New parameter "debug symbol-lookup".
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63
64 /* Forward declarations for local functions. */
65
66 static void rbreak_command (char *, int);
67
68 static int find_line_common (struct linetable *, int, int *, int);
69
70 static struct symbol *lookup_symbol_aux (const char *name,
71 const struct block *block,
72 const domain_enum domain,
73 enum language language,
74 struct field_of_this_result *);
75
76 static
77 struct symbol *lookup_local_symbol (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language);
81
82 static struct symbol *
83 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
84 const char *name, const domain_enum domain);
85
86 extern initialize_file_ftype _initialize_symtab;
87
88 /* Program space key for finding name and language of "main". */
89
90 static const struct program_space_data *main_progspace_key;
91
92 /* Type of the data stored on the program space. */
93
94 struct main_info
95 {
96 /* Name of "main". */
97
98 char *name_of_main;
99
100 /* Language of "main". */
101
102 enum language language_of_main;
103 };
104
105 /* When non-zero, print debugging messages related to symtab creation. */
106 unsigned int symtab_create_debug = 0;
107
108 /* When non-zero, print debugging messages related to symbol lookup. */
109 unsigned int symbol_lookup_debug = 0;
110
111 /* Non-zero if a file may be known by two different basenames.
112 This is the uncommon case, and significantly slows down gdb.
113 Default set to "off" to not slow down the common case. */
114 int basenames_may_differ = 0;
115
116 /* Allow the user to configure the debugger behavior with respect
117 to multiple-choice menus when more than one symbol matches during
118 a symbol lookup. */
119
120 const char multiple_symbols_ask[] = "ask";
121 const char multiple_symbols_all[] = "all";
122 const char multiple_symbols_cancel[] = "cancel";
123 static const char *const multiple_symbols_modes[] =
124 {
125 multiple_symbols_ask,
126 multiple_symbols_all,
127 multiple_symbols_cancel,
128 NULL
129 };
130 static const char *multiple_symbols_mode = multiple_symbols_all;
131
132 /* Read-only accessor to AUTO_SELECT_MODE. */
133
134 const char *
135 multiple_symbols_select_mode (void)
136 {
137 return multiple_symbols_mode;
138 }
139
140 /* Block in which the most recently searched-for symbol was found.
141 Might be better to make this a parameter to lookup_symbol and
142 value_of_this. */
143
144 const struct block *block_found;
145
146 /* Return the name of a domain_enum. */
147
148 const char *
149 domain_name (domain_enum e)
150 {
151 switch (e)
152 {
153 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
154 case VAR_DOMAIN: return "VAR_DOMAIN";
155 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
156 case MODULE_DOMAIN: return "MODULE_DOMAIN";
157 case LABEL_DOMAIN: return "LABEL_DOMAIN";
158 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
159 default: gdb_assert_not_reached ("bad domain_enum");
160 }
161 }
162
163 /* Return the name of a search_domain . */
164
165 const char *
166 search_domain_name (enum search_domain e)
167 {
168 switch (e)
169 {
170 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
171 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
172 case TYPES_DOMAIN: return "TYPES_DOMAIN";
173 case ALL_DOMAIN: return "ALL_DOMAIN";
174 default: gdb_assert_not_reached ("bad search_domain");
175 }
176 }
177
178 /* See symtab.h. */
179
180 struct symtab *
181 compunit_primary_filetab (const struct compunit_symtab *cust)
182 {
183 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
184
185 /* The primary file symtab is the first one in the list. */
186 return COMPUNIT_FILETABS (cust);
187 }
188
189 /* See symtab.h. */
190
191 enum language
192 compunit_language (const struct compunit_symtab *cust)
193 {
194 struct symtab *symtab = compunit_primary_filetab (cust);
195
196 /* The language of the compunit symtab is the language of its primary
197 source file. */
198 return SYMTAB_LANGUAGE (symtab);
199 }
200
201 /* See whether FILENAME matches SEARCH_NAME using the rule that we
202 advertise to the user. (The manual's description of linespecs
203 describes what we advertise). Returns true if they match, false
204 otherwise. */
205
206 int
207 compare_filenames_for_search (const char *filename, const char *search_name)
208 {
209 int len = strlen (filename);
210 size_t search_len = strlen (search_name);
211
212 if (len < search_len)
213 return 0;
214
215 /* The tail of FILENAME must match. */
216 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
217 return 0;
218
219 /* Either the names must completely match, or the character
220 preceding the trailing SEARCH_NAME segment of FILENAME must be a
221 directory separator.
222
223 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
224 cannot match FILENAME "/path//dir/file.c" - as user has requested
225 absolute path. The sama applies for "c:\file.c" possibly
226 incorrectly hypothetically matching "d:\dir\c:\file.c".
227
228 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
229 compatible with SEARCH_NAME "file.c". In such case a compiler had
230 to put the "c:file.c" name into debug info. Such compatibility
231 works only on GDB built for DOS host. */
232 return (len == search_len
233 || (!IS_ABSOLUTE_PATH (search_name)
234 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
235 || (HAS_DRIVE_SPEC (filename)
236 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
237 }
238
239 /* Check for a symtab of a specific name by searching some symtabs.
240 This is a helper function for callbacks of iterate_over_symtabs.
241
242 If NAME is not absolute, then REAL_PATH is NULL
243 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
244
245 The return value, NAME, REAL_PATH, CALLBACK, and DATA
246 are identical to the `map_symtabs_matching_filename' method of
247 quick_symbol_functions.
248
249 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
250 Each symtab within the specified compunit symtab is also searched.
251 AFTER_LAST is one past the last compunit symtab to search; NULL means to
252 search until the end of the list. */
253
254 int
255 iterate_over_some_symtabs (const char *name,
256 const char *real_path,
257 int (*callback) (struct symtab *symtab,
258 void *data),
259 void *data,
260 struct compunit_symtab *first,
261 struct compunit_symtab *after_last)
262 {
263 struct compunit_symtab *cust;
264 struct symtab *s;
265 const char* base_name = lbasename (name);
266
267 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
268 {
269 ALL_COMPUNIT_FILETABS (cust, s)
270 {
271 if (compare_filenames_for_search (s->filename, name))
272 {
273 if (callback (s, data))
274 return 1;
275 continue;
276 }
277
278 /* Before we invoke realpath, which can get expensive when many
279 files are involved, do a quick comparison of the basenames. */
280 if (! basenames_may_differ
281 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
282 continue;
283
284 if (compare_filenames_for_search (symtab_to_fullname (s), name))
285 {
286 if (callback (s, data))
287 return 1;
288 continue;
289 }
290
291 /* If the user gave us an absolute path, try to find the file in
292 this symtab and use its absolute path. */
293 if (real_path != NULL)
294 {
295 const char *fullname = symtab_to_fullname (s);
296
297 gdb_assert (IS_ABSOLUTE_PATH (real_path));
298 gdb_assert (IS_ABSOLUTE_PATH (name));
299 if (FILENAME_CMP (real_path, fullname) == 0)
300 {
301 if (callback (s, data))
302 return 1;
303 continue;
304 }
305 }
306 }
307 }
308
309 return 0;
310 }
311
312 /* Check for a symtab of a specific name; first in symtabs, then in
313 psymtabs. *If* there is no '/' in the name, a match after a '/'
314 in the symtab filename will also work.
315
316 Calls CALLBACK with each symtab that is found and with the supplied
317 DATA. If CALLBACK returns true, the search stops. */
318
319 void
320 iterate_over_symtabs (const char *name,
321 int (*callback) (struct symtab *symtab,
322 void *data),
323 void *data)
324 {
325 struct objfile *objfile;
326 char *real_path = NULL;
327 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
328
329 /* Here we are interested in canonicalizing an absolute path, not
330 absolutizing a relative path. */
331 if (IS_ABSOLUTE_PATH (name))
332 {
333 real_path = gdb_realpath (name);
334 make_cleanup (xfree, real_path);
335 gdb_assert (IS_ABSOLUTE_PATH (real_path));
336 }
337
338 ALL_OBJFILES (objfile)
339 {
340 if (iterate_over_some_symtabs (name, real_path, callback, data,
341 objfile->compunit_symtabs, NULL))
342 {
343 do_cleanups (cleanups);
344 return;
345 }
346 }
347
348 /* Same search rules as above apply here, but now we look thru the
349 psymtabs. */
350
351 ALL_OBJFILES (objfile)
352 {
353 if (objfile->sf
354 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
355 name,
356 real_path,
357 callback,
358 data))
359 {
360 do_cleanups (cleanups);
361 return;
362 }
363 }
364
365 do_cleanups (cleanups);
366 }
367
368 /* The callback function used by lookup_symtab. */
369
370 static int
371 lookup_symtab_callback (struct symtab *symtab, void *data)
372 {
373 struct symtab **result_ptr = data;
374
375 *result_ptr = symtab;
376 return 1;
377 }
378
379 /* A wrapper for iterate_over_symtabs that returns the first matching
380 symtab, or NULL. */
381
382 struct symtab *
383 lookup_symtab (const char *name)
384 {
385 struct symtab *result = NULL;
386
387 iterate_over_symtabs (name, lookup_symtab_callback, &result);
388 return result;
389 }
390
391 \f
392 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
393 full method name, which consist of the class name (from T), the unadorned
394 method name from METHOD_ID, and the signature for the specific overload,
395 specified by SIGNATURE_ID. Note that this function is g++ specific. */
396
397 char *
398 gdb_mangle_name (struct type *type, int method_id, int signature_id)
399 {
400 int mangled_name_len;
401 char *mangled_name;
402 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
403 struct fn_field *method = &f[signature_id];
404 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
405 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
406 const char *newname = type_name_no_tag (type);
407
408 /* Does the form of physname indicate that it is the full mangled name
409 of a constructor (not just the args)? */
410 int is_full_physname_constructor;
411
412 int is_constructor;
413 int is_destructor = is_destructor_name (physname);
414 /* Need a new type prefix. */
415 char *const_prefix = method->is_const ? "C" : "";
416 char *volatile_prefix = method->is_volatile ? "V" : "";
417 char buf[20];
418 int len = (newname == NULL ? 0 : strlen (newname));
419
420 /* Nothing to do if physname already contains a fully mangled v3 abi name
421 or an operator name. */
422 if ((physname[0] == '_' && physname[1] == 'Z')
423 || is_operator_name (field_name))
424 return xstrdup (physname);
425
426 is_full_physname_constructor = is_constructor_name (physname);
427
428 is_constructor = is_full_physname_constructor
429 || (newname && strcmp (field_name, newname) == 0);
430
431 if (!is_destructor)
432 is_destructor = (strncmp (physname, "__dt", 4) == 0);
433
434 if (is_destructor || is_full_physname_constructor)
435 {
436 mangled_name = (char *) xmalloc (strlen (physname) + 1);
437 strcpy (mangled_name, physname);
438 return mangled_name;
439 }
440
441 if (len == 0)
442 {
443 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
444 }
445 else if (physname[0] == 't' || physname[0] == 'Q')
446 {
447 /* The physname for template and qualified methods already includes
448 the class name. */
449 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
450 newname = NULL;
451 len = 0;
452 }
453 else
454 {
455 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
456 volatile_prefix, len);
457 }
458 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
459 + strlen (buf) + len + strlen (physname) + 1);
460
461 mangled_name = (char *) xmalloc (mangled_name_len);
462 if (is_constructor)
463 mangled_name[0] = '\0';
464 else
465 strcpy (mangled_name, field_name);
466
467 strcat (mangled_name, buf);
468 /* If the class doesn't have a name, i.e. newname NULL, then we just
469 mangle it using 0 for the length of the class. Thus it gets mangled
470 as something starting with `::' rather than `classname::'. */
471 if (newname != NULL)
472 strcat (mangled_name, newname);
473
474 strcat (mangled_name, physname);
475 return (mangled_name);
476 }
477
478 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
479 correctly allocated. */
480
481 void
482 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
483 const char *name,
484 struct obstack *obstack)
485 {
486 if (gsymbol->language == language_ada)
487 {
488 if (name == NULL)
489 {
490 gsymbol->ada_mangled = 0;
491 gsymbol->language_specific.obstack = obstack;
492 }
493 else
494 {
495 gsymbol->ada_mangled = 1;
496 gsymbol->language_specific.mangled_lang.demangled_name = name;
497 }
498 }
499 else
500 gsymbol->language_specific.mangled_lang.demangled_name = name;
501 }
502
503 /* Return the demangled name of GSYMBOL. */
504
505 const char *
506 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
507 {
508 if (gsymbol->language == language_ada)
509 {
510 if (!gsymbol->ada_mangled)
511 return NULL;
512 /* Fall through. */
513 }
514
515 return gsymbol->language_specific.mangled_lang.demangled_name;
516 }
517
518 \f
519 /* Initialize the language dependent portion of a symbol
520 depending upon the language for the symbol. */
521
522 void
523 symbol_set_language (struct general_symbol_info *gsymbol,
524 enum language language,
525 struct obstack *obstack)
526 {
527 gsymbol->language = language;
528 if (gsymbol->language == language_cplus
529 || gsymbol->language == language_d
530 || gsymbol->language == language_go
531 || gsymbol->language == language_java
532 || gsymbol->language == language_objc
533 || gsymbol->language == language_fortran)
534 {
535 symbol_set_demangled_name (gsymbol, NULL, obstack);
536 }
537 else if (gsymbol->language == language_ada)
538 {
539 gdb_assert (gsymbol->ada_mangled == 0);
540 gsymbol->language_specific.obstack = obstack;
541 }
542 else
543 {
544 memset (&gsymbol->language_specific, 0,
545 sizeof (gsymbol->language_specific));
546 }
547 }
548
549 /* Functions to initialize a symbol's mangled name. */
550
551 /* Objects of this type are stored in the demangled name hash table. */
552 struct demangled_name_entry
553 {
554 const char *mangled;
555 char demangled[1];
556 };
557
558 /* Hash function for the demangled name hash. */
559
560 static hashval_t
561 hash_demangled_name_entry (const void *data)
562 {
563 const struct demangled_name_entry *e = data;
564
565 return htab_hash_string (e->mangled);
566 }
567
568 /* Equality function for the demangled name hash. */
569
570 static int
571 eq_demangled_name_entry (const void *a, const void *b)
572 {
573 const struct demangled_name_entry *da = a;
574 const struct demangled_name_entry *db = b;
575
576 return strcmp (da->mangled, db->mangled) == 0;
577 }
578
579 /* Create the hash table used for demangled names. Each hash entry is
580 a pair of strings; one for the mangled name and one for the demangled
581 name. The entry is hashed via just the mangled name. */
582
583 static void
584 create_demangled_names_hash (struct objfile *objfile)
585 {
586 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
587 The hash table code will round this up to the next prime number.
588 Choosing a much larger table size wastes memory, and saves only about
589 1% in symbol reading. */
590
591 objfile->per_bfd->demangled_names_hash = htab_create_alloc
592 (256, hash_demangled_name_entry, eq_demangled_name_entry,
593 NULL, xcalloc, xfree);
594 }
595
596 /* Try to determine the demangled name for a symbol, based on the
597 language of that symbol. If the language is set to language_auto,
598 it will attempt to find any demangling algorithm that works and
599 then set the language appropriately. The returned name is allocated
600 by the demangler and should be xfree'd. */
601
602 static char *
603 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
604 const char *mangled)
605 {
606 char *demangled = NULL;
607
608 if (gsymbol->language == language_unknown)
609 gsymbol->language = language_auto;
610
611 if (gsymbol->language == language_objc
612 || gsymbol->language == language_auto)
613 {
614 demangled =
615 objc_demangle (mangled, 0);
616 if (demangled != NULL)
617 {
618 gsymbol->language = language_objc;
619 return demangled;
620 }
621 }
622 if (gsymbol->language == language_cplus
623 || gsymbol->language == language_auto)
624 {
625 demangled =
626 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
627 if (demangled != NULL)
628 {
629 gsymbol->language = language_cplus;
630 return demangled;
631 }
632 }
633 if (gsymbol->language == language_java)
634 {
635 demangled =
636 gdb_demangle (mangled,
637 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
638 if (demangled != NULL)
639 {
640 gsymbol->language = language_java;
641 return demangled;
642 }
643 }
644 if (gsymbol->language == language_d
645 || gsymbol->language == language_auto)
646 {
647 demangled = d_demangle(mangled, 0);
648 if (demangled != NULL)
649 {
650 gsymbol->language = language_d;
651 return demangled;
652 }
653 }
654 /* FIXME(dje): Continually adding languages here is clumsy.
655 Better to just call la_demangle if !auto, and if auto then call
656 a utility routine that tries successive languages in turn and reports
657 which one it finds. I realize the la_demangle options may be different
658 for different languages but there's already a FIXME for that. */
659 if (gsymbol->language == language_go
660 || gsymbol->language == language_auto)
661 {
662 demangled = go_demangle (mangled, 0);
663 if (demangled != NULL)
664 {
665 gsymbol->language = language_go;
666 return demangled;
667 }
668 }
669
670 /* We could support `gsymbol->language == language_fortran' here to provide
671 module namespaces also for inferiors with only minimal symbol table (ELF
672 symbols). Just the mangling standard is not standardized across compilers
673 and there is no DW_AT_producer available for inferiors with only the ELF
674 symbols to check the mangling kind. */
675
676 /* Check for Ada symbols last. See comment below explaining why. */
677
678 if (gsymbol->language == language_auto)
679 {
680 const char *demangled = ada_decode (mangled);
681
682 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
683 {
684 /* Set the gsymbol language to Ada, but still return NULL.
685 Two reasons for that:
686
687 1. For Ada, we prefer computing the symbol's decoded name
688 on the fly rather than pre-compute it, in order to save
689 memory (Ada projects are typically very large).
690
691 2. There are some areas in the definition of the GNAT
692 encoding where, with a bit of bad luck, we might be able
693 to decode a non-Ada symbol, generating an incorrect
694 demangled name (Eg: names ending with "TB" for instance
695 are identified as task bodies and so stripped from
696 the decoded name returned).
697
698 Returning NULL, here, helps us get a little bit of
699 the best of both worlds. Because we're last, we should
700 not affect any of the other languages that were able to
701 demangle the symbol before us; we get to correctly tag
702 Ada symbols as such; and even if we incorrectly tagged
703 a non-Ada symbol, which should be rare, any routing
704 through the Ada language should be transparent (Ada
705 tries to behave much like C/C++ with non-Ada symbols). */
706 gsymbol->language = language_ada;
707 return NULL;
708 }
709 }
710
711 return NULL;
712 }
713
714 /* Set both the mangled and demangled (if any) names for GSYMBOL based
715 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
716 objfile's obstack; but if COPY_NAME is 0 and if NAME is
717 NUL-terminated, then this function assumes that NAME is already
718 correctly saved (either permanently or with a lifetime tied to the
719 objfile), and it will not be copied.
720
721 The hash table corresponding to OBJFILE is used, and the memory
722 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
723 so the pointer can be discarded after calling this function. */
724
725 /* We have to be careful when dealing with Java names: when we run
726 into a Java minimal symbol, we don't know it's a Java symbol, so it
727 gets demangled as a C++ name. This is unfortunate, but there's not
728 much we can do about it: but when demangling partial symbols and
729 regular symbols, we'd better not reuse the wrong demangled name.
730 (See PR gdb/1039.) We solve this by putting a distinctive prefix
731 on Java names when storing them in the hash table. */
732
733 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
734 don't mind the Java prefix so much: different languages have
735 different demangling requirements, so it's only natural that we
736 need to keep language data around in our demangling cache. But
737 it's not good that the minimal symbol has the wrong demangled name.
