gdb: Add new commands to list module variables and functions
[deliverable/binutils-gdb.git] / gdb / symtab.h
1 /* Symbol table definitions for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (SYMTAB_H)
21 #define SYMTAB_H 1
22
23 #include <array>
24 #include <vector>
25 #include <string>
26 #include "gdbsupport/gdb_vecs.h"
27 #include "gdbtypes.h"
28 #include "gdb_regex.h"
29 #include "gdbsupport/enum-flags.h"
30 #include "gdbsupport/function-view.h"
31 #include "gdbsupport/gdb_optional.h"
32 #include "gdbsupport/gdb_string_view.h"
33 #include "gdbsupport/next-iterator.h"
34 #include "completer.h"
35
36 /* Opaque declarations. */
37 struct ui_file;
38 struct frame_info;
39 struct symbol;
40 struct obstack;
41 struct objfile;
42 struct block;
43 struct blockvector;
44 struct axs_value;
45 struct agent_expr;
46 struct program_space;
47 struct language_defn;
48 struct common_block;
49 struct obj_section;
50 struct cmd_list_element;
51 class probe;
52 struct lookup_name_info;
53
54 /* How to match a lookup name against a symbol search name. */
55 enum class symbol_name_match_type
56 {
57 /* Wild matching. Matches unqualified symbol names in all
58 namespace/module/packages, etc. */
59 WILD,
60
61 /* Full matching. The lookup name indicates a fully-qualified name,
62 and only matches symbol search names in the specified
63 namespace/module/package. */
64 FULL,
65
66 /* Search name matching. This is like FULL, but the search name did
67 not come from the user; instead it is already a search name
68 retrieved from a SYMBOL_SEARCH_NAME/MSYMBOL_SEARCH_NAME call.
69 For Ada, this avoids re-encoding an already-encoded search name
70 (which would potentially incorrectly lowercase letters in the
71 linkage/search name that should remain uppercase). For C++, it
72 avoids trying to demangle a name we already know is
73 demangled. */
74 SEARCH_NAME,
75
76 /* Expression matching. The same as FULL matching in most
77 languages. The same as WILD matching in Ada. */
78 EXPRESSION,
79 };
80
81 /* Hash the given symbol search name according to LANGUAGE's
82 rules. */
83 extern unsigned int search_name_hash (enum language language,
84 const char *search_name);
85
86 /* Ada-specific bits of a lookup_name_info object. This is lazily
87 constructed on demand. */
88
89 class ada_lookup_name_info final
90 {
91 public:
92 /* Construct. */
93 explicit ada_lookup_name_info (const lookup_name_info &lookup_name);
94
95 /* Compare SYMBOL_SEARCH_NAME with our lookup name, using MATCH_TYPE
96 as name match type. Returns true if there's a match, false
97 otherwise. If non-NULL, store the matching results in MATCH. */
98 bool matches (const char *symbol_search_name,
99 symbol_name_match_type match_type,
100 completion_match_result *comp_match_res) const;
101
102 /* The Ada-encoded lookup name. */
103 const std::string &lookup_name () const
104 { return m_encoded_name; }
105
106 /* Return true if we're supposed to be doing a wild match look
107 up. */
108 bool wild_match_p () const
109 { return m_wild_match_p; }
110
111 /* Return true if we're looking up a name inside package
112 Standard. */
113 bool standard_p () const
114 { return m_standard_p; }
115
116 /* Return true if doing a verbatim match. */
117 bool verbatim_p () const
118 { return m_verbatim_p; }
119
120 private:
121 /* The Ada-encoded lookup name. */
122 std::string m_encoded_name;
123
124 /* Whether the user-provided lookup name was Ada encoded. If so,
125 then return encoded names in the 'matches' method's 'completion
126 match result' output. */
127 bool m_encoded_p : 1;
128
129 /* True if really doing wild matching. Even if the user requests
130 wild matching, some cases require full matching. */
131 bool m_wild_match_p : 1;
132
133 /* True if doing a verbatim match. This is true if the decoded
134 version of the symbol name is wrapped in '<'/'>'. This is an
135 escape hatch users can use to look up symbols the Ada encoding
136 does not understand. */
137 bool m_verbatim_p : 1;
138
139 /* True if the user specified a symbol name that is inside package
140 Standard. Symbol names inside package Standard are handled
141 specially. We always do a non-wild match of the symbol name
142 without the "standard__" prefix, and only search static and
143 global symbols. This was primarily introduced in order to allow
144 the user to specifically access the standard exceptions using,
145 for instance, Standard.Constraint_Error when Constraint_Error is
146 ambiguous (due to the user defining its own Constraint_Error
147 entity inside its program). */
148 bool m_standard_p : 1;
149 };
150
151 /* Language-specific bits of a lookup_name_info object, for languages
152 that do name searching using demangled names (C++/D/Go). This is
153 lazily constructed on demand. */
154
155 struct demangle_for_lookup_info final
156 {
157 public:
158 demangle_for_lookup_info (const lookup_name_info &lookup_name,
159 language lang);
160
161 /* The demangled lookup name. */
162 const std::string &lookup_name () const
163 { return m_demangled_name; }
164
165 private:
166 /* The demangled lookup name. */
167 std::string m_demangled_name;
168 };
169
170 /* Object that aggregates all information related to a symbol lookup
171 name. I.e., the name that is matched against the symbol's search
172 name. Caches per-language information so that it doesn't require
173 recomputing it for every symbol comparison, like for example the
174 Ada encoded name and the symbol's name hash for a given language.
175 The object is conceptually immutable once constructed, and thus has
176 no setters. This is to prevent some code path from tweaking some
177 property of the lookup name for some local reason and accidentally
178 altering the results of any continuing search(es).
