
3923
3924 /* See symtab.h. */
3925
3926 symbol *
3927 find_function_alias_target (bound_minimal_symbol msymbol)
3928 {
3929 CORE_ADDR func_addr;
3930 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3931 return NULL;
3932
3933 symbol *sym = find_pc_function (func_addr);
3934 if (sym != NULL
3935 && SYMBOL_CLASS (sym) == LOC_BLOCK
3936 && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3937 return sym;
3938
3939 return NULL;
3940 }
3941
3942 \f
3943 /* If P is of the form "operator[ \t]+..." where `...' is
3944 some legitimate operator text, return a pointer to the
3945 beginning of the substring of the operator text.
3946 Otherwise, return "". */
3947
3948 static const char *
3949 operator_chars (const char *p, const char **end)
3950 {
3951 *end = "";
3952 if (!startswith (p, CP_OPERATOR_STR))
3953 return *end;
3954 p += CP_OPERATOR_LEN;
3955
3956 /* Don't get faked out by `operator' being part of a longer
3957 identifier. */
3958 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3959 return *end;
3960
3961 /* Allow some whitespace between `operator' and the operator symbol. */
3962 while (*p == ' ' || *p == '\t')
3963 p++;
3964
3965 /* Recognize 'operator TYPENAME'. */
3966
3967 if (isalpha (*p) || *p == '_' || *p == '$')
3968 {
3969 const char *q = p + 1;
3970
3971 while (isalnum (*q) || *q == '_' || *q == '$')
3972 q++;
3973 *end = q;
3974 return p;
3975 }
3976
3977 while (*p)
3978 switch (*p)
3979 {
3980 case '\\': /* regexp quoting */
3981 if (p[1] == '*')
3982 {
3983 if (p[2] == '=') /* 'operator\*=' */
3984 *end = p + 3;
3985 else /* 'operator\*' */
3986 *end = p + 2;
3987 return p;
3988 }
3989 else if (p[1] == '[')
3990 {
3991 if (p[2] == ']')
3992 error (_("mismatched quoting on brackets, "
3993 "try 'operator\\[\\]'"));
3994 else if (p[2] == '\\' && p[3] == ']')
3995 {
3996 *end = p + 4; /* 'operator\[\]' */
3997 return p;
3998 }
3999 else
4000 error (_("nothing is allowed between '[' and ']'"));
4001 }
4002 else
4003 {
4004 /* Gratuitous qoute: skip it and move on. */
4005 p++;
4006 continue;
4007 }
4008 break;
4009 case '!':
4010 case '=':
4011 case '*':
4012 case '/':
4013 case '%':
4014 case '^':
4015 if (p[1] == '=')
4016 *end = p + 2;
4017 else
4018 *end = p + 1;
4019 return p;
4020 case '<':
4021 case '>':
4022 case '+':
4023 case '-':
4024 case '&':
4025 case '|':
4026 if (p[0] == '-' && p[1] == '>')
4027 {
4028 /* Struct pointer member operator 'operator->'. */
4029 if (p[2] == '*')
4030 {
4031 *end = p + 3; /* 'operator->*' */
4032 return p;
4033 }
4034 else if (p[2] == '\\')
4035 {
4036 *end = p + 4; /* Hopefully 'operator->\*' */
4037 return p;
4038 }
4039 else
4040 {
4041 *end = p + 2; /* 'operator->' */
4042 return p;
4043 }
4044 }
4045 if (p[1] == '=' || p[1] == p[0])
4046 *end = p + 2;
4047 else
4048 *end = p + 1;
4049 return p;
4050 case '~':
4051 case ',':
4052 *end = p + 1;
4053 return p;
4054 case '(':
4055 if (p[1] != ')')
4056 error (_("`operator ()' must be specified "
4057 "without whitespace in `()'"));
4058 *end = p + 2;
4059 return p;
4060 case '?':
4061 if (p[1] != ':')
4062 error (_("`operator ?:' must be specified "
4063 "without whitespace in `?:'"));
4064 *end = p + 2;
4065 return p;
4066 case '[':
4067 if (p[1] != ']')
4068 error (_("`operator []' must be specified "
4069 "without whitespace in `[]'"));
4070 *end = p + 2;
4071 return p;
4072 default:
4073 error (_("`operator %s' not supported"), p);
4074 break;
4075 }
4076
4077 *end = "";
4078 return *end;
4079 }
4080 \f
4081
4082 /* Data structure to maintain printing state for output_source_filename. */
4083
4084 struct output_source_filename_data
4085 {
4086 /* Cache of what we've seen so far. */
4087 struct filename_seen_cache *filename_seen_cache;
4088
4089 /* Flag of whether we're printing the first one. */
4090 int first;
4091 };
4092
4093 /* Slave routine for sources_info. Force line breaks at ,'s.
4094 NAME is the name to print.
4095 DATA contains the state for printing and watching for duplicates. */
4096
4097 static void
4098 output_source_filename (const char *name,
4099 struct output_source_filename_data *data)
4100 {
4101 /* Since a single source file can result in several partial symbol
4102 tables, we need to avoid printing it more than once. Note: if
4103 some of the psymtabs are read in and some are not, it gets
4104 printed both under "Source files for which symbols have been
4105 read" and "Source files for which symbols will be read in on
4106 demand". I consider this a reasonable way to deal with the
4107 situation. I'm not sure whether this can also happen for
4108 symtabs; it doesn't hurt to check. */
4109
4110 /* Was NAME already seen? */
4111 if (data->filename_seen_cache->seen (name))
4112 {
4113 /* Yes; don't print it again. */
4114 return;
4115 }
4116
4117 /* No; print it and reset *FIRST. */
4118 if (! data->first)
4119 printf_filtered (", ");
4120 data->first = 0;
4121
4122 wrap_here ("");
4123 fputs_filtered (name, gdb_stdout);
4124 }
4125
4126 /* A callback for map_partial_symbol_filenames. */
4127
4128 static void
4129 output_partial_symbol_filename (const char *filename, const char *fullname,
4130 void *data)
4131 {
4132 output_source_filename (fullname ? fullname : filename,
4133 (struct output_source_filename_data *) data);
4134 }
4135
4136 static void
4137 info_sources_command (const char *ignore, int from_tty)
4138 {
4139 struct compunit_symtab *cu;
4140 struct symtab *s;
4141 struct objfile *objfile;
4142 struct output_source_filename_data data;
4143
4144 if (!have_full_symbols () && !have_partial_symbols ())
4145 {
4146 error (_("No symbol table is loaded. Use the \"file\" command."));
4147 }
4148
4149 filename_seen_cache filenames_seen;
4150
4151 data.filename_seen_cache = &filenames_seen;
4152
4153 printf_filtered ("Source files for which symbols have been read in:\n\n");
4154
4155 data.first = 1;
4156 ALL_FILETABS (objfile, cu, s)
4157 {
4158 const char *fullname = symtab_to_fullname (s);
4159
4160 output_source_filename (fullname, &data);
4161 }
4162 printf_filtered ("\n\n");
4163
4164 printf_filtered ("Source files for which symbols "
4165 "will be read in on demand:\n\n");
4166
4167 filenames_seen.clear ();
4168 data.first = 1;
4169 map_symbol_filenames (output_partial_symbol_filename, &data,
4170 1 /*need_fullname*/);
4171 printf_filtered ("\n");
4172 }
4173
4174 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4175 non-zero compare only lbasename of FILES. */
4176
4177 static int
4178 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4179 {
4180 int i;
4181
4182 if (file != NULL && nfiles != 0)
4183 {
4184 for (i = 0; i < nfiles; i++)
4185 {
4186 if (compare_filenames_for_search (file, (basenames
4187 ? lbasename (files[i])
4188 : files[i])))
4189 return 1;
4190 }
4191 }
4192 else if (nfiles == 0)
4193 return 1;
4194 return 0;
4195 }
4196
4197 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4198 sort symbols, not minimal symbols. */
4199
4200 int
4201 symbol_search::compare_search_syms (const symbol_search &sym_a,
4202 const symbol_search &sym_b)
4203 {
4204 int c;
4205
4206 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4207 symbol_symtab (sym_b.symbol)->filename);
4208 if (c != 0)
4209 return c;
4210
4211 if (sym_a.block != sym_b.block)
4212 return sym_a.block - sym_b.block;
4213
4214 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4215 SYMBOL_PRINT_NAME (sym_b.symbol));
4216 }
4217
4218 /* Sort the symbols in RESULT and remove duplicates. */
4219
4220 static void
4221 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4222 {
4223 std::sort (result->begin (), result->end ());
4224 result->erase (std::unique (result->begin (), result->end ()),
4225 result->end ());
4226 }
4227
4228 /* Search the symbol table for matches to the regular expression REGEXP,
4229 returning the results.
