Replace bsearch with a std::lower_bound-based search
[deliverable/binutils-gdb.git] / gdb / symtab.h
1 /* Symbol table definitions for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (SYMTAB_H)
21 #define SYMTAB_H 1
22
23 #include <array>
24 #include <vector>
25 #include <string>
26 #include "gdbsupport/gdb_vecs.h"
27 #include "gdbtypes.h"
28 #include "gdb_regex.h"
29 #include "gdbsupport/enum-flags.h"
30 #include "gdbsupport/function-view.h"
31 #include "gdbsupport/gdb_optional.h"
32 #include "gdbsupport/next-iterator.h"
33 #include "completer.h"
34
35 /* Opaque declarations. */
36 struct ui_file;
37 struct frame_info;
38 struct symbol;
39 struct obstack;
40 struct objfile;
41 struct block;
42 struct blockvector;
43 struct axs_value;
44 struct agent_expr;
45 struct program_space;
46 struct language_defn;
47 struct common_block;
48 struct obj_section;
49 struct cmd_list_element;
50 class probe;
51 struct lookup_name_info;
52
53 /* How to match a lookup name against a symbol search name. */
54 enum class symbol_name_match_type
55 {
56 /* Wild matching. Matches unqualified symbol names in all
57 namespace/module/packages, etc. */
58 WILD,
59
60 /* Full matching. The lookup name indicates a fully-qualified name,
61 and only matches symbol search names in the specified
62 namespace/module/package. */
63 FULL,
64
65 /* Search name matching. This is like FULL, but the search name did
66 not come from the user; instead it is already a search name
67 retrieved from a SYMBOL_SEARCH_NAME/MSYMBOL_SEARCH_NAME call.
68 For Ada, this avoids re-encoding an already-encoded search name
69 (which would potentially incorrectly lowercase letters in the
70 linkage/search name that should remain uppercase). For C++, it
71 avoids trying to demangle a name we already know is
72 demangled. */
73 SEARCH_NAME,
74
75 /* Expression matching. The same as FULL matching in most
76 languages. The same as WILD matching in Ada. */
77 EXPRESSION,
78 };
79
80 /* Hash the given symbol search name according to LANGUAGE's
81 rules. */
82 extern unsigned int search_name_hash (enum language language,
83 const char *search_name);
84
85 /* Ada-specific bits of a lookup_name_info object. This is lazily
86 constructed on demand. */
87
88 class ada_lookup_name_info final
89 {
90 public:
91 /* Construct. */
92 explicit ada_lookup_name_info (const lookup_name_info &lookup_name);
93
94 /* Compare SYMBOL_SEARCH_NAME with our lookup name, using MATCH_TYPE
95 as name match type. Returns true if there's a match, false
96 otherwise. If non-NULL, store the matching results in MATCH. */
97 bool matches (const char *symbol_search_name,
98 symbol_name_match_type match_type,
99 completion_match_result *comp_match_res) const;
100
101 /* The Ada-encoded lookup name. */
102 const std::string &lookup_name () const
103 { return m_encoded_name; }
104
105 /* Return true if we're supposed to be doing a wild match look
106 up. */
107 bool wild_match_p () const
108 { return m_wild_match_p; }
109
110 /* Return true if we're looking up a name inside package
111 Standard. */
112 bool standard_p () const
113 { return m_standard_p; }
114
115 /* Return true if doing a verbatim match. */
116 bool verbatim_p () const
117 { return m_verbatim_p; }
118
119 private:
120 /* The Ada-encoded lookup name. */
121 std::string m_encoded_name;
122
123 /* Whether the user-provided lookup name was Ada encoded. If so,
124 then return encoded names in the 'matches' method's 'completion
125 match result' output. */
126 bool m_encoded_p : 1;
127
128 /* True if really doing wild matching. Even if the user requests
129 wild matching, some cases require full matching. */
130 bool m_wild_match_p : 1;
131
132 /* True if doing a verbatim match. This is true if the decoded
133 version of the symbol name is wrapped in '<'/'>'. This is an
134 escape hatch users can use to look up symbols the Ada encoding
135 does not understand. */
136 bool m_verbatim_p : 1;
137
138 /* True if the user specified a symbol name that is inside package
139 Standard. Symbol names inside package Standard are handled
140 specially. We always do a non-wild match of the symbol name
141 without the "standard__" prefix, and only search static and
142 global symbols. This was primarily introduced in order to allow
143 the user to specifically access the standard exceptions using,
144 for instance, Standard.Constraint_Error when Constraint_Error is
145 ambiguous (due to the user defining its own Constraint_Error
146 entity inside its program). */
147 bool m_standard_p : 1;
148 };
149
150 /* Language-specific bits of a lookup_name_info object, for languages
151 that do name searching using demangled names (C++/D/Go). This is
152 lazily constructed on demand. */
153
154 struct demangle_for_lookup_info final
155 {
156 public:
157 demangle_for_lookup_info (const lookup_name_info &lookup_name,
158 language lang);
159
160 /* The demangled lookup name. */
161 const std::string &lookup_name () const
162 { return m_demangled_name; }
163
164 private:
165 /* The demangled lookup name. */
166 std::string m_demangled_name;
167 };
168
169 /* Object that aggregates all information related to a symbol lookup
170 name. I.e., the name that is matched against the symbol's search
171 name. Caches per-language information so that it doesn't require
172 recomputing it for every symbol comparison, like for example the
173 Ada encoded name and the symbol's name hash for a given language.
174 The object is conceptually immutable once constructed, and thus has
175 no setters. This is to prevent some code path from tweaking some
176 property of the lookup name for some local reason and accidentally
177 altering the results of any continuing search(es).
178 lookup_name_info objects are generally passed around as a const
179 reference to reinforce that. (They're not passed around by value
180 because they're not small.) */
181 class lookup_name_info final
182 {
183 public:
184 /* Create a new object. */
185 lookup_name_info (std::string name,
186 symbol_name_match_type match_type,
187 bool completion_mode = false,
188 bool ignore_parameters = false)
189 : m_match_type (match_type),
190 m_completion_mode (completion_mode),
191 m_ignore_parameters (ignore_parameters),
192 m_name (std::move (name))
193 {}
194
195 /* Getters. See description of each corresponding field. */
196 symbol_name_match_type match_type () const { return m_match_type; }
197 bool completion_mode () const { return m_completion_mode; }
198 const std::string &name () const { return m_name; }
199 const bool ignore_parameters () const { return m_ignore_parameters; }
200
201 /* Return a version of this lookup name that is usable with
202 comparisons against symbols have no parameter info, such as
203 psymbols and GDB index symbols. */
204 lookup_name_info make_ignore_params () const
205 {
206 return lookup_name_info (m_name, m_match_type, m_completion_mode,
207 true /* ignore params */);
208 }
209
210 /* Get the search name hash for searches in language LANG. */
211 unsigned int search_name_hash (language lang) const
212 {
213 /* Only compute each language's hash once. */
214 if (!m_demangled_hashes_p[lang])
215 {
216 m_demangled_hashes[lang]
217 = ::search_name_hash (lang, language_lookup_name (lang).c_str ());
218 m_demangled_hashes_p[lang] = true;
219 }
220 return m_demangled_hashes[lang];
221 }
222
223 /* Get the search name for searches in language LANG. */
224 const std::string &language_lookup_name (language lang) const
225 {
226 switch (lang)
227 {
228 case language_ada:
229 return ada ().lookup_name ();
230 case language_cplus:
231 return cplus ().lookup_name ();
232 case language_d:
233 return d ().lookup_name ();
234 case language_go:
235 return go ().lookup_name ();
236 default:
237 return m_name;
238 }
239 }
240
241 /* Get the Ada-specific lookup info. */
242 const ada_lookup_name_info &ada () const
243 {
244 maybe_init (m_ada);
245 return *m_ada;
246 }
247
248 /* Get the C++-specific lookup info. */
249 const demangle_for_lookup_info &cplus () const
250 {
251 maybe_init (m_cplus, language_cplus);
252 return *m_cplus;
253 }
254
255 /* Get the D-specific lookup info. */
256 const demangle_for_lookup_info &d () const
257 {
258 maybe_init (m_d, language_d);
259 return *m_d;
260 }
261
262 /* Get the Go-specific lookup info. */
263 const demangle_for_lookup_info &go () const
264 {
265 maybe_init (m_go, language_go);
266 return *m_go;
267 }
268
269 /* Get a reference to a lookup_name_info object that matches any
270 symbol name. */
271 static const lookup_name_info &match_any ();
272
273 private:
274 /* Initialize FIELD, if not initialized yet. */
275 template<typename Field, typename... Args>
276 void maybe_init (Field &field, Args&&... args) const
277 {
278 if (!field)
279 field.emplace (*this, std::forward<Args> (args)...);
280 }
281
282 /* The lookup info as passed to the ctor. */
283 symbol_name_match_type m_match_type;
284 bool m_completion_mode;
285 bool m_ignore_parameters;
286 std::string m_name;
287
288 /* Language-specific info. These fields are filled lazily the first
289 time a lookup is done in the corresponding language. They're
290 mutable because lookup_name_info objects are typically passed
291 around by const reference (see intro), and they're conceptually
292 "cache" that can always be reconstructed from the non-mutable
293 fields. */
294 mutable gdb::optional<ada_lookup_name_info> m_ada;
295 mutable gdb::optional<demangle_for_lookup_info> m_cplus;
296 mutable gdb::optional<demangle_for_lookup_info> m_d;
297 mutable gdb::optional<demangle_for_lookup_info> m_go;
298
299 /* The demangled hashes. Stored in an array with one entry for each
300 possible language. The second array records whether we've
301 already computed the each language's hash. (These are separate
302 arrays instead of a single array of optional<unsigned> to avoid
303 alignment padding). */
304 mutable std::array<unsigned int, nr_languages> m_demangled_hashes;
305 mutable std::array<bool, nr_languages> m_demangled_hashes_p {};
306 };
307
308 /* Comparison function for completion symbol lookup.
309
310 Returns true if the symbol name matches against LOOKUP_NAME.
311
312 SYMBOL_SEARCH_NAME should be a symbol's "search" name.
313
314 On success and if non-NULL, COMP_MATCH_RES->match is set to point
315 to the symbol name as should be presented to the user as a
316 completion match list element. In most languages, this is the same
317 as the symbol's search name, but in some, like Ada, the display
318 name is dynamically computed within the comparison routine.
319
320 Also, on success and if non-NULL, COMP_MATCH_RES->match_for_lcd
321 points the part of SYMBOL_SEARCH_NAME that was considered to match
322 LOOKUP_NAME. E.g., in C++, in linespec/wild mode, if the symbol is
323 "foo::function()" and LOOKUP_NAME is "function(", MATCH_FOR_LCD
324 points to "function()" inside SYMBOL_SEARCH_NAME. */
325 typedef bool (symbol_name_matcher_ftype)
326 (const char *symbol_search_name,
327 const lookup_name_info &lookup_name,
328 completion_match_result *comp_match_res);
329
330 /* Some of the structures in this file are space critical.