738 Unfortunately, I can't think of any easy solution to that
739 problem. */
740
741 #define JAVA_PREFIX "##JAVA$$"
742 #define JAVA_PREFIX_LEN 8
743
744 void
745 symbol_set_names (struct general_symbol_info *gsymbol,
746 const char *linkage_name, int len, int copy_name,
747 struct objfile *objfile)
748 {
749 struct demangled_name_entry **slot;
750 /* A 0-terminated copy of the linkage name. */
751 const char *linkage_name_copy;
752 /* A copy of the linkage name that might have a special Java prefix
753 added to it, for use when looking names up in the hash table. */
754 const char *lookup_name;
755 /* The length of lookup_name. */
756 int lookup_len;
757 struct demangled_name_entry entry;
758 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
759
760 if (gsymbol->language == language_ada)
761 {
762 /* In Ada, we do the symbol lookups using the mangled name, so
763 we can save some space by not storing the demangled name.
764
765 As a side note, we have also observed some overlap between
766 the C++ mangling and Ada mangling, similarly to what has
767 been observed with Java. Because we don't store the demangled
768 name with the symbol, we don't need to use the same trick
769 as Java. */
770 if (!copy_name)
771 gsymbol->name = linkage_name;
772 else
773 {
774 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
775
776 memcpy (name, linkage_name, len);
777 name[len] = '\0';
778 gsymbol->name = name;
779 }
780 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
781
782 return;
783 }
784
785 if (per_bfd->demangled_names_hash == NULL)
786 create_demangled_names_hash (objfile);
787
788 /* The stabs reader generally provides names that are not
789 NUL-terminated; most of the other readers don't do this, so we
790 can just use the given copy, unless we're in the Java case. */
791 if (gsymbol->language == language_java)
792 {
793 char *alloc_name;
794
795 lookup_len = len + JAVA_PREFIX_LEN;
796 alloc_name = alloca (lookup_len + 1);
797 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
798 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
799 alloc_name[lookup_len] = '\0';
800
801 lookup_name = alloc_name;
802 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
803 }
804 else if (linkage_name[len] != '\0')
805 {
806 char *alloc_name;
807
808 lookup_len = len;
809 alloc_name = alloca (lookup_len + 1);
810 memcpy (alloc_name, linkage_name, len);
811 alloc_name[lookup_len] = '\0';
812
813 lookup_name = alloc_name;
814 linkage_name_copy = alloc_name;
815 }
816 else
817 {
818 lookup_len = len;
819 lookup_name = linkage_name;
820 linkage_name_copy = linkage_name;
821 }
822
823 entry.mangled = lookup_name;
824 slot = ((struct demangled_name_entry **)
825 htab_find_slot (per_bfd->demangled_names_hash,
826 &entry, INSERT));
827
828 /* If this name is not in the hash table, add it. */
829 if (*slot == NULL
830 /* A C version of the symbol may have already snuck into the table.
831 This happens to, e.g., main.init (__go_init_main). Cope. */
832 || (gsymbol->language == language_go
833 && (*slot)->demangled[0] == '\0'))
834 {
835 char *demangled_name = symbol_find_demangled_name (gsymbol,
836 linkage_name_copy);
837 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
838
839 /* Suppose we have demangled_name==NULL, copy_name==0, and
840 lookup_name==linkage_name. In this case, we already have the
841 mangled name saved, and we don't have a demangled name. So,
842 you might think we could save a little space by not recording
843 this in the hash table at all.
844
845 It turns out that it is actually important to still save such
846 an entry in the hash table, because storing this name gives
847 us better bcache hit rates for partial symbols. */
848 if (!copy_name && lookup_name == linkage_name)
849 {
850 *slot = obstack_alloc (&per_bfd->storage_obstack,
851 offsetof (struct demangled_name_entry,
852 demangled)
853 + demangled_len + 1);
854 (*slot)->mangled = lookup_name;
855 }
856 else
857 {
858 char *mangled_ptr;
859
860 /* If we must copy the mangled name, put it directly after
861 the demangled name so we can have a single
862 allocation. */
863 *slot = obstack_alloc (&per_bfd->storage_obstack,
864 offsetof (struct demangled_name_entry,
865 demangled)
866 + lookup_len + demangled_len + 2);
867 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
868 strcpy (mangled_ptr, lookup_name);
869 (*slot)->mangled = mangled_ptr;
870 }
871
872 if (demangled_name != NULL)
873 {
874 strcpy ((*slot)->demangled, demangled_name);
875 xfree (demangled_name);
876 }
877 else
878 (*slot)->demangled[0] = '\0';
879 }
880
881 gsymbol->name = (*slot)->mangled + lookup_len - len;
882 if ((*slot)->demangled[0] != '\0')
883 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
884 &per_bfd->storage_obstack);
885 else
886 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
887 }
888
889 /* Return the source code name of a symbol. In languages where
890 demangling is necessary, this is the demangled name. */
891
892 const char *
893 symbol_natural_name (const struct general_symbol_info *gsymbol)
894 {
895 switch (gsymbol->language)
896 {
897 case language_cplus:
898 case language_d:
899 case language_go:
900 case language_java:
901 case language_objc:
902 case language_fortran:
903 if (symbol_get_demangled_name (gsymbol) != NULL)
904 return symbol_get_demangled_name (gsymbol);
905 break;
906 case language_ada:
907 return ada_decode_symbol (gsymbol);
908 default:
909 break;
910 }
911 return gsymbol->name;
912 }
913
914 /* Return the demangled name for a symbol based on the language for
915 that symbol. If no demangled name exists, return NULL. */
916
917 const char *
918 symbol_demangled_name (const struct general_symbol_info *gsymbol)
919 {
920 const char *dem_name = NULL;
921
922 switch (gsymbol->language)
923 {
924 case language_cplus:
925 case language_d:
926 case language_go:
927 case language_java:
928 case language_objc:
929 case language_fortran:
930 dem_name = symbol_get_demangled_name (gsymbol);
931 break;
932 case language_ada:
933 dem_name = ada_decode_symbol (gsymbol);
934 break;
935 default:
936 break;
937 }
938 return dem_name;
939 }
940
941 /* Return the search name of a symbol---generally the demangled or
942 linkage name of the symbol, depending on how it will be searched for.
943 If there is no distinct demangled name, then returns the same value
944 (same pointer) as SYMBOL_LINKAGE_NAME. */
945
946 const char *
947 symbol_search_name (const struct general_symbol_info *gsymbol)
948 {
949 if (gsymbol->language == language_ada)
950 return gsymbol->name;
951 else
952 return symbol_natural_name (gsymbol);
953 }
954
955 /* Initialize the structure fields to zero values. */
956
957 void
958 init_sal (struct symtab_and_line *sal)
959 {
960 memset (sal, 0, sizeof (*sal));
961 }
962 \f
963
964 /* Return 1 if the two sections are the same, or if they could
965 plausibly be copies of each other, one in an original object
966 file and another in a separated debug file. */
967
968 int
969 matching_obj_sections (struct obj_section *obj_first,
970 struct obj_section *obj_second)
971 {
972 asection *first = obj_first? obj_first->the_bfd_section : NULL;
973 asection *second = obj_second? obj_second->the_bfd_section : NULL;
974 struct objfile *obj;
975
976 /* If they're the same section, then they match. */
977 if (first == second)
978 return 1;
979
980 /* If either is NULL, give up. */
981 if (first == NULL || second == NULL)
982 return 0;
983
984 /* This doesn't apply to absolute symbols. */
985 if (first->owner == NULL || second->owner == NULL)
986 return 0;
987
988 /* If they're in the same object file, they must be different sections. */
989 if (first->owner == second->owner)
990 return 0;
991
992 /* Check whether the two sections are potentially corresponding. They must
993 have the same size, address, and name. We can't compare section indexes,
994 which would be more reliable, because some sections may have been
995 stripped. */
996 if (bfd_get_section_size (first) != bfd_get_section_size (second))
997 return 0;
998
999 /* In-memory addresses may start at a different offset, relativize them. */
1000 if (bfd_get_section_vma (first->owner, first)
1001 - bfd_get_start_address (first->owner)
1002 != bfd_get_section_vma (second->owner, second)
1003 - bfd_get_start_address (second->owner))
1004 return 0;
1005
1006 if (bfd_get_section_name (first->owner, first) == NULL
1007 || bfd_get_section_name (second->owner, second) == NULL
1008 || strcmp (bfd_get_section_name (first->owner, first),
1009 bfd_get_section_name (second->owner, second)) != 0)
1010 return 0;
1011
1012 /* Otherwise check that they are in corresponding objfiles. */
1013
1014 ALL_OBJFILES (obj)
1015 if (obj->obfd == first->owner)
1016 break;
1017 gdb_assert (obj != NULL);
1018
1019 if (obj->separate_debug_objfile != NULL
1020 && obj->separate_debug_objfile->obfd == second->owner)
1021 return 1;
1022 if (obj->separate_debug_objfile_backlink != NULL
1023 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1024 return 1;
1025
1026 return 0;
1027 }
1028
1029 /* See symtab.h. */
1030
1031 void
1032 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1033 {
1034 struct objfile *objfile;
1035 struct bound_minimal_symbol msymbol;
1036
1037 /* If we know that this is not a text address, return failure. This is
1038 necessary because we loop based on texthigh and textlow, which do
1039 not include the data ranges. */
1040 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1041 if (msymbol.minsym
1042 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1043 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1044 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1045 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1046 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1047 return;
1048
1049 ALL_OBJFILES (objfile)
1050 {
1051 struct compunit_symtab *cust = NULL;
1052
1053 if (objfile->sf)
1054 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1055 pc, section, 0);
1056 if (cust)
1057 return;
1058 }
1059 }
1060 \f
1061 /* Debug symbols usually don't have section information. We need to dig that
1062 out of the minimal symbols and stash that in the debug symbol. */
1063
1064 void
1065 fixup_section (struct general_symbol_info *ginfo,
1066 CORE_ADDR addr, struct objfile *objfile)
1067 {
1068 struct minimal_symbol *msym;
1069
1070 /* First, check whether a minimal symbol with the same name exists
1071 and points to the same address. The address check is required
1072 e.g. on PowerPC64, where the minimal symbol for a function will
1073 point to the function descriptor, while the debug symbol will
1074 point to the actual function code. */
1075 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1076 if (msym)
1077 ginfo->section = MSYMBOL_SECTION (msym);
1078 else
1079 {
1080 /* Static, function-local variables do appear in the linker
1081 (minimal) symbols, but are frequently given names that won't
1082 be found via lookup_minimal_symbol(). E.g., it has been
1083 observed in frv-uclinux (ELF) executables that a static,
1084 function-local variable named "foo" might appear in the
1085 linker symbols as "foo.6" or "foo.3". Thus, there is no
1086 point in attempting to extend the lookup-by-name mechanism to
1087 handle this case due to the fact that there can be multiple
1088 names.
1089
1090 So, instead, search the section table when lookup by name has
1091 failed. The ``addr'' and ``endaddr'' fields may have already
1092 been relocated. If so, the relocation offset (i.e. the
1093 ANOFFSET value) needs to be subtracted from these values when
1094 performing the comparison. We unconditionally subtract it,
1095 because, when no relocation has been performed, the ANOFFSET
1096 value will simply be zero.
1097
1098 The address of the symbol whose section we're fixing up HAS
1099 NOT BEEN adjusted (relocated) yet. It can't have been since
1100 the section isn't yet known and knowing the section is
1101 necessary in order to add the correct relocation value. In
1102 other words, we wouldn't even be in this function (attempting
1103 to compute the section) if it were already known.
1104
1105 Note that it is possible to search the minimal symbols
1106 (subtracting the relocation value if necessary) to find the
1107 matching minimal symbol, but this is overkill and much less
1108 efficient. It is not necessary to find the matching minimal
1109 symbol, only its section.
1110
1111 Note that this technique (of doing a section table search)
1112 can fail when unrelocated section addresses overlap. For
1113 this reason, we still attempt a lookup by name prior to doing
1114 a search of the section table. */
1115
1116 struct obj_section *s;
1117 int fallback = -1;
1118
1119 ALL_OBJFILE_OSECTIONS (objfile, s)
1120 {
1121 int idx = s - objfile->sections;
1122 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1123
1124 if (fallback == -1)
1125 fallback = idx;
1126
1127 if (obj_section_addr (s) - offset <= addr
1128 && addr < obj_section_endaddr (s) - offset)
1129 {
1130 ginfo->section = idx;
1131 return;
1132 }
1133 }
1134
1135 /* If we didn't find the section, assume it is in the first
1136 section. If there is no allocated section, then it hardly
1137 matters what we pick, so just pick zero. */
1138 if (fallback == -1)
1139 ginfo->section = 0;
1140 else
1141 ginfo->section = fallback;
1142 }
1143 }
1144
1145 struct symbol *
1146 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1147 {
1148 CORE_ADDR addr;
1149
1150 if (!sym)
1151 return NULL;
1152
1153 /* We either have an OBJFILE, or we can get at it from the sym's
1154 symtab. Anything else is a bug. */
1155 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1156
1157 if (objfile == NULL)
1158 objfile = SYMBOL_OBJFILE (sym);
1159
1160 if (SYMBOL_OBJ_SECTION (objfile, sym))
1161 return sym;
1162
1163 /* We should have an objfile by now. */
1164 gdb_assert (objfile);
1165
1166 switch (SYMBOL_CLASS (sym))
1167 {
1168 case LOC_STATIC:
1169 case LOC_LABEL:
1170 addr = SYMBOL_VALUE_ADDRESS (sym);
1171 break;
1172 case LOC_BLOCK:
1173 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1174 break;
1175
1176 default:
1177 /* Nothing else will be listed in the minsyms -- no use looking
1178 it up. */
1179 return sym;
1180 }
1181
1182 fixup_section (&sym->ginfo, addr, objfile);
1183
1184 return sym;
1185 }
1186
1187 /* Compute the demangled form of NAME as used by the various symbol
1188 lookup functions. The result is stored in *RESULT_NAME. Returns a
1189 cleanup which can be used to clean up the result.
1190
1191 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1192 Normally, Ada symbol lookups are performed using the encoded name
1193 rather than the demangled name, and so it might seem to make sense
1194 for this function to return an encoded version of NAME.
1195 Unfortunately, we cannot do this, because this function is used in
1196 circumstances where it is not appropriate to try to encode NAME.
1197 For instance, when displaying the frame info, we demangle the name
1198 of each parameter, and then perform a symbol lookup inside our
1199 function using that demangled name. In Ada, certain functions
1200 have internally-generated parameters whose name contain uppercase
1201 characters. Encoding those name would result in those uppercase
1202 characters to become lowercase, and thus cause the symbol lookup
1203 to fail. */
1204
1205 struct cleanup *
1206 demangle_for_lookup (const char *name, enum language lang,
1207 const char **result_name)
1208 {
1209 char *demangled_name = NULL;
1210 const char *modified_name = NULL;
1211 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1212
1213 modified_name = name;
1214
1215 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1216 lookup, so we can always binary search. */
1217 if (lang == language_cplus)
1218 {
1219 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1220 if (demangled_name)
1221 {
1222 modified_name = demangled_name;
1223 make_cleanup (xfree, demangled_name);
1224 }
1225 else
1226 {
1227 /* If we were given a non-mangled name, canonicalize it
1228 according to the language (so far only for C++). */
1229 demangled_name = cp_canonicalize_string (name);
1230 if (demangled_name)
1231 {
1232 modified_name = demangled_name;
1233 make_cleanup (xfree, demangled_name);
1234 }
1235 }
1236 }
1237 else if (lang == language_java)
1238 {
1239 demangled_name = gdb_demangle (name,
1240 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1241 if (demangled_name)
1242 {
1243 modified_name = demangled_name;
1244 make_cleanup (xfree, demangled_name);
1245 }
1246 }
1247 else if (lang == language_d)
1248 {
1249 demangled_name = d_demangle (name, 0);
1250 if (demangled_name)
1251 {
1252 modified_name = demangled_name;
1253 make_cleanup (xfree, demangled_name);
1254 }
1255 }
1256 else if (lang == language_go)
1257 {
1258 demangled_name = go_demangle (name, 0);
1259 if (demangled_name)
1260 {
1261 modified_name = demangled_name;
1262 make_cleanup (xfree, demangled_name);
1263 }
1264 }
1265
1266 *result_name = modified_name;
1267 return cleanup;
1268 }
1269
1270 /* See symtab.h.
1271
1272 This function (or rather its subordinates) have a bunch of loops and
1273 it would seem to be attractive to put in some QUIT's (though I'm not really
1274 sure whether it can run long enough to be really important). But there
1275 are a few calls for which it would appear to be bad news to quit
1276 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1277 that there is C++ code below which can error(), but that probably
1278 doesn't affect these calls since they are looking for a known
1279 variable and thus can probably assume it will never hit the C++
1280 code). */
1281
1282 struct symbol *
1283 lookup_symbol_in_language (const char *name, const struct block *block,
1284 const domain_enum domain, enum language lang,
1285 struct field_of_this_result *is_a_field_of_this)
1286 {
1287 const char *modified_name;
1288 struct symbol *returnval;
1289 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1290
1291 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1292 is_a_field_of_this);
1293 do_cleanups (cleanup);
1294
1295 return returnval;
1296 }
1297
1298 /* See symtab.h. */
1299
1300 struct symbol *
1301 lookup_symbol (const char *name, const struct block *block,
1302 domain_enum domain,
1303 struct field_of_this_result *is_a_field_of_this)
1304 {
1305 return lookup_symbol_in_language (name, block, domain,
1306 current_language->la_language,
1307 is_a_field_of_this);
1308 }
1309
1310 /* See symtab.h. */
1311
1312 struct symbol *
1313 lookup_language_this (const struct language_defn *lang,
1314 const struct block *block)
1315 {
1316 if (lang->la_name_of_this == NULL || block == NULL)
1317 return NULL;
1318
1319 if (symbol_lookup_debug > 1)
1320 {
1321 struct objfile *objfile = lookup_objfile_from_block (block);
1322
1323 fprintf_unfiltered (gdb_stdlog,
1324 "lookup_language_this (%s, %s (objfile %s))",
1325 lang->la_name, host_address_to_string (block),
1326 objfile_debug_name (objfile));
1327 }
1328
1329 while (block)
1330 {
1331 struct symbol *sym;
1332
1333 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1334 if (sym != NULL)
1335 {
1336 if (symbol_lookup_debug > 1)
1337 {
1338 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1339 SYMBOL_PRINT_NAME (sym),
1340 host_address_to_string (sym),
1341 host_address_to_string (block));
1342 }
1343 block_found = block;
1344 return sym;
1345 }
1346 if (BLOCK_FUNCTION (block))
1347 break;
1348 block = BLOCK_SUPERBLOCK (block);
1349 }
1350
1351 if (symbol_lookup_debug > 1)
1352 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1353 return NULL;
1354 }
1355
1356 /* Given TYPE, a structure/union,
1357 return 1 if the component named NAME from the ultimate target
1358 structure/union is defined, otherwise, return 0. */
1359
1360 static int
1361 check_field (struct type *type, const char *name,
1362 struct field_of_this_result *is_a_field_of_this)
1363 {
1364 int i;
1365
1366 /* The type may be a stub. */
1367 CHECK_TYPEDEF (type);
1368
1369 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1370 {
1371 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1372
1373 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1374 {
1375 is_a_field_of_this->type = type;
1376 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1377 return 1;
1378 }
1379 }
1380
1381 /* C++: If it was not found as a data field, then try to return it
1382 as a pointer to a method. */
1383
1384 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1385 {
1386 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1387 {
1388 is_a_field_of_this->type = type;
1389 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1390 return 1;
1391 }
1392 }
1393
1394 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1395 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1396 return 1;
1397
1398 return 0;
1399 }
1400
1401 /* Behave like lookup_symbol except that NAME is the natural name
1402 (e.g., demangled name) of the symbol that we're looking for. */
1403
1404 static struct symbol *
1405 lookup_symbol_aux (const char *name, const struct block *block,
1406 const domain_enum domain, enum language language,
1407 struct field_of_this_result *is_a_field_of_this)
1408 {
1409 struct symbol *sym;
1410 const struct language_defn *langdef;
1411
1412 if (symbol_lookup_debug)
1413 {
1414 struct objfile *objfile = lookup_objfile_from_block (block);
1415
1416 fprintf_unfiltered (gdb_stdlog,
1417 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
1418 name, host_address_to_string (block),
1419 objfile != NULL
1420 ? objfile_debug_name (objfile) : "NULL",
1421 domain_name (domain), language_str (language));
1422 }
1423
1424 /* Make sure we do something sensible with is_a_field_of_this, since
1425 the callers that set this parameter to some non-null value will
1426 certainly use it later. If we don't set it, the contents of
1427 is_a_field_of_this are undefined. */
1428 if (is_a_field_of_this != NULL)
1429 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1430
1431 /* Search specified block and its superiors. Don't search
1432 STATIC_BLOCK or GLOBAL_BLOCK. */
1433
1434 sym = lookup_local_symbol (name, block, domain, language);
1435 if (sym != NULL)
1436 {
1437 if (symbol_lookup_debug)
1438 {
1439 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
1440 host_address_to_string (sym));
1441 }
1442 return sym;
1443 }
1444
1445 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1446 check to see if NAME is a field of `this'. */
1447
1448 langdef = language_def (language);
1449
1450 /* Don't do this check if we are searching for a struct. It will
1451 not be found by check_field, but will be found by other
1452 means. */
1453 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1454 {
1455 struct symbol *sym = lookup_language_this (langdef, block);
1456
1457 if (sym)
1458 {
1459 struct type *t = sym->type;
1460
1461 /* I'm not really sure that type of this can ever
1462 be typedefed; just be safe. */
1463 CHECK_TYPEDEF (t);
1464 if (TYPE_CODE (t) == TYPE_CODE_PTR
1465 || TYPE_CODE (t) == TYPE_CODE_REF)
1466 t = TYPE_TARGET_TYPE (t);
1467
1468 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1469 && TYPE_CODE (t) != TYPE_CODE_UNION)
1470 error (_("Internal error: `%s' is not an aggregate"),
1471 langdef->la_name_of_this);
1472
1473 if (check_field (t, name, is_a_field_of_this))
1474 {
1475 if (symbol_lookup_debug)
1476 {
1477 fprintf_unfiltered (gdb_stdlog,
1478 "lookup_symbol_aux (...) = NULL\n");
1479 }
1480 return NULL;
1481 }
1482 }
1483 }
1484
1485 /* Now do whatever is appropriate for LANGUAGE to look
1486 up static and global variables. */
1487
1488 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1489 if (sym != NULL)
1490 {
1491 if (symbol_lookup_debug)
1492 {
1493 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
1494 host_address_to_string (sym));
1495 }
1496 return sym;
1497 }
1498
1499 /* Now search all static file-level symbols. Not strictly correct,
1500 but more useful than an error. */
1501
1502 sym = lookup_static_symbol (name, domain);
1503 if (symbol_lookup_debug)
1504 {
1505 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
1506 sym != NULL ? host_address_to_string (sym) : "NULL");
1507 }
1508 return sym;
1509 }
1510
1511 /* Check to see if the symbol is defined in BLOCK or its superiors.
