gdb: Add a class to track last display symtab and line information
[deliverable/binutils-gdb.git] / gdb / symtab.h
1 /* Symbol table definitions for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (SYMTAB_H)
21 #define SYMTAB_H 1
22
23 #include <array>
24 #include <vector>
25 #include <string>
26 #include "gdbsupport/gdb_vecs.h"
27 #include "gdbtypes.h"
28 #include "gdb_regex.h"
29 #include "gdbsupport/enum-flags.h"
30 #include "gdbsupport/function-view.h"
31 #include "gdbsupport/gdb_optional.h"
32 #include "gdbsupport/gdb_string_view.h"
33 #include "gdbsupport/next-iterator.h"
34 #include "completer.h"
35
36 /* Opaque declarations. */
37 struct ui_file;
38 struct frame_info;
39 struct symbol;
40 struct obstack;
41 struct objfile;
42 struct block;
43 struct blockvector;
44 struct axs_value;
45 struct agent_expr;
46 struct program_space;
47 struct language_defn;
48 struct common_block;
49 struct obj_section;
50 struct cmd_list_element;
51 class probe;
52 struct lookup_name_info;
53
54 /* How to match a lookup name against a symbol search name. */
55 enum class symbol_name_match_type
56 {
57 /* Wild matching. Matches unqualified symbol names in all
58 namespace/module/packages, etc. */
59 WILD,
60
61 /* Full matching. The lookup name indicates a fully-qualified name,
62 and only matches symbol search names in the specified
63 namespace/module/package. */
64 FULL,
65
66 /* Search name matching. This is like FULL, but the search name did
67 not come from the user; instead it is already a search name
68 retrieved from a SYMBOL_SEARCH_NAME/MSYMBOL_SEARCH_NAME call.
69 For Ada, this avoids re-encoding an already-encoded search name
70 (which would potentially incorrectly lowercase letters in the
71 linkage/search name that should remain uppercase). For C++, it
72 avoids trying to demangle a name we already know is
73 demangled. */
74 SEARCH_NAME,
75
76 /* Expression matching. The same as FULL matching in most
77 languages. The same as WILD matching in Ada. */
78 EXPRESSION,
79 };
80
81 /* Hash the given symbol search name according to LANGUAGE's
82 rules. */
83 extern unsigned int search_name_hash (enum language language,
84 const char *search_name);
85
86 /* Ada-specific bits of a lookup_name_info object. This is lazily
87 constructed on demand. */
88
89 class ada_lookup_name_info final
90 {
91 public:
92 /* Construct. */
93 explicit ada_lookup_name_info (const lookup_name_info &lookup_name);
94
95 /* Compare SYMBOL_SEARCH_NAME with our lookup name, using MATCH_TYPE
96 as name match type. Returns true if there's a match, false
97 otherwise. If non-NULL, store the matching results in MATCH. */
98 bool matches (const char *symbol_search_name,
99 symbol_name_match_type match_type,
100 completion_match_result *comp_match_res) const;
101
102 /* The Ada-encoded lookup name. */
103 const std::string &lookup_name () const
104 { return m_encoded_name; }
105
106 /* Return true if we're supposed to be doing a wild match look
107 up. */
108 bool wild_match_p () const
109 { return m_wild_match_p; }
110
111 /* Return true if we're looking up a name inside package
112 Standard. */
113 bool standard_p () const
114 { return m_standard_p; }
115
116 /* Return true if doing a verbatim match. */
117 bool verbatim_p () const
118 { return m_verbatim_p; }
119
120 private:
121 /* The Ada-encoded lookup name. */
122 std::string m_encoded_name;
123
124 /* Whether the user-provided lookup name was Ada encoded. If so,
125 then return encoded names in the 'matches' method's 'completion
126 match result' output. */
127 bool m_encoded_p : 1;
128
129 /* True if really doing wild matching. Even if the user requests
130 wild matching, some cases require full matching. */
131 bool m_wild_match_p : 1;
132
133 /* True if doing a verbatim match. This is true if the decoded
134 version of the symbol name is wrapped in '<'/'>'. This is an
135 escape hatch users can use to look up symbols the Ada encoding
136 does not understand. */
137 bool m_verbatim_p : 1;
138
139 /* True if the user specified a symbol name that is inside package
140 Standard. Symbol names inside package Standard are handled
141 specially. We always do a non-wild match of the symbol name
142 without the "standard__" prefix, and only search static and
143 global symbols. This was primarily introduced in order to allow
144 the user to specifically access the standard exceptions using,
145 for instance, Standard.Constraint_Error when Constraint_Error is
146 ambiguous (due to the user defining its own Constraint_Error
147 entity inside its program). */
148 bool m_standard_p : 1;
149 };
150
151 /* Language-specific bits of a lookup_name_info object, for languages
152 that do name searching using demangled names (C++/D/Go). This is
153 lazily constructed on demand. */
154
155 struct demangle_for_lookup_info final
156 {
157 public:
158 demangle_for_lookup_info (const lookup_name_info &lookup_name,
159 language lang);
160
161 /* The demangled lookup name. */
162 const std::string &lookup_name () const
163 { return m_demangled_name; }
164
165 private:
166 /* The demangled lookup name. */
167 std::string m_demangled_name;
168 };
169
170 /* Object that aggregates all information related to a symbol lookup
171 name. I.e., the name that is matched against the symbol's search
172 name. Caches per-language information so that it doesn't require
173 recomputing it for every symbol comparison, like for example the
174 Ada encoded name and the symbol's name hash for a given language.
175 The object is conceptually immutable once constructed, and thus has
176 no setters. This is to prevent some code path from tweaking some
177 property of the lookup name for some local reason and accidentally
178 altering the results of any continuing search(es).
179 lookup_name_info objects are generally passed around as a const
180 reference to reinforce that. (They're not passed around by value
181 because they're not small.) */
182 class lookup_name_info final
183 {
184 public:
185 /* Create a new object. */
186 lookup_name_info (std::string name,
187 symbol_name_match_type match_type,
188 bool completion_mode = false,
189 bool ignore_parameters = false)
190 : m_match_type (match_type),
191 m_completion_mode (completion_mode),
192 m_ignore_parameters (ignore_parameters),
193 m_name (std::move (name))
194 {}
195
196 /* Getters. See description of each corresponding field. */
197 symbol_name_match_type match_type () const { return m_match_type; }
198 bool completion_mode () const { return m_completion_mode; }
199 const std::string &name () const { return m_name; }
200 const bool ignore_parameters () const { return m_ignore_parameters; }
201
202 /* Return a version of this lookup name that is usable with
203 comparisons against symbols have no parameter info, such as
204 psymbols and GDB index symbols. */
205 lookup_name_info make_ignore_params () const
206 {
207 return lookup_name_info (m_name, m_match_type, m_completion_mode,
208 true /* ignore params */);
209 }
210
211 /* Get the search name hash for searches in language LANG. */
212 unsigned int search_name_hash (language lang) const
213 {
214 /* Only compute each language's hash once. */
215 if (!m_demangled_hashes_p[lang])
216 {
217 m_demangled_hashes[lang]
218 = ::search_name_hash (lang, language_lookup_name (lang).c_str ());
219 m_demangled_hashes_p[lang] = true;
220 }
221 return m_demangled_hashes[lang];
222 }
223
224 /* Get the search name for searches in language LANG. */
225 const std::string &language_lookup_name (language lang) const
226 {
227 switch (lang)
228 {
229 case language_ada:
230 return ada ().lookup_name ();
231 case language_cplus:
232 return cplus ().lookup_name ();
233 case language_d:
234 return d ().lookup_name ();
235 case language_go:
236 return go ().lookup_name ();
237 default:
238 return m_name;
239 }
240 }
241
242 /* Get the Ada-specific lookup info. */
243 const ada_lookup_name_info &ada () const
244 {
245 maybe_init (m_ada);
246 return *m_ada;
247 }
248
249 /* Get the C++-specific lookup info. */
250 const demangle_for_lookup_info &cplus () const
251 {
252 maybe_init (m_cplus, language_cplus);
253 return *m_cplus;
254 }
255
256 /* Get the D-specific lookup info. */
257 const demangle_for_lookup_info &d () const
258 {
259 maybe_init (m_d, language_d);
260 return *m_d;
261 }
262
263 /* Get the Go-specific lookup info. */
264 const demangle_for_lookup_info &go () const
265 {
266 maybe_init (m_go, language_go);
267 return *m_go;
268 }
269
270 /* Get a reference to a lookup_name_info object that matches any
271 symbol name. */
272 static const lookup_name_info &match_any ();
273
274 private:
275 /* Initialize FIELD, if not initialized yet. */
276 template<typename Field, typename... Args>
277 void maybe_init (Field &field, Args&&... args) const
278 {
279 if (!field)
280 field.emplace (*this, std::forward<Args> (args)...);
281 }
282
283 /* The lookup info as passed to the ctor. */
284 symbol_name_match_type m_match_type;
285 bool m_completion_mode;
286 bool m_ignore_parameters;
287 std::string m_name;
288
289 /* Language-specific info. These fields are filled lazily the first
290 time a lookup is done in the corresponding language. They're
291 mutable because lookup_name_info objects are typically passed
292 around by const reference (see intro), and they're conceptually
293 "cache" that can always be reconstructed from the non-mutable
294 fields. */
295 mutable gdb::optional<ada_lookup_name_info> m_ada;
296 mutable gdb::optional<demangle_for_lookup_info> m_cplus;
297 mutable gdb::optional<demangle_for_lookup_info> m_d;
298 mutable gdb::optional<demangle_for_lookup_info> m_go;
299
300 /* The demangled hashes. Stored in an array with one entry for each
301 possible language. The second array records whether we've
302 already computed the each language's hash. (These are separate
303 arrays instead of a single array of optional<unsigned> to avoid
304 alignment padding). */
305 mutable std::array<unsigned int, nr_languages> m_demangled_hashes;
306 mutable std::array<bool, nr_languages> m_demangled_hashes_p {};
307 };
308
309 /* Comparison function for completion symbol lookup.
310
311 Returns true if the symbol name matches against LOOKUP_NAME.
312
313 SYMBOL_SEARCH_NAME should be a symbol's "search" name.
314
315 On success and if non-NULL, COMP_MATCH_RES->match is set to point
316 to the symbol name as should be presented to the user as a
317 completion match list element. In most languages, this is the same
318 as the symbol's search name, but in some, like Ada, the display
319 name is dynamically computed within the comparison routine.
320
321 Also, on success and if non-NULL, COMP_MATCH_RES->match_for_lcd
322 points the part of SYMBOL_SEARCH_NAME that was considered to match
323 LOOKUP_NAME. E.g., in C++, in linespec/wild mode, if the symbol is
324 "foo::function()" and LOOKUP_NAME is "function(", MATCH_FOR_LCD
325 points to "function()" inside SYMBOL_SEARCH_NAME. */
326 typedef bool (symbol_name_matcher_ftype)
327 (const char *symbol_search_name,
328 const lookup_name_info &lookup_name,
329 completion_match_result *comp_match_res);
330
331 /* Some of the structures in this file are space critical.
