131a74d4bae497c993296844dccdaf818ab87bf1
[deliverable/binutils-gdb.git] / gdb / symtab.h
1 /* Symbol table definitions for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (SYMTAB_H)
21 #define SYMTAB_H 1
22
23 #include <array>
24 #include <vector>
25 #include <string>
26 #include "gdbsupport/gdb_vecs.h"
27 #include "gdbtypes.h"
28 #include "gdb_regex.h"
29 #include "gdbsupport/enum-flags.h"
30 #include "gdbsupport/function-view.h"
31 #include "gdbsupport/gdb_optional.h"
32 #include "gdbsupport/next-iterator.h"
33 #include "completer.h"
34
35 /* Opaque declarations. */
36 struct ui_file;
37 struct frame_info;
38 struct symbol;
39 struct obstack;
40 struct objfile;
41 struct block;
42 struct blockvector;
43 struct axs_value;
44 struct agent_expr;
45 struct program_space;
46 struct language_defn;
47 struct common_block;
48 struct obj_section;
49 struct cmd_list_element;
50 class probe;
51 struct lookup_name_info;
52
53 /* How to match a lookup name against a symbol search name. */
54 enum class symbol_name_match_type
55 {
56 /* Wild matching. Matches unqualified symbol names in all
57 namespace/module/packages, etc. */
58 WILD,
59
60 /* Full matching. The lookup name indicates a fully-qualified name,
61 and only matches symbol search names in the specified
62 namespace/module/package. */
63 FULL,
64
65 /* Search name matching. This is like FULL, but the search name did
66 not come from the user; instead it is already a search name
67 retrieved from a SYMBOL_SEARCH_NAME/MSYMBOL_SEARCH_NAME call.
68 For Ada, this avoids re-encoding an already-encoded search name
69 (which would potentially incorrectly lowercase letters in the
70 linkage/search name that should remain uppercase). For C++, it
71 avoids trying to demangle a name we already know is
72 demangled. */
73 SEARCH_NAME,
74
75 /* Expression matching. The same as FULL matching in most
76 languages. The same as WILD matching in Ada. */
77 EXPRESSION,
78 };
79
80 /* Hash the given symbol search name according to LANGUAGE's
81 rules. */
82 extern unsigned int search_name_hash (enum language language,
83 const char *search_name);
84
85 /* Ada-specific bits of a lookup_name_info object. This is lazily
86 constructed on demand. */
87
88 class ada_lookup_name_info final
89 {
90 public:
91 /* Construct. */
92 explicit ada_lookup_name_info (const lookup_name_info &lookup_name);
93
94 /* Compare SYMBOL_SEARCH_NAME with our lookup name, using MATCH_TYPE
95 as name match type. Returns true if there's a match, false
96 otherwise. If non-NULL, store the matching results in MATCH. */
97 bool matches (const char *symbol_search_name,
98 symbol_name_match_type match_type,
99 completion_match_result *comp_match_res) const;
100
101 /* The Ada-encoded lookup name. */
102 const std::string &lookup_name () const
103 { return m_encoded_name; }
104
105 /* Return true if we're supposed to be doing a wild match look
106 up. */
107 bool wild_match_p () const
108 { return m_wild_match_p; }
109
110 /* Return true if we're looking up a name inside package
111 Standard. */
112 bool standard_p () const
113 { return m_standard_p; }
114
115 /* Return true if doing a verbatim match. */
116 bool verbatim_p () const
117 { return m_verbatim_p; }
118
119 private:
120 /* The Ada-encoded lookup name. */
121 std::string m_encoded_name;
122
123 /* Whether the user-provided lookup name was Ada encoded. If so,
124 then return encoded names in the 'matches' method's 'completion
125 match result' output. */
126 bool m_encoded_p : 1;
127
128 /* True if really doing wild matching. Even if the user requests
129 wild matching, some cases require full matching. */
130 bool m_wild_match_p : 1;
131
132 /* True if doing a verbatim match. This is true if the decoded
133 version of the symbol name is wrapped in '<'/'>'. This is an
134 escape hatch users can use to look up symbols the Ada encoding
135 does not understand. */
136 bool m_verbatim_p : 1;
137
138 /* True if the user specified a symbol name that is inside package
139 Standard. Symbol names inside package Standard are handled
140 specially. We always do a non-wild match of the symbol name
141 without the "standard__" prefix, and only search static and
142 global symbols. This was primarily introduced in order to allow
143 the user to specifically access the standard exceptions using,
144 for instance, Standard.Constraint_Error when Constraint_Error is
145 ambiguous (due to the user defining its own Constraint_Error
146 entity inside its program). */
147 bool m_standard_p : 1;
148 };
149
150 /* Language-specific bits of a lookup_name_info object, for languages
151 that do name searching using demangled names (C++/D/Go). This is
152 lazily constructed on demand. */
153
154 struct demangle_for_lookup_info final
155 {
156 public:
157 demangle_for_lookup_info (const lookup_name_info &lookup_name,
158 language lang);
159
160 /* The demangled lookup name. */
161 const std::string &lookup_name () const
162 { return m_demangled_name; }
163
164 private:
165 /* The demangled lookup name. */
166 std::string m_demangled_name;
167 };
168
169 /* Object that aggregates all information related to a symbol lookup
170 name. I.e., the name that is matched against the symbol's search
171 name. Caches per-language information so that it doesn't require
172 recomputing it for every symbol comparison, like for example the
173 Ada encoded name and the symbol's name hash for a given language.
174 The object is conceptually immutable once constructed, and thus has
175 no setters. This is to prevent some code path from tweaking some
176 property of the lookup name for some local reason and accidentally
177 altering the results of any continuing search(es).
178 lookup_name_info objects are generally passed around as a const
179 reference to reinforce that. (They're not passed around by value
180 because they're not small.) */
181 class lookup_name_info final
182 {
183 public:
184 /* Create a new object. */
185 lookup_name_info (std::string name,
186 symbol_name_match_type match_type,
187 bool completion_mode = false,
188 bool ignore_parameters = false)
189 : m_match_type (match_type),
190 m_completion_mode (completion_mode),
191 m_ignore_parameters (ignore_parameters),
192 m_name (std::move (name))
193 {}
194
195 /* Getters. See description of each corresponding field. */
196 symbol_name_match_type match_type () const { return m_match_type; }
197 bool completion_mode () const { return m_completion_mode; }
198 const std::string &name () const { return m_name; }
199 const bool ignore_parameters () const { return m_ignore_parameters; }
200
201 /* Return a version of this lookup name that is usable with
202 comparisons against symbols have no parameter info, such as
203 psymbols and GDB index symbols. */
204 lookup_name_info make_ignore_params () const
205 {
206 return lookup_name_info (m_name, m_match_type, m_completion_mode,
207 true /* ignore params */);
208 }
209
210 /* Get the search name hash for searches in language LANG. */
211 unsigned int search_name_hash (language lang) const
212 {
213 /* Only compute each language's hash once. */
214 if (!m_demangled_hashes_p[lang])
215 {
216 m_demangled_hashes[lang]
217 = ::search_name_hash (lang, language_lookup_name (lang).c_str ());
218 m_demangled_hashes_p[lang] = true;
219 }
220 return m_demangled_hashes[lang];
221 }
222
223 /* Get the search name for searches in language LANG. */
224 const std::string &language_lookup_name (language lang) const
225 {
226 switch (lang)
227 {
228 case language_ada:
229 return ada ().lookup_name ();
230 case language_cplus:
231 return cplus ().lookup_name ();
232 case language_d:
233 return d ().lookup_name ();
234 case language_go:
235 return go ().lookup_name ();
236 default:
237 return m_name;
238 }
239 }
240
241 /* Get the Ada-specific lookup info. */
242 const ada_lookup_name_info &ada () const
243 {
244 maybe_init (m_ada);
245 return *m_ada;
246 }
247
248 /* Get the C++-specific lookup info. */
249 const demangle_for_lookup_info &cplus () const
250 {
251 maybe_init (m_cplus, language_cplus);
252 return *m_cplus;
253 }
254
255 /* Get the D-specific lookup info. */
256 const demangle_for_lookup_info &d () const
257 {
258 maybe_init (m_d, language_d);
259 return *m_d;
260 }
261
262 /* Get the Go-specific lookup info. */
263 const demangle_for_lookup_info &go () const
264 {
265 maybe_init (m_go, language_go);
266 return *m_go;
267 }
268
269 /* Get a reference to a lookup_name_info object that matches any
270 symbol name. */
271 static const lookup_name_info &match_any ();
272
273 private:
274 /* Initialize FIELD, if not initialized yet. */
275 template<typename Field, typename... Args>
276 void maybe_init (Field &field, Args&&... args) const
277 {
278 if (!field)
279 field.emplace (*this, std::forward<Args> (args)...);
280 }
281
282 /* The lookup info as passed to the ctor. */
283 symbol_name_match_type m_match_type;
284 bool m_completion_mode;
285 bool m_ignore_parameters;
286 std::string m_name;
287
288 /* Language-specific info. These fields are filled lazily the first
289 time a lookup is done in the corresponding language. They're
290 mutable because lookup_name_info objects are typically passed
291 around by const reference (see intro), and they're conceptually
292 "cache" that can always be reconstructed from the non-mutable
293 fields. */
294 mutable gdb::optional<ada_lookup_name_info> m_ada;
295 mutable gdb::optional<demangle_for_lookup_info> m_cplus;
296 mutable gdb::optional<demangle_for_lookup_info> m_d;
297 mutable gdb::optional<demangle_for_lookup_info> m_go;
298
299 /* The demangled hashes. Stored in an array with one entry for each
300 possible language. The second array records whether we've
301 already computed the each language's hash. (These are separate
302 arrays instead of a single array of optional<unsigned> to avoid
303 alignment padding). */
304 mutable std::array<unsigned int, nr_languages> m_demangled_hashes;
305 mutable std::array<bool, nr_languages> m_demangled_hashes_p {};
306 };
307
308 /* Comparison function for completion symbol lookup.
309
310 Returns true if the symbol name matches against LOOKUP_NAME.
311
312 SYMBOL_SEARCH_NAME should be a symbol's "search" name.
313
314 On success and if non-NULL, COMP_MATCH_RES->match is set to point
315 to the symbol name as should be presented to the user as a
316 completion match list element. In most languages, this is the same
317 as the symbol's search name, but in some, like Ada, the display
318 name is dynamically computed within the comparison routine.
319
320 Also, on success and if non-NULL, COMP_MATCH_RES->match_for_lcd
321 points the part of SYMBOL_SEARCH_NAME that was considered to match
322 LOOKUP_NAME. E.g., in C++, in linespec/wild mode, if the symbol is
323 "foo::function()" and LOOKUP_NAME is "function(", MATCH_FOR_LCD
324 points to "function()" inside SYMBOL_SEARCH_NAME. */
325 typedef bool (symbol_name_matcher_ftype)
326 (const char *symbol_search_name,
327 const lookup_name_info &lookup_name,
328 completion_match_result *comp_match_res);
329
330 /* Some of the structures in this file are space critical.
