Add langdef arg to la_lookup_symbol_nonlocal.
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63
64 /* Forward declarations for local functions. */
65
66 static void rbreak_command (char *, int);
67
68 static int find_line_common (struct linetable *, int, int *, int);
69
70 static struct symbol *lookup_symbol_aux (const char *name,
71 const struct block *block,
72 const domain_enum domain,
73 enum language language,
74 struct field_of_this_result *);
75
76 static
77 struct symbol *lookup_local_symbol (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language);
81
82 static struct symbol *
83 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
84 const char *name, const domain_enum domain);
85
86 extern initialize_file_ftype _initialize_symtab;
87
88 /* Program space key for finding name and language of "main". */
89
90 static const struct program_space_data *main_progspace_key;
91
92 /* Type of the data stored on the program space. */
93
94 struct main_info
95 {
96 /* Name of "main". */
97
98 char *name_of_main;
99
100 /* Language of "main". */
101
102 enum language language_of_main;
103 };
104
105 /* When non-zero, print debugging messages related to symtab creation. */
106 unsigned int symtab_create_debug = 0;
107
108 /* When non-zero, print debugging messages related to symbol lookup. */
109 unsigned int symbol_lookup_debug = 0;
110
111 /* Non-zero if a file may be known by two different basenames.
112 This is the uncommon case, and significantly slows down gdb.
113 Default set to "off" to not slow down the common case. */
114 int basenames_may_differ = 0;
115
116 /* Allow the user to configure the debugger behavior with respect
117 to multiple-choice menus when more than one symbol matches during
118 a symbol lookup. */
119
120 const char multiple_symbols_ask[] = "ask";
121 const char multiple_symbols_all[] = "all";
122 const char multiple_symbols_cancel[] = "cancel";
123 static const char *const multiple_symbols_modes[] =
124 {
125 multiple_symbols_ask,
126 multiple_symbols_all,
127 multiple_symbols_cancel,
128 NULL
129 };
130 static const char *multiple_symbols_mode = multiple_symbols_all;
131
132 /* Read-only accessor to AUTO_SELECT_MODE. */
133
134 const char *
135 multiple_symbols_select_mode (void)
136 {
137 return multiple_symbols_mode;
138 }
139
140 /* Block in which the most recently searched-for symbol was found.
141 Might be better to make this a parameter to lookup_symbol and
142 value_of_this. */
143
144 const struct block *block_found;
145
146 /* Return the name of a domain_enum. */
147
148 const char *
149 domain_name (domain_enum e)
150 {
151 switch (e)
152 {
153 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
154 case VAR_DOMAIN: return "VAR_DOMAIN";
155 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
156 case MODULE_DOMAIN: return "MODULE_DOMAIN";
157 case LABEL_DOMAIN: return "LABEL_DOMAIN";
158 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
159 default: gdb_assert_not_reached ("bad domain_enum");
160 }
161 }
162
163 /* Return the name of a search_domain . */
164
165 const char *
166 search_domain_name (enum search_domain e)
167 {
168 switch (e)
169 {
170 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
171 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
172 case TYPES_DOMAIN: return "TYPES_DOMAIN";
173 case ALL_DOMAIN: return "ALL_DOMAIN";
174 default: gdb_assert_not_reached ("bad search_domain");
175 }
176 }
177
178 /* See symtab.h. */
179
180 struct symtab *
181 compunit_primary_filetab (const struct compunit_symtab *cust)
182 {
183 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
184
185 /* The primary file symtab is the first one in the list. */
186 return COMPUNIT_FILETABS (cust);
187 }
188
189 /* See symtab.h. */
190
191 enum language
192 compunit_language (const struct compunit_symtab *cust)
193 {
194 struct symtab *symtab = compunit_primary_filetab (cust);
195
196 /* The language of the compunit symtab is the language of its primary
197 source file. */
198 return SYMTAB_LANGUAGE (symtab);
199 }
200
201 /* See whether FILENAME matches SEARCH_NAME using the rule that we
202 advertise to the user. (The manual's description of linespecs
203 describes what we advertise). Returns true if they match, false
204 otherwise. */
205
206 int
207 compare_filenames_for_search (const char *filename, const char *search_name)
208 {
209 int len = strlen (filename);
210 size_t search_len = strlen (search_name);
211
212 if (len < search_len)
213 return 0;
214
215 /* The tail of FILENAME must match. */
216 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
217 return 0;
218
219 /* Either the names must completely match, or the character
220 preceding the trailing SEARCH_NAME segment of FILENAME must be a
221 directory separator.
222
223 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
224 cannot match FILENAME "/path//dir/file.c" - as user has requested
225 absolute path. The sama applies for "c:\file.c" possibly
226 incorrectly hypothetically matching "d:\dir\c:\file.c".
227
228 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
229 compatible with SEARCH_NAME "file.c". In such case a compiler had
230 to put the "c:file.c" name into debug info. Such compatibility
231 works only on GDB built for DOS host. */
232 return (len == search_len
233 || (!IS_ABSOLUTE_PATH (search_name)
234 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
235 || (HAS_DRIVE_SPEC (filename)
236 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
237 }
238
239 /* Check for a symtab of a specific name by searching some symtabs.
240 This is a helper function for callbacks of iterate_over_symtabs.
241
242 If NAME is not absolute, then REAL_PATH is NULL
243 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
244
245 The return value, NAME, REAL_PATH, CALLBACK, and DATA
246 are identical to the `map_symtabs_matching_filename' method of
247 quick_symbol_functions.
248
249 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
250 Each symtab within the specified compunit symtab is also searched.
251 AFTER_LAST is one past the last compunit symtab to search; NULL means to
252 search until the end of the list. */
253
254 int
255 iterate_over_some_symtabs (const char *name,
256 const char *real_path,
257 int (*callback) (struct symtab *symtab,
258 void *data),
259 void *data,
260 struct compunit_symtab *first,
261 struct compunit_symtab *after_last)
262 {
263 struct compunit_symtab *cust;
264 struct symtab *s;
265 const char* base_name = lbasename (name);
266
267 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
268 {
269 ALL_COMPUNIT_FILETABS (cust, s)
270 {
271 if (compare_filenames_for_search (s->filename, name))
272 {
273 if (callback (s, data))
274 return 1;
275 continue;
276 }
277
278 /* Before we invoke realpath, which can get expensive when many
279 files are involved, do a quick comparison of the basenames. */
280 if (! basenames_may_differ
281 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
282 continue;
283
284 if (compare_filenames_for_search (symtab_to_fullname (s), name))
285 {
286 if (callback (s, data))
287 return 1;
288 continue;
289 }
290
291 /* If the user gave us an absolute path, try to find the file in
292 this symtab and use its absolute path. */
293 if (real_path != NULL)
294 {
295 const char *fullname = symtab_to_fullname (s);
296
297 gdb_assert (IS_ABSOLUTE_PATH (real_path));
298 gdb_assert (IS_ABSOLUTE_PATH (name));
299 if (FILENAME_CMP (real_path, fullname) == 0)
300 {
301 if (callback (s, data))
302 return 1;
303 continue;
304 }
305 }
306 }
307 }
308
309 return 0;
310 }
311
312 /* Check for a symtab of a specific name; first in symtabs, then in
313 psymtabs. *If* there is no '/' in the name, a match after a '/'
314 in the symtab filename will also work.
315
316 Calls CALLBACK with each symtab that is found and with the supplied
317 DATA. If CALLBACK returns true, the search stops. */
318
319 void
320 iterate_over_symtabs (const char *name,
321 int (*callback) (struct symtab *symtab,
322 void *data),
323 void *data)
324 {
325 struct objfile *objfile;
326 char *real_path = NULL;
327 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
328
329 /* Here we are interested in canonicalizing an absolute path, not
330 absolutizing a relative path. */
331 if (IS_ABSOLUTE_PATH (name))
332 {
333 real_path = gdb_realpath (name);
334 make_cleanup (xfree, real_path);
335 gdb_assert (IS_ABSOLUTE_PATH (real_path));
336 }
337
338 ALL_OBJFILES (objfile)
339 {
340 if (iterate_over_some_symtabs (name, real_path, callback, data,
341 objfile->compunit_symtabs, NULL))
342 {
343 do_cleanups (cleanups);
344 return;
345 }
346 }
347
348 /* Same search rules as above apply here, but now we look thru the
349 psymtabs. */
350
351 ALL_OBJFILES (objfile)
352 {
353 if (objfile->sf
354 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
355 name,
356 real_path,
357 callback,
358 data))
359 {
360 do_cleanups (cleanups);
361 return;
362 }
363 }
364
365 do_cleanups (cleanups);
366 }
367
368 /* The callback function used by lookup_symtab. */
369
370 static int
371 lookup_symtab_callback (struct symtab *symtab, void *data)
372 {
373 struct symtab **result_ptr = data;
374
375 *result_ptr = symtab;
376 return 1;
377 }
378
379 /* A wrapper for iterate_over_symtabs that returns the first matching
380 symtab, or NULL. */
381
382 struct symtab *
383 lookup_symtab (const char *name)
384 {
385 struct symtab *result = NULL;
386
387 iterate_over_symtabs (name, lookup_symtab_callback, &result);
388 return result;
389 }
390
391 \f
392 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
393 full method name, which consist of the class name (from T), the unadorned
394 method name from METHOD_ID, and the signature for the specific overload,
395 specified by SIGNATURE_ID. Note that this function is g++ specific. */
396
397 char *
398 gdb_mangle_name (struct type *type, int method_id, int signature_id)
399 {
400 int mangled_name_len;
401 char *mangled_name;
402 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
403 struct fn_field *method = &f[signature_id];
404 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
405 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
406 const char *newname = type_name_no_tag (type);
407
408 /* Does the form of physname indicate that it is the full mangled name
409 of a constructor (not just the args)? */
410 int is_full_physname_constructor;
411
412 int is_constructor;
413 int is_destructor = is_destructor_name (physname);
414 /* Need a new type prefix. */
415 char *const_prefix = method->is_const ? "C" : "";
416 char *volatile_prefix = method->is_volatile ? "V" : "";
417 char buf[20];
418 int len = (newname == NULL ? 0 : strlen (newname));
419
420 /* Nothing to do if physname already contains a fully mangled v3 abi name
421 or an operator name. */
422 if ((physname[0] == '_' && physname[1] == 'Z')
423 || is_operator_name (field_name))
424 return xstrdup (physname);
425
426 is_full_physname_constructor = is_constructor_name (physname);
427
428 is_constructor = is_full_physname_constructor
429 || (newname && strcmp (field_name, newname) == 0);
430
431 if (!is_destructor)
432 is_destructor = (strncmp (physname, "__dt", 4) == 0);
433
434 if (is_destructor || is_full_physname_constructor)
435 {
436 mangled_name = (char *) xmalloc (strlen (physname) + 1);
437 strcpy (mangled_name, physname);
438 return mangled_name;
439 }
440
441 if (len == 0)
442 {
443 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
444 }
445 else if (physname[0] == 't' || physname[0] == 'Q')
446 {
447 /* The physname for template and qualified methods already includes
448 the class name. */
449 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
450 newname = NULL;
451 len = 0;
452 }
453 else
454 {
455 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
456 volatile_prefix, len);
457 }
458 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
459 + strlen (buf) + len + strlen (physname) + 1);
460
461 mangled_name = (char *) xmalloc (mangled_name_len);
462 if (is_constructor)
463 mangled_name[0] = '\0';
464 else
465 strcpy (mangled_name, field_name);
466
467 strcat (mangled_name, buf);
468 /* If the class doesn't have a name, i.e. newname NULL, then we just
469 mangle it using 0 for the length of the class. Thus it gets mangled
470 as something starting with `::' rather than `classname::'. */
471 if (newname != NULL)
472 strcat (mangled_name, newname);
473
474 strcat (mangled_name, physname);
475 return (mangled_name);
476 }
477
478 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
479 correctly allocated. */
480
481 void
482 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
483 const char *name,
484 struct obstack *obstack)
485 {
486 if (gsymbol->language == language_ada)
487 {
488 if (name == NULL)
489 {
490 gsymbol->ada_mangled = 0;
491 gsymbol->language_specific.obstack = obstack;
492 }
493 else
494 {
495 gsymbol->ada_mangled = 1;
496 gsymbol->language_specific.mangled_lang.demangled_name = name;
497 }
498 }
499 else
500 gsymbol->language_specific.mangled_lang.demangled_name = name;
501 }
502
503 /* Return the demangled name of GSYMBOL. */
504
505 const char *
506 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
507 {
508 if (gsymbol->language == language_ada)
509 {
510 if (!gsymbol->ada_mangled)
511 return NULL;
512 /* Fall through. */
513 }
514
515 return gsymbol->language_specific.mangled_lang.demangled_name;
516 }
517
518 \f
519 /* Initialize the language dependent portion of a symbol
520 depending upon the language for the symbol. */
521
522 void
523 symbol_set_language (struct general_symbol_info *gsymbol,
524 enum language language,
525 struct obstack *obstack)
526 {
527 gsymbol->language = language;
528 if (gsymbol->language == language_cplus
529 || gsymbol->language == language_d
530 || gsymbol->language == language_go
531 || gsymbol->language == language_java
532 || gsymbol->language == language_objc
533 || gsymbol->language == language_fortran)
534 {
535 symbol_set_demangled_name (gsymbol, NULL, obstack);
536 }
537 else if (gsymbol->language == language_ada)
538 {
539 gdb_assert (gsymbol->ada_mangled == 0);
540 gsymbol->language_specific.obstack = obstack;
541 }
542 else
543 {
544 memset (&gsymbol->language_specific, 0,
545 sizeof (gsymbol->language_specific));
546 }
547 }
548
549 /* Functions to initialize a symbol's mangled name. */
550
551 /* Objects of this type are stored in the demangled name hash table. */
552 struct demangled_name_entry
553 {
554 const char *mangled;
555 char demangled[1];
556 };
557
558 /* Hash function for the demangled name hash. */
559
560 static hashval_t
561 hash_demangled_name_entry (const void *data)
562 {
563 const struct demangled_name_entry *e = data;
564
565 return htab_hash_string (e->mangled);
566 }
567
568 /* Equality function for the demangled name hash. */
569
570 static int
571 eq_demangled_name_entry (const void *a, const void *b)
572 {
573 const struct demangled_name_entry *da = a;
574 const struct demangled_name_entry *db = b;
575
576 return strcmp (da->mangled, db->mangled) == 0;
577 }
578
579 /* Create the hash table used for demangled names. Each hash entry is
580 a pair of strings; one for the mangled name and one for the demangled
581 name. The entry is hashed via just the mangled name. */
582
583 static void
584 create_demangled_names_hash (struct objfile *objfile)
585 {
586 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
587 The hash table code will round this up to the next prime number.
588 Choosing a much larger table size wastes memory, and saves only about
589 1% in symbol reading. */
590
591 objfile->per_bfd->demangled_names_hash = htab_create_alloc
592 (256, hash_demangled_name_entry, eq_demangled_name_entry,
593 NULL, xcalloc, xfree);
594 }
595
596 /* Try to determine the demangled name for a symbol, based on the
597 language of that symbol. If the language is set to language_auto,
598 it will attempt to find any demangling algorithm that works and
599 then set the language appropriately. The returned name is allocated
600 by the demangler and should be xfree'd. */
601
602 static char *
603 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
604 const char *mangled)
605 {
606 char *demangled = NULL;
607
608 if (gsymbol->language == language_unknown)
609 gsymbol->language = language_auto;
610
611 if (gsymbol->language == language_objc
612 || gsymbol->language == language_auto)
613 {
614 demangled =
615 objc_demangle (mangled, 0);
616 if (demangled != NULL)
617 {
618 gsymbol->language = language_objc;
619 return demangled;
620 }
621 }
622 if (gsymbol->language == language_cplus
623 || gsymbol->language == language_auto)
624 {
625 demangled =
626 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
627 if (demangled != NULL)
628 {
629 gsymbol->language = language_cplus;
630 return demangled;
631 }
632 }
633 if (gsymbol->language == language_java)
634 {
635 demangled =
636 gdb_demangle (mangled,
637 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
638 if (demangled != NULL)
639 {
640 gsymbol->language = language_java;
641 return demangled;
642 }
643 }
644 if (gsymbol->language == language_d
645 || gsymbol->language == language_auto)
646 {
647 demangled = d_demangle(mangled, 0);
648 if (demangled != NULL)
649 {
650 gsymbol->language = language_d;
651 return demangled;
652 }
653 }
654 /* FIXME(dje): Continually adding languages here is clumsy.
655 Better to just call la_demangle if !auto, and if auto then call
656 a utility routine that tries successive languages in turn and reports
657 which one it finds. I realize the la_demangle options may be different
658 for different languages but there's already a FIXME for that. */
659 if (gsymbol->language == language_go
660 || gsymbol->language == language_auto)
661 {
662 demangled = go_demangle (mangled, 0);
663 if (demangled != NULL)
664 {
665 gsymbol->language = language_go;
666 return demangled;
667 }
668 }
669
670 /* We could support `gsymbol->language == language_fortran' here to provide
671 module namespaces also for inferiors with only minimal symbol table (ELF
672 symbols). Just the mangling standard is not standardized across compilers
673 and there is no DW_AT_producer available for inferiors with only the ELF
674 symbols to check the mangling kind. */
675
676 /* Check for Ada symbols last. See comment below explaining why. */
677
678 if (gsymbol->language == language_auto)
679 {
680 const char *demangled = ada_decode (mangled);
681
682 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
683 {
684 /* Set the gsymbol language to Ada, but still return NULL.
685 Two reasons for that:
686
687 1. For Ada, we prefer computing the symbol's decoded name
688 on the fly rather than pre-compute it, in order to save
689 memory (Ada projects are typically very large).
690
691 2. There are some areas in the definition of the GNAT
692 encoding where, with a bit of bad luck, we might be able
693 to decode a non-Ada symbol, generating an incorrect
694 demangled name (Eg: names ending with "TB" for instance
695 are identified as task bodies and so stripped from
696 the decoded name returned).
697
698 Returning NULL, here, helps us get a little bit of
699 the best of both worlds. Because we're last, we should
700 not affect any of the other languages that were able to
701 demangle the symbol before us; we get to correctly tag
702 Ada symbols as such; and even if we incorrectly tagged
703 a non-Ada symbol, which should be rare, any routing
704 through the Ada language should be transparent (Ada
705 tries to behave much like C/C++ with non-Ada symbols). */
706 gsymbol->language = language_ada;
707 return NULL;
708 }
709 }
710
711 return NULL;
712 }
713
714 /* Set both the mangled and demangled (if any) names for GSYMBOL based
715 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
716 objfile's obstack; but if COPY_NAME is 0 and if NAME is
717 NUL-terminated, then this function assumes that NAME is already
718 correctly saved (either permanently or with a lifetime tied to the
719 objfile), and it will not be copied.
720
721 The hash table corresponding to OBJFILE is used, and the memory
722 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
723 so the pointer can be discarded after calling this function. */
724
725 /* We have to be careful when dealing with Java names: when we run
726 into a Java minimal symbol, we don't know it's a Java symbol, so it
727 gets demangled as a C++ name. This is unfortunate, but there's not
728 much we can do about it: but when demangling partial symbols and
729 regular symbols, we'd better not reuse the wrong demangled name.
730 (See PR gdb/1039.) We solve this by putting a distinctive prefix
731 on Java names when storing them in the hash table. */
732
733 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
734 don't mind the Java prefix so much: different languages have
735 different demangling requirements, so it's only natural that we
736 need to keep language data around in our demangling cache. But
737 it's not good that the minimal symbol has the wrong demangled name.