4230
4231 Only symbols of KIND are searched:
4232 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4233 and constants (enums)
4234 FUNCTIONS_DOMAIN - search all functions
4235 TYPES_DOMAIN - search all type names
4236 ALL_DOMAIN - an internal error for this function
4237
4238 Within each file the results are sorted locally; each symtab's global and
4239 static blocks are separately alphabetized.
4240 Duplicate entries are removed. */
4241
4242 std::vector<symbol_search>
4243 search_symbols (const char *regexp, enum search_domain kind,
4244 int nfiles, const char *files[])
4245 {
4246 struct compunit_symtab *cust;
4247 const struct blockvector *bv;
4248 struct block *b;
4249 int i = 0;
4250 struct block_iterator iter;
4251 struct symbol *sym;
4252 struct objfile *objfile;
4253 struct minimal_symbol *msymbol;
4254 int found_misc = 0;
4255 static const enum minimal_symbol_type types[]
4256 = {mst_data, mst_text, mst_abs};
4257 static const enum minimal_symbol_type types2[]
4258 = {mst_bss, mst_file_text, mst_abs};
4259 static const enum minimal_symbol_type types3[]
4260 = {mst_file_data, mst_solib_trampoline, mst_abs};
4261 static const enum minimal_symbol_type types4[]
4262 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4263 enum minimal_symbol_type ourtype;
4264 enum minimal_symbol_type ourtype2;
4265 enum minimal_symbol_type ourtype3;
4266 enum minimal_symbol_type ourtype4;
4267 std::vector<symbol_search> result;
4268 gdb::optional<compiled_regex> preg;
4269
4270 gdb_assert (kind <= TYPES_DOMAIN);
4271
4272 ourtype = types[kind];
4273 ourtype2 = types2[kind];
4274 ourtype3 = types3[kind];
4275 ourtype4 = types4[kind];
4276
4277 if (regexp != NULL)
4278 {
4279 /* Make sure spacing is right for C++ operators.
4280 This is just a courtesy to make the matching less sensitive
4281 to how many spaces the user leaves between 'operator'
4282 and <TYPENAME> or <OPERATOR>. */
4283 const char *opend;
4284 const char *opname = operator_chars (regexp, &opend);
4285
4286 if (*opname)
4287 {
4288 int fix = -1; /* -1 means ok; otherwise number of
4289 spaces needed. */
4290
4291 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4292 {
4293 /* There should 1 space between 'operator' and 'TYPENAME'. */
4294 if (opname[-1] != ' ' || opname[-2] == ' ')
4295 fix = 1;
4296 }
4297 else
4298 {
4299 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4300 if (opname[-1] == ' ')
4301 fix = 0;
4302 }
4303 /* If wrong number of spaces, fix it. */
4304 if (fix >= 0)
4305 {
4306 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4307
4308 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4309 regexp = tmp;
4310 }
4311 }
4312
4313 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4314 ? REG_ICASE : 0);
4315 preg.emplace (regexp, cflags, _("Invalid regexp"));
4316 }
4317
4318 /* Search through the partial symtabs *first* for all symbols
4319 matching the regexp. That way we don't have to reproduce all of
4320 the machinery below. */
4321 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4322 {
4323 return file_matches (filename, files, nfiles,
4324 basenames);
4325 },
4326 lookup_name_info::match_any (),
4327 [&] (const char *symname)
4328 {
4329 return (!preg || preg->exec (symname,
4330 0, NULL, 0) == 0);
4331 },
4332 NULL,
4333 kind);
4334
4335 /* Here, we search through the minimal symbol tables for functions
4336 and variables that match, and force their symbols to be read.
4337 This is in particular necessary for demangled variable names,
4338 which are no longer put into the partial symbol tables.
4339 The symbol will then be found during the scan of symtabs below.
4340
4341 For functions, find_pc_symtab should succeed if we have debug info
4342 for the function, for variables we have to call
4343 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4344 has debug info.
4345 If the lookup fails, set found_misc so that we will rescan to print
4346 any matching symbols without debug info.
4347 We only search the objfile the msymbol came from, we no longer search
4348 all objfiles. In large programs (1000s of shared libs) searching all
4349 objfiles is not worth the pain. */
4350
4351 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4352 {
4353 ALL_MSYMBOLS (objfile, msymbol)
4354 {
4355 QUIT;
4356
4357 if (msymbol->created_by_gdb)
4358 continue;
4359
4360 if (MSYMBOL_TYPE (msymbol) == ourtype
4361 || MSYMBOL_TYPE (msymbol) == ourtype2
4362 || MSYMBOL_TYPE (msymbol) == ourtype3
4363 || MSYMBOL_TYPE (msymbol) == ourtype4)
4364 {
4365 if (!preg
4366 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4367 NULL, 0) == 0)
4368 {
4369 /* Note: An important side-effect of these lookup functions
4370 is to expand the symbol table if msymbol is found, for the
4371 benefit of the next loop on ALL_COMPUNITS. */
4372 if (kind == FUNCTIONS_DOMAIN
4373 ? (find_pc_compunit_symtab
4374 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4375 : (lookup_symbol_in_objfile_from_linkage_name
4376 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4377 .symbol == NULL))
4378 found_misc = 1;
4379 }
4380 }
4381 }
4382 }
4383
4384 ALL_COMPUNITS (objfile, cust)
4385 {
4386 bv = COMPUNIT_BLOCKVECTOR (cust);
4387 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4388 {
4389 b = BLOCKVECTOR_BLOCK (bv, i);
4390 ALL_BLOCK_SYMBOLS (b, iter, sym)
4391 {
4392 struct symtab *real_symtab = symbol_symtab (sym);
4393
4394 QUIT;
4395
4396 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4397 a substring of symtab_to_fullname as it may contain "./" etc. */
4398 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4399 || ((basenames_may_differ
4400 || file_matches (lbasename (real_symtab->filename),
4401 files, nfiles, 1))
4402 && file_matches (symtab_to_fullname (real_symtab),
4403 files, nfiles, 0)))
4404 && ((!preg
4405 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4406 NULL, 0) == 0)
4407 && ((kind == VARIABLES_DOMAIN
4408 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4409 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4410 && SYMBOL_CLASS (sym) != LOC_BLOCK
4411 /* LOC_CONST can be used for more than just enums,
4412 e.g., c++ static const members.