331 The space-critical structures are:
332
333 struct general_symbol_info
334 struct symbol
335 struct partial_symbol
336
337 These structures are laid out to encourage good packing.
338 They use ENUM_BITFIELD and short int fields, and they order the
339 structure members so that fields less than a word are next
340 to each other so they can be packed together. */
341
342 /* Rearranged: used ENUM_BITFIELD and rearranged field order in
343 all the space critical structures (plus struct minimal_symbol).
344 Memory usage dropped from 99360768 bytes to 90001408 bytes.
345 I measured this with before-and-after tests of
346 "HEAD-old-gdb -readnow HEAD-old-gdb" and
347 "HEAD-new-gdb -readnow HEAD-old-gdb" on native i686-pc-linux-gnu,
348 red hat linux 8, with LD_LIBRARY_PATH=/usr/lib/debug,
349 typing "maint space 1" at the first command prompt.
350
351 Here is another measurement (from andrew c):
352 # no /usr/lib/debug, just plain glibc, like a normal user
353 gdb HEAD-old-gdb
354 (gdb) break internal_error
355 (gdb) run
356 (gdb) maint internal-error
357 (gdb) backtrace
358 (gdb) maint space 1
359
360 gdb gdb_6_0_branch 2003-08-19 space used: 8896512
361 gdb HEAD 2003-08-19 space used: 8904704
362 gdb HEAD 2003-08-21 space used: 8396800 (+symtab.h)
363 gdb HEAD 2003-08-21 space used: 8265728 (+gdbtypes.h)
364
365 The third line shows the savings from the optimizations in symtab.h.
366 The fourth line shows the savings from the optimizations in
367 gdbtypes.h. Both optimizations are in gdb HEAD now.
368
369 --chastain 2003-08-21 */
370
371 /* Define a structure for the information that is common to all symbol types,
372 including minimal symbols, partial symbols, and full symbols. In a
373 multilanguage environment, some language specific information may need to
374 be recorded along with each symbol. */
375
376 /* This structure is space critical. See space comments at the top. */
377
378 struct general_symbol_info
379 {
380 /* Name of the symbol. This is a required field. Storage for the
381 name is allocated on the objfile_obstack for the associated
382 objfile. For languages like C++ that make a distinction between
383 the mangled name and demangled name, this is the mangled
384 name. */
385
386 const char *name;
387
388 /* Value of the symbol. Which member of this union to use, and what
389 it means, depends on what kind of symbol this is and its
390 SYMBOL_CLASS. See comments there for more details. All of these
391 are in host byte order (though what they point to might be in
392 target byte order, e.g. LOC_CONST_BYTES). */
393
394 union
395 {
396 LONGEST ivalue;
397
398 const struct block *block;
399
400 const gdb_byte *bytes;
401
402 CORE_ADDR address;
403
404 /* A common block. Used with LOC_COMMON_BLOCK. */
405
406 const struct common_block *common_block;
407
408 /* For opaque typedef struct chain. */
409
410 struct symbol *chain;
411 }
412 value;
413
414 /* Since one and only one language can apply, wrap the language specific
415 information inside a union. */
416
417 union
418 {
419 /* A pointer to an obstack that can be used for storage associated
420 with this symbol. This is only used by Ada, and only when the
421 'ada_mangled' field is zero. */
422 struct obstack *obstack;
423
424 /* This is used by languages which wish to store a demangled name.
425 currently used by Ada, C++, and Objective C. */
426 const char *demangled_name;
427 }
428 language_specific;
429
430 /* Record the source code language that applies to this symbol.
431 This is used to select one of the fields from the language specific
432 union above. */
433
434 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
435
436 /* This is only used by Ada. If set, then the 'demangled_name' field
437 of language_specific is valid. Otherwise, the 'obstack' field is
438 valid. */
439 unsigned int ada_mangled : 1;
440
441 /* Which section is this symbol in? This is an index into
442 section_offsets for this objfile. Negative means that the symbol
443 does not get relocated relative to a section. */
444
445 short section;
446 };
447
448 extern void symbol_set_demangled_name (struct general_symbol_info *,
449 const char *,
450 struct obstack *);
451
452 extern const char *symbol_get_demangled_name
453 (const struct general_symbol_info *);
454
455 extern CORE_ADDR symbol_overlayed_address (CORE_ADDR, struct obj_section *);
456
457 /* Return the address of SYM. The MAYBE_COPIED flag must be set on
458 SYM. If SYM appears in the main program's minimal symbols, then
459 that minsym's address is returned; otherwise, SYM's address is
460 returned. This should generally only be used via the
461 SYMBOL_VALUE_ADDRESS macro. */
462
463 extern CORE_ADDR get_symbol_address (const struct symbol *sym);
464
465 /* Note that all the following SYMBOL_* macros are used with the
466 SYMBOL argument being either a partial symbol or
467 a full symbol. Both types have a ginfo field. In particular
468 the SYMBOL_SET_LANGUAGE, SYMBOL_DEMANGLED_NAME, etc.
469 macros cannot be entirely substituted by
470 functions, unless the callers are changed to pass in the ginfo
471 field only, instead of the SYMBOL parameter. */
472
473 #define SYMBOL_VALUE(symbol) (symbol)->ginfo.value.ivalue
474 #define SYMBOL_VALUE_ADDRESS(symbol) \
475 (((symbol)->maybe_copied) ? get_symbol_address (symbol) \
476 : ((symbol)->ginfo.value.address))
477 #define SET_SYMBOL_VALUE_ADDRESS(symbol, new_value) \
478 ((symbol)->ginfo.value.address = (new_value))
479 #define SYMBOL_VALUE_BYTES(symbol) (symbol)->ginfo.value.bytes
480 #define SYMBOL_VALUE_COMMON_BLOCK(symbol) (symbol)->ginfo.value.common_block
481 #define SYMBOL_BLOCK_VALUE(symbol) (symbol)->ginfo.value.block
482 #define SYMBOL_VALUE_CHAIN(symbol) (symbol)->ginfo.value.chain
483 #define SYMBOL_LANGUAGE(symbol) (symbol)->ginfo.language
484 #define SYMBOL_SECTION(symbol) (symbol)->ginfo.section
485 #define SYMBOL_OBJ_SECTION(objfile, symbol) \
486 (((symbol)->ginfo.section >= 0) \
487 ? (&(((objfile)->sections)[(symbol)->ginfo.section])) \
488 : NULL)
489
490 /* Initializes the language dependent portion of a symbol
491 depending upon the language for the symbol. */
492 #define SYMBOL_SET_LANGUAGE(symbol,language,obstack) \
493 (symbol_set_language (&(symbol)->ginfo, (language), (obstack)))
494 extern void symbol_set_language (struct general_symbol_info *symbol,
495 enum language language,
496 struct obstack *obstack);
497
498 /* Set just the linkage name of a symbol; do not try to demangle
499 it. Used for constructs which do not have a mangled name,
500 e.g. struct tags. Unlike SYMBOL_SET_NAMES, linkage_name must
501 be terminated and either already on the objfile's obstack or
502 permanently allocated. */
503 #define SYMBOL_SET_LINKAGE_NAME(symbol,linkage_name) \
504 (symbol)->ginfo.name = (linkage_name)
505
506 /* Set the linkage and natural names of a symbol, by demangling
507 the linkage name. If linkage_name may not be nullterminated,
508 copy_name must be set to true. */
509 #define SYMBOL_SET_NAMES(symbol,linkage_name,len,copy_name,objfile) \
510 symbol_set_names (&(symbol)->ginfo, linkage_name, len, copy_name, \
511 (objfile)->per_bfd)
512 extern void symbol_set_names (struct general_symbol_info *symbol,
513 const char *linkage_name, int len, bool copy_name,
514 struct objfile_per_bfd_storage *per_bfd);
515
516 /* Now come lots of name accessor macros. Short version as to when to
517 use which: Use SYMBOL_NATURAL_NAME to refer to the name of the
518 symbol in the original source code. Use SYMBOL_LINKAGE_NAME if you
519 want to know what the linker thinks the symbol's name is. Use
520 SYMBOL_PRINT_NAME for output. Use SYMBOL_DEMANGLED_NAME if you
521 specifically need to know whether SYMBOL_NATURAL_NAME and
522 SYMBOL_LINKAGE_NAME are different. */
523
524 /* Return SYMBOL's "natural" name, i.e. the name that it was called in
525 the original source code. In languages like C++ where symbols may
526 be mangled for ease of manipulation by the linker, this is the
527 demangled name. */
528
529 #define SYMBOL_NATURAL_NAME(symbol) \
530 (symbol_natural_name (&(symbol)->ginfo))
531 extern const char *symbol_natural_name
532 (const struct general_symbol_info *symbol);
533
534 /* Return SYMBOL's name from the point of view of the linker. In
535 languages like C++ where symbols may be mangled for ease of
536 manipulation by the linker, this is the mangled name; otherwise,
537 it's the same as SYMBOL_NATURAL_NAME. */
538
539 #define SYMBOL_LINKAGE_NAME(symbol) (symbol)->ginfo.name
540
541 /* Return the demangled name for a symbol based on the language for
542 that symbol. If no demangled name exists, return NULL. */
543 #define SYMBOL_DEMANGLED_NAME(symbol) \
544 (symbol_demangled_name (&(symbol)->ginfo))
545 extern const char *symbol_demangled_name
546 (const struct general_symbol_info *symbol);
547
548 /* Macro that returns a version of the name of a symbol that is
549 suitable for output. In C++ this is the "demangled" form of the
550 name if demangle is on and the "mangled" form of the name if
551 demangle is off. In other languages this is just the symbol name.
552 The result should never be NULL. Don't use this for internal
553 purposes (e.g. storing in a hashtable): it's only suitable for output.
554
555 N.B. symbol may be anything with a ginfo member,
556 e.g., struct symbol or struct minimal_symbol. */
557
558 #define SYMBOL_PRINT_NAME(symbol) \
559 (demangle ? SYMBOL_NATURAL_NAME (symbol) : SYMBOL_LINKAGE_NAME (symbol))
560 extern bool demangle;
561
562 /* Macro that returns the name to be used when sorting and searching symbols.