1512 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1513
1514 static struct symbol *
1515 lookup_local_symbol (const char *name, const struct block *block,
1516 const domain_enum domain,
1517 enum language language)
1518 {
1519 struct symbol *sym;
1520 const struct block *static_block = block_static_block (block);
1521 const char *scope = block_scope (block);
1522
1523 /* Check if either no block is specified or it's a global block. */
1524
1525 if (static_block == NULL)
1526 return NULL;
1527
1528 while (block != static_block)
1529 {
1530 sym = lookup_symbol_in_block (name, block, domain);
1531 if (sym != NULL)
1532 return sym;
1533
1534 if (language == language_cplus || language == language_fortran)
1535 {
1536 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1537 domain);
1538 if (sym != NULL)
1539 return sym;
1540 }
1541
1542 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1543 break;
1544 block = BLOCK_SUPERBLOCK (block);
1545 }
1546
1547 /* We've reached the end of the function without finding a result. */
1548
1549 return NULL;
1550 }
1551
1552 /* See symtab.h. */
1553
1554 struct objfile *
1555 lookup_objfile_from_block (const struct block *block)
1556 {
1557 struct objfile *obj;
1558 struct compunit_symtab *cust;
1559
1560 if (block == NULL)
1561 return NULL;
1562
1563 block = block_global_block (block);
1564 /* Look through all blockvectors. */
1565 ALL_COMPUNITS (obj, cust)
1566 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
1567 GLOBAL_BLOCK))
1568 {
1569 if (obj->separate_debug_objfile_backlink)
1570 obj = obj->separate_debug_objfile_backlink;
1571
1572 return obj;
1573 }
1574
1575 return NULL;
1576 }
1577
1578 /* See symtab.h. */
1579
1580 struct symbol *
1581 lookup_symbol_in_block (const char *name, const struct block *block,
1582 const domain_enum domain)
1583 {
1584 struct symbol *sym;
1585
1586 if (symbol_lookup_debug > 1)
1587 {
1588 struct objfile *objfile = lookup_objfile_from_block (block);
1589
1590 fprintf_unfiltered (gdb_stdlog,
1591 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
1592 name, host_address_to_string (block),
1593 objfile_debug_name (objfile),
1594 domain_name (domain));
1595 }
1596
1597 sym = block_lookup_symbol (block, name, domain);
1598 if (sym)
1599 {
1600 if (symbol_lookup_debug > 1)
1601 {
1602 fprintf_unfiltered (gdb_stdlog, " = %s\n",
1603 host_address_to_string (sym));
1604 }
1605 block_found = block;
1606 return fixup_symbol_section (sym, NULL);
1607 }
1608
1609 if (symbol_lookup_debug > 1)
1610 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1611 return NULL;
1612 }
1613
1614 /* See symtab.h. */
1615
1616 struct symbol *
1617 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
1618 const char *name,
1619 const domain_enum domain)
1620 {
1621 struct objfile *objfile;
1622
1623 for (objfile = main_objfile;
1624 objfile;
1625 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1626 {
1627 struct symbol *sym = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
1628 name, domain);
1629
1630 if (sym != NULL)
1631 return sym;
1632 }
1633
1634 return NULL;
1635 }
1636
1637 /* Check to see if the symbol is defined in one of the OBJFILE's
1638 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1639 depending on whether or not we want to search global symbols or
1640 static symbols. */
1641
1642 static struct symbol *
1643 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
1644 const char *name, const domain_enum domain)
1645 {
1646 struct compunit_symtab *cust;
1647
1648 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
1649
1650 if (symbol_lookup_debug > 1)
1651 {
1652 fprintf_unfiltered (gdb_stdlog,
1653 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
1654 objfile_debug_name (objfile),
1655 block_index == GLOBAL_BLOCK
1656 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
1657 name, domain_name (domain));
1658 }
1659
1660 ALL_OBJFILE_COMPUNITS (objfile, cust)
1661 {
1662 const struct blockvector *bv;
1663 const struct block *block;
1664 struct symbol *sym;
1665
1666 bv = COMPUNIT_BLOCKVECTOR (cust);
1667 block = BLOCKVECTOR_BLOCK (bv, block_index);
1668 sym = block_lookup_symbol_primary (block, name, domain);
1669 if (sym)
1670 {
1671 if (symbol_lookup_debug > 1)
1672 {
1673 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
1674 host_address_to_string (sym),
1675 host_address_to_string (block));
1676 }
1677 block_found = block;
1678 return fixup_symbol_section (sym, objfile);
1679 }
1680 }
1681
1682 if (symbol_lookup_debug > 1)
1683 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1684 return NULL;
1685 }
1686
1687 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
1688 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1689 and all associated separate debug objfiles.
1690
1691 Normally we only look in OBJFILE, and not any separate debug objfiles
1692 because the outer loop will cause them to be searched too. This case is
1693 different. Here we're called from search_symbols where it will only
1694 call us for the the objfile that contains a matching minsym. */
1695
1696 static struct symbol *
1697 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1698 const char *linkage_name,
1699 domain_enum domain)
1700 {
1701 enum language lang = current_language->la_language;
1702 const char *modified_name;
1703 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1704 &modified_name);
1705 struct objfile *main_objfile, *cur_objfile;
1706
1707 if (objfile->separate_debug_objfile_backlink)
1708 main_objfile = objfile->separate_debug_objfile_backlink;
1709 else
1710 main_objfile = objfile;
1711
1712 for (cur_objfile = main_objfile;
1713 cur_objfile;
1714 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1715 {
1716 struct symbol *sym;
1717
1718 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
1719 modified_name, domain);
1720 if (sym == NULL)
1721 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
1722 modified_name, domain);
1723 if (sym != NULL)
1724 {
1725 do_cleanups (cleanup);
1726 return sym;
1727 }
1728 }
1729
1730 do_cleanups (cleanup);
1731 return NULL;
1732 }
1733
1734 /* A helper function that throws an exception when a symbol was found
1735 in a psymtab but not in a symtab. */
1736
1737 static void ATTRIBUTE_NORETURN
1738 error_in_psymtab_expansion (int block_index, const char *name,
1739 struct compunit_symtab *cust)
1740 {
1741 error (_("\
1742 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1743 %s may be an inlined function, or may be a template function\n \
1744 (if a template, try specifying an instantiation: %s<type>)."),
1745 block_index == GLOBAL_BLOCK ? "global" : "static",
1746 name,
1747 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
1748 name, name);
1749 }
1750
1751 /* A helper function for various lookup routines that interfaces with
1752 the "quick" symbol table functions. */
1753
1754 static struct symbol *
1755 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
1756 const char *name, const domain_enum domain)
1757 {
1758 struct compunit_symtab *cust;
1759 const struct blockvector *bv;
1760 const struct block *block;
1761 struct symbol *sym;
1762
1763 if (!objfile->sf)
1764 return NULL;
1765
1766 if (symbol_lookup_debug > 1)
1767 {
1768 fprintf_unfiltered (gdb_stdlog,
1769 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
1770 objfile_debug_name (objfile),
1771 block_index == GLOBAL_BLOCK
1772 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
1773 name, domain_name (domain));
1774 }
1775
1776 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
1777 if (cust == NULL)
1778 {
1779 if (symbol_lookup_debug > 1)
1780 {
1781 fprintf_unfiltered (gdb_stdlog,
1782 "lookup_symbol_via_quick_fns (...) = NULL\n");
1783 }
1784 return NULL;
1785 }
1786
1787 bv = COMPUNIT_BLOCKVECTOR (cust);
1788 block = BLOCKVECTOR_BLOCK (bv, block_index);
1789 sym = block_lookup_symbol (block, name, domain);
1790 if (!sym)
1791 error_in_psymtab_expansion (block_index, name, cust);
1792
1793 if (symbol_lookup_debug > 1)
1794 {
1795 fprintf_unfiltered (gdb_stdlog,
1796 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
1797 host_address_to_string (sym),
1798 host_address_to_string (block));
1799 }
1800
1801 block_found = block;
1802 return fixup_symbol_section (sym, objfile);
1803 }
1804
1805 /* See symtab.h. */
1806
1807 struct symbol *
1808 basic_lookup_symbol_nonlocal (const char *name,
1809 const struct block *block,
1810 const domain_enum domain)
1811 {
1812 struct symbol *sym;
1813
1814 /* NOTE: carlton/2003-05-19: The comments below were written when
1815 this (or what turned into this) was part of lookup_symbol_aux;
1816 I'm much less worried about these questions now, since these
1817 decisions have turned out well, but I leave these comments here
1818 for posterity. */
1819
1820 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1821 not it would be appropriate to search the current global block
1822 here as well. (That's what this code used to do before the
1823 is_a_field_of_this check was moved up.) On the one hand, it's
1824 redundant with the lookup in all objfiles search that happens
1825 next. On the other hand, if decode_line_1 is passed an argument
1826 like filename:var, then the user presumably wants 'var' to be
1827 searched for in filename. On the third hand, there shouldn't be
1828 multiple global variables all of which are named 'var', and it's
1829 not like decode_line_1 has ever restricted its search to only
1830 global variables in a single filename. All in all, only
1831 searching the static block here seems best: it's correct and it's
1832 cleanest. */
1833
1834 /* NOTE: carlton/2002-12-05: There's also a possible performance
1835 issue here: if you usually search for global symbols in the
1836 current file, then it would be slightly better to search the
1837 current global block before searching all the symtabs. But there
1838 are other factors that have a much greater effect on performance
1839 than that one, so I don't think we should worry about that for
1840 now. */
1841
1842 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
1843 the current objfile. Searching the current objfile first is useful
1844 for both matching user expectations as well as performance. */
1845
1846 sym = lookup_symbol_in_static_block (name, block, domain);
1847 if (sym != NULL)
1848 return sym;
1849
1850 return lookup_global_symbol (name, block, domain);
1851 }
1852
1853 /* See symtab.h. */
1854
1855 struct symbol *
1856 lookup_symbol_in_static_block (const char *name,
1857 const struct block *block,
1858 const domain_enum domain)
1859 {
1860 const struct block *static_block = block_static_block (block);
1861 struct symbol *sym;
1862
1863 if (static_block == NULL)
1864 return NULL;
1865
1866 if (symbol_lookup_debug)
1867 {
1868 struct objfile *objfile = lookup_objfile_from_block (static_block);
1869
1870 fprintf_unfiltered (gdb_stdlog,
1871 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
1872 " %s)\n",
1873 name,
1874 host_address_to_string (block),
1875 objfile_debug_name (objfile),
1876 domain_name (domain));
1877 }
1878
1879 sym = lookup_symbol_in_block (name, static_block, domain);
1880 if (symbol_lookup_debug)
1881 {
1882 fprintf_unfiltered (gdb_stdlog,
1883 "lookup_symbol_in_static_block (...) = %s\n",
1884 sym != NULL ? host_address_to_string (sym) : "NULL");
1885 }
1886 return sym;
1887 }
1888
1889 /* Perform the standard symbol lookup of NAME in OBJFILE:
1890 1) First search expanded symtabs, and if not found
1891 2) Search the "quick" symtabs (partial or .gdb_index).
1892 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
1893
1894 static struct symbol *
1895 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
1896 const char *name, const domain_enum domain)
1897 {
1898 struct symbol *result;
1899
1900 if (symbol_lookup_debug)
1901 {
1902 fprintf_unfiltered (gdb_stdlog,
1903 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
1904 objfile_debug_name (objfile),
1905 block_index == GLOBAL_BLOCK
1906 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
1907 name, domain_name (domain));
1908 }
1909
1910 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
1911 name, domain);
1912 if (result != NULL)
1913 {
1914 if (symbol_lookup_debug)
1915 {
1916 fprintf_unfiltered (gdb_stdlog,
1917 "lookup_symbol_in_objfile (...) = %s"
1918 " (in symtabs)\n",
1919 host_address_to_string (result));
1920 }
1921 return result;
1922 }
1923
1924 result = lookup_symbol_via_quick_fns (objfile, block_index,
1925 name, domain);
1926 if (symbol_lookup_debug)
1927 {
1928 fprintf_unfiltered (gdb_stdlog,
1929 "lookup_symbol_in_objfile (...) = %s%s\n",
1930 result != NULL
1931 ? host_address_to_string (result)
1932 : "NULL",
1933 result != NULL ? " (via quick fns)" : "");
1934 }
1935 return result;
1936 }
1937
1938 /* See symtab.h. */
1939
1940 struct symbol *
1941 lookup_static_symbol (const char *name, const domain_enum domain)
1942 {
1943 struct objfile *objfile;
1944 struct symbol *result;
1945
1946 ALL_OBJFILES (objfile)
1947 {
1948 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
1949 if (result != NULL)
1950 return result;
1951 }
1952
1953 return NULL;
1954 }
1955
1956 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1957
1958 struct global_sym_lookup_data
1959 {
1960 /* The name of the symbol we are searching for. */
1961 const char *name;
1962
1963 /* The domain to use for our search. */
1964 domain_enum domain;
1965
1966 /* The field where the callback should store the symbol if found.
1967 It should be initialized to NULL before the search is started. */
1968 struct symbol *result;
1969 };
1970
1971 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1972 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1973 OBJFILE. The arguments for the search are passed via CB_DATA,
1974 which in reality is a pointer to struct global_sym_lookup_data. */
1975
1976 static int
1977 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1978 void *cb_data)
1979 {
1980 struct global_sym_lookup_data *data =
1981 (struct global_sym_lookup_data *) cb_data;
1982
1983 gdb_assert (data->result == NULL);
1984
1985 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
1986 data->name, data->domain);
1987
1988 /* If we found a match, tell the iterator to stop. Otherwise,
1989 keep going. */
1990 return (data->result != NULL);
1991 }
1992
1993 /* See symtab.h. */
1994
1995 struct symbol *
1996 lookup_global_symbol (const char *name,
1997 const struct block *block,
1998 const domain_enum domain)
1999 {
2000 struct symbol *sym = NULL;
2001 struct objfile *objfile = NULL;
2002 struct global_sym_lookup_data lookup_data;
2003
2004 /* Call library-specific lookup procedure. */
2005 objfile = lookup_objfile_from_block (block);
2006 if (objfile != NULL)
2007 sym = solib_global_lookup (objfile, name, domain);
2008 if (sym != NULL)
2009 return sym;
2010
2011 memset (&lookup_data, 0, sizeof (lookup_data));
2012 lookup_data.name = name;
2013 lookup_data.domain = domain;
2014 gdbarch_iterate_over_objfiles_in_search_order
2015 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2016 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2017
2018 return lookup_data.result;
2019 }
2020
2021 int
2022 symbol_matches_domain (enum language symbol_language,
2023 domain_enum symbol_domain,
2024 domain_enum domain)
2025 {
2026 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2027 A Java class declaration also defines a typedef for the class.
2028 Similarly, any Ada type declaration implicitly defines a typedef. */
2029 if (symbol_language == language_cplus
2030 || symbol_language == language_d
2031 || symbol_language == language_java
2032 || symbol_language == language_ada)
2033 {
2034 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2035 && symbol_domain == STRUCT_DOMAIN)
2036 return 1;
2037 }
2038 /* For all other languages, strict match is required. */
2039 return (symbol_domain == domain);
2040 }
2041
2042 /* See symtab.h. */
2043
2044 struct type *
2045 lookup_transparent_type (const char *name)
2046 {
2047 return current_language->la_lookup_transparent_type (name);
2048 }
2049
2050 /* A helper for basic_lookup_transparent_type that interfaces with the
2051 "quick" symbol table functions. */
2052
2053 static struct type *
2054 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2055 const char *name)
2056 {
2057 struct compunit_symtab *cust;
2058 const struct blockvector *bv;
2059 struct block *block;
2060 struct symbol *sym;
2061
2062 if (!objfile->sf)
2063 return NULL;
2064 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2065 STRUCT_DOMAIN);
2066 if (cust == NULL)
2067 return NULL;
2068
2069 bv = COMPUNIT_BLOCKVECTOR (cust);
2070 block = BLOCKVECTOR_BLOCK (bv, block_index);
2071 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
2072 if (!sym)
2073 error_in_psymtab_expansion (block_index, name, cust);
2074
2075 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2076 return SYMBOL_TYPE (sym);
2077
2078 return NULL;
2079 }
2080
2081 /* The standard implementation of lookup_transparent_type. This code
2082 was modeled on lookup_symbol -- the parts not relevant to looking
2083 up types were just left out. In particular it's assumed here that
2084 types are available in STRUCT_DOMAIN and only in file-static or
2085 global blocks. */
2086
2087 struct type *
2088 basic_lookup_transparent_type (const char *name)
2089 {
2090 struct symbol *sym;
2091 struct compunit_symtab *cust;
2092 const struct blockvector *bv;
2093 struct objfile *objfile;
2094 struct block *block;
2095 struct type *t;
2096
2097 /* Now search all the global symbols. Do the symtab's first, then
2098 check the psymtab's. If a psymtab indicates the existence
2099 of the desired name as a global, then do psymtab-to-symtab
2100 conversion on the fly and return the found symbol. */
2101
2102 ALL_OBJFILES (objfile)
2103 {
2104 ALL_OBJFILE_COMPUNITS (objfile, cust)
2105 {
2106 bv = COMPUNIT_BLOCKVECTOR (cust);
2107 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2108 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
2109 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2110 {
2111 return SYMBOL_TYPE (sym);
2112 }
2113 }
2114 }
2115
2116 ALL_OBJFILES (objfile)
2117 {
2118 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2119 if (t)
2120 return t;
2121 }
2122
2123 /* Now search the static file-level symbols.