332 The space-critical structures are:
333
334 struct general_symbol_info
335 struct symbol
336 struct partial_symbol
337
338 These structures are laid out to encourage good packing.
339 They use ENUM_BITFIELD and short int fields, and they order the
340 structure members so that fields less than a word are next
341 to each other so they can be packed together. */
342
343 /* Rearranged: used ENUM_BITFIELD and rearranged field order in
344 all the space critical structures (plus struct minimal_symbol).
345 Memory usage dropped from 99360768 bytes to 90001408 bytes.
346 I measured this with before-and-after tests of
347 "HEAD-old-gdb -readnow HEAD-old-gdb" and
348 "HEAD-new-gdb -readnow HEAD-old-gdb" on native i686-pc-linux-gnu,
349 red hat linux 8, with LD_LIBRARY_PATH=/usr/lib/debug,
350 typing "maint space 1" at the first command prompt.
351
352 Here is another measurement (from andrew c):
353 # no /usr/lib/debug, just plain glibc, like a normal user
354 gdb HEAD-old-gdb
355 (gdb) break internal_error
356 (gdb) run
357 (gdb) maint internal-error
358 (gdb) backtrace
359 (gdb) maint space 1
360
361 gdb gdb_6_0_branch 2003-08-19 space used: 8896512
362 gdb HEAD 2003-08-19 space used: 8904704
363 gdb HEAD 2003-08-21 space used: 8396800 (+symtab.h)
364 gdb HEAD 2003-08-21 space used: 8265728 (+gdbtypes.h)
365
366 The third line shows the savings from the optimizations in symtab.h.
367 The fourth line shows the savings from the optimizations in
368 gdbtypes.h. Both optimizations are in gdb HEAD now.
369
370 --chastain 2003-08-21 */
371
372 /* Define a structure for the information that is common to all symbol types,
373 including minimal symbols, partial symbols, and full symbols. In a
374 multilanguage environment, some language specific information may need to
375 be recorded along with each symbol. */
376
377 /* This structure is space critical. See space comments at the top. */
378
379 struct general_symbol_info
380 {
381 /* Name of the symbol. This is a required field. Storage for the
382 name is allocated on the objfile_obstack for the associated
383 objfile. For languages like C++ that make a distinction between
384 the mangled name and demangled name, this is the mangled
385 name. */
386
387 const char *name;
388
389 /* Value of the symbol. Which member of this union to use, and what
390 it means, depends on what kind of symbol this is and its
391 SYMBOL_CLASS. See comments there for more details. All of these
392 are in host byte order (though what they point to might be in
393 target byte order, e.g. LOC_CONST_BYTES). */
394
395 union
396 {
397 LONGEST ivalue;
398
399 const struct block *block;
400
401 const gdb_byte *bytes;
402
403 CORE_ADDR address;
404
405 /* A common block. Used with LOC_COMMON_BLOCK. */
406
407 const struct common_block *common_block;
408
409 /* For opaque typedef struct chain. */
410
411 struct symbol *chain;
412 }
413 value;
414
415 /* Since one and only one language can apply, wrap the language specific
416 information inside a union. */
417
418 union
419 {
420 /* A pointer to an obstack that can be used for storage associated
421 with this symbol. This is only used by Ada, and only when the
422 'ada_mangled' field is zero. */
423 struct obstack *obstack;
424
425 /* This is used by languages which wish to store a demangled name.
426 currently used by Ada, C++, and Objective C. */
427 const char *demangled_name;
428 }
429 language_specific;
430
431 /* Record the source code language that applies to this symbol.
432 This is used to select one of the fields from the language specific
433 union above. */
434
435 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
436
437 /* This is only used by Ada. If set, then the 'demangled_name' field
438 of language_specific is valid. Otherwise, the 'obstack' field is
439 valid. */
440 unsigned int ada_mangled : 1;
441
442 /* Which section is this symbol in? This is an index into
443 section_offsets for this objfile. Negative means that the symbol
444 does not get relocated relative to a section. */
445
446 short section;
447 };
448
449 /* This struct is size-critical (see comment at the top), so this assert
450 makes sure the size doesn't change accidentally. Be careful when
451 purposely increasing the size. */
452 gdb_static_assert ((sizeof (void *) == 8 && sizeof (general_symbol_info) == 32)
453 || (sizeof (void *) == 4
454 && sizeof (general_symbol_info) == 20));
455
456 extern void symbol_set_demangled_name (struct general_symbol_info *,
457 const char *,
458 struct obstack *);
459
460 extern const char *symbol_get_demangled_name
461 (const struct general_symbol_info *);
462
463 extern CORE_ADDR symbol_overlayed_address (CORE_ADDR, struct obj_section *);
464
465 /* Return the address of SYM. The MAYBE_COPIED flag must be set on
466 SYM. If SYM appears in the main program's minimal symbols, then
467 that minsym's address is returned; otherwise, SYM's address is
468 returned. This should generally only be used via the
469 SYMBOL_VALUE_ADDRESS macro. */
470
471 extern CORE_ADDR get_symbol_address (const struct symbol *sym);
472
473 /* Note that all the following SYMBOL_* macros are used with the
474 SYMBOL argument being either a partial symbol or
475 a full symbol. Both types have a ginfo field. In particular
476 the SYMBOL_SET_LANGUAGE, SYMBOL_DEMANGLED_NAME, etc.
477 macros cannot be entirely substituted by
478 functions, unless the callers are changed to pass in the ginfo
479 field only, instead of the SYMBOL parameter. */
480
481 #define SYMBOL_VALUE(symbol) (symbol)->ginfo.value.ivalue
482 #define SYMBOL_VALUE_ADDRESS(symbol) \
483 (((symbol)->maybe_copied) ? get_symbol_address (symbol) \
484 : ((symbol)->ginfo.value.address))
485 #define SET_SYMBOL_VALUE_ADDRESS(symbol, new_value) \
486 ((symbol)->ginfo.value.address = (new_value))
487 #define SYMBOL_VALUE_BYTES(symbol) (symbol)->ginfo.value.bytes
488 #define SYMBOL_VALUE_COMMON_BLOCK(symbol) (symbol)->ginfo.value.common_block
489 #define SYMBOL_BLOCK_VALUE(symbol) (symbol)->ginfo.value.block
490 #define SYMBOL_VALUE_CHAIN(symbol) (symbol)->ginfo.value.chain
491 #define SYMBOL_LANGUAGE(symbol) (symbol)->ginfo.language
492 #define SYMBOL_SECTION(symbol) (symbol)->ginfo.section
493 #define SYMBOL_OBJ_SECTION(objfile, symbol) \
494 (((symbol)->ginfo.section >= 0) \
495 ? (&(((objfile)->sections)[(symbol)->ginfo.section])) \
496 : NULL)
497
498 /* Initializes the language dependent portion of a symbol
499 depending upon the language for the symbol. */
500 #define SYMBOL_SET_LANGUAGE(symbol,language,obstack) \
501 (symbol_set_language (&(symbol)->ginfo, (language), (obstack)))
502 extern void symbol_set_language (struct general_symbol_info *symbol,
503 enum language language,
504 struct obstack *obstack);
505
506 /* Set just the linkage name of a symbol; do not try to demangle
507 it. Used for constructs which do not have a mangled name,
508 e.g. struct tags. Unlike SYMBOL_SET_NAMES, linkage_name must
509 be terminated and either already on the objfile's obstack or
510 permanently allocated. */
511 #define SYMBOL_SET_LINKAGE_NAME(symbol,linkage_name) \
512 (symbol)->ginfo.name = (linkage_name)
513
514 /* Set the linkage and natural names of a symbol, by demangling
515 the linkage name. If linkage_name may not be nullterminated,
516 copy_name must be set to true. */
517 #define SYMBOL_SET_NAMES(symbol,linkage_name,copy_name,objfile) \
518 symbol_set_names (&(symbol)->ginfo, linkage_name, copy_name, \
519 (objfile)->per_bfd)
520 extern void symbol_set_names (struct general_symbol_info *symbol,
521 gdb::string_view linkage_name, bool copy_name,
522 struct objfile_per_bfd_storage *per_bfd);
523
524 /* Now come lots of name accessor macros. Short version as to when to
525 use which: Use SYMBOL_NATURAL_NAME to refer to the name of the
526 symbol in the original source code. Use SYMBOL_LINKAGE_NAME if you
527 want to know what the linker thinks the symbol's name is. Use
528 SYMBOL_PRINT_NAME for output. Use SYMBOL_DEMANGLED_NAME if you
529 specifically need to know whether SYMBOL_NATURAL_NAME and
530 SYMBOL_LINKAGE_NAME are different. */
531
532 /* Return SYMBOL's "natural" name, i.e. the name that it was called in
533 the original source code. In languages like C++ where symbols may
534 be mangled for ease of manipulation by the linker, this is the
535 demangled name. */
536
537 #define SYMBOL_NATURAL_NAME(symbol) \
538 (symbol_natural_name (&(symbol)->ginfo))
539 extern const char *symbol_natural_name
540 (const struct general_symbol_info *symbol);
541
542 /* Return SYMBOL's name from the point of view of the linker. In
543 languages like C++ where symbols may be mangled for ease of
544 manipulation by the linker, this is the mangled name; otherwise,
545 it's the same as SYMBOL_NATURAL_NAME. */
546
547 #define SYMBOL_LINKAGE_NAME(symbol) (symbol)->ginfo.name
548
549 /* Return the demangled name for a symbol based on the language for
550 that symbol. If no demangled name exists, return NULL. */
551 #define SYMBOL_DEMANGLED_NAME(symbol) \
552 (symbol_demangled_name (&(symbol)->ginfo))
553 extern const char *symbol_demangled_name
554 (const struct general_symbol_info *symbol);
555
556 /* Macro that returns a version of the name of a symbol that is
557 suitable for output. In C++ this is the "demangled" form of the
558 name if demangle is on and the "mangled" form of the name if
559 demangle is off. In other languages this is just the symbol name.
560 The result should never be NULL. Don't use this for internal
561 purposes (e.g. storing in a hashtable): it's only suitable for output.
562
563 N.B. symbol may be anything with a ginfo member,
564 e.g., struct symbol or struct minimal_symbol. */
565
566 #define SYMBOL_PRINT_NAME(symbol) \
567 (demangle ? SYMBOL_NATURAL_NAME (symbol) : SYMBOL_LINKAGE_NAME (symbol))
568 extern bool demangle;
569
570 /* Macro that returns the name to be used when sorting and searching symbols.