179 lookup_name_info objects are generally passed around as a const
180 reference to reinforce that. (They're not passed around by value
181 because they're not small.) */
182 class lookup_name_info final
183 {
184 public:
185 /* Create a new object. */
186 lookup_name_info (std::string name,
187 symbol_name_match_type match_type,
188 bool completion_mode = false,
189 bool ignore_parameters = false)
190 : m_match_type (match_type),
191 m_completion_mode (completion_mode),
192 m_ignore_parameters (ignore_parameters),
193 m_name (std::move (name))
194 {}
195
196 /* Getters. See description of each corresponding field. */
197 symbol_name_match_type match_type () const { return m_match_type; }
198 bool completion_mode () const { return m_completion_mode; }
199 const std::string &name () const { return m_name; }
200 const bool ignore_parameters () const { return m_ignore_parameters; }
201
202 /* Return a version of this lookup name that is usable with
203 comparisons against symbols have no parameter info, such as
204 psymbols and GDB index symbols. */
205 lookup_name_info make_ignore_params () const
206 {
207 return lookup_name_info (m_name, m_match_type, m_completion_mode,
208 true /* ignore params */);
209 }
210
211 /* Get the search name hash for searches in language LANG. */
212 unsigned int search_name_hash (language lang) const
213 {
214 /* Only compute each language's hash once. */
215 if (!m_demangled_hashes_p[lang])
216 {
217 m_demangled_hashes[lang]
218 = ::search_name_hash (lang, language_lookup_name (lang).c_str ());
219 m_demangled_hashes_p[lang] = true;
220 }
221 return m_demangled_hashes[lang];
222 }
223
224 /* Get the search name for searches in language LANG. */
225 const std::string &language_lookup_name (language lang) const
226 {
227 switch (lang)
228 {
229 case language_ada:
230 return ada ().lookup_name ();
231 case language_cplus:
232 return cplus ().lookup_name ();
233 case language_d:
234 return d ().lookup_name ();
235 case language_go:
236 return go ().lookup_name ();
237 default:
238 return m_name;
239 }
240 }
241
242 /* Get the Ada-specific lookup info. */
243 const ada_lookup_name_info &ada () const
244 {
245 maybe_init (m_ada);
246 return *m_ada;
247 }
248
249 /* Get the C++-specific lookup info. */
250 const demangle_for_lookup_info &cplus () const
251 {
252 maybe_init (m_cplus, language_cplus);
253 return *m_cplus;
254 }
255
256 /* Get the D-specific lookup info. */
257 const demangle_for_lookup_info &d () const
258 {
259 maybe_init (m_d, language_d);
260 return *m_d;
261 }
262
263 /* Get the Go-specific lookup info. */
264 const demangle_for_lookup_info &go () const
265 {
266 maybe_init (m_go, language_go);
267 return *m_go;
268 }
269
270 /* Get a reference to a lookup_name_info object that matches any
271 symbol name. */
272 static const lookup_name_info &match_any ();
273
274 private:
275 /* Initialize FIELD, if not initialized yet. */
276 template<typename Field, typename... Args>
277 void maybe_init (Field &field, Args&&... args) const
278 {
279 if (!field)
280 field.emplace (*this, std::forward<Args> (args)...);
281 }
282
283 /* The lookup info as passed to the ctor. */
284 symbol_name_match_type m_match_type;
285 bool m_completion_mode;
286 bool m_ignore_parameters;
287 std::string m_name;
288
289 /* Language-specific info. These fields are filled lazily the first
290 time a lookup is done in the corresponding language. They're
291 mutable because lookup_name_info objects are typically passed
292 around by const reference (see intro), and they're conceptually
293 "cache" that can always be reconstructed from the non-mutable
294 fields. */
295 mutable gdb::optional<ada_lookup_name_info> m_ada;
296 mutable gdb::optional<demangle_for_lookup_info> m_cplus;
297 mutable gdb::optional<demangle_for_lookup_info> m_d;
298 mutable gdb::optional<demangle_for_lookup_info> m_go;
299
300 /* The demangled hashes. Stored in an array with one entry for each
301 possible language. The second array records whether we've
302 already computed the each language's hash. (These are separate
303 arrays instead of a single array of optional<unsigned> to avoid
304 alignment padding). */
305 mutable std::array<unsigned int, nr_languages> m_demangled_hashes;
306 mutable std::array<bool, nr_languages> m_demangled_hashes_p {};
307 };
308
309 /* Comparison function for completion symbol lookup.
310
311 Returns true if the symbol name matches against LOOKUP_NAME.
312
313 SYMBOL_SEARCH_NAME should be a symbol's "search" name.
314
315 On success and if non-NULL, COMP_MATCH_RES->match is set to point
316 to the symbol name as should be presented to the user as a
317 completion match list element. In most languages, this is the same
318 as the symbol's search name, but in some, like Ada, the display
319 name is dynamically computed within the comparison routine.
320
321 Also, on success and if non-NULL, COMP_MATCH_RES->match_for_lcd
322 points the part of SYMBOL_SEARCH_NAME that was considered to match
323 LOOKUP_NAME. E.g., in C++, in linespec/wild mode, if the symbol is
324 "foo::function()" and LOOKUP_NAME is "function(", MATCH_FOR_LCD
325 points to "function()" inside SYMBOL_SEARCH_NAME. */
326 typedef bool (symbol_name_matcher_ftype)
327 (const char *symbol_search_name,
328 const lookup_name_info &lookup_name,
329 completion_match_result *comp_match_res);
330
331 /* Some of the structures in this file are space critical.
332 The space-critical structures are:
333
334 struct general_symbol_info
335 struct symbol
336 struct partial_symbol
337
338 These structures are laid out to encourage good packing.
339 They use ENUM_BITFIELD and short int fields, and they order the
340 structure members so that fields less than a word are next
341 to each other so they can be packed together. */
342
343 /* Rearranged: used ENUM_BITFIELD and rearranged field order in
344 all the space critical structures (plus struct minimal_symbol).
345 Memory usage dropped from 99360768 bytes to 90001408 bytes.
346 I measured this with before-and-after tests of
347 "HEAD-old-gdb -readnow HEAD-old-gdb" and
348 "HEAD-new-gdb -readnow HEAD-old-gdb" on native i686-pc-linux-gnu,
349 red hat linux 8, with LD_LIBRARY_PATH=/usr/lib/debug,
350 typing "maint space 1" at the first command prompt.