563 In C++, we search for the demangled form of a name,
564 and so sort symbols accordingly. In Ada, however, we search by mangled
565 name. If there is no distinct demangled name, then SYMBOL_SEARCH_NAME
566 returns the same value (same pointer) as SYMBOL_LINKAGE_NAME. */
567 #define SYMBOL_SEARCH_NAME(symbol) \
568 (symbol_search_name (&(symbol)->ginfo))
569 extern const char *symbol_search_name (const struct general_symbol_info *ginfo);
570
571 /* Return true if NAME matches the "search" name of SYMBOL, according
572 to the symbol's language. */
573 #define SYMBOL_MATCHES_SEARCH_NAME(symbol, name) \
574 symbol_matches_search_name (&(symbol)->ginfo, (name))
575
576 /* Helper for SYMBOL_MATCHES_SEARCH_NAME that works with both symbols
577 and psymbols. */
578 extern bool symbol_matches_search_name
579 (const struct general_symbol_info *gsymbol,
580 const lookup_name_info &name);
581
582 /* Compute the hash of the given symbol search name of a symbol of
583 language LANGUAGE. */
584 extern unsigned int search_name_hash (enum language language,
585 const char *search_name);
586
587 /* Classification types for a minimal symbol. These should be taken as
588 "advisory only", since if gdb can't easily figure out a
589 classification it simply selects mst_unknown. It may also have to
590 guess when it can't figure out which is a better match between two
591 types (mst_data versus mst_bss) for example. Since the minimal
592 symbol info is sometimes derived from the BFD library's view of a
593 file, we need to live with what information bfd supplies. */
594
595 enum minimal_symbol_type
596 {
597 mst_unknown = 0, /* Unknown type, the default */
598 mst_text, /* Generally executable instructions */
599
600 /* A GNU ifunc symbol, in the .text section. GDB uses to know
601 whether the user is setting a breakpoint on a GNU ifunc function,
602 and thus GDB needs to actually set the breakpoint on the target
603 function. It is also used to know whether the program stepped
604 into an ifunc resolver -- the resolver may get a separate
605 symbol/alias under a different name, but it'll have the same
606 address as the ifunc symbol. */
607 mst_text_gnu_ifunc, /* Executable code returning address
608 of executable code */
609
610 /* A GNU ifunc function descriptor symbol, in a data section
611 (typically ".opd"). Seen on architectures that use function
612 descriptors, like PPC64/ELFv1. In this case, this symbol's value
613 is the address of the descriptor. There'll be a corresponding
614 mst_text_gnu_ifunc synthetic symbol for the text/entry
615 address. */
616 mst_data_gnu_ifunc, /* Executable code returning address
617 of executable code */
618
619 mst_slot_got_plt, /* GOT entries for .plt sections */
620 mst_data, /* Generally initialized data */
621 mst_bss, /* Generally uninitialized data */
622 mst_abs, /* Generally absolute (nonrelocatable) */
623 /* GDB uses mst_solib_trampoline for the start address of a shared
624 library trampoline entry. Breakpoints for shared library functions
625 are put there if the shared library is not yet loaded.
626 After the shared library is loaded, lookup_minimal_symbol will
627 prefer the minimal symbol from the shared library (usually
628 a mst_text symbol) over the mst_solib_trampoline symbol, and the
629 breakpoints will be moved to their true address in the shared
630 library via breakpoint_re_set. */
631 mst_solib_trampoline, /* Shared library trampoline code */
632 /* For the mst_file* types, the names are only guaranteed to be unique
633 within a given .o file. */
634 mst_file_text, /* Static version of mst_text */
635 mst_file_data, /* Static version of mst_data */
636 mst_file_bss, /* Static version of mst_bss */
637 nr_minsym_types
638 };
639
640 /* The number of enum minimal_symbol_type values, with some padding for
641 reasonable growth. */
642 #define MINSYM_TYPE_BITS 4
643 gdb_static_assert (nr_minsym_types <= (1 << MINSYM_TYPE_BITS));
644
645 /* Define a simple structure used to hold some very basic information about
646 all defined global symbols (text, data, bss, abs, etc). The only required
647 information is the general_symbol_info.
648
649 In many cases, even if a file was compiled with no special options for
650 debugging at all, as long as was not stripped it will contain sufficient
651 information to build a useful minimal symbol table using this structure.
652 Even when a file contains enough debugging information to build a full
653 symbol table, these minimal symbols are still useful for quickly mapping
654 between names and addresses, and vice versa. They are also sometimes
655 used to figure out what full symbol table entries need to be read in. */
656
657 struct minimal_symbol : public general_symbol_info
658 {
659 /* Size of this symbol. dbx_end_psymtab in dbxread.c uses this
660 information to calculate the end of the partial symtab based on the
661 address of the last symbol plus the size of the last symbol. */
662
663 unsigned long size;
664
665 /* Which source file is this symbol in? Only relevant for mst_file_*. */
666 const char *filename;
667
668 /* Classification type for this minimal symbol. */
669
670 ENUM_BITFIELD(minimal_symbol_type) type : MINSYM_TYPE_BITS;
671
672 /* Non-zero if this symbol was created by gdb.
673 Such symbols do not appear in the output of "info var|fun". */
674 unsigned int created_by_gdb : 1;
675
676 /* Two flag bits provided for the use of the target. */
677 unsigned int target_flag_1 : 1;
678 unsigned int target_flag_2 : 1;
679
680 /* Nonzero iff the size of the minimal symbol has been set.
681 Symbol size information can sometimes not be determined, because
682 the object file format may not carry that piece of information. */
683 unsigned int has_size : 1;
684
685 /* For data symbols only, if this is set, then the symbol might be
686 subject to copy relocation. In this case, a minimal symbol
687 matching the symbol's linkage name is first looked for in the
688 main objfile. If found, then that address is used; otherwise the
689 address in this symbol is used. */
690
691 unsigned maybe_copied : 1;
692
693 /* Minimal symbols with the same hash key are kept on a linked
694 list. This is the link. */
695
696 struct minimal_symbol *hash_next;
697
698 /* Minimal symbols are stored in two different hash tables. This is
699 the `next' pointer for the demangled hash table. */
700
701 struct minimal_symbol *demangled_hash_next;
702
703 /* True if this symbol is of some data type. */
704
705 bool data_p () const;
706
707 /* True if MSYMBOL is of some text type. */
708
709 bool text_p () const;
710 };
711
712 /* Return the address of MINSYM, which comes from OBJF. The
713 MAYBE_COPIED flag must be set on MINSYM. If MINSYM appears in the
714 main program's minimal symbols, then that minsym's address is
715 returned; otherwise, MINSYM's address is returned. This should
716 generally only be used via the MSYMBOL_VALUE_ADDRESS macro. */
717
718 extern CORE_ADDR get_msymbol_address (struct objfile *objf,
719 const struct minimal_symbol *minsym);
720
721 #define MSYMBOL_TARGET_FLAG_1(msymbol) (msymbol)->target_flag_1
722 #define MSYMBOL_TARGET_FLAG_2(msymbol) (msymbol)->target_flag_2
723 #define MSYMBOL_SIZE(msymbol) ((msymbol)->size + 0)
724 #define SET_MSYMBOL_SIZE(msymbol, sz) \
725 do \
726 { \
727 (msymbol)->size = sz; \
728 (msymbol)->has_size = 1; \
729 } while (0)
730 #define MSYMBOL_HAS_SIZE(msymbol) ((msymbol)->has_size + 0)
731 #define MSYMBOL_TYPE(msymbol) (msymbol)->type
732
733 #define MSYMBOL_VALUE(symbol) (symbol)->value.ivalue
734 /* The unrelocated address of the minimal symbol. */
735 #define MSYMBOL_VALUE_RAW_ADDRESS(symbol) ((symbol)->value.address + 0)
736 /* The relocated address of the minimal symbol, using the section
737 offsets from OBJFILE. */
738 #define MSYMBOL_VALUE_ADDRESS(objfile, symbol) \
739 (((symbol)->maybe_copied) ? get_msymbol_address (objfile, symbol) \
740 : ((symbol)->value.address \
741 + ANOFFSET ((objfile)->section_offsets, ((symbol)->section))))
742 /* For a bound minsym, we can easily compute the address directly. */
743 #define BMSYMBOL_VALUE_ADDRESS(symbol) \
744 MSYMBOL_VALUE_ADDRESS ((symbol).objfile, (symbol).minsym)
745 #define SET_MSYMBOL_VALUE_ADDRESS(symbol, new_value) \
746 ((symbol)->value.address = (new_value))
747 #define MSYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
748 #define MSYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
749 #define MSYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
750 #define MSYMBOL_LANGUAGE(symbol) (symbol)->language
751 #define MSYMBOL_SECTION(symbol) (symbol)->section
752 #define MSYMBOL_OBJ_SECTION(objfile, symbol) \
753 (((symbol)->section >= 0) \
754 ? (&(((objfile)->sections)[(symbol)->section])) \
755 : NULL)
756
757 #define MSYMBOL_NATURAL_NAME(symbol) \
758 (symbol_natural_name (symbol))
759 #define MSYMBOL_LINKAGE_NAME(symbol) (symbol)->name
760 #define MSYMBOL_PRINT_NAME(symbol) \
761 (demangle ? MSYMBOL_NATURAL_NAME (symbol) : MSYMBOL_LINKAGE_NAME (symbol))
762 #define MSYMBOL_DEMANGLED_NAME(symbol) \
763 (symbol_demangled_name (symbol))
764 #define MSYMBOL_SEARCH_NAME(symbol) \
765 (symbol_search_name (symbol))
766
767 #include "minsyms.h"
768
769 \f
770
771 /* Represent one symbol name; a variable, constant, function or typedef. */
772
773 /* Different name domains for symbols. Looking up a symbol specifies a
774 domain and ignores symbol definitions in other name domains. */
775
776 typedef enum domain_enum_tag
777 {
778 /* UNDEF_DOMAIN is used when a domain has not been discovered or
779 none of the following apply. This usually indicates an error either
780 in the symbol information or in gdb's handling of symbols. */
781
782 UNDEF_DOMAIN,
783
784 /* VAR_DOMAIN is the usual domain. In C, this contains variables,
785 function names, typedef names and enum type values. */
786
787 VAR_DOMAIN,
788
789 /* STRUCT_DOMAIN is used in C to hold struct, union and enum type names.
790 Thus, if `struct foo' is used in a C program, it produces a symbol named
791 `foo' in the STRUCT_DOMAIN. */
792
793 STRUCT_DOMAIN,
794
795 /* MODULE_DOMAIN is used in Fortran to hold module type names. */
796
797 MODULE_DOMAIN,
798
799 /* LABEL_DOMAIN may be used for names of labels (for gotos). */
800
801 LABEL_DOMAIN,
802
803 /* Fortran common blocks. Their naming must be separate from VAR_DOMAIN.
