Remove duplicated #include's from GDB
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <string.h>
54 #include <sys/stat.h>
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "psymtab.h"
65 #include "parser-defs.h"
66
67 /* Prototypes for local functions */
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct symbol *lookup_symbol_aux (const char *name,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *is_a_field_of_this);
86
87 static
88 struct symbol *lookup_symbol_aux_local (const char *name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
92
93 static
94 struct symbol *lookup_symbol_aux_symtabs (int block_index,
95 const char *name,
96 const domain_enum domain);
97
98 static
99 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
100 int block_index,
101 const char *name,
102 const domain_enum domain);
103
104 void _initialize_symtab (void);
105
106 /* */
107
108 /* When non-zero, print debugging messages related to symtab creation. */
109 unsigned int symtab_create_debug = 0;
110
111 /* Non-zero if a file may be known by two different basenames.
112 This is the uncommon case, and significantly slows down gdb.
113 Default set to "off" to not slow down the common case. */
114 int basenames_may_differ = 0;
115
116 /* Allow the user to configure the debugger behavior with respect
117 to multiple-choice menus when more than one symbol matches during
118 a symbol lookup. */
119
120 const char multiple_symbols_ask[] = "ask";
121 const char multiple_symbols_all[] = "all";
122 const char multiple_symbols_cancel[] = "cancel";
123 static const char *const multiple_symbols_modes[] =
124 {
125 multiple_symbols_ask,
126 multiple_symbols_all,
127 multiple_symbols_cancel,
128 NULL
129 };
130 static const char *multiple_symbols_mode = multiple_symbols_all;
131
132 /* Read-only accessor to AUTO_SELECT_MODE. */
133
134 const char *
135 multiple_symbols_select_mode (void)
136 {
137 return multiple_symbols_mode;
138 }
139
140 /* Block in which the most recently searched-for symbol was found.
141 Might be better to make this a parameter to lookup_symbol and
142 value_of_this. */
143
144 const struct block *block_found;
145
146 /* Return the name of a domain_enum. */
147
148 const char *
149 domain_name (domain_enum e)
150 {
151 switch (e)
152 {
153 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
154 case VAR_DOMAIN: return "VAR_DOMAIN";
155 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
156 case LABEL_DOMAIN: return "LABEL_DOMAIN";
157 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
158 default: gdb_assert_not_reached ("bad domain_enum");
159 }
160 }
161
162 /* Return the name of a search_domain . */
163
164 const char *
165 search_domain_name (enum search_domain e)
166 {
167 switch (e)
168 {
169 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
170 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
171 case TYPES_DOMAIN: return "TYPES_DOMAIN";
172 case ALL_DOMAIN: return "ALL_DOMAIN";
173 default: gdb_assert_not_reached ("bad search_domain");
174 }
175 }
176
177 /* Set the primary field in SYMTAB. */
178
179 void
180 set_symtab_primary (struct symtab *symtab, int primary)
181 {
182 symtab->primary = primary;
183
184 if (symtab_create_debug && primary)
185 {
186 fprintf_unfiltered (gdb_stdlog,
187 "Created primary symtab %s for %s.\n",
188 host_address_to_string (symtab),
189 symtab_to_filename_for_display (symtab));
190 }
191 }
192
193 /* See whether FILENAME matches SEARCH_NAME using the rule that we
194 advertise to the user. (The manual's description of linespecs
195 describes what we advertise). Returns true if they match, false
196 otherwise. */
197
198 int
199 compare_filenames_for_search (const char *filename, const char *search_name)
200 {
201 int len = strlen (filename);
202 size_t search_len = strlen (search_name);
203
204 if (len < search_len)
205 return 0;
206
207 /* The tail of FILENAME must match. */
208 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
209 return 0;
210
211 /* Either the names must completely match, or the character
212 preceding the trailing SEARCH_NAME segment of FILENAME must be a
213 directory separator.
214
215 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
216 cannot match FILENAME "/path//dir/file.c" - as user has requested
217 absolute path. The sama applies for "c:\file.c" possibly
218 incorrectly hypothetically matching "d:\dir\c:\file.c".
219
220 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
221 compatible with SEARCH_NAME "file.c". In such case a compiler had
222 to put the "c:file.c" name into debug info. Such compatibility
223 works only on GDB built for DOS host. */
224 return (len == search_len
225 || (!IS_ABSOLUTE_PATH (search_name)
226 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
227 || (HAS_DRIVE_SPEC (filename)
228 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
229 }
230
231 /* Check for a symtab of a specific name by searching some symtabs.
232 This is a helper function for callbacks of iterate_over_symtabs.
233
234 If NAME is not absolute, then REAL_PATH is NULL
235 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
236
237 The return value, NAME, REAL_PATH, CALLBACK, and DATA
238 are identical to the `map_symtabs_matching_filename' method of
239 quick_symbol_functions.
240
241 FIRST and AFTER_LAST indicate the range of symtabs to search.
242 AFTER_LAST is one past the last symtab to search; NULL means to
243 search until the end of the list. */
244
245 int
246 iterate_over_some_symtabs (const char *name,
247 const char *real_path,
248 int (*callback) (struct symtab *symtab,
249 void *data),
250 void *data,
251 struct symtab *first,
252 struct symtab *after_last)
253 {
254 struct symtab *s = NULL;
255 const char* base_name = lbasename (name);
256
257 for (s = first; s != NULL && s != after_last; s = s->next)
258 {
259 if (compare_filenames_for_search (s->filename, name))
260 {
261 if (callback (s, data))
262 return 1;
263 continue;
264 }
265
266 /* Before we invoke realpath, which can get expensive when many
267 files are involved, do a quick comparison of the basenames. */
268 if (! basenames_may_differ
269 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
270 continue;
271
272 if (compare_filenames_for_search (symtab_to_fullname (s), name))
273 {
274 if (callback (s, data))
275 return 1;
276 continue;
277 }
278
279 /* If the user gave us an absolute path, try to find the file in
280 this symtab and use its absolute path. */
281 if (real_path != NULL)
282 {
283 const char *fullname = symtab_to_fullname (s);
284
285 gdb_assert (IS_ABSOLUTE_PATH (real_path));
286 gdb_assert (IS_ABSOLUTE_PATH (name));
287 if (FILENAME_CMP (real_path, fullname) == 0)
288 {
289 if (callback (s, data))
290 return 1;
291 continue;
292 }
293 }
294 }
295
296 return 0;
297 }
298
299 /* Check for a symtab of a specific name; first in symtabs, then in
300 psymtabs. *If* there is no '/' in the name, a match after a '/'
301 in the symtab filename will also work.
302
303 Calls CALLBACK with each symtab that is found and with the supplied
304 DATA. If CALLBACK returns true, the search stops. */
305
306 void
307 iterate_over_symtabs (const char *name,
308 int (*callback) (struct symtab *symtab,
309 void *data),
310 void *data)
311 {
312 struct objfile *objfile;
313 char *real_path = NULL;
314 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
315
316 /* Here we are interested in canonicalizing an absolute path, not
317 absolutizing a relative path. */
318 if (IS_ABSOLUTE_PATH (name))
319 {
320 real_path = gdb_realpath (name);
321 make_cleanup (xfree, real_path);
322 gdb_assert (IS_ABSOLUTE_PATH (real_path));
323 }
324
325 ALL_OBJFILES (objfile)
326 {
327 if (iterate_over_some_symtabs (name, real_path, callback, data,
328 objfile->symtabs, NULL))
329 {
330 do_cleanups (cleanups);
331 return;
332 }
333 }
334
335 /* Same search rules as above apply here, but now we look thru the
336 psymtabs. */
337
338 ALL_OBJFILES (objfile)
339 {
340 if (objfile->sf
341 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
342 name,
343 real_path,
344 callback,
345 data))
346 {
347 do_cleanups (cleanups);
348 return;
349 }
350 }
351
352 do_cleanups (cleanups);
353 }
354
355 /* The callback function used by lookup_symtab. */
356
357 static int
358 lookup_symtab_callback (struct symtab *symtab, void *data)
359 {
360 struct symtab **result_ptr = data;
361
362 *result_ptr = symtab;
363 return 1;
364 }
365
366 /* A wrapper for iterate_over_symtabs that returns the first matching
367 symtab, or NULL. */
368
369 struct symtab *
370 lookup_symtab (const char *name)
371 {
372 struct symtab *result = NULL;
373
374 iterate_over_symtabs (name, lookup_symtab_callback, &result);
375 return result;
376 }
377
378 \f
379 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
380 full method name, which consist of the class name (from T), the unadorned
381 method name from METHOD_ID, and the signature for the specific overload,
382 specified by SIGNATURE_ID. Note that this function is g++ specific. */
383
384 char *
385 gdb_mangle_name (struct type *type, int method_id, int signature_id)
386 {
387 int mangled_name_len;
388 char *mangled_name;
389 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
390 struct fn_field *method = &f[signature_id];
391 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
392 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
393 const char *newname = type_name_no_tag (type);
394
395 /* Does the form of physname indicate that it is the full mangled name
396 of a constructor (not just the args)? */
397 int is_full_physname_constructor;
398
399 int is_constructor;
400 int is_destructor = is_destructor_name (physname);
401 /* Need a new type prefix. */
402 char *const_prefix = method->is_const ? "C" : "";
403 char *volatile_prefix = method->is_volatile ? "V" : "";
404 char buf[20];
405 int len = (newname == NULL ? 0 : strlen (newname));
406
407 /* Nothing to do if physname already contains a fully mangled v3 abi name
408 or an operator name. */
409 if ((physname[0] == '_' && physname[1] == 'Z')
410 || is_operator_name (field_name))
411 return xstrdup (physname);
412
413 is_full_physname_constructor = is_constructor_name (physname);
414
415 is_constructor = is_full_physname_constructor
416 || (newname && strcmp (field_name, newname) == 0);
417
418 if (!is_destructor)
419 is_destructor = (strncmp (physname, "__dt", 4) == 0);
420
421 if (is_destructor || is_full_physname_constructor)
422 {
423 mangled_name = (char *) xmalloc (strlen (physname) + 1);
424 strcpy (mangled_name, physname);
425 return mangled_name;
426 }
427
428 if (len == 0)
429 {
430 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
431 }
432 else if (physname[0] == 't' || physname[0] == 'Q')
433 {
434 /* The physname for template and qualified methods already includes
435 the class name. */
436 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
437 newname = NULL;
438 len = 0;
439 }
440 else
441 {
442 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
443 volatile_prefix, len);
444 }
445 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
446 + strlen (buf) + len + strlen (physname) + 1);
447
448 mangled_name = (char *) xmalloc (mangled_name_len);
449 if (is_constructor)
450 mangled_name[0] = '\0';
451 else
452 strcpy (mangled_name, field_name);
453
454 strcat (mangled_name, buf);
455 /* If the class doesn't have a name, i.e. newname NULL, then we just
456 mangle it using 0 for the length of the class. Thus it gets mangled
457 as something starting with `::' rather than `classname::'. */
458 if (newname != NULL)
459 strcat (mangled_name, newname);
460
461 strcat (mangled_name, physname);
462 return (mangled_name);
463 }
464
465 /* Initialize the cplus_specific structure. 'cplus_specific' should
466 only be allocated for use with cplus symbols. */
467
468 static void
469 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
470 struct obstack *obstack)
471 {
472 /* A language_specific structure should not have been previously
473 initialized. */
474 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
475 gdb_assert (obstack != NULL);
476
477 gsymbol->language_specific.cplus_specific =
478 OBSTACK_ZALLOC (obstack, struct cplus_specific);
479 }
480
481 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
482 correctly allocated. For C++ symbols a cplus_specific struct is
483 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
484 OBJFILE can be NULL. */
485
486 void
487 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
488 const char *name,
489 struct obstack *obstack)
490 {
491 if (gsymbol->language == language_cplus)
492 {
493 if (gsymbol->language_specific.cplus_specific == NULL)
494 symbol_init_cplus_specific (gsymbol, obstack);
495
496 gsymbol->language_specific.cplus_specific->demangled_name = name;
497 }
498 else if (gsymbol->language == language_ada)
499 {
500 if (name == NULL)
501 {
502 gsymbol->ada_mangled = 0;
503 gsymbol->language_specific.obstack = obstack;
504 }
505 else
506 {
507 gsymbol->ada_mangled = 1;
508 gsymbol->language_specific.mangled_lang.demangled_name = name;
509 }
510 }
511 else
512 gsymbol->language_specific.mangled_lang.demangled_name = name;
513 }
514
515 /* Return the demangled name of GSYMBOL. */
516
517 const char *
518 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
519 {
520 if (gsymbol->language == language_cplus)
521 {
522 if (gsymbol->language_specific.cplus_specific != NULL)
523 return gsymbol->language_specific.cplus_specific->demangled_name;
524 else
525 return NULL;
526 }
527 else if (gsymbol->language == language_ada)
528 {
529 if (!gsymbol->ada_mangled)
530 return NULL;
531 /* Fall through. */
532 }
533
534 return gsymbol->language_specific.mangled_lang.demangled_name;
535 }
536
537 \f
538 /* Initialize the language dependent portion of a symbol
539 depending upon the language for the symbol. */
540
541 void
542 symbol_set_language (struct general_symbol_info *gsymbol,
543 enum language language,
544 struct obstack *obstack)
545 {
546 gsymbol->language = language;
547 if (gsymbol->language == language_d
548 || gsymbol->language == language_go
549 || gsymbol->language == language_java
550 || gsymbol->language == language_objc
551 || gsymbol->language == language_fortran)
552 {
553 symbol_set_demangled_name (gsymbol, NULL, obstack);
554 }
555 else if (gsymbol->language == language_ada)
556 {
557 gdb_assert (gsymbol->ada_mangled == 0);
558 gsymbol->language_specific.obstack = obstack;
559 }
560 else if (gsymbol->language == language_cplus)
561 gsymbol->language_specific.cplus_specific = NULL;
562 else
563 {
564 memset (&gsymbol->language_specific, 0,
565 sizeof (gsymbol->language_specific));
566 }
567 }
568
569 /* Functions to initialize a symbol's mangled name. */
570
571 /* Objects of this type are stored in the demangled name hash table. */
572 struct demangled_name_entry
573 {
574 const char *mangled;
575 char demangled[1];
576 };
577
578 /* Hash function for the demangled name hash. */
579
580 static hashval_t
581 hash_demangled_name_entry (const void *data)
582 {
583 const struct demangled_name_entry *e = data;
584
585 return htab_hash_string (e->mangled);
586 }
587
588 /* Equality function for the demangled name hash. */
589
590 static int
591 eq_demangled_name_entry (const void *a, const void *b)
592 {
593 const struct demangled_name_entry *da = a;
594 const struct demangled_name_entry *db = b;
595
596 return strcmp (da->mangled, db->mangled) == 0;
597 }
598
599 /* Create the hash table used for demangled names. Each hash entry is
600 a pair of strings; one for the mangled name and one for the demangled
601 name. The entry is hashed via just the mangled name. */
602
603 static void
604 create_demangled_names_hash (struct objfile *objfile)
605 {
606 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
607 The hash table code will round this up to the next prime number.
608 Choosing a much larger table size wastes memory, and saves only about
609 1% in symbol reading. */
610
611 objfile->per_bfd->demangled_names_hash = htab_create_alloc
612 (256, hash_demangled_name_entry, eq_demangled_name_entry,
613 NULL, xcalloc, xfree);
614 }
615
616 /* Try to determine the demangled name for a symbol, based on the
617 language of that symbol. If the language is set to language_auto,
618 it will attempt to find any demangling algorithm that works and
619 then set the language appropriately. The returned name is allocated
620 by the demangler and should be xfree'd. */
621
622 static char *
623 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
624 const char *mangled)
625 {
626 char *demangled = NULL;
627
628 if (gsymbol->language == language_unknown)
629 gsymbol->language = language_auto;
630
631 if (gsymbol->language == language_objc
632 || gsymbol->language == language_auto)
633 {
634 demangled =
635 objc_demangle (mangled, 0);
636 if (demangled != NULL)
637 {
638 gsymbol->language = language_objc;
639 return demangled;
640 }
641 }
642 if (gsymbol->language == language_cplus
643 || gsymbol->language == language_auto)
644 {
645 demangled =
646 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
647 if (demangled != NULL)
648 {
649 gsymbol->language = language_cplus;
650 return demangled;
651 }
652 }
653 if (gsymbol->language == language_java)
654 {
655 demangled =
656 gdb_demangle (mangled,
657 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
658 if (demangled != NULL)
659 {
660 gsymbol->language = language_java;
661 return demangled;
662 }
663 }
664 if (gsymbol->language == language_d
665 || gsymbol->language == language_auto)
666 {
667 demangled = d_demangle(mangled, 0);
668 if (demangled != NULL)
669 {
670 gsymbol->language = language_d;
671 return demangled;
672 }
673 }
674 /* FIXME(dje): Continually adding languages here is clumsy.
675 Better to just call la_demangle if !auto, and if auto then call
676 a utility routine that tries successive languages in turn and reports
677 which one it finds. I realize the la_demangle options may be different
678 for different languages but there's already a FIXME for that. */
679 if (gsymbol->language == language_go
680 || gsymbol->language == language_auto)
681 {
682 demangled = go_demangle (mangled, 0);
683 if (demangled != NULL)
684 {
685 gsymbol->language = language_go;
686 return demangled;
687 }
688 }
689
690 /* We could support `gsymbol->language == language_fortran' here to provide
691 module namespaces also for inferiors with only minimal symbol table (ELF
692 symbols). Just the mangling standard is not standardized across compilers
693 and there is no DW_AT_producer available for inferiors with only the ELF
694 symbols to check the mangling kind. */
695
696 /* Check for Ada symbols last. See comment below explaining why. */
697
698 if (gsymbol->language == language_auto)
699 {
700 const char *demangled = ada_decode (mangled);
701
702 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
703 {
704 /* Set the gsymbol language to Ada, but still return NULL.
705 Two reasons for that:
706
707 1. For Ada, we prefer computing the symbol's decoded name
708 on the fly rather than pre-compute it, in order to save
709 memory (Ada projects are typically very large).
710
711 2. There are some areas in the definition of the GNAT
712 encoding where, with a bit of bad luck, we might be able
713 to decode a non-Ada symbol, generating an incorrect
714 demangled name (Eg: names ending with "TB" for instance
715 are identified as task bodies and so stripped from
716 the decoded name returned).
717
718 Returning NULL, here, helps us get a little bit of
719 the best of both worlds. Because we're last, we should
720 not affect any of the other languages that were able to
721 demangle the symbol before us; we get to correctly tag
722 Ada symbols as such; and even if we incorrectly tagged
723 a non-Ada symbol, which should be rare, any routing
724 through the Ada language should be transparent (Ada
725 tries to behave much like C/C++ with non-Ada symbols). */
726 gsymbol->language = language_ada;
727 return NULL;
728 }
729 }
730
731 return NULL;
732 }
733
734 /* Set both the mangled and demangled (if any) names for GSYMBOL based
735 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
736 objfile's obstack; but if COPY_NAME is 0 and if NAME is
737 NUL-terminated, then this function assumes that NAME is already
738 correctly saved (either permanently or with a lifetime tied to the
739 objfile), and it will not be copied.
740
741 The hash table corresponding to OBJFILE is used, and the memory
742 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
743 so the pointer can be discarded after calling this function. */
744
745 /* We have to be careful when dealing with Java names: when we run
746 into a Java minimal symbol, we don't know it's a Java symbol, so it
747 gets demangled as a C++ name. This is unfortunate, but there's not
748 much we can do about it: but when demangling partial symbols and
749 regular symbols, we'd better not reuse the wrong demangled name.