351
352 Here is another measurement (from andrew c):
353 # no /usr/lib/debug, just plain glibc, like a normal user
354 gdb HEAD-old-gdb
355 (gdb) break internal_error
356 (gdb) run
357 (gdb) maint internal-error
358 (gdb) backtrace
359 (gdb) maint space 1
360
361 gdb gdb_6_0_branch 2003-08-19 space used: 8896512
362 gdb HEAD 2003-08-19 space used: 8904704
363 gdb HEAD 2003-08-21 space used: 8396800 (+symtab.h)
364 gdb HEAD 2003-08-21 space used: 8265728 (+gdbtypes.h)
365
366 The third line shows the savings from the optimizations in symtab.h.
367 The fourth line shows the savings from the optimizations in
368 gdbtypes.h. Both optimizations are in gdb HEAD now.
369
370 --chastain 2003-08-21 */
371
372 /* Define a structure for the information that is common to all symbol types,
373 including minimal symbols, partial symbols, and full symbols. In a
374 multilanguage environment, some language specific information may need to
375 be recorded along with each symbol. */
376
377 /* This structure is space critical. See space comments at the top. */
378
379 struct general_symbol_info
380 {
381 /* Name of the symbol. This is a required field. Storage for the
382 name is allocated on the objfile_obstack for the associated
383 objfile. For languages like C++ that make a distinction between
384 the mangled name and demangled name, this is the mangled
385 name. */
386
387 const char *name;
388
389 /* Value of the symbol. Which member of this union to use, and what
390 it means, depends on what kind of symbol this is and its
391 SYMBOL_CLASS. See comments there for more details. All of these
392 are in host byte order (though what they point to might be in
393 target byte order, e.g. LOC_CONST_BYTES). */
394
395 union
396 {
397 LONGEST ivalue;
398
399 const struct block *block;
400
401 const gdb_byte *bytes;
402
403 CORE_ADDR address;
404
405 /* A common block. Used with LOC_COMMON_BLOCK. */
406
407 const struct common_block *common_block;
408
409 /* For opaque typedef struct chain. */
410
411 struct symbol *chain;
412 }
413 value;
414
415 /* Since one and only one language can apply, wrap the language specific
416 information inside a union. */
417
418 union
419 {
420 /* A pointer to an obstack that can be used for storage associated
421 with this symbol. This is only used by Ada, and only when the
422 'ada_mangled' field is zero. */
423 struct obstack *obstack;
424
425 /* This is used by languages which wish to store a demangled name.
426 currently used by Ada, C++, and Objective C. */
427 const char *demangled_name;
428 }
429 language_specific;
430
431 /* Record the source code language that applies to this symbol.
432 This is used to select one of the fields from the language specific
433 union above. */
434
435 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
436
437 /* This is only used by Ada. If set, then the 'demangled_name' field
438 of language_specific is valid. Otherwise, the 'obstack' field is
439 valid. */
440 unsigned int ada_mangled : 1;
441
442 /* Which section is this symbol in? This is an index into
443 section_offsets for this objfile. Negative means that the symbol
444 does not get relocated relative to a section. */
445
446 short section;
447 };
448
449 extern void symbol_set_demangled_name (struct general_symbol_info *,
450 const char *,
451 struct obstack *);
452
453 extern const char *symbol_get_demangled_name
454 (const struct general_symbol_info *);
455
456 extern CORE_ADDR symbol_overlayed_address (CORE_ADDR, struct obj_section *);
457
458 /* Return the address of SYM. The MAYBE_COPIED flag must be set on
459 SYM. If SYM appears in the main program's minimal symbols, then
460 that minsym's address is returned; otherwise, SYM's address is
461 returned. This should generally only be used via the
462 SYMBOL_VALUE_ADDRESS macro. */
463
464 extern CORE_ADDR get_symbol_address (const struct symbol *sym);
465
466 /* Note that all the following SYMBOL_* macros are used with the
467 SYMBOL argument being either a partial symbol or
468 a full symbol. Both types have a ginfo field. In particular
469 the SYMBOL_SET_LANGUAGE, SYMBOL_DEMANGLED_NAME, etc.
470 macros cannot be entirely substituted by
471 functions, unless the callers are changed to pass in the ginfo
472 field only, instead of the SYMBOL parameter. */
473
474 #define SYMBOL_VALUE(symbol) (symbol)->ginfo.value.ivalue
475 #define SYMBOL_VALUE_ADDRESS(symbol) \
476 (((symbol)->maybe_copied) ? get_symbol_address (symbol) \
477 : ((symbol)->ginfo.value.address))
478 #define SET_SYMBOL_VALUE_ADDRESS(symbol, new_value) \
479 ((symbol)->ginfo.value.address = (new_value))
480 #define SYMBOL_VALUE_BYTES(symbol) (symbol)->ginfo.value.bytes
481 #define SYMBOL_VALUE_COMMON_BLOCK(symbol) (symbol)->ginfo.value.common_block
482 #define SYMBOL_BLOCK_VALUE(symbol) (symbol)->ginfo.value.block
483 #define SYMBOL_VALUE_CHAIN(symbol) (symbol)->ginfo.value.chain
484 #define SYMBOL_LANGUAGE(symbol) (symbol)->ginfo.language
485 #define SYMBOL_SECTION(symbol) (symbol)->ginfo.section
486 #define SYMBOL_OBJ_SECTION(objfile, symbol) \
487 (((symbol)->ginfo.section >= 0) \
488 ? (&(((objfile)->sections)[(symbol)->ginfo.section])) \
489 : NULL)
490
491 /* Initializes the language dependent portion of a symbol
492 depending upon the language for the symbol. */
493 #define SYMBOL_SET_LANGUAGE(symbol,language,obstack) \
494 (symbol_set_language (&(symbol)->ginfo, (language), (obstack)))
495 extern void symbol_set_language (struct general_symbol_info *symbol,
496 enum language language,
497 struct obstack *obstack);
498
499 /* Set just the linkage name of a symbol; do not try to demangle
500 it. Used for constructs which do not have a mangled name,
501 e.g. struct tags. Unlike SYMBOL_SET_NAMES, linkage_name must
502 be terminated and either already on the objfile's obstack or
503 permanently allocated. */
504 #define SYMBOL_SET_LINKAGE_NAME(symbol,linkage_name) \