804 They also always use LOC_COMMON_BLOCK. */
805 COMMON_BLOCK_DOMAIN,
806
807 /* This must remain last. */
808 NR_DOMAINS
809 } domain_enum;
810
811 /* The number of bits in a symbol used to represent the domain. */
812
813 #define SYMBOL_DOMAIN_BITS 3
814 gdb_static_assert (NR_DOMAINS <= (1 << SYMBOL_DOMAIN_BITS));
815
816 extern const char *domain_name (domain_enum);
817
818 /* Searching domains, used for `search_symbols'. Element numbers are
819 hardcoded in GDB, check all enum uses before changing it. */
820
821 enum search_domain
822 {
823 /* Everything in VAR_DOMAIN minus FUNCTIONS_DOMAIN and
824 TYPES_DOMAIN. */
825 VARIABLES_DOMAIN = 0,
826
827 /* All functions -- for some reason not methods, though. */
828 FUNCTIONS_DOMAIN = 1,
829
830 /* All defined types */
831 TYPES_DOMAIN = 2,
832
833 /* Any type. */
834 ALL_DOMAIN = 3
835 };
836
837 extern const char *search_domain_name (enum search_domain);
838
839 /* An address-class says where to find the value of a symbol. */
840
841 enum address_class
842 {
843 /* Not used; catches errors. */
844
845 LOC_UNDEF,
846
847 /* Value is constant int SYMBOL_VALUE, host byteorder. */
848
849 LOC_CONST,
850
851 /* Value is at fixed address SYMBOL_VALUE_ADDRESS. */
852
853 LOC_STATIC,
854
855 /* Value is in register. SYMBOL_VALUE is the register number
856 in the original debug format. SYMBOL_REGISTER_OPS holds a
857 function that can be called to transform this into the
858 actual register number this represents in a specific target
859 architecture (gdbarch).
860
861 For some symbol formats (stabs, for some compilers at least),
862 the compiler generates two symbols, an argument and a register.
863 In some cases we combine them to a single LOC_REGISTER in symbol
864 reading, but currently not for all cases (e.g. it's passed on the
865 stack and then loaded into a register). */
866
867 LOC_REGISTER,
868
869 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */
870
871 LOC_ARG,
872
873 /* Value address is at SYMBOL_VALUE offset in arglist. */
874
875 LOC_REF_ARG,
876
877 /* Value is in specified register. Just like LOC_REGISTER except the
878 register holds the address of the argument instead of the argument
879 itself. This is currently used for the passing of structs and unions
880 on sparc and hppa. It is also used for call by reference where the
881 address is in a register, at least by mipsread.c. */
882
883 LOC_REGPARM_ADDR,
884
885 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */
886
887 LOC_LOCAL,
888
889 /* Value not used; definition in SYMBOL_TYPE. Symbols in the domain
890 STRUCT_DOMAIN all have this class. */
891
892 LOC_TYPEDEF,
893
894 /* Value is address SYMBOL_VALUE_ADDRESS in the code. */
895
896 LOC_LABEL,
897
898 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'.
899 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address
900 of the block. Function names have this class. */
901
902 LOC_BLOCK,
903
904 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in
905 target byte order. */
906
907 LOC_CONST_BYTES,
908
909 /* Value is at fixed address, but the address of the variable has
910 to be determined from the minimal symbol table whenever the
911 variable is referenced.
912 This happens if debugging information for a global symbol is
913 emitted and the corresponding minimal symbol is defined
914 in another object file or runtime common storage.
915 The linker might even remove the minimal symbol if the global
916 symbol is never referenced, in which case the symbol remains
917 unresolved.
918
919 GDB would normally find the symbol in the minimal symbol table if it will
920 not find it in the full symbol table. But a reference to an external
921 symbol in a local block shadowing other definition requires full symbol
922 without possibly having its address available for LOC_STATIC. Testcase
923 is provided as `gdb.dwarf2/dw2-unresolved.exp'.
924
925 This is also used for thread local storage (TLS) variables. In this case,
926 the address of the TLS variable must be determined when the variable is
927 referenced, from the MSYMBOL_VALUE_RAW_ADDRESS, which is the offset
928 of the TLS variable in the thread local storage of the shared
929 library/object. */
930
931 LOC_UNRESOLVED,
932
933 /* The variable does not actually exist in the program.
934 The value is ignored. */
935
936 LOC_OPTIMIZED_OUT,
937
938 /* The variable's address is computed by a set of location
939 functions (see "struct symbol_computed_ops" below). */
940 LOC_COMPUTED,
941
942 /* The variable uses general_symbol_info->value->common_block field.
943 It also always uses COMMON_BLOCK_DOMAIN. */
944 LOC_COMMON_BLOCK,
945
946 /* Not used, just notes the boundary of the enum. */
947 LOC_FINAL_VALUE
948 };
949
950 /* The number of bits needed for values in enum address_class, with some
951 padding for reasonable growth, and room for run-time registered address
952 classes. See symtab.c:MAX_SYMBOL_IMPLS.
953 This is a #define so that we can have a assertion elsewhere to
954 verify that we have reserved enough space for synthetic address
955 classes. */
956 #define SYMBOL_ACLASS_BITS 5
957 gdb_static_assert (LOC_FINAL_VALUE <= (1 << SYMBOL_ACLASS_BITS));
958
959 /* The methods needed to implement LOC_COMPUTED. These methods can
960 use the symbol's .aux_value for additional per-symbol information.
961
962 At present this is only used to implement location expressions. */
963
964 struct symbol_computed_ops
965 {
966
967 /* Return the value of the variable SYMBOL, relative to the stack
968 frame FRAME. If the variable has been optimized out, return
969 zero.
970
971 Iff `read_needs_frame (SYMBOL)' is not SYMBOL_NEEDS_FRAME, then
972 FRAME may be zero. */
973
974 struct value *(*read_variable) (struct symbol * symbol,
975 struct frame_info * frame);
976
977 /* Read variable SYMBOL like read_variable at (callee) FRAME's function
978 entry. SYMBOL should be a function parameter, otherwise
979 NO_ENTRY_VALUE_ERROR will be thrown. */
980 struct value *(*read_variable_at_entry) (struct symbol *symbol,
981 struct frame_info *frame);
982
983 /* Find the "symbol_needs_kind" value for the given symbol. This
984 value determines whether reading the symbol needs memory (e.g., a
985 global variable), just registers (a thread-local), or a frame (a
986 local variable). */
987 enum symbol_needs_kind (*get_symbol_read_needs) (struct symbol * symbol);
988
989 /* Write to STREAM a natural-language description of the location of
990 SYMBOL, in the context of ADDR. */
991 void (*describe_location) (struct symbol * symbol, CORE_ADDR addr,
992 struct ui_file * stream);
993
994 /* Non-zero if this symbol's address computation is dependent on PC. */
995 unsigned char location_has_loclist;
996
997 /* Tracepoint support. Append bytecodes to the tracepoint agent
998 expression AX that push the address of the object SYMBOL. Set
999 VALUE appropriately. Note --- for objects in registers, this
1000 needn't emit any code; as long as it sets VALUE properly, then
1001 the caller will generate the right code in the process of
1002 treating this as an lvalue or rvalue. */
1003
1004 void (*tracepoint_var_ref) (struct symbol *symbol, struct agent_expr *ax,
1005 struct axs_value *value);
1006
1007 /* Generate C code to compute the location of SYMBOL. The C code is
1008 emitted to STREAM. GDBARCH is the current architecture and PC is
1009 the PC at which SYMBOL's location should be evaluated.
1010 REGISTERS_USED is a vector indexed by register number; the
1011 generator function should set an element in this vector if the
1012 corresponding register is needed by the location computation.
1013 The generated C code must assign the location to a local
1014 variable; this variable's name is RESULT_NAME. */
1015
1016 void (*generate_c_location) (struct symbol *symbol, string_file *stream,
1017 struct gdbarch *gdbarch,
1018 unsigned char *registers_used,
1019 CORE_ADDR pc, const char *result_name);
1020
1021 };
1022
1023 /* The methods needed to implement LOC_BLOCK for inferior functions.
1024 These methods can use the symbol's .aux_value for additional
1025 per-symbol information. */
1026
1027 struct symbol_block_ops
1028 {
1029 /* Fill in *START and *LENGTH with DWARF block data of function
1030 FRAMEFUNC valid for inferior context address PC. Set *LENGTH to
1031 zero if such location is not valid for PC; *START is left
1032 uninitialized in such case. */
1033 void (*find_frame_base_location) (struct symbol *framefunc, CORE_ADDR pc,
1034 const gdb_byte **start, size_t *length);
1035
1036 /* Return the frame base address. FRAME is the frame for which we want to
1037 compute the base address while FRAMEFUNC is the symbol for the
1038 corresponding function. Return 0 on failure (FRAMEFUNC may not hold the
1039 information we need).
1040
1041 This method is designed to work with static links (nested functions
1042 handling). Static links are function properties whose evaluation returns
1043 the frame base address for the enclosing frame. However, there are
1044 multiple definitions for "frame base": the content of the frame base
1045 register, the CFA as defined by DWARF unwinding information, ...
1046
1047 So this specific method is supposed to compute the frame base address such
1048 as for nested functions, the static link computes the same address. For
1049 instance, considering DWARF debugging information, the static link is
1050 computed with DW_AT_static_link and this method must be used to compute
1051 the corresponding DW_AT_frame_base attribute. */
1052 CORE_ADDR (*get_frame_base) (struct symbol *framefunc,
1053 struct frame_info *frame);
1054 };
1055
1056 /* Functions used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1057
1058 struct symbol_register_ops
1059 {
1060 int (*register_number) (struct symbol *symbol, struct gdbarch *gdbarch);
1061 };
1062
1063 /* Objects of this type are used to find the address class and the
1064 various computed ops vectors of a symbol. */
1065
1066 struct symbol_impl
1067 {
1068 enum address_class aclass;
1069
1070 /* Used with LOC_COMPUTED. */
1071 const struct symbol_computed_ops *ops_computed;
1072
1073 /* Used with LOC_BLOCK. */
1074 const struct symbol_block_ops *ops_block;
1075
1076 /* Used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1077 const struct symbol_register_ops *ops_register;
1078 };
1079
1080 /* struct symbol has some subclasses. This enum is used to
1081 differentiate between them. */
1082
1083 enum symbol_subclass_kind
1084 {
1085 /* Plain struct symbol. */
1086 SYMBOL_NONE,
1087
1088 /* struct template_symbol. */
1089 SYMBOL_TEMPLATE,
1090
1091 /* struct rust_vtable_symbol. */
1092 SYMBOL_RUST_VTABLE
1093 };
1094
1095 /* This structure is space critical. See space comments at the top. */
1096
1097 struct symbol
1098 {
1099
1100 /* The general symbol info required for all types of symbols. */
1101
1102 struct general_symbol_info ginfo;
1103
1104 /* Data type of value */
1105
1106 struct type *type;
1107
1108 /* The owner of this symbol.
1109 Which one to use is defined by symbol.is_objfile_owned. */
1110
1111 union
1112 {
1113 /* The symbol table containing this symbol. This is the file associated
1114 with LINE. It can be NULL during symbols read-in but it is never NULL
1115 during normal operation. */
1116 struct symtab *symtab;
1117
1118 /* For types defined by the architecture. */
1119 struct gdbarch *arch;
1120 } owner;
1121
1122 /* Domain code. */
1123
1124 ENUM_BITFIELD(domain_enum_tag) domain : SYMBOL_DOMAIN_BITS;
1125
1126 /* Address class. This holds an index into the 'symbol_impls'
1127 table. The actual enum address_class value is stored there,
1128 alongside any per-class ops vectors. */
1129
1130 unsigned int aclass_index : SYMBOL_ACLASS_BITS;
1131
1132 /* If non-zero then symbol is objfile-owned, use owner.symtab.