2124 Not strictly correct, but more useful than an error.
2125 Do the symtab's first, then
2126 check the psymtab's. If a psymtab indicates the existence
2127 of the desired name as a file-level static, then do psymtab-to-symtab
2128 conversion on the fly and return the found symbol. */
2129
2130 ALL_OBJFILES (objfile)
2131 {
2132 ALL_OBJFILE_COMPUNITS (objfile, cust)
2133 {
2134 bv = COMPUNIT_BLOCKVECTOR (cust);
2135 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
2136 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
2137 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2138 {
2139 return SYMBOL_TYPE (sym);
2140 }
2141 }
2142 }
2143
2144 ALL_OBJFILES (objfile)
2145 {
2146 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2147 if (t)
2148 return t;
2149 }
2150
2151 return (struct type *) 0;
2152 }
2153
2154 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2155
2156 For each symbol that matches, CALLBACK is called. The symbol and
2157 DATA are passed to the callback.
2158
2159 If CALLBACK returns zero, the iteration ends. Otherwise, the
2160 search continues. */
2161
2162 void
2163 iterate_over_symbols (const struct block *block, const char *name,
2164 const domain_enum domain,
2165 symbol_found_callback_ftype *callback,
2166 void *data)
2167 {
2168 struct block_iterator iter;
2169 struct symbol *sym;
2170
2171 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2172 {
2173 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2174 SYMBOL_DOMAIN (sym), domain))
2175 {
2176 if (!callback (sym, data))
2177 return;
2178 }
2179 }
2180 }
2181
2182 /* Find the compunit symtab associated with PC and SECTION.
2183 This will read in debug info as necessary. */
2184
2185 struct compunit_symtab *
2186 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2187 {
2188 struct compunit_symtab *cust;
2189 struct compunit_symtab *best_cust = NULL;
2190 struct objfile *objfile;
2191 CORE_ADDR distance = 0;
2192 struct bound_minimal_symbol msymbol;
2193
2194 /* If we know that this is not a text address, return failure. This is
2195 necessary because we loop based on the block's high and low code
2196 addresses, which do not include the data ranges, and because
2197 we call find_pc_sect_psymtab which has a similar restriction based
2198 on the partial_symtab's texthigh and textlow. */
2199 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2200 if (msymbol.minsym
2201 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2202 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2203 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2204 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2205 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2206 return NULL;
2207
2208 /* Search all symtabs for the one whose file contains our address, and which
2209 is the smallest of all the ones containing the address. This is designed
2210 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2211 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2212 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2213
2214 This happens for native ecoff format, where code from included files
2215 gets its own symtab. The symtab for the included file should have
2216 been read in already via the dependency mechanism.
2217 It might be swifter to create several symtabs with the same name
2218 like xcoff does (I'm not sure).
2219
2220 It also happens for objfiles that have their functions reordered.
2221 For these, the symtab we are looking for is not necessarily read in. */
2222
2223 ALL_COMPUNITS (objfile, cust)
2224 {
2225 struct block *b;
2226 const struct blockvector *bv;
2227
2228 bv = COMPUNIT_BLOCKVECTOR (cust);
2229 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2230
2231 if (BLOCK_START (b) <= pc
2232 && BLOCK_END (b) > pc
2233 && (distance == 0
2234 || BLOCK_END (b) - BLOCK_START (b) < distance))
2235 {
2236 /* For an objfile that has its functions reordered,
2237 find_pc_psymtab will find the proper partial symbol table
2238 and we simply return its corresponding symtab. */
2239 /* In order to better support objfiles that contain both
2240 stabs and coff debugging info, we continue on if a psymtab
2241 can't be found. */
2242 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2243 {
2244 struct compunit_symtab *result;
2245
2246 result
2247 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2248 msymbol,
2249 pc, section,
2250 0);
2251 if (result != NULL)
2252 return result;
2253 }
2254 if (section != 0)
2255 {
2256 struct block_iterator iter;
2257 struct symbol *sym = NULL;
2258
2259 ALL_BLOCK_SYMBOLS (b, iter, sym)
2260 {
2261 fixup_symbol_section (sym, objfile);
2262 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2263 section))
2264 break;
2265 }
2266 if (sym == NULL)
2267 continue; /* No symbol in this symtab matches
2268 section. */
2269 }
2270 distance = BLOCK_END (b) - BLOCK_START (b);
2271 best_cust = cust;
2272 }
2273 }
2274
2275 if (best_cust != NULL)
2276 return best_cust;
2277
2278 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2279
2280 ALL_OBJFILES (objfile)
2281 {
2282 struct compunit_symtab *result;
2283
2284 if (!objfile->sf)
2285 continue;
2286 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2287 msymbol,
2288 pc, section,
2289 1);
2290 if (result != NULL)
2291 return result;
2292 }
2293
2294 return NULL;
2295 }
2296
2297 /* Find the compunit symtab associated with PC.
2298 This will read in debug info as necessary.
2299 Backward compatibility, no section. */
2300
2301 struct compunit_symtab *
2302 find_pc_compunit_symtab (CORE_ADDR pc)
2303 {
2304 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2305 }
2306 \f
2307
2308 /* Find the source file and line number for a given PC value and SECTION.
2309 Return a structure containing a symtab pointer, a line number,
2310 and a pc range for the entire source line.
2311 The value's .pc field is NOT the specified pc.
2312 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2313 use the line that ends there. Otherwise, in that case, the line
2314 that begins there is used. */
2315
2316 /* The big complication here is that a line may start in one file, and end just
2317 before the start of another file. This usually occurs when you #include
2318 code in the middle of a subroutine. To properly find the end of a line's PC
2319 range, we must search all symtabs associated with this compilation unit, and
2320 find the one whose first PC is closer than that of the next line in this
2321 symtab. */
2322
2323 /* If it's worth the effort, we could be using a binary search. */
2324
2325 struct symtab_and_line
2326 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2327 {
2328 struct compunit_symtab *cust;
2329 struct symtab *iter_s;
2330 struct linetable *l;
2331 int len;
2332 int i;
2333 struct linetable_entry *item;
2334 struct symtab_and_line val;
2335 const struct blockvector *bv;
2336 struct bound_minimal_symbol msymbol;
2337
2338 /* Info on best line seen so far, and where it starts, and its file. */
2339
2340 struct linetable_entry *best = NULL;
2341 CORE_ADDR best_end = 0;
2342 struct symtab *best_symtab = 0;
2343
2344 /* Store here the first line number
2345 of a file which contains the line at the smallest pc after PC.
2346 If we don't find a line whose range contains PC,
2347 we will use a line one less than this,
2348 with a range from the start of that file to the first line's pc. */
2349 struct linetable_entry *alt = NULL;
2350
2351 /* Info on best line seen in this file. */
2352
2353 struct linetable_entry *prev;
2354
2355 /* If this pc is not from the current frame,
2356 it is the address of the end of a call instruction.
2357 Quite likely that is the start of the following statement.
2358 But what we want is the statement containing the instruction.
2359 Fudge the pc to make sure we get that. */
2360
2361 init_sal (&val); /* initialize to zeroes */
2362
2363 val.pspace = current_program_space;
2364
2365 /* It's tempting to assume that, if we can't find debugging info for
2366 any function enclosing PC, that we shouldn't search for line
2367 number info, either. However, GAS can emit line number info for
2368 assembly files --- very helpful when debugging hand-written
2369 assembly code. In such a case, we'd have no debug info for the
2370 function, but we would have line info. */
2371
2372 if (notcurrent)
2373 pc -= 1;
2374
2375 /* elz: added this because this function returned the wrong
2376 information if the pc belongs to a stub (import/export)
2377 to call a shlib function. This stub would be anywhere between
2378 two functions in the target, and the line info was erroneously
2379 taken to be the one of the line before the pc. */
2380
2381 /* RT: Further explanation:
2382
2383 * We have stubs (trampolines) inserted between procedures.
2384 *
2385 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2386 * exists in the main image.
2387 *
2388 * In the minimal symbol table, we have a bunch of symbols
2389 * sorted by start address. The stubs are marked as "trampoline",
2390 * the others appear as text. E.g.:
2391 *
2392 * Minimal symbol table for main image
2393 * main: code for main (text symbol)
2394 * shr1: stub (trampoline symbol)
2395 * foo: code for foo (text symbol)
2396 * ...
2397 * Minimal symbol table for "shr1" image:
2398 * ...
2399 * shr1: code for shr1 (text symbol)
2400 * ...
2401 *
2402 * So the code below is trying to detect if we are in the stub
2403 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2404 * and if found, do the symbolization from the real-code address
2405 * rather than the stub address.
2406 *
2407 * Assumptions being made about the minimal symbol table:
2408 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2409 * if we're really in the trampoline.s If we're beyond it (say
2410 * we're in "foo" in the above example), it'll have a closer
2411 * symbol (the "foo" text symbol for example) and will not
2412 * return the trampoline.
2413 * 2. lookup_minimal_symbol_text() will find a real text symbol
2414 * corresponding to the trampoline, and whose address will
2415 * be different than the trampoline address. I put in a sanity
2416 * check for the address being the same, to avoid an
2417 * infinite recursion.
2418 */
2419 msymbol = lookup_minimal_symbol_by_pc (pc);
2420 if (msymbol.minsym != NULL)
2421 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2422 {
2423 struct bound_minimal_symbol mfunsym
2424 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2425 NULL);
2426
2427 if (mfunsym.minsym == NULL)
2428 /* I eliminated this warning since it is coming out
2429 * in the following situation:
2430 * gdb shmain // test program with shared libraries
2431 * (gdb) break shr1 // function in shared lib
2432 * Warning: In stub for ...
2433 * In the above situation, the shared lib is not loaded yet,
2434 * so of course we can't find the real func/line info,
2435 * but the "break" still works, and the warning is annoying.
2436 * So I commented out the warning. RT */
2437 /* warning ("In stub for %s; unable to find real function/line info",
2438 SYMBOL_LINKAGE_NAME (msymbol)); */
2439 ;
2440 /* fall through */
2441 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2442 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2443 /* Avoid infinite recursion */
2444 /* See above comment about why warning is commented out. */
2445 /* warning ("In stub for %s; unable to find real function/line info",
2446 SYMBOL_LINKAGE_NAME (msymbol)); */
2447 ;
2448 /* fall through */
2449 else
2450 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2451 }
2452
2453
2454 cust = find_pc_sect_compunit_symtab (pc, section);
2455 if (cust == NULL)
2456 {
2457 /* If no symbol information, return previous pc. */
2458 if (notcurrent)
2459 pc++;
2460 val.pc = pc;
2461 return val;
2462 }
2463
2464 bv = COMPUNIT_BLOCKVECTOR (cust);
2465
2466 /* Look at all the symtabs that share this blockvector.
2467 They all have the same apriori range, that we found was right;
2468 but they have different line tables. */
2469
2470 ALL_COMPUNIT_FILETABS (cust, iter_s)
2471 {
2472 /* Find the best line in this symtab. */
2473 l = SYMTAB_LINETABLE (iter_s);
2474 if (!l)
2475 continue;
2476 len = l->nitems;
2477 if (len <= 0)
2478 {
2479 /* I think len can be zero if the symtab lacks line numbers
2480 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2481 I'm not sure which, and maybe it depends on the symbol
2482 reader). */
2483 continue;
2484 }
2485
2486 prev = NULL;
2487 item = l->item; /* Get first line info. */
2488
2489 /* Is this file's first line closer than the first lines of other files?
2490 If so, record this file, and its first line, as best alternate. */
2491 if (item->pc > pc && (!alt || item->pc < alt->pc))
2492 alt = item;
2493
2494 for (i = 0; i < len; i++, item++)
2495 {
2496 /* Leave prev pointing to the linetable entry for the last line
2497 that started at or before PC. */
2498 if (item->pc > pc)
2499 break;
2500
2501 prev = item;
2502 }
2503
2504 /* At this point, prev points at the line whose start addr is <= pc, and
2505 item points at the next line. If we ran off the end of the linetable
2506 (pc >= start of the last line), then prev == item. If pc < start of
2507 the first line, prev will not be set. */
2508
2509 /* Is this file's best line closer than the best in the other files?
2510 If so, record this file, and its best line, as best so far. Don't
2511 save prev if it represents the end of a function (i.e. line number
2512 0) instead of a real line. */
2513
2514 if (prev && prev->line && (!best || prev->pc > best->pc))
2515 {
2516 best = prev;
2517 best_symtab = iter_s;
2518
2519 /* Discard BEST_END if it's before the PC of the current BEST. */
2520 if (best_end <= best->pc)
2521 best_end = 0;
2522 }
2523
2524 /* If another line (denoted by ITEM) is in the linetable and its
2525 PC is after BEST's PC, but before the current BEST_END, then
2526 use ITEM's PC as the new best_end. */
2527 if (best && i < len && item->pc > best->pc
2528 && (best_end == 0 || best_end > item->pc))
2529 best_end = item->pc;
2530 }
2531
2532 if (!best_symtab)
2533 {
2534 /* If we didn't find any line number info, just return zeros.
2535 We used to return alt->line - 1 here, but that could be
2536 anywhere; if we don't have line number info for this PC,
2537 don't make some up. */
2538 val.pc = pc;
2539 }
2540 else if (best->line == 0)
2541 {
2542 /* If our best fit is in a range of PC's for which no line
2543 number info is available (line number is zero) then we didn't
2544 find any valid line information. */
2545 val.pc = pc;
2546 }
2547 else
2548 {
2549 val.symtab = best_symtab;
2550 val.line = best->line;
2551 val.pc = best->pc;
2552 if (best_end && (!alt || best_end < alt->pc))
2553 val.end = best_end;
2554 else if (alt)
2555 val.end = alt->pc;
2556 else
2557 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2558 }
2559 val.section = section;
2560 return val;
2561 }
2562
2563 /* Backward compatibility (no section). */
2564
2565 struct symtab_and_line
2566 find_pc_line (CORE_ADDR pc, int notcurrent)
2567 {
2568 struct obj_section *section;
2569
2570 section = find_pc_overlay (pc);
2571 if (pc_in_unmapped_range (pc, section))
2572 pc = overlay_mapped_address (pc, section);
2573 return find_pc_sect_line (pc, section, notcurrent);
2574 }
2575
2576 /* See symtab.h. */
2577
2578 struct symtab *
2579 find_pc_line_symtab (CORE_ADDR pc)
2580 {
2581 struct symtab_and_line sal;
2582
2583 /* This always passes zero for NOTCURRENT to find_pc_line.
2584 There are currently no callers that ever pass non-zero. */
2585 sal = find_pc_line (pc, 0);
2586 return sal.symtab;
2587 }
2588 \f
2589 /* Find line number LINE in any symtab whose name is the same as
2590 SYMTAB.
2591
2592 If found, return the symtab that contains the linetable in which it was
2593 found, set *INDEX to the index in the linetable of the best entry
2594 found, and set *EXACT_MATCH nonzero if the value returned is an
2595 exact match.
2596
2597 If not found, return NULL. */
2598
2599 struct symtab *
2600 find_line_symtab (struct symtab *symtab, int line,
2601 int *index, int *exact_match)
2602 {
2603 int exact = 0; /* Initialized here to avoid a compiler warning. */
2604
2605 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2606 so far seen. */
2607
2608 int best_index;
2609 struct linetable *best_linetable;
2610 struct symtab *best_symtab;
2611
2612 /* First try looking it up in the given symtab. */
2613 best_linetable = SYMTAB_LINETABLE (symtab);
2614 best_symtab = symtab;
2615 best_index = find_line_common (best_linetable, line, &exact, 0);
2616 if (best_index < 0 || !exact)
2617 {
2618 /* Didn't find an exact match. So we better keep looking for
2619 another symtab with the same name. In the case of xcoff,
2620 multiple csects for one source file (produced by IBM's FORTRAN
2621 compiler) produce multiple symtabs (this is unavoidable
2622 assuming csects can be at arbitrary places in memory and that
2623 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2624
2625 /* BEST is the smallest linenumber > LINE so far seen,
2626 or 0 if none has been seen so far.
2627 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2628 int best;
2629
2630 struct objfile *objfile;
2631 struct compunit_symtab *cu;
2632 struct symtab *s;
2633
2634 if (best_index >= 0)
2635 best = best_linetable->item[best_index].line;
2636 else
2637 best = 0;
2638
2639 ALL_OBJFILES (objfile)
2640 {
2641 if (objfile->sf)
2642 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2643 symtab_to_fullname (symtab));
2644 }
2645
2646 ALL_FILETABS (objfile, cu, s)
2647 {
2648 struct linetable *l;
2649 int ind;
2650
2651 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2652 continue;
2653 if (FILENAME_CMP (symtab_to_fullname (symtab),
2654 symtab_to_fullname (s)) != 0)
2655 continue;
2656 l = SYMTAB_LINETABLE (s);
2657 ind = find_line_common (l, line, &exact, 0);
2658 if (ind >= 0)
2659 {
2660 if (exact)
2661 {
2662 best_index = ind;
2663 best_linetable = l;
2664 best_symtab = s;
2665 goto done;
2666 }
2667 if (best == 0 || l->item[ind].line < best)
2668 {
2669 best = l->item[ind].line;
2670 best_index = ind;
2671 best_linetable = l;
2672 best_symtab = s;
2673 }
2674 }
2675 }
2676 }
2677 done:
2678 if (best_index < 0)
2679 return NULL;
2680
2681 if (index)
2682 *index = best_index;
2683 if (exact_match)
2684 *exact_match = exact;
2685
2686 return best_symtab;
2687 }
2688
2689 /* Given SYMTAB, returns all the PCs function in the symtab that
2690 exactly match LINE. Returns NULL if there are no exact matches,
2691 but updates BEST_ITEM in this case. */
2692
2693 VEC (CORE_ADDR) *
2694 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2695 struct linetable_entry **best_item)
2696 {
2697 int start = 0;
2698 VEC (CORE_ADDR) *result = NULL;
2699
2700 /* First, collect all the PCs that are at this line. */
2701 while (1)
2702 {
2703 int was_exact;
2704 int idx;
2705
2706 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
2707 start);
2708 if (idx < 0)
2709 break;
2710
2711 if (!was_exact)
2712 {
2713 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
2714
2715 if (*best_item == NULL || item->line < (*best_item)->line)
2716 *best_item = item;
2717
2718 break;
2719 }
2720
2721 VEC_safe_push (CORE_ADDR, result,
2722 SYMTAB_LINETABLE (symtab)->item[idx].pc);
2723 start = idx + 1;
2724 }
2725
2726 return result;
2727 }
2728
2729 \f
2730 /* Set the PC value for a given source file and line number and return true.
2731 Returns zero for invalid line number (and sets the PC to 0).
2732 The source file is specified with a struct symtab. */
2733
2734 int
2735 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2736 {
2737 struct linetable *l;
2738 int ind;
2739
2740 *pc = 0;
2741 if (symtab == 0)
2742 return 0;
2743
2744 symtab = find_line_symtab (symtab, line, &ind, NULL);
2745 if (symtab != NULL)
2746 {
2747 l = SYMTAB_LINETABLE (symtab);
2748 *pc = l->item[ind].pc;
2749 return 1;
2750 }
2751 else
2752 return 0;
2753 }
2754
2755 /* Find the range of pc values in a line.