331 The space-critical structures are:
332
333 struct general_symbol_info
334 struct symbol
335 struct partial_symbol
336
337 These structures are laid out to encourage good packing.
338 They use ENUM_BITFIELD and short int fields, and they order the
339 structure members so that fields less than a word are next
340 to each other so they can be packed together. */
341
342 /* Rearranged: used ENUM_BITFIELD and rearranged field order in
343 all the space critical structures (plus struct minimal_symbol).
344 Memory usage dropped from 99360768 bytes to 90001408 bytes.
345 I measured this with before-and-after tests of
346 "HEAD-old-gdb -readnow HEAD-old-gdb" and
347 "HEAD-new-gdb -readnow HEAD-old-gdb" on native i686-pc-linux-gnu,
348 red hat linux 8, with LD_LIBRARY_PATH=/usr/lib/debug,
349 typing "maint space 1" at the first command prompt.
350
351 Here is another measurement (from andrew c):
352 # no /usr/lib/debug, just plain glibc, like a normal user
353 gdb HEAD-old-gdb
354 (gdb) break internal_error
355 (gdb) run
356 (gdb) maint internal-error
357 (gdb) backtrace
358 (gdb) maint space 1
359
360 gdb gdb_6_0_branch 2003-08-19 space used: 8896512
361 gdb HEAD 2003-08-19 space used: 8904704
362 gdb HEAD 2003-08-21 space used: 8396800 (+symtab.h)
363 gdb HEAD 2003-08-21 space used: 8265728 (+gdbtypes.h)
364
365 The third line shows the savings from the optimizations in symtab.h.
366 The fourth line shows the savings from the optimizations in
367 gdbtypes.h. Both optimizations are in gdb HEAD now.
368
369 --chastain 2003-08-21 */
370
371 /* Define a structure for the information that is common to all symbol types,
372 including minimal symbols, partial symbols, and full symbols. In a
373 multilanguage environment, some language specific information may need to
374 be recorded along with each symbol. */
375
376 /* This structure is space critical. See space comments at the top. */
377
378 struct general_symbol_info
379 {
380 /* Name of the symbol. This is a required field. Storage for the
381 name is allocated on the objfile_obstack for the associated
382 objfile. For languages like C++ that make a distinction between
383 the mangled name and demangled name, this is the mangled
384 name. */
385
386 const char *name;
387
388 /* Value of the symbol. Which member of this union to use, and what
389 it means, depends on what kind of symbol this is and its
390 SYMBOL_CLASS. See comments there for more details. All of these
391 are in host byte order (though what they point to might be in
392 target byte order, e.g. LOC_CONST_BYTES). */
393
394 union
395 {
396 LONGEST ivalue;
397
398 const struct block *block;
399
400 const gdb_byte *bytes;
401
402 CORE_ADDR address;
403
404 /* A common block. Used with LOC_COMMON_BLOCK. */
405
406 const struct common_block *common_block;
407
408 /* For opaque typedef struct chain. */
409
410 struct symbol *chain;
411 }
412 value;
413
414 /* Since one and only one language can apply, wrap the language specific
415 information inside a union. */
416
417 union
418 {
419 /* A pointer to an obstack that can be used for storage associated
420 with this symbol. This is only used by Ada, and only when the
421 'ada_mangled' field is zero. */
422 struct obstack *obstack;
423
424 /* This is used by languages which wish to store a demangled name.
425 currently used by Ada, C++, and Objective C. */
426 const char *demangled_name;
427 }
428 language_specific;
429
430 /* Record the source code language that applies to this symbol.
431 This is used to select one of the fields from the language specific
432 union above. */
433
434 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
435
436 /* This is only used by Ada. If set, then the 'demangled_name' field
437 of language_specific is valid. Otherwise, the 'obstack' field is
438 valid. */
439 unsigned int ada_mangled : 1;
440
441 /* Which section is this symbol in? This is an index into
442 section_offsets for this objfile. Negative means that the symbol
443 does not get relocated relative to a section. */
444
445 short section;
446 };
447
448 extern void symbol_set_demangled_name (struct general_symbol_info *,
449 const char *,
450 struct obstack *);
451
452 extern const char *symbol_get_demangled_name
453 (const struct general_symbol_info *);
454
455 extern CORE_ADDR symbol_overlayed_address (CORE_ADDR, struct obj_section *);
456
457 /* Return the address of SYM. The MAYBE_COPIED flag must be set on
458 SYM. If SYM appears in the main program's minimal symbols, then
459 that minsym's address is returned; otherwise, SYM's address is
460 returned. This should generally only be used via the
461 SYMBOL_VALUE_ADDRESS macro. */
462
463 extern CORE_ADDR get_symbol_address (const struct symbol *sym);
464
465 /* Note that all the following SYMBOL_* macros are used with the
466 SYMBOL argument being either a partial symbol or
467 a full symbol. Both types have a ginfo field. In particular
468 the SYMBOL_SET_LANGUAGE, SYMBOL_DEMANGLED_NAME, etc.
469 macros cannot be entirely substituted by
470 functions, unless the callers are changed to pass in the ginfo
471 field only, instead of the SYMBOL parameter. */
472
473 #define SYMBOL_VALUE(symbol) (symbol)->ginfo.value.ivalue
474 #define SYMBOL_VALUE_ADDRESS(symbol) \
475 (((symbol)->maybe_copied) ? get_symbol_address (symbol) \
476 : ((symbol)->ginfo.value.address))
477 #define SET_SYMBOL_VALUE_ADDRESS(symbol, new_value) \
478 ((symbol)->ginfo.value.address = (new_value))
479 #define SYMBOL_VALUE_BYTES(symbol) (symbol)->ginfo.value.bytes
480 #define SYMBOL_VALUE_COMMON_BLOCK(symbol) (symbol)->ginfo.value.common_block
481 #define SYMBOL_BLOCK_VALUE(symbol) (symbol)->ginfo.value.block
482 #define SYMBOL_VALUE_CHAIN(symbol) (symbol)->ginfo.value.chain
483 #define SYMBOL_LANGUAGE(symbol) (symbol)->ginfo.language
484 #define SYMBOL_SECTION(symbol) (symbol)->ginfo.section
485 #define SYMBOL_OBJ_SECTION(objfile, symbol) \
486 (((symbol)->ginfo.section >= 0) \
487 ? (&(((objfile)->sections)[(symbol)->ginfo.section])) \
488 : NULL)
489
490 /* Initializes the language dependent portion of a symbol
491 depending upon the language for the symbol. */
492 #define SYMBOL_SET_LANGUAGE(symbol,language,obstack) \
493 (symbol_set_language (&(symbol)->ginfo, (language), (obstack)))
494 extern void symbol_set_language (struct general_symbol_info *symbol,
495 enum language language,
496 struct obstack *obstack);
497
498 /* Set just the linkage name of a symbol; do not try to demangle
499 it. Used for constructs which do not have a mangled name,
500 e.g. struct tags. Unlike SYMBOL_SET_NAMES, linkage_name must
501 be terminated and either already on the objfile's obstack or
502 permanently allocated. */
503 #define SYMBOL_SET_LINKAGE_NAME(symbol,linkage_name) \
504 (symbol)->ginfo.name = (linkage_name)
505
506 /* Set the linkage and natural names of a symbol, by demangling
507 the linkage name. */
508 #define SYMBOL_SET_NAMES(symbol,linkage_name,len,copy_name,objfile) \
509 symbol_set_names (&(symbol)->ginfo, linkage_name, len, copy_name, \
510 (objfile)->per_bfd)
511 extern void symbol_set_names (struct general_symbol_info *symbol,
512 const char *linkage_name, int len, bool copy_name,
513 struct objfile_per_bfd_storage *per_bfd);
514
515 /* Now come lots of name accessor macros. Short version as to when to
516 use which: Use SYMBOL_NATURAL_NAME to refer to the name of the
517 symbol in the original source code. Use SYMBOL_LINKAGE_NAME if you
518 want to know what the linker thinks the symbol's name is. Use
519 SYMBOL_PRINT_NAME for output. Use SYMBOL_DEMANGLED_NAME if you
520 specifically need to know whether SYMBOL_NATURAL_NAME and
521 SYMBOL_LINKAGE_NAME are different. */
522
523 /* Return SYMBOL's "natural" name, i.e. the name that it was called in
524 the original source code. In languages like C++ where symbols may
525 be mangled for ease of manipulation by the linker, this is the
526 demangled name. */
527
528 #define SYMBOL_NATURAL_NAME(symbol) \
529 (symbol_natural_name (&(symbol)->ginfo))
530 extern const char *symbol_natural_name
531 (const struct general_symbol_info *symbol);
532
533 /* Return SYMBOL's name from the point of view of the linker. In
534 languages like C++ where symbols may be mangled for ease of
535 manipulation by the linker, this is the mangled name; otherwise,
536 it's the same as SYMBOL_NATURAL_NAME. */
537
538 #define SYMBOL_LINKAGE_NAME(symbol) (symbol)->ginfo.name
539
540 /* Return the demangled name for a symbol based on the language for
541 that symbol. If no demangled name exists, return NULL. */
542 #define SYMBOL_DEMANGLED_NAME(symbol) \
543 (symbol_demangled_name (&(symbol)->ginfo))
544 extern const char *symbol_demangled_name
545 (const struct general_symbol_info *symbol);
546
547 /* Macro that returns a version of the name of a symbol that is
548 suitable for output. In C++ this is the "demangled" form of the
549 name if demangle is on and the "mangled" form of the name if
550 demangle is off. In other languages this is just the symbol name.
551 The result should never be NULL. Don't use this for internal
552 purposes (e.g. storing in a hashtable): it's only suitable for output.
553
554 N.B. symbol may be anything with a ginfo member,
555 e.g., struct symbol or struct minimal_symbol. */
556
557 #define SYMBOL_PRINT_NAME(symbol) \
558 (demangle ? SYMBOL_NATURAL_NAME (symbol) : SYMBOL_LINKAGE_NAME (symbol))
559 extern bool demangle;
560
561 /* Macro that returns the name to be used when sorting and searching symbols.