571 In C++, we search for the demangled form of a name,
572 and so sort symbols accordingly. In Ada, however, we search by mangled
573 name. If there is no distinct demangled name, then SYMBOL_SEARCH_NAME
574 returns the same value (same pointer) as SYMBOL_LINKAGE_NAME. */
575 #define SYMBOL_SEARCH_NAME(symbol) \
576 (symbol_search_name (&(symbol)->ginfo))
577 extern const char *symbol_search_name (const struct general_symbol_info *ginfo);
578
579 /* Return true if NAME matches the "search" name of SYMBOL, according
580 to the symbol's language. */
581 #define SYMBOL_MATCHES_SEARCH_NAME(symbol, name) \
582 symbol_matches_search_name (&(symbol)->ginfo, (name))
583
584 /* Helper for SYMBOL_MATCHES_SEARCH_NAME that works with both symbols
585 and psymbols. */
586 extern bool symbol_matches_search_name
587 (const struct general_symbol_info *gsymbol,
588 const lookup_name_info &name);
589
590 /* Compute the hash of the given symbol search name of a symbol of
591 language LANGUAGE. */
592 extern unsigned int search_name_hash (enum language language,
593 const char *search_name);
594
595 /* Classification types for a minimal symbol. These should be taken as
596 "advisory only", since if gdb can't easily figure out a
597 classification it simply selects mst_unknown. It may also have to
598 guess when it can't figure out which is a better match between two
599 types (mst_data versus mst_bss) for example. Since the minimal
600 symbol info is sometimes derived from the BFD library's view of a
601 file, we need to live with what information bfd supplies. */
602
603 enum minimal_symbol_type
604 {
605 mst_unknown = 0, /* Unknown type, the default */
606 mst_text, /* Generally executable instructions */
607
608 /* A GNU ifunc symbol, in the .text section. GDB uses to know
609 whether the user is setting a breakpoint on a GNU ifunc function,
610 and thus GDB needs to actually set the breakpoint on the target
611 function. It is also used to know whether the program stepped
612 into an ifunc resolver -- the resolver may get a separate
613 symbol/alias under a different name, but it'll have the same
614 address as the ifunc symbol. */
615 mst_text_gnu_ifunc, /* Executable code returning address
616 of executable code */
617
618 /* A GNU ifunc function descriptor symbol, in a data section
619 (typically ".opd"). Seen on architectures that use function
620 descriptors, like PPC64/ELFv1. In this case, this symbol's value
621 is the address of the descriptor. There'll be a corresponding
622 mst_text_gnu_ifunc synthetic symbol for the text/entry
623 address. */
624 mst_data_gnu_ifunc, /* Executable code returning address
625 of executable code */
626
627 mst_slot_got_plt, /* GOT entries for .plt sections */
628 mst_data, /* Generally initialized data */
629 mst_bss, /* Generally uninitialized data */
630 mst_abs, /* Generally absolute (nonrelocatable) */
631 /* GDB uses mst_solib_trampoline for the start address of a shared
632 library trampoline entry. Breakpoints for shared library functions
633 are put there if the shared library is not yet loaded.
634 After the shared library is loaded, lookup_minimal_symbol will
635 prefer the minimal symbol from the shared library (usually
636 a mst_text symbol) over the mst_solib_trampoline symbol, and the
637 breakpoints will be moved to their true address in the shared
638 library via breakpoint_re_set. */
639 mst_solib_trampoline, /* Shared library trampoline code */
640 /* For the mst_file* types, the names are only guaranteed to be unique
641 within a given .o file. */
642 mst_file_text, /* Static version of mst_text */
643 mst_file_data, /* Static version of mst_data */
644 mst_file_bss, /* Static version of mst_bss */
645 nr_minsym_types
646 };
647
648 /* The number of enum minimal_symbol_type values, with some padding for
649 reasonable growth. */
650 #define MINSYM_TYPE_BITS 4
651 gdb_static_assert (nr_minsym_types <= (1 << MINSYM_TYPE_BITS));
652
653 /* Define a simple structure used to hold some very basic information about
654 all defined global symbols (text, data, bss, abs, etc). The only required
655 information is the general_symbol_info.
656
657 In many cases, even if a file was compiled with no special options for
658 debugging at all, as long as was not stripped it will contain sufficient
659 information to build a useful minimal symbol table using this structure.
660 Even when a file contains enough debugging information to build a full
661 symbol table, these minimal symbols are still useful for quickly mapping
662 between names and addresses, and vice versa. They are also sometimes
663 used to figure out what full symbol table entries need to be read in. */
664
665 struct minimal_symbol : public general_symbol_info
666 {
667 /* Size of this symbol. dbx_end_psymtab in dbxread.c uses this
668 information to calculate the end of the partial symtab based on the
669 address of the last symbol plus the size of the last symbol. */
670
671 unsigned long size;
672
673 /* Which source file is this symbol in? Only relevant for mst_file_*. */
674 const char *filename;
675
676 /* Classification type for this minimal symbol. */
677
678 ENUM_BITFIELD(minimal_symbol_type) type : MINSYM_TYPE_BITS;
679
680 /* Non-zero if this symbol was created by gdb.
681 Such symbols do not appear in the output of "info var|fun". */
682 unsigned int created_by_gdb : 1;
683
684 /* Two flag bits provided for the use of the target. */
685 unsigned int target_flag_1 : 1;
686 unsigned int target_flag_2 : 1;
687
688 /* Nonzero iff the size of the minimal symbol has been set.
689 Symbol size information can sometimes not be determined, because
690 the object file format may not carry that piece of information. */
691 unsigned int has_size : 1;
692
693 /* For data symbols only, if this is set, then the symbol might be
694 subject to copy relocation. In this case, a minimal symbol
695 matching the symbol's linkage name is first looked for in the
696 main objfile. If found, then that address is used; otherwise the
697 address in this symbol is used. */
698
699 unsigned maybe_copied : 1;
700
701 /* Minimal symbols with the same hash key are kept on a linked
702 list. This is the link. */
703
704 struct minimal_symbol *hash_next;
705
706 /* Minimal symbols are stored in two different hash tables. This is
707 the `next' pointer for the demangled hash table. */
708
709 struct minimal_symbol *demangled_hash_next;
710
711 /* True if this symbol is of some data type. */
712
713 bool data_p () const;
714
715 /* True if MSYMBOL is of some text type. */
716
717 bool text_p () const;
718 };
719
720 /* Return the address of MINSYM, which comes from OBJF. The
721 MAYBE_COPIED flag must be set on MINSYM. If MINSYM appears in the
722 main program's minimal symbols, then that minsym's address is
723 returned; otherwise, MINSYM's address is returned. This should
724 generally only be used via the MSYMBOL_VALUE_ADDRESS macro. */
725
726 extern CORE_ADDR get_msymbol_address (struct objfile *objf,
727 const struct minimal_symbol *minsym);
728
729 #define MSYMBOL_TARGET_FLAG_1(msymbol) (msymbol)->target_flag_1
730 #define MSYMBOL_TARGET_FLAG_2(msymbol) (msymbol)->target_flag_2
731 #define MSYMBOL_SIZE(msymbol) ((msymbol)->size + 0)
732 #define SET_MSYMBOL_SIZE(msymbol, sz) \
733 do \
734 { \
735 (msymbol)->size = sz; \
736 (msymbol)->has_size = 1; \
737 } while (0)
738 #define MSYMBOL_HAS_SIZE(msymbol) ((msymbol)->has_size + 0)
739 #define MSYMBOL_TYPE(msymbol) (msymbol)->type
740
741 #define MSYMBOL_VALUE(symbol) (symbol)->value.ivalue
742 /* The unrelocated address of the minimal symbol. */
743 #define MSYMBOL_VALUE_RAW_ADDRESS(symbol) ((symbol)->value.address + 0)
744 /* The relocated address of the minimal symbol, using the section
745 offsets from OBJFILE. */
746 #define MSYMBOL_VALUE_ADDRESS(objfile, symbol) \
747 (((symbol)->maybe_copied) ? get_msymbol_address (objfile, symbol) \
748 : ((symbol)->value.address \
749 + ANOFFSET ((objfile)->section_offsets, ((symbol)->section))))
750 /* For a bound minsym, we can easily compute the address directly. */
751 #define BMSYMBOL_VALUE_ADDRESS(symbol) \
752 MSYMBOL_VALUE_ADDRESS ((symbol).objfile, (symbol).minsym)
753 #define SET_MSYMBOL_VALUE_ADDRESS(symbol, new_value) \
754 ((symbol)->value.address = (new_value))
755 #define MSYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
756 #define MSYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
757 #define MSYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
758 #define MSYMBOL_LANGUAGE(symbol) (symbol)->language
759 #define MSYMBOL_SECTION(symbol) (symbol)->section
760 #define MSYMBOL_OBJ_SECTION(objfile, symbol) \
761 (((symbol)->section >= 0) \
762 ? (&(((objfile)->sections)[(symbol)->section])) \
763 : NULL)
764
765 #define MSYMBOL_NATURAL_NAME(symbol) \
766 (symbol_natural_name (symbol))
767 #define MSYMBOL_LINKAGE_NAME(symbol) (symbol)->name
768 #define MSYMBOL_PRINT_NAME(symbol) \
769 (demangle ? MSYMBOL_NATURAL_NAME (symbol) : MSYMBOL_LINKAGE_NAME (symbol))
770 #define MSYMBOL_DEMANGLED_NAME(symbol) \
771 (symbol_demangled_name (symbol))
772 #define MSYMBOL_SEARCH_NAME(symbol) \
773 (symbol_search_name (symbol))
774
775 #include "minsyms.h"
776
777 \f
778
779 /* Represent one symbol name; a variable, constant, function or typedef. */
780
781 /* Different name domains for symbols. Looking up a symbol specifies a
782 domain and ignores symbol definitions in other name domains. */
783
784 typedef enum domain_enum_tag
785 {
786 /* UNDEF_DOMAIN is used when a domain has not been discovered or
787 none of the following apply. This usually indicates an error either
788 in the symbol information or in gdb's handling of symbols. */
789
790 UNDEF_DOMAIN,
791
792 /* VAR_DOMAIN is the usual domain. In C, this contains variables,
793 function names, typedef names and enum type values. */
794
795 VAR_DOMAIN,
796
797 /* STRUCT_DOMAIN is used in C to hold struct, union and enum type names.
798 Thus, if `struct foo' is used in a C program, it produces a symbol named
799 `foo' in the STRUCT_DOMAIN. */
800
801 STRUCT_DOMAIN,
802
803 /* MODULE_DOMAIN is used in Fortran to hold module type names. */
804
805 MODULE_DOMAIN,
806
807 /* LABEL_DOMAIN may be used for names of labels (for gotos). */
808
809 LABEL_DOMAIN,
810
811 /* Fortran common blocks. Their naming must be separate from VAR_DOMAIN.
812 They also always use LOC_COMMON_BLOCK. */
813 COMMON_BLOCK_DOMAIN,
814
815 /* This must remain last. */
816 NR_DOMAINS
817 } domain_enum;
818
819 /* The number of bits in a symbol used to represent the domain. */
820
821 #define SYMBOL_DOMAIN_BITS 3
822 gdb_static_assert (NR_DOMAINS <= (1 << SYMBOL_DOMAIN_BITS));
823
824 extern const char *domain_name (domain_enum);
825
826 /* Searching domains, used for `search_symbols'. Element numbers are
827 hardcoded in GDB, check all enum uses before changing it. */
828
829 enum search_domain
830 {
831 /* Everything in VAR_DOMAIN minus FUNCTIONS_DOMAIN and
832 TYPES_DOMAIN. */
833 VARIABLES_DOMAIN = 0,
834
835 /* All functions -- for some reason not methods, though. */
836 FUNCTIONS_DOMAIN = 1,
837
838 /* All defined types */
839 TYPES_DOMAIN = 2,
840
841 /* All modules. */
842 MODULES_DOMAIN = 3,
843
844 /* Any type. */
845 ALL_DOMAIN = 4
846 };
847
848 extern const char *search_domain_name (enum search_domain);
849
850 /* An address-class says where to find the value of a symbol. */
851
852 enum address_class
853 {
854 /* Not used; catches errors. */
855
856 LOC_UNDEF,
857
858 /* Value is constant int SYMBOL_VALUE, host byteorder. */
859
860 LOC_CONST,
861
862 /* Value is at fixed address SYMBOL_VALUE_ADDRESS. */
863
864 LOC_STATIC,
865
866 /* Value is in register. SYMBOL_VALUE is the register number
867 in the original debug format. SYMBOL_REGISTER_OPS holds a
868 function that can be called to transform this into the
869 actual register number this represents in a specific target
870 architecture (gdbarch).