738 Unfortunately, I can't think of any easy solution to that
739 problem. */
740
741 #define JAVA_PREFIX "##JAVA$$"
742 #define JAVA_PREFIX_LEN 8
743
744 void
745 symbol_set_names (struct general_symbol_info *gsymbol,
746 const char *linkage_name, int len, int copy_name,
747 struct objfile *objfile)
748 {
749 struct demangled_name_entry **slot;
750 /* A 0-terminated copy of the linkage name. */
751 const char *linkage_name_copy;
752 /* A copy of the linkage name that might have a special Java prefix
753 added to it, for use when looking names up in the hash table. */
754 const char *lookup_name;
755 /* The length of lookup_name. */
756 int lookup_len;
757 struct demangled_name_entry entry;
758 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
759
760 if (gsymbol->language == language_ada)
761 {
762 /* In Ada, we do the symbol lookups using the mangled name, so
763 we can save some space by not storing the demangled name.
764
765 As a side note, we have also observed some overlap between
766 the C++ mangling and Ada mangling, similarly to what has
767 been observed with Java. Because we don't store the demangled
768 name with the symbol, we don't need to use the same trick
769 as Java. */
770 if (!copy_name)
771 gsymbol->name = linkage_name;
772 else
773 {
774 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
775
776 memcpy (name, linkage_name, len);
777 name[len] = '\0';
778 gsymbol->name = name;
779 }
780 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
781
782 return;
783 }
784
785 if (per_bfd->demangled_names_hash == NULL)
786 create_demangled_names_hash (objfile);
787
788 /* The stabs reader generally provides names that are not
789 NUL-terminated; most of the other readers don't do this, so we
790 can just use the given copy, unless we're in the Java case. */
791 if (gsymbol->language == language_java)
792 {
793 char *alloc_name;
794
795 lookup_len = len + JAVA_PREFIX_LEN;
796 alloc_name = alloca (lookup_len + 1);
797 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
798 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
799 alloc_name[lookup_len] = '\0';
800
801 lookup_name = alloc_name;
802 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
803 }
804 else if (linkage_name[len] != '\0')
805 {
806 char *alloc_name;
807
808 lookup_len = len;
809 alloc_name = alloca (lookup_len + 1);
810 memcpy (alloc_name, linkage_name, len);
811 alloc_name[lookup_len] = '\0';
812
813 lookup_name = alloc_name;
814 linkage_name_copy = alloc_name;
815 }
816 else
817 {
818 lookup_len = len;
819 lookup_name = linkage_name;
820 linkage_name_copy = linkage_name;
821 }
822
823 entry.mangled = lookup_name;
824 slot = ((struct demangled_name_entry **)
825 htab_find_slot (per_bfd->demangled_names_hash,
826 &entry, INSERT));
827
828 /* If this name is not in the hash table, add it. */
829 if (*slot == NULL
830 /* A C version of the symbol may have already snuck into the table.
831 This happens to, e.g., main.init (__go_init_main). Cope. */
832 || (gsymbol->language == language_go
833 && (*slot)->demangled[0] == '\0'))
834 {
835 char *demangled_name = symbol_find_demangled_name (gsymbol,
836 linkage_name_copy);
837 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
838
839 /* Suppose we have demangled_name==NULL, copy_name==0, and
840 lookup_name==linkage_name. In this case, we already have the
841 mangled name saved, and we don't have a demangled name. So,
842 you might think we could save a little space by not recording
843 this in the hash table at all.
844
845 It turns out that it is actually important to still save such
846 an entry in the hash table, because storing this name gives
847 us better bcache hit rates for partial symbols. */
848 if (!copy_name && lookup_name == linkage_name)
849 {
850 *slot = obstack_alloc (&per_bfd->storage_obstack,
851 offsetof (struct demangled_name_entry,
852 demangled)
853 + demangled_len + 1);
854 (*slot)->mangled = lookup_name;
855 }
856 else
857 {
858 char *mangled_ptr;
859
860 /* If we must copy the mangled name, put it directly after
861 the demangled name so we can have a single
862 allocation. */
863 *slot = obstack_alloc (&per_bfd->storage_obstack,
864 offsetof (struct demangled_name_entry,
865 demangled)
866 + lookup_len + demangled_len + 2);
867 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
868 strcpy (mangled_ptr, lookup_name);
869 (*slot)->mangled = mangled_ptr;
870 }
871
872 if (demangled_name != NULL)
873 {
874 strcpy ((*slot)->demangled, demangled_name);
875 xfree (demangled_name);
876 }
877 else
878 (*slot)->demangled[0] = '\0';
879 }
880
881 gsymbol->name = (*slot)->mangled + lookup_len - len;
882 if ((*slot)->demangled[0] != '\0')
883 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
884 &per_bfd->storage_obstack);
885 else
886 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
887 }
888
889 /* Return the source code name of a symbol. In languages where
890 demangling is necessary, this is the demangled name. */
891
892 const char *
893 symbol_natural_name (const struct general_symbol_info *gsymbol)
894 {
895 switch (gsymbol->language)
896 {
897 case language_cplus:
898 case language_d:
899 case language_go:
900 case language_java:
901 case language_objc:
902 case language_fortran:
903 if (symbol_get_demangled_name (gsymbol) != NULL)
904 return symbol_get_demangled_name (gsymbol);
905 break;
906 case language_ada:
907 return ada_decode_symbol (gsymbol);
908 default:
909 break;
910 }
911 return gsymbol->name;
912 }
913
914 /* Return the demangled name for a symbol based on the language for
915 that symbol. If no demangled name exists, return NULL. */
916
917 const char *
918 symbol_demangled_name (const struct general_symbol_info *gsymbol)
919 {
920 const char *dem_name = NULL;
921
922 switch (gsymbol->language)
923 {
924 case language_cplus:
925 case language_d:
926 case language_go:
927 case language_java:
928 case language_objc:
929 case language_fortran:
930 dem_name = symbol_get_demangled_name (gsymbol);
931 break;
932 case language_ada:
933 dem_name = ada_decode_symbol (gsymbol);
934 break;
935 default:
936 break;
937 }
938 return dem_name;
939 }
940
941 /* Return the search name of a symbol---generally the demangled or
942 linkage name of the symbol, depending on how it will be searched for.
943 If there is no distinct demangled name, then returns the same value
944 (same pointer) as SYMBOL_LINKAGE_NAME. */
945
946 const char *
947 symbol_search_name (const struct general_symbol_info *gsymbol)
948 {
949 if (gsymbol->language == language_ada)
950 return gsymbol->name;
951 else
952 return symbol_natural_name (gsymbol);
953 }
954
955 /* Initialize the structure fields to zero values. */
956
957 void
958 init_sal (struct symtab_and_line *sal)
959 {
960 memset (sal, 0, sizeof (*sal));
961 }
962 \f
963
964 /* Return 1 if the two sections are the same, or if they could
965 plausibly be copies of each other, one in an original object
966 file and another in a separated debug file. */
967
968 int
969 matching_obj_sections (struct obj_section *obj_first,
970 struct obj_section *obj_second)
971 {
972 asection *first = obj_first? obj_first->the_bfd_section : NULL;
973 asection *second = obj_second? obj_second->the_bfd_section : NULL;
974 struct objfile *obj;
975
976 /* If they're the same section, then they match. */
977 if (first == second)
978 return 1;
979
980 /* If either is NULL, give up. */
981 if (first == NULL || second == NULL)
982 return 0;
983
984 /* This doesn't apply to absolute symbols. */
985 if (first->owner == NULL || second->owner == NULL)
986 return 0;
987
988 /* If they're in the same object file, they must be different sections. */
989 if (first->owner == second->owner)
990 return 0;
991
992 /* Check whether the two sections are potentially corresponding. They must
993 have the same size, address, and name. We can't compare section indexes,
994 which would be more reliable, because some sections may have been
995 stripped. */
996 if (bfd_get_section_size (first) != bfd_get_section_size (second))
997 return 0;
998
999 /* In-memory addresses may start at a different offset, relativize them. */
1000 if (bfd_get_section_vma (first->owner, first)
1001 - bfd_get_start_address (first->owner)
1002 != bfd_get_section_vma (second->owner, second)
1003 - bfd_get_start_address (second->owner))
1004 return 0;
1005
1006 if (bfd_get_section_name (first->owner, first) == NULL
1007 || bfd_get_section_name (second->owner, second) == NULL
1008 || strcmp (bfd_get_section_name (first->owner, first),
1009 bfd_get_section_name (second->owner, second)) != 0)
1010 return 0;
1011
1012 /* Otherwise check that they are in corresponding objfiles. */
1013
1014 ALL_OBJFILES (obj)
1015 if (obj->obfd == first->owner)
1016 break;
1017 gdb_assert (obj != NULL);
1018
1019 if (obj->separate_debug_objfile != NULL
1020 && obj->separate_debug_objfile->obfd == second->owner)
1021 return 1;
1022 if (obj->separate_debug_objfile_backlink != NULL
1023 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1024 return 1;
1025
1026 return 0;
1027 }
1028
1029 /* See symtab.h. */
1030
1031 void
1032 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1033 {
1034 struct objfile *objfile;
1035 struct bound_minimal_symbol msymbol;
1036
1037 /* If we know that this is not a text address, return failure. This is
1038 necessary because we loop based on texthigh and textlow, which do
1039 not include the data ranges. */
1040 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1041 if (msymbol.minsym
1042 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1043 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1044 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1045 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1046 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1047 return;
1048
1049 ALL_OBJFILES (objfile)
1050 {
1051 struct compunit_symtab *cust = NULL;
1052
1053 if (objfile->sf)
1054 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1055 pc, section, 0);
1056 if (cust)
1057 return;
1058 }
1059 }
1060 \f
1061 /* Debug symbols usually don't have section information. We need to dig that
1062 out of the minimal symbols and stash that in the debug symbol. */
1063
1064 void
1065 fixup_section (struct general_symbol_info *ginfo,
1066 CORE_ADDR addr, struct objfile *objfile)
1067 {
1068 struct minimal_symbol *msym;
1069
1070 /* First, check whether a minimal symbol with the same name exists
1071 and points to the same address. The address check is required
1072 e.g. on PowerPC64, where the minimal symbol for a function will
1073 point to the function descriptor, while the debug symbol will
1074 point to the actual function code. */
1075 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1076 if (msym)
1077 ginfo->section = MSYMBOL_SECTION (msym);
1078 else
1079 {
1080 /* Static, function-local variables do appear in the linker
1081 (minimal) symbols, but are frequently given names that won't
1082 be found via lookup_minimal_symbol(). E.g., it has been
1083 observed in frv-uclinux (ELF) executables that a static,
1084 function-local variable named "foo" might appear in the
1085 linker symbols as "foo.6" or "foo.3". Thus, there is no
1086 point in attempting to extend the lookup-by-name mechanism to
1087 handle this case due to the fact that there can be multiple
1088 names.
1089
1090 So, instead, search the section table when lookup by name has
1091 failed. The ``addr'' and ``endaddr'' fields may have already
1092 been relocated. If so, the relocation offset (i.e. the
1093 ANOFFSET value) needs to be subtracted from these values when
1094 performing the comparison. We unconditionally subtract it,
1095 because, when no relocation has been performed, the ANOFFSET
1096 value will simply be zero.
1097
1098 The address of the symbol whose section we're fixing up HAS
1099 NOT BEEN adjusted (relocated) yet. It can't have been since
1100 the section isn't yet known and knowing the section is
1101 necessary in order to add the correct relocation value. In
1102 other words, we wouldn't even be in this function (attempting
1103 to compute the section) if it were already known.
1104
1105 Note that it is possible to search the minimal symbols
1106 (subtracting the relocation value if necessary) to find the
1107 matching minimal symbol, but this is overkill and much less
1108 efficient. It is not necessary to find the matching minimal
1109 symbol, only its section.
1110
1111 Note that this technique (of doing a section table search)
1112 can fail when unrelocated section addresses overlap. For
1113 this reason, we still attempt a lookup by name prior to doing
1114 a search of the section table. */
1115
1116 struct obj_section *s;
1117 int fallback = -1;
1118
1119 ALL_OBJFILE_OSECTIONS (objfile, s)
1120 {
1121 int idx = s - objfile->sections;
1122 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1123
1124 if (fallback == -1)
1125 fallback = idx;
1126
1127 if (obj_section_addr (s) - offset <= addr
1128 && addr < obj_section_endaddr (s) - offset)
1129 {
1130 ginfo->section = idx;
1131 return;
1132 }
1133 }
1134
1135 /* If we didn't find the section, assume it is in the first
1136 section. If there is no allocated section, then it hardly
1137 matters what we pick, so just pick zero. */
1138 if (fallback == -1)
1139 ginfo->section = 0;
1140 else
1141 ginfo->section = fallback;
1142 }
1143 }
1144
1145 struct symbol *
1146 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1147 {
1148 CORE_ADDR addr;
1149
1150 if (!sym)
1151 return NULL;
1152
1153 /* We either have an OBJFILE, or we can get at it from the sym's
1154 symtab. Anything else is a bug. */
1155 gdb_assert (objfile || symbol_symtab (sym));
1156
1157 if (objfile == NULL)
1158 objfile = symbol_objfile (sym);
1159
1160 if (SYMBOL_OBJ_SECTION (objfile, sym))
1161 return sym;
1162
1163 /* We should have an objfile by now. */
1164 gdb_assert (objfile);
1165
1166 switch (SYMBOL_CLASS (sym))
1167 {
1168 case LOC_STATIC:
1169 case LOC_LABEL:
1170 addr = SYMBOL_VALUE_ADDRESS (sym);
1171 break;
1172 case LOC_BLOCK:
1173 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1174 break;
1175
1176 default:
1177 /* Nothing else will be listed in the minsyms -- no use looking
1178 it up. */
1179 return sym;
1180 }
1181
1182 fixup_section (&sym->ginfo, addr, objfile);
1183
1184 return sym;
1185 }
1186
1187 /* Compute the demangled form of NAME as used by the various symbol
1188 lookup functions. The result is stored in *RESULT_NAME. Returns a
1189 cleanup which can be used to clean up the result.
1190
1191 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1192 Normally, Ada symbol lookups are performed using the encoded name
1193 rather than the demangled name, and so it might seem to make sense
1194 for this function to return an encoded version of NAME.
1195 Unfortunately, we cannot do this, because this function is used in
1196 circumstances where it is not appropriate to try to encode NAME.
1197 For instance, when displaying the frame info, we demangle the name
1198 of each parameter, and then perform a symbol lookup inside our
1199 function using that demangled name. In Ada, certain functions
1200 have internally-generated parameters whose name contain uppercase
1201 characters. Encoding those name would result in those uppercase
1202 characters to become lowercase, and thus cause the symbol lookup
1203 to fail. */
1204
1205 struct cleanup *
1206 demangle_for_lookup (const char *name, enum language lang,
1207 const char **result_name)
1208 {
1209 char *demangled_name = NULL;
1210 const char *modified_name = NULL;
1211 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1212
1213 modified_name = name;
1214
1215 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1216 lookup, so we can always binary search. */
1217 if (lang == language_cplus)
1218 {
1219 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1220 if (demangled_name)
1221 {
1222 modified_name = demangled_name;
1223 make_cleanup (xfree, demangled_name);
1224 }
1225 else
1226 {
1227 /* If we were given a non-mangled name, canonicalize it
1228 according to the language (so far only for C++). */
1229 demangled_name = cp_canonicalize_string (name);
1230 if (demangled_name)
1231 {
1232 modified_name = demangled_name;
1233 make_cleanup (xfree, demangled_name);
1234 }
1235 }
1236 }
1237 else if (lang == language_java)
1238 {
1239 demangled_name = gdb_demangle (name,
1240 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1241 if (demangled_name)
1242 {
1243 modified_name = demangled_name;
1244 make_cleanup (xfree, demangled_name);
1245 }
1246 }
1247 else if (lang == language_d)
1248 {
1249 demangled_name = d_demangle (name, 0);
1250 if (demangled_name)
1251 {
1252 modified_name = demangled_name;
1253 make_cleanup (xfree, demangled_name);
1254 }
1255 }
1256 else if (lang == language_go)
1257 {
1258 demangled_name = go_demangle (name, 0);
1259 if (demangled_name)
1260 {
1261 modified_name = demangled_name;
1262 make_cleanup (xfree, demangled_name);
1263 }
1264 }
1265
1266 *result_name = modified_name;
1267 return cleanup;
1268 }
1269
1270 /* See symtab.h.
1271
1272 This function (or rather its subordinates) have a bunch of loops and
1273 it would seem to be attractive to put in some QUIT's (though I'm not really
1274 sure whether it can run long enough to be really important). But there
1275 are a few calls for which it would appear to be bad news to quit
1276 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1277 that there is C++ code below which can error(), but that probably
1278 doesn't affect these calls since they are looking for a known
1279 variable and thus can probably assume it will never hit the C++
1280 code). */
1281
1282 struct symbol *
1283 lookup_symbol_in_language (const char *name, const struct block *block,
1284 const domain_enum domain, enum language lang,
1285 struct field_of_this_result *is_a_field_of_this)
1286 {
1287 const char *modified_name;
1288 struct symbol *returnval;
1289 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1290
1291 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1292 is_a_field_of_this);
1293 do_cleanups (cleanup);
1294
1295 return returnval;
1296 }
1297
1298 /* See symtab.h. */
1299
1300 struct symbol *
1301 lookup_symbol (const char *name, const struct block *block,
1302 domain_enum domain,
1303 struct field_of_this_result *is_a_field_of_this)
1304 {
1305 return lookup_symbol_in_language (name, block, domain,
1306 current_language->la_language,
1307 is_a_field_of_this);
1308 }
1309
1310 /* See symtab.h. */
1311
1312 struct symbol *
1313 lookup_language_this (const struct language_defn *lang,
1314 const struct block *block)
1315 {
1316 if (lang->la_name_of_this == NULL || block == NULL)
1317 return NULL;
1318
1319 if (symbol_lookup_debug > 1)
1320 {
1321 struct objfile *objfile = lookup_objfile_from_block (block);
1322
1323 fprintf_unfiltered (gdb_stdlog,
1324 "lookup_language_this (%s, %s (objfile %s))",
1325 lang->la_name, host_address_to_string (block),
1326 objfile_debug_name (objfile));
1327 }
1328
1329 while (block)
1330 {
1331 struct symbol *sym;
1332
1333 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1334 if (sym != NULL)
1335 {
1336 if (symbol_lookup_debug > 1)
1337 {
1338 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1339 SYMBOL_PRINT_NAME (sym),
1340 host_address_to_string (sym),
1341 host_address_to_string (block));
1342 }
1343 block_found = block;
1344 return sym;
1345 }
1346 if (BLOCK_FUNCTION (block))
1347 break;
1348 block = BLOCK_SUPERBLOCK (block);
1349 }
1350
1351 if (symbol_lookup_debug > 1)
1352 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1353 return NULL;
1354 }
1355
1356 /* Given TYPE, a structure/union,
1357 return 1 if the component named NAME from the ultimate target
1358 structure/union is defined, otherwise, return 0. */
1359
1360 static int
1361 check_field (struct type *type, const char *name,
1362 struct field_of_this_result *is_a_field_of_this)
1363 {
1364 int i;
1365
1366 /* The type may be a stub. */
1367 CHECK_TYPEDEF (type);
1368
1369 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1370 {
1371 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1372
1373 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1374 {
1375 is_a_field_of_this->type = type;
1376 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1377 return 1;
1378 }
1379 }
1380
1381 /* C++: If it was not found as a data field, then try to return it
1382 as a pointer to a method. */
1383
1384 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1385 {
1386 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1387 {
1388 is_a_field_of_this->type = type;
1389 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1390 return 1;
1391 }
1392 }
1393
1394 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1395 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1396 return 1;
1397
1398 return 0;
1399 }
1400
1401 /* Behave like lookup_symbol except that NAME is the natural name
1402 (e.g., demangled name) of the symbol that we're looking for. */
1403
1404 static struct symbol *
1405 lookup_symbol_aux (const char *name, const struct block *block,
1406 const domain_enum domain, enum language language,
1407 struct field_of_this_result *is_a_field_of_this)
1408 {
1409 struct symbol *sym;
1410 const struct language_defn *langdef;
1411
1412 if (symbol_lookup_debug)
1413 {
1414 struct objfile *objfile = lookup_objfile_from_block (block);
1415
1416 fprintf_unfiltered (gdb_stdlog,
1417 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
1418 name, host_address_to_string (block),
1419 objfile != NULL
1420 ? objfile_debug_name (objfile) : "NULL",
1421 domain_name (domain), language_str (language));
1422 }
1423
1424 /* Make sure we do something sensible with is_a_field_of_this, since
1425 the callers that set this parameter to some non-null value will
1426 certainly use it later. If we don't set it, the contents of
1427 is_a_field_of_this are undefined. */
1428 if (is_a_field_of_this != NULL)
1429 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1430
1431 /* Search specified block and its superiors. Don't search
1432 STATIC_BLOCK or GLOBAL_BLOCK. */
1433
1434 sym = lookup_local_symbol (name, block, domain, language);
1435 if (sym != NULL)
1436 {
1437 if (symbol_lookup_debug)
1438 {
1439 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
1440 host_address_to_string (sym));
1441 }
1442 return sym;
1443 }
1444
1445 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1446 check to see if NAME is a field of `this'. */
1447
1448 langdef = language_def (language);
1449
1450 /* Don't do this check if we are searching for a struct. It will
1451 not be found by check_field, but will be found by other
1452 means. */
1453 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1454 {
1455 struct symbol *sym = lookup_language_this (langdef, block);
1456
1457 if (sym)
1458 {
1459 struct type *t = sym->type;
1460
1461 /* I'm not really sure that type of this can ever
1462 be typedefed; just be safe. */
1463 CHECK_TYPEDEF (t);
1464 if (TYPE_CODE (t) == TYPE_CODE_PTR
1465 || TYPE_CODE (t) == TYPE_CODE_REF)
1466 t = TYPE_TARGET_TYPE (t);
1467
1468 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1469 && TYPE_CODE (t) != TYPE_CODE_UNION)
1470 error (_("Internal error: `%s' is not an aggregate"),
1471 langdef->la_name_of_this);
1472
1473 if (check_field (t, name, is_a_field_of_this))
1474 {
1475 if (symbol_lookup_debug)
1476 {
1477 fprintf_unfiltered (gdb_stdlog,
1478 "lookup_symbol_aux (...) = NULL\n");
1479 }
1480 return NULL;
1481 }
1482 }
1483 }
1484
1485 /* Now do whatever is appropriate for LANGUAGE to look
1486 up static and global variables. */
1487
1488 sym = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
1489 if (sym != NULL)
1490 {
1491 if (symbol_lookup_debug)
1492 {
1493 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
1494 host_address_to_string (sym));
1495 }
1496 return sym;
1497 }
1498
1499 /* Now search all static file-level symbols. Not strictly correct,
1500 but more useful than an error. */
1501
1502 sym = lookup_static_symbol (name, domain);
1503 if (symbol_lookup_debug)
1504 {
1505 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
1506 sym != NULL ? host_address_to_string (sym) : "NULL");
1507 }
1508 return sym;
1509 }
1510
1511 /* Check to see if the symbol is defined in BLOCK or its superiors.