505 (symbol)->ginfo.name = (linkage_name)
506
507 /* Set the linkage and natural names of a symbol, by demangling
508 the linkage name. If linkage_name may not be nullterminated,
509 copy_name must be set to true. */
510 #define SYMBOL_SET_NAMES(symbol,linkage_name,copy_name,objfile) \
511 symbol_set_names (&(symbol)->ginfo, linkage_name, copy_name, \
512 (objfile)->per_bfd)
513 extern void symbol_set_names (struct general_symbol_info *symbol,
514 gdb::string_view linkage_name, bool copy_name,
515 struct objfile_per_bfd_storage *per_bfd);
516
517 /* Now come lots of name accessor macros. Short version as to when to
518 use which: Use SYMBOL_NATURAL_NAME to refer to the name of the
519 symbol in the original source code. Use SYMBOL_LINKAGE_NAME if you
520 want to know what the linker thinks the symbol's name is. Use
521 SYMBOL_PRINT_NAME for output. Use SYMBOL_DEMANGLED_NAME if you
522 specifically need to know whether SYMBOL_NATURAL_NAME and
523 SYMBOL_LINKAGE_NAME are different. */
524
525 /* Return SYMBOL's "natural" name, i.e. the name that it was called in
526 the original source code. In languages like C++ where symbols may
527 be mangled for ease of manipulation by the linker, this is the
528 demangled name. */
529
530 #define SYMBOL_NATURAL_NAME(symbol) \
531 (symbol_natural_name (&(symbol)->ginfo))
532 extern const char *symbol_natural_name
533 (const struct general_symbol_info *symbol);
534
535 /* Return SYMBOL's name from the point of view of the linker. In
536 languages like C++ where symbols may be mangled for ease of
537 manipulation by the linker, this is the mangled name; otherwise,
538 it's the same as SYMBOL_NATURAL_NAME. */
539
540 #define SYMBOL_LINKAGE_NAME(symbol) (symbol)->ginfo.name
541
542 /* Return the demangled name for a symbol based on the language for
543 that symbol. If no demangled name exists, return NULL. */
544 #define SYMBOL_DEMANGLED_NAME(symbol) \
545 (symbol_demangled_name (&(symbol)->ginfo))
546 extern const char *symbol_demangled_name
547 (const struct general_symbol_info *symbol);
548
549 /* Macro that returns a version of the name of a symbol that is
550 suitable for output. In C++ this is the "demangled" form of the
551 name if demangle is on and the "mangled" form of the name if
552 demangle is off. In other languages this is just the symbol name.
553 The result should never be NULL. Don't use this for internal
554 purposes (e.g. storing in a hashtable): it's only suitable for output.
555
556 N.B. symbol may be anything with a ginfo member,
557 e.g., struct symbol or struct minimal_symbol. */
558
559 #define SYMBOL_PRINT_NAME(symbol) \
560 (demangle ? SYMBOL_NATURAL_NAME (symbol) : SYMBOL_LINKAGE_NAME (symbol))
561 extern bool demangle;
562
563 /* Macro that returns the name to be used when sorting and searching symbols.
564 In C++, we search for the demangled form of a name,
565 and so sort symbols accordingly. In Ada, however, we search by mangled
566 name. If there is no distinct demangled name, then SYMBOL_SEARCH_NAME
567 returns the same value (same pointer) as SYMBOL_LINKAGE_NAME. */
568 #define SYMBOL_SEARCH_NAME(symbol) \
569 (symbol_search_name (&(symbol)->ginfo))
570 extern const char *symbol_search_name (const struct general_symbol_info *ginfo);
571
572 /* Return true if NAME matches the "search" name of SYMBOL, according
573 to the symbol's language. */
574 #define SYMBOL_MATCHES_SEARCH_NAME(symbol, name) \
575 symbol_matches_search_name (&(symbol)->ginfo, (name))
576
577 /* Helper for SYMBOL_MATCHES_SEARCH_NAME that works with both symbols
578 and psymbols. */
579 extern bool symbol_matches_search_name
580 (const struct general_symbol_info *gsymbol,
581 const lookup_name_info &name);
582
583 /* Compute the hash of the given symbol search name of a symbol of
584 language LANGUAGE. */
585 extern unsigned int search_name_hash (enum language language,
586 const char *search_name);
587
588 /* Classification types for a minimal symbol. These should be taken as
589 "advisory only", since if gdb can't easily figure out a
590 classification it simply selects mst_unknown. It may also have to
591 guess when it can't figure out which is a better match between two
592 types (mst_data versus mst_bss) for example. Since the minimal
593 symbol info is sometimes derived from the BFD library's view of a
594 file, we need to live with what information bfd supplies. */
595
596 enum minimal_symbol_type
597 {
598 mst_unknown = 0, /* Unknown type, the default */
599 mst_text, /* Generally executable instructions */
600
601 /* A GNU ifunc symbol, in the .text section. GDB uses to know
602 whether the user is setting a breakpoint on a GNU ifunc function,
603 and thus GDB needs to actually set the breakpoint on the target
604 function. It is also used to know whether the program stepped
605 into an ifunc resolver -- the resolver may get a separate
606 symbol/alias under a different name, but it'll have the same
607 address as the ifunc symbol. */
608 mst_text_gnu_ifunc, /* Executable code returning address
609 of executable code */
610
611 /* A GNU ifunc function descriptor symbol, in a data section
612 (typically ".opd"). Seen on architectures that use function
613 descriptors, like PPC64/ELFv1. In this case, this symbol's value
614 is the address of the descriptor. There'll be a corresponding
615 mst_text_gnu_ifunc synthetic symbol for the text/entry
616 address. */
617 mst_data_gnu_ifunc, /* Executable code returning address
618 of executable code */
619
620 mst_slot_got_plt, /* GOT entries for .plt sections */
621 mst_data, /* Generally initialized data */
622 mst_bss, /* Generally uninitialized data */
623 mst_abs, /* Generally absolute (nonrelocatable) */
624 /* GDB uses mst_solib_trampoline for the start address of a shared
625 library trampoline entry. Breakpoints for shared library functions
626 are put there if the shared library is not yet loaded.