750 (See PR gdb/1039.) We solve this by putting a distinctive prefix
751 on Java names when storing them in the hash table. */
752
753 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
754 don't mind the Java prefix so much: different languages have
755 different demangling requirements, so it's only natural that we
756 need to keep language data around in our demangling cache. But
757 it's not good that the minimal symbol has the wrong demangled name.
758 Unfortunately, I can't think of any easy solution to that
759 problem. */
760
761 #define JAVA_PREFIX "##JAVA$$"
762 #define JAVA_PREFIX_LEN 8
763
764 void
765 symbol_set_names (struct general_symbol_info *gsymbol,
766 const char *linkage_name, int len, int copy_name,
767 struct objfile *objfile)
768 {
769 struct demangled_name_entry **slot;
770 /* A 0-terminated copy of the linkage name. */
771 const char *linkage_name_copy;
772 /* A copy of the linkage name that might have a special Java prefix
773 added to it, for use when looking names up in the hash table. */
774 const char *lookup_name;
775 /* The length of lookup_name. */
776 int lookup_len;
777 struct demangled_name_entry entry;
778 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
779
780 if (gsymbol->language == language_ada)
781 {
782 /* In Ada, we do the symbol lookups using the mangled name, so
783 we can save some space by not storing the demangled name.
784
785 As a side note, we have also observed some overlap between
786 the C++ mangling and Ada mangling, similarly to what has
787 been observed with Java. Because we don't store the demangled
788 name with the symbol, we don't need to use the same trick
789 as Java. */
790 if (!copy_name)
791 gsymbol->name = linkage_name;
792 else
793 {
794 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
795
796 memcpy (name, linkage_name, len);
797 name[len] = '\0';
798 gsymbol->name = name;
799 }
800 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
801
802 return;
803 }
804
805 if (per_bfd->demangled_names_hash == NULL)
806 create_demangled_names_hash (objfile);
807
808 /* The stabs reader generally provides names that are not
809 NUL-terminated; most of the other readers don't do this, so we
810 can just use the given copy, unless we're in the Java case. */
811 if (gsymbol->language == language_java)
812 {
813 char *alloc_name;
814
815 lookup_len = len + JAVA_PREFIX_LEN;
816 alloc_name = alloca (lookup_len + 1);
817 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
818 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
819 alloc_name[lookup_len] = '\0';
820
821 lookup_name = alloc_name;
822 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
823 }
824 else if (linkage_name[len] != '\0')
825 {
826 char *alloc_name;
827
828 lookup_len = len;
829 alloc_name = alloca (lookup_len + 1);
830 memcpy (alloc_name, linkage_name, len);
831 alloc_name[lookup_len] = '\0';
832
833 lookup_name = alloc_name;
834 linkage_name_copy = alloc_name;
835 }
836 else
837 {
838 lookup_len = len;
839 lookup_name = linkage_name;
840 linkage_name_copy = linkage_name;
841 }
842
843 entry.mangled = lookup_name;
844 slot = ((struct demangled_name_entry **)
845 htab_find_slot (per_bfd->demangled_names_hash,
846 &entry, INSERT));
847
848 /* If this name is not in the hash table, add it. */
849 if (*slot == NULL
850 /* A C version of the symbol may have already snuck into the table.
851 This happens to, e.g., main.init (__go_init_main). Cope. */
852 || (gsymbol->language == language_go
853 && (*slot)->demangled[0] == '\0'))
854 {
855 char *demangled_name = symbol_find_demangled_name (gsymbol,
856 linkage_name_copy);
857 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
858
859 /* Suppose we have demangled_name==NULL, copy_name==0, and
860 lookup_name==linkage_name. In this case, we already have the
861 mangled name saved, and we don't have a demangled name. So,
862 you might think we could save a little space by not recording
863 this in the hash table at all.
864
865 It turns out that it is actually important to still save such
866 an entry in the hash table, because storing this name gives
867 us better bcache hit rates for partial symbols. */
868 if (!copy_name && lookup_name == linkage_name)
869 {
870 *slot = obstack_alloc (&per_bfd->storage_obstack,
871 offsetof (struct demangled_name_entry,
872 demangled)
873 + demangled_len + 1);
874 (*slot)->mangled = lookup_name;
875 }
876 else
877 {
878 char *mangled_ptr;
879
880 /* If we must copy the mangled name, put it directly after
881 the demangled name so we can have a single
882 allocation. */
883 *slot = obstack_alloc (&per_bfd->storage_obstack,
884 offsetof (struct demangled_name_entry,
885 demangled)
886 + lookup_len + demangled_len + 2);
887 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
888 strcpy (mangled_ptr, lookup_name);
889 (*slot)->mangled = mangled_ptr;
890 }
891
892 if (demangled_name != NULL)
893 {
894 strcpy ((*slot)->demangled, demangled_name);
895 xfree (demangled_name);
896 }
897 else
898 (*slot)->demangled[0] = '\0';
899 }
900
901 gsymbol->name = (*slot)->mangled + lookup_len - len;
902 if ((*slot)->demangled[0] != '\0')
903 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
904 &per_bfd->storage_obstack);
905 else
906 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
907 }
908
909 /* Return the source code name of a symbol. In languages where
910 demangling is necessary, this is the demangled name. */
911
912 const char *
913 symbol_natural_name (const struct general_symbol_info *gsymbol)
914 {
915 switch (gsymbol->language)
916 {
917 case language_cplus:
918 case language_d:
919 case language_go:
920 case language_java:
921 case language_objc:
922 case language_fortran:
923 if (symbol_get_demangled_name (gsymbol) != NULL)
924 return symbol_get_demangled_name (gsymbol);
925 break;
926 case language_ada:
927 return ada_decode_symbol (gsymbol);
928 default:
929 break;
930 }
931 return gsymbol->name;
932 }
933
934 /* Return the demangled name for a symbol based on the language for
935 that symbol. If no demangled name exists, return NULL. */
936
937 const char *
938 symbol_demangled_name (const struct general_symbol_info *gsymbol)
939 {
940 const char *dem_name = NULL;
941
942 switch (gsymbol->language)
943 {
944 case language_cplus:
945 case language_d:
946 case language_go:
947 case language_java:
948 case language_objc:
949 case language_fortran:
950 dem_name = symbol_get_demangled_name (gsymbol);
951 break;
952 case language_ada:
953 dem_name = ada_decode_symbol (gsymbol);
954 break;
955 default:
956 break;
957 }
958 return dem_name;
959 }
960
961 /* Return the search name of a symbol---generally the demangled or
962 linkage name of the symbol, depending on how it will be searched for.
963 If there is no distinct demangled name, then returns the same value
964 (same pointer) as SYMBOL_LINKAGE_NAME. */
965
966 const char *
967 symbol_search_name (const struct general_symbol_info *gsymbol)
968 {
969 if (gsymbol->language == language_ada)
970 return gsymbol->name;
971 else
972 return symbol_natural_name (gsymbol);
973 }
974
975 /* Initialize the structure fields to zero values. */
976
977 void
978 init_sal (struct symtab_and_line *sal)
979 {
980 sal->pspace = NULL;
981 sal->symtab = 0;
982 sal->section = 0;
983 sal->line = 0;
984 sal->pc = 0;
985 sal->end = 0;
986 sal->explicit_pc = 0;
987 sal->explicit_line = 0;
988 sal->probe = NULL;
989 }
990 \f
991
992 /* Return 1 if the two sections are the same, or if they could
993 plausibly be copies of each other, one in an original object
994 file and another in a separated debug file. */
995
996 int
997 matching_obj_sections (struct obj_section *obj_first,
998 struct obj_section *obj_second)
999 {
1000 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1001 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1002 struct objfile *obj;
1003
1004 /* If they're the same section, then they match. */
1005 if (first == second)
1006 return 1;
1007
1008 /* If either is NULL, give up. */
1009 if (first == NULL || second == NULL)
1010 return 0;
1011
1012 /* This doesn't apply to absolute symbols. */
1013 if (first->owner == NULL || second->owner == NULL)
1014 return 0;
1015
1016 /* If they're in the same object file, they must be different sections. */
1017 if (first->owner == second->owner)
1018 return 0;
1019
1020 /* Check whether the two sections are potentially corresponding. They must
1021 have the same size, address, and name. We can't compare section indexes,
1022 which would be more reliable, because some sections may have been
1023 stripped. */
1024 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1025 return 0;
1026
1027 /* In-memory addresses may start at a different offset, relativize them. */
1028 if (bfd_get_section_vma (first->owner, first)
1029 - bfd_get_start_address (first->owner)
1030 != bfd_get_section_vma (second->owner, second)
1031 - bfd_get_start_address (second->owner))
1032 return 0;
1033
1034 if (bfd_get_section_name (first->owner, first) == NULL
1035 || bfd_get_section_name (second->owner, second) == NULL
1036 || strcmp (bfd_get_section_name (first->owner, first),
1037 bfd_get_section_name (second->owner, second)) != 0)
1038 return 0;
1039
1040 /* Otherwise check that they are in corresponding objfiles. */
1041
1042 ALL_OBJFILES (obj)
1043 if (obj->obfd == first->owner)
1044 break;
1045 gdb_assert (obj != NULL);
1046
1047 if (obj->separate_debug_objfile != NULL
1048 && obj->separate_debug_objfile->obfd == second->owner)
1049 return 1;
1050 if (obj->separate_debug_objfile_backlink != NULL
1051 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1052 return 1;
1053
1054 return 0;
1055 }
1056
1057 struct symtab *
1058 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
1059 {
1060 struct objfile *objfile;
1061 struct minimal_symbol *msymbol;
1062
1063 /* If we know that this is not a text address, return failure. This is
1064 necessary because we loop based on texthigh and textlow, which do
1065 not include the data ranges. */
1066 msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym;
1067 if (msymbol
1068 && (MSYMBOL_TYPE (msymbol) == mst_data
1069 || MSYMBOL_TYPE (msymbol) == mst_bss
1070 || MSYMBOL_TYPE (msymbol) == mst_abs
1071 || MSYMBOL_TYPE (msymbol) == mst_file_data
1072 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1073 return NULL;
1074
1075 ALL_OBJFILES (objfile)
1076 {
1077 struct symtab *result = NULL;
1078
1079 if (objfile->sf)
1080 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1081 pc, section, 0);
1082 if (result)
1083 return result;
1084 }
1085
1086 return NULL;
1087 }
1088 \f
1089 /* Debug symbols usually don't have section information. We need to dig that
1090 out of the minimal symbols and stash that in the debug symbol. */
1091
1092 void
1093 fixup_section (struct general_symbol_info *ginfo,
1094 CORE_ADDR addr, struct objfile *objfile)
1095 {
1096 struct minimal_symbol *msym;
1097
1098 /* First, check whether a minimal symbol with the same name exists
1099 and points to the same address. The address check is required
1100 e.g. on PowerPC64, where the minimal symbol for a function will
1101 point to the function descriptor, while the debug symbol will
1102 point to the actual function code. */
1103 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1104 if (msym)
1105 ginfo->section = SYMBOL_SECTION (msym);
1106 else
1107 {
1108 /* Static, function-local variables do appear in the linker
1109 (minimal) symbols, but are frequently given names that won't
1110 be found via lookup_minimal_symbol(). E.g., it has been
1111 observed in frv-uclinux (ELF) executables that a static,
1112 function-local variable named "foo" might appear in the
1113 linker symbols as "foo.6" or "foo.3". Thus, there is no
1114 point in attempting to extend the lookup-by-name mechanism to
1115 handle this case due to the fact that there can be multiple
1116 names.
1117
1118 So, instead, search the section table when lookup by name has
1119 failed. The ``addr'' and ``endaddr'' fields may have already
1120 been relocated. If so, the relocation offset (i.e. the
1121 ANOFFSET value) needs to be subtracted from these values when
1122 performing the comparison. We unconditionally subtract it,
1123 because, when no relocation has been performed, the ANOFFSET
1124 value will simply be zero.
1125
1126 The address of the symbol whose section we're fixing up HAS
1127 NOT BEEN adjusted (relocated) yet. It can't have been since
1128 the section isn't yet known and knowing the section is
1129 necessary in order to add the correct relocation value. In
1130 other words, we wouldn't even be in this function (attempting
1131 to compute the section) if it were already known.
1132
1133 Note that it is possible to search the minimal symbols
1134 (subtracting the relocation value if necessary) to find the
1135 matching minimal symbol, but this is overkill and much less
1136 efficient. It is not necessary to find the matching minimal
1137 symbol, only its section.
1138
1139 Note that this technique (of doing a section table search)
1140 can fail when unrelocated section addresses overlap. For
1141 this reason, we still attempt a lookup by name prior to doing
1142 a search of the section table. */
1143
1144 struct obj_section *s;
1145 int fallback = -1;
1146
1147 ALL_OBJFILE_OSECTIONS (objfile, s)
1148 {
1149 int idx = s - objfile->sections;
1150 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1151
1152 if (fallback == -1)
1153 fallback = idx;
1154
1155 if (obj_section_addr (s) - offset <= addr
1156 && addr < obj_section_endaddr (s) - offset)
1157 {
1158 ginfo->section = idx;
1159 return;
1160 }
1161 }
1162
1163 /* If we didn't find the section, assume it is in the first
1164 section. If there is no allocated section, then it hardly
1165 matters what we pick, so just pick zero. */
1166 if (fallback == -1)
1167 ginfo->section = 0;
1168 else
1169 ginfo->section = fallback;
1170 }
1171 }
1172
1173 struct symbol *
1174 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1175 {
1176 CORE_ADDR addr;
1177
1178 if (!sym)
1179 return NULL;
1180
1181 /* We either have an OBJFILE, or we can get at it from the sym's
1182 symtab. Anything else is a bug. */
1183 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1184
1185 if (objfile == NULL)
1186 objfile = SYMBOL_SYMTAB (sym)->objfile;
1187
1188 if (SYMBOL_OBJ_SECTION (objfile, sym))
1189 return sym;
1190
1191 /* We should have an objfile by now. */
1192 gdb_assert (objfile);
1193
1194 switch (SYMBOL_CLASS (sym))
1195 {
1196 case LOC_STATIC:
1197 case LOC_LABEL:
1198 addr = SYMBOL_VALUE_ADDRESS (sym);
1199 break;
1200 case LOC_BLOCK:
1201 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1202 break;
1203
1204 default:
1205 /* Nothing else will be listed in the minsyms -- no use looking
1206 it up. */
1207 return sym;
1208 }
1209
1210 fixup_section (&sym->ginfo, addr, objfile);
1211
1212 return sym;
1213 }
1214
1215 /* Compute the demangled form of NAME as used by the various symbol
1216 lookup functions. The result is stored in *RESULT_NAME. Returns a
1217 cleanup which can be used to clean up the result.
1218
1219 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1220 Normally, Ada symbol lookups are performed using the encoded name
1221 rather than the demangled name, and so it might seem to make sense
1222 for this function to return an encoded version of NAME.
1223 Unfortunately, we cannot do this, because this function is used in
1224 circumstances where it is not appropriate to try to encode NAME.
1225 For instance, when displaying the frame info, we demangle the name
1226 of each parameter, and then perform a symbol lookup inside our
1227 function using that demangled name. In Ada, certain functions
1228 have internally-generated parameters whose name contain uppercase
1229 characters. Encoding those name would result in those uppercase
1230 characters to become lowercase, and thus cause the symbol lookup
1231 to fail. */
1232
1233 struct cleanup *
1234 demangle_for_lookup (const char *name, enum language lang,
1235 const char **result_name)
1236 {
1237 char *demangled_name = NULL;
1238 const char *modified_name = NULL;
1239 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1240
1241 modified_name = name;
1242
1243 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1244 lookup, so we can always binary search. */
1245 if (lang == language_cplus)
1246 {
1247 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1248 if (demangled_name)
1249 {
1250 modified_name = demangled_name;
1251 make_cleanup (xfree, demangled_name);
1252 }
1253 else
1254 {
1255 /* If we were given a non-mangled name, canonicalize it
1256 according to the language (so far only for C++). */
1257 demangled_name = cp_canonicalize_string (name);
1258 if (demangled_name)
1259 {
1260 modified_name = demangled_name;
1261 make_cleanup (xfree, demangled_name);
1262 }
1263 }
1264 }
1265 else if (lang == language_java)
1266 {
1267 demangled_name = gdb_demangle (name,
1268 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1269 if (demangled_name)
1270 {
1271 modified_name = demangled_name;
1272 make_cleanup (xfree, demangled_name);
1273 }
1274 }
1275 else if (lang == language_d)
1276 {
1277 demangled_name = d_demangle (name, 0);
1278 if (demangled_name)
1279 {
1280 modified_name = demangled_name;
1281 make_cleanup (xfree, demangled_name);
1282 }
1283 }
1284 else if (lang == language_go)
1285 {
1286 demangled_name = go_demangle (name, 0);
1287 if (demangled_name)
1288 {
1289 modified_name = demangled_name;
1290 make_cleanup (xfree, demangled_name);
1291 }
1292 }
1293
1294 *result_name = modified_name;
1295 return cleanup;
1296 }
1297
1298 /* Find the definition for a specified symbol name NAME
1299 in domain DOMAIN, visible from lexical block BLOCK.