562 In C++, we search for the demangled form of a name,
563 and so sort symbols accordingly. In Ada, however, we search by mangled
564 name. If there is no distinct demangled name, then SYMBOL_SEARCH_NAME
565 returns the same value (same pointer) as SYMBOL_LINKAGE_NAME. */
566 #define SYMBOL_SEARCH_NAME(symbol) \
567 (symbol_search_name (&(symbol)->ginfo))
568 extern const char *symbol_search_name (const struct general_symbol_info *ginfo);
569
570 /* Return true if NAME matches the "search" name of SYMBOL, according
571 to the symbol's language. */
572 #define SYMBOL_MATCHES_SEARCH_NAME(symbol, name) \
573 symbol_matches_search_name (&(symbol)->ginfo, (name))
574
575 /* Helper for SYMBOL_MATCHES_SEARCH_NAME that works with both symbols
576 and psymbols. */
577 extern bool symbol_matches_search_name
578 (const struct general_symbol_info *gsymbol,
579 const lookup_name_info &name);
580
581 /* Compute the hash of the given symbol search name of a symbol of
582 language LANGUAGE. */
583 extern unsigned int search_name_hash (enum language language,
584 const char *search_name);
585
586 /* Classification types for a minimal symbol. These should be taken as
587 "advisory only", since if gdb can't easily figure out a
588 classification it simply selects mst_unknown. It may also have to
589 guess when it can't figure out which is a better match between two
590 types (mst_data versus mst_bss) for example. Since the minimal
591 symbol info is sometimes derived from the BFD library's view of a
592 file, we need to live with what information bfd supplies. */
593
594 enum minimal_symbol_type
595 {
596 mst_unknown = 0, /* Unknown type, the default */
597 mst_text, /* Generally executable instructions */
598
599 /* A GNU ifunc symbol, in the .text section. GDB uses to know
600 whether the user is setting a breakpoint on a GNU ifunc function,
601 and thus GDB needs to actually set the breakpoint on the target
602 function. It is also used to know whether the program stepped
603 into an ifunc resolver -- the resolver may get a separate
604 symbol/alias under a different name, but it'll have the same
605 address as the ifunc symbol. */
606 mst_text_gnu_ifunc, /* Executable code returning address
607 of executable code */
608
609 /* A GNU ifunc function descriptor symbol, in a data section
610 (typically ".opd"). Seen on architectures that use function
611 descriptors, like PPC64/ELFv1. In this case, this symbol's value
612 is the address of the descriptor. There'll be a corresponding
613 mst_text_gnu_ifunc synthetic symbol for the text/entry
614 address. */
615 mst_data_gnu_ifunc, /* Executable code returning address
616 of executable code */
617
618 mst_slot_got_plt, /* GOT entries for .plt sections */
619 mst_data, /* Generally initialized data */
620 mst_bss, /* Generally uninitialized data */
621 mst_abs, /* Generally absolute (nonrelocatable) */
622 /* GDB uses mst_solib_trampoline for the start address of a shared
623 library trampoline entry. Breakpoints for shared library functions
624 are put there if the shared library is not yet loaded.
625 After the shared library is loaded, lookup_minimal_symbol will
626 prefer the minimal symbol from the shared library (usually
627 a mst_text symbol) over the mst_solib_trampoline symbol, and the
628 breakpoints will be moved to their true address in the shared
629 library via breakpoint_re_set. */
630 mst_solib_trampoline, /* Shared library trampoline code */
631 /* For the mst_file* types, the names are only guaranteed to be unique
632 within a given .o file. */
633 mst_file_text, /* Static version of mst_text */
634 mst_file_data, /* Static version of mst_data */
635 mst_file_bss, /* Static version of mst_bss */
636 nr_minsym_types
637 };
638
639 /* The number of enum minimal_symbol_type values, with some padding for
640 reasonable growth. */
641 #define MINSYM_TYPE_BITS 4
642 gdb_static_assert (nr_minsym_types <= (1 << MINSYM_TYPE_BITS));
643
644 /* Define a simple structure used to hold some very basic information about
645 all defined global symbols (text, data, bss, abs, etc). The only required
646 information is the general_symbol_info.
647
648 In many cases, even if a file was compiled with no special options for
649 debugging at all, as long as was not stripped it will contain sufficient
650 information to build a useful minimal symbol table using this structure.
651 Even when a file contains enough debugging information to build a full
652 symbol table, these minimal symbols are still useful for quickly mapping
653 between names and addresses, and vice versa. They are also sometimes
654 used to figure out what full symbol table entries need to be read in. */
655
656 struct minimal_symbol : public general_symbol_info
657 {
658 /* Size of this symbol. dbx_end_psymtab in dbxread.c uses this
659 information to calculate the end of the partial symtab based on the
660 address of the last symbol plus the size of the last symbol. */
661
662 unsigned long size;
663
664 /* Which source file is this symbol in? Only relevant for mst_file_*. */
665 const char *filename;
666
667 /* Classification type for this minimal symbol. */
668
669 ENUM_BITFIELD(minimal_symbol_type) type : MINSYM_TYPE_BITS;
670
671 /* Non-zero if this symbol was created by gdb.
672 Such symbols do not appear in the output of "info var|fun". */
673 unsigned int created_by_gdb : 1;
674
675 /* Two flag bits provided for the use of the target. */
676 unsigned int target_flag_1 : 1;
677 unsigned int target_flag_2 : 1;
678
679 /* Nonzero iff the size of the minimal symbol has been set.
680 Symbol size information can sometimes not be determined, because
681 the object file format may not carry that piece of information. */
682 unsigned int has_size : 1;
683
684 /* For data symbols only, if this is set, then the symbol might be
685 subject to copy relocation. In this case, a minimal symbol
686 matching the symbol's linkage name is first looked for in the
687 main objfile. If found, then that address is used; otherwise the
688 address in this symbol is used. */
689
690 unsigned maybe_copied : 1;
691
692 /* Minimal symbols with the same hash key are kept on a linked
693 list. This is the link. */
694
695 struct minimal_symbol *hash_next;
696
697 /* Minimal symbols are stored in two different hash tables. This is
698 the `next' pointer for the demangled hash table. */
699
700 struct minimal_symbol *demangled_hash_next;
701
702 /* True if this symbol is of some data type. */
703
704 bool data_p () const;
705
706 /* True if MSYMBOL is of some text type. */
707
708 bool text_p () const;
709 };
710
711 /* Return the address of MINSYM, which comes from OBJF. The
712 MAYBE_COPIED flag must be set on MINSYM. If MINSYM appears in the
713 main program's minimal symbols, then that minsym's address is
714 returned; otherwise, MINSYM's address is returned. This should
715 generally only be used via the MSYMBOL_VALUE_ADDRESS macro. */
716
717 extern CORE_ADDR get_msymbol_address (struct objfile *objf,
718 const struct minimal_symbol *minsym);
719
720 #define MSYMBOL_TARGET_FLAG_1(msymbol) (msymbol)->target_flag_1
721 #define MSYMBOL_TARGET_FLAG_2(msymbol) (msymbol)->target_flag_2
722 #define MSYMBOL_SIZE(msymbol) ((msymbol)->size + 0)
723 #define SET_MSYMBOL_SIZE(msymbol, sz) \
724 do \
725 { \
726 (msymbol)->size = sz; \
727 (msymbol)->has_size = 1; \
728 } while (0)
729 #define MSYMBOL_HAS_SIZE(msymbol) ((msymbol)->has_size + 0)
730 #define MSYMBOL_TYPE(msymbol) (msymbol)->type
731
732 #define MSYMBOL_VALUE(symbol) (symbol)->value.ivalue
733 /* The unrelocated address of the minimal symbol. */
734 #define MSYMBOL_VALUE_RAW_ADDRESS(symbol) ((symbol)->value.address + 0)
735 /* The relocated address of the minimal symbol, using the section
736 offsets from OBJFILE. */
737 #define MSYMBOL_VALUE_ADDRESS(objfile, symbol) \
738 (((symbol)->maybe_copied) ? get_msymbol_address (objfile, symbol) \
739 : ((symbol)->value.address \
740 + ANOFFSET ((objfile)->section_offsets, ((symbol)->section))))
741 /* For a bound minsym, we can easily compute the address directly. */
742 #define BMSYMBOL_VALUE_ADDRESS(symbol) \
743 MSYMBOL_VALUE_ADDRESS ((symbol).objfile, (symbol).minsym)
744 #define SET_MSYMBOL_VALUE_ADDRESS(symbol, new_value) \
745 ((symbol)->value.address = (new_value))
746 #define MSYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
747 #define MSYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
748 #define MSYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
749 #define MSYMBOL_LANGUAGE(symbol) (symbol)->language
750 #define MSYMBOL_SECTION(symbol) (symbol)->section
751 #define MSYMBOL_OBJ_SECTION(objfile, symbol) \
752 (((symbol)->section >= 0) \
753 ? (&(((objfile)->sections)[(symbol)->section])) \
754 : NULL)
755
756 #define MSYMBOL_NATURAL_NAME(symbol) \
757 (symbol_natural_name (symbol))
758 #define MSYMBOL_LINKAGE_NAME(symbol) (symbol)->name
759 #define MSYMBOL_PRINT_NAME(symbol) \
760 (demangle ? MSYMBOL_NATURAL_NAME (symbol) : MSYMBOL_LINKAGE_NAME (symbol))
761 #define MSYMBOL_DEMANGLED_NAME(symbol) \
762 (symbol_demangled_name (symbol))
763 #define MSYMBOL_SEARCH_NAME(symbol) \
764 (symbol_search_name (symbol))
765
766 #include "minsyms.h"
767
768 \f
769
770 /* Represent one symbol name; a variable, constant, function or typedef. */
771
772 /* Different name domains for symbols. Looking up a symbol specifies a
773 domain and ignores symbol definitions in other name domains. */
774
775 typedef enum domain_enum_tag
776 {
777 /* UNDEF_DOMAIN is used when a domain has not been discovered or
778 none of the following apply. This usually indicates an error either
779 in the symbol information or in gdb's handling of symbols. */
780
781 UNDEF_DOMAIN,
782
783 /* VAR_DOMAIN is the usual domain. In C, this contains variables,
784 function names, typedef names and enum type values. */
785
786 VAR_DOMAIN,
787
788 /* STRUCT_DOMAIN is used in C to hold struct, union and enum type names.
789 Thus, if `struct foo' is used in a C program, it produces a symbol named
790 `foo' in the STRUCT_DOMAIN. */
791
792 STRUCT_DOMAIN,
793
794 /* MODULE_DOMAIN is used in Fortran to hold module type names. */
795
796 MODULE_DOMAIN,
797
798 /* LABEL_DOMAIN may be used for names of labels (for gotos). */
799
800 LABEL_DOMAIN,
801
802 /* Fortran common blocks. Their naming must be separate from VAR_DOMAIN.