1512 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1513
1514 static struct symbol *
1515 lookup_local_symbol (const char *name, const struct block *block,
1516 const domain_enum domain,
1517 enum language language)
1518 {
1519 struct symbol *sym;
1520 const struct block *static_block = block_static_block (block);
1521 const char *scope = block_scope (block);
1522
1523 /* Check if either no block is specified or it's a global block. */
1524
1525 if (static_block == NULL)
1526 return NULL;
1527
1528 while (block != static_block)
1529 {
1530 sym = lookup_symbol_in_block (name, block, domain);
1531 if (sym != NULL)
1532 return sym;
1533
1534 if (language == language_cplus || language == language_fortran)
1535 {
1536 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1537 domain);
1538 if (sym != NULL)
1539 return sym;
1540 }
1541
1542 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1543 break;
1544 block = BLOCK_SUPERBLOCK (block);
1545 }
1546
1547 /* We've reached the end of the function without finding a result. */
1548
1549 return NULL;
1550 }
1551
1552 /* See symtab.h. */
1553
1554 struct objfile *
1555 lookup_objfile_from_block (const struct block *block)
1556 {
1557 struct objfile *obj;
1558 struct compunit_symtab *cust;
1559
1560 if (block == NULL)
1561 return NULL;
1562
1563 block = block_global_block (block);
1564 /* Look through all blockvectors. */
1565 ALL_COMPUNITS (obj, cust)
1566 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
1567 GLOBAL_BLOCK))
1568 {
1569 if (obj->separate_debug_objfile_backlink)
1570 obj = obj->separate_debug_objfile_backlink;
1571
1572 return obj;
1573 }
1574
1575 return NULL;
1576 }
1577
1578 /* See symtab.h. */
1579
1580 struct symbol *
1581 lookup_symbol_in_block (const char *name, const struct block *block,
1582 const domain_enum domain)
1583 {
1584 struct symbol *sym;
1585
1586 if (symbol_lookup_debug > 1)
1587 {
1588 struct objfile *objfile = lookup_objfile_from_block (block);
1589
1590 fprintf_unfiltered (gdb_stdlog,
1591 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
1592 name, host_address_to_string (block),
1593 objfile_debug_name (objfile),
1594 domain_name (domain));
1595 }
1596
1597 sym = block_lookup_symbol (block, name, domain);
1598 if (sym)
1599 {
1600 if (symbol_lookup_debug > 1)
1601 {
1602 fprintf_unfiltered (gdb_stdlog, " = %s\n",
1603 host_address_to_string (sym));
1604 }
1605 block_found = block;
1606 return fixup_symbol_section (sym, NULL);
1607 }
1608
1609 if (symbol_lookup_debug > 1)
1610 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1611 return NULL;
1612 }
1613
1614 /* See symtab.h. */
1615
1616 struct symbol *
1617 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
1618 const char *name,
1619 const domain_enum domain)
1620 {
1621 struct objfile *objfile;
1622
1623 for (objfile = main_objfile;
1624 objfile;
1625 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1626 {
1627 struct symbol *sym = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
1628 name, domain);
1629
1630 if (sym != NULL)
1631 return sym;
1632 }
1633
1634 return NULL;
1635 }
1636
1637 /* Check to see if the symbol is defined in one of the OBJFILE's
1638 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1639 depending on whether or not we want to search global symbols or
1640 static symbols. */
1641
1642 static struct symbol *
1643 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
1644 const char *name, const domain_enum domain)
1645 {
1646 struct compunit_symtab *cust;
1647
1648 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
1649
1650 if (symbol_lookup_debug > 1)
1651 {
1652 fprintf_unfiltered (gdb_stdlog,
1653 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
1654 objfile_debug_name (objfile),
1655 block_index == GLOBAL_BLOCK
1656 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
1657 name, domain_name (domain));
1658 }
1659
1660 ALL_OBJFILE_COMPUNITS (objfile, cust)
1661 {
1662 const struct blockvector *bv;
1663 const struct block *block;
1664 struct symbol *sym;
1665
1666 bv = COMPUNIT_BLOCKVECTOR (cust);
1667 block = BLOCKVECTOR_BLOCK (bv, block_index);
1668 sym = block_lookup_symbol_primary (block, name, domain);
1669 if (sym)
1670 {
1671 if (symbol_lookup_debug > 1)
1672 {
1673 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
1674 host_address_to_string (sym),
1675 host_address_to_string (block));
1676 }
1677 block_found = block;
1678 return fixup_symbol_section (sym, objfile);
1679 }
1680 }
1681
1682 if (symbol_lookup_debug > 1)
1683 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1684 return NULL;
1685 }
1686
1687 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
1688 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1689 and all associated separate debug objfiles.
1690
1691 Normally we only look in OBJFILE, and not any separate debug objfiles
1692 because the outer loop will cause them to be searched too. This case is
1693 different. Here we're called from search_symbols where it will only
1694 call us for the the objfile that contains a matching minsym. */
1695
1696 static struct symbol *
1697 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1698 const char *linkage_name,
1699 domain_enum domain)
1700 {
1701 enum language lang = current_language->la_language;
1702 const char *modified_name;
1703 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1704 &modified_name);
1705 struct objfile *main_objfile, *cur_objfile;
1706
1707 if (objfile->separate_debug_objfile_backlink)
1708 main_objfile = objfile->separate_debug_objfile_backlink;
1709 else
1710 main_objfile = objfile;
1711
1712 for (cur_objfile = main_objfile;
1713 cur_objfile;
1714 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1715 {
1716 struct symbol *sym;
1717
1718 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
1719 modified_name, domain);
1720 if (sym == NULL)
1721 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
1722 modified_name, domain);
1723 if (sym != NULL)
1724 {
1725 do_cleanups (cleanup);
1726 return sym;
1727 }
1728 }
1729
1730 do_cleanups (cleanup);
1731 return NULL;
1732 }
1733
1734 /* A helper function that throws an exception when a symbol was found
1735 in a psymtab but not in a symtab. */
1736
1737 static void ATTRIBUTE_NORETURN
1738 error_in_psymtab_expansion (int block_index, const char *name,
1739 struct compunit_symtab *cust)
1740 {
1741 error (_("\
1742 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1743 %s may be an inlined function, or may be a template function\n \
1744 (if a template, try specifying an instantiation: %s<type>)."),
1745 block_index == GLOBAL_BLOCK ? "global" : "static",
1746 name,
1747 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
1748 name, name);
1749 }
1750
1751 /* A helper function for various lookup routines that interfaces with
1752 the "quick" symbol table functions. */
1753
1754 static struct symbol *
1755 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
1756 const char *name, const domain_enum domain)
1757 {
1758 struct compunit_symtab *cust;
1759 const struct blockvector *bv;
1760 const struct block *block;
1761 struct symbol *sym;
1762
1763 if (!objfile->sf)
1764 return NULL;
1765
1766 if (symbol_lookup_debug > 1)
1767 {
1768 fprintf_unfiltered (gdb_stdlog,
1769 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
1770 objfile_debug_name (objfile),
1771 block_index == GLOBAL_BLOCK
1772 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
1773 name, domain_name (domain));
1774 }
1775
1776 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
1777 if (cust == NULL)
1778 {
1779 if (symbol_lookup_debug > 1)
1780 {
1781 fprintf_unfiltered (gdb_stdlog,
1782 "lookup_symbol_via_quick_fns (...) = NULL\n");
1783 }
1784 return NULL;
1785 }
1786
1787 bv = COMPUNIT_BLOCKVECTOR (cust);
1788 block = BLOCKVECTOR_BLOCK (bv, block_index);
1789 sym = block_lookup_symbol (block, name, domain);
1790 if (!sym)
1791 error_in_psymtab_expansion (block_index, name, cust);
1792
1793 if (symbol_lookup_debug > 1)
1794 {
1795 fprintf_unfiltered (gdb_stdlog,
1796 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
1797 host_address_to_string (sym),
1798 host_address_to_string (block));
1799 }
1800
1801 block_found = block;
1802 return fixup_symbol_section (sym, objfile);
1803 }
1804
1805 /* See symtab.h. */
1806
1807 struct symbol *
1808 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
1809 const char *name,
1810 const struct block *block,
1811 const domain_enum domain)
1812 {
1813 struct symbol *sym;
1814
1815 /* NOTE: carlton/2003-05-19: The comments below were written when
1816 this (or what turned into this) was part of lookup_symbol_aux;
1817 I'm much less worried about these questions now, since these
1818 decisions have turned out well, but I leave these comments here
1819 for posterity. */
1820
1821 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1822 not it would be appropriate to search the current global block
1823 here as well. (That's what this code used to do before the
1824 is_a_field_of_this check was moved up.) On the one hand, it's
1825 redundant with the lookup in all objfiles search that happens
1826 next. On the other hand, if decode_line_1 is passed an argument
1827 like filename:var, then the user presumably wants 'var' to be
1828 searched for in filename. On the third hand, there shouldn't be
1829 multiple global variables all of which are named 'var', and it's
1830 not like decode_line_1 has ever restricted its search to only
1831 global variables in a single filename. All in all, only
1832 searching the static block here seems best: it's correct and it's
1833 cleanest. */
1834
1835 /* NOTE: carlton/2002-12-05: There's also a possible performance
1836 issue here: if you usually search for global symbols in the
1837 current file, then it would be slightly better to search the
1838 current global block before searching all the symtabs. But there
1839 are other factors that have a much greater effect on performance
1840 than that one, so I don't think we should worry about that for
1841 now. */
1842
1843 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
1844 the current objfile. Searching the current objfile first is useful
1845 for both matching user expectations as well as performance. */
1846
1847 sym = lookup_symbol_in_static_block (name, block, domain);
1848 if (sym != NULL)
1849 return sym;
1850
1851 return lookup_global_symbol (name, block, domain);
1852 }
1853
1854 /* See symtab.h. */
1855
1856 struct symbol *
1857 lookup_symbol_in_static_block (const char *name,
1858 const struct block *block,
1859 const domain_enum domain)
1860 {
1861 const struct block *static_block = block_static_block (block);
1862 struct symbol *sym;
1863
1864 if (static_block == NULL)
1865 return NULL;
1866
1867 if (symbol_lookup_debug)
1868 {
1869 struct objfile *objfile = lookup_objfile_from_block (static_block);
1870
1871 fprintf_unfiltered (gdb_stdlog,
1872 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
1873 " %s)\n",
1874 name,
1875 host_address_to_string (block),
1876 objfile_debug_name (objfile),
1877 domain_name (domain));
1878 }
1879
1880 sym = lookup_symbol_in_block (name, static_block, domain);
1881 if (symbol_lookup_debug)
1882 {
1883 fprintf_unfiltered (gdb_stdlog,
1884 "lookup_symbol_in_static_block (...) = %s\n",
1885 sym != NULL ? host_address_to_string (sym) : "NULL");
1886 }
1887 return sym;
1888 }
1889
1890 /* Perform the standard symbol lookup of NAME in OBJFILE:
1891 1) First search expanded symtabs, and if not found
1892 2) Search the "quick" symtabs (partial or .gdb_index).
1893 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
1894
1895 static struct symbol *
1896 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
1897 const char *name, const domain_enum domain)
1898 {
1899 struct symbol *result;
1900
1901 if (symbol_lookup_debug)
1902 {
1903 fprintf_unfiltered (gdb_stdlog,
1904 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
1905 objfile_debug_name (objfile),
1906 block_index == GLOBAL_BLOCK
1907 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
1908 name, domain_name (domain));
1909 }
1910
1911 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
1912 name, domain);
1913 if (result != NULL)
1914 {
1915 if (symbol_lookup_debug)
1916 {
1917 fprintf_unfiltered (gdb_stdlog,
1918 "lookup_symbol_in_objfile (...) = %s"
1919 " (in symtabs)\n",
1920 host_address_to_string (result));
1921 }
1922 return result;
1923 }
1924
1925 result = lookup_symbol_via_quick_fns (objfile, block_index,
1926 name, domain);
1927 if (symbol_lookup_debug)
1928 {
1929 fprintf_unfiltered (gdb_stdlog,
1930 "lookup_symbol_in_objfile (...) = %s%s\n",
1931 result != NULL
1932 ? host_address_to_string (result)
1933 : "NULL",
1934 result != NULL ? " (via quick fns)" : "");
1935 }
1936 return result;
1937 }
1938
1939 /* See symtab.h. */
1940
1941 struct symbol *
1942 lookup_static_symbol (const char *name, const domain_enum domain)
1943 {
1944 struct objfile *objfile;
1945 struct symbol *result;
1946
1947 ALL_OBJFILES (objfile)
1948 {
1949 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
1950 if (result != NULL)
1951 return result;
1952 }
1953
1954 return NULL;
1955 }
1956
1957 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1958
1959 struct global_sym_lookup_data
1960 {
1961 /* The name of the symbol we are searching for. */
1962 const char *name;
1963
1964 /* The domain to use for our search. */
1965 domain_enum domain;
1966
1967 /* The field where the callback should store the symbol if found.
1968 It should be initialized to NULL before the search is started. */
1969 struct symbol *result;
1970 };
1971
1972 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1973 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1974 OBJFILE. The arguments for the search are passed via CB_DATA,
1975 which in reality is a pointer to struct global_sym_lookup_data. */
1976
1977 static int
1978 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1979 void *cb_data)
1980 {
1981 struct global_sym_lookup_data *data =
1982 (struct global_sym_lookup_data *) cb_data;
1983
1984 gdb_assert (data->result == NULL);
1985
1986 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
1987 data->name, data->domain);
1988
1989 /* If we found a match, tell the iterator to stop. Otherwise,
1990 keep going. */
1991 return (data->result != NULL);
1992 }
1993
1994 /* See symtab.h. */
1995
1996 struct symbol *
1997 lookup_global_symbol (const char *name,
1998 const struct block *block,
1999 const domain_enum domain)
2000 {
2001 struct symbol *sym = NULL;
2002 struct objfile *objfile = NULL;
2003 struct global_sym_lookup_data lookup_data;
2004
2005 /* Call library-specific lookup procedure. */
2006 objfile = lookup_objfile_from_block (block);
2007 if (objfile != NULL)
2008 sym = solib_global_lookup (objfile, name, domain);
2009 if (sym != NULL)
2010 return sym;
2011
2012 memset (&lookup_data, 0, sizeof (lookup_data));
2013 lookup_data.name = name;
2014 lookup_data.domain = domain;
2015 gdbarch_iterate_over_objfiles_in_search_order
2016 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2017 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2018
2019 return lookup_data.result;
2020 }
2021
2022 int
2023 symbol_matches_domain (enum language symbol_language,
2024 domain_enum symbol_domain,
2025 domain_enum domain)
2026 {
2027 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2028 A Java class declaration also defines a typedef for the class.
2029 Similarly, any Ada type declaration implicitly defines a typedef. */
2030 if (symbol_language == language_cplus
2031 || symbol_language == language_d
2032 || symbol_language == language_java
2033 || symbol_language == language_ada)
2034 {
2035 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2036 && symbol_domain == STRUCT_DOMAIN)
2037 return 1;
2038 }
2039 /* For all other languages, strict match is required. */
2040 return (symbol_domain == domain);
2041 }
2042
2043 /* See symtab.h. */
2044
2045 struct type *
2046 lookup_transparent_type (const char *name)
2047 {
2048 return current_language->la_lookup_transparent_type (name);
2049 }
2050
2051 /* A helper for basic_lookup_transparent_type that interfaces with the
2052 "quick" symbol table functions. */
2053
2054 static struct type *
2055 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2056 const char *name)
2057 {
2058 struct compunit_symtab *cust;
2059 const struct blockvector *bv;
2060 struct block *block;
2061 struct symbol *sym;
2062
2063 if (!objfile->sf)
2064 return NULL;
2065 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2066 STRUCT_DOMAIN);
2067 if (cust == NULL)
2068 return NULL;
2069
2070 bv = COMPUNIT_BLOCKVECTOR (cust);
2071 block = BLOCKVECTOR_BLOCK (bv, block_index);
2072 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
2073 if (!sym)
2074 error_in_psymtab_expansion (block_index, name, cust);
2075
2076 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2077 return SYMBOL_TYPE (sym);
2078
2079 return NULL;
2080 }
2081
2082 /* The standard implementation of lookup_transparent_type. This code
2083 was modeled on lookup_symbol -- the parts not relevant to looking
2084 up types were just left out. In particular it's assumed here that
2085 types are available in STRUCT_DOMAIN and only in file-static or
2086 global blocks. */
2087
2088 struct type *
2089 basic_lookup_transparent_type (const char *name)
2090 {
2091 struct symbol *sym;
2092 struct compunit_symtab *cust;
2093 const struct blockvector *bv;
2094 struct objfile *objfile;
2095 struct block *block;
2096 struct type *t;
2097
2098 /* Now search all the global symbols. Do the symtab's first, then
2099 check the psymtab's. If a psymtab indicates the existence
2100 of the desired name as a global, then do psymtab-to-symtab
2101 conversion on the fly and return the found symbol. */
2102
2103 ALL_OBJFILES (objfile)
2104 {
2105 ALL_OBJFILE_COMPUNITS (objfile, cust)
2106 {
2107 bv = COMPUNIT_BLOCKVECTOR (cust);
2108 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2109 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
2110 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2111 {
2112 return SYMBOL_TYPE (sym);
2113 }
2114 }
2115 }
2116
2117 ALL_OBJFILES (objfile)
2118 {
2119 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2120 if (t)
2121 return t;
2122 }
2123
2124 /* Now search the static file-level symbols.