4413 We only want to skip enums here. */
4414 && !(SYMBOL_CLASS (sym) == LOC_CONST
4415 && (TYPE_CODE (SYMBOL_TYPE (sym))
4416 == TYPE_CODE_ENUM)))
4417 || (kind == FUNCTIONS_DOMAIN
4418 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4419 || (kind == TYPES_DOMAIN
4420 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4421 {
4422 /* match */
4423 result.emplace_back (i, sym);
4424 }
4425 }
4426 }
4427 }
4428
4429 if (!result.empty ())
4430 sort_search_symbols_remove_dups (&result);
4431
4432 /* If there are no eyes, avoid all contact. I mean, if there are
4433 no debug symbols, then add matching minsyms. */
4434
4435 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4436 {
4437 ALL_MSYMBOLS (objfile, msymbol)
4438 {
4439 QUIT;
4440
4441 if (msymbol->created_by_gdb)
4442 continue;
4443
4444 if (MSYMBOL_TYPE (msymbol) == ourtype
4445 || MSYMBOL_TYPE (msymbol) == ourtype2
4446 || MSYMBOL_TYPE (msymbol) == ourtype3
4447 || MSYMBOL_TYPE (msymbol) == ourtype4)
4448 {
4449 if (!preg || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4450 NULL, 0) == 0)
4451 {
4452 /* For functions we can do a quick check of whether the
4453 symbol might be found via find_pc_symtab. */
4454 if (kind != FUNCTIONS_DOMAIN
4455 || (find_pc_compunit_symtab
4456 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4457 {
4458 if (lookup_symbol_in_objfile_from_linkage_name
4459 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4460 .symbol == NULL)
4461 {
4462 /* match */
4463 result.emplace_back (i, msymbol, objfile);
4464 }
4465 }
4466 }
4467 }
4468 }
4469 }
4470
4471 return result;
4472 }
4473
4474 /* Helper function for symtab_symbol_info, this function uses
4475 the data returned from search_symbols() to print information
4476 regarding the match to gdb_stdout. */
4477
4478 static void
4479 print_symbol_info (enum search_domain kind,
4480 struct symbol *sym,
4481 int block, const char *last)
4482 {
4483 struct symtab *s = symbol_symtab (sym);
4484 const char *s_filename = symtab_to_filename_for_display (s);
4485
4486 if (last == NULL || filename_cmp (last, s_filename) != 0)
4487 {
4488 fputs_filtered ("\nFile ", gdb_stdout);
4489 fputs_filtered (s_filename, gdb_stdout);
4490 fputs_filtered (":\n", gdb_stdout);
4491 }
4492
4493 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4494 printf_filtered ("static ");
4495
4496 /* Typedef that is not a C++ class. */
4497 if (kind == TYPES_DOMAIN
4498 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4499 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4500 /* variable, func, or typedef-that-is-c++-class. */
4501 else if (kind < TYPES_DOMAIN
4502 || (kind == TYPES_DOMAIN
4503 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4504 {
4505 type_print (SYMBOL_TYPE (sym),
4506 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4507 ? "" : SYMBOL_PRINT_NAME (sym)),
4508 gdb_stdout, 0);
4509
4510 printf_filtered (";\n");
4511 }
4512 }
4513
4514 /* This help function for symtab_symbol_info() prints information
4515 for non-debugging symbols to gdb_stdout. */
4516
4517 static void
4518 print_msymbol_info (struct bound_minimal_symbol msymbol)
4519 {
4520 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4521 char *tmp;
4522
4523 if (gdbarch_addr_bit (gdbarch) <= 32)
4524 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4525 & (CORE_ADDR) 0xffffffff,
4526 8);
4527 else
4528 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4529 16);
4530 printf_filtered ("%s %s\n",
4531 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4532 }
4533
4534 /* This is the guts of the commands "info functions", "info types", and
4535 "info variables". It calls search_symbols to find all matches and then
4536 print_[m]symbol_info to print out some useful information about the
4537 matches. */
4538
4539 static void
4540 symtab_symbol_info (const char *regexp, enum search_domain kind, int from_tty)
4541 {
4542 static const char * const classnames[] =
4543 {"variable", "function", "type"};
4544 const char *last_filename = NULL;
4545 int first = 1;
4546
4547 gdb_assert (kind <= TYPES_DOMAIN);
4548
4549 /* Must make sure that if we're interrupted, symbols gets freed. */
4550 std::vector<symbol_search> symbols = search_symbols (regexp, kind, 0, NULL);
4551
4552 if (regexp != NULL)
4553 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4554 classnames[kind], regexp);
4555 else
4556 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4557
4558 for (const symbol_search &p : symbols)
4559 {
4560 QUIT;
4561
4562 if (p.msymbol.minsym != NULL)
4563 {
4564 if (first)
4565 {
4566 printf_filtered (_("\nNon-debugging symbols:\n"));
4567 first = 0;
4568 }
4569 print_msymbol_info (p.msymbol);
4570 }
4571 else
4572 {
4573 print_symbol_info (kind,
4574 p.symbol,
4575 p.block,
4576 last_filename);
4577 last_filename
4578 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4579 }
4580 }
4581 }
4582
4583 static void
4584 info_variables_command (const char *regexp, int from_tty)
4585 {
4586 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4587 }
4588
4589 static void
4590 info_functions_command (const char *regexp, int from_tty)
4591 {
4592 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4593 }
4594
4595
4596 static void
4597 info_types_command (const char *regexp, int from_tty)
4598 {
4599 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4600 }
4601
4602 /* Breakpoint all functions matching regular expression. */
4603
4604 void
4605 rbreak_command_wrapper (char *regexp, int from_tty)
4606 {
4607 rbreak_command (regexp, from_tty);
4608 }
4609
4610 static void
4611 rbreak_command (const char *regexp, int from_tty)
4612 {
4613 std::string string;
4614 const char **files = NULL;
4615 const char *file_name;
4616 int nfiles = 0;
4617
4618 if (regexp)
4619 {
4620 const char *colon = strchr (regexp, ':');
4621
4622 if (colon && *(colon + 1) != ':')
4623 {
4624 int colon_index;
4625 char *local_name;
4626
4627 colon_index = colon - regexp;
4628 local_name = (char *) alloca (colon_index + 1);
4629 memcpy (local_name, regexp, colon_index);
4630 local_name[colon_index--] = 0;
4631 while (isspace (local_name[colon_index]))
4632 local_name[colon_index--] = 0;
4633 file_name = local_name;
4634 files = &file_name;
4635 nfiles = 1;
4636 regexp = skip_spaces (colon + 1);
4637 }
4638 }
4639
4640 std::vector<symbol_search> symbols = search_symbols (regexp,
4641 FUNCTIONS_DOMAIN,
4642 nfiles, files);
4643
4644 scoped_rbreak_breakpoints finalize;
4645 for (const symbol_search &p : symbols)
4646 {
4647 if (p.msymbol.minsym == NULL)
4648 {
4649 struct symtab *symtab = symbol_symtab (p.symbol);
4650 const char *fullname = symtab_to_fullname (symtab);
4651
4652 string = string_printf ("%s:'%s'", fullname,