1300 Returns the struct symbol pointer, or zero if no symbol is found.
1301 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1302 NAME is a field of the current implied argument `this'. If so set
1303 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1304 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1305 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1306
1307 /* This function (or rather its subordinates) have a bunch of loops and
1308 it would seem to be attractive to put in some QUIT's (though I'm not really
1309 sure whether it can run long enough to be really important). But there
1310 are a few calls for which it would appear to be bad news to quit
1311 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1312 that there is C++ code below which can error(), but that probably
1313 doesn't affect these calls since they are looking for a known
1314 variable and thus can probably assume it will never hit the C++
1315 code). */
1316
1317 struct symbol *
1318 lookup_symbol_in_language (const char *name, const struct block *block,
1319 const domain_enum domain, enum language lang,
1320 struct field_of_this_result *is_a_field_of_this)
1321 {
1322 const char *modified_name;
1323 struct symbol *returnval;
1324 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1325
1326 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1327 is_a_field_of_this);
1328 do_cleanups (cleanup);
1329
1330 return returnval;
1331 }
1332
1333 /* Behave like lookup_symbol_in_language, but performed with the
1334 current language. */
1335
1336 struct symbol *
1337 lookup_symbol (const char *name, const struct block *block,
1338 domain_enum domain,
1339 struct field_of_this_result *is_a_field_of_this)
1340 {
1341 return lookup_symbol_in_language (name, block, domain,
1342 current_language->la_language,
1343 is_a_field_of_this);
1344 }
1345
1346 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1347 found, or NULL if not found. */
1348
1349 struct symbol *
1350 lookup_language_this (const struct language_defn *lang,
1351 const struct block *block)
1352 {
1353 if (lang->la_name_of_this == NULL || block == NULL)
1354 return NULL;
1355
1356 while (block)
1357 {
1358 struct symbol *sym;
1359
1360 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1361 if (sym != NULL)
1362 {
1363 block_found = block;
1364 return sym;
1365 }
1366 if (BLOCK_FUNCTION (block))
1367 break;
1368 block = BLOCK_SUPERBLOCK (block);
1369 }
1370
1371 return NULL;
1372 }
1373
1374 /* Given TYPE, a structure/union,
1375 return 1 if the component named NAME from the ultimate target
1376 structure/union is defined, otherwise, return 0. */
1377
1378 static int
1379 check_field (struct type *type, const char *name,
1380 struct field_of_this_result *is_a_field_of_this)
1381 {
1382 int i;
1383
1384 /* The type may be a stub. */
1385 CHECK_TYPEDEF (type);
1386
1387 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1388 {
1389 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1390
1391 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1392 {
1393 is_a_field_of_this->type = type;
1394 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1395 return 1;
1396 }
1397 }
1398
1399 /* C++: If it was not found as a data field, then try to return it
1400 as a pointer to a method. */
1401
1402 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1403 {
1404 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1405 {
1406 is_a_field_of_this->type = type;
1407 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1408 return 1;
1409 }
1410 }
1411
1412 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1413 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1414 return 1;
1415
1416 return 0;
1417 }
1418
1419 /* Behave like lookup_symbol except that NAME is the natural name
1420 (e.g., demangled name) of the symbol that we're looking for. */
1421
1422 static struct symbol *
1423 lookup_symbol_aux (const char *name, const struct block *block,
1424 const domain_enum domain, enum language language,
1425 struct field_of_this_result *is_a_field_of_this)
1426 {
1427 struct symbol *sym;
1428 const struct language_defn *langdef;
1429
1430 /* Make sure we do something sensible with is_a_field_of_this, since
1431 the callers that set this parameter to some non-null value will
1432 certainly use it later. If we don't set it, the contents of
1433 is_a_field_of_this are undefined. */
1434 if (is_a_field_of_this != NULL)
1435 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1436
1437 /* Search specified block and its superiors. Don't search
1438 STATIC_BLOCK or GLOBAL_BLOCK. */
1439
1440 sym = lookup_symbol_aux_local (name, block, domain, language);
1441 if (sym != NULL)
1442 return sym;
1443
1444 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1445 check to see if NAME is a field of `this'. */
1446
1447 langdef = language_def (language);
1448
1449 /* Don't do this check if we are searching for a struct. It will
1450 not be found by check_field, but will be found by other
1451 means. */
1452 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1453 {
1454 struct symbol *sym = lookup_language_this (langdef, block);
1455
1456 if (sym)
1457 {
1458 struct type *t = sym->type;
1459
1460 /* I'm not really sure that type of this can ever
1461 be typedefed; just be safe. */
1462 CHECK_TYPEDEF (t);
1463 if (TYPE_CODE (t) == TYPE_CODE_PTR
1464 || TYPE_CODE (t) == TYPE_CODE_REF)
1465 t = TYPE_TARGET_TYPE (t);
1466
1467 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1468 && TYPE_CODE (t) != TYPE_CODE_UNION)
1469 error (_("Internal error: `%s' is not an aggregate"),
1470 langdef->la_name_of_this);
1471
1472 if (check_field (t, name, is_a_field_of_this))
1473 return NULL;
1474 }
1475 }
1476
1477 /* Now do whatever is appropriate for LANGUAGE to look
1478 up static and global variables. */
1479
1480 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1481 if (sym != NULL)
1482 return sym;
1483
1484 /* Now search all static file-level symbols. Not strictly correct,
1485 but more useful than an error. */
1486
1487 return lookup_static_symbol_aux (name, domain);
1488 }
1489
1490 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1491 first, then check the psymtabs. If a psymtab indicates the existence of the
1492 desired name as a file-level static, then do psymtab-to-symtab conversion on
1493 the fly and return the found symbol. */
1494
1495 struct symbol *
1496 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1497 {
1498 struct objfile *objfile;
1499 struct symbol *sym;
1500
1501 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1502 if (sym != NULL)
1503 return sym;
1504
1505 ALL_OBJFILES (objfile)
1506 {
1507 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1508 if (sym != NULL)
1509 return sym;
1510 }
1511
1512 return NULL;
1513 }
1514
1515 /* Check to see if the symbol is defined in BLOCK or its superiors.
1516 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1517
1518 static struct symbol *
1519 lookup_symbol_aux_local (const char *name, const struct block *block,
1520 const domain_enum domain,
1521 enum language language)
1522 {
1523 struct symbol *sym;
1524 const struct block *static_block = block_static_block (block);
1525 const char *scope = block_scope (block);
1526
1527 /* Check if either no block is specified or it's a global block. */
1528
1529 if (static_block == NULL)
1530 return NULL;
1531
1532 while (block != static_block)
1533 {
1534 sym = lookup_symbol_aux_block (name, block, domain);
1535 if (sym != NULL)
1536 return sym;
1537
1538 if (language == language_cplus || language == language_fortran)
1539 {
1540 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1541 domain);
1542 if (sym != NULL)
1543 return sym;
1544 }
1545
1546 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1547 break;
1548 block = BLOCK_SUPERBLOCK (block);
1549 }
1550
1551 /* We've reached the edge of the function without finding a result. */
1552
1553 return NULL;
1554 }
1555
1556 /* Look up OBJFILE to BLOCK. */
1557
1558 struct objfile *
1559 lookup_objfile_from_block (const struct block *block)
1560 {
1561 struct objfile *obj;
1562 struct symtab *s;
1563
1564 if (block == NULL)
1565 return NULL;
1566
1567 block = block_global_block (block);
1568 /* Go through SYMTABS. */
1569 ALL_SYMTABS (obj, s)
1570 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1571 {
1572 if (obj->separate_debug_objfile_backlink)
1573 obj = obj->separate_debug_objfile_backlink;
1574
1575 return obj;
1576 }
1577
1578 return NULL;
1579 }
1580
1581 /* Look up a symbol in a block; if found, fixup the symbol, and set
1582 block_found appropriately. */
1583
1584 struct symbol *
1585 lookup_symbol_aux_block (const char *name, const struct block *block,
1586 const domain_enum domain)
1587 {
1588 struct symbol *sym;
1589
1590 sym = lookup_block_symbol (block, name, domain);
1591 if (sym)
1592 {
1593 block_found = block;
1594 return fixup_symbol_section (sym, NULL);
1595 }
1596
1597 return NULL;
1598 }
1599
1600 /* Check all global symbols in OBJFILE in symtabs and
1601 psymtabs. */
1602
1603 struct symbol *
1604 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1605 const char *name,
1606 const domain_enum domain)
1607 {
1608 const struct objfile *objfile;
1609 struct symbol *sym;
1610 struct blockvector *bv;
1611 const struct block *block;
1612 struct symtab *s;
1613
1614 for (objfile = main_objfile;
1615 objfile;
1616 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1617 {
1618 /* Go through symtabs. */
1619 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1620 {
1621 bv = BLOCKVECTOR (s);
1622 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1623 sym = lookup_block_symbol (block, name, domain);
1624 if (sym)
1625 {
1626 block_found = block;
1627 return fixup_symbol_section (sym, (struct objfile *)objfile);
1628 }
1629 }
1630
1631 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1632 name, domain);
1633 if (sym)
1634 return sym;
1635 }
1636
1637 return NULL;
1638 }
1639
1640 /* Check to see if the symbol is defined in one of the OBJFILE's
1641 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1642 depending on whether or not we want to search global symbols or
1643 static symbols. */
1644
1645 static struct symbol *
1646 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1647 const char *name, const domain_enum domain)
1648 {
1649 struct symbol *sym = NULL;
1650 struct blockvector *bv;
1651 const struct block *block;
1652 struct symtab *s;
1653
1654 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1655 {
1656 bv = BLOCKVECTOR (s);
1657 block = BLOCKVECTOR_BLOCK (bv, block_index);
1658 sym = lookup_block_symbol (block, name, domain);
1659 if (sym)
1660 {
1661 block_found = block;
1662 return fixup_symbol_section (sym, objfile);
1663 }
1664 }
1665
1666 return NULL;
1667 }
1668
1669 /* Same as lookup_symbol_aux_objfile, except that it searches all
1670 objfiles. Return the first match found. */
1671
1672 static struct symbol *
1673 lookup_symbol_aux_symtabs (int block_index, const char *name,
1674 const domain_enum domain)
1675 {
1676 struct symbol *sym;
1677 struct objfile *objfile;
1678
1679 ALL_OBJFILES (objfile)
1680 {
1681 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1682 if (sym)
1683 return sym;
1684 }
1685
1686 return NULL;
1687 }
1688
1689 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1690 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1691 and all related objfiles. */
1692
1693 static struct symbol *
1694 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1695 const char *linkage_name,
1696 domain_enum domain)
1697 {
1698 enum language lang = current_language->la_language;
1699 const char *modified_name;
1700 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1701 &modified_name);
1702 struct objfile *main_objfile, *cur_objfile;
1703
1704 if (objfile->separate_debug_objfile_backlink)
1705 main_objfile = objfile->separate_debug_objfile_backlink;
1706 else
1707 main_objfile = objfile;
1708
1709 for (cur_objfile = main_objfile;
1710 cur_objfile;
1711 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1712 {
1713 struct symbol *sym;
1714
1715 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1716 modified_name, domain);
1717 if (sym == NULL)
1718 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1719 modified_name, domain);
1720 if (sym != NULL)
1721 {
1722 do_cleanups (cleanup);
1723 return sym;
1724 }
1725 }
1726
1727 do_cleanups (cleanup);
1728 return NULL;
1729 }
1730
1731 /* A helper function that throws an exception when a symbol was found
1732 in a psymtab but not in a symtab. */
1733
1734 static void ATTRIBUTE_NORETURN
1735 error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab)
1736 {
1737 error (_("\
1738 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1739 %s may be an inlined function, or may be a template function\n \
1740 (if a template, try specifying an instantiation: %s<type>)."),
1741 kind == GLOBAL_BLOCK ? "global" : "static",
1742 name, symtab_to_filename_for_display (symtab), name, name);
1743 }
1744
1745 /* A helper function for lookup_symbol_aux that interfaces with the
1746 "quick" symbol table functions. */
1747
1748 static struct symbol *
1749 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1750 const char *name, const domain_enum domain)
1751 {
1752 struct symtab *symtab;
1753 struct blockvector *bv;
1754 const struct block *block;
1755 struct symbol *sym;
1756
1757 if (!objfile->sf)
1758 return NULL;
1759 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1760 if (!symtab)
1761 return NULL;
1762
1763 bv = BLOCKVECTOR (symtab);
1764 block = BLOCKVECTOR_BLOCK (bv, kind);
1765 sym = lookup_block_symbol (block, name, domain);
1766 if (!sym)
1767 error_in_psymtab_expansion (kind, name, symtab);
1768 return fixup_symbol_section (sym, objfile);
1769 }
1770
1771 /* A default version of lookup_symbol_nonlocal for use by languages
1772 that can't think of anything better to do. This implements the C
1773 lookup rules. */
1774
1775 struct symbol *
1776 basic_lookup_symbol_nonlocal (const char *name,
1777 const struct block *block,
1778 const domain_enum domain)
1779 {
1780 struct symbol *sym;
1781
1782 /* NOTE: carlton/2003-05-19: The comments below were written when
1783 this (or what turned into this) was part of lookup_symbol_aux;
1784 I'm much less worried about these questions now, since these
1785 decisions have turned out well, but I leave these comments here
1786 for posterity. */
1787
1788 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1789 not it would be appropriate to search the current global block
1790 here as well. (That's what this code used to do before the
1791 is_a_field_of_this check was moved up.) On the one hand, it's
1792 redundant with the lookup_symbol_aux_symtabs search that happens
1793 next. On the other hand, if decode_line_1 is passed an argument
1794 like filename:var, then the user presumably wants 'var' to be
1795 searched for in filename. On the third hand, there shouldn't be
1796 multiple global variables all of which are named 'var', and it's
1797 not like decode_line_1 has ever restricted its search to only
1798 global variables in a single filename. All in all, only
1799 searching the static block here seems best: it's correct and it's
1800 cleanest. */
1801
1802 /* NOTE: carlton/2002-12-05: There's also a possible performance
1803 issue here: if you usually search for global symbols in the
1804 current file, then it would be slightly better to search the
1805 current global block before searching all the symtabs. But there
1806 are other factors that have a much greater effect on performance
1807 than that one, so I don't think we should worry about that for
1808 now. */
1809
1810 sym = lookup_symbol_static (name, block, domain);
1811 if (sym != NULL)
1812 return sym;
1813
1814 return lookup_symbol_global (name, block, domain);
1815 }
1816
1817 /* Lookup a symbol in the static block associated to BLOCK, if there
1818 is one; do nothing if BLOCK is NULL or a global block. */
1819
1820 struct symbol *
1821 lookup_symbol_static (const char *name,
1822 const struct block *block,
1823 const domain_enum domain)
1824 {
1825 const struct block *static_block = block_static_block (block);
1826
1827 if (static_block != NULL)
1828 return lookup_symbol_aux_block (name, static_block, domain);
1829 else
1830 return NULL;
1831 }
1832
1833 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1834
1835 struct global_sym_lookup_data
1836 {
1837 /* The name of the symbol we are searching for. */
1838 const char *name;
1839
1840 /* The domain to use for our search. */
1841 domain_enum domain;
1842
1843 /* The field where the callback should store the symbol if found.
1844 It should be initialized to NULL before the search is started. */
1845 struct symbol *result;
1846 };
1847
1848 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1849 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1850 OBJFILE. The arguments for the search are passed via CB_DATA,
1851 which in reality is a pointer to struct global_sym_lookup_data. */
1852
1853 static int
1854 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1855 void *cb_data)
1856 {
1857 struct global_sym_lookup_data *data =
1858 (struct global_sym_lookup_data *) cb_data;
1859
1860 gdb_assert (data->result == NULL);
1861
1862 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1863 data->name, data->domain);
1864 if (data->result == NULL)
1865 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1866 data->name, data->domain);
1867
1868 /* If we found a match, tell the iterator to stop. Otherwise,
1869 keep going. */
1870 return (data->result != NULL);
1871 }
1872
1873 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1874 necessary). */
1875
1876 struct symbol *
1877 lookup_symbol_global (const char *name,
1878 const struct block *block,
1879 const domain_enum domain)
1880 {
1881 struct symbol *sym = NULL;
1882 struct objfile *objfile = NULL;
1883 struct global_sym_lookup_data lookup_data;
1884
1885 /* Call library-specific lookup procedure. */
1886 objfile = lookup_objfile_from_block (block);
1887 if (objfile != NULL)
1888 sym = solib_global_lookup (objfile, name, domain);
1889 if (sym != NULL)
1890 return sym;
1891
1892 memset (&lookup_data, 0, sizeof (lookup_data));
1893 lookup_data.name = name;
1894 lookup_data.domain = domain;
1895 gdbarch_iterate_over_objfiles_in_search_order
1896 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1897 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1898
1899 return lookup_data.result;
1900 }
1901
1902 int
1903 symbol_matches_domain (enum language symbol_language,
1904 domain_enum symbol_domain,
1905 domain_enum domain)
1906 {
1907 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1908 A Java class declaration also defines a typedef for the class.
1909 Similarly, any Ada type declaration implicitly defines a typedef. */
1910 if (symbol_language == language_cplus
1911 || symbol_language == language_d
1912 || symbol_language == language_java
1913 || symbol_language == language_ada)
1914 {
1915 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1916 && symbol_domain == STRUCT_DOMAIN)
1917 return 1;
1918 }
1919 /* For all other languages, strict match is required. */
1920 return (symbol_domain == domain);
1921 }
1922
1923 /* Look up a type named NAME in the struct_domain. The type returned
1924 must not be opaque -- i.e., must have at least one field
1925 defined. */
1926
1927 struct type *
1928 lookup_transparent_type (const char *name)
1929 {
1930 return current_language->la_lookup_transparent_type (name);
1931 }
1932
1933 /* A helper for basic_lookup_transparent_type that interfaces with the
1934 "quick" symbol table functions. */
1935
1936 static struct type *
1937 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1938 const char *name)
1939 {
1940 struct symtab *symtab;
1941 struct blockvector *bv;
1942 struct block *block;
1943 struct symbol *sym;
1944
1945 if (!objfile->sf)
1946 return NULL;
1947 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1948 if (!symtab)
1949 return NULL;
1950
1951 bv = BLOCKVECTOR (symtab);
1952 block = BLOCKVECTOR_BLOCK (bv, kind);
1953 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1954 if (!sym)
1955 error_in_psymtab_expansion (kind, name, symtab);
1956
1957 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1958 return SYMBOL_TYPE (sym);
1959
1960 return NULL;
1961 }
1962
1963 /* The standard implementation of lookup_transparent_type. This code
1964 was modeled on lookup_symbol -- the parts not relevant to looking
1965 up types were just left out. In particular it's assumed here that
1966 types are available in struct_domain and only at file-static or
1967 global blocks. */
1968
1969 struct type *
1970 basic_lookup_transparent_type (const char *name)
1971 {
1972 struct symbol *sym;
1973 struct symtab *s = NULL;
1974 struct blockvector *bv;
1975 struct objfile *objfile;
1976 struct block *block;
1977 struct type *t;
1978
1979 /* Now search all the global symbols. Do the symtab's first, then
1980 check the psymtab's. If a psymtab indicates the existence
1981 of the desired name as a global, then do psymtab-to-symtab
1982 conversion on the fly and return the found symbol. */
1983
1984 ALL_OBJFILES (objfile)
1985 {
1986 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1987 {
1988 bv = BLOCKVECTOR (s);
1989 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1990 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1991 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1992 {
1993 return SYMBOL_TYPE (sym);
1994 }
1995 }
1996 }
1997
1998 ALL_OBJFILES (objfile)
1999 {
2000 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2001 if (t)
2002 return t;
2003 }
2004
2005 /* Now search the static file-level symbols.
2006 Not strictly correct, but more useful than an error.
2007 Do the symtab's first, then
2008 check the psymtab's. If a psymtab indicates the existence
2009 of the desired name as a file-level static, then do psymtab-to-symtab
2010 conversion on the fly and return the found symbol. */
2011
2012 ALL_OBJFILES (objfile)
2013 {
2014 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
2015 {
2016 bv = BLOCKVECTOR (s);
2017 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
2018 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
2019 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2020 {
2021 return SYMBOL_TYPE (sym);
2022 }
2023 }
2024 }
2025
2026 ALL_OBJFILES (objfile)
2027 {
2028 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2029 if (t)
2030 return t;
2031 }
2032
2033 return (struct type *) 0;
2034 }
2035
2036 /* Search BLOCK for symbol NAME in DOMAIN.