2125 Not strictly correct, but more useful than an error.
2126 Do the symtab's first, then
2127 check the psymtab's. If a psymtab indicates the existence
2128 of the desired name as a file-level static, then do psymtab-to-symtab
2129 conversion on the fly and return the found symbol. */
2130
2131 ALL_OBJFILES (objfile)
2132 {
2133 ALL_OBJFILE_COMPUNITS (objfile, cust)
2134 {
2135 bv = COMPUNIT_BLOCKVECTOR (cust);
2136 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
2137 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
2138 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2139 {
2140 return SYMBOL_TYPE (sym);
2141 }
2142 }
2143 }
2144
2145 ALL_OBJFILES (objfile)
2146 {
2147 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2148 if (t)
2149 return t;
2150 }
2151
2152 return (struct type *) 0;
2153 }
2154
2155 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2156
2157 For each symbol that matches, CALLBACK is called. The symbol and
2158 DATA are passed to the callback.
2159
2160 If CALLBACK returns zero, the iteration ends. Otherwise, the
2161 search continues. */
2162
2163 void
2164 iterate_over_symbols (const struct block *block, const char *name,
2165 const domain_enum domain,
2166 symbol_found_callback_ftype *callback,
2167 void *data)
2168 {
2169 struct block_iterator iter;
2170 struct symbol *sym;
2171
2172 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2173 {
2174 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2175 SYMBOL_DOMAIN (sym), domain))
2176 {
2177 if (!callback (sym, data))
2178 return;
2179 }
2180 }
2181 }
2182
2183 /* Find the compunit symtab associated with PC and SECTION.
2184 This will read in debug info as necessary. */
2185
2186 struct compunit_symtab *
2187 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2188 {
2189 struct compunit_symtab *cust;
2190 struct compunit_symtab *best_cust = NULL;
2191 struct objfile *objfile;
2192 CORE_ADDR distance = 0;
2193 struct bound_minimal_symbol msymbol;
2194
2195 /* If we know that this is not a text address, return failure. This is
2196 necessary because we loop based on the block's high and low code
2197 addresses, which do not include the data ranges, and because
2198 we call find_pc_sect_psymtab which has a similar restriction based
2199 on the partial_symtab's texthigh and textlow. */
2200 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2201 if (msymbol.minsym
2202 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2203 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2204 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2205 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2206 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2207 return NULL;
2208
2209 /* Search all symtabs for the one whose file contains our address, and which
2210 is the smallest of all the ones containing the address. This is designed
2211 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2212 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2213 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2214
2215 This happens for native ecoff format, where code from included files
2216 gets its own symtab. The symtab for the included file should have
2217 been read in already via the dependency mechanism.
2218 It might be swifter to create several symtabs with the same name
2219 like xcoff does (I'm not sure).
2220
2221 It also happens for objfiles that have their functions reordered.
2222 For these, the symtab we are looking for is not necessarily read in. */
2223
2224 ALL_COMPUNITS (objfile, cust)
2225 {
2226 struct block *b;
2227 const struct blockvector *bv;
2228
2229 bv = COMPUNIT_BLOCKVECTOR (cust);
2230 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2231
2232 if (BLOCK_START (b) <= pc
2233 && BLOCK_END (b) > pc
2234 && (distance == 0
2235 || BLOCK_END (b) - BLOCK_START (b) < distance))
2236 {
2237 /* For an objfile that has its functions reordered,
2238 find_pc_psymtab will find the proper partial symbol table
2239 and we simply return its corresponding symtab. */
2240 /* In order to better support objfiles that contain both
2241 stabs and coff debugging info, we continue on if a psymtab
2242 can't be found. */
2243 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2244 {
2245 struct compunit_symtab *result;
2246
2247 result
2248 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2249 msymbol,
2250 pc, section,
2251 0);
2252 if (result != NULL)
2253 return result;
2254 }
2255 if (section != 0)
2256 {
2257 struct block_iterator iter;
2258 struct symbol *sym = NULL;
2259
2260 ALL_BLOCK_SYMBOLS (b, iter, sym)
2261 {
2262 fixup_symbol_section (sym, objfile);
2263 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2264 section))
2265 break;
2266 }
2267 if (sym == NULL)
2268 continue; /* No symbol in this symtab matches
2269 section. */
2270 }
2271 distance = BLOCK_END (b) - BLOCK_START (b);
2272 best_cust = cust;
2273 }
2274 }
2275
2276 if (best_cust != NULL)
2277 return best_cust;
2278
2279 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2280
2281 ALL_OBJFILES (objfile)
2282 {
2283 struct compunit_symtab *result;
2284
2285 if (!objfile->sf)
2286 continue;
2287 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2288 msymbol,
2289 pc, section,
2290 1);
2291 if (result != NULL)
2292 return result;
2293 }
2294
2295 return NULL;
2296 }
2297
2298 /* Find the compunit symtab associated with PC.
2299 This will read in debug info as necessary.
2300 Backward compatibility, no section. */
2301
2302 struct compunit_symtab *
2303 find_pc_compunit_symtab (CORE_ADDR pc)
2304 {
2305 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2306 }
2307 \f
2308
2309 /* Find the source file and line number for a given PC value and SECTION.
2310 Return a structure containing a symtab pointer, a line number,
2311 and a pc range for the entire source line.
2312 The value's .pc field is NOT the specified pc.
2313 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2314 use the line that ends there. Otherwise, in that case, the line
2315 that begins there is used. */
2316
2317 /* The big complication here is that a line may start in one file, and end just
2318 before the start of another file. This usually occurs when you #include
2319 code in the middle of a subroutine. To properly find the end of a line's PC
2320 range, we must search all symtabs associated with this compilation unit, and
2321 find the one whose first PC is closer than that of the next line in this
2322 symtab. */
2323
2324 /* If it's worth the effort, we could be using a binary search. */
2325
2326 struct symtab_and_line
2327 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2328 {
2329 struct compunit_symtab *cust;
2330 struct symtab *iter_s;
2331 struct linetable *l;
2332 int len;
2333 int i;
2334 struct linetable_entry *item;
2335 struct symtab_and_line val;
2336 const struct blockvector *bv;
2337 struct bound_minimal_symbol msymbol;
2338
2339 /* Info on best line seen so far, and where it starts, and its file. */
2340
2341 struct linetable_entry *best = NULL;
2342 CORE_ADDR best_end = 0;
2343 struct symtab *best_symtab = 0;
2344
2345 /* Store here the first line number
2346 of a file which contains the line at the smallest pc after PC.
2347 If we don't find a line whose range contains PC,
2348 we will use a line one less than this,
2349 with a range from the start of that file to the first line's pc. */
2350 struct linetable_entry *alt = NULL;
2351
2352 /* Info on best line seen in this file. */
2353
2354 struct linetable_entry *prev;
2355
2356 /* If this pc is not from the current frame,
2357 it is the address of the end of a call instruction.
2358 Quite likely that is the start of the following statement.
2359 But what we want is the statement containing the instruction.
2360 Fudge the pc to make sure we get that. */
2361
2362 init_sal (&val); /* initialize to zeroes */
2363
2364 val.pspace = current_program_space;
2365
2366 /* It's tempting to assume that, if we can't find debugging info for
2367 any function enclosing PC, that we shouldn't search for line
2368 number info, either. However, GAS can emit line number info for
2369 assembly files --- very helpful when debugging hand-written
2370 assembly code. In such a case, we'd have no debug info for the
2371 function, but we would have line info. */
2372
2373 if (notcurrent)
2374 pc -= 1;
2375
2376 /* elz: added this because this function returned the wrong
2377 information if the pc belongs to a stub (import/export)
2378 to call a shlib function. This stub would be anywhere between
2379 two functions in the target, and the line info was erroneously
2380 taken to be the one of the line before the pc. */
2381
2382 /* RT: Further explanation:
2383
2384 * We have stubs (trampolines) inserted between procedures.
2385 *
2386 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2387 * exists in the main image.
2388 *
2389 * In the minimal symbol table, we have a bunch of symbols
2390 * sorted by start address. The stubs are marked as "trampoline",
2391 * the others appear as text. E.g.:
2392 *
2393 * Minimal symbol table for main image
2394 * main: code for main (text symbol)
2395 * shr1: stub (trampoline symbol)
2396 * foo: code for foo (text symbol)
2397 * ...
2398 * Minimal symbol table for "shr1" image:
2399 * ...
2400 * shr1: code for shr1 (text symbol)
2401 * ...
2402 *
2403 * So the code below is trying to detect if we are in the stub
2404 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2405 * and if found, do the symbolization from the real-code address
2406 * rather than the stub address.
2407 *
2408 * Assumptions being made about the minimal symbol table:
2409 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2410 * if we're really in the trampoline.s If we're beyond it (say
2411 * we're in "foo" in the above example), it'll have a closer
2412 * symbol (the "foo" text symbol for example) and will not
2413 * return the trampoline.
2414 * 2. lookup_minimal_symbol_text() will find a real text symbol
2415 * corresponding to the trampoline, and whose address will
2416 * be different than the trampoline address. I put in a sanity
2417 * check for the address being the same, to avoid an
2418 * infinite recursion.
2419 */
2420 msymbol = lookup_minimal_symbol_by_pc (pc);
2421 if (msymbol.minsym != NULL)
2422 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2423 {
2424 struct bound_minimal_symbol mfunsym
2425 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2426 NULL);
2427
2428 if (mfunsym.minsym == NULL)
2429 /* I eliminated this warning since it is coming out
2430 * in the following situation:
2431 * gdb shmain // test program with shared libraries
2432 * (gdb) break shr1 // function in shared lib
2433 * Warning: In stub for ...
2434 * In the above situation, the shared lib is not loaded yet,
2435 * so of course we can't find the real func/line info,
2436 * but the "break" still works, and the warning is annoying.
2437 * So I commented out the warning. RT */
2438 /* warning ("In stub for %s; unable to find real function/line info",
2439 SYMBOL_LINKAGE_NAME (msymbol)); */
2440 ;
2441 /* fall through */
2442 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2443 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2444 /* Avoid infinite recursion */
2445 /* See above comment about why warning is commented out. */
2446 /* warning ("In stub for %s; unable to find real function/line info",
2447 SYMBOL_LINKAGE_NAME (msymbol)); */
2448 ;
2449 /* fall through */
2450 else
2451 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2452 }
2453
2454
2455 cust = find_pc_sect_compunit_symtab (pc, section);
2456 if (cust == NULL)
2457 {
2458 /* If no symbol information, return previous pc. */
2459 if (notcurrent)
2460 pc++;
2461 val.pc = pc;
2462 return val;
2463 }
2464
2465 bv = COMPUNIT_BLOCKVECTOR (cust);
2466
2467 /* Look at all the symtabs that share this blockvector.
2468 They all have the same apriori range, that we found was right;
2469 but they have different line tables. */
2470
2471 ALL_COMPUNIT_FILETABS (cust, iter_s)
2472 {
2473 /* Find the best line in this symtab. */
2474 l = SYMTAB_LINETABLE (iter_s);
2475 if (!l)
2476 continue;
2477 len = l->nitems;
2478 if (len <= 0)
2479 {
2480 /* I think len can be zero if the symtab lacks line numbers
2481 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2482 I'm not sure which, and maybe it depends on the symbol
2483 reader). */
2484 continue;
2485 }
2486
2487 prev = NULL;
2488 item = l->item; /* Get first line info. */
2489
2490 /* Is this file's first line closer than the first lines of other files?
2491 If so, record this file, and its first line, as best alternate. */
2492 if (item->pc > pc && (!alt || item->pc < alt->pc))
2493 alt = item;
2494
2495 for (i = 0; i < len; i++, item++)
2496 {
2497 /* Leave prev pointing to the linetable entry for the last line
2498 that started at or before PC. */
2499 if (item->pc > pc)
2500 break;
2501
2502 prev = item;
2503 }
2504
2505 /* At this point, prev points at the line whose start addr is <= pc, and
2506 item points at the next line. If we ran off the end of the linetable
2507 (pc >= start of the last line), then prev == item. If pc < start of
2508 the first line, prev will not be set. */
2509
2510 /* Is this file's best line closer than the best in the other files?
2511 If so, record this file, and its best line, as best so far. Don't
2512 save prev if it represents the end of a function (i.e. line number
2513 0) instead of a real line. */
2514
2515 if (prev && prev->line && (!best || prev->pc > best->pc))
2516 {
2517 best = prev;
2518 best_symtab = iter_s;
2519
2520 /* Discard BEST_END if it's before the PC of the current BEST. */
2521 if (best_end <= best->pc)
2522 best_end = 0;
2523 }
2524
2525 /* If another line (denoted by ITEM) is in the linetable and its
2526 PC is after BEST's PC, but before the current BEST_END, then
2527 use ITEM's PC as the new best_end. */
2528 if (best && i < len && item->pc > best->pc
2529 && (best_end == 0 || best_end > item->pc))
2530 best_end = item->pc;
2531 }
2532
2533 if (!best_symtab)
2534 {
2535 /* If we didn't find any line number info, just return zeros.
2536 We used to return alt->line - 1 here, but that could be
2537 anywhere; if we don't have line number info for this PC,
2538 don't make some up. */
2539 val.pc = pc;
2540 }
2541 else if (best->line == 0)
2542 {
2543 /* If our best fit is in a range of PC's for which no line
2544 number info is available (line number is zero) then we didn't
2545 find any valid line information. */
2546 val.pc = pc;
2547 }
2548 else
2549 {
2550 val.symtab = best_symtab;
2551 val.line = best->line;
2552 val.pc = best->pc;
2553 if (best_end && (!alt || best_end < alt->pc))
2554 val.end = best_end;
2555 else if (alt)
2556 val.end = alt->pc;
2557 else
2558 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2559 }
2560 val.section = section;
2561 return val;
2562 }
2563
2564 /* Backward compatibility (no section). */
2565
2566 struct symtab_and_line
2567 find_pc_line (CORE_ADDR pc, int notcurrent)
2568 {
2569 struct obj_section *section;
2570
2571 section = find_pc_overlay (pc);
2572 if (pc_in_unmapped_range (pc, section))
2573 pc = overlay_mapped_address (pc, section);
2574 return find_pc_sect_line (pc, section, notcurrent);
2575 }
2576
2577 /* See symtab.h. */
2578
2579 struct symtab *
2580 find_pc_line_symtab (CORE_ADDR pc)
2581 {
2582 struct symtab_and_line sal;
2583
2584 /* This always passes zero for NOTCURRENT to find_pc_line.
2585 There are currently no callers that ever pass non-zero. */
2586 sal = find_pc_line (pc, 0);
2587 return sal.symtab;
2588 }
2589 \f
2590 /* Find line number LINE in any symtab whose name is the same as
2591 SYMTAB.
2592
2593 If found, return the symtab that contains the linetable in which it was
2594 found, set *INDEX to the index in the linetable of the best entry
2595 found, and set *EXACT_MATCH nonzero if the value returned is an
2596 exact match.
2597
2598 If not found, return NULL. */
2599
2600 struct symtab *
2601 find_line_symtab (struct symtab *symtab, int line,
2602 int *index, int *exact_match)
2603 {
2604 int exact = 0; /* Initialized here to avoid a compiler warning. */
2605
2606 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2607 so far seen. */
2608
2609 int best_index;
2610 struct linetable *best_linetable;
2611 struct symtab *best_symtab;
2612
2613 /* First try looking it up in the given symtab. */
2614 best_linetable = SYMTAB_LINETABLE (symtab);
2615 best_symtab = symtab;
2616 best_index = find_line_common (best_linetable, line, &exact, 0);
2617 if (best_index < 0 || !exact)
2618 {
2619 /* Didn't find an exact match. So we better keep looking for
2620 another symtab with the same name. In the case of xcoff,
2621 multiple csects for one source file (produced by IBM's FORTRAN
2622 compiler) produce multiple symtabs (this is unavoidable
2623 assuming csects can be at arbitrary places in memory and that
2624 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2625
2626 /* BEST is the smallest linenumber > LINE so far seen,
2627 or 0 if none has been seen so far.
2628 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2629 int best;
2630
2631 struct objfile *objfile;
2632 struct compunit_symtab *cu;
2633 struct symtab *s;
2634
2635 if (best_index >= 0)
2636 best = best_linetable->item[best_index].line;
2637 else
2638 best = 0;
2639
2640 ALL_OBJFILES (objfile)
2641 {
2642 if (objfile->sf)
2643 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2644 symtab_to_fullname (symtab));
2645 }
2646
2647 ALL_FILETABS (objfile, cu, s)
2648 {
2649 struct linetable *l;
2650 int ind;
2651
2652 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2653 continue;
2654 if (FILENAME_CMP (symtab_to_fullname (symtab),
2655 symtab_to_fullname (s)) != 0)
2656 continue;
2657 l = SYMTAB_LINETABLE (s);
2658 ind = find_line_common (l, line, &exact, 0);
2659 if (ind >= 0)
2660 {
2661 if (exact)
2662 {
2663 best_index = ind;
2664 best_linetable = l;
2665 best_symtab = s;
2666 goto done;
2667 }
2668 if (best == 0 || l->item[ind].line < best)
2669 {
2670 best = l->item[ind].line;
2671 best_index = ind;
2672 best_linetable = l;
2673 best_symtab = s;
2674 }
2675 }
2676 }
2677 }
2678 done:
2679 if (best_index < 0)
2680 return NULL;
2681
2682 if (index)
2683 *index = best_index;
2684 if (exact_match)
2685 *exact_match = exact;
2686
2687 return best_symtab;
2688 }
2689
2690 /* Given SYMTAB, returns all the PCs function in the symtab that
2691 exactly match LINE. Returns NULL if there are no exact matches,
2692 but updates BEST_ITEM in this case. */
2693
2694 VEC (CORE_ADDR) *
2695 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2696 struct linetable_entry **best_item)
2697 {
2698 int start = 0;
2699 VEC (CORE_ADDR) *result = NULL;
2700
2701 /* First, collect all the PCs that are at this line. */
2702 while (1)
2703 {
2704 int was_exact;
2705 int idx;
2706
2707 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
2708 start);
2709 if (idx < 0)
2710 break;
2711
2712 if (!was_exact)
2713 {
2714 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
2715
2716 if (*best_item == NULL || item->line < (*best_item)->line)
2717 *best_item = item;
2718
2719 break;
2720 }
2721
2722 VEC_safe_push (CORE_ADDR, result,
2723 SYMTAB_LINETABLE (symtab)->item[idx].pc);
2724 start = idx + 1;
2725 }
2726
2727 return result;
2728 }
2729
2730 \f
2731 /* Set the PC value for a given source file and line number and return true.
2732 Returns zero for invalid line number (and sets the PC to 0).
2733 The source file is specified with a struct symtab. */
2734
2735 int
2736 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2737 {
2738 struct linetable *l;
2739 int ind;
2740
2741 *pc = 0;
2742 if (symtab == 0)
2743 return 0;
2744
2745 symtab = find_line_symtab (symtab, line, &ind, NULL);
2746 if (symtab != NULL)
2747 {
2748 l = SYMTAB_LINETABLE (symtab);
2749 *pc = l->item[ind].pc;
2750 return 1;
2751 }
2752 else
2753 return 0;
2754 }
2755
2756 /* Find the range of pc values in a line.
2757 Store the starting pc of the line into *STARTPTR
2758 and the ending pc (start of next line) into *ENDPTR.