4653 SYMBOL_LINKAGE_NAME (p.symbol));
4654 break_command (&string[0], from_tty);
4655 print_symbol_info (FUNCTIONS_DOMAIN,
4656 p.symbol,
4657 p.block,
4658 symtab_to_filename_for_display (symtab));
4659 }
4660 else
4661 {
4662 string = string_printf ("'%s'",
4663 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4664
4665 break_command (&string[0], from_tty);
4666 printf_filtered ("<function, no debug info> %s;\n",
4667 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4668 }
4669 }
4670 }
4671 \f
4672
4673 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
4674
4675 static int
4676 compare_symbol_name (const char *symbol_name, language symbol_language,
4677 const lookup_name_info &lookup_name,
4678 completion_match_result &match_res)
4679 {
4680 const language_defn *lang;
4681
4682 /* If we're completing for an expression and the symbol doesn't have
4683 an explicit language set, fallback to the current language. Ada
4684 minimal symbols won't have their language set to Ada, for
4685 example, and if we compared using the default/C-like matcher,
4686 then when completing e.g., symbols in a package named "pck", we'd
4687 match internal Ada symbols like "pckS", which are invalid in an
4688 Ada expression, unless you wrap them in '<' '>' to request a
4689 verbatim match. */
4690 if (symbol_language == language_auto
4691 && lookup_name.match_type () == symbol_name_match_type::EXPRESSION)
4692 lang = current_language;
4693 else
4694 lang = language_def (symbol_language);
4695
4696 symbol_name_matcher_ftype *name_match
4697 = language_get_symbol_name_matcher (lang, lookup_name);
4698
4699 return name_match (symbol_name, lookup_name, &match_res);
4700 }
4701
4702 /* See symtab.h. */
4703
4704 void
4705 completion_list_add_name (completion_tracker &tracker,
4706 language symbol_language,
4707 const char *symname,
4708 const lookup_name_info &lookup_name,
4709 const char *text, const char *word)
4710 {
4711 completion_match_result &match_res
4712 = tracker.reset_completion_match_result ();
4713
4714 /* Clip symbols that cannot match. */
4715 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
4716 return;
4717
4718 /* Refresh SYMNAME from the match string. It's potentially
4719 different depending on language. (E.g., on Ada, the match may be
4720 the encoded symbol name wrapped in "<>"). */
4721 symname = match_res.match.match ();
4722 gdb_assert (symname != NULL);
4723
4724 /* We have a match for a completion, so add SYMNAME to the current list
4725 of matches. Note that the name is moved to freshly malloc'd space. */
4726
4727 {
4728 gdb::unique_xmalloc_ptr<char> completion
4729 = make_completion_match_str (symname, text, word);
4730
4731 /* Here we pass the match-for-lcd object to add_completion. Some
4732 languages match the user text against substrings of symbol
4733 names in some cases. E.g., in C++, "b push_ba" completes to
4734 "std::vector::push_back", "std::string::push_back", etc., and
4735 in this case we want the completion lowest common denominator
4736 to be "push_back" instead of "std::". */
4737 tracker.add_completion (std::move (completion),
4738 &match_res.match_for_lcd, text, word);
4739 }
4740 }
4741
4742 /* completion_list_add_name wrapper for struct symbol. */
4743
4744 static void
4745 completion_list_add_symbol (completion_tracker &tracker,
4746 symbol *sym,
4747 const lookup_name_info &lookup_name,
4748 const char *text, const char *word)
4749 {
4750 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4751 SYMBOL_NATURAL_NAME (sym),
4752 lookup_name, text, word);
4753 }
4754
4755 /* completion_list_add_name wrapper for struct minimal_symbol. */
4756
4757 static void
4758 completion_list_add_msymbol (completion_tracker &tracker,
4759 minimal_symbol *sym,
4760 const lookup_name_info &lookup_name,
4761 const char *text, const char *word)
4762 {
4763 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
4764 MSYMBOL_NATURAL_NAME (sym),
4765 lookup_name, text, word);
4766 }
4767
4768
4769 /* ObjC: In case we are completing on a selector, look as the msymbol
4770 again and feed all the selectors into the mill. */
4771
4772 static void
4773 completion_list_objc_symbol (completion_tracker &tracker,
4774 struct minimal_symbol *msymbol,
4775 const lookup_name_info &lookup_name,
4776 const char *text, const char *word)
4777 {
4778 static char *tmp = NULL;
4779 static unsigned int tmplen = 0;
4780
4781 const char *method, *category, *selector;
4782 char *tmp2 = NULL;
4783
4784 method = MSYMBOL_NATURAL_NAME (msymbol);
4785
4786 /* Is it a method? */
4787 if ((method[0] != '-') && (method[0] != '+'))
4788 return;
4789
4790 if (text[0] == '[')
4791 /* Complete on shortened method method. */
4792 completion_list_add_name (tracker, language_objc,
4793 method + 1,
4794 lookup_name,
4795 text, word);
4796
4797 while ((strlen (method) + 1) >= tmplen)
4798 {
4799 if (tmplen == 0)
4800 tmplen = 1024;
4801 else
4802 tmplen *= 2;
4803 tmp = (char *) xrealloc (tmp, tmplen);
4804 }
4805 selector = strchr (method, ' ');
4806 if (selector != NULL)
4807 selector++;
4808
4809 category = strchr (method, '(');
4810
4811 if ((category != NULL) && (selector != NULL))
4812 {
4813 memcpy (tmp, method, (category - method));
4814 tmp[category - method] = ' ';
4815 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4816 completion_list_add_name (tracker, language_objc, tmp,
4817 lookup_name, text, word);
4818 if (text[0] == '[')
4819 completion_list_add_name (tracker, language_objc, tmp + 1,
4820 lookup_name, text, word);
4821 }
4822
4823 if (selector != NULL)
4824 {
4825 /* Complete on selector only. */
4826 strcpy (tmp, selector);
4827 tmp2 = strchr (tmp, ']');
4828 if (tmp2 != NULL)
4829 *tmp2 = '\0';
4830
4831 completion_list_add_name (tracker, language_objc, tmp,
4832 lookup_name, text, word);
4833 }
4834 }
4835
4836 /* Break the non-quoted text based on the characters which are in
4837 symbols. FIXME: This should probably be language-specific. */
4838
4839 static const char *
4840 language_search_unquoted_string (const char *text, const char *p)
4841 {
4842 for (; p > text; --p)
4843 {
4844 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4845 continue;
4846 else
4847 {
4848 if ((current_language->la_language == language_objc))
4849 {
4850 if (p[-1] == ':') /* Might be part of a method name. */
4851 continue;
4852 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4853 p -= 2; /* Beginning of a method name. */
4854 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4855 { /* Might be part of a method name. */
4856 const char *t = p;
4857
4858 /* Seeing a ' ' or a '(' is not conclusive evidence
4859 that we are in the middle of a method name. However,
4860 finding "-[" or "+[" should be pretty un-ambiguous.