803 They also always use LOC_COMMON_BLOCK. */
804 COMMON_BLOCK_DOMAIN,
805
806 /* This must remain last. */
807 NR_DOMAINS
808 } domain_enum;
809
810 /* The number of bits in a symbol used to represent the domain. */
811
812 #define SYMBOL_DOMAIN_BITS 3
813 gdb_static_assert (NR_DOMAINS <= (1 << SYMBOL_DOMAIN_BITS));
814
815 extern const char *domain_name (domain_enum);
816
817 /* Searching domains, used for `search_symbols'. Element numbers are
818 hardcoded in GDB, check all enum uses before changing it. */
819
820 enum search_domain
821 {
822 /* Everything in VAR_DOMAIN minus FUNCTIONS_DOMAIN and
823 TYPES_DOMAIN. */
824 VARIABLES_DOMAIN = 0,
825
826 /* All functions -- for some reason not methods, though. */
827 FUNCTIONS_DOMAIN = 1,
828
829 /* All defined types */
830 TYPES_DOMAIN = 2,
831
832 /* Any type. */
833 ALL_DOMAIN = 3
834 };
835
836 extern const char *search_domain_name (enum search_domain);
837
838 /* An address-class says where to find the value of a symbol. */
839
840 enum address_class
841 {
842 /* Not used; catches errors. */
843
844 LOC_UNDEF,
845
846 /* Value is constant int SYMBOL_VALUE, host byteorder. */
847
848 LOC_CONST,
849
850 /* Value is at fixed address SYMBOL_VALUE_ADDRESS. */
851
852 LOC_STATIC,
853
854 /* Value is in register. SYMBOL_VALUE is the register number
855 in the original debug format. SYMBOL_REGISTER_OPS holds a
856 function that can be called to transform this into the
857 actual register number this represents in a specific target
858 architecture (gdbarch).
859
860 For some symbol formats (stabs, for some compilers at least),
861 the compiler generates two symbols, an argument and a register.
862 In some cases we combine them to a single LOC_REGISTER in symbol
863 reading, but currently not for all cases (e.g. it's passed on the
864 stack and then loaded into a register). */
865
866 LOC_REGISTER,
867
868 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */
869
870 LOC_ARG,
871
872 /* Value address is at SYMBOL_VALUE offset in arglist. */
873
874 LOC_REF_ARG,
875
876 /* Value is in specified register. Just like LOC_REGISTER except the
877 register holds the address of the argument instead of the argument
878 itself. This is currently used for the passing of structs and unions
879 on sparc and hppa. It is also used for call by reference where the
880 address is in a register, at least by mipsread.c. */
881
882 LOC_REGPARM_ADDR,
883
884 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */
885
886 LOC_LOCAL,
887
888 /* Value not used; definition in SYMBOL_TYPE. Symbols in the domain
889 STRUCT_DOMAIN all have this class. */
890
891 LOC_TYPEDEF,
892
893 /* Value is address SYMBOL_VALUE_ADDRESS in the code. */
894
895 LOC_LABEL,
896
897 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'.
898 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address
899 of the block. Function names have this class. */
900
901 LOC_BLOCK,
902
903 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in
904 target byte order. */
905
906 LOC_CONST_BYTES,
907
908 /* Value is at fixed address, but the address of the variable has
909 to be determined from the minimal symbol table whenever the
910 variable is referenced.
911 This happens if debugging information for a global symbol is
912 emitted and the corresponding minimal symbol is defined
913 in another object file or runtime common storage.
914 The linker might even remove the minimal symbol if the global
915 symbol is never referenced, in which case the symbol remains
916 unresolved.
917
918 GDB would normally find the symbol in the minimal symbol table if it will
919 not find it in the full symbol table. But a reference to an external
920 symbol in a local block shadowing other definition requires full symbol
921 without possibly having its address available for LOC_STATIC. Testcase
922 is provided as `gdb.dwarf2/dw2-unresolved.exp'.
923
924 This is also used for thread local storage (TLS) variables. In this case,
925 the address of the TLS variable must be determined when the variable is
926 referenced, from the MSYMBOL_VALUE_RAW_ADDRESS, which is the offset
927 of the TLS variable in the thread local storage of the shared
928 library/object. */
929
930 LOC_UNRESOLVED,
931
932 /* The variable does not actually exist in the program.
933 The value is ignored. */
934
935 LOC_OPTIMIZED_OUT,
936
937 /* The variable's address is computed by a set of location
938 functions (see "struct symbol_computed_ops" below). */
939 LOC_COMPUTED,
940
941 /* The variable uses general_symbol_info->value->common_block field.
942 It also always uses COMMON_BLOCK_DOMAIN. */
943 LOC_COMMON_BLOCK,
944
945 /* Not used, just notes the boundary of the enum. */
946 LOC_FINAL_VALUE
947 };
948
949 /* The number of bits needed for values in enum address_class, with some
950 padding for reasonable growth, and room for run-time registered address
951 classes. See symtab.c:MAX_SYMBOL_IMPLS.
952 This is a #define so that we can have a assertion elsewhere to
953 verify that we have reserved enough space for synthetic address
954 classes. */
955 #define SYMBOL_ACLASS_BITS 5
956 gdb_static_assert (LOC_FINAL_VALUE <= (1 << SYMBOL_ACLASS_BITS));
957
958 /* The methods needed to implement LOC_COMPUTED. These methods can
959 use the symbol's .aux_value for additional per-symbol information.
960
961 At present this is only used to implement location expressions. */
962
963 struct symbol_computed_ops
964 {
965
966 /* Return the value of the variable SYMBOL, relative to the stack
967 frame FRAME. If the variable has been optimized out, return
968 zero.
969
970 Iff `read_needs_frame (SYMBOL)' is not SYMBOL_NEEDS_FRAME, then
971 FRAME may be zero. */
972
973 struct value *(*read_variable) (struct symbol * symbol,
974 struct frame_info * frame);
975
976 /* Read variable SYMBOL like read_variable at (callee) FRAME's function
977 entry. SYMBOL should be a function parameter, otherwise
978 NO_ENTRY_VALUE_ERROR will be thrown. */
979 struct value *(*read_variable_at_entry) (struct symbol *symbol,
980 struct frame_info *frame);
981
982 /* Find the "symbol_needs_kind" value for the given symbol. This
983 value determines whether reading the symbol needs memory (e.g., a
984 global variable), just registers (a thread-local), or a frame (a
985 local variable). */
986 enum symbol_needs_kind (*get_symbol_read_needs) (struct symbol * symbol);
987
988 /* Write to STREAM a natural-language description of the location of
989 SYMBOL, in the context of ADDR. */
990 void (*describe_location) (struct symbol * symbol, CORE_ADDR addr,
991 struct ui_file * stream);
992
993 /* Non-zero if this symbol's address computation is dependent on PC. */
994 unsigned char location_has_loclist;
995
996 /* Tracepoint support. Append bytecodes to the tracepoint agent
997 expression AX that push the address of the object SYMBOL. Set
998 VALUE appropriately. Note --- for objects in registers, this
999 needn't emit any code; as long as it sets VALUE properly, then
1000 the caller will generate the right code in the process of
1001 treating this as an lvalue or rvalue. */
1002
1003 void (*tracepoint_var_ref) (struct symbol *symbol, struct agent_expr *ax,
1004 struct axs_value *value);
1005
1006 /* Generate C code to compute the location of SYMBOL. The C code is
1007 emitted to STREAM. GDBARCH is the current architecture and PC is
1008 the PC at which SYMBOL's location should be evaluated.
1009 REGISTERS_USED is a vector indexed by register number; the
1010 generator function should set an element in this vector if the
1011 corresponding register is needed by the location computation.
1012 The generated C code must assign the location to a local
1013 variable; this variable's name is RESULT_NAME. */
1014
1015 void (*generate_c_location) (struct symbol *symbol, string_file *stream,
1016 struct gdbarch *gdbarch,
1017 unsigned char *registers_used,
1018 CORE_ADDR pc, const char *result_name);
1019
1020 };
1021
1022 /* The methods needed to implement LOC_BLOCK for inferior functions.
1023 These methods can use the symbol's .aux_value for additional
1024 per-symbol information. */
1025
1026 struct symbol_block_ops
1027 {
1028 /* Fill in *START and *LENGTH with DWARF block data of function
1029 FRAMEFUNC valid for inferior context address PC. Set *LENGTH to
1030 zero if such location is not valid for PC; *START is left
1031 uninitialized in such case. */
1032 void (*find_frame_base_location) (struct symbol *framefunc, CORE_ADDR pc,
1033 const gdb_byte **start, size_t *length);
1034
1035 /* Return the frame base address. FRAME is the frame for which we want to
1036 compute the base address while FRAMEFUNC is the symbol for the
1037 corresponding function. Return 0 on failure (FRAMEFUNC may not hold the
1038 information we need).
1039
1040 This method is designed to work with static links (nested functions
1041 handling). Static links are function properties whose evaluation returns
1042 the frame base address for the enclosing frame. However, there are
1043 multiple definitions for "frame base": the content of the frame base
1044 register, the CFA as defined by DWARF unwinding information, ...
1045
1046 So this specific method is supposed to compute the frame base address such
1047 as for nested functions, the static link computes the same address. For
1048 instance, considering DWARF debugging information, the static link is
1049 computed with DW_AT_static_link and this method must be used to compute
1050 the corresponding DW_AT_frame_base attribute. */
1051 CORE_ADDR (*get_frame_base) (struct symbol *framefunc,
1052 struct frame_info *frame);
1053 };
1054
1055 /* Functions used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1056
1057 struct symbol_register_ops
1058 {
1059 int (*register_number) (struct symbol *symbol, struct gdbarch *gdbarch);
1060 };
1061
1062 /* Objects of this type are used to find the address class and the
1063 various computed ops vectors of a symbol. */
1064
1065 struct symbol_impl
1066 {
1067 enum address_class aclass;
1068
1069 /* Used with LOC_COMPUTED. */
1070 const struct symbol_computed_ops *ops_computed;
1071
1072 /* Used with LOC_BLOCK. */
1073 const struct symbol_block_ops *ops_block;
1074
1075 /* Used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1076 const struct symbol_register_ops *ops_register;
1077 };
1078
1079 /* struct symbol has some subclasses. This enum is used to
1080 differentiate between them. */
1081
1082 enum symbol_subclass_kind
1083 {
1084 /* Plain struct symbol. */
1085 SYMBOL_NONE,
1086
1087 /* struct template_symbol. */
1088 SYMBOL_TEMPLATE,
1089
1090 /* struct rust_vtable_symbol. */
1091 SYMBOL_RUST_VTABLE
1092 };
1093
1094 /* This structure is space critical. See space comments at the top. */
1095
1096 struct symbol
1097 {
1098
1099 /* The general symbol info required for all types of symbols. */
1100
1101 struct general_symbol_info ginfo;
1102
1103 /* Data type of value */
1104
1105 struct type *type;
1106
1107 /* The owner of this symbol.
1108 Which one to use is defined by symbol.is_objfile_owned. */
1109
1110 union
1111 {
1112 /* The symbol table containing this symbol. This is the file associated
1113 with LINE. It can be NULL during symbols read-in but it is never NULL
1114 during normal operation. */
1115 struct symtab *symtab;
1116
1117 /* For types defined by the architecture. */
1118 struct gdbarch *arch;
1119 } owner;
1120
1121 /* Domain code. */
1122
1123 ENUM_BITFIELD(domain_enum_tag) domain : SYMBOL_DOMAIN_BITS;
1124
1125 /* Address class. This holds an index into the 'symbol_impls'
1126 table. The actual enum address_class value is stored there,
1127 alongside any per-class ops vectors. */
1128
1129 unsigned int aclass_index : SYMBOL_ACLASS_BITS;
1130
1131 /* If non-zero then symbol is objfile-owned, use owner.symtab.