2759 Returns 1 to indicate success.
2760 Returns 0 if could not find the specified line. */
2761
2762 int
2763 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2764 CORE_ADDR *endptr)
2765 {
2766 CORE_ADDR startaddr;
2767 struct symtab_and_line found_sal;
2768
2769 startaddr = sal.pc;
2770 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2771 return 0;
2772
2773 /* This whole function is based on address. For example, if line 10 has
2774 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2775 "info line *0x123" should say the line goes from 0x100 to 0x200
2776 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2777 This also insures that we never give a range like "starts at 0x134
2778 and ends at 0x12c". */
2779
2780 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2781 if (found_sal.line != sal.line)
2782 {
2783 /* The specified line (sal) has zero bytes. */
2784 *startptr = found_sal.pc;
2785 *endptr = found_sal.pc;
2786 }
2787 else
2788 {
2789 *startptr = found_sal.pc;
2790 *endptr = found_sal.end;
2791 }
2792 return 1;
2793 }
2794
2795 /* Given a line table and a line number, return the index into the line
2796 table for the pc of the nearest line whose number is >= the specified one.
2797 Return -1 if none is found. The value is >= 0 if it is an index.
2798 START is the index at which to start searching the line table.
2799
2800 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2801
2802 static int
2803 find_line_common (struct linetable *l, int lineno,
2804 int *exact_match, int start)
2805 {
2806 int i;
2807 int len;
2808
2809 /* BEST is the smallest linenumber > LINENO so far seen,
2810 or 0 if none has been seen so far.
2811 BEST_INDEX identifies the item for it. */
2812
2813 int best_index = -1;
2814 int best = 0;
2815
2816 *exact_match = 0;
2817
2818 if (lineno <= 0)
2819 return -1;
2820 if (l == 0)
2821 return -1;
2822
2823 len = l->nitems;
2824 for (i = start; i < len; i++)
2825 {
2826 struct linetable_entry *item = &(l->item[i]);
2827
2828 if (item->line == lineno)
2829 {
2830 /* Return the first (lowest address) entry which matches. */
2831 *exact_match = 1;
2832 return i;
2833 }
2834
2835 if (item->line > lineno && (best == 0 || item->line < best))
2836 {
2837 best = item->line;
2838 best_index = i;
2839 }
2840 }
2841
2842 /* If we got here, we didn't get an exact match. */
2843 return best_index;
2844 }
2845
2846 int
2847 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2848 {
2849 struct symtab_and_line sal;
2850
2851 sal = find_pc_line (pc, 0);
2852 *startptr = sal.pc;
2853 *endptr = sal.end;
2854 return sal.symtab != 0;
2855 }
2856
2857 /* Given a function symbol SYM, find the symtab and line for the start
2858 of the function.
2859 If the argument FUNFIRSTLINE is nonzero, we want the first line
2860 of real code inside the function. */
2861
2862 struct symtab_and_line
2863 find_function_start_sal (struct symbol *sym, int funfirstline)
2864 {
2865 struct symtab_and_line sal;
2866 struct obj_section *section;
2867
2868 fixup_symbol_section (sym, NULL);
2869 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
2870 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
2871
2872 /* We always should have a line for the function start address.
2873 If we don't, something is odd. Create a plain SAL refering
2874 just the PC and hope that skip_prologue_sal (if requested)
2875 can find a line number for after the prologue. */
2876 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2877 {
2878 init_sal (&sal);
2879 sal.pspace = current_program_space;
2880 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2881 sal.section = section;
2882 }
2883
2884 if (funfirstline)
2885 skip_prologue_sal (&sal);
2886
2887 return sal;
2888 }
2889
2890 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2891 address for that function that has an entry in SYMTAB's line info
2892 table. If such an entry cannot be found, return FUNC_ADDR
2893 unaltered. */
2894
2895 static CORE_ADDR
2896 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2897 {
2898 CORE_ADDR func_start, func_end;
2899 struct linetable *l;
2900 int i;
2901
2902 /* Give up if this symbol has no lineinfo table. */
2903 l = SYMTAB_LINETABLE (symtab);
2904 if (l == NULL)
2905 return func_addr;
2906
2907 /* Get the range for the function's PC values, or give up if we
2908 cannot, for some reason. */
2909 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2910 return func_addr;
2911
2912 /* Linetable entries are ordered by PC values, see the commentary in
2913 symtab.h where `struct linetable' is defined. Thus, the first
2914 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2915 address we are looking for. */
2916 for (i = 0; i < l->nitems; i++)
2917 {
2918 struct linetable_entry *item = &(l->item[i]);
2919
2920 /* Don't use line numbers of zero, they mark special entries in
2921 the table. See the commentary on symtab.h before the
2922 definition of struct linetable. */
2923 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2924 return item->pc;
2925 }
2926
2927 return func_addr;
2928 }
2929
2930 /* Adjust SAL to the first instruction past the function prologue.
2931 If the PC was explicitly specified, the SAL is not changed.
2932 If the line number was explicitly specified, at most the SAL's PC
2933 is updated. If SAL is already past the prologue, then do nothing. */
2934
2935 void
2936 skip_prologue_sal (struct symtab_and_line *sal)
2937 {
2938 struct symbol *sym;
2939 struct symtab_and_line start_sal;
2940 struct cleanup *old_chain;
2941 CORE_ADDR pc, saved_pc;
2942 struct obj_section *section;
2943 const char *name;
2944 struct objfile *objfile;
2945 struct gdbarch *gdbarch;
2946 const struct block *b, *function_block;
2947 int force_skip, skip;
2948
2949 /* Do not change the SAL if PC was specified explicitly. */
2950 if (sal->explicit_pc)
2951 return;
2952
2953 old_chain = save_current_space_and_thread ();
2954 switch_to_program_space_and_thread (sal->pspace);
2955
2956 sym = find_pc_sect_function (sal->pc, sal->section);
2957 if (sym != NULL)
2958 {
2959 fixup_symbol_section (sym, NULL);
2960
2961 objfile = symbol_objfile (sym);
2962 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2963 section = SYMBOL_OBJ_SECTION (objfile, sym);
2964 name = SYMBOL_LINKAGE_NAME (sym);
2965 }
2966 else
2967 {
2968 struct bound_minimal_symbol msymbol
2969 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2970
2971 if (msymbol.minsym == NULL)
2972 {
2973 do_cleanups (old_chain);
2974 return;
2975 }
2976
2977 objfile = msymbol.objfile;
2978 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2979 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2980 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2981 }
2982
2983 gdbarch = get_objfile_arch (objfile);
2984
2985 /* Process the prologue in two passes. In the first pass try to skip the
2986 prologue (SKIP is true) and verify there is a real need for it (indicated
2987 by FORCE_SKIP). If no such reason was found run a second pass where the
2988 prologue is not skipped (SKIP is false). */
2989
2990 skip = 1;
2991 force_skip = 1;
2992
2993 /* Be conservative - allow direct PC (without skipping prologue) only if we
2994 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2995 have to be set by the caller so we use SYM instead. */
2996 if (sym != NULL
2997 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
2998 force_skip = 0;
2999
3000 saved_pc = pc;
3001 do
3002 {
3003 pc = saved_pc;
3004
3005 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3006 so that gdbarch_skip_prologue has something unique to work on. */
3007 if (section_is_overlay (section) && !section_is_mapped (section))
3008 pc = overlay_unmapped_address (pc, section);
3009
3010 /* Skip "first line" of function (which is actually its prologue). */
3011 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3012 if (gdbarch_skip_entrypoint_p (gdbarch))
3013 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3014 if (skip)
3015 pc = gdbarch_skip_prologue (gdbarch, pc);
3016
3017 /* For overlays, map pc back into its mapped VMA range. */
3018 pc = overlay_mapped_address (pc, section);
3019
3020 /* Calculate line number. */
3021 start_sal = find_pc_sect_line (pc, section, 0);
3022
3023 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3024 line is still part of the same function. */
3025 if (skip && start_sal.pc != pc
3026 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3027 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3028 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3029 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3030 {
3031 /* First pc of next line */
3032 pc = start_sal.end;
3033 /* Recalculate the line number (might not be N+1). */
3034 start_sal = find_pc_sect_line (pc, section, 0);
3035 }
3036
3037 /* On targets with executable formats that don't have a concept of
3038 constructors (ELF with .init has, PE doesn't), gcc emits a call
3039 to `__main' in `main' between the prologue and before user
3040 code. */
3041 if (gdbarch_skip_main_prologue_p (gdbarch)
3042 && name && strcmp_iw (name, "main") == 0)
3043 {
3044 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3045 /* Recalculate the line number (might not be N+1). */
3046 start_sal = find_pc_sect_line (pc, section, 0);
3047 force_skip = 1;
3048 }
3049 }
3050 while (!force_skip && skip--);
3051
3052 /* If we still don't have a valid source line, try to find the first
3053 PC in the lineinfo table that belongs to the same function. This
3054 happens with COFF debug info, which does not seem to have an
3055 entry in lineinfo table for the code after the prologue which has
3056 no direct relation to source. For example, this was found to be
3057 the case with the DJGPP target using "gcc -gcoff" when the
3058 compiler inserted code after the prologue to make sure the stack
3059 is aligned. */
3060 if (!force_skip && sym && start_sal.symtab == NULL)
3061 {
3062 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3063 /* Recalculate the line number. */
3064 start_sal = find_pc_sect_line (pc, section, 0);
3065 }
3066
3067 do_cleanups (old_chain);
3068
3069 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3070 forward SAL to the end of the prologue. */
3071 if (sal->pc >= pc)
3072 return;
3073
3074 sal->pc = pc;
3075 sal->section = section;
3076
3077 /* Unless the explicit_line flag was set, update the SAL line
3078 and symtab to correspond to the modified PC location. */
3079 if (sal->explicit_line)
3080 return;
3081
3082 sal->symtab = start_sal.symtab;
3083 sal->line = start_sal.line;
3084 sal->end = start_sal.end;
3085
3086 /* Check if we are now inside an inlined function. If we can,
3087 use the call site of the function instead. */
3088 b = block_for_pc_sect (sal->pc, sal->section);
3089 function_block = NULL;
3090 while (b != NULL)
3091 {
3092 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3093 function_block = b;
3094 else if (BLOCK_FUNCTION (b) != NULL)
3095 break;
3096 b = BLOCK_SUPERBLOCK (b);
3097 }
3098 if (function_block != NULL
3099 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3100 {
3101 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3102 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3103 }
3104 }
3105
3106 /* Given PC at the function's start address, attempt to find the
3107 prologue end using SAL information. Return zero if the skip fails.
3108
3109 A non-optimized prologue traditionally has one SAL for the function
3110 and a second for the function body. A single line function has
3111 them both pointing at the same line.
3112
3113 An optimized prologue is similar but the prologue may contain
3114 instructions (SALs) from the instruction body. Need to skip those
3115 while not getting into the function body.
3116
3117 The functions end point and an increasing SAL line are used as
3118 indicators of the prologue's endpoint.
3119
3120 This code is based on the function refine_prologue_limit
3121 (found in ia64). */
3122
3123 CORE_ADDR
3124 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3125 {
3126 struct symtab_and_line prologue_sal;
3127 CORE_ADDR start_pc;
3128 CORE_ADDR end_pc;
3129 const struct block *bl;
3130
3131 /* Get an initial range for the function. */
3132 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3133 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3134
3135 prologue_sal = find_pc_line (start_pc, 0);
3136 if (prologue_sal.line != 0)
3137 {
3138 /* For languages other than assembly, treat two consecutive line
3139 entries at the same address as a zero-instruction prologue.
3140 The GNU assembler emits separate line notes for each instruction
3141 in a multi-instruction macro, but compilers generally will not
3142 do this. */
3143 if (prologue_sal.symtab->language != language_asm)
3144 {
3145 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3146 int idx = 0;
3147
3148 /* Skip any earlier lines, and any end-of-sequence marker
3149 from a previous function. */
3150 while (linetable->item[idx].pc != prologue_sal.pc
3151 || linetable->item[idx].line == 0)
3152 idx++;
3153
3154 if (idx+1 < linetable->nitems
3155 && linetable->item[idx+1].line != 0
3156 && linetable->item[idx+1].pc == start_pc)
3157 return start_pc;
3158 }
3159
3160 /* If there is only one sal that covers the entire function,
3161 then it is probably a single line function, like
3162 "foo(){}". */
3163 if (prologue_sal.end >= end_pc)
3164 return 0;
3165
3166 while (prologue_sal.end < end_pc)
3167 {
3168 struct symtab_and_line sal;
3169
3170 sal = find_pc_line (prologue_sal.end, 0);
3171 if (sal.line == 0)
3172 break;
3173 /* Assume that a consecutive SAL for the same (or larger)
3174 line mark the prologue -> body transition. */
3175 if (sal.line >= prologue_sal.line)
3176 break;
3177 /* Likewise if we are in a different symtab altogether
3178 (e.g. within a file included via #include).  */
3179 if (sal.symtab != prologue_sal.symtab)
3180 break;
3181
3182 /* The line number is smaller. Check that it's from the
3183 same function, not something inlined. If it's inlined,
3184 then there is no point comparing the line numbers. */
3185 bl = block_for_pc (prologue_sal.end);
3186 while (bl)
3187 {
3188 if (block_inlined_p (bl))
3189 break;
3190 if (BLOCK_FUNCTION (bl))
3191 {
3192 bl = NULL;
3193 break;
3194 }
3195 bl = BLOCK_SUPERBLOCK (bl);
3196 }
3197 if (bl != NULL)
3198 break;
3199
3200 /* The case in which compiler's optimizer/scheduler has
3201 moved instructions into the prologue. We look ahead in
3202 the function looking for address ranges whose
3203 corresponding line number is less the first one that we
3204 found for the function. This is more conservative then
3205 refine_prologue_limit which scans a large number of SALs
3206 looking for any in the prologue. */
3207 prologue_sal = sal;
3208 }
3209 }
3210
3211 if (prologue_sal.end < end_pc)
3212 /* Return the end of this line, or zero if we could not find a
3213 line. */
3214 return prologue_sal.end;
3215 else
3216 /* Don't return END_PC, which is past the end of the function. */
3217 return prologue_sal.pc;
3218 }
3219 \f
3220 /* If P is of the form "operator[ \t]+..." where `...' is
3221 some legitimate operator text, return a pointer to the
3222 beginning of the substring of the operator text.
3223 Otherwise, return "". */
3224
3225 static const char *
3226 operator_chars (const char *p, const char **end)
3227 {
3228 *end = "";
3229 if (strncmp (p, "operator", 8))
3230 return *end;
3231 p += 8;
3232
3233 /* Don't get faked out by `operator' being part of a longer
3234 identifier. */
3235 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3236 return *end;
3237
3238 /* Allow some whitespace between `operator' and the operator symbol. */
3239 while (*p == ' ' || *p == '\t')
3240 p++;
3241
3242 /* Recognize 'operator TYPENAME'. */
3243
3244 if (isalpha (*p) || *p == '_' || *p == '$')
3245 {
3246 const char *q = p + 1;
3247
3248 while (isalnum (*q) || *q == '_' || *q == '$')
3249 q++;
3250 *end = q;
3251 return p;
3252 }
3253
3254 while (*p)
3255 switch (*p)
3256 {
3257 case '\\': /* regexp quoting */
3258 if (p[1] == '*')
3259 {
3260 if (p[2] == '=') /* 'operator\*=' */
3261 *end = p + 3;
3262 else /* 'operator\*' */
3263 *end = p + 2;
3264 return p;
3265 }
3266 else if (p[1] == '[')
3267 {
3268 if (p[2] == ']')
3269 error (_("mismatched quoting on brackets, "
3270 "try 'operator\\[\\]'"));
3271 else if (p[2] == '\\' && p[3] == ']')
3272 {
3273 *end = p + 4; /* 'operator\[\]' */
3274 return p;
3275 }
3276 else
3277 error (_("nothing is allowed between '[' and ']'"));
3278 }
3279 else
3280 {
3281 /* Gratuitous qoute: skip it and move on. */
3282 p++;
3283 continue;
3284 }
3285 break;
3286 case '!':
3287 case '=':
3288 case '*':
3289 case '/':
3290 case '%':
3291 case '^':
3292 if (p[1] == '=')
3293 *end = p + 2;
3294 else
3295 *end = p + 1;
3296 return p;
3297 case '<':
3298 case '>':
3299 case '+':
3300 case '-':
3301 case '&':
3302 case '|':
3303 if (p[0] == '-' && p[1] == '>')
3304 {
3305 /* Struct pointer member operator 'operator->'. */
3306 if (p[2] == '*')
3307 {
3308 *end = p + 3; /* 'operator->*' */
3309 return p;
3310 }
3311 else if (p[2] == '\\')
3312 {
3313 *end = p + 4; /* Hopefully 'operator->\*' */
3314 return p;
3315 }
3316 else
3317 {
3318 *end = p + 2; /* 'operator->' */
3319 return p;
3320 }
3321 }
3322 if (p[1] == '=' || p[1] == p[0])
3323 *end = p + 2;
3324 else
3325 *end = p + 1;
3326 return p;
3327 case '~':
3328 case ',':
3329 *end = p + 1;
3330 return p;
3331 case '(':
3332 if (p[1] != ')')
3333 error (_("`operator ()' must be specified "
3334 "without whitespace in `()'"));
3335 *end = p + 2;
3336 return p;
3337 case '?':
3338 if (p[1] != ':')
3339 error (_("`operator ?:' must be specified "
3340 "without whitespace in `?:'"));
3341 *end = p + 2;
3342 return p;
3343 case '[':
3344 if (p[1] != ']')
3345 error (_("`operator []' must be specified "
3346 "without whitespace in `[]'"));
3347 *end = p + 2;
3348 return p;
3349 default:
3350 error (_("`operator %s' not supported"), p);
3351 break;
3352 }
3353
3354 *end = "";
3355 return *end;
3356 }
3357 \f
3358
3359 /* Cache to watch for file names already seen by filename_seen. */
3360
3361 struct filename_seen_cache
3362 {
3363 /* Table of files seen so far. */
3364 htab_t tab;
3365 /* Initial size of the table. It automagically grows from here. */
3366 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3367 };
3368
3369 /* filename_seen_cache constructor. */
3370
3371 static struct filename_seen_cache *
3372 create_filename_seen_cache (void)
3373 {
3374 struct filename_seen_cache *cache;
3375
3376 cache = XNEW (struct filename_seen_cache);
3377 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3378 filename_hash, filename_eq,
3379 NULL, xcalloc, xfree);
3380
3381 return cache;
3382 }
3383
3384 /* Empty the cache, but do not delete it. */
3385
3386 static void
3387 clear_filename_seen_cache (struct filename_seen_cache *cache)
3388 {
3389 htab_empty (cache->tab);
3390 }
3391
3392 /* filename_seen_cache destructor.
3393 This takes a void * argument as it is generally used as a cleanup. */
3394
3395 static void
3396 delete_filename_seen_cache (void *ptr)
3397 {
3398 struct filename_seen_cache *cache = ptr;
3399
3400 htab_delete (cache->tab);
3401 xfree (cache);
3402 }
3403
3404 /* If FILE is not already in the table of files in CACHE, return zero;
3405 otherwise return non-zero. Optionally add FILE to the table if ADD
3406 is non-zero.
3407
3408 NOTE: We don't manage space for FILE, we assume FILE lives as long
3409 as the caller needs. */
3410
3411 static int
3412 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3413 {
3414 void **slot;
3415
3416 /* Is FILE in tab? */
3417 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3418 if (*slot != NULL)
3419 return 1;
3420
3421 /* No; maybe add it to tab. */
3422 if (add)
3423 *slot = (char *) file;
3424
3425 return 0;
3426 }
3427
3428 /* Data structure to maintain printing state for output_source_filename. */
3429
3430 struct output_source_filename_data
3431 {
3432 /* Cache of what we've seen so far. */
3433 struct filename_seen_cache *filename_seen_cache;
3434
3435 /* Flag of whether we're printing the first one. */
3436 int first;
3437 };
3438
3439 /* Slave routine for sources_info. Force line breaks at ,'s.