1133 Otherwise symbol is arch-owned, use owner.arch. */
1134
1135 unsigned int is_objfile_owned : 1;
1136
1137 /* Whether this is an argument. */
1138
1139 unsigned is_argument : 1;
1140
1141 /* Whether this is an inlined function (class LOC_BLOCK only). */
1142 unsigned is_inlined : 1;
1143
1144 /* For LOC_STATIC only, if this is set, then the symbol might be
1145 subject to copy relocation. In this case, a minimal symbol
1146 matching the symbol's linkage name is first looked for in the
1147 main objfile. If found, then that address is used; otherwise the
1148 address in this symbol is used. */
1149
1150 unsigned maybe_copied : 1;
1151
1152 /* The concrete type of this symbol. */
1153
1154 ENUM_BITFIELD (symbol_subclass_kind) subclass : 2;
1155
1156 /* Line number of this symbol's definition, except for inlined
1157 functions. For an inlined function (class LOC_BLOCK and
1158 SYMBOL_INLINED set) this is the line number of the function's call
1159 site. Inlined function symbols are not definitions, and they are
1160 never found by symbol table lookup.
1161 If this symbol is arch-owned, LINE shall be zero.
1162
1163 FIXME: Should we really make the assumption that nobody will try
1164 to debug files longer than 64K lines? What about machine
1165 generated programs? */
1166
1167 unsigned short line;
1168
1169 /* An arbitrary data pointer, allowing symbol readers to record
1170 additional information on a per-symbol basis. Note that this data
1171 must be allocated using the same obstack as the symbol itself. */
1172 /* So far it is only used by:
1173 LOC_COMPUTED: to find the location information
1174 LOC_BLOCK (DWARF2 function): information used internally by the
1175 DWARF 2 code --- specifically, the location expression for the frame
1176 base for this function. */
1177 /* FIXME drow/2003-02-21: For the LOC_BLOCK case, it might be better
1178 to add a magic symbol to the block containing this information,
1179 or to have a generic debug info annotation slot for symbols. */
1180
1181 void *aux_value;
1182
1183 struct symbol *hash_next;
1184 };
1185
1186 /* Several lookup functions return both a symbol and the block in which the
1187 symbol is found. This structure is used in these cases. */
1188
1189 struct block_symbol
1190 {
1191 /* The symbol that was found, or NULL if no symbol was found. */
1192 struct symbol *symbol;
1193
1194 /* If SYMBOL is not NULL, then this is the block in which the symbol is
1195 defined. */
1196 const struct block *block;
1197 };
1198
1199 extern const struct symbol_impl *symbol_impls;
1200
1201 /* Note: There is no accessor macro for symbol.owner because it is
1202 "private". */
1203
1204 #define SYMBOL_DOMAIN(symbol) (symbol)->domain
1205 #define SYMBOL_IMPL(symbol) (symbol_impls[(symbol)->aclass_index])
1206 #define SYMBOL_ACLASS_INDEX(symbol) (symbol)->aclass_index
1207 #define SYMBOL_CLASS(symbol) (SYMBOL_IMPL (symbol).aclass)
1208 #define SYMBOL_OBJFILE_OWNED(symbol) ((symbol)->is_objfile_owned)
1209 #define SYMBOL_IS_ARGUMENT(symbol) (symbol)->is_argument
1210 #define SYMBOL_INLINED(symbol) (symbol)->is_inlined
1211 #define SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION(symbol) \
1212 (((symbol)->subclass) == SYMBOL_TEMPLATE)
1213 #define SYMBOL_TYPE(symbol) (symbol)->type
1214 #define SYMBOL_LINE(symbol) (symbol)->line
1215 #define SYMBOL_COMPUTED_OPS(symbol) (SYMBOL_IMPL (symbol).ops_computed)
1216 #define SYMBOL_BLOCK_OPS(symbol) (SYMBOL_IMPL (symbol).ops_block)
1217 #define SYMBOL_REGISTER_OPS(symbol) (SYMBOL_IMPL (symbol).ops_register)
1218 #define SYMBOL_LOCATION_BATON(symbol) (symbol)->aux_value
1219
1220 extern int register_symbol_computed_impl (enum address_class,
1221 const struct symbol_computed_ops *);
1222
1223 extern int register_symbol_block_impl (enum address_class aclass,
1224 const struct symbol_block_ops *ops);
1225
1226 extern int register_symbol_register_impl (enum address_class,
1227 const struct symbol_register_ops *);
1228
1229 /* Return the OBJFILE of SYMBOL.
1230 It is an error to call this if symbol.is_objfile_owned is false, which
1231 only happens for architecture-provided types. */
1232
1233 extern struct objfile *symbol_objfile (const struct symbol *symbol);
1234
1235 /* Return the ARCH of SYMBOL. */
1236
1237 extern struct gdbarch *symbol_arch (const struct symbol *symbol);
1238
1239 /* Return the SYMTAB of SYMBOL.
1240 It is an error to call this if symbol.is_objfile_owned is false, which
1241 only happens for architecture-provided types. */
1242
1243 extern struct symtab *symbol_symtab (const struct symbol *symbol);
1244
1245 /* Set the symtab of SYMBOL to SYMTAB.
1246 It is an error to call this if symbol.is_objfile_owned is false, which
1247 only happens for architecture-provided types. */
1248
1249 extern void symbol_set_symtab (struct symbol *symbol, struct symtab *symtab);
1250
1251 /* An instance of this type is used to represent a C++ template
1252 function. A symbol is really of this type iff
1253 SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION is true. */
1254
1255 struct template_symbol : public symbol
1256 {
1257 /* The number of template arguments. */
1258 int n_template_arguments;
1259
1260 /* The template arguments. This is an array with
1261 N_TEMPLATE_ARGUMENTS elements. */
1262 struct symbol **template_arguments;
1263 };
1264
1265 /* A symbol that represents a Rust virtual table object. */
1266
1267 struct rust_vtable_symbol : public symbol
1268 {
1269 /* The concrete type for which this vtable was created; that is, in
1270 "impl Trait for Type", this is "Type". */
1271 struct type *concrete_type;
1272 };
1273
1274 \f
1275 /* Each item represents a line-->pc (or the reverse) mapping. This is
1276 somewhat more wasteful of space than one might wish, but since only
1277 the files which are actually debugged are read in to core, we don't
1278 waste much space. */
1279
1280 struct linetable_entry
1281 {
1282 int line;
1283 CORE_ADDR pc;
1284 };
1285
1286 /* The order of entries in the linetable is significant. They should
1287 be sorted by increasing values of the pc field. If there is more than
1288 one entry for a given pc, then I'm not sure what should happen (and
1289 I not sure whether we currently handle it the best way).
1290
1291 Example: a C for statement generally looks like this
1292
1293 10 0x100 - for the init/test part of a for stmt.
1294 20 0x200
1295 30 0x300
1296 10 0x400 - for the increment part of a for stmt.
1297
1298 If an entry has a line number of zero, it marks the start of a PC
1299 range for which no line number information is available. It is
1300 acceptable, though wasteful of table space, for such a range to be
1301 zero length. */
1302
1303 struct linetable
1304 {
1305 int nitems;
1306
1307 /* Actually NITEMS elements. If you don't like this use of the
1308 `struct hack', you can shove it up your ANSI (seriously, if the
1309 committee tells us how to do it, we can probably go along). */
1310 struct linetable_entry item[1];
1311 };
1312
1313 /* How to relocate the symbols from each section in a symbol file.
1314 Each struct contains an array of offsets.
1315 The ordering and meaning of the offsets is file-type-dependent;
1316 typically it is indexed by section numbers or symbol types or
1317 something like that.
1318
1319 To give us flexibility in changing the internal representation
1320 of these offsets, the ANOFFSET macro must be used to insert and
1321 extract offset values in the struct. */
1322
1323 struct section_offsets
1324 {
1325 CORE_ADDR offsets[1]; /* As many as needed. */
1326 };
1327
1328 #define ANOFFSET(secoff, whichone) \
1329 ((whichone == -1) \
1330 ? (internal_error (__FILE__, __LINE__, \
1331 _("Section index is uninitialized")), -1) \
1332 : secoff->offsets[whichone])
1333
1334 /* The size of a section_offsets table for N sections. */
1335 #define SIZEOF_N_SECTION_OFFSETS(n) \
1336 (sizeof (struct section_offsets) \
1337 + sizeof (((struct section_offsets *) 0)->offsets) * ((n)-1))
1338
1339 /* Each source file or header is represented by a struct symtab.
1340 The name "symtab" is historical, another name for it is "filetab".
1341 These objects are chained through the `next' field. */
1342
1343 struct symtab
1344 {
1345 /* Unordered chain of all filetabs in the compunit, with the exception
1346 that the "main" source file is the first entry in the list. */
1347
1348 struct symtab *next;
1349
1350 /* Backlink to containing compunit symtab. */
1351
1352 struct compunit_symtab *compunit_symtab;
1353
1354 /* Table mapping core addresses to line numbers for this file.
1355 Can be NULL if none. Never shared between different symtabs. */
1356
1357 struct linetable *linetable;
1358
1359 /* Name of this source file. This pointer is never NULL. */
1360
1361 const char *filename;
1362
1363 /* Language of this source file. */
1364
1365 enum language language;
1366
1367 /* Full name of file as found by searching the source path.
1368 NULL if not yet known. */
1369
1370 char *fullname;
1371 };
1372
1373 #define SYMTAB_COMPUNIT(symtab) ((symtab)->compunit_symtab)
1374 #define SYMTAB_LINETABLE(symtab) ((symtab)->linetable)
1375 #define SYMTAB_LANGUAGE(symtab) ((symtab)->language)
1376 #define SYMTAB_BLOCKVECTOR(symtab) \
1377 COMPUNIT_BLOCKVECTOR (SYMTAB_COMPUNIT (symtab))
1378 #define SYMTAB_OBJFILE(symtab) \
1379 COMPUNIT_OBJFILE (SYMTAB_COMPUNIT (symtab))
1380 #define SYMTAB_PSPACE(symtab) (SYMTAB_OBJFILE (symtab)->pspace)
1381 #define SYMTAB_DIRNAME(symtab) \
1382 COMPUNIT_DIRNAME (SYMTAB_COMPUNIT (symtab))
1383
1384 /* Compunit symtabs contain the actual "symbol table", aka blockvector, as well
1385 as the list of all source files (what gdb has historically associated with
1386 the term "symtab").
1387 Additional information is recorded here that is common to all symtabs in a
1388 compilation unit (DWARF or otherwise).