1132 Otherwise symbol is arch-owned, use owner.arch. */
1133
1134 unsigned int is_objfile_owned : 1;
1135
1136 /* Whether this is an argument. */
1137
1138 unsigned is_argument : 1;
1139
1140 /* Whether this is an inlined function (class LOC_BLOCK only). */
1141 unsigned is_inlined : 1;
1142
1143 /* For LOC_STATIC only, if this is set, then the symbol might be
1144 subject to copy relocation. In this case, a minimal symbol
1145 matching the symbol's linkage name is first looked for in the
1146 main objfile. If found, then that address is used; otherwise the
1147 address in this symbol is used. */
1148
1149 unsigned maybe_copied : 1;
1150
1151 /* The concrete type of this symbol. */
1152
1153 ENUM_BITFIELD (symbol_subclass_kind) subclass : 2;
1154
1155 /* Line number of this symbol's definition, except for inlined
1156 functions. For an inlined function (class LOC_BLOCK and
1157 SYMBOL_INLINED set) this is the line number of the function's call
1158 site. Inlined function symbols are not definitions, and they are
1159 never found by symbol table lookup.
1160 If this symbol is arch-owned, LINE shall be zero.
1161
1162 FIXME: Should we really make the assumption that nobody will try
1163 to debug files longer than 64K lines? What about machine
1164 generated programs? */
1165
1166 unsigned short line;
1167
1168 /* An arbitrary data pointer, allowing symbol readers to record
1169 additional information on a per-symbol basis. Note that this data
1170 must be allocated using the same obstack as the symbol itself. */
1171 /* So far it is only used by:
1172 LOC_COMPUTED: to find the location information
1173 LOC_BLOCK (DWARF2 function): information used internally by the
1174 DWARF 2 code --- specifically, the location expression for the frame
1175 base for this function. */
1176 /* FIXME drow/2003-02-21: For the LOC_BLOCK case, it might be better
1177 to add a magic symbol to the block containing this information,
1178 or to have a generic debug info annotation slot for symbols. */
1179
1180 void *aux_value;
1181
1182 struct symbol *hash_next;
1183 };
1184
1185 /* Several lookup functions return both a symbol and the block in which the
1186 symbol is found. This structure is used in these cases. */
1187
1188 struct block_symbol
1189 {
1190 /* The symbol that was found, or NULL if no symbol was found. */
1191 struct symbol *symbol;
1192
1193 /* If SYMBOL is not NULL, then this is the block in which the symbol is
1194 defined. */
1195 const struct block *block;
1196 };
1197
1198 extern const struct symbol_impl *symbol_impls;
1199
1200 /* Note: There is no accessor macro for symbol.owner because it is
1201 "private". */
1202
1203 #define SYMBOL_DOMAIN(symbol) (symbol)->domain
1204 #define SYMBOL_IMPL(symbol) (symbol_impls[(symbol)->aclass_index])
1205 #define SYMBOL_ACLASS_INDEX(symbol) (symbol)->aclass_index
1206 #define SYMBOL_CLASS(symbol) (SYMBOL_IMPL (symbol).aclass)
1207 #define SYMBOL_OBJFILE_OWNED(symbol) ((symbol)->is_objfile_owned)
1208 #define SYMBOL_IS_ARGUMENT(symbol) (symbol)->is_argument
1209 #define SYMBOL_INLINED(symbol) (symbol)->is_inlined
1210 #define SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION(symbol) \
1211 (((symbol)->subclass) == SYMBOL_TEMPLATE)
1212 #define SYMBOL_TYPE(symbol) (symbol)->type
1213 #define SYMBOL_LINE(symbol) (symbol)->line
1214 #define SYMBOL_COMPUTED_OPS(symbol) (SYMBOL_IMPL (symbol).ops_computed)
1215 #define SYMBOL_BLOCK_OPS(symbol) (SYMBOL_IMPL (symbol).ops_block)
1216 #define SYMBOL_REGISTER_OPS(symbol) (SYMBOL_IMPL (symbol).ops_register)
1217 #define SYMBOL_LOCATION_BATON(symbol) (symbol)->aux_value
1218
1219 extern int register_symbol_computed_impl (enum address_class,
1220 const struct symbol_computed_ops *);
1221
1222 extern int register_symbol_block_impl (enum address_class aclass,
1223 const struct symbol_block_ops *ops);
1224
1225 extern int register_symbol_register_impl (enum address_class,
1226 const struct symbol_register_ops *);
1227
1228 /* Return the OBJFILE of SYMBOL.
1229 It is an error to call this if symbol.is_objfile_owned is false, which
1230 only happens for architecture-provided types. */
1231
1232 extern struct objfile *symbol_objfile (const struct symbol *symbol);
1233
1234 /* Return the ARCH of SYMBOL. */
1235
1236 extern struct gdbarch *symbol_arch (const struct symbol *symbol);
1237
1238 /* Return the SYMTAB of SYMBOL.
1239 It is an error to call this if symbol.is_objfile_owned is false, which
1240 only happens for architecture-provided types. */
1241
1242 extern struct symtab *symbol_symtab (const struct symbol *symbol);
1243
1244 /* Set the symtab of SYMBOL to SYMTAB.
1245 It is an error to call this if symbol.is_objfile_owned is false, which
1246 only happens for architecture-provided types. */
1247
1248 extern void symbol_set_symtab (struct symbol *symbol, struct symtab *symtab);
1249
1250 /* An instance of this type is used to represent a C++ template
1251 function. A symbol is really of this type iff
1252 SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION is true. */
1253
1254 struct template_symbol : public symbol
1255 {
1256 /* The number of template arguments. */
1257 int n_template_arguments;
1258
1259 /* The template arguments. This is an array with
1260 N_TEMPLATE_ARGUMENTS elements. */
1261 struct symbol **template_arguments;
1262 };
1263
1264 /* A symbol that represents a Rust virtual table object. */
1265
1266 struct rust_vtable_symbol : public symbol
1267 {
1268 /* The concrete type for which this vtable was created; that is, in
1269 "impl Trait for Type", this is "Type". */
1270 struct type *concrete_type;
1271 };
1272
1273 \f
1274 /* Each item represents a line-->pc (or the reverse) mapping. This is
1275 somewhat more wasteful of space than one might wish, but since only
1276 the files which are actually debugged are read in to core, we don't
1277 waste much space. */
1278
1279 struct linetable_entry
1280 {
1281 int line;
1282 CORE_ADDR pc;
1283 };
1284
1285 /* The order of entries in the linetable is significant. They should
1286 be sorted by increasing values of the pc field. If there is more than
1287 one entry for a given pc, then I'm not sure what should happen (and
1288 I not sure whether we currently handle it the best way).
1289
1290 Example: a C for statement generally looks like this
1291
1292 10 0x100 - for the init/test part of a for stmt.
1293 20 0x200
1294 30 0x300
1295 10 0x400 - for the increment part of a for stmt.
1296
1297 If an entry has a line number of zero, it marks the start of a PC
1298 range for which no line number information is available. It is
1299 acceptable, though wasteful of table space, for such a range to be
1300 zero length. */
1301
1302 struct linetable
1303 {
1304 int nitems;
1305
1306 /* Actually NITEMS elements. If you don't like this use of the
1307 `struct hack', you can shove it up your ANSI (seriously, if the
1308 committee tells us how to do it, we can probably go along). */
1309 struct linetable_entry item[1];
1310 };
1311
1312 /* How to relocate the symbols from each section in a symbol file.
1313 Each struct contains an array of offsets.
1314 The ordering and meaning of the offsets is file-type-dependent;
1315 typically it is indexed by section numbers or symbol types or
1316 something like that.
1317
1318 To give us flexibility in changing the internal representation
1319 of these offsets, the ANOFFSET macro must be used to insert and
1320 extract offset values in the struct. */
1321
1322 struct section_offsets
1323 {
1324 CORE_ADDR offsets[1]; /* As many as needed. */
1325 };
1326
1327 #define ANOFFSET(secoff, whichone) \
1328 ((whichone == -1) \
1329 ? (internal_error (__FILE__, __LINE__, \
1330 _("Section index is uninitialized")), -1) \
1331 : secoff->offsets[whichone])
1332
1333 /* The size of a section_offsets table for N sections. */
1334 #define SIZEOF_N_SECTION_OFFSETS(n) \
1335 (sizeof (struct section_offsets) \
1336 + sizeof (((struct section_offsets *) 0)->offsets) * ((n)-1))
1337
1338 /* Each source file or header is represented by a struct symtab.
1339 The name "symtab" is historical, another name for it is "filetab".
1340 These objects are chained through the `next' field. */
1341
1342 struct symtab
1343 {
1344 /* Unordered chain of all filetabs in the compunit, with the exception
1345 that the "main" source file is the first entry in the list. */
1346
1347 struct symtab *next;
1348
1349 /* Backlink to containing compunit symtab. */
1350
1351 struct compunit_symtab *compunit_symtab;
1352
1353 /* Table mapping core addresses to line numbers for this file.
1354 Can be NULL if none. Never shared between different symtabs. */
1355
1356 struct linetable *linetable;
1357
1358 /* Name of this source file. This pointer is never NULL. */
1359
1360 const char *filename;
1361
1362 /* Language of this source file. */
1363
1364 enum language language;
1365
1366 /* Full name of file as found by searching the source path.
1367 NULL if not yet known. */
1368
1369 char *fullname;
1370 };
1371
1372 #define SYMTAB_COMPUNIT(symtab) ((symtab)->compunit_symtab)
1373 #define SYMTAB_LINETABLE(symtab) ((symtab)->linetable)
1374 #define SYMTAB_LANGUAGE(symtab) ((symtab)->language)
1375 #define SYMTAB_BLOCKVECTOR(symtab) \
1376 COMPUNIT_BLOCKVECTOR (SYMTAB_COMPUNIT (symtab))
1377 #define SYMTAB_OBJFILE(symtab) \
1378 COMPUNIT_OBJFILE (SYMTAB_COMPUNIT (symtab))
1379 #define SYMTAB_PSPACE(symtab) (SYMTAB_OBJFILE (symtab)->pspace)
1380 #define SYMTAB_DIRNAME(symtab) \
1381 COMPUNIT_DIRNAME (SYMTAB_COMPUNIT (symtab))
1382
1383 /* Compunit symtabs contain the actual "symbol table", aka blockvector, as well
1384 as the list of all source files (what gdb has historically associated with
1385 the term "symtab").
1386 Additional information is recorded here that is common to all symtabs in a
1387 compilation unit (DWARF or otherwise).