4861 Unfortunately we have to find it now to decide. */
4862
4863 while (t > text)
4864 if (isalnum (t[-1]) || t[-1] == '_' ||
4865 t[-1] == ' ' || t[-1] == ':' ||
4866 t[-1] == '(' || t[-1] == ')')
4867 --t;
4868 else
4869 break;
4870
4871 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4872 p = t - 2; /* Method name detected. */
4873 /* Else we leave with p unchanged. */
4874 }
4875 }
4876 break;
4877 }
4878 }
4879 return p;
4880 }
4881
4882 static void
4883 completion_list_add_fields (completion_tracker &tracker,
4884 struct symbol *sym,
4885 const lookup_name_info &lookup_name,
4886 const char *text, const char *word)
4887 {
4888 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4889 {
4890 struct type *t = SYMBOL_TYPE (sym);
4891 enum type_code c = TYPE_CODE (t);
4892 int j;
4893
4894 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4895 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4896 if (TYPE_FIELD_NAME (t, j))
4897 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4898 TYPE_FIELD_NAME (t, j),
4899 lookup_name, text, word);
4900 }
4901 }
4902
4903 /* See symtab.h. */
4904
4905 bool
4906 symbol_is_function_or_method (symbol *sym)
4907 {
4908 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
4909 {
4910 case TYPE_CODE_FUNC:
4911 case TYPE_CODE_METHOD:
4912 return true;
4913 default:
4914 return false;
4915 }
4916 }
4917
4918 /* See symtab.h. */
4919
4920 bool
4921 symbol_is_function_or_method (minimal_symbol *msymbol)
4922 {
4923 switch (MSYMBOL_TYPE (msymbol))
4924 {
4925 case mst_text:
4926 case mst_text_gnu_ifunc:
4927 case mst_solib_trampoline:
4928 case mst_file_text:
4929 return true;
4930 default:
4931 return false;
4932 }
4933 }
4934
4935 /* Add matching symbols from SYMTAB to the current completion list. */
4936
4937 static void
4938 add_symtab_completions (struct compunit_symtab *cust,
4939 completion_tracker &tracker,
4940 complete_symbol_mode mode,
4941 const lookup_name_info &lookup_name,
4942 const char *text, const char *word,
4943 enum type_code code)
4944 {
4945 struct symbol *sym;
4946 const struct block *b;
4947 struct block_iterator iter;
4948 int i;
4949
4950 if (cust == NULL)
4951 return;
4952
4953 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4954 {
4955 QUIT;
4956 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
4957 ALL_BLOCK_SYMBOLS (b, iter, sym)
4958 {
4959 if (completion_skip_symbol (mode, sym))
4960 continue;
4961
4962 if (code == TYPE_CODE_UNDEF
4963 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4964 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4965 completion_list_add_symbol (tracker, sym,
4966 lookup_name,
4967 text, word);
4968 }
4969 }
4970 }
4971
4972 void
4973 default_collect_symbol_completion_matches_break_on
4974 (completion_tracker &tracker, complete_symbol_mode mode,
4975 symbol_name_match_type name_match_type,
4976 const char *text, const char *word,
4977 const char *break_on, enum type_code code)
4978 {
4979 /* Problem: All of the symbols have to be copied because readline
4980 frees them. I'm not going to worry about this; hopefully there
4981 won't be that many. */
4982
4983 struct symbol *sym;
4984 struct compunit_symtab *cust;
4985 struct minimal_symbol *msymbol;
4986 struct objfile *objfile;
4987 const struct block *b;
4988 const struct block *surrounding_static_block, *surrounding_global_block;
4989 struct block_iterator iter;
4990 /* The symbol we are completing on. Points in same buffer as text. */
4991 const char *sym_text;
4992
4993 /* Now look for the symbol we are supposed to complete on. */
4994 if (mode == complete_symbol_mode::LINESPEC)
4995 sym_text = text;
4996 else
4997 {
4998 const char *p;
4999 char quote_found;
5000 const char *quote_pos = NULL;
5001
5002 /* First see if this is a quoted string. */
5003 quote_found = '\0';
5004 for (p = text; *p != '\0'; ++p)
5005 {
5006 if (quote_found != '\0')
5007 {
5008 if (*p == quote_found)
5009 /* Found close quote. */
5010 quote_found = '\0';
5011 else if (*p == '\\' && p[1] == quote_found)
5012 /* A backslash followed by the quote character
5013 doesn't end the string. */
5014 ++p;
5015 }
5016 else if (*p == '\'' || *p == '"')
5017 {
5018 quote_found = *p;
5019 quote_pos = p;
5020 }
5021 }
5022 if (quote_found == '\'')
5023 /* A string within single quotes can be a symbol, so complete on it. */
5024 sym_text = quote_pos + 1;
5025 else if (quote_found == '"')
5026 /* A double-quoted string is never a symbol, nor does it make sense
5027 to complete it any other way. */
5028 {
5029 return;
5030 }
5031 else
5032 {
5033 /* It is not a quoted string. Break it based on the characters
5034 which are in symbols. */
5035 while (p > text)
5036 {
5037 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5038 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5039 --p;
5040 else
5041 break;
5042 }
5043 sym_text = p;
5044 }
5045 }
5046
5047 lookup_name_info lookup_name (sym_text, name_match_type, true);
5048
5049 /* At this point scan through the misc symbol vectors and add each
5050 symbol you find to the list. Eventually we want to ignore
5051 anything that isn't a text symbol (everything else will be
5052 handled by the psymtab code below). */
5053
5054 if (code == TYPE_CODE_UNDEF)
5055 {
5056 ALL_MSYMBOLS (objfile, msymbol)
5057 {
5058 QUIT;
5059
5060 if (completion_skip_symbol (mode, msymbol))
5061 continue;
5062
5063 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5064 sym_text, word);
5065
5066 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5067 sym_text, word);
5068 }
5069 }
5070
5071 /* Add completions for all currently loaded symbol tables. */
5072 ALL_COMPUNITS (objfile, cust)
5073 add_symtab_completions (cust, tracker, mode, lookup_name,
5074 sym_text, word, code);
5075
5076 /* Look through the partial symtabs for all symbols which begin by
5077 matching SYM_TEXT. Expand all CUs that you find to the list. */
5078 expand_symtabs_matching (NULL,
5079 lookup_name,
5080 NULL,
5081 [&] (compunit_symtab *symtab) /* expansion notify */
5082 {
5083 add_symtab_completions (symtab,
5084 tracker, mode, lookup_name,
5085 sym_text, word, code);
5086 },
5087 ALL_DOMAIN);
5088
5089 /* Search upwards from currently selected frame (so that we can
5090 complete on local vars). Also catch fields of types defined in
5091 this places which match our text string. Only complete on types
5092 visible from current context. */
5093
5094 b = get_selected_block (0);
5095 surrounding_static_block = block_static_block (b);
5096 surrounding_global_block = block_global_block (b);
5097 if (surrounding_static_block != NULL)
5098 while (b != surrounding_static_block)
5099 {
5100 QUIT;
5101
5102 ALL_BLOCK_SYMBOLS (b, iter, sym)
5103 {
5104 if (code == TYPE_CODE_UNDEF)
5105 {
5106 completion_list_add_symbol (tracker, sym, lookup_name,
5107 sym_text, word);
5108 completion_list_add_fields (tracker, sym, lookup_name,
5109 sym_text, word);
5110 }
5111 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5112 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5113 completion_list_add_symbol (tracker, sym, lookup_name,
5114 sym_text, word);
5115 }
5116
5117 /* Stop when we encounter an enclosing function. Do not stop for
5118 non-inlined functions - the locals of the enclosing function
5119 are in scope for a nested function. */
5120 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5121 break;
5122 b = BLOCK_SUPERBLOCK (b);
5123 }
5124
5125 /* Add fields from the file's types; symbols will be added below. */
5126
5127 if (code == TYPE_CODE_UNDEF)
5128 {
5129 if (surrounding_static_block != NULL)
5130 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5131 completion_list_add_fields (tracker, sym, lookup_name,
5132 sym_text, word);
5133
5134 if (surrounding_global_block != NULL)
5135 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5136 completion_list_add_fields (tracker, sym, lookup_name,
5137 sym_text, word);
5138 }
5139
5140 /* Skip macros if we are completing a struct tag -- arguable but
5141 usually what is expected. */
5142 if (current_language->la_macro_expansion == macro_expansion_c
5143 && code == TYPE_CODE_UNDEF)
5144 {
5145 struct macro_scope *scope;
5146
5147 /* This adds a macro's name to the current completion list. */
5148 auto add_macro_name = [&] (const char *macro_name,
5149 const macro_definition *,
5150 macro_source_file *,
5151 int)
5152 {
5153 completion_list_add_name (tracker, language_c, macro_name,
5154 lookup_name, sym_text, word);
5155 };
5156
5157 /* Add any macros visible in the default scope. Note that this
5158 may yield the occasional wrong result, because an expression
5159 might be evaluated in a scope other than the default. For
5160 example, if the user types "break file:line if <TAB>", the
5161 resulting expression will be evaluated at "file:line" -- but
5162 at there does not seem to be a way to detect this at
5163 completion time. */
5164 scope = default_macro_scope ();
5165 if (scope)
5166 {
5167 macro_for_each_in_scope (scope->file, scope->line,
5168 add_macro_name);
5169 xfree (scope);
5170 }
5171
5172 /* User-defined macros are always visible. */
5173 macro_for_each (macro_user_macros, add_macro_name);
5174 }
5175 }
5176
5177 void
5178 default_collect_symbol_completion_matches (completion_tracker &tracker,
5179 complete_symbol_mode mode,
5180 symbol_name_match_type name_match_type,
5181 const char *text, const char *word,
5182 enum type_code code)
5183 {
5184 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5185 name_match_type,
5186 text, word, "",
5187 code);
5188 }
5189
5190 /* Collect all symbols (regardless of class) which begin by matching
5191 TEXT. */
5192
5193 void
5194 collect_symbol_completion_matches (completion_tracker &tracker,
5195 complete_symbol_mode mode,
5196 symbol_name_match_type name_match_type,
5197 const char *text, const char *word)
5198 {
5199 current_language->la_collect_symbol_completion_matches (tracker, mode,
5200 name_match_type,
5201 text, word,
5202 TYPE_CODE_UNDEF);
5203 }
5204
5205 /* Like collect_symbol_completion_matches, but only collect
5206 STRUCT_DOMAIN symbols whose type code is CODE. */
5207
5208 void
5209 collect_symbol_completion_matches_type (completion_tracker &tracker,
5210 const char *text, const char *word,
5211 enum type_code code)
5212 {
5213 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5214 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5215
5216 gdb_assert (code == TYPE_CODE_UNION
5217 || code == TYPE_CODE_STRUCT
5218 || code == TYPE_CODE_ENUM);
5219 current_language->la_collect_symbol_completion_matches (tracker, mode,
5220 name_match_type,
5221 text, word, code);
5222 }
5223
5224 /* Like collect_symbol_completion_matches, but collects a list of
5225 symbols defined in all source files named SRCFILE. */
5226
5227 void
5228 collect_file_symbol_completion_matches (completion_tracker &tracker,
5229 complete_symbol_mode mode,
5230 symbol_name_match_type name_match_type,
5231 const char *text, const char *word,
5232 const char *srcfile)
5233 {
5234 /* The symbol we are completing on. Points in same buffer as text. */
5235 const char *sym_text;
5236
5237 /* Now look for the symbol we are supposed to complete on.