2037
2038 Note that if NAME is the demangled form of a C++ symbol, we will fail
2039 to find a match during the binary search of the non-encoded names, but
2040 for now we don't worry about the slight inefficiency of looking for
2041 a match we'll never find, since it will go pretty quick. Once the
2042 binary search terminates, we drop through and do a straight linear
2043 search on the symbols. Each symbol which is marked as being a ObjC/C++
2044 symbol (language_cplus or language_objc set) has both the encoded and
2045 non-encoded names tested for a match. */
2046
2047 struct symbol *
2048 lookup_block_symbol (const struct block *block, const char *name,
2049 const domain_enum domain)
2050 {
2051 struct block_iterator iter;
2052 struct symbol *sym;
2053
2054 if (!BLOCK_FUNCTION (block))
2055 {
2056 for (sym = block_iter_name_first (block, name, &iter);
2057 sym != NULL;
2058 sym = block_iter_name_next (name, &iter))
2059 {
2060 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2061 SYMBOL_DOMAIN (sym), domain))
2062 return sym;
2063 }
2064 return NULL;
2065 }
2066 else
2067 {
2068 /* Note that parameter symbols do not always show up last in the
2069 list; this loop makes sure to take anything else other than
2070 parameter symbols first; it only uses parameter symbols as a
2071 last resort. Note that this only takes up extra computation
2072 time on a match. */
2073
2074 struct symbol *sym_found = NULL;
2075
2076 for (sym = block_iter_name_first (block, name, &iter);
2077 sym != NULL;
2078 sym = block_iter_name_next (name, &iter))
2079 {
2080 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2081 SYMBOL_DOMAIN (sym), domain))
2082 {
2083 sym_found = sym;
2084 if (!SYMBOL_IS_ARGUMENT (sym))
2085 {
2086 break;
2087 }
2088 }
2089 }
2090 return (sym_found); /* Will be NULL if not found. */
2091 }
2092 }
2093
2094 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2095
2096 For each symbol that matches, CALLBACK is called. The symbol and
2097 DATA are passed to the callback.
2098
2099 If CALLBACK returns zero, the iteration ends. Otherwise, the
2100 search continues. */
2101
2102 void
2103 iterate_over_symbols (const struct block *block, const char *name,
2104 const domain_enum domain,
2105 symbol_found_callback_ftype *callback,
2106 void *data)
2107 {
2108 struct block_iterator iter;
2109 struct symbol *sym;
2110
2111 for (sym = block_iter_name_first (block, name, &iter);
2112 sym != NULL;
2113 sym = block_iter_name_next (name, &iter))
2114 {
2115 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2116 SYMBOL_DOMAIN (sym), domain))
2117 {
2118 if (!callback (sym, data))
2119 return;
2120 }
2121 }
2122 }
2123
2124 /* Find the symtab associated with PC and SECTION. Look through the
2125 psymtabs and read in another symtab if necessary. */
2126
2127 struct symtab *
2128 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2129 {
2130 struct block *b;
2131 struct blockvector *bv;
2132 struct symtab *s = NULL;
2133 struct symtab *best_s = NULL;
2134 struct objfile *objfile;
2135 CORE_ADDR distance = 0;
2136 struct minimal_symbol *msymbol;
2137
2138 /* If we know that this is not a text address, return failure. This is
2139 necessary because we loop based on the block's high and low code
2140 addresses, which do not include the data ranges, and because
2141 we call find_pc_sect_psymtab which has a similar restriction based
2142 on the partial_symtab's texthigh and textlow. */
2143 msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym;
2144 if (msymbol
2145 && (MSYMBOL_TYPE (msymbol) == mst_data
2146 || MSYMBOL_TYPE (msymbol) == mst_bss
2147 || MSYMBOL_TYPE (msymbol) == mst_abs
2148 || MSYMBOL_TYPE (msymbol) == mst_file_data
2149 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2150 return NULL;
2151
2152 /* Search all symtabs for the one whose file contains our address, and which
2153 is the smallest of all the ones containing the address. This is designed
2154 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2155 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2156 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2157
2158 This happens for native ecoff format, where code from included files
2159 gets its own symtab. The symtab for the included file should have
2160 been read in already via the dependency mechanism.
2161 It might be swifter to create several symtabs with the same name
2162 like xcoff does (I'm not sure).
2163
2164 It also happens for objfiles that have their functions reordered.
2165 For these, the symtab we are looking for is not necessarily read in. */
2166
2167 ALL_PRIMARY_SYMTABS (objfile, s)
2168 {
2169 bv = BLOCKVECTOR (s);
2170 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2171
2172 if (BLOCK_START (b) <= pc
2173 && BLOCK_END (b) > pc
2174 && (distance == 0
2175 || BLOCK_END (b) - BLOCK_START (b) < distance))
2176 {
2177 /* For an objfile that has its functions reordered,
2178 find_pc_psymtab will find the proper partial symbol table
2179 and we simply return its corresponding symtab. */
2180 /* In order to better support objfiles that contain both
2181 stabs and coff debugging info, we continue on if a psymtab
2182 can't be found. */
2183 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2184 {
2185 struct symtab *result;
2186
2187 result
2188 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2189 msymbol,
2190 pc, section,
2191 0);
2192 if (result)
2193 return result;
2194 }
2195 if (section != 0)
2196 {
2197 struct block_iterator iter;
2198 struct symbol *sym = NULL;
2199
2200 ALL_BLOCK_SYMBOLS (b, iter, sym)
2201 {
2202 fixup_symbol_section (sym, objfile);
2203 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2204 section))
2205 break;
2206 }
2207 if (sym == NULL)
2208 continue; /* No symbol in this symtab matches
2209 section. */
2210 }
2211 distance = BLOCK_END (b) - BLOCK_START (b);
2212 best_s = s;
2213 }
2214 }
2215
2216 if (best_s != NULL)
2217 return (best_s);
2218
2219 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2220
2221 ALL_OBJFILES (objfile)
2222 {
2223 struct symtab *result;
2224
2225 if (!objfile->sf)
2226 continue;
2227 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2228 msymbol,
2229 pc, section,
2230 1);
2231 if (result)
2232 return result;
2233 }
2234
2235 return NULL;
2236 }
2237
2238 /* Find the symtab associated with PC. Look through the psymtabs and read
2239 in another symtab if necessary. Backward compatibility, no section. */
2240
2241 struct symtab *
2242 find_pc_symtab (CORE_ADDR pc)
2243 {
2244 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2245 }
2246 \f
2247
2248 /* Find the source file and line number for a given PC value and SECTION.
2249 Return a structure containing a symtab pointer, a line number,
2250 and a pc range for the entire source line.
2251 The value's .pc field is NOT the specified pc.
2252 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2253 use the line that ends there. Otherwise, in that case, the line
2254 that begins there is used. */
2255
2256 /* The big complication here is that a line may start in one file, and end just
2257 before the start of another file. This usually occurs when you #include
2258 code in the middle of a subroutine. To properly find the end of a line's PC
2259 range, we must search all symtabs associated with this compilation unit, and
2260 find the one whose first PC is closer than that of the next line in this
2261 symtab. */
2262
2263 /* If it's worth the effort, we could be using a binary search. */
2264
2265 struct symtab_and_line
2266 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2267 {
2268 struct symtab *s;
2269 struct linetable *l;
2270 int len;
2271 int i;
2272 struct linetable_entry *item;
2273 struct symtab_and_line val;
2274 struct blockvector *bv;
2275 struct bound_minimal_symbol msymbol;
2276 struct minimal_symbol *mfunsym;
2277 struct objfile *objfile;
2278
2279 /* Info on best line seen so far, and where it starts, and its file. */
2280
2281 struct linetable_entry *best = NULL;
2282 CORE_ADDR best_end = 0;
2283 struct symtab *best_symtab = 0;
2284
2285 /* Store here the first line number
2286 of a file which contains the line at the smallest pc after PC.
2287 If we don't find a line whose range contains PC,
2288 we will use a line one less than this,
2289 with a range from the start of that file to the first line's pc. */
2290 struct linetable_entry *alt = NULL;
2291
2292 /* Info on best line seen in this file. */
2293
2294 struct linetable_entry *prev;
2295
2296 /* If this pc is not from the current frame,
2297 it is the address of the end of a call instruction.
2298 Quite likely that is the start of the following statement.
2299 But what we want is the statement containing the instruction.
2300 Fudge the pc to make sure we get that. */
2301
2302 init_sal (&val); /* initialize to zeroes */
2303
2304 val.pspace = current_program_space;
2305
2306 /* It's tempting to assume that, if we can't find debugging info for
2307 any function enclosing PC, that we shouldn't search for line
2308 number info, either. However, GAS can emit line number info for
2309 assembly files --- very helpful when debugging hand-written
2310 assembly code. In such a case, we'd have no debug info for the
2311 function, but we would have line info. */
2312
2313 if (notcurrent)
2314 pc -= 1;
2315
2316 /* elz: added this because this function returned the wrong
2317 information if the pc belongs to a stub (import/export)
2318 to call a shlib function. This stub would be anywhere between
2319 two functions in the target, and the line info was erroneously
2320 taken to be the one of the line before the pc. */
2321
2322 /* RT: Further explanation:
2323
2324 * We have stubs (trampolines) inserted between procedures.
2325 *
2326 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2327 * exists in the main image.
2328 *
2329 * In the minimal symbol table, we have a bunch of symbols
2330 * sorted by start address. The stubs are marked as "trampoline",
2331 * the others appear as text. E.g.:
2332 *
2333 * Minimal symbol table for main image
2334 * main: code for main (text symbol)
2335 * shr1: stub (trampoline symbol)
2336 * foo: code for foo (text symbol)
2337 * ...
2338 * Minimal symbol table for "shr1" image:
2339 * ...
2340 * shr1: code for shr1 (text symbol)
2341 * ...
2342 *
2343 * So the code below is trying to detect if we are in the stub
2344 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2345 * and if found, do the symbolization from the real-code address
2346 * rather than the stub address.
2347 *
2348 * Assumptions being made about the minimal symbol table:
2349 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2350 * if we're really in the trampoline.s If we're beyond it (say
2351 * we're in "foo" in the above example), it'll have a closer
2352 * symbol (the "foo" text symbol for example) and will not
2353 * return the trampoline.
2354 * 2. lookup_minimal_symbol_text() will find a real text symbol
2355 * corresponding to the trampoline, and whose address will
2356 * be different than the trampoline address. I put in a sanity
2357 * check for the address being the same, to avoid an
2358 * infinite recursion.
2359 */
2360 msymbol = lookup_minimal_symbol_by_pc (pc);
2361 if (msymbol.minsym != NULL)
2362 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2363 {
2364 mfunsym
2365 = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol.minsym),
2366 NULL);
2367 if (mfunsym == NULL)
2368 /* I eliminated this warning since it is coming out
2369 * in the following situation:
2370 * gdb shmain // test program with shared libraries
2371 * (gdb) break shr1 // function in shared lib
2372 * Warning: In stub for ...
2373 * In the above situation, the shared lib is not loaded yet,
2374 * so of course we can't find the real func/line info,
2375 * but the "break" still works, and the warning is annoying.
2376 * So I commented out the warning. RT */
2377 /* warning ("In stub for %s; unable to find real function/line info",
2378 SYMBOL_LINKAGE_NAME (msymbol)); */
2379 ;
2380 /* fall through */
2381 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2382 == SYMBOL_VALUE_ADDRESS (msymbol.minsym))
2383 /* Avoid infinite recursion */
2384 /* See above comment about why warning is commented out. */
2385 /* warning ("In stub for %s; unable to find real function/line info",
2386 SYMBOL_LINKAGE_NAME (msymbol)); */
2387 ;
2388 /* fall through */
2389 else
2390 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2391 }
2392
2393
2394 s = find_pc_sect_symtab (pc, section);
2395 if (!s)
2396 {
2397 /* If no symbol information, return previous pc. */
2398 if (notcurrent)
2399 pc++;
2400 val.pc = pc;
2401 return val;
2402 }
2403
2404 bv = BLOCKVECTOR (s);
2405 objfile = s->objfile;
2406
2407 /* Look at all the symtabs that share this blockvector.
2408 They all have the same apriori range, that we found was right;
2409 but they have different line tables. */
2410
2411 ALL_OBJFILE_SYMTABS (objfile, s)
2412 {
2413 if (BLOCKVECTOR (s) != bv)
2414 continue;
2415
2416 /* Find the best line in this symtab. */
2417 l = LINETABLE (s);
2418 if (!l)
2419 continue;
2420 len = l->nitems;
2421 if (len <= 0)
2422 {
2423 /* I think len can be zero if the symtab lacks line numbers
2424 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2425 I'm not sure which, and maybe it depends on the symbol
2426 reader). */
2427 continue;
2428 }
2429
2430 prev = NULL;
2431 item = l->item; /* Get first line info. */
2432
2433 /* Is this file's first line closer than the first lines of other files?
2434 If so, record this file, and its first line, as best alternate. */
2435 if (item->pc > pc && (!alt || item->pc < alt->pc))
2436 alt = item;
2437
2438 for (i = 0; i < len; i++, item++)
2439 {
2440 /* Leave prev pointing to the linetable entry for the last line
2441 that started at or before PC. */
2442 if (item->pc > pc)
2443 break;
2444
2445 prev = item;
2446 }
2447
2448 /* At this point, prev points at the line whose start addr is <= pc, and
2449 item points at the next line. If we ran off the end of the linetable
2450 (pc >= start of the last line), then prev == item. If pc < start of
2451 the first line, prev will not be set. */
2452
2453 /* Is this file's best line closer than the best in the other files?
2454 If so, record this file, and its best line, as best so far. Don't
2455 save prev if it represents the end of a function (i.e. line number
2456 0) instead of a real line. */
2457
2458 if (prev && prev->line && (!best || prev->pc > best->pc))
2459 {
2460 best = prev;
2461 best_symtab = s;
2462
2463 /* Discard BEST_END if it's before the PC of the current BEST. */
2464 if (best_end <= best->pc)
2465 best_end = 0;
2466 }
2467
2468 /* If another line (denoted by ITEM) is in the linetable and its
2469 PC is after BEST's PC, but before the current BEST_END, then
2470 use ITEM's PC as the new best_end. */
2471 if (best && i < len && item->pc > best->pc
2472 && (best_end == 0 || best_end > item->pc))
2473 best_end = item->pc;
2474 }
2475
2476 if (!best_symtab)
2477 {
2478 /* If we didn't find any line number info, just return zeros.
2479 We used to return alt->line - 1 here, but that could be
2480 anywhere; if we don't have line number info for this PC,
2481 don't make some up. */
2482 val.pc = pc;
2483 }
2484 else if (best->line == 0)
2485 {
2486 /* If our best fit is in a range of PC's for which no line
2487 number info is available (line number is zero) then we didn't
2488 find any valid line information. */
2489 val.pc = pc;
2490 }
2491 else
2492 {
2493 val.symtab = best_symtab;
2494 val.line = best->line;
2495 val.pc = best->pc;
2496 if (best_end && (!alt || best_end < alt->pc))
2497 val.end = best_end;
2498 else if (alt)
2499 val.end = alt->pc;
2500 else
2501 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2502 }
2503 val.section = section;
2504 return val;
2505 }
2506
2507 /* Backward compatibility (no section). */
2508
2509 struct symtab_and_line
2510 find_pc_line (CORE_ADDR pc, int notcurrent)
2511 {
2512 struct obj_section *section;
2513
2514 section = find_pc_overlay (pc);
2515 if (pc_in_unmapped_range (pc, section))
2516 pc = overlay_mapped_address (pc, section);
2517 return find_pc_sect_line (pc, section, notcurrent);
2518 }
2519 \f
2520 /* Find line number LINE in any symtab whose name is the same as
2521 SYMTAB.
2522
2523 If found, return the symtab that contains the linetable in which it was
2524 found, set *INDEX to the index in the linetable of the best entry
2525 found, and set *EXACT_MATCH nonzero if the value returned is an
2526 exact match.
2527
2528 If not found, return NULL. */
2529
2530 struct symtab *
2531 find_line_symtab (struct symtab *symtab, int line,
2532 int *index, int *exact_match)
2533 {
2534 int exact = 0; /* Initialized here to avoid a compiler warning. */
2535
2536 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2537 so far seen. */
2538
2539 int best_index;
2540 struct linetable *best_linetable;
2541 struct symtab *best_symtab;
2542
2543 /* First try looking it up in the given symtab. */
2544 best_linetable = LINETABLE (symtab);
2545 best_symtab = symtab;
2546 best_index = find_line_common (best_linetable, line, &exact, 0);
2547 if (best_index < 0 || !exact)
2548 {
2549 /* Didn't find an exact match. So we better keep looking for
2550 another symtab with the same name. In the case of xcoff,
2551 multiple csects for one source file (produced by IBM's FORTRAN
2552 compiler) produce multiple symtabs (this is unavoidable
2553 assuming csects can be at arbitrary places in memory and that
2554 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2555
2556 /* BEST is the smallest linenumber > LINE so far seen,
2557 or 0 if none has been seen so far.
2558 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2559 int best;
2560
2561 struct objfile *objfile;
2562 struct symtab *s;
2563
2564 if (best_index >= 0)
2565 best = best_linetable->item[best_index].line;
2566 else
2567 best = 0;
2568
2569 ALL_OBJFILES (objfile)
2570 {
2571 if (objfile->sf)
2572 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2573 symtab_to_fullname (symtab));
2574 }
2575
2576 ALL_SYMTABS (objfile, s)
2577 {
2578 struct linetable *l;
2579 int ind;
2580
2581 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2582 continue;
2583 if (FILENAME_CMP (symtab_to_fullname (symtab),
2584 symtab_to_fullname (s)) != 0)
2585 continue;
2586 l = LINETABLE (s);
2587 ind = find_line_common (l, line, &exact, 0);
2588 if (ind >= 0)
2589 {
2590 if (exact)
2591 {
2592 best_index = ind;
2593 best_linetable = l;
2594 best_symtab = s;
2595 goto done;
2596 }
2597 if (best == 0 || l->item[ind].line < best)
2598 {
2599 best = l->item[ind].line;
2600 best_index = ind;
2601 best_linetable = l;
2602 best_symtab = s;
2603 }
2604 }
2605 }
2606 }
2607 done:
2608 if (best_index < 0)
2609 return NULL;
2610
2611 if (index)
2612 *index = best_index;
2613 if (exact_match)
2614 *exact_match = exact;
2615
2616 return best_symtab;
2617 }
2618
2619 /* Given SYMTAB, returns all the PCs function in the symtab that
2620 exactly match LINE. Returns NULL if there are no exact matches,
2621 but updates BEST_ITEM in this case. */
2622
2623 VEC (CORE_ADDR) *
2624 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2625 struct linetable_entry **best_item)
2626 {
2627 int start = 0;
2628 VEC (CORE_ADDR) *result = NULL;
2629
2630 /* First, collect all the PCs that are at this line. */
2631 while (1)
2632 {
2633 int was_exact;
2634 int idx;
2635
2636 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2637 if (idx < 0)
2638 break;
2639
2640 if (!was_exact)
2641 {
2642 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2643
2644 if (*best_item == NULL || item->line < (*best_item)->line)
2645 *best_item = item;
2646
2647 break;
2648 }
2649
2650 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2651 start = idx + 1;
2652 }
2653
2654 return result;
2655 }
2656
2657 \f
2658 /* Set the PC value for a given source file and line number and return true.
2659 Returns zero for invalid line number (and sets the PC to 0).
2660 The source file is specified with a struct symtab. */
2661
2662 int
2663 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2664 {
2665 struct linetable *l;
2666 int ind;
2667
2668 *pc = 0;
2669 if (symtab == 0)
2670 return 0;
2671
2672 symtab = find_line_symtab (symtab, line, &ind, NULL);
2673 if (symtab != NULL)
2674 {
2675 l = LINETABLE (symtab);
2676 *pc = l->item[ind].pc;
2677 return 1;
2678 }
2679 else
2680 return 0;
2681 }
2682
2683 /* Find the range of pc values in a line.
2684 Store the starting pc of the line into *STARTPTR
2685 and the ending pc (start of next line) into *ENDPTR.
2686 Returns 1 to indicate success.
2687 Returns 0 if could not find the specified line. */
2688
2689 int
2690 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2691 CORE_ADDR *endptr)
2692 {
2693 CORE_ADDR startaddr;
2694 struct symtab_and_line found_sal;
2695
2696 startaddr = sal.pc;
2697 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2698 return 0;
2699
2700 /* This whole function is based on address. For example, if line 10 has
2701 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2702 "info line *0x123" should say the line goes from 0x100 to 0x200
2703 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2704 This also insures that we never give a range like "starts at 0x134
2705 and ends at 0x12c". */
2706
2707 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2708 if (found_sal.line != sal.line)
2709 {
2710 /* The specified line (sal) has zero bytes. */
2711 *startptr = found_sal.pc;
2712 *endptr = found_sal.pc;
2713 }
2714 else
2715 {
2716 *startptr = found_sal.pc;
2717 *endptr = found_sal.end;
2718 }
2719 return 1;
2720 }
2721
2722 /* Given a line table and a line number, return the index into the line
2723 table for the pc of the nearest line whose number is >= the specified one.