1388
1389 Example:
1390 For the case of a program built out of these files:
1391
1392 foo.c
1393 foo1.h
1394 foo2.h
1395 bar.c
1396 foo1.h
1397 bar.h
1398
1399 This is recorded as:
1400
1401 objfile -> foo.c(cu) -> bar.c(cu) -> NULL
1402 | |
1403 v v
1404 foo.c bar.c
1405 | |
1406 v v
1407 foo1.h foo1.h
1408 | |
1409 v v
1410 foo2.h bar.h
1411 | |
1412 v v
1413 NULL NULL
1414
1415 where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
1416 and the files foo.c, etc. are struct symtab objects. */
1417
1418 struct compunit_symtab
1419 {
1420 /* Unordered chain of all compunit symtabs of this objfile. */
1421 struct compunit_symtab *next;
1422
1423 /* Object file from which this symtab information was read. */
1424 struct objfile *objfile;
1425
1426 /* Name of the symtab.
1427 This is *not* intended to be a usable filename, and is
1428 for debugging purposes only. */
1429 const char *name;
1430
1431 /* Unordered list of file symtabs, except that by convention the "main"
1432 source file (e.g., .c, .cc) is guaranteed to be first.
1433 Each symtab is a file, either the "main" source file (e.g., .c, .cc)
1434 or header (e.g., .h). */
1435 struct symtab *filetabs;
1436
1437 /* Last entry in FILETABS list.
1438 Subfiles are added to the end of the list so they accumulate in order,
1439 with the main source subfile living at the front.
1440 The main reason is so that the main source file symtab is at the head
1441 of the list, and the rest appear in order for debugging convenience. */
1442 struct symtab *last_filetab;
1443
1444 /* Non-NULL string that identifies the format of the debugging information,
1445 such as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful
1446 for automated testing of gdb but may also be information that is
1447 useful to the user. */
1448 const char *debugformat;
1449
1450 /* String of producer version information, or NULL if we don't know. */
1451 const char *producer;
1452
1453 /* Directory in which it was compiled, or NULL if we don't know. */
1454 const char *dirname;
1455
1456 /* List of all symbol scope blocks for this symtab. It is shared among
1457 all symtabs in a given compilation unit. */
1458 const struct blockvector *blockvector;
1459
1460 /* Section in objfile->section_offsets for the blockvector and
1461 the linetable. Probably always SECT_OFF_TEXT. */
1462 int block_line_section;
1463
1464 /* Symtab has been compiled with both optimizations and debug info so that
1465 GDB may stop skipping prologues as variables locations are valid already
1466 at function entry points. */
1467 unsigned int locations_valid : 1;
1468
1469 /* DWARF unwinder for this CU is valid even for epilogues (PC at the return
1470 instruction). This is supported by GCC since 4.5.0. */
1471 unsigned int epilogue_unwind_valid : 1;
1472
1473 /* struct call_site entries for this compilation unit or NULL. */
1474 htab_t call_site_htab;
1475
1476 /* The macro table for this symtab. Like the blockvector, this
1477 is shared between different symtabs in a given compilation unit.
1478 It's debatable whether it *should* be shared among all the symtabs in
1479 the given compilation unit, but it currently is. */
1480 struct macro_table *macro_table;
1481
1482 /* If non-NULL, then this points to a NULL-terminated vector of
1483 included compunits. When searching the static or global
1484 block of this compunit, the corresponding block of all
1485 included compunits will also be searched. Note that this
1486 list must be flattened -- the symbol reader is responsible for
1487 ensuring that this vector contains the transitive closure of all
1488 included compunits. */
1489 struct compunit_symtab **includes;
1490
1491 /* If this is an included compunit, this points to one includer
1492 of the table. This user is considered the canonical compunit
1493 containing this one. An included compunit may itself be
1494 included by another. */
1495 struct compunit_symtab *user;
1496 };
1497
1498 #define COMPUNIT_OBJFILE(cust) ((cust)->objfile)
1499 #define COMPUNIT_FILETABS(cust) ((cust)->filetabs)
1500 #define COMPUNIT_DEBUGFORMAT(cust) ((cust)->debugformat)
1501 #define COMPUNIT_PRODUCER(cust) ((cust)->producer)
1502 #define COMPUNIT_DIRNAME(cust) ((cust)->dirname)
1503 #define COMPUNIT_BLOCKVECTOR(cust) ((cust)->blockvector)
1504 #define COMPUNIT_BLOCK_LINE_SECTION(cust) ((cust)->block_line_section)
1505 #define COMPUNIT_LOCATIONS_VALID(cust) ((cust)->locations_valid)
1506 #define COMPUNIT_EPILOGUE_UNWIND_VALID(cust) ((cust)->epilogue_unwind_valid)
1507 #define COMPUNIT_CALL_SITE_HTAB(cust) ((cust)->call_site_htab)
1508 #define COMPUNIT_MACRO_TABLE(cust) ((cust)->macro_table)
1509
1510 /* A range adapter to allowing iterating over all the file tables
1511 within a compunit. */
1512
1513 struct compunit_filetabs : public next_adapter<struct symtab>
1514 {
1515 compunit_filetabs (struct compunit_symtab *cu)
1516 : next_adapter<struct symtab> (cu->filetabs)
1517 {
1518 }
1519 };
1520
1521 /* Return the primary symtab of CUST. */
1522
1523 extern struct symtab *
1524 compunit_primary_filetab (const struct compunit_symtab *cust);
1525
1526 /* Return the language of CUST. */
1527
1528 extern enum language compunit_language (const struct compunit_symtab *cust);
1529
1530 \f
1531
1532 /* The virtual function table is now an array of structures which have the
1533 form { int16 offset, delta; void *pfn; }.
1534
1535 In normal virtual function tables, OFFSET is unused.
1536 DELTA is the amount which is added to the apparent object's base
1537 address in order to point to the actual object to which the
1538 virtual function should be applied.
1539 PFN is a pointer to the virtual function.
1540
1541 Note that this macro is g++ specific (FIXME). */
1542
1543 #define VTBL_FNADDR_OFFSET 2
1544
1545 /* External variables and functions for the objects described above. */
1546
1547 /* True if we are nested inside psymtab_to_symtab. */
1548
1549 extern int currently_reading_symtab;
1550
1551 /* symtab.c lookup functions */
1552
1553 extern const char multiple_symbols_ask[];
1554 extern const char multiple_symbols_all[];
1555 extern const char multiple_symbols_cancel[];
1556
1557 const char *multiple_symbols_select_mode (void);
1558
1559 bool symbol_matches_domain (enum language symbol_language,
1560 domain_enum symbol_domain,
1561 domain_enum domain);
1562
1563 /* lookup a symbol table by source file name. */
1564
1565 extern struct symtab *lookup_symtab (const char *);
1566
1567 /* An object of this type is passed as the 'is_a_field_of_this'
1568 argument to lookup_symbol and lookup_symbol_in_language. */
1569
1570 struct field_of_this_result
1571 {
1572 /* The type in which the field was found. If this is NULL then the
1573 symbol was not found in 'this'. If non-NULL, then one of the
1574 other fields will be non-NULL as well. */
1575
1576 struct type *type;
1577
1578 /* If the symbol was found as an ordinary field of 'this', then this
1579 is non-NULL and points to the particular field. */
1580
1581 struct field *field;
1582
1583 /* If the symbol was found as a function field of 'this', then this
1584 is non-NULL and points to the particular field. */
1585
1586 struct fn_fieldlist *fn_field;
1587 };
1588
1589 /* Find the definition for a specified symbol name NAME
1590 in domain DOMAIN in language LANGUAGE, visible from lexical block BLOCK
1591 if non-NULL or from global/static blocks if BLOCK is NULL.
1592 Returns the struct symbol pointer, or NULL if no symbol is found.
1593 C++: if IS_A_FIELD_OF_THIS is non-NULL on entry, check to see if
1594 NAME is a field of the current implied argument `this'. If so fill in the
1595 fields of IS_A_FIELD_OF_THIS, otherwise the fields are set to NULL.
1596 The symbol's section is fixed up if necessary. */
1597
1598 extern struct block_symbol
1599 lookup_symbol_in_language (const char *,
1600 const struct block *,
1601 const domain_enum,
1602 enum language,
1603 struct field_of_this_result *);
1604
1605 /* Same as lookup_symbol_in_language, but using the current language. */
1606
1607 extern struct block_symbol lookup_symbol (const char *,
1608 const struct block *,
1609 const domain_enum,
1610 struct field_of_this_result *);
1611
1612 /* Find the definition for a specified symbol search name in domain
1613 DOMAIN, visible from lexical block BLOCK if non-NULL or from
1614 global/static blocks if BLOCK is NULL. The passed-in search name
1615 should not come from the user; instead it should already be a
1616 search name as retrieved from a
1617 SYMBOL_SEARCH_NAME/MSYMBOL_SEARCH_NAME call. See definition of
1618 symbol_name_match_type::SEARCH_NAME. Returns the struct symbol
1619 pointer, or NULL if no symbol is found. The symbol's section is
1620 fixed up if necessary. */
1621
1622 extern struct block_symbol lookup_symbol_search_name (const char *search_name,
1623 const struct block *block,
1624 domain_enum domain);
1625
1626 /* A default version of lookup_symbol_nonlocal for use by languages
1627 that can't think of anything better to do.
1628 This implements the C lookup rules. */
1629
1630 extern struct block_symbol
1631 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
1632 const char *,
1633 const struct block *,
1634 const domain_enum);
1635
1636 /* Some helper functions for languages that need to write their own
1637 lookup_symbol_nonlocal functions. */
1638
1639 /* Lookup a symbol in the static block associated to BLOCK, if there
1640 is one; do nothing if BLOCK is NULL or a global block.
1641 Upon success fixes up the symbol's section if necessary. */
1642
1643 extern struct block_symbol
1644 lookup_symbol_in_static_block (const char *name,
1645 const struct block *block,
1646 const domain_enum domain);
1647
1648 /* Search all static file-level symbols for NAME from DOMAIN.
1649 Upon success fixes up the symbol's section if necessary. */
1650
1651 extern struct block_symbol lookup_static_symbol (const char *name,
1652 const domain_enum domain);
1653
1654 /* Lookup a symbol in all files' global blocks.
1655
1656 If BLOCK is non-NULL then it is used for two things:
1657 1) If a target-specific lookup routine for libraries exists, then use the
1658 routine for the objfile of BLOCK, and
1659 2) The objfile of BLOCK is used to assist in determining the search order
1660 if the target requires it.
1661 See gdbarch_iterate_over_objfiles_in_search_order.
1662
1663 Upon success fixes up the symbol's section if necessary. */
1664
1665 extern struct block_symbol
1666 lookup_global_symbol (const char *name,
1667 const struct block *block,
1668 const domain_enum domain);
1669
1670 /* Lookup a symbol in block BLOCK.