2756 Store the starting pc of the line into *STARTPTR
2757 and the ending pc (start of next line) into *ENDPTR.
2758 Returns 1 to indicate success.
2759 Returns 0 if could not find the specified line. */
2760
2761 int
2762 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2763 CORE_ADDR *endptr)
2764 {
2765 CORE_ADDR startaddr;
2766 struct symtab_and_line found_sal;
2767
2768 startaddr = sal.pc;
2769 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2770 return 0;
2771
2772 /* This whole function is based on address. For example, if line 10 has
2773 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2774 "info line *0x123" should say the line goes from 0x100 to 0x200
2775 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2776 This also insures that we never give a range like "starts at 0x134
2777 and ends at 0x12c". */
2778
2779 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2780 if (found_sal.line != sal.line)
2781 {
2782 /* The specified line (sal) has zero bytes. */
2783 *startptr = found_sal.pc;
2784 *endptr = found_sal.pc;
2785 }
2786 else
2787 {
2788 *startptr = found_sal.pc;
2789 *endptr = found_sal.end;
2790 }
2791 return 1;
2792 }
2793
2794 /* Given a line table and a line number, return the index into the line
2795 table for the pc of the nearest line whose number is >= the specified one.
2796 Return -1 if none is found. The value is >= 0 if it is an index.
2797 START is the index at which to start searching the line table.
2798
2799 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2800
2801 static int
2802 find_line_common (struct linetable *l, int lineno,
2803 int *exact_match, int start)
2804 {
2805 int i;
2806 int len;
2807
2808 /* BEST is the smallest linenumber > LINENO so far seen,
2809 or 0 if none has been seen so far.
2810 BEST_INDEX identifies the item for it. */
2811
2812 int best_index = -1;
2813 int best = 0;
2814
2815 *exact_match = 0;
2816
2817 if (lineno <= 0)
2818 return -1;
2819 if (l == 0)
2820 return -1;
2821
2822 len = l->nitems;
2823 for (i = start; i < len; i++)
2824 {
2825 struct linetable_entry *item = &(l->item[i]);
2826
2827 if (item->line == lineno)
2828 {
2829 /* Return the first (lowest address) entry which matches. */
2830 *exact_match = 1;
2831 return i;
2832 }
2833
2834 if (item->line > lineno && (best == 0 || item->line < best))
2835 {
2836 best = item->line;
2837 best_index = i;
2838 }
2839 }
2840
2841 /* If we got here, we didn't get an exact match. */
2842 return best_index;
2843 }
2844
2845 int
2846 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2847 {
2848 struct symtab_and_line sal;
2849
2850 sal = find_pc_line (pc, 0);
2851 *startptr = sal.pc;
2852 *endptr = sal.end;
2853 return sal.symtab != 0;
2854 }
2855
2856 /* Given a function symbol SYM, find the symtab and line for the start
2857 of the function.
2858 If the argument FUNFIRSTLINE is nonzero, we want the first line
2859 of real code inside the function. */
2860
2861 struct symtab_and_line
2862 find_function_start_sal (struct symbol *sym, int funfirstline)
2863 {
2864 struct symtab_and_line sal;
2865
2866 fixup_symbol_section (sym, NULL);
2867 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2868 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2869
2870 /* We always should have a line for the function start address.
2871 If we don't, something is odd. Create a plain SAL refering
2872 just the PC and hope that skip_prologue_sal (if requested)
2873 can find a line number for after the prologue. */
2874 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2875 {
2876 init_sal (&sal);
2877 sal.pspace = current_program_space;
2878 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2879 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2880 }
2881
2882 if (funfirstline)
2883 skip_prologue_sal (&sal);
2884
2885 return sal;
2886 }
2887
2888 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2889 address for that function that has an entry in SYMTAB's line info
2890 table. If such an entry cannot be found, return FUNC_ADDR
2891 unaltered. */
2892
2893 static CORE_ADDR
2894 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2895 {
2896 CORE_ADDR func_start, func_end;
2897 struct linetable *l;
2898 int i;
2899
2900 /* Give up if this symbol has no lineinfo table. */
2901 l = SYMTAB_LINETABLE (symtab);
2902 if (l == NULL)
2903 return func_addr;
2904
2905 /* Get the range for the function's PC values, or give up if we
2906 cannot, for some reason. */
2907 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2908 return func_addr;
2909
2910 /* Linetable entries are ordered by PC values, see the commentary in
2911 symtab.h where `struct linetable' is defined. Thus, the first
2912 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2913 address we are looking for. */
2914 for (i = 0; i < l->nitems; i++)
2915 {
2916 struct linetable_entry *item = &(l->item[i]);
2917
2918 /* Don't use line numbers of zero, they mark special entries in
2919 the table. See the commentary on symtab.h before the
2920 definition of struct linetable. */
2921 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2922 return item->pc;
2923 }
2924
2925 return func_addr;
2926 }
2927
2928 /* Adjust SAL to the first instruction past the function prologue.
2929 If the PC was explicitly specified, the SAL is not changed.
2930 If the line number was explicitly specified, at most the SAL's PC
2931 is updated. If SAL is already past the prologue, then do nothing. */
2932
2933 void
2934 skip_prologue_sal (struct symtab_and_line *sal)
2935 {
2936 struct symbol *sym;
2937 struct symtab_and_line start_sal;
2938 struct cleanup *old_chain;
2939 CORE_ADDR pc, saved_pc;
2940 struct obj_section *section;
2941 const char *name;
2942 struct objfile *objfile;
2943 struct gdbarch *gdbarch;
2944 const struct block *b, *function_block;
2945 int force_skip, skip;
2946
2947 /* Do not change the SAL if PC was specified explicitly. */
2948 if (sal->explicit_pc)
2949 return;
2950
2951 old_chain = save_current_space_and_thread ();
2952 switch_to_program_space_and_thread (sal->pspace);
2953
2954 sym = find_pc_sect_function (sal->pc, sal->section);
2955 if (sym != NULL)
2956 {
2957 fixup_symbol_section (sym, NULL);
2958
2959 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2960 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2961 name = SYMBOL_LINKAGE_NAME (sym);
2962 objfile = SYMBOL_OBJFILE (sym);
2963 }
2964 else
2965 {
2966 struct bound_minimal_symbol msymbol
2967 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2968
2969 if (msymbol.minsym == NULL)
2970 {
2971 do_cleanups (old_chain);
2972 return;
2973 }
2974
2975 objfile = msymbol.objfile;
2976 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2977 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2978 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2979 }
2980
2981 gdbarch = get_objfile_arch (objfile);
2982
2983 /* Process the prologue in two passes. In the first pass try to skip the
2984 prologue (SKIP is true) and verify there is a real need for it (indicated
2985 by FORCE_SKIP). If no such reason was found run a second pass where the
2986 prologue is not skipped (SKIP is false). */
2987
2988 skip = 1;
2989 force_skip = 1;
2990
2991 /* Be conservative - allow direct PC (without skipping prologue) only if we
2992 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2993 have to be set by the caller so we use SYM instead. */
2994 if (sym && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (SYMBOL_SYMTAB (sym))))
2995 force_skip = 0;
2996
2997 saved_pc = pc;
2998 do
2999 {
3000 pc = saved_pc;
3001
3002 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3003 so that gdbarch_skip_prologue has something unique to work on. */
3004 if (section_is_overlay (section) && !section_is_mapped (section))
3005 pc = overlay_unmapped_address (pc, section);
3006
3007 /* Skip "first line" of function (which is actually its prologue). */
3008 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3009 if (gdbarch_skip_entrypoint_p (gdbarch))
3010 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3011 if (skip)
3012 pc = gdbarch_skip_prologue (gdbarch, pc);
3013
3014 /* For overlays, map pc back into its mapped VMA range. */
3015 pc = overlay_mapped_address (pc, section);
3016
3017 /* Calculate line number. */
3018 start_sal = find_pc_sect_line (pc, section, 0);
3019
3020 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3021 line is still part of the same function. */
3022 if (skip && start_sal.pc != pc
3023 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3024 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3025 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3026 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3027 {
3028 /* First pc of next line */
3029 pc = start_sal.end;
3030 /* Recalculate the line number (might not be N+1). */
3031 start_sal = find_pc_sect_line (pc, section, 0);
3032 }
3033
3034 /* On targets with executable formats that don't have a concept of
3035 constructors (ELF with .init has, PE doesn't), gcc emits a call
3036 to `__main' in `main' between the prologue and before user
3037 code. */
3038 if (gdbarch_skip_main_prologue_p (gdbarch)
3039 && name && strcmp_iw (name, "main") == 0)
3040 {
3041 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3042 /* Recalculate the line number (might not be N+1). */
3043 start_sal = find_pc_sect_line (pc, section, 0);
3044 force_skip = 1;
3045 }
3046 }
3047 while (!force_skip && skip--);
3048
3049 /* If we still don't have a valid source line, try to find the first
3050 PC in the lineinfo table that belongs to the same function. This
3051 happens with COFF debug info, which does not seem to have an
3052 entry in lineinfo table for the code after the prologue which has
3053 no direct relation to source. For example, this was found to be
3054 the case with the DJGPP target using "gcc -gcoff" when the
3055 compiler inserted code after the prologue to make sure the stack
3056 is aligned. */
3057 if (!force_skip && sym && start_sal.symtab == NULL)
3058 {
3059 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
3060 /* Recalculate the line number. */
3061 start_sal = find_pc_sect_line (pc, section, 0);
3062 }
3063
3064 do_cleanups (old_chain);
3065
3066 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3067 forward SAL to the end of the prologue. */
3068 if (sal->pc >= pc)
3069 return;
3070
3071 sal->pc = pc;
3072 sal->section = section;
3073
3074 /* Unless the explicit_line flag was set, update the SAL line
3075 and symtab to correspond to the modified PC location. */
3076 if (sal->explicit_line)
3077 return;
3078
3079 sal->symtab = start_sal.symtab;
3080 sal->line = start_sal.line;
3081 sal->end = start_sal.end;
3082
3083 /* Check if we are now inside an inlined function. If we can,
3084 use the call site of the function instead. */
3085 b = block_for_pc_sect (sal->pc, sal->section);
3086 function_block = NULL;
3087 while (b != NULL)
3088 {
3089 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3090 function_block = b;
3091 else if (BLOCK_FUNCTION (b) != NULL)
3092 break;
3093 b = BLOCK_SUPERBLOCK (b);
3094 }
3095 if (function_block != NULL
3096 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3097 {
3098 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3099 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
3100 }
3101 }
3102
3103 /* Given PC at the function's start address, attempt to find the
3104 prologue end using SAL information. Return zero if the skip fails.
3105
3106 A non-optimized prologue traditionally has one SAL for the function
3107 and a second for the function body. A single line function has
3108 them both pointing at the same line.
3109
3110 An optimized prologue is similar but the prologue may contain
3111 instructions (SALs) from the instruction body. Need to skip those
3112 while not getting into the function body.
3113
3114 The functions end point and an increasing SAL line are used as
3115 indicators of the prologue's endpoint.
3116
3117 This code is based on the function refine_prologue_limit
3118 (found in ia64). */
3119
3120 CORE_ADDR
3121 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3122 {
3123 struct symtab_and_line prologue_sal;
3124 CORE_ADDR start_pc;
3125 CORE_ADDR end_pc;
3126 const struct block *bl;
3127
3128 /* Get an initial range for the function. */
3129 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3130 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3131
3132 prologue_sal = find_pc_line (start_pc, 0);
3133 if (prologue_sal.line != 0)
3134 {
3135 /* For languages other than assembly, treat two consecutive line
3136 entries at the same address as a zero-instruction prologue.
3137 The GNU assembler emits separate line notes for each instruction
3138 in a multi-instruction macro, but compilers generally will not
3139 do this. */
3140 if (prologue_sal.symtab->language != language_asm)
3141 {
3142 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3143 int idx = 0;
3144
3145 /* Skip any earlier lines, and any end-of-sequence marker
3146 from a previous function. */
3147 while (linetable->item[idx].pc != prologue_sal.pc
3148 || linetable->item[idx].line == 0)
3149 idx++;
3150
3151 if (idx+1 < linetable->nitems
3152 && linetable->item[idx+1].line != 0
3153 && linetable->item[idx+1].pc == start_pc)
3154 return start_pc;
3155 }
3156
3157 /* If there is only one sal that covers the entire function,
3158 then it is probably a single line function, like
3159 "foo(){}". */
3160 if (prologue_sal.end >= end_pc)
3161 return 0;
3162
3163 while (prologue_sal.end < end_pc)
3164 {
3165 struct symtab_and_line sal;
3166
3167 sal = find_pc_line (prologue_sal.end, 0);
3168 if (sal.line == 0)
3169 break;
3170 /* Assume that a consecutive SAL for the same (or larger)
3171 line mark the prologue -> body transition. */
3172 if (sal.line >= prologue_sal.line)
3173 break;
3174 /* Likewise if we are in a different symtab altogether
3175 (e.g. within a file included via #include).  */
3176 if (sal.symtab != prologue_sal.symtab)
3177 break;
3178
3179 /* The line number is smaller. Check that it's from the
3180 same function, not something inlined. If it's inlined,
3181 then there is no point comparing the line numbers. */
3182 bl = block_for_pc (prologue_sal.end);
3183 while (bl)
3184 {
3185 if (block_inlined_p (bl))
3186 break;
3187 if (BLOCK_FUNCTION (bl))
3188 {
3189 bl = NULL;
3190 break;
3191 }
3192 bl = BLOCK_SUPERBLOCK (bl);
3193 }
3194 if (bl != NULL)
3195 break;
3196
3197 /* The case in which compiler's optimizer/scheduler has
3198 moved instructions into the prologue. We look ahead in
3199 the function looking for address ranges whose
3200 corresponding line number is less the first one that we
3201 found for the function. This is more conservative then
3202 refine_prologue_limit which scans a large number of SALs
3203 looking for any in the prologue. */
3204 prologue_sal = sal;
3205 }
3206 }
3207
3208 if (prologue_sal.end < end_pc)
3209 /* Return the end of this line, or zero if we could not find a
3210 line. */
3211 return prologue_sal.end;
3212 else
3213 /* Don't return END_PC, which is past the end of the function. */
3214 return prologue_sal.pc;
3215 }
3216 \f
3217 /* If P is of the form "operator[ \t]+..." where `...' is
3218 some legitimate operator text, return a pointer to the
3219 beginning of the substring of the operator text.
3220 Otherwise, return "". */
3221
3222 static const char *
3223 operator_chars (const char *p, const char **end)
3224 {
3225 *end = "";
3226 if (strncmp (p, "operator", 8))
3227 return *end;
3228 p += 8;
3229
3230 /* Don't get faked out by `operator' being part of a longer
3231 identifier. */
3232 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3233 return *end;
3234
3235 /* Allow some whitespace between `operator' and the operator symbol. */
3236 while (*p == ' ' || *p == '\t')
3237 p++;
3238
3239 /* Recognize 'operator TYPENAME'. */
3240
3241 if (isalpha (*p) || *p == '_' || *p == '$')
3242 {
3243 const char *q = p + 1;
3244
3245 while (isalnum (*q) || *q == '_' || *q == '$')
3246 q++;
3247 *end = q;
3248 return p;
3249 }
3250
3251 while (*p)
3252 switch (*p)
3253 {
3254 case '\\': /* regexp quoting */
3255 if (p[1] == '*')
3256 {
3257 if (p[2] == '=') /* 'operator\*=' */
3258 *end = p + 3;
3259 else /* 'operator\*' */
3260 *end = p + 2;
3261 return p;
3262 }
3263 else if (p[1] == '[')
3264 {
3265 if (p[2] == ']')
3266 error (_("mismatched quoting on brackets, "
3267 "try 'operator\\[\\]'"));
3268 else if (p[2] == '\\' && p[3] == ']')
3269 {
3270 *end = p + 4; /* 'operator\[\]' */
3271 return p;
3272 }
3273 else
3274 error (_("nothing is allowed between '[' and ']'"));
3275 }
3276 else
3277 {
3278 /* Gratuitous qoute: skip it and move on. */
3279 p++;
3280 continue;
3281 }
3282 break;
3283 case '!':
3284 case '=':
3285 case '*':
3286 case '/':
3287 case '%':
3288 case '^':
3289 if (p[1] == '=')
3290 *end = p + 2;
3291 else
3292 *end = p + 1;
3293 return p;
3294 case '<':
3295 case '>':
3296 case '+':
3297 case '-':
3298 case '&':
3299 case '|':
3300 if (p[0] == '-' && p[1] == '>')
3301 {
3302 /* Struct pointer member operator 'operator->'. */
3303 if (p[2] == '*')
3304 {
3305 *end = p + 3; /* 'operator->*' */
3306 return p;
3307 }
3308 else if (p[2] == '\\')
3309 {
3310 *end = p + 4; /* Hopefully 'operator->\*' */
3311 return p;
3312 }
3313 else
3314 {
3315 *end = p + 2; /* 'operator->' */
3316 return p;
3317 }
3318 }
3319 if (p[1] == '=' || p[1] == p[0])
3320 *end = p + 2;
3321 else
3322 *end = p + 1;
3323 return p;
3324 case '~':
3325 case ',':
3326 *end = p + 1;
3327 return p;
3328 case '(':
3329 if (p[1] != ')')
3330 error (_("`operator ()' must be specified "
3331 "without whitespace in `()'"));
3332 *end = p + 2;
3333 return p;
3334 case '?':
3335 if (p[1] != ':')
3336 error (_("`operator ?:' must be specified "
3337 "without whitespace in `?:'"));
3338 *end = p + 2;
3339 return p;
3340 case '[':
3341 if (p[1] != ']')
3342 error (_("`operator []' must be specified "
3343 "without whitespace in `[]'"));
3344 *end = p + 2;
3345 return p;
3346 default:
3347 error (_("`operator %s' not supported"), p);
3348 break;
3349 }
3350
3351 *end = "";
3352 return *end;
3353 }
3354 \f
3355
3356 /* Cache to watch for file names already seen by filename_seen. */
3357
3358 struct filename_seen_cache
3359 {
3360 /* Table of files seen so far. */
3361 htab_t tab;
3362 /* Initial size of the table. It automagically grows from here. */
3363 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3364 };
3365
3366 /* filename_seen_cache constructor. */
3367
3368 static struct filename_seen_cache *
3369 create_filename_seen_cache (void)
3370 {
3371 struct filename_seen_cache *cache;
3372
3373 cache = XNEW (struct filename_seen_cache);
3374 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3375 filename_hash, filename_eq,
3376 NULL, xcalloc, xfree);
3377
3378 return cache;
3379 }
3380
3381 /* Empty the cache, but do not delete it. */
3382
3383 static void
3384 clear_filename_seen_cache (struct filename_seen_cache *cache)
3385 {
3386 htab_empty (cache->tab);
3387 }
3388
3389 /* filename_seen_cache destructor.
3390 This takes a void * argument as it is generally used as a cleanup. */
3391
3392 static void
3393 delete_filename_seen_cache (void *ptr)
3394 {
3395 struct filename_seen_cache *cache = ptr;
3396
3397 htab_delete (cache->tab);
3398 xfree (cache);
3399 }
3400
3401 /* If FILE is not already in the table of files in CACHE, return zero;
3402 otherwise return non-zero. Optionally add FILE to the table if ADD
3403 is non-zero.
3404
3405 NOTE: We don't manage space for FILE, we assume FILE lives as long
3406 as the caller needs. */
3407
3408 static int
3409 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3410 {
3411 void **slot;
3412
3413 /* Is FILE in tab? */
3414 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3415 if (*slot != NULL)
3416 return 1;
3417
3418 /* No; maybe add it to tab. */
3419 if (add)
3420 *slot = (char *) file;
3421
3422 return 0;
3423 }
3424
3425 /* Data structure to maintain printing state for output_source_filename. */
3426
3427 struct output_source_filename_data
3428 {
3429 /* Cache of what we've seen so far. */
3430 struct filename_seen_cache *filename_seen_cache;
3431
3432 /* Flag of whether we're printing the first one. */
3433 int first;
3434 };
3435
3436 /* Slave routine for sources_info. Force line breaks at ,'s.