2724 Return -1 if none is found. The value is >= 0 if it is an index.
2725 START is the index at which to start searching the line table.
2726
2727 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2728
2729 static int
2730 find_line_common (struct linetable *l, int lineno,
2731 int *exact_match, int start)
2732 {
2733 int i;
2734 int len;
2735
2736 /* BEST is the smallest linenumber > LINENO so far seen,
2737 or 0 if none has been seen so far.
2738 BEST_INDEX identifies the item for it. */
2739
2740 int best_index = -1;
2741 int best = 0;
2742
2743 *exact_match = 0;
2744
2745 if (lineno <= 0)
2746 return -1;
2747 if (l == 0)
2748 return -1;
2749
2750 len = l->nitems;
2751 for (i = start; i < len; i++)
2752 {
2753 struct linetable_entry *item = &(l->item[i]);
2754
2755 if (item->line == lineno)
2756 {
2757 /* Return the first (lowest address) entry which matches. */
2758 *exact_match = 1;
2759 return i;
2760 }
2761
2762 if (item->line > lineno && (best == 0 || item->line < best))
2763 {
2764 best = item->line;
2765 best_index = i;
2766 }
2767 }
2768
2769 /* If we got here, we didn't get an exact match. */
2770 return best_index;
2771 }
2772
2773 int
2774 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2775 {
2776 struct symtab_and_line sal;
2777
2778 sal = find_pc_line (pc, 0);
2779 *startptr = sal.pc;
2780 *endptr = sal.end;
2781 return sal.symtab != 0;
2782 }
2783
2784 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2785 address for that function that has an entry in SYMTAB's line info
2786 table. If such an entry cannot be found, return FUNC_ADDR
2787 unaltered. */
2788
2789 static CORE_ADDR
2790 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2791 {
2792 CORE_ADDR func_start, func_end;
2793 struct linetable *l;
2794 int i;
2795
2796 /* Give up if this symbol has no lineinfo table. */
2797 l = LINETABLE (symtab);
2798 if (l == NULL)
2799 return func_addr;
2800
2801 /* Get the range for the function's PC values, or give up if we
2802 cannot, for some reason. */
2803 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2804 return func_addr;
2805
2806 /* Linetable entries are ordered by PC values, see the commentary in
2807 symtab.h where `struct linetable' is defined. Thus, the first
2808 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2809 address we are looking for. */
2810 for (i = 0; i < l->nitems; i++)
2811 {
2812 struct linetable_entry *item = &(l->item[i]);
2813
2814 /* Don't use line numbers of zero, they mark special entries in
2815 the table. See the commentary on symtab.h before the
2816 definition of struct linetable. */
2817 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2818 return item->pc;
2819 }
2820
2821 return func_addr;
2822 }
2823
2824 /* Given a function symbol SYM, find the symtab and line for the start
2825 of the function.
2826 If the argument FUNFIRSTLINE is nonzero, we want the first line
2827 of real code inside the function. */
2828
2829 struct symtab_and_line
2830 find_function_start_sal (struct symbol *sym, int funfirstline)
2831 {
2832 struct symtab_and_line sal;
2833
2834 fixup_symbol_section (sym, NULL);
2835 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2836 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2837
2838 /* We always should have a line for the function start address.
2839 If we don't, something is odd. Create a plain SAL refering
2840 just the PC and hope that skip_prologue_sal (if requested)
2841 can find a line number for after the prologue. */
2842 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2843 {
2844 init_sal (&sal);
2845 sal.pspace = current_program_space;
2846 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2847 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2848 }
2849
2850 if (funfirstline)
2851 skip_prologue_sal (&sal);
2852
2853 return sal;
2854 }
2855
2856 /* Adjust SAL to the first instruction past the function prologue.
2857 If the PC was explicitly specified, the SAL is not changed.
2858 If the line number was explicitly specified, at most the SAL's PC
2859 is updated. If SAL is already past the prologue, then do nothing. */
2860
2861 void
2862 skip_prologue_sal (struct symtab_and_line *sal)
2863 {
2864 struct symbol *sym;
2865 struct symtab_and_line start_sal;
2866 struct cleanup *old_chain;
2867 CORE_ADDR pc, saved_pc;
2868 struct obj_section *section;
2869 const char *name;
2870 struct objfile *objfile;
2871 struct gdbarch *gdbarch;
2872 struct block *b, *function_block;
2873 int force_skip, skip;
2874
2875 /* Do not change the SAL if PC was specified explicitly. */
2876 if (sal->explicit_pc)
2877 return;
2878
2879 old_chain = save_current_space_and_thread ();
2880 switch_to_program_space_and_thread (sal->pspace);
2881
2882 sym = find_pc_sect_function (sal->pc, sal->section);
2883 if (sym != NULL)
2884 {
2885 fixup_symbol_section (sym, NULL);
2886
2887 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2888 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2889 name = SYMBOL_LINKAGE_NAME (sym);
2890 objfile = SYMBOL_SYMTAB (sym)->objfile;
2891 }
2892 else
2893 {
2894 struct bound_minimal_symbol msymbol
2895 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2896
2897 if (msymbol.minsym == NULL)
2898 {
2899 do_cleanups (old_chain);
2900 return;
2901 }
2902
2903 objfile = msymbol.objfile;
2904 pc = SYMBOL_VALUE_ADDRESS (msymbol.minsym);
2905 section = SYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2906 name = SYMBOL_LINKAGE_NAME (msymbol.minsym);
2907 }
2908
2909 gdbarch = get_objfile_arch (objfile);
2910
2911 /* Process the prologue in two passes. In the first pass try to skip the
2912 prologue (SKIP is true) and verify there is a real need for it (indicated
2913 by FORCE_SKIP). If no such reason was found run a second pass where the
2914 prologue is not skipped (SKIP is false). */
2915
2916 skip = 1;
2917 force_skip = 1;
2918
2919 /* Be conservative - allow direct PC (without skipping prologue) only if we
2920 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2921 have to be set by the caller so we use SYM instead. */
2922 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2923 force_skip = 0;
2924
2925 saved_pc = pc;
2926 do
2927 {
2928 pc = saved_pc;
2929
2930 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2931 so that gdbarch_skip_prologue has something unique to work on. */
2932 if (section_is_overlay (section) && !section_is_mapped (section))
2933 pc = overlay_unmapped_address (pc, section);
2934
2935 /* Skip "first line" of function (which is actually its prologue). */
2936 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2937 if (skip)
2938 pc = gdbarch_skip_prologue (gdbarch, pc);
2939
2940 /* For overlays, map pc back into its mapped VMA range. */
2941 pc = overlay_mapped_address (pc, section);
2942
2943 /* Calculate line number. */
2944 start_sal = find_pc_sect_line (pc, section, 0);
2945
2946 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2947 line is still part of the same function. */
2948 if (skip && start_sal.pc != pc
2949 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2950 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2951 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2952 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2953 {
2954 /* First pc of next line */
2955 pc = start_sal.end;
2956 /* Recalculate the line number (might not be N+1). */
2957 start_sal = find_pc_sect_line (pc, section, 0);
2958 }
2959
2960 /* On targets with executable formats that don't have a concept of
2961 constructors (ELF with .init has, PE doesn't), gcc emits a call
2962 to `__main' in `main' between the prologue and before user
2963 code. */
2964 if (gdbarch_skip_main_prologue_p (gdbarch)
2965 && name && strcmp_iw (name, "main") == 0)
2966 {
2967 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2968 /* Recalculate the line number (might not be N+1). */
2969 start_sal = find_pc_sect_line (pc, section, 0);
2970 force_skip = 1;
2971 }
2972 }
2973 while (!force_skip && skip--);
2974
2975 /* If we still don't have a valid source line, try to find the first
2976 PC in the lineinfo table that belongs to the same function. This
2977 happens with COFF debug info, which does not seem to have an
2978 entry in lineinfo table for the code after the prologue which has
2979 no direct relation to source. For example, this was found to be
2980 the case with the DJGPP target using "gcc -gcoff" when the
2981 compiler inserted code after the prologue to make sure the stack
2982 is aligned. */
2983 if (!force_skip && sym && start_sal.symtab == NULL)
2984 {
2985 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2986 /* Recalculate the line number. */
2987 start_sal = find_pc_sect_line (pc, section, 0);
2988 }
2989
2990 do_cleanups (old_chain);
2991
2992 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2993 forward SAL to the end of the prologue. */
2994 if (sal->pc >= pc)
2995 return;
2996
2997 sal->pc = pc;
2998 sal->section = section;
2999
3000 /* Unless the explicit_line flag was set, update the SAL line
3001 and symtab to correspond to the modified PC location. */
3002 if (sal->explicit_line)
3003 return;
3004
3005 sal->symtab = start_sal.symtab;
3006 sal->line = start_sal.line;
3007 sal->end = start_sal.end;
3008
3009 /* Check if we are now inside an inlined function. If we can,
3010 use the call site of the function instead. */
3011 b = block_for_pc_sect (sal->pc, sal->section);
3012 function_block = NULL;
3013 while (b != NULL)
3014 {
3015 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3016 function_block = b;
3017 else if (BLOCK_FUNCTION (b) != NULL)
3018 break;
3019 b = BLOCK_SUPERBLOCK (b);
3020 }
3021 if (function_block != NULL
3022 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3023 {
3024 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3025 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
3026 }
3027 }
3028
3029 /* If P is of the form "operator[ \t]+..." where `...' is
3030 some legitimate operator text, return a pointer to the
3031 beginning of the substring of the operator text.
3032 Otherwise, return "". */
3033
3034 static char *
3035 operator_chars (char *p, char **end)
3036 {
3037 *end = "";
3038 if (strncmp (p, "operator", 8))
3039 return *end;
3040 p += 8;
3041
3042 /* Don't get faked out by `operator' being part of a longer
3043 identifier. */
3044 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3045 return *end;
3046
3047 /* Allow some whitespace between `operator' and the operator symbol. */
3048 while (*p == ' ' || *p == '\t')
3049 p++;
3050
3051 /* Recognize 'operator TYPENAME'. */
3052
3053 if (isalpha (*p) || *p == '_' || *p == '$')
3054 {
3055 char *q = p + 1;
3056
3057 while (isalnum (*q) || *q == '_' || *q == '$')
3058 q++;
3059 *end = q;
3060 return p;
3061 }
3062
3063 while (*p)
3064 switch (*p)
3065 {
3066 case '\\': /* regexp quoting */
3067 if (p[1] == '*')
3068 {
3069 if (p[2] == '=') /* 'operator\*=' */
3070 *end = p + 3;
3071 else /* 'operator\*' */
3072 *end = p + 2;
3073 return p;
3074 }
3075 else if (p[1] == '[')
3076 {
3077 if (p[2] == ']')
3078 error (_("mismatched quoting on brackets, "
3079 "try 'operator\\[\\]'"));
3080 else if (p[2] == '\\' && p[3] == ']')
3081 {
3082 *end = p + 4; /* 'operator\[\]' */
3083 return p;
3084 }
3085 else
3086 error (_("nothing is allowed between '[' and ']'"));
3087 }
3088 else
3089 {
3090 /* Gratuitous qoute: skip it and move on. */
3091 p++;
3092 continue;
3093 }
3094 break;
3095 case '!':
3096 case '=':
3097 case '*':
3098 case '/':
3099 case '%':
3100 case '^':
3101 if (p[1] == '=')
3102 *end = p + 2;
3103 else
3104 *end = p + 1;
3105 return p;
3106 case '<':
3107 case '>':
3108 case '+':
3109 case '-':
3110 case '&':
3111 case '|':
3112 if (p[0] == '-' && p[1] == '>')
3113 {
3114 /* Struct pointer member operator 'operator->'. */
3115 if (p[2] == '*')
3116 {
3117 *end = p + 3; /* 'operator->*' */
3118 return p;
3119 }
3120 else if (p[2] == '\\')
3121 {
3122 *end = p + 4; /* Hopefully 'operator->\*' */
3123 return p;
3124 }
3125 else
3126 {
3127 *end = p + 2; /* 'operator->' */
3128 return p;
3129 }
3130 }
3131 if (p[1] == '=' || p[1] == p[0])
3132 *end = p + 2;
3133 else
3134 *end = p + 1;
3135 return p;
3136 case '~':
3137 case ',':
3138 *end = p + 1;
3139 return p;
3140 case '(':
3141 if (p[1] != ')')
3142 error (_("`operator ()' must be specified "
3143 "without whitespace in `()'"));
3144 *end = p + 2;
3145 return p;
3146 case '?':
3147 if (p[1] != ':')
3148 error (_("`operator ?:' must be specified "
3149 "without whitespace in `?:'"));
3150 *end = p + 2;
3151 return p;
3152 case '[':
3153 if (p[1] != ']')
3154 error (_("`operator []' must be specified "
3155 "without whitespace in `[]'"));
3156 *end = p + 2;
3157 return p;
3158 default:
3159 error (_("`operator %s' not supported"), p);
3160 break;
3161 }
3162
3163 *end = "";
3164 return *end;
3165 }
3166 \f
3167
3168 /* Cache to watch for file names already seen by filename_seen. */
3169
3170 struct filename_seen_cache
3171 {
3172 /* Table of files seen so far. */
3173 htab_t tab;
3174 /* Initial size of the table. It automagically grows from here. */
3175 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3176 };
3177
3178 /* filename_seen_cache constructor. */
3179
3180 static struct filename_seen_cache *
3181 create_filename_seen_cache (void)
3182 {
3183 struct filename_seen_cache *cache;
3184
3185 cache = XNEW (struct filename_seen_cache);
3186 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3187 filename_hash, filename_eq,
3188 NULL, xcalloc, xfree);
3189
3190 return cache;
3191 }
3192
3193 /* Empty the cache, but do not delete it. */
3194
3195 static void
3196 clear_filename_seen_cache (struct filename_seen_cache *cache)
3197 {
3198 htab_empty (cache->tab);
3199 }
3200
3201 /* filename_seen_cache destructor.
3202 This takes a void * argument as it is generally used as a cleanup. */
3203
3204 static void
3205 delete_filename_seen_cache (void *ptr)
3206 {
3207 struct filename_seen_cache *cache = ptr;
3208
3209 htab_delete (cache->tab);
3210 xfree (cache);
3211 }
3212
3213 /* If FILE is not already in the table of files in CACHE, return zero;
3214 otherwise return non-zero. Optionally add FILE to the table if ADD
3215 is non-zero.
3216
3217 NOTE: We don't manage space for FILE, we assume FILE lives as long
3218 as the caller needs. */
3219
3220 static int
3221 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3222 {
3223 void **slot;
3224
3225 /* Is FILE in tab? */
3226 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3227 if (*slot != NULL)
3228 return 1;
3229
3230 /* No; maybe add it to tab. */
3231 if (add)
3232 *slot = (char *) file;
3233
3234 return 0;
3235 }
3236
3237 /* Data structure to maintain printing state for output_source_filename. */
3238
3239 struct output_source_filename_data
3240 {
3241 /* Cache of what we've seen so far. */
3242 struct filename_seen_cache *filename_seen_cache;
3243
3244 /* Flag of whether we're printing the first one. */
3245 int first;
3246 };
3247
3248 /* Slave routine for sources_info. Force line breaks at ,'s.
3249 NAME is the name to print.
3250 DATA contains the state for printing and watching for duplicates. */
3251
3252 static void
3253 output_source_filename (const char *name,
3254 struct output_source_filename_data *data)
3255 {
3256 /* Since a single source file can result in several partial symbol
3257 tables, we need to avoid printing it more than once. Note: if
3258 some of the psymtabs are read in and some are not, it gets
3259 printed both under "Source files for which symbols have been
3260 read" and "Source files for which symbols will be read in on
3261 demand". I consider this a reasonable way to deal with the
3262 situation. I'm not sure whether this can also happen for
3263 symtabs; it doesn't hurt to check. */
3264
3265 /* Was NAME already seen? */
3266 if (filename_seen (data->filename_seen_cache, name, 1))
3267 {
3268 /* Yes; don't print it again. */
3269 return;
3270 }
3271
3272 /* No; print it and reset *FIRST. */
3273 if (! data->first)
3274 printf_filtered (", ");
3275 data->first = 0;
3276
3277 wrap_here ("");
3278 fputs_filtered (name, gdb_stdout);
3279 }
3280
3281 /* A callback for map_partial_symbol_filenames. */
3282
3283 static void
3284 output_partial_symbol_filename (const char *filename, const char *fullname,
3285 void *data)
3286 {
3287 output_source_filename (fullname ? fullname : filename, data);
3288 }
3289
3290 static void
3291 sources_info (char *ignore, int from_tty)
3292 {
3293 struct symtab *s;
3294 struct objfile *objfile;
3295 struct output_source_filename_data data;
3296 struct cleanup *cleanups;
3297
3298 if (!have_full_symbols () && !have_partial_symbols ())
3299 {
3300 error (_("No symbol table is loaded. Use the \"file\" command."));
3301 }
3302
3303 data.filename_seen_cache = create_filename_seen_cache ();
3304 cleanups = make_cleanup (delete_filename_seen_cache,
3305 data.filename_seen_cache);
3306
3307 printf_filtered ("Source files for which symbols have been read in:\n\n");
3308
3309 data.first = 1;
3310 ALL_SYMTABS (objfile, s)
3311 {
3312 const char *fullname = symtab_to_fullname (s);
3313
3314 output_source_filename (fullname, &data);
3315 }
3316 printf_filtered ("\n\n");
3317
3318 printf_filtered ("Source files for which symbols "
3319 "will be read in on demand:\n\n");
3320
3321 clear_filename_seen_cache (data.filename_seen_cache);
3322 data.first = 1;
3323 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3324 1 /*need_fullname*/);
3325 printf_filtered ("\n");
3326
3327 do_cleanups (cleanups);
3328 }
3329
3330 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3331 non-zero compare only lbasename of FILES. */
3332
3333 static int
3334 file_matches (const char *file, char *files[], int nfiles, int basenames)
3335 {
3336 int i;
3337
3338 if (file != NULL && nfiles != 0)
3339 {
3340 for (i = 0; i < nfiles; i++)
3341 {
3342 if (compare_filenames_for_search (file, (basenames
3343 ? lbasename (files[i])
3344 : files[i])))
3345 return 1;
3346 }
3347 }
3348 else if (nfiles == 0)
3349 return 1;
3350 return 0;
3351 }
3352
3353 /* Free any memory associated with a search. */
3354
3355 void
3356 free_search_symbols (struct symbol_search *symbols)
3357 {
3358 struct symbol_search *p;
3359 struct symbol_search *next;
3360
3361 for (p = symbols; p != NULL; p = next)
3362 {
3363 next = p->next;
3364 xfree (p);
3365 }
3366 }
3367
3368 static void
3369 do_free_search_symbols_cleanup (void *symbolsp)
3370 {
3371 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3372
3373 free_search_symbols (symbols);
3374 }
3375
3376 struct cleanup *
3377 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3378 {
3379 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3380 }
3381
3382 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3383 sort symbols, not minimal symbols. */
3384
3385 static int
3386 compare_search_syms (const void *sa, const void *sb)
3387 {
3388 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3389 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3390 int c;
3391
3392 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3393 if (c != 0)
3394 return c;
3395
3396 if (sym_a->block != sym_b->block)
3397 return sym_a->block - sym_b->block;
3398
3399 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3400 SYMBOL_PRINT_NAME (sym_b->symbol));
3401 }
3402
3403 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3404 The duplicates are freed, and the new list is returned in
3405 *NEW_HEAD, *NEW_TAIL. */
3406
3407 static void
3408 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3409 struct symbol_search **new_head,
3410 struct symbol_search **new_tail)
3411 {
3412 struct symbol_search **symbols, *symp, *old_next;
3413 int i, j, nunique;
3414
3415 gdb_assert (found != NULL && nfound > 0);
3416
3417 /* Build an array out of the list so we can easily sort them. */
3418 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3419 * nfound);
3420 symp = found;
3421 for (i = 0; i < nfound; i++)
3422 {
3423 gdb_assert (symp != NULL);
3424 gdb_assert (symp->block >= 0 && symp->block <= 1);
3425 symbols[i] = symp;
3426 symp = symp->next;
3427 }
3428 gdb_assert (symp == NULL);
3429
3430 qsort (symbols, nfound, sizeof (struct symbol_search *),
3431 compare_search_syms);
3432
3433 /* Collapse out the dups. */
3434 for (i = 1, j = 1; i < nfound; ++i)
3435 {
3436 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3437 symbols[j++] = symbols[i];
3438 else
3439 xfree (symbols[i]);
3440 }
3441 nunique = j;
3442 symbols[j - 1]->next = NULL;
3443
3444 /* Rebuild the linked list. */
3445 for (i = 0; i < nunique - 1; i++)
3446 symbols[i]->next = symbols[i + 1];
3447 symbols[nunique - 1]->next = NULL;
3448
3449 *new_head = symbols[0];
3450 *new_tail = symbols[nunique - 1];
3451 xfree (symbols);
3452 }
3453
3454 /* An object of this type is passed as the user_data to the
3455 expand_symtabs_matching method. */
3456 struct search_symbols_data
3457 {
3458 int nfiles;
3459 char **files;
3460
3461 /* It is true if PREG contains valid data, false otherwise. */
3462 unsigned preg_p : 1;
3463 regex_t preg;
3464 };
3465
3466 /* A callback for expand_symtabs_matching. */
3467
3468 static int
3469 search_symbols_file_matches (const char *filename, void *user_data,
3470 int basenames)
3471 {
3472 struct search_symbols_data *data = user_data;
3473
3474 return file_matches (filename, data->files, data->nfiles, basenames);
3475 }
3476
3477 /* A callback for expand_symtabs_matching. */
3478
3479 static int
3480 search_symbols_name_matches (const char *symname, void *user_data)
3481 {
3482 struct search_symbols_data *data = user_data;
3483
3484 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3485 }
3486
3487 /* Search the symbol table for matches to the regular expression REGEXP,
3488 returning the results in *MATCHES.