627 After the shared library is loaded, lookup_minimal_symbol will
628 prefer the minimal symbol from the shared library (usually
629 a mst_text symbol) over the mst_solib_trampoline symbol, and the
630 breakpoints will be moved to their true address in the shared
631 library via breakpoint_re_set. */
632 mst_solib_trampoline, /* Shared library trampoline code */
633 /* For the mst_file* types, the names are only guaranteed to be unique
634 within a given .o file. */
635 mst_file_text, /* Static version of mst_text */
636 mst_file_data, /* Static version of mst_data */
637 mst_file_bss, /* Static version of mst_bss */
638 nr_minsym_types
639 };
640
641 /* The number of enum minimal_symbol_type values, with some padding for
642 reasonable growth. */
643 #define MINSYM_TYPE_BITS 4
644 gdb_static_assert (nr_minsym_types <= (1 << MINSYM_TYPE_BITS));
645
646 /* Define a simple structure used to hold some very basic information about
647 all defined global symbols (text, data, bss, abs, etc). The only required
648 information is the general_symbol_info.
649
650 In many cases, even if a file was compiled with no special options for
651 debugging at all, as long as was not stripped it will contain sufficient
652 information to build a useful minimal symbol table using this structure.
653 Even when a file contains enough debugging information to build a full
654 symbol table, these minimal symbols are still useful for quickly mapping
655 between names and addresses, and vice versa. They are also sometimes
656 used to figure out what full symbol table entries need to be read in. */
657
658 struct minimal_symbol : public general_symbol_info
659 {
660 /* Size of this symbol. dbx_end_psymtab in dbxread.c uses this
661 information to calculate the end of the partial symtab based on the
662 address of the last symbol plus the size of the last symbol. */
663
664 unsigned long size;
665
666 /* Which source file is this symbol in? Only relevant for mst_file_*. */
667 const char *filename;
668
669 /* Classification type for this minimal symbol. */
670
671 ENUM_BITFIELD(minimal_symbol_type) type : MINSYM_TYPE_BITS;
672
673 /* Non-zero if this symbol was created by gdb.
674 Such symbols do not appear in the output of "info var|fun". */
675 unsigned int created_by_gdb : 1;
676
677 /* Two flag bits provided for the use of the target. */
678 unsigned int target_flag_1 : 1;
679 unsigned int target_flag_2 : 1;
680
681 /* Nonzero iff the size of the minimal symbol has been set.
682 Symbol size information can sometimes not be determined, because
683 the object file format may not carry that piece of information. */
684 unsigned int has_size : 1;
685
686 /* For data symbols only, if this is set, then the symbol might be
687 subject to copy relocation. In this case, a minimal symbol
688 matching the symbol's linkage name is first looked for in the
689 main objfile. If found, then that address is used; otherwise the
690 address in this symbol is used. */
691
692 unsigned maybe_copied : 1;
693
694 /* Minimal symbols with the same hash key are kept on a linked
695 list. This is the link. */
696
697 struct minimal_symbol *hash_next;
698
699 /* Minimal symbols are stored in two different hash tables. This is
700 the `next' pointer for the demangled hash table. */
701
702 struct minimal_symbol *demangled_hash_next;
703
704 /* True if this symbol is of some data type. */
705
706 bool data_p () const;
707
708 /* True if MSYMBOL is of some text type. */
709
710 bool text_p () const;
711 };
712
713 /* Return the address of MINSYM, which comes from OBJF. The
714 MAYBE_COPIED flag must be set on MINSYM. If MINSYM appears in the
715 main program's minimal symbols, then that minsym's address is
716 returned; otherwise, MINSYM's address is returned. This should
717 generally only be used via the MSYMBOL_VALUE_ADDRESS macro. */
718
719 extern CORE_ADDR get_msymbol_address (struct objfile *objf,
720 const struct minimal_symbol *minsym);
721
722 #define MSYMBOL_TARGET_FLAG_1(msymbol) (msymbol)->target_flag_1
723 #define MSYMBOL_TARGET_FLAG_2(msymbol) (msymbol)->target_flag_2
724 #define MSYMBOL_SIZE(msymbol) ((msymbol)->size + 0)
725 #define SET_MSYMBOL_SIZE(msymbol, sz) \
726 do \
727 { \
728 (msymbol)->size = sz; \
729 (msymbol)->has_size = 1; \
730 } while (0)
731 #define MSYMBOL_HAS_SIZE(msymbol) ((msymbol)->has_size + 0)
732 #define MSYMBOL_TYPE(msymbol) (msymbol)->type
733
734 #define MSYMBOL_VALUE(symbol) (symbol)->value.ivalue
735 /* The unrelocated address of the minimal symbol. */
736 #define MSYMBOL_VALUE_RAW_ADDRESS(symbol) ((symbol)->value.address + 0)
737 /* The relocated address of the minimal symbol, using the section
738 offsets from OBJFILE. */
739 #define MSYMBOL_VALUE_ADDRESS(objfile, symbol) \
740 (((symbol)->maybe_copied) ? get_msymbol_address (objfile, symbol) \
741 : ((symbol)->value.address \
742 + ANOFFSET ((objfile)->section_offsets, ((symbol)->section))))
743 /* For a bound minsym, we can easily compute the address directly. */
744 #define BMSYMBOL_VALUE_ADDRESS(symbol) \
745 MSYMBOL_VALUE_ADDRESS ((symbol).objfile, (symbol).minsym)
746 #define SET_MSYMBOL_VALUE_ADDRESS(symbol, new_value) \
747 ((symbol)->value.address = (new_value))
748 #define MSYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
749 #define MSYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