3437 NAME is the name to print.
3438 DATA contains the state for printing and watching for duplicates. */
3439
3440 static void
3441 output_source_filename (const char *name,
3442 struct output_source_filename_data *data)
3443 {
3444 /* Since a single source file can result in several partial symbol
3445 tables, we need to avoid printing it more than once. Note: if
3446 some of the psymtabs are read in and some are not, it gets
3447 printed both under "Source files for which symbols have been
3448 read" and "Source files for which symbols will be read in on
3449 demand". I consider this a reasonable way to deal with the
3450 situation. I'm not sure whether this can also happen for
3451 symtabs; it doesn't hurt to check. */
3452
3453 /* Was NAME already seen? */
3454 if (filename_seen (data->filename_seen_cache, name, 1))
3455 {
3456 /* Yes; don't print it again. */
3457 return;
3458 }
3459
3460 /* No; print it and reset *FIRST. */
3461 if (! data->first)
3462 printf_filtered (", ");
3463 data->first = 0;
3464
3465 wrap_here ("");
3466 fputs_filtered (name, gdb_stdout);
3467 }
3468
3469 /* A callback for map_partial_symbol_filenames. */
3470
3471 static void
3472 output_partial_symbol_filename (const char *filename, const char *fullname,
3473 void *data)
3474 {
3475 output_source_filename (fullname ? fullname : filename, data);
3476 }
3477
3478 static void
3479 sources_info (char *ignore, int from_tty)
3480 {
3481 struct compunit_symtab *cu;
3482 struct symtab *s;
3483 struct objfile *objfile;
3484 struct output_source_filename_data data;
3485 struct cleanup *cleanups;
3486
3487 if (!have_full_symbols () && !have_partial_symbols ())
3488 {
3489 error (_("No symbol table is loaded. Use the \"file\" command."));
3490 }
3491
3492 data.filename_seen_cache = create_filename_seen_cache ();
3493 cleanups = make_cleanup (delete_filename_seen_cache,
3494 data.filename_seen_cache);
3495
3496 printf_filtered ("Source files for which symbols have been read in:\n\n");
3497
3498 data.first = 1;
3499 ALL_FILETABS (objfile, cu, s)
3500 {
3501 const char *fullname = symtab_to_fullname (s);
3502
3503 output_source_filename (fullname, &data);
3504 }
3505 printf_filtered ("\n\n");
3506
3507 printf_filtered ("Source files for which symbols "
3508 "will be read in on demand:\n\n");
3509
3510 clear_filename_seen_cache (data.filename_seen_cache);
3511 data.first = 1;
3512 map_symbol_filenames (output_partial_symbol_filename, &data,
3513 1 /*need_fullname*/);
3514 printf_filtered ("\n");
3515
3516 do_cleanups (cleanups);
3517 }
3518
3519 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3520 non-zero compare only lbasename of FILES. */
3521
3522 static int
3523 file_matches (const char *file, const char *files[], int nfiles, int basenames)
3524 {
3525 int i;
3526
3527 if (file != NULL && nfiles != 0)
3528 {
3529 for (i = 0; i < nfiles; i++)
3530 {
3531 if (compare_filenames_for_search (file, (basenames
3532 ? lbasename (files[i])
3533 : files[i])))
3534 return 1;
3535 }
3536 }
3537 else if (nfiles == 0)
3538 return 1;
3539 return 0;
3540 }
3541
3542 /* Free any memory associated with a search. */
3543
3544 void
3545 free_search_symbols (struct symbol_search *symbols)
3546 {
3547 struct symbol_search *p;
3548 struct symbol_search *next;
3549
3550 for (p = symbols; p != NULL; p = next)
3551 {
3552 next = p->next;
3553 xfree (p);
3554 }
3555 }
3556
3557 static void
3558 do_free_search_symbols_cleanup (void *symbolsp)
3559 {
3560 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3561
3562 free_search_symbols (symbols);
3563 }
3564
3565 struct cleanup *
3566 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3567 {
3568 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3569 }
3570
3571 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3572 sort symbols, not minimal symbols. */
3573
3574 static int
3575 compare_search_syms (const void *sa, const void *sb)
3576 {
3577 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3578 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3579 int c;
3580
3581 c = FILENAME_CMP (SYMBOL_SYMTAB (sym_a->symbol)->filename,
3582 SYMBOL_SYMTAB (sym_b->symbol)->filename);
3583 if (c != 0)
3584 return c;
3585
3586 if (sym_a->block != sym_b->block)
3587 return sym_a->block - sym_b->block;
3588
3589 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3590 SYMBOL_PRINT_NAME (sym_b->symbol));
3591 }
3592
3593 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3594 The duplicates are freed, and the new list is returned in
3595 *NEW_HEAD, *NEW_TAIL. */
3596
3597 static void
3598 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3599 struct symbol_search **new_head,
3600 struct symbol_search **new_tail)
3601 {
3602 struct symbol_search **symbols, *symp, *old_next;
3603 int i, j, nunique;
3604
3605 gdb_assert (found != NULL && nfound > 0);
3606
3607 /* Build an array out of the list so we can easily sort them. */
3608 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3609 * nfound);
3610 symp = found;
3611 for (i = 0; i < nfound; i++)
3612 {
3613 gdb_assert (symp != NULL);
3614 gdb_assert (symp->block >= 0 && symp->block <= 1);
3615 symbols[i] = symp;
3616 symp = symp->next;
3617 }
3618 gdb_assert (symp == NULL);
3619
3620 qsort (symbols, nfound, sizeof (struct symbol_search *),
3621 compare_search_syms);
3622
3623 /* Collapse out the dups. */
3624 for (i = 1, j = 1; i < nfound; ++i)
3625 {
3626 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3627 symbols[j++] = symbols[i];
3628 else
3629 xfree (symbols[i]);
3630 }
3631 nunique = j;
3632 symbols[j - 1]->next = NULL;
3633
3634 /* Rebuild the linked list. */
3635 for (i = 0; i < nunique - 1; i++)
3636 symbols[i]->next = symbols[i + 1];
3637 symbols[nunique - 1]->next = NULL;
3638
3639 *new_head = symbols[0];
3640 *new_tail = symbols[nunique - 1];
3641 xfree (symbols);
3642 }
3643
3644 /* An object of this type is passed as the user_data to the
3645 expand_symtabs_matching method. */
3646 struct search_symbols_data
3647 {
3648 int nfiles;
3649 const char **files;
3650
3651 /* It is true if PREG contains valid data, false otherwise. */
3652 unsigned preg_p : 1;
3653 regex_t preg;
3654 };
3655
3656 /* A callback for expand_symtabs_matching. */
3657
3658 static int
3659 search_symbols_file_matches (const char *filename, void *user_data,
3660 int basenames)
3661 {
3662 struct search_symbols_data *data = user_data;
3663
3664 return file_matches (filename, data->files, data->nfiles, basenames);
3665 }
3666
3667 /* A callback for expand_symtabs_matching. */
3668
3669 static int
3670 search_symbols_name_matches (const char *symname, void *user_data)
3671 {
3672 struct search_symbols_data *data = user_data;
3673
3674 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3675 }
3676
3677 /* Search the symbol table for matches to the regular expression REGEXP,
3678 returning the results in *MATCHES.
3679
3680 Only symbols of KIND are searched:
3681 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3682 and constants (enums)
3683 FUNCTIONS_DOMAIN - search all functions
3684 TYPES_DOMAIN - search all type names
3685 ALL_DOMAIN - an internal error for this function
3686
3687 free_search_symbols should be called when *MATCHES is no longer needed.
3688
3689 Within each file the results are sorted locally; each symtab's global and
3690 static blocks are separately alphabetized.
3691 Duplicate entries are removed. */
3692
3693 void
3694 search_symbols (const char *regexp, enum search_domain kind,
3695 int nfiles, const char *files[],
3696 struct symbol_search **matches)
3697 {
3698 struct compunit_symtab *cust;
3699 const struct blockvector *bv;
3700 struct block *b;
3701 int i = 0;
3702 struct block_iterator iter;
3703 struct symbol *sym;
3704 struct objfile *objfile;
3705 struct minimal_symbol *msymbol;
3706 int found_misc = 0;
3707 static const enum minimal_symbol_type types[]
3708 = {mst_data, mst_text, mst_abs};
3709 static const enum minimal_symbol_type types2[]
3710 = {mst_bss, mst_file_text, mst_abs};
3711 static const enum minimal_symbol_type types3[]
3712 = {mst_file_data, mst_solib_trampoline, mst_abs};
3713 static const enum minimal_symbol_type types4[]
3714 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3715 enum minimal_symbol_type ourtype;
3716 enum minimal_symbol_type ourtype2;
3717 enum minimal_symbol_type ourtype3;
3718 enum minimal_symbol_type ourtype4;
3719 struct symbol_search *found;
3720 struct symbol_search *tail;
3721 struct search_symbols_data datum;
3722 int nfound;
3723
3724 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3725 CLEANUP_CHAIN is freed only in the case of an error. */
3726 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3727 struct cleanup *retval_chain;
3728
3729 gdb_assert (kind <= TYPES_DOMAIN);
3730
3731 ourtype = types[kind];
3732 ourtype2 = types2[kind];
3733 ourtype3 = types3[kind];
3734 ourtype4 = types4[kind];
3735
3736 *matches = NULL;
3737 datum.preg_p = 0;
3738
3739 if (regexp != NULL)
3740 {
3741 /* Make sure spacing is right for C++ operators.
3742 This is just a courtesy to make the matching less sensitive
3743 to how many spaces the user leaves between 'operator'
3744 and <TYPENAME> or <OPERATOR>. */
3745 const char *opend;
3746 const char *opname = operator_chars (regexp, &opend);
3747 int errcode;
3748
3749 if (*opname)
3750 {
3751 int fix = -1; /* -1 means ok; otherwise number of
3752 spaces needed. */
3753
3754 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3755 {
3756 /* There should 1 space between 'operator' and 'TYPENAME'. */
3757 if (opname[-1] != ' ' || opname[-2] == ' ')
3758 fix = 1;
3759 }
3760 else
3761 {
3762 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3763 if (opname[-1] == ' ')
3764 fix = 0;
3765 }
3766 /* If wrong number of spaces, fix it. */
3767 if (fix >= 0)
3768 {
3769 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3770
3771 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3772 regexp = tmp;
3773 }
3774 }
3775
3776 errcode = regcomp (&datum.preg, regexp,
3777 REG_NOSUB | (case_sensitivity == case_sensitive_off
3778 ? REG_ICASE : 0));
3779 if (errcode != 0)
3780 {
3781 char *err = get_regcomp_error (errcode, &datum.preg);
3782
3783 make_cleanup (xfree, err);
3784 error (_("Invalid regexp (%s): %s"), err, regexp);
3785 }
3786 datum.preg_p = 1;
3787 make_regfree_cleanup (&datum.preg);
3788 }
3789
3790 /* Search through the partial symtabs *first* for all symbols
3791 matching the regexp. That way we don't have to reproduce all of
3792 the machinery below. */
3793
3794 datum.nfiles = nfiles;
3795 datum.files = files;
3796 expand_symtabs_matching ((nfiles == 0
3797 ? NULL
3798 : search_symbols_file_matches),
3799 search_symbols_name_matches,
3800 kind, &datum);
3801
3802 /* Here, we search through the minimal symbol tables for functions
3803 and variables that match, and force their symbols to be read.
3804 This is in particular necessary for demangled variable names,
3805 which are no longer put into the partial symbol tables.
3806 The symbol will then be found during the scan of symtabs below.
3807
3808 For functions, find_pc_symtab should succeed if we have debug info
3809 for the function, for variables we have to call
3810 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3811 has debug info.
3812 If the lookup fails, set found_misc so that we will rescan to print
3813 any matching symbols without debug info.
3814 We only search the objfile the msymbol came from, we no longer search
3815 all objfiles. In large programs (1000s of shared libs) searching all
3816 objfiles is not worth the pain. */
3817
3818 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3819 {
3820 ALL_MSYMBOLS (objfile, msymbol)
3821 {
3822 QUIT;
3823
3824 if (msymbol->created_by_gdb)
3825 continue;
3826
3827 if (MSYMBOL_TYPE (msymbol) == ourtype
3828 || MSYMBOL_TYPE (msymbol) == ourtype2
3829 || MSYMBOL_TYPE (msymbol) == ourtype3
3830 || MSYMBOL_TYPE (msymbol) == ourtype4)
3831 {
3832 if (!datum.preg_p
3833 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3834 NULL, 0) == 0)
3835 {
3836 /* Note: An important side-effect of these lookup functions
3837 is to expand the symbol table if msymbol is found, for the
3838 benefit of the next loop on ALL_COMPUNITS. */
3839 if (kind == FUNCTIONS_DOMAIN
3840 ? (find_pc_compunit_symtab
3841 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
3842 : (lookup_symbol_in_objfile_from_linkage_name
3843 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3844 == NULL))
3845 found_misc = 1;
3846 }
3847 }
3848 }
3849 }
3850
3851 found = NULL;
3852 tail = NULL;
3853 nfound = 0;
3854 retval_chain = make_cleanup_free_search_symbols (&found);
3855
3856 ALL_COMPUNITS (objfile, cust)
3857 {
3858 bv = COMPUNIT_BLOCKVECTOR (cust);
3859 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3860 {
3861 b = BLOCKVECTOR_BLOCK (bv, i);
3862 ALL_BLOCK_SYMBOLS (b, iter, sym)
3863 {
3864 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3865
3866 QUIT;
3867
3868 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3869 a substring of symtab_to_fullname as it may contain "./" etc. */
3870 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3871 || ((basenames_may_differ
3872 || file_matches (lbasename (real_symtab->filename),
3873 files, nfiles, 1))
3874 && file_matches (symtab_to_fullname (real_symtab),
3875 files, nfiles, 0)))
3876 && ((!datum.preg_p
3877 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3878 NULL, 0) == 0)
3879 && ((kind == VARIABLES_DOMAIN
3880 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3881 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3882 && SYMBOL_CLASS (sym) != LOC_BLOCK
3883 /* LOC_CONST can be used for more than just enums,
3884 e.g., c++ static const members.
3885 We only want to skip enums here. */
3886 && !(SYMBOL_CLASS (sym) == LOC_CONST
3887 && (TYPE_CODE (SYMBOL_TYPE (sym))
3888 == TYPE_CODE_ENUM)))
3889 || (kind == FUNCTIONS_DOMAIN
3890 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3891 || (kind == TYPES_DOMAIN
3892 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3893 {
3894 /* match */
3895 struct symbol_search *psr = (struct symbol_search *)
3896 xmalloc (sizeof (struct symbol_search));
3897 psr->block = i;
3898 psr->symbol = sym;
3899 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3900 psr->next = NULL;
3901 if (tail == NULL)
3902 found = psr;
3903 else
3904 tail->next = psr;
3905 tail = psr;
3906 nfound ++;
3907 }
3908 }
3909 }
3910 }
3911
3912 if (found != NULL)
3913 {
3914 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3915 /* Note: nfound is no longer useful beyond this point. */
3916 }
3917
3918 /* If there are no eyes, avoid all contact. I mean, if there are
3919 no debug symbols, then add matching minsyms. */
3920
3921 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3922 {
3923 ALL_MSYMBOLS (objfile, msymbol)
3924 {
3925 QUIT;
3926
3927 if (msymbol->created_by_gdb)
3928 continue;
3929
3930 if (MSYMBOL_TYPE (msymbol) == ourtype
3931 || MSYMBOL_TYPE (msymbol) == ourtype2
3932 || MSYMBOL_TYPE (msymbol) == ourtype3
3933 || MSYMBOL_TYPE (msymbol) == ourtype4)
3934 {
3935 if (!datum.preg_p
3936 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3937 NULL, 0) == 0)
3938 {
3939 /* For functions we can do a quick check of whether the
3940 symbol might be found via find_pc_symtab. */
3941 if (kind != FUNCTIONS_DOMAIN
3942 || (find_pc_compunit_symtab
3943 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
3944 {
3945 if (lookup_symbol_in_objfile_from_linkage_name
3946 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3947 == NULL)
3948 {
3949 /* match */
3950 struct symbol_search *psr = (struct symbol_search *)
3951 xmalloc (sizeof (struct symbol_search));
3952 psr->block = i;
3953 psr->msymbol.minsym = msymbol;
3954 psr->msymbol.objfile = objfile;
3955 psr->symbol = NULL;
3956 psr->next = NULL;
3957 if (tail == NULL)
3958 found = psr;
3959 else
3960 tail->next = psr;
3961 tail = psr;
3962 }
3963 }
3964 }
3965 }
3966 }
3967 }
3968
3969 discard_cleanups (retval_chain);
3970 do_cleanups (old_chain);
3971 *matches = found;
3972 }
3973
3974 /* Helper function for symtab_symbol_info, this function uses
3975 the data returned from search_symbols() to print information
3976 regarding the match to gdb_stdout. */
3977
3978 static void
3979 print_symbol_info (enum search_domain kind,
3980 struct symbol *sym,
3981 int block, const char *last)
3982 {
3983 struct symtab *s = SYMBOL_SYMTAB (sym);
3984 const char *s_filename = symtab_to_filename_for_display (s);
3985
3986 if (last == NULL || filename_cmp (last, s_filename) != 0)
3987 {
3988 fputs_filtered ("\nFile ", gdb_stdout);
3989 fputs_filtered (s_filename, gdb_stdout);
3990 fputs_filtered (":\n", gdb_stdout);
3991 }
3992
3993 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3994 printf_filtered ("static ");
3995
3996 /* Typedef that is not a C++ class. */
3997 if (kind == TYPES_DOMAIN
3998 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3999 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4000 /* variable, func, or typedef-that-is-c++-class. */
4001 else if (kind < TYPES_DOMAIN
4002 || (kind == TYPES_DOMAIN
4003 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4004 {
4005 type_print (SYMBOL_TYPE (sym),
4006 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4007 ? "" : SYMBOL_PRINT_NAME (sym)),
4008 gdb_stdout, 0);
4009
4010 printf_filtered (";\n");
4011 }
4012 }
4013
4014 /* This help function for symtab_symbol_info() prints information
4015 for non-debugging symbols to gdb_stdout. */
4016
4017 static void
4018 print_msymbol_info (struct bound_minimal_symbol msymbol)
4019 {
4020 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4021 char *tmp;
4022
4023 if (gdbarch_addr_bit (gdbarch) <= 32)
4024 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4025 & (CORE_ADDR) 0xffffffff,
4026 8);
4027 else
4028 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4029 16);
4030 printf_filtered ("%s %s\n",
4031 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4032 }
4033
4034 /* This is the guts of the commands "info functions", "info types", and
4035 "info variables". It calls search_symbols to find all matches and then
4036 print_[m]symbol_info to print out some useful information about the
4037 matches. */
4038
4039 static void
4040 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4041 {
4042 static const char * const classnames[] =
4043 {"variable", "function", "type"};
4044 struct symbol_search *symbols;
4045 struct symbol_search *p;
4046 struct cleanup *old_chain;
4047 const char *last_filename = NULL;
4048 int first = 1;
4049
4050 gdb_assert (kind <= TYPES_DOMAIN);
4051
4052 /* Must make sure that if we're interrupted, symbols gets freed. */
4053 search_symbols (regexp, kind, 0, NULL, &symbols);
4054 old_chain = make_cleanup_free_search_symbols (&symbols);
4055
4056 if (regexp != NULL)
4057 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4058 classnames[kind], regexp);
4059 else
4060 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4061
4062 for (p = symbols; p != NULL; p = p->next)
4063 {
4064 QUIT;
4065
4066 if (p->msymbol.minsym != NULL)
4067 {
4068 if (first)
4069 {
4070 printf_filtered (_("\nNon-debugging symbols:\n"));
4071 first = 0;
4072 }
4073 print_msymbol_info (p->msymbol);
4074 }
4075 else
4076 {
4077 print_symbol_info (kind,
4078 p->symbol,
4079 p->block,
4080 last_filename);
4081 last_filename
4082 = symtab_to_filename_for_display (SYMBOL_SYMTAB (p->symbol));
4083 }
4084 }
4085
4086 do_cleanups (old_chain);
4087 }
4088
4089 static void
4090 variables_info (char *regexp, int from_tty)
4091 {
4092 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4093 }
4094
4095 static void
4096 functions_info (char *regexp, int from_tty)
4097 {
4098 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4099 }
4100
4101
4102 static void
4103 types_info (char *regexp, int from_tty)
4104 {
4105 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4106 }
4107
4108 /* Breakpoint all functions matching regular expression. */
4109
4110 void
4111 rbreak_command_wrapper (char *regexp, int from_tty)
4112 {
4113 rbreak_command (regexp, from_tty);
4114 }
4115
4116 /* A cleanup function that calls end_rbreak_breakpoints. */
4117
4118 static void
4119 do_end_rbreak_breakpoints (void *ignore)
4120 {
4121 end_rbreak_breakpoints ();
4122 }
4123
4124 static void
4125 rbreak_command (char *regexp, int from_tty)
4126 {
4127 struct symbol_search *ss;
4128 struct symbol_search *p;
4129 struct cleanup *old_chain;
4130 char *string = NULL;
4131 int len = 0;
4132 const char **files = NULL;
4133 const char *file_name;
4134 int nfiles = 0;
4135
4136 if (regexp)
4137 {
4138 char *colon = strchr (regexp, ':');
4139
4140 if (colon && *(colon + 1) != ':')
4141 {
4142 int colon_index;
4143 char *local_name;
4144
4145 colon_index = colon - regexp;
4146 local_name = alloca (colon_index + 1);
4147 memcpy (local_name, regexp, colon_index);
4148 local_name[colon_index--] = 0;
4149 while (isspace (local_name[colon_index]))
4150 local_name[colon_index--] = 0;
4151 file_name = local_name;
4152 files = &file_name;
4153 nfiles = 1;
4154 regexp = skip_spaces (colon + 1);
4155 }
4156 }
4157
4158 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4159 old_chain = make_cleanup_free_search_symbols (&ss);
4160 make_cleanup (free_current_contents, &string);
4161
4162 start_rbreak_breakpoints ();
4163 make_cleanup (do_end_rbreak_breakpoints, NULL);
4164 for (p = ss; p != NULL; p = p->next)
4165 {
4166 if (p->msymbol.minsym == NULL)
4167 {
4168 struct symtab *symtab = SYMBOL_SYMTAB (p->symbol);
4169 const char *fullname = symtab_to_fullname (symtab);
4170
4171 int newlen = (strlen (fullname)
4172 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4173 + 4);
4174
4175 if (newlen > len)
4176 {
4177 string = xrealloc (string, newlen);
4178 len = newlen;
4179 }
4180 strcpy (string, fullname);
4181 strcat (string, ":'");
4182 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4183 strcat (string, "'");
4184 break_command (string, from_tty);
4185 print_symbol_info (FUNCTIONS_DOMAIN,
4186 p->symbol,
4187 p->block,
4188 symtab_to_filename_for_display (symtab));
4189 }
4190 else
4191 {
4192 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4193
4194 if (newlen > len)
4195 {
4196 string = xrealloc (string, newlen);
4197 len = newlen;
4198 }
4199 strcpy (string, "'");
4200 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4201 strcat (string, "'");
4202
4203 break_command (string, from_tty);
4204 printf_filtered ("<function, no debug info> %s;\n",
4205 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4206 }
4207 }
4208
4209 do_cleanups (old_chain);
4210 }
4211 \f
4212
4213 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4214
4215 Either sym_text[sym_text_len] != '(' and then we search for any
4216 symbol starting with SYM_TEXT text.