1389
1390 Example:
1391 For the case of a program built out of these files:
1392
1393 foo.c
1394 foo1.h
1395 foo2.h
1396 bar.c
1397 foo1.h
1398 bar.h
1399
1400 This is recorded as:
1401
1402 objfile -> foo.c(cu) -> bar.c(cu) -> NULL
1403 | |
1404 v v
1405 foo.c bar.c
1406 | |
1407 v v
1408 foo1.h foo1.h
1409 | |
1410 v v
1411 foo2.h bar.h
1412 | |
1413 v v
1414 NULL NULL
1415
1416 where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
1417 and the files foo.c, etc. are struct symtab objects. */
1418
1419 struct compunit_symtab
1420 {
1421 /* Unordered chain of all compunit symtabs of this objfile. */
1422 struct compunit_symtab *next;
1423
1424 /* Object file from which this symtab information was read. */
1425 struct objfile *objfile;
1426
1427 /* Name of the symtab.
1428 This is *not* intended to be a usable filename, and is
1429 for debugging purposes only. */
1430 const char *name;
1431
1432 /* Unordered list of file symtabs, except that by convention the "main"
1433 source file (e.g., .c, .cc) is guaranteed to be first.
1434 Each symtab is a file, either the "main" source file (e.g., .c, .cc)
1435 or header (e.g., .h). */
1436 struct symtab *filetabs;
1437
1438 /* Last entry in FILETABS list.
1439 Subfiles are added to the end of the list so they accumulate in order,
1440 with the main source subfile living at the front.
1441 The main reason is so that the main source file symtab is at the head
1442 of the list, and the rest appear in order for debugging convenience. */
1443 struct symtab *last_filetab;
1444
1445 /* Non-NULL string that identifies the format of the debugging information,
1446 such as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful
1447 for automated testing of gdb but may also be information that is
1448 useful to the user. */
1449 const char *debugformat;
1450
1451 /* String of producer version information, or NULL if we don't know. */
1452 const char *producer;
1453
1454 /* Directory in which it was compiled, or NULL if we don't know. */
1455 const char *dirname;
1456
1457 /* List of all symbol scope blocks for this symtab. It is shared among
1458 all symtabs in a given compilation unit. */
1459 const struct blockvector *blockvector;
1460
1461 /* Section in objfile->section_offsets for the blockvector and
1462 the linetable. Probably always SECT_OFF_TEXT. */
1463 int block_line_section;
1464
1465 /* Symtab has been compiled with both optimizations and debug info so that
1466 GDB may stop skipping prologues as variables locations are valid already
1467 at function entry points. */
1468 unsigned int locations_valid : 1;
1469
1470 /* DWARF unwinder for this CU is valid even for epilogues (PC at the return
1471 instruction). This is supported by GCC since 4.5.0. */
1472 unsigned int epilogue_unwind_valid : 1;
1473
1474 /* struct call_site entries for this compilation unit or NULL. */
1475 htab_t call_site_htab;
1476
1477 /* The macro table for this symtab. Like the blockvector, this
1478 is shared between different symtabs in a given compilation unit.
1479 It's debatable whether it *should* be shared among all the symtabs in
1480 the given compilation unit, but it currently is. */
1481 struct macro_table *macro_table;
1482
1483 /* If non-NULL, then this points to a NULL-terminated vector of
1484 included compunits. When searching the static or global
1485 block of this compunit, the corresponding block of all
1486 included compunits will also be searched. Note that this
1487 list must be flattened -- the symbol reader is responsible for
1488 ensuring that this vector contains the transitive closure of all
1489 included compunits. */
1490 struct compunit_symtab **includes;
1491
1492 /* If this is an included compunit, this points to one includer
1493 of the table. This user is considered the canonical compunit
1494 containing this one. An included compunit may itself be
1495 included by another. */
1496 struct compunit_symtab *user;
1497 };
1498
1499 #define COMPUNIT_OBJFILE(cust) ((cust)->objfile)
1500 #define COMPUNIT_FILETABS(cust) ((cust)->filetabs)
1501 #define COMPUNIT_DEBUGFORMAT(cust) ((cust)->debugformat)
1502 #define COMPUNIT_PRODUCER(cust) ((cust)->producer)
1503 #define COMPUNIT_DIRNAME(cust) ((cust)->dirname)
1504 #define COMPUNIT_BLOCKVECTOR(cust) ((cust)->blockvector)
1505 #define COMPUNIT_BLOCK_LINE_SECTION(cust) ((cust)->block_line_section)
1506 #define COMPUNIT_LOCATIONS_VALID(cust) ((cust)->locations_valid)
1507 #define COMPUNIT_EPILOGUE_UNWIND_VALID(cust) ((cust)->epilogue_unwind_valid)
1508 #define COMPUNIT_CALL_SITE_HTAB(cust) ((cust)->call_site_htab)
1509 #define COMPUNIT_MACRO_TABLE(cust) ((cust)->macro_table)
1510
1511 /* A range adapter to allowing iterating over all the file tables
1512 within a compunit. */
1513
1514 struct compunit_filetabs : public next_adapter<struct symtab>
1515 {
1516 compunit_filetabs (struct compunit_symtab *cu)
1517 : next_adapter<struct symtab> (cu->filetabs)
1518 {
1519 }
1520 };
1521
1522 /* Return the primary symtab of CUST. */
1523
1524 extern struct symtab *
1525 compunit_primary_filetab (const struct compunit_symtab *cust);
1526
1527 /* Return the language of CUST. */
1528
1529 extern enum language compunit_language (const struct compunit_symtab *cust);
1530
1531 \f
1532
1533 /* The virtual function table is now an array of structures which have the
1534 form { int16 offset, delta; void *pfn; }.
1535
1536 In normal virtual function tables, OFFSET is unused.
1537 DELTA is the amount which is added to the apparent object's base
1538 address in order to point to the actual object to which the
1539 virtual function should be applied.
1540 PFN is a pointer to the virtual function.
1541
1542 Note that this macro is g++ specific (FIXME). */
1543
1544 #define VTBL_FNADDR_OFFSET 2
1545
1546 /* External variables and functions for the objects described above. */
1547
1548 /* True if we are nested inside psymtab_to_symtab. */
1549
1550 extern int currently_reading_symtab;
1551
1552 /* symtab.c lookup functions */
1553
1554 extern const char multiple_symbols_ask[];
1555 extern const char multiple_symbols_all[];
1556 extern const char multiple_symbols_cancel[];
1557
1558 const char *multiple_symbols_select_mode (void);
1559
1560 bool symbol_matches_domain (enum language symbol_language,
1561 domain_enum symbol_domain,
1562 domain_enum domain);
1563
1564 /* lookup a symbol table by source file name. */
1565
1566 extern struct symtab *lookup_symtab (const char *);
1567
1568 /* An object of this type is passed as the 'is_a_field_of_this'
1569 argument to lookup_symbol and lookup_symbol_in_language. */
1570
1571 struct field_of_this_result
1572 {
1573 /* The type in which the field was found. If this is NULL then the
1574 symbol was not found in 'this'. If non-NULL, then one of the
1575 other fields will be non-NULL as well. */
1576
1577 struct type *type;
1578
1579 /* If the symbol was found as an ordinary field of 'this', then this
1580 is non-NULL and points to the particular field. */
1581
1582 struct field *field;
1583
1584 /* If the symbol was found as a function field of 'this', then this
1585 is non-NULL and points to the particular field. */
1586
1587 struct fn_fieldlist *fn_field;
1588 };
1589
1590 /* Find the definition for a specified symbol name NAME
1591 in domain DOMAIN in language LANGUAGE, visible from lexical block BLOCK
1592 if non-NULL or from global/static blocks if BLOCK is NULL.
1593 Returns the struct symbol pointer, or NULL if no symbol is found.
1594 C++: if IS_A_FIELD_OF_THIS is non-NULL on entry, check to see if
1595 NAME is a field of the current implied argument `this'. If so fill in the
1596 fields of IS_A_FIELD_OF_THIS, otherwise the fields are set to NULL.
1597 The symbol's section is fixed up if necessary. */
1598
1599 extern struct block_symbol
1600 lookup_symbol_in_language (const char *,
1601 const struct block *,
1602 const domain_enum,
1603 enum language,
1604 struct field_of_this_result *);
1605
1606 /* Same as lookup_symbol_in_language, but using the current language. */
1607
1608 extern struct block_symbol lookup_symbol (const char *,
1609 const struct block *,
1610 const domain_enum,
1611 struct field_of_this_result *);
1612
1613 /* Find the definition for a specified symbol search name in domain
1614 DOMAIN, visible from lexical block BLOCK if non-NULL or from
1615 global/static blocks if BLOCK is NULL. The passed-in search name
1616 should not come from the user; instead it should already be a
1617 search name as retrieved from a
1618 SYMBOL_SEARCH_NAME/MSYMBOL_SEARCH_NAME call. See definition of
1619 symbol_name_match_type::SEARCH_NAME. Returns the struct symbol
1620 pointer, or NULL if no symbol is found. The symbol's section is
1621 fixed up if necessary. */
1622
1623 extern struct block_symbol lookup_symbol_search_name (const char *search_name,
1624 const struct block *block,
1625 domain_enum domain);
1626
1627 /* A default version of lookup_symbol_nonlocal for use by languages
1628 that can't think of anything better to do.
1629 This implements the C lookup rules. */
1630
1631 extern struct block_symbol
1632 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
1633 const char *,
1634 const struct block *,
1635 const domain_enum);
1636
1637 /* Some helper functions for languages that need to write their own
1638 lookup_symbol_nonlocal functions. */
1639
1640 /* Lookup a symbol in the static block associated to BLOCK, if there
1641 is one; do nothing if BLOCK is NULL or a global block.
1642 Upon success fixes up the symbol's section if necessary. */
1643
1644 extern struct block_symbol
1645 lookup_symbol_in_static_block (const char *name,
1646 const struct block *block,
1647 const domain_enum domain);
1648
1649 /* Search all static file-level symbols for NAME from DOMAIN.
1650 Upon success fixes up the symbol's section if necessary. */
1651
1652 extern struct block_symbol lookup_static_symbol (const char *name,
1653 const domain_enum domain);
1654
1655 /* Lookup a symbol in all files' global blocks.
1656
1657 If BLOCK is non-NULL then it is used for two things:
1658 1) If a target-specific lookup routine for libraries exists, then use the
1659 routine for the objfile of BLOCK, and
1660 2) The objfile of BLOCK is used to assist in determining the search order
1661 if the target requires it.
1662 See gdbarch_iterate_over_objfiles_in_search_order.
1663
1664 Upon success fixes up the symbol's section if necessary. */
1665
1666 extern struct block_symbol
1667 lookup_global_symbol (const char *name,
1668 const struct block *block,
1669 const domain_enum domain);
1670
1671 /* Lookup a symbol in block BLOCK.