871
872 For some symbol formats (stabs, for some compilers at least),
873 the compiler generates two symbols, an argument and a register.
874 In some cases we combine them to a single LOC_REGISTER in symbol
875 reading, but currently not for all cases (e.g. it's passed on the
876 stack and then loaded into a register). */
877
878 LOC_REGISTER,
879
880 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */
881
882 LOC_ARG,
883
884 /* Value address is at SYMBOL_VALUE offset in arglist. */
885
886 LOC_REF_ARG,
887
888 /* Value is in specified register. Just like LOC_REGISTER except the
889 register holds the address of the argument instead of the argument
890 itself. This is currently used for the passing of structs and unions
891 on sparc and hppa. It is also used for call by reference where the
892 address is in a register, at least by mipsread.c. */
893
894 LOC_REGPARM_ADDR,
895
896 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */
897
898 LOC_LOCAL,
899
900 /* Value not used; definition in SYMBOL_TYPE. Symbols in the domain
901 STRUCT_DOMAIN all have this class. */
902
903 LOC_TYPEDEF,
904
905 /* Value is address SYMBOL_VALUE_ADDRESS in the code. */
906
907 LOC_LABEL,
908
909 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'.
910 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address
911 of the block. Function names have this class. */
912
913 LOC_BLOCK,
914
915 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in
916 target byte order. */
917
918 LOC_CONST_BYTES,
919
920 /* Value is at fixed address, but the address of the variable has
921 to be determined from the minimal symbol table whenever the
922 variable is referenced.
923 This happens if debugging information for a global symbol is
924 emitted and the corresponding minimal symbol is defined
925 in another object file or runtime common storage.
926 The linker might even remove the minimal symbol if the global
927 symbol is never referenced, in which case the symbol remains
928 unresolved.
929
930 GDB would normally find the symbol in the minimal symbol table if it will
931 not find it in the full symbol table. But a reference to an external
932 symbol in a local block shadowing other definition requires full symbol
933 without possibly having its address available for LOC_STATIC. Testcase
934 is provided as `gdb.dwarf2/dw2-unresolved.exp'.
935
936 This is also used for thread local storage (TLS) variables. In this case,
937 the address of the TLS variable must be determined when the variable is
938 referenced, from the MSYMBOL_VALUE_RAW_ADDRESS, which is the offset
939 of the TLS variable in the thread local storage of the shared
940 library/object. */
941
942 LOC_UNRESOLVED,
943
944 /* The variable does not actually exist in the program.
945 The value is ignored. */
946
947 LOC_OPTIMIZED_OUT,
948
949 /* The variable's address is computed by a set of location
950 functions (see "struct symbol_computed_ops" below). */
951 LOC_COMPUTED,
952
953 /* The variable uses general_symbol_info->value->common_block field.
954 It also always uses COMMON_BLOCK_DOMAIN. */
955 LOC_COMMON_BLOCK,
956
957 /* Not used, just notes the boundary of the enum. */
958 LOC_FINAL_VALUE
959 };
960
961 /* The number of bits needed for values in enum address_class, with some
962 padding for reasonable growth, and room for run-time registered address
963 classes. See symtab.c:MAX_SYMBOL_IMPLS.
964 This is a #define so that we can have a assertion elsewhere to
965 verify that we have reserved enough space for synthetic address
966 classes. */
967 #define SYMBOL_ACLASS_BITS 5
968 gdb_static_assert (LOC_FINAL_VALUE <= (1 << SYMBOL_ACLASS_BITS));
969
970 /* The methods needed to implement LOC_COMPUTED. These methods can
971 use the symbol's .aux_value for additional per-symbol information.
972
973 At present this is only used to implement location expressions. */
974
975 struct symbol_computed_ops
976 {
977
978 /* Return the value of the variable SYMBOL, relative to the stack
979 frame FRAME. If the variable has been optimized out, return
980 zero.
981
982 Iff `read_needs_frame (SYMBOL)' is not SYMBOL_NEEDS_FRAME, then
983 FRAME may be zero. */
984
985 struct value *(*read_variable) (struct symbol * symbol,
986 struct frame_info * frame);
987
988 /* Read variable SYMBOL like read_variable at (callee) FRAME's function
989 entry. SYMBOL should be a function parameter, otherwise
990 NO_ENTRY_VALUE_ERROR will be thrown. */
991 struct value *(*read_variable_at_entry) (struct symbol *symbol,
992 struct frame_info *frame);
993
994 /* Find the "symbol_needs_kind" value for the given symbol. This
995 value determines whether reading the symbol needs memory (e.g., a
996 global variable), just registers (a thread-local), or a frame (a
997 local variable). */
998 enum symbol_needs_kind (*get_symbol_read_needs) (struct symbol * symbol);
999
1000 /* Write to STREAM a natural-language description of the location of
1001 SYMBOL, in the context of ADDR. */
1002 void (*describe_location) (struct symbol * symbol, CORE_ADDR addr,
1003 struct ui_file * stream);
1004
1005 /* Non-zero if this symbol's address computation is dependent on PC. */
1006 unsigned char location_has_loclist;
1007
1008 /* Tracepoint support. Append bytecodes to the tracepoint agent
1009 expression AX that push the address of the object SYMBOL. Set
1010 VALUE appropriately. Note --- for objects in registers, this
1011 needn't emit any code; as long as it sets VALUE properly, then
1012 the caller will generate the right code in the process of
1013 treating this as an lvalue or rvalue. */
1014
1015 void (*tracepoint_var_ref) (struct symbol *symbol, struct agent_expr *ax,
1016 struct axs_value *value);
1017
1018 /* Generate C code to compute the location of SYMBOL. The C code is
1019 emitted to STREAM. GDBARCH is the current architecture and PC is
1020 the PC at which SYMBOL's location should be evaluated.
1021 REGISTERS_USED is a vector indexed by register number; the
1022 generator function should set an element in this vector if the
1023 corresponding register is needed by the location computation.
1024 The generated C code must assign the location to a local
1025 variable; this variable's name is RESULT_NAME. */
1026
1027 void (*generate_c_location) (struct symbol *symbol, string_file *stream,
1028 struct gdbarch *gdbarch,
1029 unsigned char *registers_used,
1030 CORE_ADDR pc, const char *result_name);
1031
1032 };
1033
1034 /* The methods needed to implement LOC_BLOCK for inferior functions.
1035 These methods can use the symbol's .aux_value for additional
1036 per-symbol information. */
1037
1038 struct symbol_block_ops
1039 {
1040 /* Fill in *START and *LENGTH with DWARF block data of function
1041 FRAMEFUNC valid for inferior context address PC. Set *LENGTH to
1042 zero if such location is not valid for PC; *START is left
1043 uninitialized in such case. */
1044 void (*find_frame_base_location) (struct symbol *framefunc, CORE_ADDR pc,
1045 const gdb_byte **start, size_t *length);
1046
1047 /* Return the frame base address. FRAME is the frame for which we want to
1048 compute the base address while FRAMEFUNC is the symbol for the
1049 corresponding function. Return 0 on failure (FRAMEFUNC may not hold the
1050 information we need).
1051
1052 This method is designed to work with static links (nested functions
1053 handling). Static links are function properties whose evaluation returns
1054 the frame base address for the enclosing frame. However, there are
1055 multiple definitions for "frame base": the content of the frame base
1056 register, the CFA as defined by DWARF unwinding information, ...
1057
1058 So this specific method is supposed to compute the frame base address such
1059 as for nested functions, the static link computes the same address. For
1060 instance, considering DWARF debugging information, the static link is
1061 computed with DW_AT_static_link and this method must be used to compute
1062 the corresponding DW_AT_frame_base attribute. */
1063 CORE_ADDR (*get_frame_base) (struct symbol *framefunc,
1064 struct frame_info *frame);
1065 };
1066
1067 /* Functions used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1068
1069 struct symbol_register_ops
1070 {
1071 int (*register_number) (struct symbol *symbol, struct gdbarch *gdbarch);
1072 };
1073
1074 /* Objects of this type are used to find the address class and the
1075 various computed ops vectors of a symbol. */
1076
1077 struct symbol_impl
1078 {
1079 enum address_class aclass;
1080
1081 /* Used with LOC_COMPUTED. */
1082 const struct symbol_computed_ops *ops_computed;
1083
1084 /* Used with LOC_BLOCK. */
1085 const struct symbol_block_ops *ops_block;
1086
1087 /* Used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1088 const struct symbol_register_ops *ops_register;
1089 };
1090
1091 /* struct symbol has some subclasses. This enum is used to
1092 differentiate between them. */
1093
1094 enum symbol_subclass_kind
1095 {
1096 /* Plain struct symbol. */
1097 SYMBOL_NONE,
1098
1099 /* struct template_symbol. */
1100 SYMBOL_TEMPLATE,
1101
1102 /* struct rust_vtable_symbol. */
1103 SYMBOL_RUST_VTABLE
1104 };
1105
1106 /* This structure is space critical. See space comments at the top. */
1107
1108 struct symbol
1109 {
1110
1111 /* The general symbol info required for all types of symbols. */
1112
1113 struct general_symbol_info ginfo;
1114
1115 /* Data type of value */
1116
1117 struct type *type;
1118
1119 /* The owner of this symbol.
1120 Which one to use is defined by symbol.is_objfile_owned. */
1121
1122 union
1123 {
1124 /* The symbol table containing this symbol. This is the file associated
1125 with LINE. It can be NULL during symbols read-in but it is never NULL
1126 during normal operation. */
1127 struct symtab *symtab;
1128
1129 /* For types defined by the architecture. */
1130 struct gdbarch *arch;
1131 } owner;
1132
1133 /* Domain code. */
1134
1135 ENUM_BITFIELD(domain_enum_tag) domain : SYMBOL_DOMAIN_BITS;
1136
1137 /* Address class. This holds an index into the 'symbol_impls'
1138 table. The actual enum address_class value is stored there,
1139 alongside any per-class ops vectors. */
1140
1141 unsigned int aclass_index : SYMBOL_ACLASS_BITS;
1142
1143 /* If non-zero then symbol is objfile-owned, use owner.symtab.