3489
3490 Only symbols of KIND are searched:
3491 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3492 and constants (enums)
3493 FUNCTIONS_DOMAIN - search all functions
3494 TYPES_DOMAIN - search all type names
3495 ALL_DOMAIN - an internal error for this function
3496
3497 free_search_symbols should be called when *MATCHES is no longer needed.
3498
3499 Within each file the results are sorted locally; each symtab's global and
3500 static blocks are separately alphabetized.
3501 Duplicate entries are removed. */
3502
3503 void
3504 search_symbols (char *regexp, enum search_domain kind,
3505 int nfiles, char *files[],
3506 struct symbol_search **matches)
3507 {
3508 struct symtab *s;
3509 struct blockvector *bv;
3510 struct block *b;
3511 int i = 0;
3512 struct block_iterator iter;
3513 struct symbol *sym;
3514 struct objfile *objfile;
3515 struct minimal_symbol *msymbol;
3516 int found_misc = 0;
3517 static const enum minimal_symbol_type types[]
3518 = {mst_data, mst_text, mst_abs};
3519 static const enum minimal_symbol_type types2[]
3520 = {mst_bss, mst_file_text, mst_abs};
3521 static const enum minimal_symbol_type types3[]
3522 = {mst_file_data, mst_solib_trampoline, mst_abs};
3523 static const enum minimal_symbol_type types4[]
3524 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3525 enum minimal_symbol_type ourtype;
3526 enum minimal_symbol_type ourtype2;
3527 enum minimal_symbol_type ourtype3;
3528 enum minimal_symbol_type ourtype4;
3529 struct symbol_search *found;
3530 struct symbol_search *tail;
3531 struct search_symbols_data datum;
3532 int nfound;
3533
3534 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3535 CLEANUP_CHAIN is freed only in the case of an error. */
3536 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3537 struct cleanup *retval_chain;
3538
3539 gdb_assert (kind <= TYPES_DOMAIN);
3540
3541 ourtype = types[kind];
3542 ourtype2 = types2[kind];
3543 ourtype3 = types3[kind];
3544 ourtype4 = types4[kind];
3545
3546 *matches = NULL;
3547 datum.preg_p = 0;
3548
3549 if (regexp != NULL)
3550 {
3551 /* Make sure spacing is right for C++ operators.
3552 This is just a courtesy to make the matching less sensitive
3553 to how many spaces the user leaves between 'operator'
3554 and <TYPENAME> or <OPERATOR>. */
3555 char *opend;
3556 char *opname = operator_chars (regexp, &opend);
3557 int errcode;
3558
3559 if (*opname)
3560 {
3561 int fix = -1; /* -1 means ok; otherwise number of
3562 spaces needed. */
3563
3564 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3565 {
3566 /* There should 1 space between 'operator' and 'TYPENAME'. */
3567 if (opname[-1] != ' ' || opname[-2] == ' ')
3568 fix = 1;
3569 }
3570 else
3571 {
3572 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3573 if (opname[-1] == ' ')
3574 fix = 0;
3575 }
3576 /* If wrong number of spaces, fix it. */
3577 if (fix >= 0)
3578 {
3579 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3580
3581 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3582 regexp = tmp;
3583 }
3584 }
3585
3586 errcode = regcomp (&datum.preg, regexp,
3587 REG_NOSUB | (case_sensitivity == case_sensitive_off
3588 ? REG_ICASE : 0));
3589 if (errcode != 0)
3590 {
3591 char *err = get_regcomp_error (errcode, &datum.preg);
3592
3593 make_cleanup (xfree, err);
3594 error (_("Invalid regexp (%s): %s"), err, regexp);
3595 }
3596 datum.preg_p = 1;
3597 make_regfree_cleanup (&datum.preg);
3598 }
3599
3600 /* Search through the partial symtabs *first* for all symbols
3601 matching the regexp. That way we don't have to reproduce all of
3602 the machinery below. */
3603
3604 datum.nfiles = nfiles;
3605 datum.files = files;
3606 ALL_OBJFILES (objfile)
3607 {
3608 if (objfile->sf)
3609 objfile->sf->qf->expand_symtabs_matching (objfile,
3610 (nfiles == 0
3611 ? NULL
3612 : search_symbols_file_matches),
3613 search_symbols_name_matches,
3614 kind,
3615 &datum);
3616 }
3617
3618 /* Here, we search through the minimal symbol tables for functions
3619 and variables that match, and force their symbols to be read.
3620 This is in particular necessary for demangled variable names,
3621 which are no longer put into the partial symbol tables.
3622 The symbol will then be found during the scan of symtabs below.
3623
3624 For functions, find_pc_symtab should succeed if we have debug info
3625 for the function, for variables we have to call
3626 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3627 has debug info.
3628 If the lookup fails, set found_misc so that we will rescan to print
3629 any matching symbols without debug info.
3630 We only search the objfile the msymbol came from, we no longer search
3631 all objfiles. In large programs (1000s of shared libs) searching all
3632 objfiles is not worth the pain. */
3633
3634 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3635 {
3636 ALL_MSYMBOLS (objfile, msymbol)
3637 {
3638 QUIT;
3639
3640 if (msymbol->created_by_gdb)
3641 continue;
3642
3643 if (MSYMBOL_TYPE (msymbol) == ourtype
3644 || MSYMBOL_TYPE (msymbol) == ourtype2
3645 || MSYMBOL_TYPE (msymbol) == ourtype3
3646 || MSYMBOL_TYPE (msymbol) == ourtype4)
3647 {
3648 if (!datum.preg_p
3649 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3650 NULL, 0) == 0)
3651 {
3652 /* Note: An important side-effect of these lookup functions
3653 is to expand the symbol table if msymbol is found, for the
3654 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3655 if (kind == FUNCTIONS_DOMAIN
3656 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3657 : (lookup_symbol_in_objfile_from_linkage_name
3658 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3659 == NULL))
3660 found_misc = 1;
3661 }
3662 }
3663 }
3664 }
3665
3666 found = NULL;
3667 tail = NULL;
3668 nfound = 0;
3669 retval_chain = make_cleanup_free_search_symbols (&found);
3670
3671 ALL_PRIMARY_SYMTABS (objfile, s)
3672 {
3673 bv = BLOCKVECTOR (s);
3674 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3675 {
3676 b = BLOCKVECTOR_BLOCK (bv, i);
3677 ALL_BLOCK_SYMBOLS (b, iter, sym)
3678 {
3679 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3680
3681 QUIT;
3682
3683 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3684 a substring of symtab_to_fullname as it may contain "./" etc. */
3685 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3686 || ((basenames_may_differ
3687 || file_matches (lbasename (real_symtab->filename),
3688 files, nfiles, 1))
3689 && file_matches (symtab_to_fullname (real_symtab),
3690 files, nfiles, 0)))
3691 && ((!datum.preg_p
3692 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3693 NULL, 0) == 0)
3694 && ((kind == VARIABLES_DOMAIN
3695 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3696 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3697 && SYMBOL_CLASS (sym) != LOC_BLOCK
3698 /* LOC_CONST can be used for more than just enums,
3699 e.g., c++ static const members.
3700 We only want to skip enums here. */
3701 && !(SYMBOL_CLASS (sym) == LOC_CONST
3702 && TYPE_CODE (SYMBOL_TYPE (sym))
3703 == TYPE_CODE_ENUM))
3704 || (kind == FUNCTIONS_DOMAIN
3705 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3706 || (kind == TYPES_DOMAIN
3707 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3708 {
3709 /* match */
3710 struct symbol_search *psr = (struct symbol_search *)
3711 xmalloc (sizeof (struct symbol_search));
3712 psr->block = i;
3713 psr->symtab = real_symtab;
3714 psr->symbol = sym;
3715 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3716 psr->next = NULL;
3717 if (tail == NULL)
3718 found = psr;
3719 else
3720 tail->next = psr;
3721 tail = psr;
3722 nfound ++;
3723 }
3724 }
3725 }
3726 }
3727
3728 if (found != NULL)
3729 {
3730 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3731 /* Note: nfound is no longer useful beyond this point. */
3732 }
3733
3734 /* If there are no eyes, avoid all contact. I mean, if there are
3735 no debug symbols, then print directly from the msymbol_vector. */
3736
3737 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3738 {
3739 ALL_MSYMBOLS (objfile, msymbol)
3740 {
3741 QUIT;
3742
3743 if (msymbol->created_by_gdb)
3744 continue;
3745
3746 if (MSYMBOL_TYPE (msymbol) == ourtype
3747 || MSYMBOL_TYPE (msymbol) == ourtype2
3748 || MSYMBOL_TYPE (msymbol) == ourtype3
3749 || MSYMBOL_TYPE (msymbol) == ourtype4)
3750 {
3751 if (!datum.preg_p
3752 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3753 NULL, 0) == 0)
3754 {
3755 /* For functions we can do a quick check of whether the
3756 symbol might be found via find_pc_symtab. */
3757 if (kind != FUNCTIONS_DOMAIN
3758 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3759 {
3760 if (lookup_symbol_in_objfile_from_linkage_name
3761 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3762 == NULL)
3763 {
3764 /* match */
3765 struct symbol_search *psr = (struct symbol_search *)
3766 xmalloc (sizeof (struct symbol_search));
3767 psr->block = i;
3768 psr->msymbol.minsym = msymbol;
3769 psr->msymbol.objfile = objfile;
3770 psr->symtab = NULL;
3771 psr->symbol = NULL;
3772 psr->next = NULL;
3773 if (tail == NULL)
3774 found = psr;
3775 else
3776 tail->next = psr;
3777 tail = psr;
3778 }
3779 }
3780 }
3781 }
3782 }
3783 }
3784
3785 discard_cleanups (retval_chain);
3786 do_cleanups (old_chain);
3787 *matches = found;
3788 }
3789
3790 /* Helper function for symtab_symbol_info, this function uses
3791 the data returned from search_symbols() to print information
3792 regarding the match to gdb_stdout. */
3793
3794 static void
3795 print_symbol_info (enum search_domain kind,
3796 struct symtab *s, struct symbol *sym,
3797 int block, const char *last)
3798 {
3799 const char *s_filename = symtab_to_filename_for_display (s);
3800
3801 if (last == NULL || filename_cmp (last, s_filename) != 0)
3802 {
3803 fputs_filtered ("\nFile ", gdb_stdout);
3804 fputs_filtered (s_filename, gdb_stdout);
3805 fputs_filtered (":\n", gdb_stdout);
3806 }
3807
3808 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3809 printf_filtered ("static ");
3810
3811 /* Typedef that is not a C++ class. */
3812 if (kind == TYPES_DOMAIN
3813 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3814 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3815 /* variable, func, or typedef-that-is-c++-class. */
3816 else if (kind < TYPES_DOMAIN
3817 || (kind == TYPES_DOMAIN
3818 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3819 {
3820 type_print (SYMBOL_TYPE (sym),
3821 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3822 ? "" : SYMBOL_PRINT_NAME (sym)),
3823 gdb_stdout, 0);
3824
3825 printf_filtered (";\n");
3826 }
3827 }
3828
3829 /* This help function for symtab_symbol_info() prints information
3830 for non-debugging symbols to gdb_stdout. */
3831
3832 static void
3833 print_msymbol_info (struct bound_minimal_symbol msymbol)
3834 {
3835 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3836 char *tmp;
3837
3838 if (gdbarch_addr_bit (gdbarch) <= 32)
3839 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol.minsym)
3840 & (CORE_ADDR) 0xffffffff,
3841 8);
3842 else
3843 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol.minsym),
3844 16);
3845 printf_filtered ("%s %s\n",
3846 tmp, SYMBOL_PRINT_NAME (msymbol.minsym));
3847 }
3848
3849 /* This is the guts of the commands "info functions", "info types", and
3850 "info variables". It calls search_symbols to find all matches and then
3851 print_[m]symbol_info to print out some useful information about the
3852 matches. */
3853
3854 static void
3855 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3856 {
3857 static const char * const classnames[] =
3858 {"variable", "function", "type"};
3859 struct symbol_search *symbols;
3860 struct symbol_search *p;
3861 struct cleanup *old_chain;
3862 const char *last_filename = NULL;
3863 int first = 1;
3864
3865 gdb_assert (kind <= TYPES_DOMAIN);
3866
3867 /* Must make sure that if we're interrupted, symbols gets freed. */
3868 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3869 old_chain = make_cleanup_free_search_symbols (&symbols);
3870
3871 if (regexp != NULL)
3872 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3873 classnames[kind], regexp);
3874 else
3875 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3876
3877 for (p = symbols; p != NULL; p = p->next)
3878 {
3879 QUIT;
3880
3881 if (p->msymbol.minsym != NULL)
3882 {
3883 if (first)
3884 {
3885 printf_filtered (_("\nNon-debugging symbols:\n"));
3886 first = 0;
3887 }
3888 print_msymbol_info (p->msymbol);
3889 }
3890 else
3891 {
3892 print_symbol_info (kind,
3893 p->symtab,
3894 p->symbol,
3895 p->block,
3896 last_filename);
3897 last_filename = symtab_to_filename_for_display (p->symtab);
3898 }
3899 }
3900
3901 do_cleanups (old_chain);
3902 }
3903
3904 static void
3905 variables_info (char *regexp, int from_tty)
3906 {
3907 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3908 }
3909
3910 static void
3911 functions_info (char *regexp, int from_tty)
3912 {
3913 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3914 }
3915
3916
3917 static void
3918 types_info (char *regexp, int from_tty)
3919 {
3920 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3921 }
3922
3923 /* Breakpoint all functions matching regular expression. */
3924
3925 void
3926 rbreak_command_wrapper (char *regexp, int from_tty)
3927 {
3928 rbreak_command (regexp, from_tty);
3929 }
3930
3931 /* A cleanup function that calls end_rbreak_breakpoints. */
3932
3933 static void
3934 do_end_rbreak_breakpoints (void *ignore)
3935 {
3936 end_rbreak_breakpoints ();
3937 }
3938
3939 static void
3940 rbreak_command (char *regexp, int from_tty)
3941 {
3942 struct symbol_search *ss;
3943 struct symbol_search *p;
3944 struct cleanup *old_chain;
3945 char *string = NULL;
3946 int len = 0;
3947 char **files = NULL, *file_name;
3948 int nfiles = 0;
3949
3950 if (regexp)
3951 {
3952 char *colon = strchr (regexp, ':');
3953
3954 if (colon && *(colon + 1) != ':')
3955 {
3956 int colon_index;
3957
3958 colon_index = colon - regexp;
3959 file_name = alloca (colon_index + 1);
3960 memcpy (file_name, regexp, colon_index);
3961 file_name[colon_index--] = 0;
3962 while (isspace (file_name[colon_index]))
3963 file_name[colon_index--] = 0;
3964 files = &file_name;
3965 nfiles = 1;
3966 regexp = skip_spaces (colon + 1);
3967 }
3968 }
3969
3970 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3971 old_chain = make_cleanup_free_search_symbols (&ss);
3972 make_cleanup (free_current_contents, &string);
3973
3974 start_rbreak_breakpoints ();
3975 make_cleanup (do_end_rbreak_breakpoints, NULL);
3976 for (p = ss; p != NULL; p = p->next)
3977 {
3978 if (p->msymbol.minsym == NULL)
3979 {
3980 const char *fullname = symtab_to_fullname (p->symtab);
3981
3982 int newlen = (strlen (fullname)
3983 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3984 + 4);
3985
3986 if (newlen > len)
3987 {
3988 string = xrealloc (string, newlen);
3989 len = newlen;
3990 }
3991 strcpy (string, fullname);
3992 strcat (string, ":'");
3993 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3994 strcat (string, "'");
3995 break_command (string, from_tty);
3996 print_symbol_info (FUNCTIONS_DOMAIN,
3997 p->symtab,
3998 p->symbol,
3999 p->block,
4000 symtab_to_filename_for_display (p->symtab));
4001 }
4002 else
4003 {
4004 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4005
4006 if (newlen > len)
4007 {
4008 string = xrealloc (string, newlen);
4009 len = newlen;
4010 }
4011 strcpy (string, "'");
4012 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4013 strcat (string, "'");
4014
4015 break_command (string, from_tty);
4016 printf_filtered ("<function, no debug info> %s;\n",
4017 SYMBOL_PRINT_NAME (p->msymbol.minsym));
4018 }
4019 }
4020
4021 do_cleanups (old_chain);
4022 }
4023 \f
4024
4025 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4026
4027 Either sym_text[sym_text_len] != '(' and then we search for any
4028 symbol starting with SYM_TEXT text.