4217
4218 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4219 be terminated at that point. Partial symbol tables do not have parameters
4220 information. */
4221
4222 static int
4223 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4224 {
4225 int (*ncmp) (const char *, const char *, size_t);
4226
4227 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4228
4229 if (ncmp (name, sym_text, sym_text_len) != 0)
4230 return 0;
4231
4232 if (sym_text[sym_text_len] == '(')
4233 {
4234 /* User searches for `name(someth...'. Require NAME to be terminated.
4235 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4236 present but accept even parameters presence. In this case this
4237 function is in fact strcmp_iw but whitespace skipping is not supported
4238 for tab completion. */
4239
4240 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4241 return 0;
4242 }
4243
4244 return 1;
4245 }
4246
4247 /* Free any memory associated with a completion list. */
4248
4249 static void
4250 free_completion_list (VEC (char_ptr) **list_ptr)
4251 {
4252 int i;
4253 char *p;
4254
4255 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4256 xfree (p);
4257 VEC_free (char_ptr, *list_ptr);
4258 }
4259
4260 /* Callback for make_cleanup. */
4261
4262 static void
4263 do_free_completion_list (void *list)
4264 {
4265 free_completion_list (list);
4266 }
4267
4268 /* Helper routine for make_symbol_completion_list. */
4269
4270 static VEC (char_ptr) *return_val;
4271
4272 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4273 completion_list_add_name \
4274 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4275
4276 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4277 completion_list_add_name \
4278 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4279
4280 /* Test to see if the symbol specified by SYMNAME (which is already
4281 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4282 characters. If so, add it to the current completion list. */
4283
4284 static void
4285 completion_list_add_name (const char *symname,
4286 const char *sym_text, int sym_text_len,
4287 const char *text, const char *word)
4288 {
4289 /* Clip symbols that cannot match. */
4290 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4291 return;
4292
4293 /* We have a match for a completion, so add SYMNAME to the current list
4294 of matches. Note that the name is moved to freshly malloc'd space. */
4295
4296 {
4297 char *new;
4298
4299 if (word == sym_text)
4300 {
4301 new = xmalloc (strlen (symname) + 5);
4302 strcpy (new, symname);
4303 }
4304 else if (word > sym_text)
4305 {
4306 /* Return some portion of symname. */
4307 new = xmalloc (strlen (symname) + 5);
4308 strcpy (new, symname + (word - sym_text));
4309 }
4310 else
4311 {
4312 /* Return some of SYM_TEXT plus symname. */
4313 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4314 strncpy (new, word, sym_text - word);
4315 new[sym_text - word] = '\0';
4316 strcat (new, symname);
4317 }
4318
4319 VEC_safe_push (char_ptr, return_val, new);
4320 }
4321 }
4322
4323 /* ObjC: In case we are completing on a selector, look as the msymbol
4324 again and feed all the selectors into the mill. */
4325
4326 static void
4327 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4328 const char *sym_text, int sym_text_len,
4329 const char *text, const char *word)
4330 {
4331 static char *tmp = NULL;
4332 static unsigned int tmplen = 0;
4333
4334 const char *method, *category, *selector;
4335 char *tmp2 = NULL;
4336
4337 method = MSYMBOL_NATURAL_NAME (msymbol);
4338
4339 /* Is it a method? */
4340 if ((method[0] != '-') && (method[0] != '+'))
4341 return;
4342
4343 if (sym_text[0] == '[')
4344 /* Complete on shortened method method. */
4345 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4346
4347 while ((strlen (method) + 1) >= tmplen)
4348 {
4349 if (tmplen == 0)
4350 tmplen = 1024;
4351 else
4352 tmplen *= 2;
4353 tmp = xrealloc (tmp, tmplen);
4354 }
4355 selector = strchr (method, ' ');
4356 if (selector != NULL)
4357 selector++;
4358
4359 category = strchr (method, '(');
4360
4361 if ((category != NULL) && (selector != NULL))
4362 {
4363 memcpy (tmp, method, (category - method));
4364 tmp[category - method] = ' ';
4365 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4366 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4367 if (sym_text[0] == '[')
4368 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4369 }
4370
4371 if (selector != NULL)
4372 {
4373 /* Complete on selector only. */
4374 strcpy (tmp, selector);
4375 tmp2 = strchr (tmp, ']');
4376 if (tmp2 != NULL)
4377 *tmp2 = '\0';
4378
4379 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4380 }
4381 }
4382
4383 /* Break the non-quoted text based on the characters which are in
4384 symbols. FIXME: This should probably be language-specific. */
4385
4386 static const char *
4387 language_search_unquoted_string (const char *text, const char *p)
4388 {
4389 for (; p > text; --p)
4390 {
4391 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4392 continue;
4393 else
4394 {
4395 if ((current_language->la_language == language_objc))
4396 {
4397 if (p[-1] == ':') /* Might be part of a method name. */
4398 continue;
4399 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4400 p -= 2; /* Beginning of a method name. */
4401 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4402 { /* Might be part of a method name. */
4403 const char *t = p;
4404
4405 /* Seeing a ' ' or a '(' is not conclusive evidence
4406 that we are in the middle of a method name. However,
4407 finding "-[" or "+[" should be pretty un-ambiguous.
4408 Unfortunately we have to find it now to decide. */
4409
4410 while (t > text)
4411 if (isalnum (t[-1]) || t[-1] == '_' ||
4412 t[-1] == ' ' || t[-1] == ':' ||
4413 t[-1] == '(' || t[-1] == ')')
4414 --t;
4415 else
4416 break;
4417
4418 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4419 p = t - 2; /* Method name detected. */
4420 /* Else we leave with p unchanged. */
4421 }
4422 }
4423 break;
4424 }
4425 }
4426 return p;
4427 }
4428
4429 static void
4430 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4431 int sym_text_len, const char *text,
4432 const char *word)
4433 {
4434 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4435 {
4436 struct type *t = SYMBOL_TYPE (sym);
4437 enum type_code c = TYPE_CODE (t);
4438 int j;
4439
4440 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4441 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4442 if (TYPE_FIELD_NAME (t, j))
4443 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4444 sym_text, sym_text_len, text, word);
4445 }
4446 }
4447
4448 /* Type of the user_data argument passed to add_macro_name or
4449 symbol_completion_matcher. The contents are simply whatever is
4450 needed by completion_list_add_name. */
4451 struct add_name_data
4452 {
4453 const char *sym_text;
4454 int sym_text_len;
4455 const char *text;
4456 const char *word;
4457 };
4458
4459 /* A callback used with macro_for_each and macro_for_each_in_scope.
4460 This adds a macro's name to the current completion list. */
4461
4462 static void
4463 add_macro_name (const char *name, const struct macro_definition *ignore,
4464 struct macro_source_file *ignore2, int ignore3,
4465 void *user_data)
4466 {
4467 struct add_name_data *datum = (struct add_name_data *) user_data;
4468
4469 completion_list_add_name (name,
4470 datum->sym_text, datum->sym_text_len,
4471 datum->text, datum->word);
4472 }
4473
4474 /* A callback for expand_symtabs_matching. */
4475
4476 static int
4477 symbol_completion_matcher (const char *name, void *user_data)
4478 {
4479 struct add_name_data *datum = (struct add_name_data *) user_data;
4480
4481 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4482 }
4483
4484 VEC (char_ptr) *
4485 default_make_symbol_completion_list_break_on (const char *text,
4486 const char *word,
4487 const char *break_on,
4488 enum type_code code)
4489 {
4490 /* Problem: All of the symbols have to be copied because readline
4491 frees them. I'm not going to worry about this; hopefully there
4492 won't be that many. */
4493
4494 struct symbol *sym;
4495 struct compunit_symtab *cust;
4496 struct minimal_symbol *msymbol;
4497 struct objfile *objfile;
4498 const struct block *b;
4499 const struct block *surrounding_static_block, *surrounding_global_block;
4500 struct block_iterator iter;
4501 /* The symbol we are completing on. Points in same buffer as text. */
4502 const char *sym_text;
4503 /* Length of sym_text. */
4504 int sym_text_len;
4505 struct add_name_data datum;
4506 struct cleanup *back_to;
4507
4508 /* Now look for the symbol we are supposed to complete on. */
4509 {
4510 const char *p;
4511 char quote_found;
4512 const char *quote_pos = NULL;
4513
4514 /* First see if this is a quoted string. */
4515 quote_found = '\0';
4516 for (p = text; *p != '\0'; ++p)
4517 {
4518 if (quote_found != '\0')
4519 {
4520 if (*p == quote_found)
4521 /* Found close quote. */
4522 quote_found = '\0';
4523 else if (*p == '\\' && p[1] == quote_found)
4524 /* A backslash followed by the quote character
4525 doesn't end the string. */
4526 ++p;
4527 }
4528 else if (*p == '\'' || *p == '"')
4529 {
4530 quote_found = *p;
4531 quote_pos = p;
4532 }
4533 }
4534 if (quote_found == '\'')
4535 /* A string within single quotes can be a symbol, so complete on it. */
4536 sym_text = quote_pos + 1;
4537 else if (quote_found == '"')
4538 /* A double-quoted string is never a symbol, nor does it make sense
4539 to complete it any other way. */
4540 {
4541 return NULL;
4542 }
4543 else
4544 {
4545 /* It is not a quoted string. Break it based on the characters
4546 which are in symbols. */
4547 while (p > text)
4548 {
4549 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4550 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4551 --p;
4552 else
4553 break;
4554 }
4555 sym_text = p;
4556 }
4557 }
4558
4559 sym_text_len = strlen (sym_text);
4560
4561 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4562
4563 if (current_language->la_language == language_cplus
4564 || current_language->la_language == language_java
4565 || current_language->la_language == language_fortran)
4566 {
4567 /* These languages may have parameters entered by user but they are never
4568 present in the partial symbol tables. */
4569
4570 const char *cs = memchr (sym_text, '(', sym_text_len);
4571
4572 if (cs)
4573 sym_text_len = cs - sym_text;
4574 }
4575 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4576
4577 return_val = NULL;
4578 back_to = make_cleanup (do_free_completion_list, &return_val);
4579
4580 datum.sym_text = sym_text;
4581 datum.sym_text_len = sym_text_len;
4582 datum.text = text;
4583 datum.word = word;
4584
4585 /* Look through the partial symtabs for all symbols which begin
4586 by matching SYM_TEXT. Expand all CUs that you find to the list.
4587 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4588 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4589 &datum);
4590
4591 /* At this point scan through the misc symbol vectors and add each
4592 symbol you find to the list. Eventually we want to ignore
4593 anything that isn't a text symbol (everything else will be
4594 handled by the psymtab code above). */
4595
4596 if (code == TYPE_CODE_UNDEF)
4597 {
4598 ALL_MSYMBOLS (objfile, msymbol)
4599 {
4600 QUIT;
4601 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4602 word);
4603
4604 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4605 word);
4606 }
4607 }
4608
4609 /* Search upwards from currently selected frame (so that we can
4610 complete on local vars). Also catch fields of types defined in
4611 this places which match our text string. Only complete on types
4612 visible from current context. */
4613
4614 b = get_selected_block (0);
4615 surrounding_static_block = block_static_block (b);
4616 surrounding_global_block = block_global_block (b);
4617 if (surrounding_static_block != NULL)
4618 while (b != surrounding_static_block)
4619 {
4620 QUIT;
4621
4622 ALL_BLOCK_SYMBOLS (b, iter, sym)
4623 {
4624 if (code == TYPE_CODE_UNDEF)
4625 {
4626 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4627 word);
4628 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4629 word);
4630 }
4631 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4632 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4633 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4634 word);
4635 }
4636
4637 /* Stop when we encounter an enclosing function. Do not stop for
4638 non-inlined functions - the locals of the enclosing function
4639 are in scope for a nested function. */
4640 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4641 break;
4642 b = BLOCK_SUPERBLOCK (b);
4643 }
4644
4645 /* Add fields from the file's types; symbols will be added below. */
4646
4647 if (code == TYPE_CODE_UNDEF)
4648 {
4649 if (surrounding_static_block != NULL)
4650 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4651 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4652
4653 if (surrounding_global_block != NULL)
4654 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4655 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4656 }
4657
4658 /* Go through the symtabs and check the externs and statics for
4659 symbols which match. */
4660
4661 ALL_COMPUNITS (objfile, cust)
4662 {
4663 QUIT;
4664 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), GLOBAL_BLOCK);
4665 ALL_BLOCK_SYMBOLS (b, iter, sym)
4666 {
4667 if (code == TYPE_CODE_UNDEF
4668 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4669 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4670 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4671 }
4672 }
4673
4674 ALL_COMPUNITS (objfile, cust)
4675 {
4676 QUIT;
4677 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), STATIC_BLOCK);
4678 ALL_BLOCK_SYMBOLS (b, iter, sym)
4679 {
4680 if (code == TYPE_CODE_UNDEF
4681 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4682 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4683 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4684 }
4685 }
4686
4687 /* Skip macros if we are completing a struct tag -- arguable but
4688 usually what is expected. */
4689 if (current_language->la_macro_expansion == macro_expansion_c
4690 && code == TYPE_CODE_UNDEF)
4691 {
4692 struct macro_scope *scope;
4693
4694 /* Add any macros visible in the default scope. Note that this
4695 may yield the occasional wrong result, because an expression
4696 might be evaluated in a scope other than the default. For
4697 example, if the user types "break file:line if <TAB>", the
4698 resulting expression will be evaluated at "file:line" -- but
4699 at there does not seem to be a way to detect this at
4700 completion time. */
4701 scope = default_macro_scope ();
4702 if (scope)
4703 {
4704 macro_for_each_in_scope (scope->file, scope->line,
4705 add_macro_name, &datum);
4706 xfree (scope);
4707 }
4708
4709 /* User-defined macros are always visible. */
4710 macro_for_each (macro_user_macros, add_macro_name, &datum);
4711 }
4712
4713 discard_cleanups (back_to);
4714 return (return_val);
4715 }
4716
4717 VEC (char_ptr) *
4718 default_make_symbol_completion_list (const char *text, const char *word,
4719 enum type_code code)
4720 {
4721 return default_make_symbol_completion_list_break_on (text, word, "", code);
4722 }
4723
4724 /* Return a vector of all symbols (regardless of class) which begin by
4725 matching TEXT. If the answer is no symbols, then the return value
4726 is NULL. */
4727
4728 VEC (char_ptr) *
4729 make_symbol_completion_list (const char *text, const char *word)
4730 {
4731 return current_language->la_make_symbol_completion_list (text, word,
4732 TYPE_CODE_UNDEF);
4733 }
4734
4735 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4736 symbols whose type code is CODE. */
4737
4738 VEC (char_ptr) *
4739 make_symbol_completion_type (const char *text, const char *word,
4740 enum type_code code)
4741 {
4742 gdb_assert (code == TYPE_CODE_UNION
4743 || code == TYPE_CODE_STRUCT
4744 || code == TYPE_CODE_ENUM);
4745 return current_language->la_make_symbol_completion_list (text, word, code);
4746 }
4747
4748 /* Like make_symbol_completion_list, but suitable for use as a
4749 completion function. */
4750
4751 VEC (char_ptr) *
4752 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4753 const char *text, const char *word)
4754 {
4755 return make_symbol_completion_list (text, word);
4756 }
4757
4758 /* Like make_symbol_completion_list, but returns a list of symbols
4759 defined in a source file FILE. */
4760
4761 VEC (char_ptr) *
4762 make_file_symbol_completion_list (const char *text, const char *word,
4763 const char *srcfile)
4764 {
4765 struct symbol *sym;
4766 struct symtab *s;
4767 struct block *b;
4768 struct block_iterator iter;
4769 /* The symbol we are completing on. Points in same buffer as text. */
4770 const char *sym_text;
4771 /* Length of sym_text. */
4772 int sym_text_len;
4773
4774 /* Now look for the symbol we are supposed to complete on.