1144 Otherwise symbol is arch-owned, use owner.arch. */
1145
1146 unsigned int is_objfile_owned : 1;
1147
1148 /* Whether this is an argument. */
1149
1150 unsigned is_argument : 1;
1151
1152 /* Whether this is an inlined function (class LOC_BLOCK only). */
1153 unsigned is_inlined : 1;
1154
1155 /* For LOC_STATIC only, if this is set, then the symbol might be
1156 subject to copy relocation. In this case, a minimal symbol
1157 matching the symbol's linkage name is first looked for in the
1158 main objfile. If found, then that address is used; otherwise the
1159 address in this symbol is used. */
1160
1161 unsigned maybe_copied : 1;
1162
1163 /* The concrete type of this symbol. */
1164
1165 ENUM_BITFIELD (symbol_subclass_kind) subclass : 2;
1166
1167 /* Line number of this symbol's definition, except for inlined
1168 functions. For an inlined function (class LOC_BLOCK and
1169 SYMBOL_INLINED set) this is the line number of the function's call
1170 site. Inlined function symbols are not definitions, and they are
1171 never found by symbol table lookup.
1172 If this symbol is arch-owned, LINE shall be zero.
1173
1174 FIXME: Should we really make the assumption that nobody will try
1175 to debug files longer than 64K lines? What about machine
1176 generated programs? */
1177
1178 unsigned short line;
1179
1180 /* An arbitrary data pointer, allowing symbol readers to record
1181 additional information on a per-symbol basis. Note that this data
1182 must be allocated using the same obstack as the symbol itself. */
1183 /* So far it is only used by:
1184 LOC_COMPUTED: to find the location information
1185 LOC_BLOCK (DWARF2 function): information used internally by the
1186 DWARF 2 code --- specifically, the location expression for the frame
1187 base for this function. */
1188 /* FIXME drow/2003-02-21: For the LOC_BLOCK case, it might be better
1189 to add a magic symbol to the block containing this information,
1190 or to have a generic debug info annotation slot for symbols. */
1191
1192 void *aux_value;
1193
1194 struct symbol *hash_next;
1195 };
1196
1197 /* This struct is size-critical (see comment at the top), so this assert
1198 makes sure the size doesn't change accidentally. Be careful when
1199 purposely increasing the size. */
1200 gdb_static_assert ((sizeof (void *) == 8 && sizeof (symbol) == 72)
1201 || (sizeof (void *) == 4 && sizeof (symbol) == 40));
1202
1203 /* Several lookup functions return both a symbol and the block in which the
1204 symbol is found. This structure is used in these cases. */
1205
1206 struct block_symbol
1207 {
1208 /* The symbol that was found, or NULL if no symbol was found. */
1209 struct symbol *symbol;
1210
1211 /* If SYMBOL is not NULL, then this is the block in which the symbol is
1212 defined. */
1213 const struct block *block;
1214 };
1215
1216 extern const struct symbol_impl *symbol_impls;
1217
1218 /* Note: There is no accessor macro for symbol.owner because it is
1219 "private". */
1220
1221 #define SYMBOL_DOMAIN(symbol) (symbol)->domain
1222 #define SYMBOL_IMPL(symbol) (symbol_impls[(symbol)->aclass_index])
1223 #define SYMBOL_ACLASS_INDEX(symbol) (symbol)->aclass_index
1224 #define SYMBOL_CLASS(symbol) (SYMBOL_IMPL (symbol).aclass)
1225 #define SYMBOL_OBJFILE_OWNED(symbol) ((symbol)->is_objfile_owned)
1226 #define SYMBOL_IS_ARGUMENT(symbol) (symbol)->is_argument
1227 #define SYMBOL_INLINED(symbol) (symbol)->is_inlined
1228 #define SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION(symbol) \
1229 (((symbol)->subclass) == SYMBOL_TEMPLATE)
1230 #define SYMBOL_TYPE(symbol) (symbol)->type
1231 #define SYMBOL_LINE(symbol) (symbol)->line
1232 #define SYMBOL_COMPUTED_OPS(symbol) (SYMBOL_IMPL (symbol).ops_computed)
1233 #define SYMBOL_BLOCK_OPS(symbol) (SYMBOL_IMPL (symbol).ops_block)
1234 #define SYMBOL_REGISTER_OPS(symbol) (SYMBOL_IMPL (symbol).ops_register)
1235 #define SYMBOL_LOCATION_BATON(symbol) (symbol)->aux_value
1236
1237 extern int register_symbol_computed_impl (enum address_class,
1238 const struct symbol_computed_ops *);
1239
1240 extern int register_symbol_block_impl (enum address_class aclass,
1241 const struct symbol_block_ops *ops);
1242
1243 extern int register_symbol_register_impl (enum address_class,
1244 const struct symbol_register_ops *);
1245
1246 /* Return the OBJFILE of SYMBOL.
1247 It is an error to call this if symbol.is_objfile_owned is false, which
1248 only happens for architecture-provided types. */
1249
1250 extern struct objfile *symbol_objfile (const struct symbol *symbol);
1251
1252 /* Return the ARCH of SYMBOL. */
1253
1254 extern struct gdbarch *symbol_arch (const struct symbol *symbol);
1255
1256 /* Return the SYMTAB of SYMBOL.
1257 It is an error to call this if symbol.is_objfile_owned is false, which
1258 only happens for architecture-provided types. */
1259
1260 extern struct symtab *symbol_symtab (const struct symbol *symbol);
1261
1262 /* Set the symtab of SYMBOL to SYMTAB.
1263 It is an error to call this if symbol.is_objfile_owned is false, which
1264 only happens for architecture-provided types. */
1265
1266 extern void symbol_set_symtab (struct symbol *symbol, struct symtab *symtab);
1267
1268 /* An instance of this type is used to represent a C++ template
1269 function. A symbol is really of this type iff
1270 SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION is true. */
1271
1272 struct template_symbol : public symbol
1273 {
1274 /* The number of template arguments. */
1275 int n_template_arguments;
1276
1277 /* The template arguments. This is an array with
1278 N_TEMPLATE_ARGUMENTS elements. */
1279 struct symbol **template_arguments;
1280 };
1281
1282 /* A symbol that represents a Rust virtual table object. */
1283
1284 struct rust_vtable_symbol : public symbol
1285 {
1286 /* The concrete type for which this vtable was created; that is, in
1287 "impl Trait for Type", this is "Type". */
1288 struct type *concrete_type;
1289 };
1290
1291 \f
1292 /* Each item represents a line-->pc (or the reverse) mapping. This is
1293 somewhat more wasteful of space than one might wish, but since only
1294 the files which are actually debugged are read in to core, we don't
1295 waste much space. */
1296
1297 struct linetable_entry
1298 {
1299 int line;
1300 CORE_ADDR pc;
1301 };
1302
1303 /* The order of entries in the linetable is significant. They should
1304 be sorted by increasing values of the pc field. If there is more than
1305 one entry for a given pc, then I'm not sure what should happen (and
1306 I not sure whether we currently handle it the best way).
1307
1308 Example: a C for statement generally looks like this
1309
1310 10 0x100 - for the init/test part of a for stmt.
1311 20 0x200
1312 30 0x300
1313 10 0x400 - for the increment part of a for stmt.
1314
1315 If an entry has a line number of zero, it marks the start of a PC
1316 range for which no line number information is available. It is
1317 acceptable, though wasteful of table space, for such a range to be
1318 zero length. */
1319
1320 struct linetable
1321 {
1322 int nitems;
1323
1324 /* Actually NITEMS elements. If you don't like this use of the
1325 `struct hack', you can shove it up your ANSI (seriously, if the
1326 committee tells us how to do it, we can probably go along). */
1327 struct linetable_entry item[1];
1328 };
1329
1330 /* How to relocate the symbols from each section in a symbol file.
1331 Each struct contains an array of offsets.
1332 The ordering and meaning of the offsets is file-type-dependent;
1333 typically it is indexed by section numbers or symbol types or
1334 something like that.
1335
1336 To give us flexibility in changing the internal representation
1337 of these offsets, the ANOFFSET macro must be used to insert and
1338 extract offset values in the struct. */
1339
1340 struct section_offsets
1341 {
1342 CORE_ADDR offsets[1]; /* As many as needed. */
1343 };
1344
1345 #define ANOFFSET(secoff, whichone) \
1346 ((whichone == -1) \
1347 ? (internal_error (__FILE__, __LINE__, \
1348 _("Section index is uninitialized")), -1) \
1349 : secoff->offsets[whichone])
1350
1351 /* The size of a section_offsets table for N sections. */
1352 #define SIZEOF_N_SECTION_OFFSETS(n) \
1353 (sizeof (struct section_offsets) \
1354 + sizeof (((struct section_offsets *) 0)->offsets) * ((n)-1))
1355
1356 /* Each source file or header is represented by a struct symtab.
1357 The name "symtab" is historical, another name for it is "filetab".
1358 These objects are chained through the `next' field. */
1359
1360 struct symtab
1361 {
1362 /* Unordered chain of all filetabs in the compunit, with the exception
1363 that the "main" source file is the first entry in the list. */
1364
1365 struct symtab *next;
1366
1367 /* Backlink to containing compunit symtab. */
1368
1369 struct compunit_symtab *compunit_symtab;
1370
1371 /* Table mapping core addresses to line numbers for this file.
1372 Can be NULL if none. Never shared between different symtabs. */
1373
1374 struct linetable *linetable;
1375
1376 /* Name of this source file. This pointer is never NULL. */
1377
1378 const char *filename;
1379
1380 /* Language of this source file. */
1381
1382 enum language language;
1383
1384 /* Full name of file as found by searching the source path.
1385 NULL if not yet known. */
1386
1387 char *fullname;
1388 };
1389
1390 #define SYMTAB_COMPUNIT(symtab) ((symtab)->compunit_symtab)
1391 #define SYMTAB_LINETABLE(symtab) ((symtab)->linetable)
1392 #define SYMTAB_LANGUAGE(symtab) ((symtab)->language)
1393 #define SYMTAB_BLOCKVECTOR(symtab) \
1394 COMPUNIT_BLOCKVECTOR (SYMTAB_COMPUNIT (symtab))
1395 #define SYMTAB_OBJFILE(symtab) \
1396 COMPUNIT_OBJFILE (SYMTAB_COMPUNIT (symtab))
1397 #define SYMTAB_PSPACE(symtab) (SYMTAB_OBJFILE (symtab)->pspace)
1398 #define SYMTAB_DIRNAME(symtab) \
1399 COMPUNIT_DIRNAME (SYMTAB_COMPUNIT (symtab))
1400
1401 /* Compunit symtabs contain the actual "symbol table", aka blockvector, as well
1402 as the list of all source files (what gdb has historically associated with
1403 the term "symtab").
1404 Additional information is recorded here that is common to all symtabs in a
1405 compilation unit (DWARF or otherwise).
1406
1407 Example:
1408 For the case of a program built out of these files:
1409
1410 foo.c
1411 foo1.h
1412 foo2.h
1413 bar.c
1414 foo1.h
1415 bar.h
1416
1417 This is recorded as:
1418
1419 objfile -> foo.c(cu) -> bar.c(cu) -> NULL
1420 | |
1421 v v
1422 foo.c bar.c
1423 | |
1424 v v
1425 foo1.h foo1.h
1426 | |
1427 v v
1428 foo2.h bar.h
1429 | |
1430 v v
1431 NULL NULL
1432
1433 where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
1434 and the files foo.c, etc. are struct symtab objects. */
1435
1436 struct compunit_symtab
1437 {
1438 /* Unordered chain of all compunit symtabs of this objfile. */
1439 struct compunit_symtab *next;
1440
1441 /* Object file from which this symtab information was read. */
1442 struct objfile *objfile;
1443
1444 /* Name of the symtab.