4029
4030 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4031 be terminated at that point. Partial symbol tables do not have parameters
4032 information. */
4033
4034 static int
4035 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4036 {
4037 int (*ncmp) (const char *, const char *, size_t);
4038
4039 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4040
4041 if (ncmp (name, sym_text, sym_text_len) != 0)
4042 return 0;
4043
4044 if (sym_text[sym_text_len] == '(')
4045 {
4046 /* User searches for `name(someth...'. Require NAME to be terminated.
4047 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4048 present but accept even parameters presence. In this case this
4049 function is in fact strcmp_iw but whitespace skipping is not supported
4050 for tab completion. */
4051
4052 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4053 return 0;
4054 }
4055
4056 return 1;
4057 }
4058
4059 /* Free any memory associated with a completion list. */
4060
4061 static void
4062 free_completion_list (VEC (char_ptr) **list_ptr)
4063 {
4064 int i;
4065 char *p;
4066
4067 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4068 xfree (p);
4069 VEC_free (char_ptr, *list_ptr);
4070 }
4071
4072 /* Callback for make_cleanup. */
4073
4074 static void
4075 do_free_completion_list (void *list)
4076 {
4077 free_completion_list (list);
4078 }
4079
4080 /* Helper routine for make_symbol_completion_list. */
4081
4082 static VEC (char_ptr) *return_val;
4083
4084 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4085 completion_list_add_name \
4086 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4087
4088 /* Test to see if the symbol specified by SYMNAME (which is already
4089 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4090 characters. If so, add it to the current completion list. */
4091
4092 static void
4093 completion_list_add_name (const char *symname,
4094 const char *sym_text, int sym_text_len,
4095 const char *text, const char *word)
4096 {
4097 /* Clip symbols that cannot match. */
4098 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4099 return;
4100
4101 /* We have a match for a completion, so add SYMNAME to the current list
4102 of matches. Note that the name is moved to freshly malloc'd space. */
4103
4104 {
4105 char *new;
4106
4107 if (word == sym_text)
4108 {
4109 new = xmalloc (strlen (symname) + 5);
4110 strcpy (new, symname);
4111 }
4112 else if (word > sym_text)
4113 {
4114 /* Return some portion of symname. */
4115 new = xmalloc (strlen (symname) + 5);
4116 strcpy (new, symname + (word - sym_text));
4117 }
4118 else
4119 {
4120 /* Return some of SYM_TEXT plus symname. */
4121 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4122 strncpy (new, word, sym_text - word);
4123 new[sym_text - word] = '\0';
4124 strcat (new, symname);
4125 }
4126
4127 VEC_safe_push (char_ptr, return_val, new);
4128 }
4129 }
4130
4131 /* ObjC: In case we are completing on a selector, look as the msymbol
4132 again and feed all the selectors into the mill. */
4133
4134 static void
4135 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4136 const char *sym_text, int sym_text_len,
4137 const char *text, const char *word)
4138 {
4139 static char *tmp = NULL;
4140 static unsigned int tmplen = 0;
4141
4142 const char *method, *category, *selector;
4143 char *tmp2 = NULL;
4144
4145 method = SYMBOL_NATURAL_NAME (msymbol);
4146
4147 /* Is it a method? */
4148 if ((method[0] != '-') && (method[0] != '+'))
4149 return;
4150
4151 if (sym_text[0] == '[')
4152 /* Complete on shortened method method. */
4153 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4154
4155 while ((strlen (method) + 1) >= tmplen)
4156 {
4157 if (tmplen == 0)
4158 tmplen = 1024;
4159 else
4160 tmplen *= 2;
4161 tmp = xrealloc (tmp, tmplen);
4162 }
4163 selector = strchr (method, ' ');
4164 if (selector != NULL)
4165 selector++;
4166
4167 category = strchr (method, '(');
4168
4169 if ((category != NULL) && (selector != NULL))
4170 {
4171 memcpy (tmp, method, (category - method));
4172 tmp[category - method] = ' ';
4173 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4174 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4175 if (sym_text[0] == '[')
4176 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4177 }
4178
4179 if (selector != NULL)
4180 {
4181 /* Complete on selector only. */
4182 strcpy (tmp, selector);
4183 tmp2 = strchr (tmp, ']');
4184 if (tmp2 != NULL)
4185 *tmp2 = '\0';
4186
4187 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4188 }
4189 }
4190
4191 /* Break the non-quoted text based on the characters which are in
4192 symbols. FIXME: This should probably be language-specific. */
4193
4194 static const char *
4195 language_search_unquoted_string (const char *text, const char *p)
4196 {
4197 for (; p > text; --p)
4198 {
4199 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4200 continue;
4201 else
4202 {
4203 if ((current_language->la_language == language_objc))
4204 {
4205 if (p[-1] == ':') /* Might be part of a method name. */
4206 continue;
4207 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4208 p -= 2; /* Beginning of a method name. */
4209 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4210 { /* Might be part of a method name. */
4211 const char *t = p;
4212
4213 /* Seeing a ' ' or a '(' is not conclusive evidence
4214 that we are in the middle of a method name. However,
4215 finding "-[" or "+[" should be pretty un-ambiguous.
4216 Unfortunately we have to find it now to decide. */
4217
4218 while (t > text)
4219 if (isalnum (t[-1]) || t[-1] == '_' ||
4220 t[-1] == ' ' || t[-1] == ':' ||
4221 t[-1] == '(' || t[-1] == ')')
4222 --t;
4223 else
4224 break;
4225
4226 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4227 p = t - 2; /* Method name detected. */
4228 /* Else we leave with p unchanged. */
4229 }
4230 }
4231 break;
4232 }
4233 }
4234 return p;
4235 }
4236
4237 static void
4238 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4239 int sym_text_len, const char *text,
4240 const char *word)
4241 {
4242 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4243 {
4244 struct type *t = SYMBOL_TYPE (sym);
4245 enum type_code c = TYPE_CODE (t);
4246 int j;
4247
4248 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4249 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4250 if (TYPE_FIELD_NAME (t, j))
4251 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4252 sym_text, sym_text_len, text, word);
4253 }
4254 }
4255
4256 /* Type of the user_data argument passed to add_macro_name or
4257 expand_partial_symbol_name. The contents are simply whatever is
4258 needed by completion_list_add_name. */
4259 struct add_name_data
4260 {
4261 const char *sym_text;
4262 int sym_text_len;
4263 const char *text;
4264 const char *word;
4265 };
4266
4267 /* A callback used with macro_for_each and macro_for_each_in_scope.
4268 This adds a macro's name to the current completion list. */
4269
4270 static void
4271 add_macro_name (const char *name, const struct macro_definition *ignore,
4272 struct macro_source_file *ignore2, int ignore3,
4273 void *user_data)
4274 {
4275 struct add_name_data *datum = (struct add_name_data *) user_data;
4276
4277 completion_list_add_name ((char *) name,
4278 datum->sym_text, datum->sym_text_len,
4279 datum->text, datum->word);
4280 }
4281
4282 /* A callback for expand_partial_symbol_names. */
4283
4284 static int
4285 expand_partial_symbol_name (const char *name, void *user_data)
4286 {
4287 struct add_name_data *datum = (struct add_name_data *) user_data;
4288
4289 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4290 }
4291
4292 VEC (char_ptr) *
4293 default_make_symbol_completion_list_break_on (const char *text,
4294 const char *word,
4295 const char *break_on,
4296 enum type_code code)
4297 {
4298 /* Problem: All of the symbols have to be copied because readline
4299 frees them. I'm not going to worry about this; hopefully there
4300 won't be that many. */
4301
4302 struct symbol *sym;
4303 struct symtab *s;
4304 struct minimal_symbol *msymbol;
4305 struct objfile *objfile;
4306 struct block *b;
4307 const struct block *surrounding_static_block, *surrounding_global_block;
4308 struct block_iterator iter;
4309 /* The symbol we are completing on. Points in same buffer as text. */
4310 const char *sym_text;
4311 /* Length of sym_text. */
4312 int sym_text_len;
4313 struct add_name_data datum;
4314 struct cleanup *back_to;
4315
4316 /* Now look for the symbol we are supposed to complete on. */
4317 {
4318 const char *p;
4319 char quote_found;
4320 const char *quote_pos = NULL;
4321
4322 /* First see if this is a quoted string. */
4323 quote_found = '\0';
4324 for (p = text; *p != '\0'; ++p)
4325 {
4326 if (quote_found != '\0')
4327 {
4328 if (*p == quote_found)
4329 /* Found close quote. */
4330 quote_found = '\0';
4331 else if (*p == '\\' && p[1] == quote_found)
4332 /* A backslash followed by the quote character
4333 doesn't end the string. */
4334 ++p;
4335 }
4336 else if (*p == '\'' || *p == '"')
4337 {
4338 quote_found = *p;
4339 quote_pos = p;
4340 }
4341 }
4342 if (quote_found == '\'')
4343 /* A string within single quotes can be a symbol, so complete on it. */
4344 sym_text = quote_pos + 1;
4345 else if (quote_found == '"')
4346 /* A double-quoted string is never a symbol, nor does it make sense
4347 to complete it any other way. */
4348 {
4349 return NULL;
4350 }
4351 else
4352 {
4353 /* It is not a quoted string. Break it based on the characters
4354 which are in symbols. */
4355 while (p > text)
4356 {
4357 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4358 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4359 --p;
4360 else
4361 break;
4362 }
4363 sym_text = p;
4364 }
4365 }
4366
4367 sym_text_len = strlen (sym_text);
4368
4369 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4370
4371 if (current_language->la_language == language_cplus
4372 || current_language->la_language == language_java
4373 || current_language->la_language == language_fortran)
4374 {
4375 /* These languages may have parameters entered by user but they are never
4376 present in the partial symbol tables. */
4377
4378 const char *cs = memchr (sym_text, '(', sym_text_len);
4379
4380 if (cs)
4381 sym_text_len = cs - sym_text;
4382 }
4383 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4384
4385 return_val = NULL;
4386 back_to = make_cleanup (do_free_completion_list, &return_val);
4387
4388 datum.sym_text = sym_text;
4389 datum.sym_text_len = sym_text_len;
4390 datum.text = text;
4391 datum.word = word;
4392
4393 /* Look through the partial symtabs for all symbols which begin
4394 by matching SYM_TEXT. Expand all CUs that you find to the list.
4395 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4396 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4397
4398 /* At this point scan through the misc symbol vectors and add each
4399 symbol you find to the list. Eventually we want to ignore
4400 anything that isn't a text symbol (everything else will be
4401 handled by the psymtab code above). */
4402
4403 if (code == TYPE_CODE_UNDEF)
4404 {
4405 ALL_MSYMBOLS (objfile, msymbol)
4406 {
4407 QUIT;
4408 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4409 word);
4410
4411 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4412 word);
4413 }
4414 }
4415
4416 /* Search upwards from currently selected frame (so that we can
4417 complete on local vars). Also catch fields of types defined in
4418 this places which match our text string. Only complete on types
4419 visible from current context. */
4420
4421 b = get_selected_block (0);
4422 surrounding_static_block = block_static_block (b);
4423 surrounding_global_block = block_global_block (b);
4424 if (surrounding_static_block != NULL)
4425 while (b != surrounding_static_block)
4426 {
4427 QUIT;
4428
4429 ALL_BLOCK_SYMBOLS (b, iter, sym)
4430 {
4431 if (code == TYPE_CODE_UNDEF)
4432 {
4433 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4434 word);
4435 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4436 word);
4437 }
4438 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4439 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4440 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4441 word);
4442 }
4443
4444 /* Stop when we encounter an enclosing function. Do not stop for
4445 non-inlined functions - the locals of the enclosing function
4446 are in scope for a nested function. */
4447 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4448 break;
4449 b = BLOCK_SUPERBLOCK (b);
4450 }
4451
4452 /* Add fields from the file's types; symbols will be added below. */
4453
4454 if (code == TYPE_CODE_UNDEF)
4455 {
4456 if (surrounding_static_block != NULL)
4457 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4458 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4459
4460 if (surrounding_global_block != NULL)
4461 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4462 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4463 }
4464
4465 /* Go through the symtabs and check the externs and statics for
4466 symbols which match. */
4467
4468 ALL_PRIMARY_SYMTABS (objfile, s)
4469 {
4470 QUIT;
4471 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4472 ALL_BLOCK_SYMBOLS (b, iter, sym)
4473 {
4474 if (code == TYPE_CODE_UNDEF
4475 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4476 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4477 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4478 }
4479 }
4480
4481 ALL_PRIMARY_SYMTABS (objfile, s)
4482 {
4483 QUIT;
4484 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4485 ALL_BLOCK_SYMBOLS (b, iter, sym)
4486 {
4487 if (code == TYPE_CODE_UNDEF
4488 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4489 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4490 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4491 }
4492 }
4493
4494 /* Skip macros if we are completing a struct tag -- arguable but
4495 usually what is expected. */
4496 if (current_language->la_macro_expansion == macro_expansion_c
4497 && code == TYPE_CODE_UNDEF)
4498 {
4499 struct macro_scope *scope;
4500
4501 /* Add any macros visible in the default scope. Note that this
4502 may yield the occasional wrong result, because an expression
4503 might be evaluated in a scope other than the default. For
4504 example, if the user types "break file:line if <TAB>", the
4505 resulting expression will be evaluated at "file:line" -- but
4506 at there does not seem to be a way to detect this at
4507 completion time. */
4508 scope = default_macro_scope ();
4509 if (scope)
4510 {
4511 macro_for_each_in_scope (scope->file, scope->line,
4512 add_macro_name, &datum);
4513 xfree (scope);
4514 }
4515
4516 /* User-defined macros are always visible. */
4517 macro_for_each (macro_user_macros, add_macro_name, &datum);
4518 }
4519
4520 discard_cleanups (back_to);
4521 return (return_val);
4522 }
4523
4524 VEC (char_ptr) *
4525 default_make_symbol_completion_list (const char *text, const char *word,
4526 enum type_code code)
4527 {
4528 return default_make_symbol_completion_list_break_on (text, word, "", code);
4529 }
4530
4531 /* Return a vector of all symbols (regardless of class) which begin by
4532 matching TEXT. If the answer is no symbols, then the return value
4533 is NULL. */
4534
4535 VEC (char_ptr) *
4536 make_symbol_completion_list (const char *text, const char *word)
4537 {
4538 return current_language->la_make_symbol_completion_list (text, word,
4539 TYPE_CODE_UNDEF);
4540 }
4541
4542 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4543 symbols whose type code is CODE. */
4544
4545 VEC (char_ptr) *
4546 make_symbol_completion_type (const char *text, const char *word,
4547 enum type_code code)
4548 {
4549 gdb_assert (code == TYPE_CODE_UNION
4550 || code == TYPE_CODE_STRUCT
4551 || code == TYPE_CODE_CLASS
4552 || code == TYPE_CODE_ENUM);
4553 return current_language->la_make_symbol_completion_list (text, word, code);
4554 }
4555
4556 /* Like make_symbol_completion_list, but suitable for use as a
4557 completion function. */
4558
4559 VEC (char_ptr) *
4560 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4561 const char *text, const char *word)
4562 {
4563 return make_symbol_completion_list (text, word);
4564 }
4565
4566 /* Like make_symbol_completion_list, but returns a list of symbols
4567 defined in a source file FILE. */
4568
4569 VEC (char_ptr) *
4570 make_file_symbol_completion_list (const char *text, const char *word,
4571 const char *srcfile)
4572 {
4573 struct symbol *sym;
4574 struct symtab *s;
4575 struct block *b;
4576 struct block_iterator iter;
4577 /* The symbol we are completing on. Points in same buffer as text. */
4578 const char *sym_text;
4579 /* Length of sym_text. */
4580 int sym_text_len;
4581
4582 /* Now look for the symbol we are supposed to complete on.
4583 FIXME: This should be language-specific. */
4584 {
4585 const char *p;
4586 char quote_found;
4587 const char *quote_pos = NULL;
4588
4589 /* First see if this is a quoted string. */
4590 quote_found = '\0';
4591 for (p = text; *p != '\0'; ++p)
4592 {
4593 if (quote_found != '\0')
4594 {
4595 if (*p == quote_found)
4596 /* Found close quote. */
4597 quote_found = '\0';
4598 else if (*p == '\\' && p[1] == quote_found)
4599 /* A backslash followed by the quote character
4600 doesn't end the string. */
4601 ++p;
4602 }
4603 else if (*p == '\'' || *p == '"')
4604 {
4605 quote_found = *p;
4606 quote_pos = p;
4607 }
4608 }
4609 if (quote_found == '\'')
4610 /* A string within single quotes can be a symbol, so complete on it. */
4611 sym_text = quote_pos + 1;
4612 else if (quote_found == '"')
4613 /* A double-quoted string is never a symbol, nor does it make sense
4614 to complete it any other way. */
4615 {
4616 return NULL;
4617 }
4618 else
4619 {
4620 /* Not a quoted string. */
4621 sym_text = language_search_unquoted_string (text, p);
4622 }
4623 }
4624
4625 sym_text_len = strlen (sym_text);
4626
4627 return_val = NULL;
4628
4629 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4630 in). */
4631 s = lookup_symtab (srcfile);
4632 if (s == NULL)
4633 {
4634 /* Maybe they typed the file with leading directories, while the
4635 symbol tables record only its basename. */
4636 const char *tail = lbasename (srcfile);
4637
4638 if (tail > srcfile)
4639 s = lookup_symtab (tail);
4640 }
4641
4642 /* If we have no symtab for that file, return an empty list. */
4643 if (s == NULL)
4644 return (return_val);
4645
4646 /* Go through this symtab and check the externs and statics for
4647 symbols which match. */
4648
4649 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4650 ALL_BLOCK_SYMBOLS (b, iter, sym)
4651 {
4652 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4653 }
4654
4655 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4656 ALL_BLOCK_SYMBOLS (b, iter, sym)
4657 {
4658 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4659 }
4660
4661 return (return_val);
4662 }
4663
4664 /* A helper function for make_source_files_completion_list. It adds
4665 another file name to a list of possible completions, growing the
4666 list as necessary. */
4667
4668 static void
4669 add_filename_to_list (const char *fname, const char *text, const char *word,
4670 VEC (char_ptr) **list)
4671 {
4672 char *new;
4673 size_t fnlen = strlen (fname);
4674
4675 if (word == text)
4676 {
4677 /* Return exactly fname. */
4678 new = xmalloc (fnlen + 5);
4679 strcpy (new, fname);
4680 }
4681 else if (word > text)
4682 {
4683 /* Return some portion of fname. */
4684 new = xmalloc (fnlen + 5);
4685 strcpy (new, fname + (word - text));
4686 }
4687 else
4688 {
4689 /* Return some of TEXT plus fname. */
4690 new = xmalloc (fnlen + (text - word) + 5);
4691 strncpy (new, word, text - word);
4692 new[text - word] = '\0';
4693 strcat (new, fname);
4694 }
4695 VEC_safe_push (char_ptr, *list, new);
4696 }
4697
4698 static int
4699 not_interesting_fname (const char *fname)
4700 {
4701 static const char *illegal_aliens[] = {
4702 "_globals_", /* inserted by coff_symtab_read */
4703 NULL
4704 };
4705 int i;
4706
4707 for (i = 0; illegal_aliens[i]; i++)
4708 {
4709 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4710 return 1;
4711 }
4712 return 0;
4713 }
4714
4715 /* An object of this type is passed as the user_data argument to
4716 map_partial_symbol_filenames. */
4717 struct add_partial_filename_data
4718 {
4719 struct filename_seen_cache *filename_seen_cache;
4720 const char *text;
4721 const char *word;
4722 int text_len;
4723 VEC (char_ptr) **list;
4724 };
4725
4726 /* A callback for map_partial_symbol_filenames. */
4727
4728 static void
4729 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4730 void *user_data)
4731 {
4732 struct add_partial_filename_data *data = user_data;
4733
4734 if (not_interesting_fname (filename))
4735 return;
4736 if (!filename_seen (data->filename_seen_cache, filename, 1)
4737 && filename_ncmp (filename, data->text, data->text_len) == 0)
4738 {
4739 /* This file matches for a completion; add it to the
4740 current list of matches. */
4741 add_filename_to_list (filename, data->text, data->word, data->list);
4742 }
4743 else
4744 {
4745 const char *base_name = lbasename (filename);
4746
4747 if (base_name != filename
4748 && !filename_seen (data->filename_seen_cache, base_name, 1)
4749 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4750 add_filename_to_list (base_name, data->text, data->word, data->list);
4751 }
4752 }
4753
4754 /* Return a vector of all source files whose names begin with matching
4755 TEXT. The file names are looked up in the symbol tables of this
4756 program. If the answer is no matchess, then the return value is
4757 NULL. */
4758
4759 VEC (char_ptr) *
4760 make_source_files_completion_list (const char *text, const char *word)
4761 {
4762 struct symtab *s;
4763 struct objfile *objfile;
4764 size_t text_len = strlen (text);
4765 VEC (char_ptr) *list = NULL;
4766 const char *base_name;
4767 struct add_partial_filename_data datum;
4768 struct filename_seen_cache *filename_seen_cache;
4769 struct cleanup *back_to, *cache_cleanup;
4770
4771 if (!have_full_symbols () && !have_partial_symbols ())
4772 return list;
4773
4774 back_to = make_cleanup (do_free_completion_list, &list);
4775
4776 filename_seen_cache = create_filename_seen_cache ();
4777 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4778 filename_seen_cache);
4779
4780 ALL_SYMTABS (objfile, s)
4781 {
4782 if (not_interesting_fname (s->filename))
4783 continue;
4784 if (!filename_seen (filename_seen_cache, s->filename, 1)
4785 && filename_ncmp (s->filename, text, text_len) == 0)
4786 {
4787 /* This file matches for a completion; add it to the current
4788 list of matches. */
4789 add_filename_to_list (s->filename, text, word, &list);
4790 }
4791 else
4792 {
4793 /* NOTE: We allow the user to type a base name when the
4794 debug info records leading directories, but not the other
4795 way around. This is what subroutines of breakpoint
4796 command do when they parse file names. */
4797 base_name = lbasename (s->filename);
4798 if (base_name != s->filename
4799 && !filename_seen (filename_seen_cache, base_name, 1)
4800 && filename_ncmp (base_name, text, text_len) == 0)
4801 add_filename_to_list (base_name, text, word, &list);
4802 }
4803 }
4804
4805 datum.filename_seen_cache = filename_seen_cache;
4806 datum.text = text;
4807 datum.word = word;
4808 datum.text_len = text_len;
4809 datum.list = &list;
4810 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4811 0 /*need_fullname*/);
4812
4813 do_cleanups (cache_cleanup);
4814 discard_cleanups (back_to);
4815
4816 return list;
4817 }
4818
4819 /* Determine if PC is in the prologue of a function. The prologue is the area
4820 between the first instruction of a function, and the first executable line.