5238 FIXME: This should be language-specific. */
5239 if (mode == complete_symbol_mode::LINESPEC)
5240 sym_text = text;
5241 else
5242 {
5243 const char *p;
5244 char quote_found;
5245 const char *quote_pos = NULL;
5246
5247 /* First see if this is a quoted string. */
5248 quote_found = '\0';
5249 for (p = text; *p != '\0'; ++p)
5250 {
5251 if (quote_found != '\0')
5252 {
5253 if (*p == quote_found)
5254 /* Found close quote. */
5255 quote_found = '\0';
5256 else if (*p == '\\' && p[1] == quote_found)
5257 /* A backslash followed by the quote character
5258 doesn't end the string. */
5259 ++p;
5260 }
5261 else if (*p == '\'' || *p == '"')
5262 {
5263 quote_found = *p;
5264 quote_pos = p;
5265 }
5266 }
5267 if (quote_found == '\'')
5268 /* A string within single quotes can be a symbol, so complete on it. */
5269 sym_text = quote_pos + 1;
5270 else if (quote_found == '"')
5271 /* A double-quoted string is never a symbol, nor does it make sense
5272 to complete it any other way. */
5273 {
5274 return;
5275 }
5276 else
5277 {
5278 /* Not a quoted string. */
5279 sym_text = language_search_unquoted_string (text, p);
5280 }
5281 }
5282
5283 lookup_name_info lookup_name (sym_text, name_match_type, true);
5284
5285 /* Go through symtabs for SRCFILE and check the externs and statics
5286 for symbols which match. */
5287 iterate_over_symtabs (srcfile, [&] (symtab *s)
5288 {
5289 add_symtab_completions (SYMTAB_COMPUNIT (s),
5290 tracker, mode, lookup_name,
5291 sym_text, word, TYPE_CODE_UNDEF);
5292 return false;
5293 });
5294 }
5295
5296 /* A helper function for make_source_files_completion_list. It adds
5297 another file name to a list of possible completions, growing the
5298 list as necessary. */
5299
5300 static void
5301 add_filename_to_list (const char *fname, const char *text, const char *word,
5302 completion_list *list)
5303 {
5304 list->emplace_back (make_completion_match_str (fname, text, word));
5305 }
5306
5307 static int
5308 not_interesting_fname (const char *fname)
5309 {
5310 static const char *illegal_aliens[] = {
5311 "_globals_", /* inserted by coff_symtab_read */
5312 NULL
5313 };
5314 int i;
5315
5316 for (i = 0; illegal_aliens[i]; i++)
5317 {
5318 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5319 return 1;
5320 }
5321 return 0;
5322 }
5323
5324 /* An object of this type is passed as the user_data argument to
5325 map_partial_symbol_filenames. */
5326 struct add_partial_filename_data
5327 {
5328 struct filename_seen_cache *filename_seen_cache;
5329 const char *text;
5330 const char *word;
5331 int text_len;
5332 completion_list *list;
5333 };
5334
5335 /* A callback for map_partial_symbol_filenames. */
5336
5337 static void
5338 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5339 void *user_data)
5340 {
5341 struct add_partial_filename_data *data
5342 = (struct add_partial_filename_data *) user_data;
5343
5344 if (not_interesting_fname (filename))
5345 return;
5346 if (!data->filename_seen_cache->seen (filename)
5347 && filename_ncmp (filename, data->text, data->text_len) == 0)
5348 {
5349 /* This file matches for a completion; add it to the
5350 current list of matches. */
5351 add_filename_to_list (filename, data->text, data->word, data->list);
5352 }
5353 else
5354 {
5355 const char *base_name = lbasename (filename);
5356
5357 if (base_name != filename
5358 && !data->filename_seen_cache->seen (base_name)
5359 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5360 add_filename_to_list (base_name, data->text, data->word, data->list);
5361 }
5362 }
5363
5364 /* Return a list of all source files whose names begin with matching
5365 TEXT. The file names are looked up in the symbol tables of this
5366 program. */
5367
5368 completion_list
5369 make_source_files_completion_list (const char *text, const char *word)
5370 {
5371 struct compunit_symtab *cu;
5372 struct symtab *s;
5373 struct objfile *objfile;
5374 size_t text_len = strlen (text);
5375 completion_list list;
5376 const char *base_name;
5377 struct add_partial_filename_data datum;
5378
5379 if (!have_full_symbols () && !have_partial_symbols ())
5380 return list;
5381
5382 filename_seen_cache filenames_seen;
5383
5384 ALL_FILETABS (objfile, cu, s)
5385 {
5386 if (not_interesting_fname (s->filename))
5387 continue;
5388 if (!filenames_seen.seen (s->filename)
5389 && filename_ncmp (s->filename, text, text_len) == 0)
5390 {
5391 /* This file matches for a completion; add it to the current
5392 list of matches. */
5393 add_filename_to_list (s->filename, text, word, &list);
5394 }
5395 else
5396 {
5397 /* NOTE: We allow the user to type a base name when the
5398 debug info records leading directories, but not the other
5399 way around. This is what subroutines of breakpoint
5400 command do when they parse file names. */
5401 base_name = lbasename (s->filename);
5402 if (base_name != s->filename
5403 && !filenames_seen.seen (base_name)
5404 && filename_ncmp (base_name, text, text_len) == 0)
5405 add_filename_to_list (base_name, text, word, &list);
5406 }
5407 }
5408
5409 datum.filename_seen_cache = &filenames_seen;
5410 datum.text = text;
5411 datum.word = word;
5412 datum.text_len = text_len;
5413 datum.list = &list;
5414 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5415 0 /*need_fullname*/);
5416
5417 return list;
5418 }
5419 \f
5420 /* Track MAIN */
5421
5422 /* Return the "main_info" object for the current program space. If
5423 the object has not yet been created, create it and fill in some
5424 default values. */
5425
5426 static struct main_info *
5427 get_main_info (void)
5428 {
5429 struct main_info *info
5430 = (struct main_info *) program_space_data (current_program_space,
5431 main_progspace_key);
5432
5433 if (info == NULL)
5434 {
5435 /* It may seem strange to store the main name in the progspace
5436 and also in whatever objfile happens to see a main name in
5437 its debug info. The reason for this is mainly historical:
5438 gdb returned "main" as the name even if no function named
5439 "main" was defined the program; and this approach lets us
5440 keep compatibility. */
5441 info = XCNEW (struct main_info);
5442 info->language_of_main = language_unknown;
5443 set_program_space_data (current_program_space, main_progspace_key,
5444 info);
5445 }
5446
5447 return info;
5448 }
5449
5450 /* A cleanup to destroy a struct main_info when a progspace is
5451 destroyed. */
5452
5453 static void
5454 main_info_cleanup (struct program_space *pspace, void *data)
5455 {
5456 struct main_info *info = (struct main_info *) data;
5457
5458 if (info != NULL)
5459 xfree (info->name_of_main);
5460 xfree (info);
5461 }
5462
5463 static void
5464 set_main_name (const char *name, enum language lang)
5465 {
5466 struct main_info *info = get_main_info ();
5467
5468 if (info->name_of_main != NULL)
5469 {
5470 xfree (info->name_of_main);
5471 info->name_of_main = NULL;
5472 info->language_of_main = language_unknown;
5473 }
5474 if (name != NULL)
5475 {
5476 info->name_of_main = xstrdup (name);
5477 info->language_of_main = lang;
5478 }
5479 }
5480
5481 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5482 accordingly. */
5483
5484 static void
5485 find_main_name (void)
5486 {
5487 const char *new_main_name;
5488 struct objfile *objfile;
5489
5490 /* First check the objfiles to see whether a debuginfo reader has