1445 This is *not* intended to be a usable filename, and is
1446 for debugging purposes only. */
1447 const char *name;
1448
1449 /* Unordered list of file symtabs, except that by convention the "main"
1450 source file (e.g., .c, .cc) is guaranteed to be first.
1451 Each symtab is a file, either the "main" source file (e.g., .c, .cc)
1452 or header (e.g., .h). */
1453 struct symtab *filetabs;
1454
1455 /* Last entry in FILETABS list.
1456 Subfiles are added to the end of the list so they accumulate in order,
1457 with the main source subfile living at the front.
1458 The main reason is so that the main source file symtab is at the head
1459 of the list, and the rest appear in order for debugging convenience. */
1460 struct symtab *last_filetab;
1461
1462 /* Non-NULL string that identifies the format of the debugging information,
1463 such as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful
1464 for automated testing of gdb but may also be information that is
1465 useful to the user. */
1466 const char *debugformat;
1467
1468 /* String of producer version information, or NULL if we don't know. */
1469 const char *producer;
1470
1471 /* Directory in which it was compiled, or NULL if we don't know. */
1472 const char *dirname;
1473
1474 /* List of all symbol scope blocks for this symtab. It is shared among
1475 all symtabs in a given compilation unit. */
1476 const struct blockvector *blockvector;
1477
1478 /* Section in objfile->section_offsets for the blockvector and
1479 the linetable. Probably always SECT_OFF_TEXT. */
1480 int block_line_section;
1481
1482 /* Symtab has been compiled with both optimizations and debug info so that
1483 GDB may stop skipping prologues as variables locations are valid already
1484 at function entry points. */
1485 unsigned int locations_valid : 1;
1486
1487 /* DWARF unwinder for this CU is valid even for epilogues (PC at the return
1488 instruction). This is supported by GCC since 4.5.0. */
1489 unsigned int epilogue_unwind_valid : 1;
1490
1491 /* struct call_site entries for this compilation unit or NULL. */
1492 htab_t call_site_htab;
1493
1494 /* The macro table for this symtab. Like the blockvector, this
1495 is shared between different symtabs in a given compilation unit.
1496 It's debatable whether it *should* be shared among all the symtabs in
1497 the given compilation unit, but it currently is. */
1498 struct macro_table *macro_table;
1499
1500 /* If non-NULL, then this points to a NULL-terminated vector of
1501 included compunits. When searching the static or global
1502 block of this compunit, the corresponding block of all
1503 included compunits will also be searched. Note that this
1504 list must be flattened -- the symbol reader is responsible for
1505 ensuring that this vector contains the transitive closure of all
1506 included compunits. */
1507 struct compunit_symtab **includes;
1508
1509 /* If this is an included compunit, this points to one includer
1510 of the table. This user is considered the canonical compunit
1511 containing this one. An included compunit may itself be
1512 included by another. */
1513 struct compunit_symtab *user;
1514 };
1515
1516 #define COMPUNIT_OBJFILE(cust) ((cust)->objfile)
1517 #define COMPUNIT_FILETABS(cust) ((cust)->filetabs)
1518 #define COMPUNIT_DEBUGFORMAT(cust) ((cust)->debugformat)
1519 #define COMPUNIT_PRODUCER(cust) ((cust)->producer)
1520 #define COMPUNIT_DIRNAME(cust) ((cust)->dirname)
1521 #define COMPUNIT_BLOCKVECTOR(cust) ((cust)->blockvector)
1522 #define COMPUNIT_BLOCK_LINE_SECTION(cust) ((cust)->block_line_section)
1523 #define COMPUNIT_LOCATIONS_VALID(cust) ((cust)->locations_valid)
1524 #define COMPUNIT_EPILOGUE_UNWIND_VALID(cust) ((cust)->epilogue_unwind_valid)
1525 #define COMPUNIT_CALL_SITE_HTAB(cust) ((cust)->call_site_htab)
1526 #define COMPUNIT_MACRO_TABLE(cust) ((cust)->macro_table)
1527
1528 /* A range adapter to allowing iterating over all the file tables
1529 within a compunit. */
1530
1531 struct compunit_filetabs : public next_adapter<struct symtab>
1532 {
1533 compunit_filetabs (struct compunit_symtab *cu)
1534 : next_adapter<struct symtab> (cu->filetabs)
1535 {
1536 }
1537 };
1538
1539 /* Return the primary symtab of CUST. */
1540
1541 extern struct symtab *
1542 compunit_primary_filetab (const struct compunit_symtab *cust);
1543
1544 /* Return the language of CUST. */
1545
1546 extern enum language compunit_language (const struct compunit_symtab *cust);
1547
1548 \f
1549
1550 /* The virtual function table is now an array of structures which have the
1551 form { int16 offset, delta; void *pfn; }.
1552
1553 In normal virtual function tables, OFFSET is unused.
1554 DELTA is the amount which is added to the apparent object's base
1555 address in order to point to the actual object to which the
1556 virtual function should be applied.
1557 PFN is a pointer to the virtual function.
1558
1559 Note that this macro is g++ specific (FIXME). */
1560
1561 #define VTBL_FNADDR_OFFSET 2
1562
1563 /* External variables and functions for the objects described above. */
1564
1565 /* True if we are nested inside psymtab_to_symtab. */
1566
1567 extern int currently_reading_symtab;
1568
1569 /* symtab.c lookup functions */
1570
1571 extern const char multiple_symbols_ask[];
1572 extern const char multiple_symbols_all[];
1573 extern const char multiple_symbols_cancel[];
1574
1575 const char *multiple_symbols_select_mode (void);
1576
1577 bool symbol_matches_domain (enum language symbol_language,
1578 domain_enum symbol_domain,
1579 domain_enum domain);
1580
1581 /* lookup a symbol table by source file name. */
1582
1583 extern struct symtab *lookup_symtab (const char *);
1584
1585 /* An object of this type is passed as the 'is_a_field_of_this'
1586 argument to lookup_symbol and lookup_symbol_in_language. */
1587
1588 struct field_of_this_result
1589 {
1590 /* The type in which the field was found. If this is NULL then the
1591 symbol was not found in 'this'. If non-NULL, then one of the
1592 other fields will be non-NULL as well. */
1593
1594 struct type *type;
1595
1596 /* If the symbol was found as an ordinary field of 'this', then this
1597 is non-NULL and points to the particular field. */
1598
1599 struct field *field;
1600
1601 /* If the symbol was found as a function field of 'this', then this
1602 is non-NULL and points to the particular field. */
1603
1604 struct fn_fieldlist *fn_field;
1605 };
1606
1607 /* Find the definition for a specified symbol name NAME
1608 in domain DOMAIN in language LANGUAGE, visible from lexical block BLOCK
1609 if non-NULL or from global/static blocks if BLOCK is NULL.
1610 Returns the struct symbol pointer, or NULL if no symbol is found.
1611 C++: if IS_A_FIELD_OF_THIS is non-NULL on entry, check to see if
1612 NAME is a field of the current implied argument `this'. If so fill in the
1613 fields of IS_A_FIELD_OF_THIS, otherwise the fields are set to NULL.
1614 The symbol's section is fixed up if necessary. */
1615
1616 extern struct block_symbol
1617 lookup_symbol_in_language (const char *,
1618 const struct block *,
1619 const domain_enum,
1620 enum language,
1621 struct field_of_this_result *);
1622
1623 /* Same as lookup_symbol_in_language, but using the current language. */
1624
1625 extern struct block_symbol lookup_symbol (const char *,
1626 const struct block *,
1627 const domain_enum,
1628 struct field_of_this_result *);
1629
1630 /* Find the definition for a specified symbol search name in domain
1631 DOMAIN, visible from lexical block BLOCK if non-NULL or from
1632 global/static blocks if BLOCK is NULL. The passed-in search name
1633 should not come from the user; instead it should already be a
1634 search name as retrieved from a
1635 SYMBOL_SEARCH_NAME/MSYMBOL_SEARCH_NAME call. See definition of
1636 symbol_name_match_type::SEARCH_NAME. Returns the struct symbol
1637 pointer, or NULL if no symbol is found. The symbol's section is
1638 fixed up if necessary. */
1639
1640 extern struct block_symbol lookup_symbol_search_name (const char *search_name,
1641 const struct block *block,
1642 domain_enum domain);
1643
1644 /* A default version of lookup_symbol_nonlocal for use by languages
1645 that can't think of anything better to do.
1646 This implements the C lookup rules. */
1647
1648 extern struct block_symbol
1649 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
1650 const char *,
1651 const struct block *,
1652 const domain_enum);
1653
1654 /* Some helper functions for languages that need to write their own
1655 lookup_symbol_nonlocal functions. */
1656
1657 /* Lookup a symbol in the static block associated to BLOCK, if there
1658 is one; do nothing if BLOCK is NULL or a global block.
1659 Upon success fixes up the symbol's section if necessary. */
1660
1661 extern struct block_symbol
1662 lookup_symbol_in_static_block (const char *name,
1663 const struct block *block,
1664 const domain_enum domain);
1665
1666 /* Search all static file-level symbols for NAME from DOMAIN.
1667 Upon success fixes up the symbol's section if necessary. */
1668
1669 extern struct block_symbol lookup_static_symbol (const char *name,
1670 const domain_enum domain);
1671
1672 /* Lookup a symbol in all files' global blocks.
1673
1674 If BLOCK is non-NULL then it is used for two things:
1675 1) If a target-specific lookup routine for libraries exists, then use the
1676 routine for the objfile of BLOCK, and
1677 2) The objfile of BLOCK is used to assist in determining the search order
1678 if the target requires it.
1679 See gdbarch_iterate_over_objfiles_in_search_order.
1680
1681 Upon success fixes up the symbol's section if necessary. */
1682
1683 extern struct block_symbol
1684 lookup_global_symbol (const char *name,
1685 const struct block *block,
1686 const domain_enum domain);
1687
1688 /* Lookup a symbol in block BLOCK.