4821 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4822
4823 If non-zero, func_start is where we think the prologue starts, possibly
4824 by previous examination of symbol table information. */
4825
4826 int
4827 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4828 {
4829 struct symtab_and_line sal;
4830 CORE_ADDR func_addr, func_end;
4831
4832 /* We have several sources of information we can consult to figure
4833 this out.
4834 - Compilers usually emit line number info that marks the prologue
4835 as its own "source line". So the ending address of that "line"
4836 is the end of the prologue. If available, this is the most
4837 reliable method.
4838 - The minimal symbols and partial symbols, which can usually tell
4839 us the starting and ending addresses of a function.
4840 - If we know the function's start address, we can call the
4841 architecture-defined gdbarch_skip_prologue function to analyze the
4842 instruction stream and guess where the prologue ends.
4843 - Our `func_start' argument; if non-zero, this is the caller's
4844 best guess as to the function's entry point. At the time of
4845 this writing, handle_inferior_event doesn't get this right, so
4846 it should be our last resort. */
4847
4848 /* Consult the partial symbol table, to find which function
4849 the PC is in. */
4850 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4851 {
4852 CORE_ADDR prologue_end;
4853
4854 /* We don't even have minsym information, so fall back to using
4855 func_start, if given. */
4856 if (! func_start)
4857 return 1; /* We *might* be in a prologue. */
4858
4859 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4860
4861 return func_start <= pc && pc < prologue_end;
4862 }
4863
4864 /* If we have line number information for the function, that's
4865 usually pretty reliable. */
4866 sal = find_pc_line (func_addr, 0);
4867
4868 /* Now sal describes the source line at the function's entry point,
4869 which (by convention) is the prologue. The end of that "line",
4870 sal.end, is the end of the prologue.
4871
4872 Note that, for functions whose source code is all on a single
4873 line, the line number information doesn't always end up this way.
4874 So we must verify that our purported end-of-prologue address is
4875 *within* the function, not at its start or end. */
4876 if (sal.line == 0
4877 || sal.end <= func_addr
4878 || func_end <= sal.end)
4879 {
4880 /* We don't have any good line number info, so use the minsym
4881 information, together with the architecture-specific prologue
4882 scanning code. */
4883 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4884
4885 return func_addr <= pc && pc < prologue_end;
4886 }
4887
4888 /* We have line number info, and it looks good. */
4889 return func_addr <= pc && pc < sal.end;
4890 }
4891
4892 /* Given PC at the function's start address, attempt to find the
4893 prologue end using SAL information. Return zero if the skip fails.
4894
4895 A non-optimized prologue traditionally has one SAL for the function
4896 and a second for the function body. A single line function has
4897 them both pointing at the same line.
4898
4899 An optimized prologue is similar but the prologue may contain
4900 instructions (SALs) from the instruction body. Need to skip those
4901 while not getting into the function body.
4902
4903 The functions end point and an increasing SAL line are used as
4904 indicators of the prologue's endpoint.
4905
4906 This code is based on the function refine_prologue_limit
4907 (found in ia64). */
4908
4909 CORE_ADDR
4910 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4911 {
4912 struct symtab_and_line prologue_sal;
4913 CORE_ADDR start_pc;
4914 CORE_ADDR end_pc;
4915 struct block *bl;
4916
4917 /* Get an initial range for the function. */
4918 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4919 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4920
4921 prologue_sal = find_pc_line (start_pc, 0);
4922 if (prologue_sal.line != 0)
4923 {
4924 /* For languages other than assembly, treat two consecutive line
4925 entries at the same address as a zero-instruction prologue.
4926 The GNU assembler emits separate line notes for each instruction
4927 in a multi-instruction macro, but compilers generally will not
4928 do this. */
4929 if (prologue_sal.symtab->language != language_asm)
4930 {
4931 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4932 int idx = 0;
4933
4934 /* Skip any earlier lines, and any end-of-sequence marker
4935 from a previous function. */
4936 while (linetable->item[idx].pc != prologue_sal.pc
4937 || linetable->item[idx].line == 0)
4938 idx++;
4939
4940 if (idx+1 < linetable->nitems
4941 && linetable->item[idx+1].line != 0
4942 && linetable->item[idx+1].pc == start_pc)
4943 return start_pc;
4944 }
4945
4946 /* If there is only one sal that covers the entire function,
4947 then it is probably a single line function, like
4948 "foo(){}". */
4949 if (prologue_sal.end >= end_pc)
4950 return 0;
4951
4952 while (prologue_sal.end < end_pc)
4953 {
4954 struct symtab_and_line sal;
4955
4956 sal = find_pc_line (prologue_sal.end, 0);
4957 if (sal.line == 0)
4958 break;
4959 /* Assume that a consecutive SAL for the same (or larger)
4960 line mark the prologue -> body transition. */
4961 if (sal.line >= prologue_sal.line)
4962 break;
4963 /* Likewise if we are in a different symtab altogether
4964 (e.g. within a file included via #include).  */
4965 if (sal.symtab != prologue_sal.symtab)
4966 break;
4967
4968 /* The line number is smaller. Check that it's from the
4969 same function, not something inlined. If it's inlined,
4970 then there is no point comparing the line numbers. */
4971 bl = block_for_pc (prologue_sal.end);
4972 while (bl)
4973 {
4974 if (block_inlined_p (bl))
4975 break;
4976 if (BLOCK_FUNCTION (bl))
4977 {
4978 bl = NULL;
4979 break;
4980 }
4981 bl = BLOCK_SUPERBLOCK (bl);
4982 }
4983 if (bl != NULL)
4984 break;
4985
4986 /* The case in which compiler's optimizer/scheduler has
4987 moved instructions into the prologue. We look ahead in
4988 the function looking for address ranges whose
4989 corresponding line number is less the first one that we
4990 found for the function. This is more conservative then
4991 refine_prologue_limit which scans a large number of SALs
4992 looking for any in the prologue. */
4993 prologue_sal = sal;
4994 }
4995 }
4996
4997 if (prologue_sal.end < end_pc)
4998 /* Return the end of this line, or zero if we could not find a
4999 line. */
5000 return prologue_sal.end;
5001 else
5002 /* Don't return END_PC, which is past the end of the function. */
5003 return prologue_sal.pc;
5004 }
5005 \f
5006 /* Track MAIN */
5007 static char *name_of_main;
5008 enum language language_of_main = language_unknown;
5009
5010 void
5011 set_main_name (const char *name)
5012 {
5013 if (name_of_main != NULL)
5014 {
5015 xfree (name_of_main);
5016 name_of_main = NULL;
5017 language_of_main = language_unknown;
5018 }
5019 if (name != NULL)
5020 {
5021 name_of_main = xstrdup (name);
5022 language_of_main = language_unknown;
5023 }
5024 }
5025
5026 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5027 accordingly. */
5028
5029 static void
5030 find_main_name (void)
5031 {
5032 const char *new_main_name;
5033
5034 /* Try to see if the main procedure is in Ada. */
5035 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5036 be to add a new method in the language vector, and call this
5037 method for each language until one of them returns a non-empty
5038 name. This would allow us to remove this hard-coded call to
5039 an Ada function. It is not clear that this is a better approach
5040 at this point, because all methods need to be written in a way
5041 such that false positives never be returned. For instance, it is
5042 important that a method does not return a wrong name for the main
5043 procedure if the main procedure is actually written in a different
5044 language. It is easy to guaranty this with Ada, since we use a
5045 special symbol generated only when the main in Ada to find the name
5046 of the main procedure. It is difficult however to see how this can
5047 be guarantied for languages such as C, for instance. This suggests
5048 that order of call for these methods becomes important, which means
5049 a more complicated approach. */
5050 new_main_name = ada_main_name ();
5051 if (new_main_name != NULL)
5052 {
5053 set_main_name (new_main_name);
5054 return;
5055 }
5056
5057 new_main_name = go_main_name ();
5058 if (new_main_name != NULL)
5059 {
5060 set_main_name (new_main_name);
5061 return;
5062 }
5063
5064 new_main_name = pascal_main_name ();
5065 if (new_main_name != NULL)
5066 {
5067 set_main_name (new_main_name);
5068 return;
5069 }
5070
5071 /* The languages above didn't identify the name of the main procedure.
5072 Fallback to "main". */
5073 set_main_name ("main");
5074 }
5075
5076 char *
5077 main_name (void)
5078 {
5079 if (name_of_main == NULL)
5080 find_main_name ();
5081
5082 return name_of_main;
5083 }
5084
5085 /* Handle ``executable_changed'' events for the symtab module. */
5086
5087 static void
5088 symtab_observer_executable_changed (void)
5089 {
5090 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5091 set_main_name (NULL);
5092 }
5093
5094 /* Return 1 if the supplied producer string matches the ARM RealView
5095 compiler (armcc). */
5096
5097 int
5098 producer_is_realview (const char *producer)
5099 {
5100 static const char *const arm_idents[] = {
5101 "ARM C Compiler, ADS",
5102 "Thumb C Compiler, ADS",
5103 "ARM C++ Compiler, ADS",
5104 "Thumb C++ Compiler, ADS",
5105 "ARM/Thumb C/C++ Compiler, RVCT",
5106 "ARM C/C++ Compiler, RVCT"
5107 };
5108 int i;
5109
5110 if (producer == NULL)
5111 return 0;
5112
5113 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5114 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5115 return 1;
5116
5117 return 0;
5118 }
5119
5120 \f
5121
5122 /* The next index to hand out in response to a registration request. */
5123
5124 static int next_aclass_value = LOC_FINAL_VALUE;
5125
5126 /* The maximum number of "aclass" registrations we support. This is
5127 constant for convenience. */
5128 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5129
5130 /* The objects representing the various "aclass" values. The elements
5131 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5132 elements are those registered at gdb initialization time. */
5133
5134 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5135
5136 /* The globally visible pointer. This is separate from 'symbol_impl'
5137 so that it can be const. */
5138
5139 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5140
5141 /* Make sure we saved enough room in struct symbol. */
5142
5143 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5144
5145 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5146 is the ops vector associated with this index. This returns the new
5147 index, which should be used as the aclass_index field for symbols
5148 of this type. */
5149
5150 int
5151 register_symbol_computed_impl (enum address_class aclass,
5152 const struct symbol_computed_ops *ops)
5153 {
5154 int result = next_aclass_value++;
5155
5156 gdb_assert (aclass == LOC_COMPUTED);
5157 gdb_assert (result < MAX_SYMBOL_IMPLS);
5158 symbol_impl[result].aclass = aclass;
5159 symbol_impl[result].ops_computed = ops;
5160
5161 /* Sanity check OPS. */
5162 gdb_assert (ops != NULL);
5163 gdb_assert (ops->tracepoint_var_ref != NULL);
5164 gdb_assert (ops->describe_location != NULL);
5165 gdb_assert (ops->read_needs_frame != NULL);
5166 gdb_assert (ops->read_variable != NULL);
5167
5168 return result;
5169 }
5170
5171 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5172 OPS is the ops vector associated with this index. This returns the
5173 new index, which should be used as the aclass_index field for symbols
5174 of this type. */
5175
5176 int
5177 register_symbol_block_impl (enum address_class aclass,
5178 const struct symbol_block_ops *ops)
5179 {
5180 int result = next_aclass_value++;
5181
5182 gdb_assert (aclass == LOC_BLOCK);
5183 gdb_assert (result < MAX_SYMBOL_IMPLS);
5184 symbol_impl[result].aclass = aclass;
5185 symbol_impl[result].ops_block = ops;
5186
5187 /* Sanity check OPS. */
5188 gdb_assert (ops != NULL);
5189 gdb_assert (ops->find_frame_base_location != NULL);
5190
5191 return result;
5192 }
5193
5194 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5195 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5196 this index. This returns the new index, which should be used as
5197 the aclass_index field for symbols of this type. */
5198
5199 int
5200 register_symbol_register_impl (enum address_class aclass,
5201 const struct symbol_register_ops *ops)
5202 {
5203 int result = next_aclass_value++;
5204
5205 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5206 gdb_assert (result < MAX_SYMBOL_IMPLS);
5207 symbol_impl[result].aclass = aclass;
5208 symbol_impl[result].ops_register = ops;
5209
5210 return result;
5211 }
5212
5213 /* Initialize elements of 'symbol_impl' for the constants in enum
5214 address_class. */
5215
5216 static void
5217 initialize_ordinary_address_classes (void)
5218 {
5219 int i;
5220
5221 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5222 symbol_impl[i].aclass = i;
5223 }
5224
5225 \f
5226
5227 /* Initialize the symbol SYM. */
5228
5229 void
5230 initialize_symbol (struct symbol *sym)
5231 {
5232 memset (sym, 0, sizeof (*sym));
5233 SYMBOL_SECTION (sym) = -1;
5234 }
5235
5236 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5237 obstack. */
5238
5239 struct symbol *
5240 allocate_symbol (struct objfile *objfile)
5241 {
5242 struct symbol *result;
5243
5244 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5245 SYMBOL_SECTION (result) = -1;
5246
5247 return result;
5248 }
5249
5250 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5251 obstack. */
5252
5253 struct template_symbol *
5254 allocate_template_symbol (struct objfile *objfile)
5255 {
5256 struct template_symbol *result;
5257
5258 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5259 SYMBOL_SECTION (&result->base) = -1;
5260
5261 return result;
5262 }
5263
5264 \f
5265
5266 void
5267 _initialize_symtab (void)
5268 {
5269 initialize_ordinary_address_classes ();
5270
5271 add_info ("variables", variables_info, _("\
5272 All global and static variable names, or those matching REGEXP."));
5273 if (dbx_commands)
5274 add_com ("whereis", class_info, variables_info, _("\
5275 All global and static variable names, or those matching REGEXP."));
5276
5277 add_info ("functions", functions_info,
5278 _("All function names, or those matching REGEXP."));
5279
5280 /* FIXME: This command has at least the following problems:
5281 1. It prints builtin types (in a very strange and confusing fashion).
5282 2. It doesn't print right, e.g. with
5283 typedef struct foo *FOO
5284 type_print prints "FOO" when we want to make it (in this situation)
5285 print "struct foo *".
5286 I also think "ptype" or "whatis" is more likely to be useful (but if
5287 there is much disagreement "info types" can be fixed). */
5288 add_info ("types", types_info,
5289 _("All type names, or those matching REGEXP."));
5290
5291 add_info ("sources", sources_info,
5292 _("Source files in the program."));
5293
5294 add_com ("rbreak", class_breakpoint, rbreak_command,
5295 _("Set a breakpoint for all functions matching REGEXP."));
5296
5297 if (xdb_commands)
5298 {
5299 add_com ("lf", class_info, sources_info,
5300 _("Source files in the program"));
5301 add_com ("lg", class_info, variables_info, _("\
5302 All global and static variable names, or those matching REGEXP."));
5303 }
5304
5305 add_setshow_enum_cmd ("multiple-symbols", no_class,
5306 multiple_symbols_modes, &multiple_symbols_mode,
5307 _("\
5308 Set the debugger behavior when more than one symbol are possible matches\n\
5309 in an expression."), _("\
5310 Show how the debugger handles ambiguities in expressions."), _("\
5311 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5312 NULL, NULL, &setlist, &showlist);
5313
5314 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5315 &basenames_may_differ, _("\
5316 Set whether a source file may have multiple base names."), _("\
5317 Show whether a source file may have multiple base names."), _("\
5318 (A \"base name\" is the name of a file with the directory part removed.\n\
5319 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5320 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5321 before comparing them. Canonicalization is an expensive operation,\n\
5322 but it allows the same file be known by more than one base name.\n\
5323 If not set (the default), all source files are assumed to have just\n\
5324 one base name, and gdb will do file name comparisons more efficiently."),
5325 NULL, NULL,
5326 &setlist, &showlist);
5327
5328 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5329 _("Set debugging of symbol table creation."),
5330 _("Show debugging of symbol table creation."), _("\
5331 When enabled (non-zero), debugging messages are printed when building\n\
5332 symbol tables. A value of 1 (one) normally provides enough information.\n\
5333 A value greater than 1 provides more verbose information."),
5334 NULL,
5335 NULL,
5336 &setdebuglist, &showdebuglist);
5337
5338 observer_attach_executable_changed (symtab_observer_executable_changed);
5339 }
This page took 0.134819 seconds and 5 git commands to generate.