5491 picked up the appropriate main name. Historically the main name
5492 was found in a more or less random way; this approach instead
5493 relies on the order of objfile creation -- which still isn't
5494 guaranteed to get the correct answer, but is just probably more
5495 accurate. */
5496 ALL_OBJFILES (objfile)
5497 {
5498 if (objfile->per_bfd->name_of_main != NULL)
5499 {
5500 set_main_name (objfile->per_bfd->name_of_main,
5501 objfile->per_bfd->language_of_main);
5502 return;
5503 }
5504 }
5505
5506 /* Try to see if the main procedure is in Ada. */
5507 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5508 be to add a new method in the language vector, and call this
5509 method for each language until one of them returns a non-empty
5510 name. This would allow us to remove this hard-coded call to
5511 an Ada function. It is not clear that this is a better approach
5512 at this point, because all methods need to be written in a way
5513 such that false positives never be returned. For instance, it is
5514 important that a method does not return a wrong name for the main
5515 procedure if the main procedure is actually written in a different
5516 language. It is easy to guaranty this with Ada, since we use a
5517 special symbol generated only when the main in Ada to find the name
5518 of the main procedure. It is difficult however to see how this can
5519 be guarantied for languages such as C, for instance. This suggests
5520 that order of call for these methods becomes important, which means
5521 a more complicated approach. */
5522 new_main_name = ada_main_name ();
5523 if (new_main_name != NULL)
5524 {
5525 set_main_name (new_main_name, language_ada);
5526 return;
5527 }
5528
5529 new_main_name = d_main_name ();
5530 if (new_main_name != NULL)
5531 {
5532 set_main_name (new_main_name, language_d);
5533 return;
5534 }
5535
5536 new_main_name = go_main_name ();
5537 if (new_main_name != NULL)
5538 {
5539 set_main_name (new_main_name, language_go);
5540 return;
5541 }
5542
5543 new_main_name = pascal_main_name ();
5544 if (new_main_name != NULL)
5545 {
5546 set_main_name (new_main_name, language_pascal);
5547 return;
5548 }
5549
5550 /* The languages above didn't identify the name of the main procedure.
5551 Fallback to "main". */
5552 set_main_name ("main", language_unknown);
5553 }
5554
5555 char *
5556 main_name (void)
5557 {
5558 struct main_info *info = get_main_info ();
5559
5560 if (info->name_of_main == NULL)
5561 find_main_name ();
5562
5563 return info->name_of_main;
5564 }
5565
5566 /* Return the language of the main function. If it is not known,
5567 return language_unknown. */
5568
5569 enum language
5570 main_language (void)
5571 {
5572 struct main_info *info = get_main_info ();
5573
5574 if (info->name_of_main == NULL)
5575 find_main_name ();
5576
5577 return info->language_of_main;
5578 }
5579
5580 /* Handle ``executable_changed'' events for the symtab module. */
5581
5582 static void
5583 symtab_observer_executable_changed (void)
5584 {
5585 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5586 set_main_name (NULL, language_unknown);
5587 }
5588
5589 /* Return 1 if the supplied producer string matches the ARM RealView
5590 compiler (armcc). */
5591
5592 int
5593 producer_is_realview (const char *producer)
5594 {
5595 static const char *const arm_idents[] = {
5596 "ARM C Compiler, ADS",
5597 "Thumb C Compiler, ADS",
5598 "ARM C++ Compiler, ADS",
5599 "Thumb C++ Compiler, ADS",
5600 "ARM/Thumb C/C++ Compiler, RVCT",
5601 "ARM C/C++ Compiler, RVCT"
5602 };
5603 int i;
5604
5605 if (producer == NULL)
5606 return 0;
5607
5608 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5609 if (startswith (producer, arm_idents[i]))
5610 return 1;
5611
5612 return 0;
5613 }
5614
5615 \f
5616
5617 /* The next index to hand out in response to a registration request. */
5618
5619 static int next_aclass_value = LOC_FINAL_VALUE;
5620
5621 /* The maximum number of "aclass" registrations we support. This is
5622 constant for convenience. */
5623 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5624
5625 /* The objects representing the various "aclass" values. The elements
5626 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5627 elements are those registered at gdb initialization time. */
5628
5629 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5630
5631 /* The globally visible pointer. This is separate from 'symbol_impl'
5632 so that it can be const. */
5633
5634 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5635
5636 /* Make sure we saved enough room in struct symbol. */
5637
5638 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5639
5640 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5641 is the ops vector associated with this index. This returns the new
5642 index, which should be used as the aclass_index field for symbols
5643 of this type. */
5644
5645 int
5646 register_symbol_computed_impl (enum address_class aclass,
5647 const struct symbol_computed_ops *ops)
5648 {
5649 int result = next_aclass_value++;
5650
5651 gdb_assert (aclass == LOC_COMPUTED);
5652 gdb_assert (result < MAX_SYMBOL_IMPLS);
5653 symbol_impl[result].aclass = aclass;
5654 symbol_impl[result].ops_computed = ops;
5655
5656 /* Sanity check OPS. */
5657 gdb_assert (ops != NULL);
5658 gdb_assert (ops->tracepoint_var_ref != NULL);
5659 gdb_assert (ops->describe_location != NULL);
5660 gdb_assert (ops->get_symbol_read_needs != NULL);
5661 gdb_assert (ops->read_variable != NULL);
5662
5663 return result;
5664 }
5665
5666 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5667 OPS is the ops vector associated with this index. This returns the
5668 new index, which should be used as the aclass_index field for symbols
5669 of this type. */
5670
5671 int
5672 register_symbol_block_impl (enum address_class aclass,
5673 const struct symbol_block_ops *ops)
5674 {
5675 int result = next_aclass_value++;
5676
5677 gdb_assert (aclass == LOC_BLOCK);
5678 gdb_assert (result < MAX_SYMBOL_IMPLS);
5679 symbol_impl[result].aclass = aclass;
5680 symbol_impl[result].ops_block = ops;
5681
5682 /* Sanity check OPS. */
5683 gdb_assert (ops != NULL);
5684 gdb_assert (ops->find_frame_base_location != NULL);
5685
5686 return result;
5687 }
5688
5689 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5690 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5691 this index. This returns the new index, which should be used as
5692 the aclass_index field for symbols of this type. */
5693
5694 int
5695 register_symbol_register_impl (enum address_class aclass,
5696 const struct symbol_register_ops *ops)
5697 {
5698 int result = next_aclass_value++;
5699
5700 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5701 gdb_assert (result < MAX_SYMBOL_IMPLS);
5702 symbol_impl[result].aclass = aclass;
5703 symbol_impl[result].ops_register = ops;
5704
5705 return result;
5706 }
5707
5708 /* Initialize elements of 'symbol_impl' for the constants in enum
5709 address_class. */
5710
5711 static void
5712 initialize_ordinary_address_classes (void)
5713 {
5714 int i;
5715
5716 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5717 symbol_impl[i].aclass = (enum address_class) i;
5718 }
5719
5720 \f
5721
5722 /* Helper function to initialize the fields of an objfile-owned symbol.