1689 Upon success fixes up the symbol's section if necessary. */
1690
1691 extern struct symbol *
1692 lookup_symbol_in_block (const char *name,
1693 symbol_name_match_type match_type,
1694 const struct block *block,
1695 const domain_enum domain);
1696
1697 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1698 found, or NULL if not found. */
1699
1700 extern struct block_symbol
1701 lookup_language_this (const struct language_defn *lang,
1702 const struct block *block);
1703
1704 /* Lookup a [struct, union, enum] by name, within a specified block. */
1705
1706 extern struct type *lookup_struct (const char *, const struct block *);
1707
1708 extern struct type *lookup_union (const char *, const struct block *);
1709
1710 extern struct type *lookup_enum (const char *, const struct block *);
1711
1712 /* from blockframe.c: */
1713
1714 /* lookup the function symbol corresponding to the address. The
1715 return value will not be an inlined function; the containing
1716 function will be returned instead. */
1717
1718 extern struct symbol *find_pc_function (CORE_ADDR);
1719
1720 /* lookup the function corresponding to the address and section. The
1721 return value will not be an inlined function; the containing
1722 function will be returned instead. */
1723
1724 extern struct symbol *find_pc_sect_function (CORE_ADDR, struct obj_section *);
1725
1726 /* lookup the function symbol corresponding to the address and
1727 section. The return value will be the closest enclosing function,
1728 which might be an inline function. */
1729
1730 extern struct symbol *find_pc_sect_containing_function
1731 (CORE_ADDR pc, struct obj_section *section);
1732
1733 /* Find the symbol at the given address. Returns NULL if no symbol
1734 found. Only exact matches for ADDRESS are considered. */
1735
1736 extern struct symbol *find_symbol_at_address (CORE_ADDR);
1737
1738 /* Finds the "function" (text symbol) that is smaller than PC but
1739 greatest of all of the potential text symbols in SECTION. Sets
1740 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
1741 If ENDADDR is non-null, then set *ENDADDR to be the end of the
1742 function (exclusive). If the optional parameter BLOCK is non-null,
1743 then set *BLOCK to the address of the block corresponding to the
1744 function symbol, if such a symbol could be found during the lookup;
1745 nullptr is used as a return value for *BLOCK if no block is found.
1746 This function either succeeds or fails (not halfway succeeds). If
1747 it succeeds, it sets *NAME, *ADDRESS, and *ENDADDR to real
1748 information and returns true. If it fails, it sets *NAME, *ADDRESS
1749 and *ENDADDR to zero and returns false.
1750
1751 If the function in question occupies non-contiguous ranges,
1752 *ADDRESS and *ENDADDR are (subject to the conditions noted above) set
1753 to the start and end of the range in which PC is found. Thus
1754 *ADDRESS <= PC < *ENDADDR with no intervening gaps (in which ranges
1755 from other functions might be found).
1756
1757 This property allows find_pc_partial_function to be used (as it had
1758 been prior to the introduction of non-contiguous range support) by
1759 various tdep files for finding a start address and limit address
1760 for prologue analysis. This still isn't ideal, however, because we
1761 probably shouldn't be doing prologue analysis (in which
1762 instructions are scanned to determine frame size and stack layout)
1763 for any range that doesn't contain the entry pc. Moreover, a good
1764 argument can be made that prologue analysis ought to be performed
1765 starting from the entry pc even when PC is within some other range.
1766 This might suggest that *ADDRESS and *ENDADDR ought to be set to the
1767 limits of the entry pc range, but that will cause the
1768 *ADDRESS <= PC < *ENDADDR condition to be violated; many of the
1769 callers of find_pc_partial_function expect this condition to hold.
1770
1771 Callers which require the start and/or end addresses for the range
1772 containing the entry pc should instead call
1773 find_function_entry_range_from_pc. */
1774
1775 extern bool find_pc_partial_function (CORE_ADDR pc, const char **name,
1776 CORE_ADDR *address, CORE_ADDR *endaddr,
1777 const struct block **block = nullptr);
1778
1779 /* Like find_pc_partial_function, above, but *ADDRESS and *ENDADDR are
1780 set to start and end addresses of the range containing the entry pc.
1781
1782 Note that it is not necessarily the case that (for non-NULL ADDRESS
1783 and ENDADDR arguments) the *ADDRESS <= PC < *ENDADDR condition will
1784 hold.
1785
1786 See comment for find_pc_partial_function, above, for further
1787 explanation. */
1788
1789 extern bool find_function_entry_range_from_pc (CORE_ADDR pc,
1790 const char **name,
1791 CORE_ADDR *address,
1792 CORE_ADDR *endaddr);
1793
1794 /* Return the type of a function with its first instruction exactly at
1795 the PC address. Return NULL otherwise. */
1796
1797 extern struct type *find_function_type (CORE_ADDR pc);
1798
1799 /* See if we can figure out the function's actual type from the type
1800 that the resolver returns. RESOLVER_FUNADDR is the address of the
1801 ifunc resolver. */
1802
1803 extern struct type *find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr);
1804
1805 /* Find the GNU ifunc minimal symbol that matches SYM. */
1806 extern bound_minimal_symbol find_gnu_ifunc (const symbol *sym);
1807
1808 extern void clear_pc_function_cache (void);
1809
1810 /* Expand symtab containing PC, SECTION if not already expanded. */
1811
1812 extern void expand_symtab_containing_pc (CORE_ADDR, struct obj_section *);
1813
1814 /* lookup full symbol table by address. */
1815
1816 extern struct compunit_symtab *find_pc_compunit_symtab (CORE_ADDR);
1817
1818 /* lookup full symbol table by address and section. */
1819
1820 extern struct compunit_symtab *
1821 find_pc_sect_compunit_symtab (CORE_ADDR, struct obj_section *);
1822
1823 extern bool find_pc_line_pc_range (CORE_ADDR, CORE_ADDR *, CORE_ADDR *);
1824
1825 extern void reread_symbols (void);
1826
1827 /* Look up a type named NAME in STRUCT_DOMAIN in the current language.
1828 The type returned must not be opaque -- i.e., must have at least one field
1829 defined. */
1830
1831 extern struct type *lookup_transparent_type (const char *);
1832
1833 extern struct type *basic_lookup_transparent_type (const char *);
1834
1835 /* Macro for name of symbol to indicate a file compiled with gcc. */
1836 #ifndef GCC_COMPILED_FLAG_SYMBOL
1837 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
1838 #endif
1839
1840 /* Macro for name of symbol to indicate a file compiled with gcc2. */
1841 #ifndef GCC2_COMPILED_FLAG_SYMBOL
1842 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled."
1843 #endif
1844
1845 extern bool in_gnu_ifunc_stub (CORE_ADDR pc);
1846
1847 /* Functions for resolving STT_GNU_IFUNC symbols which are implemented only
1848 for ELF symbol files. */
1849
1850 struct gnu_ifunc_fns
1851 {
1852 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
1853 CORE_ADDR (*gnu_ifunc_resolve_addr) (struct gdbarch *gdbarch, CORE_ADDR pc);
1854
1855 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
1856 bool (*gnu_ifunc_resolve_name) (const char *function_name,
1857 CORE_ADDR *function_address_p);
1858
1859 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
1860 void (*gnu_ifunc_resolver_stop) (struct breakpoint *b);
1861
1862 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
1863 void (*gnu_ifunc_resolver_return_stop) (struct breakpoint *b);
1864 };
1865
1866 #define gnu_ifunc_resolve_addr gnu_ifunc_fns_p->gnu_ifunc_resolve_addr
1867 #define gnu_ifunc_resolve_name gnu_ifunc_fns_p->gnu_ifunc_resolve_name
1868 #define gnu_ifunc_resolver_stop gnu_ifunc_fns_p->gnu_ifunc_resolver_stop
1869 #define gnu_ifunc_resolver_return_stop \
1870 gnu_ifunc_fns_p->gnu_ifunc_resolver_return_stop
1871
1872 extern const struct gnu_ifunc_fns *gnu_ifunc_fns_p;
1873
1874 extern CORE_ADDR find_solib_trampoline_target (struct frame_info *, CORE_ADDR);
1875
1876 struct symtab_and_line
1877 {
1878 /* The program space of this sal. */
1879 struct program_space *pspace = NULL;
1880
1881 struct symtab *symtab = NULL;
1882 struct symbol *symbol = NULL;
1883 struct obj_section *section = NULL;
1884 struct minimal_symbol *msymbol = NULL;
1885 /* Line number. Line numbers start at 1 and proceed through symtab->nlines.
1886 0 is never a valid line number; it is used to indicate that line number
1887 information is not available. */
1888 int line = 0;
1889
1890 CORE_ADDR pc = 0;
1891 CORE_ADDR end = 0;
1892 bool explicit_pc = false;
1893 bool explicit_line = false;
1894
1895 /* The probe associated with this symtab_and_line. */
1896 probe *prob = NULL;
1897 /* If PROBE is not NULL, then this is the objfile in which the probe
1898 originated. */
1899 struct objfile *objfile = NULL;
1900 };
1901
1902 \f
1903
1904 /* Given a pc value, return line number it is in. Second arg nonzero means
1905 if pc is on the boundary use the previous statement's line number. */
1906
1907 extern struct symtab_and_line find_pc_line (CORE_ADDR, int);
1908
1909 /* Same function, but specify a section as well as an address. */
1910
1911 extern struct symtab_and_line find_pc_sect_line (CORE_ADDR,
1912 struct obj_section *, int);
1913
1914 /* Wrapper around find_pc_line to just return the symtab. */
1915
1916 extern struct symtab *find_pc_line_symtab (CORE_ADDR);
1917
1918 /* Given a symtab and line number, return the pc there. */
1919
1920 extern bool find_line_pc (struct symtab *, int, CORE_ADDR *);
1921
1922 extern bool find_line_pc_range (struct symtab_and_line, CORE_ADDR *,
1923 CORE_ADDR *);
1924
1925 extern void resolve_sal_pc (struct symtab_and_line *);
1926
1927 /* solib.c */
1928
1929 extern void clear_solib (void);
1930
1931 /* The reason we're calling into a completion match list collector
1932 function. */
1933 enum class complete_symbol_mode
1934 {
1935 /* Completing an expression. */
1936 EXPRESSION,
1937
1938 /* Completing a linespec. */
1939 LINESPEC,
1940 };
1941
1942 extern void default_collect_symbol_completion_matches_break_on
1943 (completion_tracker &tracker,
1944 complete_symbol_mode mode,
1945 symbol_name_match_type name_match_type,
1946 const char *text, const char *word, const char *break_on,
1947 enum type_code code);
1948 extern void default_collect_symbol_completion_matches
1949 (completion_tracker &tracker,
1950 complete_symbol_mode,
1951 symbol_name_match_type name_match_type,
1952 const char *,
1953 const char *,
1954 enum type_code);
1955 extern void collect_symbol_completion_matches
1956 (completion_tracker &tracker,
1957 complete_symbol_mode mode,
1958 symbol_name_match_type name_match_type,
1959 const char *, const char *);
1960 extern void collect_symbol_completion_matches_type (completion_tracker &tracker,
1961 const char *, const char *,
1962 enum type_code);
1963
1964 extern void collect_file_symbol_completion_matches
1965 (completion_tracker &tracker,
1966 complete_symbol_mode,
1967 symbol_name_match_type name_match_type,
1968 const char *, const char *, const char *);
1969
1970 extern completion_list
1971 make_source_files_completion_list (const char *, const char *);
1972
1973 /* Return whether SYM is a function/method, as opposed to a data symbol. */
1974
1975 extern bool symbol_is_function_or_method (symbol *sym);
1976
1977 /* Return whether MSYMBOL is a function/method, as opposed to a data
1978 symbol */
1979
1980 extern bool symbol_is_function_or_method (minimal_symbol *msymbol);
1981
1982 /* Return whether SYM should be skipped in completion mode MODE. In
1983 linespec mode, we're only interested in functions/methods. */
1984
1985 template<typename Symbol>
1986 static bool
1987 completion_skip_symbol (complete_symbol_mode mode, Symbol *sym)
1988 {
1989 return (mode == complete_symbol_mode::LINESPEC
1990 && !symbol_is_function_or_method (sym));
1991 }
1992
1993 /* symtab.c */
1994
1995 bool matching_obj_sections (struct obj_section *, struct obj_section *);
1996
1997 extern struct symtab *find_line_symtab (struct symtab *, int, int *, bool *);
1998
1999 /* Given a function symbol SYM, find the symtab and line for the start
2000 of the function. If FUNFIRSTLINE is true, we want the first line
2001 of real code inside the function. */
2002 extern symtab_and_line find_function_start_sal (symbol *sym, bool
2003 funfirstline);
2004
2005 /* Same, but start with a function address/section instead of a
2006 symbol. */
2007 extern symtab_and_line find_function_start_sal (CORE_ADDR func_addr,
2008 obj_section *section,
2009 bool funfirstline);
2010
2011 extern void skip_prologue_sal (struct symtab_and_line *);
2012
2013 /* symtab.c */
2014
2015 extern CORE_ADDR skip_prologue_using_sal (struct gdbarch *gdbarch,
2016 CORE_ADDR func_addr);
2017
2018 extern struct symbol *fixup_symbol_section (struct symbol *,
2019 struct objfile *);
2020
2021 /* If MSYMBOL is an text symbol, look for a function debug symbol with
2022 the same address. Returns NULL if not found. This is necessary in
2023 case a function is an alias to some other function, because debug
2024 information is only emitted for the alias target function's
2025 definition, not for the alias. */
2026 extern symbol *find_function_alias_target (bound_minimal_symbol msymbol);
2027
2028 /* Symbol searching */
2029 /* Note: struct symbol_search, search_symbols, et.al. are declared here,
2030 instead of making them local to symtab.c, for gdbtk's sake. */
2031
2032 /* When using search_symbols, a vector of the following structs is
2033 returned. */
2034 struct symbol_search
2035 {
2036 symbol_search (int block_, struct symbol *symbol_)
2037 : block (block_),
2038 symbol (symbol_)
2039 {
2040 msymbol.minsym = nullptr;
2041 msymbol.objfile = nullptr;
2042 }
2043
2044 symbol_search (int block_, struct minimal_symbol *minsym,
2045 struct objfile *objfile)
2046 : block (block_),
2047 symbol (nullptr)
2048 {
2049 msymbol.minsym = minsym;
2050 msymbol.objfile = objfile;
2051 }
2052
2053 bool operator< (const symbol_search &other) const
2054 {
2055 return compare_search_syms (*this, other) < 0;
2056 }
2057
2058 bool operator== (const symbol_search &other) const
2059 {
2060 return compare_search_syms (*this, other) == 0;
2061 }
2062
2063 /* The block in which the match was found. Could be, for example,
2064 STATIC_BLOCK or GLOBAL_BLOCK. */
2065 int block;
2066
2067 /* Information describing what was found.