1671 Upon success fixes up the symbol's section if necessary. */
1672
1673 extern struct symbol *
1674 lookup_symbol_in_block (const char *name,
1675 symbol_name_match_type match_type,
1676 const struct block *block,
1677 const domain_enum domain);
1678
1679 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1680 found, or NULL if not found. */
1681
1682 extern struct block_symbol
1683 lookup_language_this (const struct language_defn *lang,
1684 const struct block *block);
1685
1686 /* Lookup a [struct, union, enum] by name, within a specified block. */
1687
1688 extern struct type *lookup_struct (const char *, const struct block *);
1689
1690 extern struct type *lookup_union (const char *, const struct block *);
1691
1692 extern struct type *lookup_enum (const char *, const struct block *);
1693
1694 /* from blockframe.c: */
1695
1696 /* lookup the function symbol corresponding to the address. The
1697 return value will not be an inlined function; the containing
1698 function will be returned instead. */
1699
1700 extern struct symbol *find_pc_function (CORE_ADDR);
1701
1702 /* lookup the function corresponding to the address and section. The
1703 return value will not be an inlined function; the containing
1704 function will be returned instead. */
1705
1706 extern struct symbol *find_pc_sect_function (CORE_ADDR, struct obj_section *);
1707
1708 /* lookup the function symbol corresponding to the address and
1709 section. The return value will be the closest enclosing function,
1710 which might be an inline function. */
1711
1712 extern struct symbol *find_pc_sect_containing_function
1713 (CORE_ADDR pc, struct obj_section *section);
1714
1715 /* Find the symbol at the given address. Returns NULL if no symbol
1716 found. Only exact matches for ADDRESS are considered. */
1717
1718 extern struct symbol *find_symbol_at_address (CORE_ADDR);
1719
1720 /* Finds the "function" (text symbol) that is smaller than PC but
1721 greatest of all of the potential text symbols in SECTION. Sets
1722 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
1723 If ENDADDR is non-null, then set *ENDADDR to be the end of the
1724 function (exclusive). If the optional parameter BLOCK is non-null,
1725 then set *BLOCK to the address of the block corresponding to the
1726 function symbol, if such a symbol could be found during the lookup;
1727 nullptr is used as a return value for *BLOCK if no block is found.
1728 This function either succeeds or fails (not halfway succeeds). If
1729 it succeeds, it sets *NAME, *ADDRESS, and *ENDADDR to real
1730 information and returns true. If it fails, it sets *NAME, *ADDRESS
1731 and *ENDADDR to zero and returns false.
1732
1733 If the function in question occupies non-contiguous ranges,
1734 *ADDRESS and *ENDADDR are (subject to the conditions noted above) set
1735 to the start and end of the range in which PC is found. Thus
1736 *ADDRESS <= PC < *ENDADDR with no intervening gaps (in which ranges
1737 from other functions might be found).
1738
1739 This property allows find_pc_partial_function to be used (as it had
1740 been prior to the introduction of non-contiguous range support) by
1741 various tdep files for finding a start address and limit address
1742 for prologue analysis. This still isn't ideal, however, because we
1743 probably shouldn't be doing prologue analysis (in which
1744 instructions are scanned to determine frame size and stack layout)
1745 for any range that doesn't contain the entry pc. Moreover, a good
1746 argument can be made that prologue analysis ought to be performed
1747 starting from the entry pc even when PC is within some other range.
1748 This might suggest that *ADDRESS and *ENDADDR ought to be set to the
1749 limits of the entry pc range, but that will cause the
1750 *ADDRESS <= PC < *ENDADDR condition to be violated; many of the
1751 callers of find_pc_partial_function expect this condition to hold.
1752
1753 Callers which require the start and/or end addresses for the range
1754 containing the entry pc should instead call
1755 find_function_entry_range_from_pc. */
1756
1757 extern bool find_pc_partial_function (CORE_ADDR pc, const char **name,
1758 CORE_ADDR *address, CORE_ADDR *endaddr,
1759 const struct block **block = nullptr);
1760
1761 /* Like find_pc_partial_function, above, but *ADDRESS and *ENDADDR are
1762 set to start and end addresses of the range containing the entry pc.
1763
1764 Note that it is not necessarily the case that (for non-NULL ADDRESS
1765 and ENDADDR arguments) the *ADDRESS <= PC < *ENDADDR condition will
1766 hold.
1767
1768 See comment for find_pc_partial_function, above, for further
1769 explanation. */
1770
1771 extern bool find_function_entry_range_from_pc (CORE_ADDR pc,
1772 const char **name,
1773 CORE_ADDR *address,
1774 CORE_ADDR *endaddr);
1775
1776 /* Return the type of a function with its first instruction exactly at
1777 the PC address. Return NULL otherwise. */
1778
1779 extern struct type *find_function_type (CORE_ADDR pc);
1780
1781 /* See if we can figure out the function's actual type from the type
1782 that the resolver returns. RESOLVER_FUNADDR is the address of the
1783 ifunc resolver. */
1784
1785 extern struct type *find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr);
1786
1787 /* Find the GNU ifunc minimal symbol that matches SYM. */
1788 extern bound_minimal_symbol find_gnu_ifunc (const symbol *sym);
1789
1790 extern void clear_pc_function_cache (void);
1791
1792 /* Expand symtab containing PC, SECTION if not already expanded. */
1793
1794 extern void expand_symtab_containing_pc (CORE_ADDR, struct obj_section *);
1795
1796 /* lookup full symbol table by address. */
1797
1798 extern struct compunit_symtab *find_pc_compunit_symtab (CORE_ADDR);
1799
1800 /* lookup full symbol table by address and section. */
1801
1802 extern struct compunit_symtab *
1803 find_pc_sect_compunit_symtab (CORE_ADDR, struct obj_section *);
1804
1805 extern bool find_pc_line_pc_range (CORE_ADDR, CORE_ADDR *, CORE_ADDR *);
1806
1807 extern void reread_symbols (void);
1808
1809 /* Look up a type named NAME in STRUCT_DOMAIN in the current language.
1810 The type returned must not be opaque -- i.e., must have at least one field
1811 defined. */
1812
1813 extern struct type *lookup_transparent_type (const char *);
1814
1815 extern struct type *basic_lookup_transparent_type (const char *);
1816
1817 /* Macro for name of symbol to indicate a file compiled with gcc. */
1818 #ifndef GCC_COMPILED_FLAG_SYMBOL
1819 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
1820 #endif
1821
1822 /* Macro for name of symbol to indicate a file compiled with gcc2. */
1823 #ifndef GCC2_COMPILED_FLAG_SYMBOL
1824 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled."
1825 #endif
1826
1827 extern bool in_gnu_ifunc_stub (CORE_ADDR pc);
1828
1829 /* Functions for resolving STT_GNU_IFUNC symbols which are implemented only
1830 for ELF symbol files. */
1831
1832 struct gnu_ifunc_fns
1833 {
1834 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
1835 CORE_ADDR (*gnu_ifunc_resolve_addr) (struct gdbarch *gdbarch, CORE_ADDR pc);
1836
1837 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
1838 bool (*gnu_ifunc_resolve_name) (const char *function_name,
1839 CORE_ADDR *function_address_p);
1840
1841 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
1842 void (*gnu_ifunc_resolver_stop) (struct breakpoint *b);
1843
1844 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
1845 void (*gnu_ifunc_resolver_return_stop) (struct breakpoint *b);
1846 };
1847
1848 #define gnu_ifunc_resolve_addr gnu_ifunc_fns_p->gnu_ifunc_resolve_addr
1849 #define gnu_ifunc_resolve_name gnu_ifunc_fns_p->gnu_ifunc_resolve_name
1850 #define gnu_ifunc_resolver_stop gnu_ifunc_fns_p->gnu_ifunc_resolver_stop
1851 #define gnu_ifunc_resolver_return_stop \
1852 gnu_ifunc_fns_p->gnu_ifunc_resolver_return_stop
1853
1854 extern const struct gnu_ifunc_fns *gnu_ifunc_fns_p;
1855
1856 extern CORE_ADDR find_solib_trampoline_target (struct frame_info *, CORE_ADDR);
1857
1858 struct symtab_and_line
1859 {
1860 /* The program space of this sal. */
1861 struct program_space *pspace = NULL;
1862
1863 struct symtab *symtab = NULL;
1864 struct symbol *symbol = NULL;
1865 struct obj_section *section = NULL;
1866 struct minimal_symbol *msymbol = NULL;
1867 /* Line number. Line numbers start at 1 and proceed through symtab->nlines.