3440 NAME is the name to print.
3441 DATA contains the state for printing and watching for duplicates. */
3442
3443 static void
3444 output_source_filename (const char *name,
3445 struct output_source_filename_data *data)
3446 {
3447 /* Since a single source file can result in several partial symbol
3448 tables, we need to avoid printing it more than once. Note: if
3449 some of the psymtabs are read in and some are not, it gets
3450 printed both under "Source files for which symbols have been
3451 read" and "Source files for which symbols will be read in on
3452 demand". I consider this a reasonable way to deal with the
3453 situation. I'm not sure whether this can also happen for
3454 symtabs; it doesn't hurt to check. */
3455
3456 /* Was NAME already seen? */
3457 if (filename_seen (data->filename_seen_cache, name, 1))
3458 {
3459 /* Yes; don't print it again. */
3460 return;
3461 }
3462
3463 /* No; print it and reset *FIRST. */
3464 if (! data->first)
3465 printf_filtered (", ");
3466 data->first = 0;
3467
3468 wrap_here ("");
3469 fputs_filtered (name, gdb_stdout);
3470 }
3471
3472 /* A callback for map_partial_symbol_filenames. */
3473
3474 static void
3475 output_partial_symbol_filename (const char *filename, const char *fullname,
3476 void *data)
3477 {
3478 output_source_filename (fullname ? fullname : filename, data);
3479 }
3480
3481 static void
3482 sources_info (char *ignore, int from_tty)
3483 {
3484 struct compunit_symtab *cu;
3485 struct symtab *s;
3486 struct objfile *objfile;
3487 struct output_source_filename_data data;
3488 struct cleanup *cleanups;
3489
3490 if (!have_full_symbols () && !have_partial_symbols ())
3491 {
3492 error (_("No symbol table is loaded. Use the \"file\" command."));
3493 }
3494
3495 data.filename_seen_cache = create_filename_seen_cache ();
3496 cleanups = make_cleanup (delete_filename_seen_cache,
3497 data.filename_seen_cache);
3498
3499 printf_filtered ("Source files for which symbols have been read in:\n\n");
3500
3501 data.first = 1;
3502 ALL_FILETABS (objfile, cu, s)
3503 {
3504 const char *fullname = symtab_to_fullname (s);
3505
3506 output_source_filename (fullname, &data);
3507 }
3508 printf_filtered ("\n\n");
3509
3510 printf_filtered ("Source files for which symbols "
3511 "will be read in on demand:\n\n");
3512
3513 clear_filename_seen_cache (data.filename_seen_cache);
3514 data.first = 1;
3515 map_symbol_filenames (output_partial_symbol_filename, &data,
3516 1 /*need_fullname*/);
3517 printf_filtered ("\n");
3518
3519 do_cleanups (cleanups);
3520 }
3521
3522 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3523 non-zero compare only lbasename of FILES. */
3524
3525 static int
3526 file_matches (const char *file, const char *files[], int nfiles, int basenames)
3527 {
3528 int i;
3529
3530 if (file != NULL && nfiles != 0)
3531 {
3532 for (i = 0; i < nfiles; i++)
3533 {
3534 if (compare_filenames_for_search (file, (basenames
3535 ? lbasename (files[i])
3536 : files[i])))
3537 return 1;
3538 }
3539 }
3540 else if (nfiles == 0)
3541 return 1;
3542 return 0;
3543 }
3544
3545 /* Free any memory associated with a search. */
3546
3547 void
3548 free_search_symbols (struct symbol_search *symbols)
3549 {
3550 struct symbol_search *p;
3551 struct symbol_search *next;
3552
3553 for (p = symbols; p != NULL; p = next)
3554 {
3555 next = p->next;
3556 xfree (p);
3557 }
3558 }
3559
3560 static void
3561 do_free_search_symbols_cleanup (void *symbolsp)
3562 {
3563 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3564
3565 free_search_symbols (symbols);
3566 }
3567
3568 struct cleanup *
3569 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3570 {
3571 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3572 }
3573
3574 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3575 sort symbols, not minimal symbols. */
3576
3577 static int
3578 compare_search_syms (const void *sa, const void *sb)
3579 {
3580 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3581 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3582 int c;
3583
3584 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
3585 symbol_symtab (sym_b->symbol)->filename);
3586 if (c != 0)
3587 return c;
3588
3589 if (sym_a->block != sym_b->block)
3590 return sym_a->block - sym_b->block;
3591
3592 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3593 SYMBOL_PRINT_NAME (sym_b->symbol));
3594 }
3595
3596 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3597 The duplicates are freed, and the new list is returned in
3598 *NEW_HEAD, *NEW_TAIL. */
3599
3600 static void
3601 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3602 struct symbol_search **new_head,
3603 struct symbol_search **new_tail)
3604 {
3605 struct symbol_search **symbols, *symp, *old_next;
3606 int i, j, nunique;
3607
3608 gdb_assert (found != NULL && nfound > 0);
3609
3610 /* Build an array out of the list so we can easily sort them. */
3611 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3612 * nfound);
3613 symp = found;
3614 for (i = 0; i < nfound; i++)
3615 {
3616 gdb_assert (symp != NULL);
3617 gdb_assert (symp->block >= 0 && symp->block <= 1);
3618 symbols[i] = symp;
3619 symp = symp->next;
3620 }
3621 gdb_assert (symp == NULL);
3622
3623 qsort (symbols, nfound, sizeof (struct symbol_search *),
3624 compare_search_syms);
3625
3626 /* Collapse out the dups. */
3627 for (i = 1, j = 1; i < nfound; ++i)
3628 {
3629 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3630 symbols[j++] = symbols[i];
3631 else
3632 xfree (symbols[i]);
3633 }
3634 nunique = j;
3635 symbols[j - 1]->next = NULL;
3636
3637 /* Rebuild the linked list. */
3638 for (i = 0; i < nunique - 1; i++)
3639 symbols[i]->next = symbols[i + 1];
3640 symbols[nunique - 1]->next = NULL;
3641
3642 *new_head = symbols[0];
3643 *new_tail = symbols[nunique - 1];
3644 xfree (symbols);
3645 }
3646
3647 /* An object of this type is passed as the user_data to the
3648 expand_symtabs_matching method. */
3649 struct search_symbols_data
3650 {
3651 int nfiles;
3652 const char **files;
3653
3654 /* It is true if PREG contains valid data, false otherwise. */
3655 unsigned preg_p : 1;
3656 regex_t preg;
3657 };
3658
3659 /* A callback for expand_symtabs_matching. */
3660
3661 static int
3662 search_symbols_file_matches (const char *filename, void *user_data,
3663 int basenames)
3664 {
3665 struct search_symbols_data *data = user_data;
3666
3667 return file_matches (filename, data->files, data->nfiles, basenames);
3668 }
3669
3670 /* A callback for expand_symtabs_matching. */
3671
3672 static int
3673 search_symbols_name_matches (const char *symname, void *user_data)
3674 {
3675 struct search_symbols_data *data = user_data;
3676
3677 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3678 }
3679
3680 /* Search the symbol table for matches to the regular expression REGEXP,
3681 returning the results in *MATCHES.
3682
3683 Only symbols of KIND are searched:
3684 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3685 and constants (enums)
3686 FUNCTIONS_DOMAIN - search all functions
3687 TYPES_DOMAIN - search all type names
3688 ALL_DOMAIN - an internal error for this function
3689
3690 free_search_symbols should be called when *MATCHES is no longer needed.
3691
3692 Within each file the results are sorted locally; each symtab's global and
3693 static blocks are separately alphabetized.
3694 Duplicate entries are removed. */
3695
3696 void
3697 search_symbols (const char *regexp, enum search_domain kind,
3698 int nfiles, const char *files[],
3699 struct symbol_search **matches)
3700 {
3701 struct compunit_symtab *cust;
3702 const struct blockvector *bv;
3703 struct block *b;
3704 int i = 0;
3705 struct block_iterator iter;
3706 struct symbol *sym;
3707 struct objfile *objfile;
3708 struct minimal_symbol *msymbol;
3709 int found_misc = 0;
3710 static const enum minimal_symbol_type types[]
3711 = {mst_data, mst_text, mst_abs};
3712 static const enum minimal_symbol_type types2[]
3713 = {mst_bss, mst_file_text, mst_abs};
3714 static const enum minimal_symbol_type types3[]
3715 = {mst_file_data, mst_solib_trampoline, mst_abs};
3716 static const enum minimal_symbol_type types4[]
3717 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3718 enum minimal_symbol_type ourtype;
3719 enum minimal_symbol_type ourtype2;
3720 enum minimal_symbol_type ourtype3;
3721 enum minimal_symbol_type ourtype4;
3722 struct symbol_search *found;
3723 struct symbol_search *tail;
3724 struct search_symbols_data datum;
3725 int nfound;
3726
3727 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3728 CLEANUP_CHAIN is freed only in the case of an error. */
3729 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3730 struct cleanup *retval_chain;
3731
3732 gdb_assert (kind <= TYPES_DOMAIN);
3733
3734 ourtype = types[kind];
3735 ourtype2 = types2[kind];
3736 ourtype3 = types3[kind];
3737 ourtype4 = types4[kind];
3738
3739 *matches = NULL;
3740 datum.preg_p = 0;
3741
3742 if (regexp != NULL)
3743 {
3744 /* Make sure spacing is right for C++ operators.
3745 This is just a courtesy to make the matching less sensitive
3746 to how many spaces the user leaves between 'operator'
3747 and <TYPENAME> or <OPERATOR>. */
3748 const char *opend;
3749 const char *opname = operator_chars (regexp, &opend);
3750 int errcode;
3751
3752 if (*opname)
3753 {
3754 int fix = -1; /* -1 means ok; otherwise number of
3755 spaces needed. */
3756
3757 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3758 {
3759 /* There should 1 space between 'operator' and 'TYPENAME'. */
3760 if (opname[-1] != ' ' || opname[-2] == ' ')
3761 fix = 1;
3762 }
3763 else
3764 {
3765 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3766 if (opname[-1] == ' ')
3767 fix = 0;
3768 }
3769 /* If wrong number of spaces, fix it. */
3770 if (fix >= 0)
3771 {
3772 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3773
3774 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3775 regexp = tmp;
3776 }
3777 }
3778
3779 errcode = regcomp (&datum.preg, regexp,
3780 REG_NOSUB | (case_sensitivity == case_sensitive_off
3781 ? REG_ICASE : 0));
3782 if (errcode != 0)
3783 {
3784 char *err = get_regcomp_error (errcode, &datum.preg);
3785
3786 make_cleanup (xfree, err);
3787 error (_("Invalid regexp (%s): %s"), err, regexp);
3788 }
3789 datum.preg_p = 1;
3790 make_regfree_cleanup (&datum.preg);
3791 }
3792
3793 /* Search through the partial symtabs *first* for all symbols
3794 matching the regexp. That way we don't have to reproduce all of
3795 the machinery below. */
3796
3797 datum.nfiles = nfiles;
3798 datum.files = files;
3799 expand_symtabs_matching ((nfiles == 0
3800 ? NULL
3801 : search_symbols_file_matches),
3802 search_symbols_name_matches,
3803 kind, &datum);
3804
3805 /* Here, we search through the minimal symbol tables for functions
3806 and variables that match, and force their symbols to be read.
3807 This is in particular necessary for demangled variable names,
3808 which are no longer put into the partial symbol tables.
3809 The symbol will then be found during the scan of symtabs below.
3810
3811 For functions, find_pc_symtab should succeed if we have debug info
3812 for the function, for variables we have to call
3813 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3814 has debug info.
3815 If the lookup fails, set found_misc so that we will rescan to print
3816 any matching symbols without debug info.
3817 We only search the objfile the msymbol came from, we no longer search
3818 all objfiles. In large programs (1000s of shared libs) searching all
3819 objfiles is not worth the pain. */
3820
3821 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3822 {
3823 ALL_MSYMBOLS (objfile, msymbol)
3824 {
3825 QUIT;
3826
3827 if (msymbol->created_by_gdb)
3828 continue;
3829
3830 if (MSYMBOL_TYPE (msymbol) == ourtype
3831 || MSYMBOL_TYPE (msymbol) == ourtype2
3832 || MSYMBOL_TYPE (msymbol) == ourtype3
3833 || MSYMBOL_TYPE (msymbol) == ourtype4)
3834 {
3835 if (!datum.preg_p
3836 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3837 NULL, 0) == 0)
3838 {
3839 /* Note: An important side-effect of these lookup functions
3840 is to expand the symbol table if msymbol is found, for the
3841 benefit of the next loop on ALL_COMPUNITS. */
3842 if (kind == FUNCTIONS_DOMAIN
3843 ? (find_pc_compunit_symtab
3844 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
3845 : (lookup_symbol_in_objfile_from_linkage_name
3846 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3847 == NULL))
3848 found_misc = 1;
3849 }
3850 }
3851 }
3852 }
3853
3854 found = NULL;
3855 tail = NULL;
3856 nfound = 0;
3857 retval_chain = make_cleanup_free_search_symbols (&found);
3858
3859 ALL_COMPUNITS (objfile, cust)
3860 {
3861 bv = COMPUNIT_BLOCKVECTOR (cust);
3862 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3863 {
3864 b = BLOCKVECTOR_BLOCK (bv, i);
3865 ALL_BLOCK_SYMBOLS (b, iter, sym)
3866 {
3867 struct symtab *real_symtab = symbol_symtab (sym);
3868
3869 QUIT;
3870
3871 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3872 a substring of symtab_to_fullname as it may contain "./" etc. */
3873 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3874 || ((basenames_may_differ
3875 || file_matches (lbasename (real_symtab->filename),
3876 files, nfiles, 1))
3877 && file_matches (symtab_to_fullname (real_symtab),
3878 files, nfiles, 0)))
3879 && ((!datum.preg_p
3880 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3881 NULL, 0) == 0)
3882 && ((kind == VARIABLES_DOMAIN
3883 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3884 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3885 && SYMBOL_CLASS (sym) != LOC_BLOCK
3886 /* LOC_CONST can be used for more than just enums,
3887 e.g., c++ static const members.
3888 We only want to skip enums here. */
3889 && !(SYMBOL_CLASS (sym) == LOC_CONST
3890 && (TYPE_CODE (SYMBOL_TYPE (sym))
3891 == TYPE_CODE_ENUM)))
3892 || (kind == FUNCTIONS_DOMAIN
3893 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3894 || (kind == TYPES_DOMAIN
3895 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3896 {
3897 /* match */
3898 struct symbol_search *psr = (struct symbol_search *)
3899 xmalloc (sizeof (struct symbol_search));
3900 psr->block = i;
3901 psr->symbol = sym;
3902 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3903 psr->next = NULL;
3904 if (tail == NULL)
3905 found = psr;
3906 else
3907 tail->next = psr;
3908 tail = psr;
3909 nfound ++;
3910 }
3911 }
3912 }
3913 }
3914
3915 if (found != NULL)
3916 {
3917 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3918 /* Note: nfound is no longer useful beyond this point. */
3919 }
3920
3921 /* If there are no eyes, avoid all contact. I mean, if there are
3922 no debug symbols, then add matching minsyms. */
3923
3924 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3925 {
3926 ALL_MSYMBOLS (objfile, msymbol)
3927 {
3928 QUIT;
3929
3930 if (msymbol->created_by_gdb)
3931 continue;
3932
3933 if (MSYMBOL_TYPE (msymbol) == ourtype
3934 || MSYMBOL_TYPE (msymbol) == ourtype2
3935 || MSYMBOL_TYPE (msymbol) == ourtype3
3936 || MSYMBOL_TYPE (msymbol) == ourtype4)
3937 {
3938 if (!datum.preg_p
3939 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3940 NULL, 0) == 0)
3941 {
3942 /* For functions we can do a quick check of whether the
3943 symbol might be found via find_pc_symtab. */
3944 if (kind != FUNCTIONS_DOMAIN
3945 || (find_pc_compunit_symtab
3946 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
3947 {
3948 if (lookup_symbol_in_objfile_from_linkage_name
3949 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3950 == NULL)
3951 {
3952 /* match */
3953 struct symbol_search *psr = (struct symbol_search *)
3954 xmalloc (sizeof (struct symbol_search));
3955 psr->block = i;
3956 psr->msymbol.minsym = msymbol;
3957 psr->msymbol.objfile = objfile;
3958 psr->symbol = NULL;
3959 psr->next = NULL;
3960 if (tail == NULL)
3961 found = psr;
3962 else
3963 tail->next = psr;
3964 tail = psr;
3965 }
3966 }
3967 }
3968 }
3969 }
3970 }
3971
3972 discard_cleanups (retval_chain);
3973 do_cleanups (old_chain);
3974 *matches = found;
3975 }
3976
3977 /* Helper function for symtab_symbol_info, this function uses
3978 the data returned from search_symbols() to print information
3979 regarding the match to gdb_stdout. */
3980
3981 static void
3982 print_symbol_info (enum search_domain kind,
3983 struct symbol *sym,
3984 int block, const char *last)
3985 {
3986 struct symtab *s = symbol_symtab (sym);
3987 const char *s_filename = symtab_to_filename_for_display (s);
3988
3989 if (last == NULL || filename_cmp (last, s_filename) != 0)
3990 {
3991 fputs_filtered ("\nFile ", gdb_stdout);
3992 fputs_filtered (s_filename, gdb_stdout);
3993 fputs_filtered (":\n", gdb_stdout);
3994 }
3995
3996 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3997 printf_filtered ("static ");
3998
3999 /* Typedef that is not a C++ class. */
4000 if (kind == TYPES_DOMAIN
4001 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4002 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4003 /* variable, func, or typedef-that-is-c++-class. */
4004 else if (kind < TYPES_DOMAIN
4005 || (kind == TYPES_DOMAIN
4006 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4007 {
4008 type_print (SYMBOL_TYPE (sym),
4009 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4010 ? "" : SYMBOL_PRINT_NAME (sym)),
4011 gdb_stdout, 0);
4012
4013 printf_filtered (";\n");
4014 }
4015 }
4016
4017 /* This help function for symtab_symbol_info() prints information
4018 for non-debugging symbols to gdb_stdout. */
4019
4020 static void
4021 print_msymbol_info (struct bound_minimal_symbol msymbol)
4022 {
4023 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4024 char *tmp;
4025
4026 if (gdbarch_addr_bit (gdbarch) <= 32)
4027 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4028 & (CORE_ADDR) 0xffffffff,
4029 8);
4030 else
4031 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4032 16);
4033 printf_filtered ("%s %s\n",
4034 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4035 }
4036
4037 /* This is the guts of the commands "info functions", "info types", and
4038 "info variables". It calls search_symbols to find all matches and then
4039 print_[m]symbol_info to print out some useful information about the
4040 matches. */
4041
4042 static void
4043 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4044 {
4045 static const char * const classnames[] =
4046 {"variable", "function", "type"};
4047 struct symbol_search *symbols;
4048 struct symbol_search *p;
4049 struct cleanup *old_chain;
4050 const char *last_filename = NULL;
4051 int first = 1;
4052
4053 gdb_assert (kind <= TYPES_DOMAIN);
4054
4055 /* Must make sure that if we're interrupted, symbols gets freed. */
4056 search_symbols (regexp, kind, 0, NULL, &symbols);
4057 old_chain = make_cleanup_free_search_symbols (&symbols);
4058
4059 if (regexp != NULL)
4060 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4061 classnames[kind], regexp);
4062 else
4063 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4064
4065 for (p = symbols; p != NULL; p = p->next)
4066 {
4067 QUIT;
4068
4069 if (p->msymbol.minsym != NULL)
4070 {
4071 if (first)
4072 {
4073 printf_filtered (_("\nNon-debugging symbols:\n"));
4074 first = 0;
4075 }
4076 print_msymbol_info (p->msymbol);
4077 }
4078 else
4079 {
4080 print_symbol_info (kind,
4081 p->symbol,
4082 p->block,
4083 last_filename);
4084 last_filename
4085 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4086 }
4087 }
4088
4089 do_cleanups (old_chain);
4090 }
4091
4092 static void
4093 variables_info (char *regexp, int from_tty)
4094 {
4095 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4096 }
4097
4098 static void
4099 functions_info (char *regexp, int from_tty)
4100 {
4101 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4102 }
4103
4104
4105 static void
4106 types_info (char *regexp, int from_tty)
4107 {
4108 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4109 }
4110
4111 /* Breakpoint all functions matching regular expression. */
4112
4113 void
4114 rbreak_command_wrapper (char *regexp, int from_tty)
4115 {
4116 rbreak_command (regexp, from_tty);
4117 }
4118
4119 /* A cleanup function that calls end_rbreak_breakpoints. */
4120
4121 static void
4122 do_end_rbreak_breakpoints (void *ignore)
4123 {
4124 end_rbreak_breakpoints ();
4125 }
4126
4127 static void
4128 rbreak_command (char *regexp, int from_tty)
4129 {
4130 struct symbol_search *ss;
4131 struct symbol_search *p;
4132 struct cleanup *old_chain;
4133 char *string = NULL;
4134 int len = 0;
4135 const char **files = NULL;
4136 const char *file_name;
4137 int nfiles = 0;
4138
4139 if (regexp)
4140 {
4141 char *colon = strchr (regexp, ':');
4142
4143 if (colon && *(colon + 1) != ':')
4144 {
4145 int colon_index;
4146 char *local_name;
4147
4148 colon_index = colon - regexp;
4149 local_name = alloca (colon_index + 1);
4150 memcpy (local_name, regexp, colon_index);
4151 local_name[colon_index--] = 0;
4152 while (isspace (local_name[colon_index]))
4153 local_name[colon_index--] = 0;
4154 file_name = local_name;
4155 files = &file_name;
4156 nfiles = 1;
4157 regexp = skip_spaces (colon + 1);
4158 }
4159 }
4160
4161 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4162 old_chain = make_cleanup_free_search_symbols (&ss);
4163 make_cleanup (free_current_contents, &string);
4164
4165 start_rbreak_breakpoints ();
4166 make_cleanup (do_end_rbreak_breakpoints, NULL);
4167 for (p = ss; p != NULL; p = p->next)
4168 {
4169 if (p->msymbol.minsym == NULL)
4170 {
4171 struct symtab *symtab = symbol_symtab (p->symbol);
4172 const char *fullname = symtab_to_fullname (symtab);
4173
4174 int newlen = (strlen (fullname)
4175 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4176 + 4);
4177
4178 if (newlen > len)
4179 {
4180 string = xrealloc (string, newlen);
4181 len = newlen;
4182 }
4183 strcpy (string, fullname);
4184 strcat (string, ":'");
4185 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4186 strcat (string, "'");
4187 break_command (string, from_tty);
4188 print_symbol_info (FUNCTIONS_DOMAIN,
4189 p->symbol,
4190 p->block,
4191 symtab_to_filename_for_display (symtab));
4192 }
4193 else
4194 {
4195 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4196
4197 if (newlen > len)
4198 {
4199 string = xrealloc (string, newlen);
4200 len = newlen;
4201 }
4202 strcpy (string, "'");
4203 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4204 strcat (string, "'");
4205
4206 break_command (string, from_tty);
4207 printf_filtered ("<function, no debug info> %s;\n",
4208 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4209 }
4210 }
4211
4212 do_cleanups (old_chain);
4213 }
4214 \f
4215
4216 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4217
4218 Either sym_text[sym_text_len] != '(' and then we search for any
4219 symbol starting with SYM_TEXT text.