5723 It assumed that *SYM is already all zeroes. */
5724
5725 static void
5726 initialize_objfile_symbol_1 (struct symbol *sym)
5727 {
5728 SYMBOL_OBJFILE_OWNED (sym) = 1;
5729 SYMBOL_SECTION (sym) = -1;
5730 }
5731
5732 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5733
5734 void
5735 initialize_objfile_symbol (struct symbol *sym)
5736 {
5737 memset (sym, 0, sizeof (*sym));
5738 initialize_objfile_symbol_1 (sym);
5739 }
5740
5741 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5742 obstack. */
5743
5744 struct symbol *
5745 allocate_symbol (struct objfile *objfile)
5746 {
5747 struct symbol *result;
5748
5749 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5750 initialize_objfile_symbol_1 (result);
5751
5752 return result;
5753 }
5754
5755 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5756 obstack. */
5757
5758 struct template_symbol *
5759 allocate_template_symbol (struct objfile *objfile)
5760 {
5761 struct template_symbol *result;
5762
5763 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5764 initialize_objfile_symbol_1 (result);
5765
5766 return result;
5767 }
5768
5769 /* See symtab.h. */
5770
5771 struct objfile *
5772 symbol_objfile (const struct symbol *symbol)
5773 {
5774 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5775 return SYMTAB_OBJFILE (symbol->owner.symtab);
5776 }
5777
5778 /* See symtab.h. */
5779
5780 struct gdbarch *
5781 symbol_arch (const struct symbol *symbol)
5782 {
5783 if (!SYMBOL_OBJFILE_OWNED (symbol))
5784 return symbol->owner.arch;
5785 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5786 }
5787
5788 /* See symtab.h. */
5789
5790 struct symtab *
5791 symbol_symtab (const struct symbol *symbol)
5792 {
5793 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5794 return symbol->owner.symtab;
5795 }
5796
5797 /* See symtab.h. */
5798
5799 void
5800 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
5801 {
5802 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5803 symbol->owner.symtab = symtab;
5804 }
5805
5806 \f
5807
5808 void
5809 _initialize_symtab (void)
5810 {
5811 initialize_ordinary_address_classes ();
5812
5813 main_progspace_key
5814 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5815
5816 symbol_cache_key
5817 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
5818
5819 add_info ("variables", info_variables_command, _("\
5820 All global and static variable names, or those matching REGEXP."));
5821 if (dbx_commands)
5822 add_com ("whereis", class_info, info_variables_command, _("\
5823 All global and static variable names, or those matching REGEXP."));
5824
5825 add_info ("functions", info_functions_command,
5826 _("All function names, or those matching REGEXP."));
5827
5828 /* FIXME: This command has at least the following problems:
5829 1. It prints builtin types (in a very strange and confusing fashion).
5830 2. It doesn't print right, e.g. with
5831 typedef struct foo *FOO
5832 type_print prints "FOO" when we want to make it (in this situation)
5833 print "struct foo *".
5834 I also think "ptype" or "whatis" is more likely to be useful (but if
5835 there is much disagreement "info types" can be fixed). */
5836 add_info ("types", info_types_command,
5837 _("All type names, or those matching REGEXP."));
5838
5839 add_info ("sources", info_sources_command,
5840 _("Source files in the program."));
5841
5842 add_com ("rbreak", class_breakpoint, rbreak_command,
5843 _("Set a breakpoint for all functions matching REGEXP."));
5844
5845 add_setshow_enum_cmd ("multiple-symbols", no_class,
5846 multiple_symbols_modes, &multiple_symbols_mode,
5847 _("\
5848 Set the debugger behavior when more than one symbol are possible matches\n\
5849 in an expression."), _("\
5850 Show how the debugger handles ambiguities in expressions."), _("\
5851 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5852 NULL, NULL, &setlist, &showlist);
5853
5854 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5855 &basenames_may_differ, _("\
5856 Set whether a source file may have multiple base names."), _("\
5857 Show whether a source file may have multiple base names."), _("\
5858 (A \"base name\" is the name of a file with the directory part removed.\n\
5859 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5860 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5861 before comparing them. Canonicalization is an expensive operation,\n\
5862 but it allows the same file be known by more than one base name.\n\
5863 If not set (the default), all source files are assumed to have just\n\
5864 one base name, and gdb will do file name comparisons more efficiently."),
5865 NULL, NULL,
5866 &setlist, &showlist);
5867
5868 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5869 _("Set debugging of symbol table creation."),
5870 _("Show debugging of symbol table creation."), _("\
5871 When enabled (non-zero), debugging messages are printed when building\n\
5872 symbol tables. A value of 1 (one) normally provides enough information.\n\
5873 A value greater than 1 provides more verbose information."),
5874 NULL,
5875 NULL,
5876 &setdebuglist, &showdebuglist);
5877
5878 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
5879 _("\
5880 Set debugging of symbol lookup."), _("\
5881 Show debugging of symbol lookup."), _("\
5882 When enabled (non-zero), symbol lookups are logged."),
5883 NULL, NULL,
5884 &setdebuglist, &showdebuglist);
5885
5886 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
5887 &new_symbol_cache_size,
5888 _("Set the size of the symbol cache."),
5889 _("Show the size of the symbol cache."), _("\
5890 The size of the symbol cache.\n\
5891 If zero then the symbol cache is disabled."),
5892 set_symbol_cache_size_handler, NULL,
5893 &maintenance_set_cmdlist,
5894 &maintenance_show_cmdlist);
5895
5896 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
5897 _("Dump the symbol cache for each program space."),
5898 &maintenanceprintlist);
5899
5900 add_cmd ("symbol-cache-statistics", class_maintenance,
5901 maintenance_print_symbol_cache_statistics,
5902 _("Print symbol cache statistics for each program space."),
5903 &maintenanceprintlist);
5904
5905 add_cmd ("flush-symbol-cache", class_maintenance,
5906 maintenance_flush_symbol_cache,
5907 _("Flush the symbol cache for each program space."),
5908 &maintenancelist);
5909
5910 observer_attach_executable_changed (symtab_observer_executable_changed);
5911 observer_attach_new_objfile (symtab_new_objfile_observer);
5912 observer_attach_free_objfile (symtab_free_objfile_observer);
5913 }
This page took 0.143666 seconds and 5 git commands to generate.