4775 FIXME: This should be language-specific. */
4776 {
4777 const char *p;
4778 char quote_found;
4779 const char *quote_pos = NULL;
4780
4781 /* First see if this is a quoted string. */
4782 quote_found = '\0';
4783 for (p = text; *p != '\0'; ++p)
4784 {
4785 if (quote_found != '\0')
4786 {
4787 if (*p == quote_found)
4788 /* Found close quote. */
4789 quote_found = '\0';
4790 else if (*p == '\\' && p[1] == quote_found)
4791 /* A backslash followed by the quote character
4792 doesn't end the string. */
4793 ++p;
4794 }
4795 else if (*p == '\'' || *p == '"')
4796 {
4797 quote_found = *p;
4798 quote_pos = p;
4799 }
4800 }
4801 if (quote_found == '\'')
4802 /* A string within single quotes can be a symbol, so complete on it. */
4803 sym_text = quote_pos + 1;
4804 else if (quote_found == '"')
4805 /* A double-quoted string is never a symbol, nor does it make sense
4806 to complete it any other way. */
4807 {
4808 return NULL;
4809 }
4810 else
4811 {
4812 /* Not a quoted string. */
4813 sym_text = language_search_unquoted_string (text, p);
4814 }
4815 }
4816
4817 sym_text_len = strlen (sym_text);
4818
4819 return_val = NULL;
4820
4821 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4822 in). */
4823 s = lookup_symtab (srcfile);
4824 if (s == NULL)
4825 {
4826 /* Maybe they typed the file with leading directories, while the
4827 symbol tables record only its basename. */
4828 const char *tail = lbasename (srcfile);
4829
4830 if (tail > srcfile)
4831 s = lookup_symtab (tail);
4832 }
4833
4834 /* If we have no symtab for that file, return an empty list. */
4835 if (s == NULL)
4836 return (return_val);
4837
4838 /* Go through this symtab and check the externs and statics for
4839 symbols which match. */
4840
4841 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
4842 ALL_BLOCK_SYMBOLS (b, iter, sym)
4843 {
4844 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4845 }
4846
4847 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
4848 ALL_BLOCK_SYMBOLS (b, iter, sym)
4849 {
4850 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4851 }
4852
4853 return (return_val);
4854 }
4855
4856 /* A helper function for make_source_files_completion_list. It adds
4857 another file name to a list of possible completions, growing the
4858 list as necessary. */
4859
4860 static void
4861 add_filename_to_list (const char *fname, const char *text, const char *word,
4862 VEC (char_ptr) **list)
4863 {
4864 char *new;
4865 size_t fnlen = strlen (fname);
4866
4867 if (word == text)
4868 {
4869 /* Return exactly fname. */
4870 new = xmalloc (fnlen + 5);
4871 strcpy (new, fname);
4872 }
4873 else if (word > text)
4874 {
4875 /* Return some portion of fname. */
4876 new = xmalloc (fnlen + 5);
4877 strcpy (new, fname + (word - text));
4878 }
4879 else
4880 {
4881 /* Return some of TEXT plus fname. */
4882 new = xmalloc (fnlen + (text - word) + 5);
4883 strncpy (new, word, text - word);
4884 new[text - word] = '\0';
4885 strcat (new, fname);
4886 }
4887 VEC_safe_push (char_ptr, *list, new);
4888 }
4889
4890 static int
4891 not_interesting_fname (const char *fname)
4892 {
4893 static const char *illegal_aliens[] = {
4894 "_globals_", /* inserted by coff_symtab_read */
4895 NULL
4896 };
4897 int i;
4898
4899 for (i = 0; illegal_aliens[i]; i++)
4900 {
4901 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4902 return 1;
4903 }
4904 return 0;
4905 }
4906
4907 /* An object of this type is passed as the user_data argument to
4908 map_partial_symbol_filenames. */
4909 struct add_partial_filename_data
4910 {
4911 struct filename_seen_cache *filename_seen_cache;
4912 const char *text;
4913 const char *word;
4914 int text_len;
4915 VEC (char_ptr) **list;
4916 };
4917
4918 /* A callback for map_partial_symbol_filenames. */
4919
4920 static void
4921 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4922 void *user_data)
4923 {
4924 struct add_partial_filename_data *data = user_data;
4925
4926 if (not_interesting_fname (filename))
4927 return;
4928 if (!filename_seen (data->filename_seen_cache, filename, 1)
4929 && filename_ncmp (filename, data->text, data->text_len) == 0)
4930 {
4931 /* This file matches for a completion; add it to the
4932 current list of matches. */
4933 add_filename_to_list (filename, data->text, data->word, data->list);
4934 }
4935 else
4936 {
4937 const char *base_name = lbasename (filename);
4938
4939 if (base_name != filename
4940 && !filename_seen (data->filename_seen_cache, base_name, 1)
4941 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4942 add_filename_to_list (base_name, data->text, data->word, data->list);
4943 }
4944 }
4945
4946 /* Return a vector of all source files whose names begin with matching
4947 TEXT. The file names are looked up in the symbol tables of this
4948 program. If the answer is no matchess, then the return value is
4949 NULL. */
4950
4951 VEC (char_ptr) *
4952 make_source_files_completion_list (const char *text, const char *word)
4953 {
4954 struct compunit_symtab *cu;
4955 struct symtab *s;
4956 struct objfile *objfile;
4957 size_t text_len = strlen (text);
4958 VEC (char_ptr) *list = NULL;
4959 const char *base_name;
4960 struct add_partial_filename_data datum;
4961 struct filename_seen_cache *filename_seen_cache;
4962 struct cleanup *back_to, *cache_cleanup;
4963
4964 if (!have_full_symbols () && !have_partial_symbols ())
4965 return list;
4966
4967 back_to = make_cleanup (do_free_completion_list, &list);
4968
4969 filename_seen_cache = create_filename_seen_cache ();
4970 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4971 filename_seen_cache);
4972
4973 ALL_FILETABS (objfile, cu, s)
4974 {
4975 if (not_interesting_fname (s->filename))
4976 continue;
4977 if (!filename_seen (filename_seen_cache, s->filename, 1)
4978 && filename_ncmp (s->filename, text, text_len) == 0)
4979 {
4980 /* This file matches for a completion; add it to the current
4981 list of matches. */
4982 add_filename_to_list (s->filename, text, word, &list);
4983 }
4984 else
4985 {
4986 /* NOTE: We allow the user to type a base name when the
4987 debug info records leading directories, but not the other
4988 way around. This is what subroutines of breakpoint
4989 command do when they parse file names. */
4990 base_name = lbasename (s->filename);
4991 if (base_name != s->filename
4992 && !filename_seen (filename_seen_cache, base_name, 1)
4993 && filename_ncmp (base_name, text, text_len) == 0)
4994 add_filename_to_list (base_name, text, word, &list);
4995 }
4996 }
4997
4998 datum.filename_seen_cache = filename_seen_cache;
4999 datum.text = text;
5000 datum.word = word;
5001 datum.text_len = text_len;
5002 datum.list = &list;
5003 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5004 0 /*need_fullname*/);
5005
5006 do_cleanups (cache_cleanup);
5007 discard_cleanups (back_to);
5008
5009 return list;
5010 }
5011 \f
5012 /* Track MAIN */
5013
5014 /* Return the "main_info" object for the current program space. If
5015 the object has not yet been created, create it and fill in some
5016 default values. */
5017
5018 static struct main_info *
5019 get_main_info (void)
5020 {
5021 struct main_info *info = program_space_data (current_program_space,
5022 main_progspace_key);
5023
5024 if (info == NULL)
5025 {
5026 /* It may seem strange to store the main name in the progspace
5027 and also in whatever objfile happens to see a main name in
5028 its debug info. The reason for this is mainly historical:
5029 gdb returned "main" as the name even if no function named
5030 "main" was defined the program; and this approach lets us
5031 keep compatibility. */
5032 info = XCNEW (struct main_info);
5033 info->language_of_main = language_unknown;
5034 set_program_space_data (current_program_space, main_progspace_key,
5035 info);
5036 }
5037
5038 return info;
5039 }
5040
5041 /* A cleanup to destroy a struct main_info when a progspace is
5042 destroyed. */
5043
5044 static void
5045 main_info_cleanup (struct program_space *pspace, void *data)
5046 {
5047 struct main_info *info = data;
5048
5049 if (info != NULL)
5050 xfree (info->name_of_main);
5051 xfree (info);
5052 }
5053
5054 static void
5055 set_main_name (const char *name, enum language lang)
5056 {
5057 struct main_info *info = get_main_info ();
5058
5059 if (info->name_of_main != NULL)
5060 {
5061 xfree (info->name_of_main);
5062 info->name_of_main = NULL;
5063 info->language_of_main = language_unknown;
5064 }
5065 if (name != NULL)
5066 {
5067 info->name_of_main = xstrdup (name);
5068 info->language_of_main = lang;
5069 }
5070 }
5071
5072 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5073 accordingly. */
5074
5075 static void
5076 find_main_name (void)
5077 {
5078 const char *new_main_name;
5079 struct objfile *objfile;
5080
5081 /* First check the objfiles to see whether a debuginfo reader has
5082 picked up the appropriate main name. Historically the main name
5083 was found in a more or less random way; this approach instead
5084 relies on the order of objfile creation -- which still isn't
5085 guaranteed to get the correct answer, but is just probably more
5086 accurate. */
5087 ALL_OBJFILES (objfile)
5088 {
5089 if (objfile->per_bfd->name_of_main != NULL)
5090 {
5091 set_main_name (objfile->per_bfd->name_of_main,
5092 objfile->per_bfd->language_of_main);
5093 return;
5094 }
5095 }
5096
5097 /* Try to see if the main procedure is in Ada. */
5098 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5099 be to add a new method in the language vector, and call this
5100 method for each language until one of them returns a non-empty
5101 name. This would allow us to remove this hard-coded call to
5102 an Ada function. It is not clear that this is a better approach
5103 at this point, because all methods need to be written in a way
5104 such that false positives never be returned. For instance, it is
5105 important that a method does not return a wrong name for the main
5106 procedure if the main procedure is actually written in a different
5107 language. It is easy to guaranty this with Ada, since we use a
5108 special symbol generated only when the main in Ada to find the name
5109 of the main procedure. It is difficult however to see how this can
5110 be guarantied for languages such as C, for instance. This suggests
5111 that order of call for these methods becomes important, which means
5112 a more complicated approach. */
5113 new_main_name = ada_main_name ();
5114 if (new_main_name != NULL)
5115 {
5116 set_main_name (new_main_name, language_ada);
5117 return;
5118 }
5119
5120 new_main_name = d_main_name ();
5121 if (new_main_name != NULL)
5122 {
5123 set_main_name (new_main_name, language_d);
5124 return;
5125 }
5126
5127 new_main_name = go_main_name ();
5128 if (new_main_name != NULL)
5129 {
5130 set_main_name (new_main_name, language_go);
5131 return;
5132 }
5133
5134 new_main_name = pascal_main_name ();
5135 if (new_main_name != NULL)
5136 {
5137 set_main_name (new_main_name, language_pascal);
5138 return;
5139 }
5140
5141 /* The languages above didn't identify the name of the main procedure.
5142 Fallback to "main". */
5143 set_main_name ("main", language_unknown);
5144 }
5145
5146 char *
5147 main_name (void)
5148 {
5149 struct main_info *info = get_main_info ();
5150
5151 if (info->name_of_main == NULL)
5152 find_main_name ();
5153
5154 return info->name_of_main;
5155 }
5156
5157 /* Return the language of the main function. If it is not known,
5158 return language_unknown. */
5159
5160 enum language
5161 main_language (void)
5162 {
5163 struct main_info *info = get_main_info ();
5164
5165 if (info->name_of_main == NULL)
5166 find_main_name ();
5167
5168 return info->language_of_main;
5169 }
5170
5171 /* Handle ``executable_changed'' events for the symtab module. */
5172
5173 static void
5174 symtab_observer_executable_changed (void)
5175 {
5176 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5177 set_main_name (NULL, language_unknown);
5178 }
5179
5180 /* Return 1 if the supplied producer string matches the ARM RealView
5181 compiler (armcc). */
5182
5183 int
5184 producer_is_realview (const char *producer)
5185 {
5186 static const char *const arm_idents[] = {
5187 "ARM C Compiler, ADS",
5188 "Thumb C Compiler, ADS",
5189 "ARM C++ Compiler, ADS",
5190 "Thumb C++ Compiler, ADS",
5191 "ARM/Thumb C/C++ Compiler, RVCT",
5192 "ARM C/C++ Compiler, RVCT"
5193 };
5194 int i;
5195
5196 if (producer == NULL)
5197 return 0;
5198
5199 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5200 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5201 return 1;
5202
5203 return 0;
5204 }
5205
5206 \f
5207
5208 /* The next index to hand out in response to a registration request. */
5209
5210 static int next_aclass_value = LOC_FINAL_VALUE;
5211
5212 /* The maximum number of "aclass" registrations we support. This is
5213 constant for convenience. */
5214 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5215
5216 /* The objects representing the various "aclass" values. The elements
5217 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5218 elements are those registered at gdb initialization time. */
5219
5220 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5221
5222 /* The globally visible pointer. This is separate from 'symbol_impl'
5223 so that it can be const. */
5224
5225 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5226
5227 /* Make sure we saved enough room in struct symbol. */
5228
5229 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5230
5231 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5232 is the ops vector associated with this index. This returns the new
5233 index, which should be used as the aclass_index field for symbols
5234 of this type. */
5235
5236 int
5237 register_symbol_computed_impl (enum address_class aclass,
5238 const struct symbol_computed_ops *ops)
5239 {
5240 int result = next_aclass_value++;
5241
5242 gdb_assert (aclass == LOC_COMPUTED);
5243 gdb_assert (result < MAX_SYMBOL_IMPLS);
5244 symbol_impl[result].aclass = aclass;
5245 symbol_impl[result].ops_computed = ops;
5246
5247 /* Sanity check OPS. */
5248 gdb_assert (ops != NULL);
5249 gdb_assert (ops->tracepoint_var_ref != NULL);
5250 gdb_assert (ops->describe_location != NULL);
5251 gdb_assert (ops->read_needs_frame != NULL);
5252 gdb_assert (ops->read_variable != NULL);
5253
5254 return result;
5255 }
5256
5257 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5258 OPS is the ops vector associated with this index. This returns the
5259 new index, which should be used as the aclass_index field for symbols
5260 of this type. */
5261
5262 int
5263 register_symbol_block_impl (enum address_class aclass,
5264 const struct symbol_block_ops *ops)
5265 {
5266 int result = next_aclass_value++;
5267
5268 gdb_assert (aclass == LOC_BLOCK);
5269 gdb_assert (result < MAX_SYMBOL_IMPLS);
5270 symbol_impl[result].aclass = aclass;
5271 symbol_impl[result].ops_block = ops;
5272
5273 /* Sanity check OPS. */
5274 gdb_assert (ops != NULL);
5275 gdb_assert (ops->find_frame_base_location != NULL);
5276
5277 return result;
5278 }
5279
5280 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5281 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5282 this index. This returns the new index, which should be used as
5283 the aclass_index field for symbols of this type. */
5284
5285 int
5286 register_symbol_register_impl (enum address_class aclass,
5287 const struct symbol_register_ops *ops)
5288 {
5289 int result = next_aclass_value++;
5290
5291 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5292 gdb_assert (result < MAX_SYMBOL_IMPLS);
5293 symbol_impl[result].aclass = aclass;
5294 symbol_impl[result].ops_register = ops;
5295
5296 return result;
5297 }
5298
5299 /* Initialize elements of 'symbol_impl' for the constants in enum
5300 address_class. */
5301
5302 static void
5303 initialize_ordinary_address_classes (void)
5304 {
5305 int i;
5306
5307 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5308 symbol_impl[i].aclass = i;
5309 }
5310
5311 \f
5312
5313 /* Initialize the symbol SYM. */
5314
5315 void
5316 initialize_symbol (struct symbol *sym)
5317 {
5318 memset (sym, 0, sizeof (*sym));
5319 SYMBOL_SECTION (sym) = -1;
5320 }
5321
5322 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5323 obstack. */
5324
5325 struct symbol *
5326 allocate_symbol (struct objfile *objfile)
5327 {
5328 struct symbol *result;
5329
5330 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5331 SYMBOL_SECTION (result) = -1;
5332
5333 return result;
5334 }
5335
5336 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5337 obstack. */
5338
5339 struct template_symbol *
5340 allocate_template_symbol (struct objfile *objfile)
5341 {
5342 struct template_symbol *result;
5343
5344 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5345 SYMBOL_SECTION (&result->base) = -1;
5346
5347 return result;
5348 }
5349
5350 \f
5351
5352 void
5353 _initialize_symtab (void)
5354 {
5355 initialize_ordinary_address_classes ();
5356
5357 main_progspace_key
5358 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5359
5360 add_info ("variables", variables_info, _("\
5361 All global and static variable names, or those matching REGEXP."));
5362 if (dbx_commands)
5363 add_com ("whereis", class_info, variables_info, _("\
5364 All global and static variable names, or those matching REGEXP."));
5365
5366 add_info ("functions", functions_info,
5367 _("All function names, or those matching REGEXP."));
5368
5369 /* FIXME: This command has at least the following problems:
5370 1. It prints builtin types (in a very strange and confusing fashion).
5371 2. It doesn't print right, e.g. with
5372 typedef struct foo *FOO
5373 type_print prints "FOO" when we want to make it (in this situation)
5374 print "struct foo *".
5375 I also think "ptype" or "whatis" is more likely to be useful (but if
5376 there is much disagreement "info types" can be fixed). */
5377 add_info ("types", types_info,
5378 _("All type names, or those matching REGEXP."));
5379
5380 add_info ("sources", sources_info,
5381 _("Source files in the program."));
5382
5383 add_com ("rbreak", class_breakpoint, rbreak_command,
5384 _("Set a breakpoint for all functions matching REGEXP."));
5385
5386 if (xdb_commands)
5387 {
5388 add_com ("lf", class_info, sources_info,
5389 _("Source files in the program"));
5390 add_com ("lg", class_info, variables_info, _("\
5391 All global and static variable names, or those matching REGEXP."));
5392 }
5393
5394 add_setshow_enum_cmd ("multiple-symbols", no_class,
5395 multiple_symbols_modes, &multiple_symbols_mode,
5396 _("\
5397 Set the debugger behavior when more than one symbol are possible matches\n\
5398 in an expression."), _("\
5399 Show how the debugger handles ambiguities in expressions."), _("\
5400 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5401 NULL, NULL, &setlist, &showlist);
5402
5403 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5404 &basenames_may_differ, _("\
5405 Set whether a source file may have multiple base names."), _("\
5406 Show whether a source file may have multiple base names."), _("\
5407 (A \"base name\" is the name of a file with the directory part removed.\n\
5408 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5409 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5410 before comparing them. Canonicalization is an expensive operation,\n\
5411 but it allows the same file be known by more than one base name.\n\
5412 If not set (the default), all source files are assumed to have just\n\
5413 one base name, and gdb will do file name comparisons more efficiently."),
5414 NULL, NULL,
5415 &setlist, &showlist);
5416
5417 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5418 _("Set debugging of symbol table creation."),
5419 _("Show debugging of symbol table creation."), _("\
5420 When enabled (non-zero), debugging messages are printed when building\n\
5421 symbol tables. A value of 1 (one) normally provides enough information.\n\
5422 A value greater than 1 provides more verbose information."),
5423 NULL,
5424 NULL,
5425 &setdebuglist, &showdebuglist);
5426
5427 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
5428 _("\
5429 Set debugging of symbol lookup."), _("\
5430 Show debugging of symbol lookup."), _("\
5431 When enabled (non-zero), symbol lookups are logged."),
5432 NULL, NULL,
5433 &setdebuglist, &showdebuglist);
5434
5435 observer_attach_executable_changed (symtab_observer_executable_changed);
5436 }
This page took 0.135813 seconds and 5 git commands to generate.