4220
4221 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4222 be terminated at that point. Partial symbol tables do not have parameters
4223 information. */
4224
4225 static int
4226 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4227 {
4228 int (*ncmp) (const char *, const char *, size_t);
4229
4230 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4231
4232 if (ncmp (name, sym_text, sym_text_len) != 0)
4233 return 0;
4234
4235 if (sym_text[sym_text_len] == '(')
4236 {
4237 /* User searches for `name(someth...'. Require NAME to be terminated.
4238 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4239 present but accept even parameters presence. In this case this
4240 function is in fact strcmp_iw but whitespace skipping is not supported
4241 for tab completion. */
4242
4243 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4244 return 0;
4245 }
4246
4247 return 1;
4248 }
4249
4250 /* Free any memory associated with a completion list. */
4251
4252 static void
4253 free_completion_list (VEC (char_ptr) **list_ptr)
4254 {
4255 int i;
4256 char *p;
4257
4258 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4259 xfree (p);
4260 VEC_free (char_ptr, *list_ptr);
4261 }
4262
4263 /* Callback for make_cleanup. */
4264
4265 static void
4266 do_free_completion_list (void *list)
4267 {
4268 free_completion_list (list);
4269 }
4270
4271 /* Helper routine for make_symbol_completion_list. */
4272
4273 static VEC (char_ptr) *return_val;
4274
4275 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4276 completion_list_add_name \
4277 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4278
4279 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4280 completion_list_add_name \
4281 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4282
4283 /* Test to see if the symbol specified by SYMNAME (which is already
4284 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4285 characters. If so, add it to the current completion list. */
4286
4287 static void
4288 completion_list_add_name (const char *symname,
4289 const char *sym_text, int sym_text_len,
4290 const char *text, const char *word)
4291 {
4292 /* Clip symbols that cannot match. */
4293 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4294 return;
4295
4296 /* We have a match for a completion, so add SYMNAME to the current list
4297 of matches. Note that the name is moved to freshly malloc'd space. */
4298
4299 {
4300 char *new;
4301
4302 if (word == sym_text)
4303 {
4304 new = xmalloc (strlen (symname) + 5);
4305 strcpy (new, symname);
4306 }
4307 else if (word > sym_text)
4308 {
4309 /* Return some portion of symname. */
4310 new = xmalloc (strlen (symname) + 5);
4311 strcpy (new, symname + (word - sym_text));
4312 }
4313 else
4314 {
4315 /* Return some of SYM_TEXT plus symname. */
4316 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4317 strncpy (new, word, sym_text - word);
4318 new[sym_text - word] = '\0';
4319 strcat (new, symname);
4320 }
4321
4322 VEC_safe_push (char_ptr, return_val, new);
4323 }
4324 }
4325
4326 /* ObjC: In case we are completing on a selector, look as the msymbol
4327 again and feed all the selectors into the mill. */
4328
4329 static void
4330 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4331 const char *sym_text, int sym_text_len,
4332 const char *text, const char *word)
4333 {
4334 static char *tmp = NULL;
4335 static unsigned int tmplen = 0;
4336
4337 const char *method, *category, *selector;
4338 char *tmp2 = NULL;
4339
4340 method = MSYMBOL_NATURAL_NAME (msymbol);
4341
4342 /* Is it a method? */
4343 if ((method[0] != '-') && (method[0] != '+'))
4344 return;
4345
4346 if (sym_text[0] == '[')
4347 /* Complete on shortened method method. */
4348 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4349
4350 while ((strlen (method) + 1) >= tmplen)
4351 {
4352 if (tmplen == 0)
4353 tmplen = 1024;
4354 else
4355 tmplen *= 2;
4356 tmp = xrealloc (tmp, tmplen);
4357 }
4358 selector = strchr (method, ' ');
4359 if (selector != NULL)
4360 selector++;
4361
4362 category = strchr (method, '(');
4363
4364 if ((category != NULL) && (selector != NULL))
4365 {
4366 memcpy (tmp, method, (category - method));
4367 tmp[category - method] = ' ';
4368 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4369 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4370 if (sym_text[0] == '[')
4371 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4372 }
4373
4374 if (selector != NULL)
4375 {
4376 /* Complete on selector only. */
4377 strcpy (tmp, selector);
4378 tmp2 = strchr (tmp, ']');
4379 if (tmp2 != NULL)
4380 *tmp2 = '\0';
4381
4382 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4383 }
4384 }
4385
4386 /* Break the non-quoted text based on the characters which are in
4387 symbols. FIXME: This should probably be language-specific. */
4388
4389 static const char *
4390 language_search_unquoted_string (const char *text, const char *p)
4391 {
4392 for (; p > text; --p)
4393 {
4394 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4395 continue;
4396 else
4397 {
4398 if ((current_language->la_language == language_objc))
4399 {
4400 if (p[-1] == ':') /* Might be part of a method name. */
4401 continue;
4402 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4403 p -= 2; /* Beginning of a method name. */
4404 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4405 { /* Might be part of a method name. */
4406 const char *t = p;
4407
4408 /* Seeing a ' ' or a '(' is not conclusive evidence
4409 that we are in the middle of a method name. However,
4410 finding "-[" or "+[" should be pretty un-ambiguous.
4411 Unfortunately we have to find it now to decide. */
4412
4413 while (t > text)
4414 if (isalnum (t[-1]) || t[-1] == '_' ||
4415 t[-1] == ' ' || t[-1] == ':' ||
4416 t[-1] == '(' || t[-1] == ')')
4417 --t;
4418 else
4419 break;
4420
4421 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4422 p = t - 2; /* Method name detected. */
4423 /* Else we leave with p unchanged. */
4424 }
4425 }
4426 break;
4427 }
4428 }
4429 return p;
4430 }
4431
4432 static void
4433 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4434 int sym_text_len, const char *text,
4435 const char *word)
4436 {
4437 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4438 {
4439 struct type *t = SYMBOL_TYPE (sym);
4440 enum type_code c = TYPE_CODE (t);
4441 int j;
4442
4443 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4444 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4445 if (TYPE_FIELD_NAME (t, j))
4446 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4447 sym_text, sym_text_len, text, word);
4448 }
4449 }
4450
4451 /* Type of the user_data argument passed to add_macro_name or
4452 symbol_completion_matcher. The contents are simply whatever is
4453 needed by completion_list_add_name. */
4454 struct add_name_data
4455 {
4456 const char *sym_text;
4457 int sym_text_len;
4458 const char *text;
4459 const char *word;
4460 };
4461
4462 /* A callback used with macro_for_each and macro_for_each_in_scope.
4463 This adds a macro's name to the current completion list. */
4464
4465 static void
4466 add_macro_name (const char *name, const struct macro_definition *ignore,
4467 struct macro_source_file *ignore2, int ignore3,
4468 void *user_data)
4469 {
4470 struct add_name_data *datum = (struct add_name_data *) user_data;
4471
4472 completion_list_add_name (name,
4473 datum->sym_text, datum->sym_text_len,
4474 datum->text, datum->word);
4475 }
4476
4477 /* A callback for expand_symtabs_matching. */
4478
4479 static int
4480 symbol_completion_matcher (const char *name, void *user_data)
4481 {
4482 struct add_name_data *datum = (struct add_name_data *) user_data;
4483
4484 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4485 }
4486
4487 VEC (char_ptr) *
4488 default_make_symbol_completion_list_break_on (const char *text,
4489 const char *word,
4490 const char *break_on,
4491 enum type_code code)
4492 {
4493 /* Problem: All of the symbols have to be copied because readline
4494 frees them. I'm not going to worry about this; hopefully there
4495 won't be that many. */
4496
4497 struct symbol *sym;
4498 struct compunit_symtab *cust;
4499 struct minimal_symbol *msymbol;
4500 struct objfile *objfile;
4501 const struct block *b;
4502 const struct block *surrounding_static_block, *surrounding_global_block;
4503 struct block_iterator iter;
4504 /* The symbol we are completing on. Points in same buffer as text. */
4505 const char *sym_text;
4506 /* Length of sym_text. */
4507 int sym_text_len;
4508 struct add_name_data datum;
4509 struct cleanup *back_to;
4510
4511 /* Now look for the symbol we are supposed to complete on. */
4512 {
4513 const char *p;
4514 char quote_found;
4515 const char *quote_pos = NULL;
4516
4517 /* First see if this is a quoted string. */
4518 quote_found = '\0';
4519 for (p = text; *p != '\0'; ++p)
4520 {
4521 if (quote_found != '\0')
4522 {
4523 if (*p == quote_found)
4524 /* Found close quote. */
4525 quote_found = '\0';
4526 else if (*p == '\\' && p[1] == quote_found)
4527 /* A backslash followed by the quote character
4528 doesn't end the string. */
4529 ++p;
4530 }
4531 else if (*p == '\'' || *p == '"')
4532 {
4533 quote_found = *p;
4534 quote_pos = p;
4535 }
4536 }
4537 if (quote_found == '\'')
4538 /* A string within single quotes can be a symbol, so complete on it. */
4539 sym_text = quote_pos + 1;
4540 else if (quote_found == '"')
4541 /* A double-quoted string is never a symbol, nor does it make sense
4542 to complete it any other way. */
4543 {
4544 return NULL;
4545 }
4546 else
4547 {
4548 /* It is not a quoted string. Break it based on the characters
4549 which are in symbols. */
4550 while (p > text)
4551 {
4552 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4553 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4554 --p;
4555 else
4556 break;
4557 }
4558 sym_text = p;
4559 }
4560 }
4561
4562 sym_text_len = strlen (sym_text);
4563
4564 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4565
4566 if (current_language->la_language == language_cplus
4567 || current_language->la_language == language_java
4568 || current_language->la_language == language_fortran)
4569 {
4570 /* These languages may have parameters entered by user but they are never
4571 present in the partial symbol tables. */
4572
4573 const char *cs = memchr (sym_text, '(', sym_text_len);
4574
4575 if (cs)
4576 sym_text_len = cs - sym_text;
4577 }
4578 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4579
4580 return_val = NULL;
4581 back_to = make_cleanup (do_free_completion_list, &return_val);
4582
4583 datum.sym_text = sym_text;
4584 datum.sym_text_len = sym_text_len;
4585 datum.text = text;
4586 datum.word = word;
4587
4588 /* Look through the partial symtabs for all symbols which begin
4589 by matching SYM_TEXT. Expand all CUs that you find to the list.
4590 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4591 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4592 &datum);
4593
4594 /* At this point scan through the misc symbol vectors and add each
4595 symbol you find to the list. Eventually we want to ignore
4596 anything that isn't a text symbol (everything else will be
4597 handled by the psymtab code above). */
4598
4599 if (code == TYPE_CODE_UNDEF)
4600 {
4601 ALL_MSYMBOLS (objfile, msymbol)
4602 {
4603 QUIT;
4604 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4605 word);
4606
4607 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4608 word);
4609 }
4610 }
4611
4612 /* Search upwards from currently selected frame (so that we can
4613 complete on local vars). Also catch fields of types defined in
4614 this places which match our text string. Only complete on types
4615 visible from current context. */
4616
4617 b = get_selected_block (0);
4618 surrounding_static_block = block_static_block (b);
4619 surrounding_global_block = block_global_block (b);
4620 if (surrounding_static_block != NULL)
4621 while (b != surrounding_static_block)
4622 {
4623 QUIT;
4624
4625 ALL_BLOCK_SYMBOLS (b, iter, sym)
4626 {
4627 if (code == TYPE_CODE_UNDEF)
4628 {
4629 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4630 word);
4631 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4632 word);
4633 }
4634 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4635 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4636 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4637 word);
4638 }
4639
4640 /* Stop when we encounter an enclosing function. Do not stop for
4641 non-inlined functions - the locals of the enclosing function
4642 are in scope for a nested function. */
4643 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4644 break;
4645 b = BLOCK_SUPERBLOCK (b);
4646 }
4647
4648 /* Add fields from the file's types; symbols will be added below. */
4649
4650 if (code == TYPE_CODE_UNDEF)
4651 {
4652 if (surrounding_static_block != NULL)
4653 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4654 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4655
4656 if (surrounding_global_block != NULL)
4657 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4658 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4659 }
4660
4661 /* Go through the symtabs and check the externs and statics for
4662 symbols which match. */
4663
4664 ALL_COMPUNITS (objfile, cust)
4665 {
4666 QUIT;
4667 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), GLOBAL_BLOCK);
4668 ALL_BLOCK_SYMBOLS (b, iter, sym)
4669 {
4670 if (code == TYPE_CODE_UNDEF
4671 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4672 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4673 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4674 }
4675 }
4676
4677 ALL_COMPUNITS (objfile, cust)
4678 {
4679 QUIT;
4680 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), STATIC_BLOCK);
4681 ALL_BLOCK_SYMBOLS (b, iter, sym)
4682 {
4683 if (code == TYPE_CODE_UNDEF
4684 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4685 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4686 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4687 }
4688 }
4689
4690 /* Skip macros if we are completing a struct tag -- arguable but
4691 usually what is expected. */
4692 if (current_language->la_macro_expansion == macro_expansion_c
4693 && code == TYPE_CODE_UNDEF)
4694 {
4695 struct macro_scope *scope;
4696
4697 /* Add any macros visible in the default scope. Note that this
4698 may yield the occasional wrong result, because an expression
4699 might be evaluated in a scope other than the default. For
4700 example, if the user types "break file:line if <TAB>", the
4701 resulting expression will be evaluated at "file:line" -- but
4702 at there does not seem to be a way to detect this at
4703 completion time. */
4704 scope = default_macro_scope ();
4705 if (scope)
4706 {
4707 macro_for_each_in_scope (scope->file, scope->line,
4708 add_macro_name, &datum);
4709 xfree (scope);
4710 }
4711
4712 /* User-defined macros are always visible. */
4713 macro_for_each (macro_user_macros, add_macro_name, &datum);
4714 }
4715
4716 discard_cleanups (back_to);
4717 return (return_val);
4718 }
4719
4720 VEC (char_ptr) *
4721 default_make_symbol_completion_list (const char *text, const char *word,
4722 enum type_code code)
4723 {
4724 return default_make_symbol_completion_list_break_on (text, word, "", code);
4725 }
4726
4727 /* Return a vector of all symbols (regardless of class) which begin by
4728 matching TEXT. If the answer is no symbols, then the return value
4729 is NULL. */
4730
4731 VEC (char_ptr) *
4732 make_symbol_completion_list (const char *text, const char *word)
4733 {
4734 return current_language->la_make_symbol_completion_list (text, word,
4735 TYPE_CODE_UNDEF);
4736 }
4737
4738 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4739 symbols whose type code is CODE. */
4740
4741 VEC (char_ptr) *
4742 make_symbol_completion_type (const char *text, const char *word,
4743 enum type_code code)
4744 {
4745 gdb_assert (code == TYPE_CODE_UNION
4746 || code == TYPE_CODE_STRUCT
4747 || code == TYPE_CODE_ENUM);
4748 return current_language->la_make_symbol_completion_list (text, word, code);
4749 }
4750
4751 /* Like make_symbol_completion_list, but suitable for use as a
4752 completion function. */
4753
4754 VEC (char_ptr) *
4755 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4756 const char *text, const char *word)
4757 {
4758 return make_symbol_completion_list (text, word);
4759 }
4760
4761 /* Like make_symbol_completion_list, but returns a list of symbols
4762 defined in a source file FILE. */
4763
4764 VEC (char_ptr) *
4765 make_file_symbol_completion_list (const char *text, const char *word,
4766 const char *srcfile)
4767 {
4768 struct symbol *sym;
4769 struct symtab *s;
4770 struct block *b;
4771 struct block_iterator iter;
4772 /* The symbol we are completing on. Points in same buffer as text. */
4773 const char *sym_text;
4774 /* Length of sym_text. */
4775 int sym_text_len;
4776
4777 /* Now look for the symbol we are supposed to complete on.