750 #define MSYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
751 #define MSYMBOL_LANGUAGE(symbol) (symbol)->language
752 #define MSYMBOL_SECTION(symbol) (symbol)->section
753 #define MSYMBOL_OBJ_SECTION(objfile, symbol) \
754 (((symbol)->section >= 0) \
755 ? (&(((objfile)->sections)[(symbol)->section])) \
756 : NULL)
757
758 #define MSYMBOL_NATURAL_NAME(symbol) \
759 (symbol_natural_name (symbol))
760 #define MSYMBOL_LINKAGE_NAME(symbol) (symbol)->name
761 #define MSYMBOL_PRINT_NAME(symbol) \
762 (demangle ? MSYMBOL_NATURAL_NAME (symbol) : MSYMBOL_LINKAGE_NAME (symbol))
763 #define MSYMBOL_DEMANGLED_NAME(symbol) \
764 (symbol_demangled_name (symbol))
765 #define MSYMBOL_SEARCH_NAME(symbol) \
766 (symbol_search_name (symbol))
767
768 #include "minsyms.h"
769
770 \f
771
772 /* Represent one symbol name; a variable, constant, function or typedef. */
773
774 /* Different name domains for symbols. Looking up a symbol specifies a
775 domain and ignores symbol definitions in other name domains. */
776
777 typedef enum domain_enum_tag
778 {
779 /* UNDEF_DOMAIN is used when a domain has not been discovered or
780 none of the following apply. This usually indicates an error either
781 in the symbol information or in gdb's handling of symbols. */
782
783 UNDEF_DOMAIN,
784
785 /* VAR_DOMAIN is the usual domain. In C, this contains variables,
786 function names, typedef names and enum type values. */
787
788 VAR_DOMAIN,
789
790 /* STRUCT_DOMAIN is used in C to hold struct, union and enum type names.
791 Thus, if `struct foo' is used in a C program, it produces a symbol named
792 `foo' in the STRUCT_DOMAIN. */
793
794 STRUCT_DOMAIN,
795
796 /* MODULE_DOMAIN is used in Fortran to hold module type names. */
797
798 MODULE_DOMAIN,
799
800 /* LABEL_DOMAIN may be used for names of labels (for gotos). */
801
802 LABEL_DOMAIN,
803
804 /* Fortran common blocks. Their naming must be separate from VAR_DOMAIN.
805 They also always use LOC_COMMON_BLOCK. */
806 COMMON_BLOCK_DOMAIN,
807
808 /* This must remain last. */
809 NR_DOMAINS
810 } domain_enum;
811
812 /* The number of bits in a symbol used to represent the domain. */
813
814 #define SYMBOL_DOMAIN_BITS 3
815 gdb_static_assert (NR_DOMAINS <= (1 << SYMBOL_DOMAIN_BITS));
816
817 extern const char *domain_name (domain_enum);
818
819 /* Searching domains, used for `search_symbols'. Element numbers are
820 hardcoded in GDB, check all enum uses before changing it. */
821
822 enum search_domain
823 {
824 /* Everything in VAR_DOMAIN minus FUNCTIONS_DOMAIN and
825 TYPES_DOMAIN. */
826 VARIABLES_DOMAIN = 0,
827
828 /* All functions -- for some reason not methods, though. */
829 FUNCTIONS_DOMAIN = 1,
830
831 /* All defined types */
832 TYPES_DOMAIN = 2,
833
834 /* All modules. */
835 MODULES_DOMAIN = 3,
836
837 /* Any type. */
838 ALL_DOMAIN = 4
839 };
840
841 extern const char *search_domain_name (enum search_domain);
842
843 /* An address-class says where to find the value of a symbol. */
844
845 enum address_class
846 {
847 /* Not used; catches errors. */
848
849 LOC_UNDEF,
850
851 /* Value is constant int SYMBOL_VALUE, host byteorder. */
852
853 LOC_CONST,
854
855 /* Value is at fixed address SYMBOL_VALUE_ADDRESS. */
856
857 LOC_STATIC,
858
859 /* Value is in register. SYMBOL_VALUE is the register number
860 in the original debug format. SYMBOL_REGISTER_OPS holds a
861 function that can be called to transform this into the
862 actual register number this represents in a specific target
863 architecture (gdbarch).
864
865 For some symbol formats (stabs, for some compilers at least),
866 the compiler generates two symbols, an argument and a register.
867 In some cases we combine them to a single LOC_REGISTER in symbol
868 reading, but currently not for all cases (e.g. it's passed on the
869 stack and then loaded into a register). */
870
871 LOC_REGISTER,
872
873 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */
874
875 LOC_ARG,
876
877 /* Value address is at SYMBOL_VALUE offset in arglist. */
878
879 LOC_REF_ARG,
880
881 /* Value is in specified register. Just like LOC_REGISTER except the
882 register holds the address of the argument instead of the argument
883 itself. This is currently used for the passing of structs and unions
884 on sparc and hppa. It is also used for call by reference where the
885 address is in a register, at least by mipsread.c. */
886
887 LOC_REGPARM_ADDR,
888
889 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */
890
891 LOC_LOCAL,
892
893 /* Value not used; definition in SYMBOL_TYPE. Symbols in the domain
894 STRUCT_DOMAIN all have this class. */
895
896 LOC_TYPEDEF,
897
898 /* Value is address SYMBOL_VALUE_ADDRESS in the code. */
899
900 LOC_LABEL,
901
902 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'.
903 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address
904 of the block. Function names have this class. */
905
906 LOC_BLOCK,
907
908 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in
909 target byte order. */
910
911 LOC_CONST_BYTES,
912
913 /* Value is at fixed address, but the address of the variable has
914 to be determined from the minimal symbol table whenever the
915 variable is referenced.
916 This happens if debugging information for a global symbol is
917 emitted and the corresponding minimal symbol is defined
918 in another object file or runtime common storage.