2068
2069 If symbol is NOT NULL, then information was found for this match. */
2070 struct symbol *symbol;
2071
2072 /* If msymbol is non-null, then a match was made on something for
2073 which only minimal_symbols exist. */
2074 struct bound_minimal_symbol msymbol;
2075
2076 private:
2077
2078 static int compare_search_syms (const symbol_search &sym_a,
2079 const symbol_search &sym_b);
2080 };
2081
2082 extern std::vector<symbol_search> search_symbols (const char *,
2083 enum search_domain,
2084 const char *,
2085 int,
2086 const char **,
2087 bool);
2088
2089 /* When searching for Fortran symbols within modules (functions/variables)
2090 we return a vector of this type. The first item in the pair is the
2091 module symbol, and the second item is the symbol for the function or
2092 variable we found. */
2093 typedef std::pair<symbol_search, symbol_search> module_symbol_search;
2094
2095 /* Searches the symbols to find function and variables symbols (depending
2096 on KIND) within Fortran modules. The MODULE_REGEXP matches against the
2097 name of the module, REGEXP matches against the name of the symbol within
2098 the module, and TYPE_REGEXP matches against the type of the symbol
2099 within the module. */
2100 extern std::vector<module_symbol_search> search_module_symbols
2101 (const char *module_regexp, const char *regexp,
2102 const char *type_regexp, search_domain kind);
2103
2104 extern bool treg_matches_sym_type_name (const compiled_regex &treg,
2105 const struct symbol *sym);
2106
2107 /* The name of the ``main'' function. */
2108 extern const char *main_name ();
2109 extern enum language main_language (void);
2110
2111 /* Lookup symbol NAME from DOMAIN in MAIN_OBJFILE's global or static blocks,
2112 as specified by BLOCK_INDEX.
2113 This searches MAIN_OBJFILE as well as any associated separate debug info
2114 objfiles of MAIN_OBJFILE.
2115 BLOCK_INDEX can be GLOBAL_BLOCK or STATIC_BLOCK.
2116 Upon success fixes up the symbol's section if necessary. */
2117
2118 extern struct block_symbol
2119 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2120 enum block_enum block_index,
2121 const char *name,
2122 const domain_enum domain);
2123
2124 /* Return 1 if the supplied producer string matches the ARM RealView
2125 compiler (armcc). */
2126 bool producer_is_realview (const char *producer);
2127
2128 void fixup_section (struct general_symbol_info *ginfo,
2129 CORE_ADDR addr, struct objfile *objfile);
2130
2131 /* Look up objfile containing BLOCK. */
2132
2133 struct objfile *lookup_objfile_from_block (const struct block *block);
2134
2135 extern unsigned int symtab_create_debug;
2136
2137 extern unsigned int symbol_lookup_debug;
2138
2139 extern bool basenames_may_differ;
2140
2141 bool compare_filenames_for_search (const char *filename,
2142 const char *search_name);
2143
2144 bool compare_glob_filenames_for_search (const char *filename,
2145 const char *search_name);
2146
2147 bool iterate_over_some_symtabs (const char *name,
2148 const char *real_path,
2149 struct compunit_symtab *first,
2150 struct compunit_symtab *after_last,
2151 gdb::function_view<bool (symtab *)> callback);
2152
2153 void iterate_over_symtabs (const char *name,
2154 gdb::function_view<bool (symtab *)> callback);
2155
2156
2157 std::vector<CORE_ADDR> find_pcs_for_symtab_line
2158 (struct symtab *symtab, int line, struct linetable_entry **best_entry);
2159
2160 /* Prototype for callbacks for LA_ITERATE_OVER_SYMBOLS. The callback
2161 is called once per matching symbol SYM. The callback should return
2162 true to indicate that LA_ITERATE_OVER_SYMBOLS should continue
2163 iterating, or false to indicate that the iteration should end. */
2164
2165 typedef bool (symbol_found_callback_ftype) (struct block_symbol *bsym);
2166
2167 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2168
2169 For each symbol that matches, CALLBACK is called. The symbol is
2170 passed to the callback.
2171
2172 If CALLBACK returns false, the iteration ends and this function
2173 returns false. Otherwise, the search continues, and the function
2174 eventually returns true. */
2175
2176 bool iterate_over_symbols (const struct block *block,
2177 const lookup_name_info &name,
2178 const domain_enum domain,
2179 gdb::function_view<symbol_found_callback_ftype> callback);
2180
2181 /* Like iterate_over_symbols, but if all calls to CALLBACK return
2182 true, then calls CALLBACK one additional time with a block_symbol
2183 that has a valid block but a NULL symbol. */
2184
2185 bool iterate_over_symbols_terminated
2186 (const struct block *block,
2187 const lookup_name_info &name,
2188 const domain_enum domain,
2189 gdb::function_view<symbol_found_callback_ftype> callback);
2190
2191 /* Storage type used by demangle_for_lookup. demangle_for_lookup
2192 either returns a const char * pointer that points to either of the
2193 fields of this type, or a pointer to the input NAME. This is done
2194 this way because the underlying functions that demangle_for_lookup
2195 calls either return a std::string (e.g., cp_canonicalize_string) or
2196 a malloc'ed buffer (libiberty's demangled), and we want to avoid
2197 unnecessary reallocation/string copying. */
2198 class demangle_result_storage
2199 {
2200 public:
2201
2202 /* Swap the std::string storage with STR, and return a pointer to
2203 the beginning of the new string. */
2204 const char *swap_string (std::string &str)
2205 {
2206 std::swap (m_string, str);
2207 return m_string.c_str ();
2208 }
2209
2210 /* Set the malloc storage to now point at PTR. Any previous malloc
2211 storage is released. */
2212 const char *set_malloc_ptr (char *ptr)
2213 {
2214 m_malloc.reset (ptr);
2215 return ptr;
2216 }
2217
2218 private:
2219
2220 /* The storage. */
2221 std::string m_string;
2222 gdb::unique_xmalloc_ptr<char> m_malloc;
2223 };
2224
2225 const char *
2226 demangle_for_lookup (const char *name, enum language lang,
2227 demangle_result_storage &storage);
2228
2229 struct symbol *allocate_symbol (struct objfile *);
2230
2231 void initialize_objfile_symbol (struct symbol *);
2232
2233 struct template_symbol *allocate_template_symbol (struct objfile *);
2234
2235 /* Test to see if the symbol of language SYMBOL_LANGUAGE specified by
2236 SYMNAME (which is already demangled for C++ symbols) matches
2237 SYM_TEXT in the first SYM_TEXT_LEN characters. If so, add it to
2238 the current completion list. */
2239 void completion_list_add_name (completion_tracker &tracker,
2240 language symbol_language,
2241 const char *symname,
2242 const lookup_name_info &lookup_name,
2243 const char *text, const char *word);
2244
2245 /* A simple symbol searching class. */
2246
2247 class symbol_searcher
2248 {
2249 public:
2250 /* Returns the symbols found for the search. */
2251 const std::vector<block_symbol> &
2252 matching_symbols () const
2253 {
2254 return m_symbols;
2255 }
2256
2257 /* Returns the minimal symbols found for the search. */
2258 const std::vector<bound_minimal_symbol> &
2259 matching_msymbols () const
2260 {
2261 return m_minimal_symbols;
2262 }
2263
2264 /* Search for all symbols named NAME in LANGUAGE with DOMAIN, restricting
2265 search to FILE_SYMTABS and SEARCH_PSPACE, both of which may be NULL
2266 to search all symtabs and program spaces. */
2267 void find_all_symbols (const std::string &name,
2268 const struct language_defn *language,
2269 enum search_domain search_domain,
2270 std::vector<symtab *> *search_symtabs,
2271 struct program_space *search_pspace);
2272
2273 /* Reset this object to perform another search. */
2274 void reset ()
2275 {
2276 m_symbols.clear ();
2277 m_minimal_symbols.clear ();
2278 }
2279
2280 private:
2281 /* Matching debug symbols. */
2282 std::vector<block_symbol> m_symbols;
2283
2284 /* Matching non-debug symbols. */
2285 std::vector<bound_minimal_symbol> m_minimal_symbols;
2286 };
2287
2288 #endif /* !defined(SYMTAB_H) */
This page took 0.104641 seconds and 4 git commands to generate.