4778 FIXME: This should be language-specific. */
4779 {
4780 const char *p;
4781 char quote_found;
4782 const char *quote_pos = NULL;
4783
4784 /* First see if this is a quoted string. */
4785 quote_found = '\0';
4786 for (p = text; *p != '\0'; ++p)
4787 {
4788 if (quote_found != '\0')
4789 {
4790 if (*p == quote_found)
4791 /* Found close quote. */
4792 quote_found = '\0';
4793 else if (*p == '\\' && p[1] == quote_found)
4794 /* A backslash followed by the quote character
4795 doesn't end the string. */
4796 ++p;
4797 }
4798 else if (*p == '\'' || *p == '"')
4799 {
4800 quote_found = *p;
4801 quote_pos = p;
4802 }
4803 }
4804 if (quote_found == '\'')
4805 /* A string within single quotes can be a symbol, so complete on it. */
4806 sym_text = quote_pos + 1;
4807 else if (quote_found == '"')
4808 /* A double-quoted string is never a symbol, nor does it make sense
4809 to complete it any other way. */
4810 {
4811 return NULL;
4812 }
4813 else
4814 {
4815 /* Not a quoted string. */
4816 sym_text = language_search_unquoted_string (text, p);
4817 }
4818 }
4819
4820 sym_text_len = strlen (sym_text);
4821
4822 return_val = NULL;
4823
4824 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4825 in). */
4826 s = lookup_symtab (srcfile);
4827 if (s == NULL)
4828 {
4829 /* Maybe they typed the file with leading directories, while the
4830 symbol tables record only its basename. */
4831 const char *tail = lbasename (srcfile);
4832
4833 if (tail > srcfile)
4834 s = lookup_symtab (tail);
4835 }
4836
4837 /* If we have no symtab for that file, return an empty list. */
4838 if (s == NULL)
4839 return (return_val);
4840
4841 /* Go through this symtab and check the externs and statics for
4842 symbols which match. */
4843
4844 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
4845 ALL_BLOCK_SYMBOLS (b, iter, sym)
4846 {
4847 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4848 }
4849
4850 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
4851 ALL_BLOCK_SYMBOLS (b, iter, sym)
4852 {
4853 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4854 }
4855
4856 return (return_val);
4857 }
4858
4859 /* A helper function for make_source_files_completion_list. It adds
4860 another file name to a list of possible completions, growing the
4861 list as necessary. */
4862
4863 static void
4864 add_filename_to_list (const char *fname, const char *text, const char *word,
4865 VEC (char_ptr) **list)
4866 {
4867 char *new;
4868 size_t fnlen = strlen (fname);
4869
4870 if (word == text)
4871 {
4872 /* Return exactly fname. */
4873 new = xmalloc (fnlen + 5);
4874 strcpy (new, fname);
4875 }
4876 else if (word > text)
4877 {
4878 /* Return some portion of fname. */
4879 new = xmalloc (fnlen + 5);
4880 strcpy (new, fname + (word - text));
4881 }
4882 else
4883 {
4884 /* Return some of TEXT plus fname. */
4885 new = xmalloc (fnlen + (text - word) + 5);
4886 strncpy (new, word, text - word);
4887 new[text - word] = '\0';
4888 strcat (new, fname);
4889 }
4890 VEC_safe_push (char_ptr, *list, new);
4891 }
4892
4893 static int
4894 not_interesting_fname (const char *fname)
4895 {
4896 static const char *illegal_aliens[] = {
4897 "_globals_", /* inserted by coff_symtab_read */
4898 NULL
4899 };
4900 int i;
4901
4902 for (i = 0; illegal_aliens[i]; i++)
4903 {
4904 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4905 return 1;
4906 }
4907 return 0;
4908 }
4909
4910 /* An object of this type is passed as the user_data argument to
4911 map_partial_symbol_filenames. */
4912 struct add_partial_filename_data
4913 {
4914 struct filename_seen_cache *filename_seen_cache;
4915 const char *text;
4916 const char *word;
4917 int text_len;
4918 VEC (char_ptr) **list;
4919 };
4920
4921 /* A callback for map_partial_symbol_filenames. */
4922
4923 static void
4924 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4925 void *user_data)
4926 {
4927 struct add_partial_filename_data *data = user_data;
4928
4929 if (not_interesting_fname (filename))
4930 return;
4931 if (!filename_seen (data->filename_seen_cache, filename, 1)
4932 && filename_ncmp (filename, data->text, data->text_len) == 0)
4933 {
4934 /* This file matches for a completion; add it to the
4935 current list of matches. */
4936 add_filename_to_list (filename, data->text, data->word, data->list);
4937 }
4938 else
4939 {
4940 const char *base_name = lbasename (filename);
4941
4942 if (base_name != filename
4943 && !filename_seen (data->filename_seen_cache, base_name, 1)
4944 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4945 add_filename_to_list (base_name, data->text, data->word, data->list);
4946 }
4947 }
4948
4949 /* Return a vector of all source files whose names begin with matching
4950 TEXT. The file names are looked up in the symbol tables of this
4951 program. If the answer is no matchess, then the return value is
4952 NULL. */
4953
4954 VEC (char_ptr) *
4955 make_source_files_completion_list (const char *text, const char *word)
4956 {
4957 struct compunit_symtab *cu;
4958 struct symtab *s;
4959 struct objfile *objfile;
4960 size_t text_len = strlen (text);
4961 VEC (char_ptr) *list = NULL;
4962 const char *base_name;
4963 struct add_partial_filename_data datum;
4964 struct filename_seen_cache *filename_seen_cache;
4965 struct cleanup *back_to, *cache_cleanup;
4966
4967 if (!have_full_symbols () && !have_partial_symbols ())
4968 return list;
4969
4970 back_to = make_cleanup (do_free_completion_list, &list);
4971
4972 filename_seen_cache = create_filename_seen_cache ();
4973 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4974 filename_seen_cache);
4975
4976 ALL_FILETABS (objfile, cu, s)
4977 {
4978 if (not_interesting_fname (s->filename))
4979 continue;
4980 if (!filename_seen (filename_seen_cache, s->filename, 1)
4981 && filename_ncmp (s->filename, text, text_len) == 0)
4982 {
4983 /* This file matches for a completion; add it to the current
4984 list of matches. */
4985 add_filename_to_list (s->filename, text, word, &list);
4986 }
4987 else
4988 {
4989 /* NOTE: We allow the user to type a base name when the
4990 debug info records leading directories, but not the other
4991 way around. This is what subroutines of breakpoint
4992 command do when they parse file names. */
4993 base_name = lbasename (s->filename);
4994 if (base_name != s->filename
4995 && !filename_seen (filename_seen_cache, base_name, 1)
4996 && filename_ncmp (base_name, text, text_len) == 0)
4997 add_filename_to_list (base_name, text, word, &list);
4998 }
4999 }
5000
5001 datum.filename_seen_cache = filename_seen_cache;
5002 datum.text = text;
5003 datum.word = word;
5004 datum.text_len = text_len;
5005 datum.list = &list;
5006 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5007 0 /*need_fullname*/);
5008
5009 do_cleanups (cache_cleanup);
5010 discard_cleanups (back_to);
5011
5012 return list;
5013 }
5014 \f
5015 /* Track MAIN */
5016
5017 /* Return the "main_info" object for the current program space. If
5018 the object has not yet been created, create it and fill in some
5019 default values. */
5020
5021 static struct main_info *
5022 get_main_info (void)
5023 {
5024 struct main_info *info = program_space_data (current_program_space,
5025 main_progspace_key);
5026
5027 if (info == NULL)
5028 {
5029 /* It may seem strange to store the main name in the progspace
5030 and also in whatever objfile happens to see a main name in
5031 its debug info. The reason for this is mainly historical:
5032 gdb returned "main" as the name even if no function named
5033 "main" was defined the program; and this approach lets us
5034 keep compatibility. */
5035 info = XCNEW (struct main_info);
5036 info->language_of_main = language_unknown;
5037 set_program_space_data (current_program_space, main_progspace_key,
5038 info);
5039 }
5040
5041 return info;
5042 }
5043
5044 /* A cleanup to destroy a struct main_info when a progspace is
5045 destroyed. */
5046
5047 static void
5048 main_info_cleanup (struct program_space *pspace, void *data)
5049 {
5050 struct main_info *info = data;
5051
5052 if (info != NULL)
5053 xfree (info->name_of_main);
5054 xfree (info);
5055 }
5056
5057 static void
5058 set_main_name (const char *name, enum language lang)
5059 {
5060 struct main_info *info = get_main_info ();
5061
5062 if (info->name_of_main != NULL)
5063 {
5064 xfree (info->name_of_main);
5065 info->name_of_main = NULL;
5066 info->language_of_main = language_unknown;
5067 }
5068 if (name != NULL)
5069 {
5070 info->name_of_main = xstrdup (name);
5071 info->language_of_main = lang;
5072 }
5073 }
5074
5075 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5076 accordingly. */
5077
5078 static void
5079 find_main_name (void)
5080 {
5081 const char *new_main_name;
5082 struct objfile *objfile;
5083
5084 /* First check the objfiles to see whether a debuginfo reader has
5085 picked up the appropriate main name. Historically the main name
5086 was found in a more or less random way; this approach instead
5087 relies on the order of objfile creation -- which still isn't
5088 guaranteed to get the correct answer, but is just probably more
5089 accurate. */
5090 ALL_OBJFILES (objfile)
5091 {
5092 if (objfile->per_bfd->name_of_main != NULL)
5093 {
5094 set_main_name (objfile->per_bfd->name_of_main,
5095 objfile->per_bfd->language_of_main);
5096 return;
5097 }
5098 }
5099
5100 /* Try to see if the main procedure is in Ada. */
5101 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5102 be to add a new method in the language vector, and call this
5103 method for each language until one of them returns a non-empty
5104 name. This would allow us to remove this hard-coded call to
5105 an Ada function. It is not clear that this is a better approach
5106 at this point, because all methods need to be written in a way
5107 such that false positives never be returned. For instance, it is
5108 important that a method does not return a wrong name for the main
5109 procedure if the main procedure is actually written in a different
5110 language. It is easy to guaranty this with Ada, since we use a
5111 special symbol generated only when the main in Ada to find the name
5112 of the main procedure. It is difficult however to see how this can
5113 be guarantied for languages such as C, for instance. This suggests
5114 that order of call for these methods becomes important, which means
5115 a more complicated approach. */
5116 new_main_name = ada_main_name ();
5117 if (new_main_name != NULL)
5118 {
5119 set_main_name (new_main_name, language_ada);
5120 return;
5121 }
5122
5123 new_main_name = d_main_name ();
5124 if (new_main_name != NULL)
5125 {
5126 set_main_name (new_main_name, language_d);
5127 return;
5128 }
5129
5130 new_main_name = go_main_name ();
5131 if (new_main_name != NULL)
5132 {
5133 set_main_name (new_main_name, language_go);
5134 return;
5135 }
5136
5137 new_main_name = pascal_main_name ();
5138 if (new_main_name != NULL)
5139 {
5140 set_main_name (new_main_name, language_pascal);
5141 return;
5142 }
5143
5144 /* The languages above didn't identify the name of the main procedure.
5145 Fallback to "main". */
5146 set_main_name ("main", language_unknown);
5147 }
5148
5149 char *
5150 main_name (void)
5151 {
5152 struct main_info *info = get_main_info ();
5153
5154 if (info->name_of_main == NULL)
5155 find_main_name ();
5156
5157 return info->name_of_main;
5158 }
5159
5160 /* Return the language of the main function. If it is not known,
5161 return language_unknown. */
5162
5163 enum language
5164 main_language (void)
5165 {
5166 struct main_info *info = get_main_info ();
5167
5168 if (info->name_of_main == NULL)
5169 find_main_name ();
5170
5171 return info->language_of_main;
5172 }
5173
5174 /* Handle ``executable_changed'' events for the symtab module. */
5175
5176 static void
5177 symtab_observer_executable_changed (void)
5178 {
5179 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5180 set_main_name (NULL, language_unknown);
5181 }
5182
5183 /* Return 1 if the supplied producer string matches the ARM RealView
5184 compiler (armcc). */
5185
5186 int
5187 producer_is_realview (const char *producer)
5188 {
5189 static const char *const arm_idents[] = {
5190 "ARM C Compiler, ADS",
5191 "Thumb C Compiler, ADS",
5192 "ARM C++ Compiler, ADS",
5193 "Thumb C++ Compiler, ADS",
5194 "ARM/Thumb C/C++ Compiler, RVCT",
5195 "ARM C/C++ Compiler, RVCT"
5196 };
5197 int i;
5198
5199 if (producer == NULL)
5200 return 0;
5201
5202 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5203 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5204 return 1;
5205
5206 return 0;
5207 }
5208
5209 \f
5210
5211 /* The next index to hand out in response to a registration request. */
5212
5213 static int next_aclass_value = LOC_FINAL_VALUE;
5214
5215 /* The maximum number of "aclass" registrations we support. This is
5216 constant for convenience. */
5217 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5218
5219 /* The objects representing the various "aclass" values. The elements
5220 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5221 elements are those registered at gdb initialization time. */
5222
5223 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5224
5225 /* The globally visible pointer. This is separate from 'symbol_impl'
5226 so that it can be const. */
5227
5228 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5229
5230 /* Make sure we saved enough room in struct symbol. */
5231
5232 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5233
5234 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5235 is the ops vector associated with this index. This returns the new
5236 index, which should be used as the aclass_index field for symbols
5237 of this type. */
5238
5239 int
5240 register_symbol_computed_impl (enum address_class aclass,
5241 const struct symbol_computed_ops *ops)
5242 {
5243 int result = next_aclass_value++;
5244
5245 gdb_assert (aclass == LOC_COMPUTED);
5246 gdb_assert (result < MAX_SYMBOL_IMPLS);
5247 symbol_impl[result].aclass = aclass;
5248 symbol_impl[result].ops_computed = ops;
5249
5250 /* Sanity check OPS. */
5251 gdb_assert (ops != NULL);
5252 gdb_assert (ops->tracepoint_var_ref != NULL);
5253 gdb_assert (ops->describe_location != NULL);
5254 gdb_assert (ops->read_needs_frame != NULL);
5255 gdb_assert (ops->read_variable != NULL);
5256
5257 return result;
5258 }
5259
5260 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5261 OPS is the ops vector associated with this index. This returns the
5262 new index, which should be used as the aclass_index field for symbols
5263 of this type. */
5264
5265 int
5266 register_symbol_block_impl (enum address_class aclass,
5267 const struct symbol_block_ops *ops)
5268 {
5269 int result = next_aclass_value++;
5270
5271 gdb_assert (aclass == LOC_BLOCK);
5272 gdb_assert (result < MAX_SYMBOL_IMPLS);
5273 symbol_impl[result].aclass = aclass;
5274 symbol_impl[result].ops_block = ops;
5275
5276 /* Sanity check OPS. */
5277 gdb_assert (ops != NULL);
5278 gdb_assert (ops->find_frame_base_location != NULL);
5279
5280 return result;
5281 }
5282
5283 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5284 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5285 this index. This returns the new index, which should be used as
5286 the aclass_index field for symbols of this type. */
5287
5288 int
5289 register_symbol_register_impl (enum address_class aclass,
5290 const struct symbol_register_ops *ops)
5291 {
5292 int result = next_aclass_value++;
5293
5294 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5295 gdb_assert (result < MAX_SYMBOL_IMPLS);
5296 symbol_impl[result].aclass = aclass;
5297 symbol_impl[result].ops_register = ops;
5298
5299 return result;
5300 }
5301
5302 /* Initialize elements of 'symbol_impl' for the constants in enum
5303 address_class. */
5304
5305 static void
5306 initialize_ordinary_address_classes (void)
5307 {
5308 int i;
5309
5310 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5311 symbol_impl[i].aclass = i;
5312 }
5313
5314 \f
5315
5316 /* Initialize the symbol SYM. */
5317
5318 void
5319 initialize_symbol (struct symbol *sym)
5320 {
5321 memset (sym, 0, sizeof (*sym));
5322 SYMBOL_SECTION (sym) = -1;
5323 }
5324
5325 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5326 obstack. */
5327
5328 struct symbol *
5329 allocate_symbol (struct objfile *objfile)
5330 {
5331 struct symbol *result;
5332
5333 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5334 SYMBOL_SECTION (result) = -1;
5335
5336 return result;
5337 }
5338
5339 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5340 obstack. */
5341
5342 struct template_symbol *
5343 allocate_template_symbol (struct objfile *objfile)
5344 {
5345 struct template_symbol *result;
5346
5347 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5348 SYMBOL_SECTION (&result->base) = -1;
5349
5350 return result;
5351 }
5352
5353 /* See symtab.h. */
5354
5355 struct objfile *
5356 symbol_objfile (const struct symbol *symbol)
5357 {
5358 return SYMTAB_OBJFILE (symbol->symtab);
5359 }
5360
5361 /* See symtab.h. */
5362
5363 struct gdbarch *
5364 symbol_arch (const struct symbol *symbol)
5365 {
5366 return get_objfile_arch (symbol_objfile (symbol));
5367 }
5368
5369 /* See symtab.h. */
5370
5371 struct symtab *
5372 symbol_symtab (const struct symbol *symbol)
5373 {
5374 return symbol->symtab;
5375 }
5376
5377 /* See symtab.h. */
5378
5379 void
5380 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
5381 {
5382 symbol->symtab = symtab;
5383 }
5384
5385 \f
5386
5387 void
5388 _initialize_symtab (void)
5389 {
5390 initialize_ordinary_address_classes ();
5391
5392 main_progspace_key
5393 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5394
5395 add_info ("variables", variables_info, _("\
5396 All global and static variable names, or those matching REGEXP."));
5397 if (dbx_commands)
5398 add_com ("whereis", class_info, variables_info, _("\
5399 All global and static variable names, or those matching REGEXP."));
5400
5401 add_info ("functions", functions_info,
5402 _("All function names, or those matching REGEXP."));
5403
5404 /* FIXME: This command has at least the following problems:
5405 1. It prints builtin types (in a very strange and confusing fashion).
5406 2. It doesn't print right, e.g. with
5407 typedef struct foo *FOO
5408 type_print prints "FOO" when we want to make it (in this situation)
5409 print "struct foo *".
5410 I also think "ptype" or "whatis" is more likely to be useful (but if
5411 there is much disagreement "info types" can be fixed). */
5412 add_info ("types", types_info,
5413 _("All type names, or those matching REGEXP."));
5414
5415 add_info ("sources", sources_info,
5416 _("Source files in the program."));
5417
5418 add_com ("rbreak", class_breakpoint, rbreak_command,
5419 _("Set a breakpoint for all functions matching REGEXP."));
5420
5421 if (xdb_commands)
5422 {
5423 add_com ("lf", class_info, sources_info,
5424 _("Source files in the program"));
5425 add_com ("lg", class_info, variables_info, _("\
5426 All global and static variable names, or those matching REGEXP."));
5427 }
5428
5429 add_setshow_enum_cmd ("multiple-symbols", no_class,
5430 multiple_symbols_modes, &multiple_symbols_mode,
5431 _("\
5432 Set the debugger behavior when more than one symbol are possible matches\n\
5433 in an expression."), _("\
5434 Show how the debugger handles ambiguities in expressions."), _("\
5435 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5436 NULL, NULL, &setlist, &showlist);
5437
5438 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5439 &basenames_may_differ, _("\
5440 Set whether a source file may have multiple base names."), _("\
5441 Show whether a source file may have multiple base names."), _("\
5442 (A \"base name\" is the name of a file with the directory part removed.\n\
5443 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5444 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5445 before comparing them. Canonicalization is an expensive operation,\n\
5446 but it allows the same file be known by more than one base name.\n\
5447 If not set (the default), all source files are assumed to have just\n\
5448 one base name, and gdb will do file name comparisons more efficiently."),
5449 NULL, NULL,
5450 &setlist, &showlist);
5451
5452 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5453 _("Set debugging of symbol table creation."),
5454 _("Show debugging of symbol table creation."), _("\
5455 When enabled (non-zero), debugging messages are printed when building\n\
5456 symbol tables. A value of 1 (one) normally provides enough information.\n\
5457 A value greater than 1 provides more verbose information."),
5458 NULL,
5459 NULL,
5460 &setdebuglist, &showdebuglist);
5461
5462 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
5463 _("\
5464 Set debugging of symbol lookup."), _("\
5465 Show debugging of symbol lookup."), _("\
5466 When enabled (non-zero), symbol lookups are logged."),
5467 NULL, NULL,
5468 &setdebuglist, &showdebuglist);
5469
5470 observer_attach_executable_changed (symtab_observer_executable_changed);
5471 }
This page took 0.204015 seconds and 5 git commands to generate.