1868 0 is never a valid line number; it is used to indicate that line number
1869 information is not available. */
1870 int line = 0;
1871
1872 CORE_ADDR pc = 0;
1873 CORE_ADDR end = 0;
1874 bool explicit_pc = false;
1875 bool explicit_line = false;
1876
1877 /* The probe associated with this symtab_and_line. */
1878 probe *prob = NULL;
1879 /* If PROBE is not NULL, then this is the objfile in which the probe
1880 originated. */
1881 struct objfile *objfile = NULL;
1882 };
1883
1884 \f
1885
1886 /* Given a pc value, return line number it is in. Second arg nonzero means
1887 if pc is on the boundary use the previous statement's line number. */
1888
1889 extern struct symtab_and_line find_pc_line (CORE_ADDR, int);
1890
1891 /* Same function, but specify a section as well as an address. */
1892
1893 extern struct symtab_and_line find_pc_sect_line (CORE_ADDR,
1894 struct obj_section *, int);
1895
1896 /* Wrapper around find_pc_line to just return the symtab. */
1897
1898 extern struct symtab *find_pc_line_symtab (CORE_ADDR);
1899
1900 /* Given a symtab and line number, return the pc there. */
1901
1902 extern bool find_line_pc (struct symtab *, int, CORE_ADDR *);
1903
1904 extern bool find_line_pc_range (struct symtab_and_line, CORE_ADDR *,
1905 CORE_ADDR *);
1906
1907 extern void resolve_sal_pc (struct symtab_and_line *);
1908
1909 /* solib.c */
1910
1911 extern void clear_solib (void);
1912
1913 /* The reason we're calling into a completion match list collector
1914 function. */
1915 enum class complete_symbol_mode
1916 {
1917 /* Completing an expression. */
1918 EXPRESSION,
1919
1920 /* Completing a linespec. */
1921 LINESPEC,
1922 };
1923
1924 extern void default_collect_symbol_completion_matches_break_on
1925 (completion_tracker &tracker,
1926 complete_symbol_mode mode,
1927 symbol_name_match_type name_match_type,
1928 const char *text, const char *word, const char *break_on,
1929 enum type_code code);
1930 extern void default_collect_symbol_completion_matches
1931 (completion_tracker &tracker,
1932 complete_symbol_mode,
1933 symbol_name_match_type name_match_type,
1934 const char *,
1935 const char *,
1936 enum type_code);
1937 extern void collect_symbol_completion_matches
1938 (completion_tracker &tracker,
1939 complete_symbol_mode mode,
1940 symbol_name_match_type name_match_type,
1941 const char *, const char *);
1942 extern void collect_symbol_completion_matches_type (completion_tracker &tracker,
1943 const char *, const char *,
1944 enum type_code);
1945
1946 extern void collect_file_symbol_completion_matches
1947 (completion_tracker &tracker,
1948 complete_symbol_mode,
1949 symbol_name_match_type name_match_type,
1950 const char *, const char *, const char *);
1951
1952 extern completion_list
1953 make_source_files_completion_list (const char *, const char *);
1954
1955 /* Return whether SYM is a function/method, as opposed to a data symbol. */
1956
1957 extern bool symbol_is_function_or_method (symbol *sym);
1958
1959 /* Return whether MSYMBOL is a function/method, as opposed to a data
1960 symbol */
1961
1962 extern bool symbol_is_function_or_method (minimal_symbol *msymbol);
1963
1964 /* Return whether SYM should be skipped in completion mode MODE. In
1965 linespec mode, we're only interested in functions/methods. */
1966
1967 template<typename Symbol>
1968 static bool
1969 completion_skip_symbol (complete_symbol_mode mode, Symbol *sym)
1970 {
1971 return (mode == complete_symbol_mode::LINESPEC
1972 && !symbol_is_function_or_method (sym));
1973 }
1974
1975 /* symtab.c */
1976
1977 bool matching_obj_sections (struct obj_section *, struct obj_section *);
1978
1979 extern struct symtab *find_line_symtab (struct symtab *, int, int *, bool *);
1980
1981 /* Given a function symbol SYM, find the symtab and line for the start
1982 of the function. If FUNFIRSTLINE is true, we want the first line
1983 of real code inside the function. */
1984 extern symtab_and_line find_function_start_sal (symbol *sym, bool
1985 funfirstline);
1986
1987 /* Same, but start with a function address/section instead of a
1988 symbol. */
1989 extern symtab_and_line find_function_start_sal (CORE_ADDR func_addr,
1990 obj_section *section,
1991 bool funfirstline);
1992
1993 extern void skip_prologue_sal (struct symtab_and_line *);
1994
1995 /* symtab.c */
1996
1997 extern CORE_ADDR skip_prologue_using_sal (struct gdbarch *gdbarch,
1998 CORE_ADDR func_addr);
1999
2000 extern struct symbol *fixup_symbol_section (struct symbol *,
2001 struct objfile *);
2002
2003 /* If MSYMBOL is an text symbol, look for a function debug symbol with
2004 the same address. Returns NULL if not found. This is necessary in
2005 case a function is an alias to some other function, because debug
2006 information is only emitted for the alias target function's
2007 definition, not for the alias. */
2008 extern symbol *find_function_alias_target (bound_minimal_symbol msymbol);
2009
2010 /* Symbol searching */
2011 /* Note: struct symbol_search, search_symbols, et.al. are declared here,
2012 instead of making them local to symtab.c, for gdbtk's sake. */
2013
2014 /* When using search_symbols, a vector of the following structs is
2015 returned. */
2016 struct symbol_search
2017 {
2018 symbol_search (int block_, struct symbol *symbol_)
2019 : block (block_),
2020 symbol (symbol_)
2021 {
2022 msymbol.minsym = nullptr;
2023 msymbol.objfile = nullptr;
2024 }
2025
2026 symbol_search (int block_, struct minimal_symbol *minsym,
2027 struct objfile *objfile)
2028 : block (block_),
2029 symbol (nullptr)
2030 {
2031 msymbol.minsym = minsym;
2032 msymbol.objfile = objfile;
2033 }
2034
2035 bool operator< (const symbol_search &other) const
2036 {
2037 return compare_search_syms (*this, other) < 0;
2038 }
2039
2040 bool operator== (const symbol_search &other) const
2041 {
2042 return compare_search_syms (*this, other) == 0;
2043 }
2044
2045 /* The block in which the match was found. Could be, for example,
2046 STATIC_BLOCK or GLOBAL_BLOCK. */
2047 int block;
2048
2049 /* Information describing what was found.
2050
2051 If symbol is NOT NULL, then information was found for this match. */
2052 struct symbol *symbol;
2053
2054 /* If msymbol is non-null, then a match was made on something for
2055 which only minimal_symbols exist. */
2056 struct bound_minimal_symbol msymbol;
2057
2058 private:
2059
2060 static int compare_search_syms (const symbol_search &sym_a,
2061 const symbol_search &sym_b);
2062 };
2063
2064 extern std::vector<symbol_search> search_symbols (const char *,
2065 enum search_domain,
2066 const char *,
2067 int,
2068 const char **,
2069 bool);
2070 extern bool treg_matches_sym_type_name (const compiled_regex &treg,
2071 const struct symbol *sym);
2072
2073 /* The name of the ``main'' function. */
2074 extern const char *main_name ();
2075 extern enum language main_language (void);
2076
2077 /* Lookup symbol NAME from DOMAIN in MAIN_OBJFILE's global or static blocks,
2078 as specified by BLOCK_INDEX.
2079 This searches MAIN_OBJFILE as well as any associated separate debug info
2080 objfiles of MAIN_OBJFILE.
2081 BLOCK_INDEX can be GLOBAL_BLOCK or STATIC_BLOCK.
2082 Upon success fixes up the symbol's section if necessary. */
2083
2084 extern struct block_symbol
2085 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2086 enum block_enum block_index,
2087 const char *name,
2088 const domain_enum domain);
2089
2090 /* Return 1 if the supplied producer string matches the ARM RealView
2091 compiler (armcc). */
2092 bool producer_is_realview (const char *producer);
2093
2094 void fixup_section (struct general_symbol_info *ginfo,
2095 CORE_ADDR addr, struct objfile *objfile);
2096
2097 /* Look up objfile containing BLOCK. */
2098
2099 struct objfile *lookup_objfile_from_block (const struct block *block);
2100
2101 extern unsigned int symtab_create_debug;
2102
2103 extern unsigned int symbol_lookup_debug;
2104
2105 extern bool basenames_may_differ;
2106
2107 bool compare_filenames_for_search (const char *filename,
2108 const char *search_name);
2109
2110 bool compare_glob_filenames_for_search (const char *filename,
2111 const char *search_name);
2112
2113 bool iterate_over_some_symtabs (const char *name,
2114 const char *real_path,
2115 struct compunit_symtab *first,
2116 struct compunit_symtab *after_last,
2117 gdb::function_view<bool (symtab *)> callback);
2118
2119 void iterate_over_symtabs (const char *name,
2120 gdb::function_view<bool (symtab *)> callback);
2121
2122
2123 std::vector<CORE_ADDR> find_pcs_for_symtab_line
2124 (struct symtab *symtab, int line, struct linetable_entry **best_entry);
2125
2126 /* Prototype for callbacks for LA_ITERATE_OVER_SYMBOLS. The callback
2127 is called once per matching symbol SYM. The callback should return
2128 true to indicate that LA_ITERATE_OVER_SYMBOLS should continue
2129 iterating, or false to indicate that the iteration should end. */
2130
2131 typedef bool (symbol_found_callback_ftype) (struct block_symbol *bsym);
2132
2133 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2134
2135 For each symbol that matches, CALLBACK is called. The symbol is
2136 passed to the callback.
2137
2138 If CALLBACK returns false, the iteration ends and this function
2139 returns false. Otherwise, the search continues, and the function
2140 eventually returns true. */
2141
2142 bool iterate_over_symbols (const struct block *block,
2143 const lookup_name_info &name,
2144 const domain_enum domain,
2145 gdb::function_view<symbol_found_callback_ftype> callback);
2146
2147 /* Like iterate_over_symbols, but if all calls to CALLBACK return
2148 true, then calls CALLBACK one additional time with a block_symbol
2149 that has a valid block but a NULL symbol. */
2150
2151 bool iterate_over_symbols_terminated
2152 (const struct block *block,
2153 const lookup_name_info &name,
2154 const domain_enum domain,
2155 gdb::function_view<symbol_found_callback_ftype> callback);
2156
2157 /* Storage type used by demangle_for_lookup. demangle_for_lookup
2158 either returns a const char * pointer that points to either of the
2159 fields of this type, or a pointer to the input NAME. This is done
2160 this way because the underlying functions that demangle_for_lookup
2161 calls either return a std::string (e.g., cp_canonicalize_string) or
2162 a malloc'ed buffer (libiberty's demangled), and we want to avoid
2163 unnecessary reallocation/string copying. */
2164 class demangle_result_storage
2165 {
2166 public:
2167
2168 /* Swap the std::string storage with STR, and return a pointer to
2169 the beginning of the new string. */
2170 const char *swap_string (std::string &str)
2171 {
2172 std::swap (m_string, str);
2173 return m_string.c_str ();
2174 }
2175
2176 /* Set the malloc storage to now point at PTR. Any previous malloc
2177 storage is released. */
2178 const char *set_malloc_ptr (char *ptr)
2179 {
2180 m_malloc.reset (ptr);
2181 return ptr;
2182 }
2183
2184 private:
2185
2186 /* The storage. */
2187 std::string m_string;
2188 gdb::unique_xmalloc_ptr<char> m_malloc;
2189 };
2190
2191 const char *
2192 demangle_for_lookup (const char *name, enum language lang,
2193 demangle_result_storage &storage);
2194
2195 struct symbol *allocate_symbol (struct objfile *);
2196
2197 void initialize_objfile_symbol (struct symbol *);
2198
2199 struct template_symbol *allocate_template_symbol (struct objfile *);
2200
2201 /* Test to see if the symbol of language SYMBOL_LANGUAGE specified by
2202 SYMNAME (which is already demangled for C++ symbols) matches
2203 SYM_TEXT in the first SYM_TEXT_LEN characters. If so, add it to
2204 the current completion list. */
2205 void completion_list_add_name (completion_tracker &tracker,
2206 language symbol_language,
2207 const char *symname,
2208 const lookup_name_info &lookup_name,
2209 const char *text, const char *word);
2210
2211 /* A simple symbol searching class. */
2212
2213 class symbol_searcher
2214 {
2215 public:
2216 /* Returns the symbols found for the search. */
2217 const std::vector<block_symbol> &
2218 matching_symbols () const
2219 {
2220 return m_symbols;
2221 }
2222
2223 /* Returns the minimal symbols found for the search. */
2224 const std::vector<bound_minimal_symbol> &
2225 matching_msymbols () const
2226 {
2227 return m_minimal_symbols;
2228 }
2229
2230 /* Search for all symbols named NAME in LANGUAGE with DOMAIN, restricting
2231 search to FILE_SYMTABS and SEARCH_PSPACE, both of which may be NULL
2232 to search all symtabs and program spaces. */
2233 void find_all_symbols (const std::string &name,
2234 const struct language_defn *language,
2235 enum search_domain search_domain,
2236 std::vector<symtab *> *search_symtabs,
2237 struct program_space *search_pspace);
2238
2239 /* Reset this object to perform another search. */
2240 void reset ()
2241 {
2242 m_symbols.clear ();
2243 m_minimal_symbols.clear ();
2244 }
2245
2246 private:
2247 /* Matching debug symbols. */
2248 std::vector<block_symbol> m_symbols;
2249
2250 /* Matching non-debug symbols. */
2251 std::vector<bound_minimal_symbol> m_minimal_symbols;
2252 };
2253
2254 #endif /* !defined(SYMTAB_H) */
This page took 0.083964 seconds and 4 git commands to generate.