919 The linker might even remove the minimal symbol if the global
920 symbol is never referenced, in which case the symbol remains
921 unresolved.
922
923 GDB would normally find the symbol in the minimal symbol table if it will
924 not find it in the full symbol table. But a reference to an external
925 symbol in a local block shadowing other definition requires full symbol
926 without possibly having its address available for LOC_STATIC. Testcase
927 is provided as `gdb.dwarf2/dw2-unresolved.exp'.
928
929 This is also used for thread local storage (TLS) variables. In this case,
930 the address of the TLS variable must be determined when the variable is
931 referenced, from the MSYMBOL_VALUE_RAW_ADDRESS, which is the offset
932 of the TLS variable in the thread local storage of the shared
933 library/object. */
934
935 LOC_UNRESOLVED,
936
937 /* The variable does not actually exist in the program.
938 The value is ignored. */
939
940 LOC_OPTIMIZED_OUT,
941
942 /* The variable's address is computed by a set of location
943 functions (see "struct symbol_computed_ops" below). */
944 LOC_COMPUTED,
945
946 /* The variable uses general_symbol_info->value->common_block field.
947 It also always uses COMMON_BLOCK_DOMAIN. */
948 LOC_COMMON_BLOCK,
949
950 /* Not used, just notes the boundary of the enum. */
951 LOC_FINAL_VALUE
952 };
953
954 /* The number of bits needed for values in enum address_class, with some
955 padding for reasonable growth, and room for run-time registered address
956 classes. See symtab.c:MAX_SYMBOL_IMPLS.
957 This is a #define so that we can have a assertion elsewhere to
958 verify that we have reserved enough space for synthetic address
959 classes. */
960 #define SYMBOL_ACLASS_BITS 5
961 gdb_static_assert (LOC_FINAL_VALUE <= (1 << SYMBOL_ACLASS_BITS));
962
963 /* The methods needed to implement LOC_COMPUTED. These methods can
964 use the symbol's .aux_value for additional per-symbol information.
965
966 At present this is only used to implement location expressions. */
967
968 struct symbol_computed_ops
969 {
970
971 /* Return the value of the variable SYMBOL, relative to the stack
972 frame FRAME. If the variable has been optimized out, return
973 zero.
974
975 Iff `read_needs_frame (SYMBOL)' is not SYMBOL_NEEDS_FRAME, then
976 FRAME may be zero. */
977
978 struct value *(*read_variable) (struct symbol * symbol,
979 struct frame_info * frame);
980
981 /* Read variable SYMBOL like read_variable at (callee) FRAME's function
982 entry. SYMBOL should be a function parameter, otherwise
983 NO_ENTRY_VALUE_ERROR will be thrown. */
984 struct value *(*read_variable_at_entry) (struct symbol *symbol,
985 struct frame_info *frame);
986
987 /* Find the "symbol_needs_kind" value for the given symbol. This
988 value determines whether reading the symbol needs memory (e.g., a
989 global variable), just registers (a thread-local), or a frame (a
990 local variable). */
991 enum symbol_needs_kind (*get_symbol_read_needs) (struct symbol * symbol);
992
993 /* Write to STREAM a natural-language description of the location of
994 SYMBOL, in the context of ADDR. */
995 void (*describe_location) (struct symbol * symbol, CORE_ADDR addr,
996 struct ui_file * stream);
997
998 /* Non-zero if this symbol's address computation is dependent on PC. */
999 unsigned char location_has_loclist;
1000
1001 /* Tracepoint support. Append bytecodes to the tracepoint agent
1002 expression AX that push the address of the object SYMBOL. Set
1003 VALUE appropriately. Note --- for objects in registers, this
1004 needn't emit any code; as long as it sets VALUE properly, then
1005 the caller will generate the right code in the process of
1006 treating this as an lvalue or rvalue. */
1007
1008 void (*tracepoint_var_ref) (struct symbol *symbol, struct agent_expr *ax,
1009 struct axs_value *value);
1010
1011 /* Generate C code to compute the location of SYMBOL. The C code is
1012 emitted to STREAM. GDBARCH is the current architecture and PC is
1013 the PC at which SYMBOL's location should be evaluated.
1014 REGISTERS_USED is a vector indexed by register number; the
1015 generator function should set an element in this vector if the
1016 corresponding register is needed by the location computation.
1017 The generated C code must assign the location to a local
1018 variable; this variable's name is RESULT_NAME. */
1019
1020 void (*generate_c_location) (struct symbol *symbol, string_file *stream,
1021 struct gdbarch *gdbarch,
1022 unsigned char *registers_used,
1023 CORE_ADDR pc, const char *result_name);
1024
1025 };
1026
1027 /* The methods needed to implement LOC_BLOCK for inferior functions.
1028 These methods can use the symbol's .aux_value for additional
1029 per-symbol information. */
1030
1031 struct symbol_block_ops
1032 {
1033 /* Fill in *START and *LENGTH with DWARF block data of function
1034 FRAMEFUNC valid for inferior context address PC. Set *LENGTH to
1035 zero if such location is not valid for PC; *START is left
1036 uninitialized in such case. */
1037 void (*find_frame_base_location) (struct symbol *framefunc, CORE_ADDR pc,
1038 const gdb_byte **start, size_t *length);
1039
1040 /* Return the frame base address. FRAME is the frame for which we want to
1041 compute the base address while FRAMEFUNC is the symbol for the
1042 corresponding function. Return 0 on failure (FRAMEFUNC may not hold the
1043 information we need).
1044
1045 This method is designed to work with static links (nested functions
1046 handling). Static links are function properties whose evaluation returns
1047 the frame base address for the enclosing frame. However, there are
1048 multiple definitions for "frame base": the content of the frame base
1049 register, the CFA as defined by DWARF unwinding information, ...