1672 Upon success fixes up the symbol's section if necessary. */
1673
1674 extern struct symbol *
1675 lookup_symbol_in_block (const char *name,
1676 symbol_name_match_type match_type,
1677 const struct block *block,
1678 const domain_enum domain);
1679
1680 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1681 found, or NULL if not found. */
1682
1683 extern struct block_symbol
1684 lookup_language_this (const struct language_defn *lang,
1685 const struct block *block);
1686
1687 /* Lookup a [struct, union, enum] by name, within a specified block. */
1688
1689 extern struct type *lookup_struct (const char *, const struct block *);
1690
1691 extern struct type *lookup_union (const char *, const struct block *);
1692
1693 extern struct type *lookup_enum (const char *, const struct block *);
1694
1695 /* from blockframe.c: */
1696
1697 /* lookup the function symbol corresponding to the address. The
1698 return value will not be an inlined function; the containing
1699 function will be returned instead. */
1700
1701 extern struct symbol *find_pc_function (CORE_ADDR);
1702
1703 /* lookup the function corresponding to the address and section. The
1704 return value will not be an inlined function; the containing
1705 function will be returned instead. */
1706
1707 extern struct symbol *find_pc_sect_function (CORE_ADDR, struct obj_section *);
1708
1709 /* lookup the function symbol corresponding to the address and
1710 section. The return value will be the closest enclosing function,
1711 which might be an inline function. */
1712
1713 extern struct symbol *find_pc_sect_containing_function
1714 (CORE_ADDR pc, struct obj_section *section);
1715
1716 /* Find the symbol at the given address. Returns NULL if no symbol
1717 found. Only exact matches for ADDRESS are considered. */
1718
1719 extern struct symbol *find_symbol_at_address (CORE_ADDR);
1720
1721 /* Finds the "function" (text symbol) that is smaller than PC but
1722 greatest of all of the potential text symbols in SECTION. Sets
1723 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
1724 If ENDADDR is non-null, then set *ENDADDR to be the end of the
1725 function (exclusive). If the optional parameter BLOCK is non-null,
1726 then set *BLOCK to the address of the block corresponding to the
1727 function symbol, if such a symbol could be found during the lookup;
1728 nullptr is used as a return value for *BLOCK if no block is found.
1729 This function either succeeds or fails (not halfway succeeds). If
1730 it succeeds, it sets *NAME, *ADDRESS, and *ENDADDR to real
1731 information and returns true. If it fails, it sets *NAME, *ADDRESS
1732 and *ENDADDR to zero and returns false.
1733
1734 If the function in question occupies non-contiguous ranges,
1735 *ADDRESS and *ENDADDR are (subject to the conditions noted above) set
1736 to the start and end of the range in which PC is found. Thus
1737 *ADDRESS <= PC < *ENDADDR with no intervening gaps (in which ranges
1738 from other functions might be found).
1739
1740 This property allows find_pc_partial_function to be used (as it had
1741 been prior to the introduction of non-contiguous range support) by
1742 various tdep files for finding a start address and limit address
1743 for prologue analysis. This still isn't ideal, however, because we
1744 probably shouldn't be doing prologue analysis (in which
1745 instructions are scanned to determine frame size and stack layout)
1746 for any range that doesn't contain the entry pc. Moreover, a good
1747 argument can be made that prologue analysis ought to be performed
1748 starting from the entry pc even when PC is within some other range.
1749 This might suggest that *ADDRESS and *ENDADDR ought to be set to the
1750 limits of the entry pc range, but that will cause the
1751 *ADDRESS <= PC < *ENDADDR condition to be violated; many of the
1752 callers of find_pc_partial_function expect this condition to hold.
1753
1754 Callers which require the start and/or end addresses for the range
1755 containing the entry pc should instead call
1756 find_function_entry_range_from_pc. */
1757
1758 extern bool find_pc_partial_function (CORE_ADDR pc, const char **name,
1759 CORE_ADDR *address, CORE_ADDR *endaddr,
1760 const struct block **block = nullptr);
1761
1762 /* Like find_pc_partial_function, above, but *ADDRESS and *ENDADDR are
1763 set to start and end addresses of the range containing the entry pc.
1764
1765 Note that it is not necessarily the case that (for non-NULL ADDRESS
1766 and ENDADDR arguments) the *ADDRESS <= PC < *ENDADDR condition will
1767 hold.
1768
1769 See comment for find_pc_partial_function, above, for further
1770 explanation. */
1771
1772 extern bool find_function_entry_range_from_pc (CORE_ADDR pc,
1773 const char **name,
1774 CORE_ADDR *address,
1775 CORE_ADDR *endaddr);
1776
1777 /* Return the type of a function with its first instruction exactly at
1778 the PC address. Return NULL otherwise. */
1779
1780 extern struct type *find_function_type (CORE_ADDR pc);
1781
1782 /* See if we can figure out the function's actual type from the type
1783 that the resolver returns. RESOLVER_FUNADDR is the address of the
1784 ifunc resolver. */
1785
1786 extern struct type *find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr);
1787
1788 /* Find the GNU ifunc minimal symbol that matches SYM. */
1789 extern bound_minimal_symbol find_gnu_ifunc (const symbol *sym);
1790
1791 extern void clear_pc_function_cache (void);
1792
1793 /* Expand symtab containing PC, SECTION if not already expanded. */
1794
1795 extern void expand_symtab_containing_pc (CORE_ADDR, struct obj_section *);
1796
1797 /* lookup full symbol table by address. */
1798
1799 extern struct compunit_symtab *find_pc_compunit_symtab (CORE_ADDR);
1800
1801 /* lookup full symbol table by address and section. */
1802
1803 extern struct compunit_symtab *
1804 find_pc_sect_compunit_symtab (CORE_ADDR, struct obj_section *);
1805
1806 extern bool find_pc_line_pc_range (CORE_ADDR, CORE_ADDR *, CORE_ADDR *);
1807
1808 extern void reread_symbols (void);
1809
1810 /* Look up a type named NAME in STRUCT_DOMAIN in the current language.
1811 The type returned must not be opaque -- i.e., must have at least one field
1812 defined. */
1813
1814 extern struct type *lookup_transparent_type (const char *);
1815
1816 extern struct type *basic_lookup_transparent_type (const char *);
1817
1818 /* Macro for name of symbol to indicate a file compiled with gcc. */
1819 #ifndef GCC_COMPILED_FLAG_SYMBOL
1820 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
1821 #endif
1822
1823 /* Macro for name of symbol to indicate a file compiled with gcc2. */
1824 #ifndef GCC2_COMPILED_FLAG_SYMBOL
1825 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled."
1826 #endif
1827
1828 extern bool in_gnu_ifunc_stub (CORE_ADDR pc);
1829
1830 /* Functions for resolving STT_GNU_IFUNC symbols which are implemented only
1831 for ELF symbol files. */
1832
1833 struct gnu_ifunc_fns
1834 {
1835 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
1836 CORE_ADDR (*gnu_ifunc_resolve_addr) (struct gdbarch *gdbarch, CORE_ADDR pc);
1837
1838 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
1839 bool (*gnu_ifunc_resolve_name) (const char *function_name,
1840 CORE_ADDR *function_address_p);
1841
1842 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
1843 void (*gnu_ifunc_resolver_stop) (struct breakpoint *b);
1844
1845 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
1846 void (*gnu_ifunc_resolver_return_stop) (struct breakpoint *b);
1847 };
1848
1849 #define gnu_ifunc_resolve_addr gnu_ifunc_fns_p->gnu_ifunc_resolve_addr
1850 #define gnu_ifunc_resolve_name gnu_ifunc_fns_p->gnu_ifunc_resolve_name
1851 #define gnu_ifunc_resolver_stop gnu_ifunc_fns_p->gnu_ifunc_resolver_stop
1852 #define gnu_ifunc_resolver_return_stop \
1853 gnu_ifunc_fns_p->gnu_ifunc_resolver_return_stop
1854
1855 extern const struct gnu_ifunc_fns *gnu_ifunc_fns_p;
1856
1857 extern CORE_ADDR find_solib_trampoline_target (struct frame_info *, CORE_ADDR);
1858
1859 struct symtab_and_line
1860 {
1861 /* The program space of this sal. */
1862 struct program_space *pspace = NULL;
1863
1864 struct symtab *symtab = NULL;
1865 struct symbol *symbol = NULL;
1866 struct obj_section *section = NULL;
1867 struct minimal_symbol *msymbol = NULL;
1868 /* Line number. Line numbers start at 1 and proceed through symtab->nlines.
1869 0 is never a valid line number; it is used to indicate that line number
1870 information is not available. */
1871 int line = 0;
1872
1873 CORE_ADDR pc = 0;
1874 CORE_ADDR end = 0;
1875 bool explicit_pc = false;
1876 bool explicit_line = false;
1877
1878 /* The probe associated with this symtab_and_line. */
1879 probe *prob = NULL;
1880 /* If PROBE is not NULL, then this is the objfile in which the probe
1881 originated. */
1882 struct objfile *objfile = NULL;
1883 };
1884
1885 \f
1886
1887 /* Given a pc value, return line number it is in. Second arg nonzero means
1888 if pc is on the boundary use the previous statement's line number. */
1889
1890 extern struct symtab_and_line find_pc_line (CORE_ADDR, int);
1891
1892 /* Same function, but specify a section as well as an address. */
1893
1894 extern struct symtab_and_line find_pc_sect_line (CORE_ADDR,
1895 struct obj_section *, int);
1896
1897 /* Wrapper around find_pc_line to just return the symtab. */
1898
1899 extern struct symtab *find_pc_line_symtab (CORE_ADDR);
1900
1901 /* Given a symtab and line number, return the pc there. */
1902
1903 extern bool find_line_pc (struct symtab *, int, CORE_ADDR *);
1904
1905 extern bool find_line_pc_range (struct symtab_and_line, CORE_ADDR *,
1906 CORE_ADDR *);
1907
1908 extern void resolve_sal_pc (struct symtab_and_line *);
1909
1910 /* solib.c */
1911
1912 extern void clear_solib (void);
1913
1914 /* The reason we're calling into a completion match list collector
1915 function. */
1916 enum class complete_symbol_mode
1917 {
1918 /* Completing an expression. */
1919 EXPRESSION,
1920
1921 /* Completing a linespec. */
1922 LINESPEC,
1923 };
1924
1925 extern void default_collect_symbol_completion_matches_break_on
1926 (completion_tracker &tracker,
1927 complete_symbol_mode mode,
1928 symbol_name_match_type name_match_type,
1929 const char *text, const char *word, const char *break_on,
1930 enum type_code code);
1931 extern void default_collect_symbol_completion_matches
1932 (completion_tracker &tracker,
1933 complete_symbol_mode,
1934 symbol_name_match_type name_match_type,
1935 const char *,
1936 const char *,
1937 enum type_code);
1938 extern void collect_symbol_completion_matches
1939 (completion_tracker &tracker,
1940 complete_symbol_mode mode,
1941 symbol_name_match_type name_match_type,
1942 const char *, const char *);
1943 extern void collect_symbol_completion_matches_type (completion_tracker &tracker,
1944 const char *, const char *,
1945 enum type_code);
1946
1947 extern void collect_file_symbol_completion_matches
1948 (completion_tracker &tracker,
1949 complete_symbol_mode,
1950 symbol_name_match_type name_match_type,
1951 const char *, const char *, const char *);
1952
1953 extern completion_list
1954 make_source_files_completion_list (const char *, const char *);
1955
1956 /* Return whether SYM is a function/method, as opposed to a data symbol. */
1957
1958 extern bool symbol_is_function_or_method (symbol *sym);
1959
1960 /* Return whether MSYMBOL is a function/method, as opposed to a data
1961 symbol */
1962
1963 extern bool symbol_is_function_or_method (minimal_symbol *msymbol);
1964
1965 /* Return whether SYM should be skipped in completion mode MODE. In
1966 linespec mode, we're only interested in functions/methods. */
1967
1968 template<typename Symbol>
1969 static bool
1970 completion_skip_symbol (complete_symbol_mode mode, Symbol *sym)
1971 {
1972 return (mode == complete_symbol_mode::LINESPEC
1973 && !symbol_is_function_or_method (sym));
1974 }
1975
1976 /* symtab.c */
1977
1978 bool matching_obj_sections (struct obj_section *, struct obj_section *);
1979
1980 extern struct symtab *find_line_symtab (struct symtab *, int, int *, bool *);
1981
1982 /* Given a function symbol SYM, find the symtab and line for the start
1983 of the function. If FUNFIRSTLINE is true, we want the first line
1984 of real code inside the function. */
1985 extern symtab_and_line find_function_start_sal (symbol *sym, bool
1986 funfirstline);
1987
1988 /* Same, but start with a function address/section instead of a
1989 symbol. */
1990 extern symtab_and_line find_function_start_sal (CORE_ADDR func_addr,
1991 obj_section *section,
1992 bool funfirstline);
1993
1994 extern void skip_prologue_sal (struct symtab_and_line *);
1995
1996 /* symtab.c */
1997
1998 extern CORE_ADDR skip_prologue_using_sal (struct gdbarch *gdbarch,
1999 CORE_ADDR func_addr);
2000
2001 extern struct symbol *fixup_symbol_section (struct symbol *,
2002 struct objfile *);
2003
2004 /* If MSYMBOL is an text symbol, look for a function debug symbol with
2005 the same address. Returns NULL if not found. This is necessary in
2006 case a function is an alias to some other function, because debug
2007 information is only emitted for the alias target function's
2008 definition, not for the alias. */
2009 extern symbol *find_function_alias_target (bound_minimal_symbol msymbol);
2010
2011 /* Symbol searching */
2012 /* Note: struct symbol_search, search_symbols, et.al. are declared here,
2013 instead of making them local to symtab.c, for gdbtk's sake. */
2014
2015 /* When using search_symbols, a vector of the following structs is
2016 returned. */
2017 struct symbol_search
2018 {
2019 symbol_search (int block_, struct symbol *symbol_)
2020 : block (block_),
2021 symbol (symbol_)
2022 {
2023 msymbol.minsym = nullptr;
2024 msymbol.objfile = nullptr;
2025 }
2026
2027 symbol_search (int block_, struct minimal_symbol *minsym,
2028 struct objfile *objfile)
2029 : block (block_),
2030 symbol (nullptr)
2031 {
2032 msymbol.minsym = minsym;
2033 msymbol.objfile = objfile;
2034 }
2035
2036 bool operator< (const symbol_search &other) const
2037 {
2038 return compare_search_syms (*this, other) < 0;
2039 }
2040
2041 bool operator== (const symbol_search &other) const
2042 {
2043 return compare_search_syms (*this, other) == 0;
2044 }
2045
2046 /* The block in which the match was found. Could be, for example,
2047 STATIC_BLOCK or GLOBAL_BLOCK. */
2048 int block;
2049
2050 /* Information describing what was found.
2051
2052 If symbol is NOT NULL, then information was found for this match. */
2053 struct symbol *symbol;
2054
2055 /* If msymbol is non-null, then a match was made on something for
2056 which only minimal_symbols exist. */
2057 struct bound_minimal_symbol msymbol;
2058
2059 private:
2060
2061 static int compare_search_syms (const symbol_search &sym_a,
2062 const symbol_search &sym_b);
2063 };
2064
2065 extern std::vector<symbol_search> search_symbols (const char *,
2066 enum search_domain,
2067 const char *,
2068 int,
2069 const char **,
2070 bool);
2071 extern bool treg_matches_sym_type_name (const compiled_regex &treg,
2072 const struct symbol *sym);
2073
2074 /* The name of the ``main'' function. */
2075 extern const char *main_name ();
2076 extern enum language main_language (void);
2077
2078 /* Lookup symbol NAME from DOMAIN in MAIN_OBJFILE's global or static blocks,
2079 as specified by BLOCK_INDEX.
2080 This searches MAIN_OBJFILE as well as any associated separate debug info
2081 objfiles of MAIN_OBJFILE.
2082 BLOCK_INDEX can be GLOBAL_BLOCK or STATIC_BLOCK.
2083 Upon success fixes up the symbol's section if necessary. */
2084
2085 extern struct block_symbol
2086 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2087 enum block_enum block_index,
2088 const char *name,
2089 const domain_enum domain);
2090
2091 /* Return 1 if the supplied producer string matches the ARM RealView
2092 compiler (armcc). */
2093 bool producer_is_realview (const char *producer);
2094
2095 void fixup_section (struct general_symbol_info *ginfo,
2096 CORE_ADDR addr, struct objfile *objfile);
2097
2098 /* Look up objfile containing BLOCK. */
2099
2100 struct objfile *lookup_objfile_from_block (const struct block *block);
2101
2102 extern unsigned int symtab_create_debug;
2103
2104 extern unsigned int symbol_lookup_debug;
2105
2106 extern bool basenames_may_differ;
2107
2108 bool compare_filenames_for_search (const char *filename,
2109 const char *search_name);
2110
2111 bool compare_glob_filenames_for_search (const char *filename,
2112 const char *search_name);
2113
2114 bool iterate_over_some_symtabs (const char *name,
2115 const char *real_path,
2116 struct compunit_symtab *first,
2117 struct compunit_symtab *after_last,
2118 gdb::function_view<bool (symtab *)> callback);
2119
2120 void iterate_over_symtabs (const char *name,
2121 gdb::function_view<bool (symtab *)> callback);
2122
2123
2124 std::vector<CORE_ADDR> find_pcs_for_symtab_line
2125 (struct symtab *symtab, int line, struct linetable_entry **best_entry);
2126
2127 /* Prototype for callbacks for LA_ITERATE_OVER_SYMBOLS. The callback
2128 is called once per matching symbol SYM. The callback should return
2129 true to indicate that LA_ITERATE_OVER_SYMBOLS should continue
2130 iterating, or false to indicate that the iteration should end. */
2131
2132 typedef bool (symbol_found_callback_ftype) (struct block_symbol *bsym);
2133
2134 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2135
2136 For each symbol that matches, CALLBACK is called. The symbol is
2137 passed to the callback.
2138
2139 If CALLBACK returns false, the iteration ends and this function
2140 returns false. Otherwise, the search continues, and the function
2141 eventually returns true. */
2142
2143 bool iterate_over_symbols (const struct block *block,
2144 const lookup_name_info &name,
2145 const domain_enum domain,
2146 gdb::function_view<symbol_found_callback_ftype> callback);
2147
2148 /* Like iterate_over_symbols, but if all calls to CALLBACK return
2149 true, then calls CALLBACK one additional time with a block_symbol
2150 that has a valid block but a NULL symbol. */
2151
2152 bool iterate_over_symbols_terminated
2153 (const struct block *block,
2154 const lookup_name_info &name,
2155 const domain_enum domain,
2156 gdb::function_view<symbol_found_callback_ftype> callback);
2157
2158 /* Storage type used by demangle_for_lookup. demangle_for_lookup
2159 either returns a const char * pointer that points to either of the
2160 fields of this type, or a pointer to the input NAME. This is done
2161 this way because the underlying functions that demangle_for_lookup
2162 calls either return a std::string (e.g., cp_canonicalize_string) or
2163 a malloc'ed buffer (libiberty's demangled), and we want to avoid
2164 unnecessary reallocation/string copying. */
2165 class demangle_result_storage
2166 {
2167 public:
2168
2169 /* Swap the std::string storage with STR, and return a pointer to
2170 the beginning of the new string. */
2171 const char *swap_string (std::string &str)
2172 {
2173 std::swap (m_string, str);
2174 return m_string.c_str ();
2175 }
2176
2177 /* Set the malloc storage to now point at PTR. Any previous malloc
2178 storage is released. */
2179 const char *set_malloc_ptr (char *ptr)
2180 {
2181 m_malloc.reset (ptr);
2182 return ptr;
2183 }
2184
2185 private:
2186
2187 /* The storage. */
2188 std::string m_string;
2189 gdb::unique_xmalloc_ptr<char> m_malloc;
2190 };
2191
2192 const char *
2193 demangle_for_lookup (const char *name, enum language lang,
2194 demangle_result_storage &storage);
2195
2196 struct symbol *allocate_symbol (struct objfile *);
2197
2198 void initialize_objfile_symbol (struct symbol *);
2199
2200 struct template_symbol *allocate_template_symbol (struct objfile *);
2201
2202 /* Test to see if the symbol of language SYMBOL_LANGUAGE specified by
2203 SYMNAME (which is already demangled for C++ symbols) matches
2204 SYM_TEXT in the first SYM_TEXT_LEN characters. If so, add it to
2205 the current completion list. */
2206 void completion_list_add_name (completion_tracker &tracker,
2207 language symbol_language,
2208 const char *symname,
2209 const lookup_name_info &lookup_name,
2210 const char *text, const char *word);
2211
2212 /* A simple symbol searching class. */
2213
2214 class symbol_searcher
2215 {
2216 public:
2217 /* Returns the symbols found for the search. */
2218 const std::vector<block_symbol> &
2219 matching_symbols () const
2220 {
2221 return m_symbols;
2222 }
2223
2224 /* Returns the minimal symbols found for the search. */
2225 const std::vector<bound_minimal_symbol> &
2226 matching_msymbols () const
2227 {
2228 return m_minimal_symbols;
2229 }
2230
2231 /* Search for all symbols named NAME in LANGUAGE with DOMAIN, restricting
2232 search to FILE_SYMTABS and SEARCH_PSPACE, both of which may be NULL
2233 to search all symtabs and program spaces. */
2234 void find_all_symbols (const std::string &name,
2235 const struct language_defn *language,
2236 enum search_domain search_domain,
2237 std::vector<symtab *> *search_symtabs,
2238 struct program_space *search_pspace);
2239
2240 /* Reset this object to perform another search. */
2241 void reset ()
2242 {
2243 m_symbols.clear ();
2244 m_minimal_symbols.clear ();
2245 }
2246
2247 private:
2248 /* Matching debug symbols. */
2249 std::vector<block_symbol> m_symbols;
2250
2251 /* Matching non-debug symbols. */
2252 std::vector<bound_minimal_symbol> m_minimal_symbols;
2253 };
2254
2255 #endif /* !defined(SYMTAB_H) */
This page took 0.141153 seconds and 4 git commands to generate.