1050
1051 So this specific method is supposed to compute the frame base address such
1052 as for nested functions, the static link computes the same address. For
1053 instance, considering DWARF debugging information, the static link is
1054 computed with DW_AT_static_link and this method must be used to compute
1055 the corresponding DW_AT_frame_base attribute. */
1056 CORE_ADDR (*get_frame_base) (struct symbol *framefunc,
1057 struct frame_info *frame);
1058 };
1059
1060 /* Functions used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1061
1062 struct symbol_register_ops
1063 {
1064 int (*register_number) (struct symbol *symbol, struct gdbarch *gdbarch);
1065 };
1066
1067 /* Objects of this type are used to find the address class and the
1068 various computed ops vectors of a symbol. */
1069
1070 struct symbol_impl
1071 {
1072 enum address_class aclass;
1073
1074 /* Used with LOC_COMPUTED. */
1075 const struct symbol_computed_ops *ops_computed;
1076
1077 /* Used with LOC_BLOCK. */
1078 const struct symbol_block_ops *ops_block;
1079
1080 /* Used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1081 const struct symbol_register_ops *ops_register;
1082 };
1083
1084 /* struct symbol has some subclasses. This enum is used to
1085 differentiate between them. */
1086
1087 enum symbol_subclass_kind
1088 {
1089 /* Plain struct symbol. */
1090 SYMBOL_NONE,
1091
1092 /* struct template_symbol. */
1093 SYMBOL_TEMPLATE,
1094
1095 /* struct rust_vtable_symbol. */
1096 SYMBOL_RUST_VTABLE
1097 };
1098
1099 /* This structure is space critical. See space comments at the top. */
1100
1101 struct symbol
1102 {
1103
1104 /* The general symbol info required for all types of symbols. */
1105
1106 struct general_symbol_info ginfo;
1107
1108 /* Data type of value */
1109
1110 struct type *type;
1111
1112 /* The owner of this symbol.
1113 Which one to use is defined by symbol.is_objfile_owned. */
1114
1115 union
1116 {
1117 /* The symbol table containing this symbol. This is the file associated
1118 with LINE. It can be NULL during symbols read-in but it is never NULL
1119 during normal operation. */
1120 struct symtab *symtab;
1121
1122 /* For types defined by the architecture. */
1123 struct gdbarch *arch;
1124 } owner;
1125
1126 /* Domain code. */
1127
1128 ENUM_BITFIELD(domain_enum_tag) domain : SYMBOL_DOMAIN_BITS;
1129
1130 /* Address class. This holds an index into the 'symbol_impls'
1131 table. The actual enum address_class value is stored there,
1132 alongside any per-class ops vectors. */
1133
1134 unsigned int aclass_index : SYMBOL_ACLASS_BITS;
1135
1136 /* If non-zero then symbol is objfile-owned, use owner.symtab.
1137 Otherwise symbol is arch-owned, use owner.arch. */
1138
1139 unsigned int is_objfile_owned : 1;
1140
1141 /* Whether this is an argument. */
1142
1143 unsigned is_argument : 1;
1144
1145 /* Whether this is an inlined function (class LOC_BLOCK only). */
1146 unsigned is_inlined : 1;
1147
1148 /* For LOC_STATIC only, if this is set, then the symbol might be
1149 subject to copy relocation. In this case, a minimal symbol
1150 matching the symbol's linkage name is first looked for in the
1151 main objfile. If found, then that address is used; otherwise the
1152 address in this symbol is used. */
1153
1154 unsigned maybe_copied : 1;
1155
1156 /* The concrete type of this symbol. */
1157
1158 ENUM_BITFIELD (symbol_subclass_kind) subclass : 2;
1159
1160 /* Line number of this symbol's definition, except for inlined
1161 functions. For an inlined function (class LOC_BLOCK and
1162 SYMBOL_INLINED set) this is the line number of the function's call
1163 site. Inlined function symbols are not definitions, and they are
1164 never found by symbol table lookup.
1165 If this symbol is arch-owned, LINE shall be zero.
1166
1167 FIXME: Should we really make the assumption that nobody will try
1168 to debug files longer than 64K lines? What about machine
1169 generated programs? */
1170
1171 unsigned short line;
1172
1173 /* An arbitrary data pointer, allowing symbol readers to record
1174 additional information on a per-symbol basis. Note that this data
1175 must be allocated using the same obstack as the symbol itself. */
1176 /* So far it is only used by:
1177 LOC_COMPUTED: to find the location information
1178 LOC_BLOCK (DWARF2 function): information used internally by the
1179 DWARF 2 code --- specifically, the location expression for the frame
1180 base for this function. */
1181 /* FIXME drow/2003-02-21: For the LOC_BLOCK case, it might be better
1182 to add a magic symbol to the block containing this information,
1183 or to have a generic debug info annotation slot for symbols. */
1184
1185 void *aux_value;
1186
1187 struct symbol *hash_next;
1188 };
1189
1190 /* Several lookup functions return both a symbol and the block in which the
1191 symbol is found. This structure is used in these cases. */
1192
1193 struct block_symbol
1194 {
1195 /* The symbol that was found, or NULL if no symbol was found. */
1196 struct symbol *symbol;
1197
1198 /* If SYMBOL is not NULL, then this is the block in which the symbol is
1199 defined. */
1200 const struct block *block;
1201 };
1202
1203 extern const struct symbol_impl *symbol_impls;
1204
1205 /* Note: There is no accessor macro for symbol.owner because it is
1206 "private". */
1207
1208 #define SYMBOL_DOMAIN(symbol) (symbol)->domain
1209 #define SYMBOL_IMPL(symbol) (symbol_impls[(symbol)->aclass_index])
1210 #define SYMBOL_ACLASS_INDEX(symbol) (symbol)->aclass_index
1211 #define SYMBOL_CLASS(symbol) (SYMBOL_IMPL (symbol).aclass)
1212 #define SYMBOL_OBJFILE_OWNED(symbol) ((symbol)->is_objfile_owned)
1213 #define SYMBOL_IS_ARGUMENT(symbol) (symbol)->is_argument
1214 #define SYMBOL_INLINED(symbol) (symbol)->is_inlined
1215 #define SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION(symbol) \
1216 (((symbol)->subclass) == SYMBOL_TEMPLATE)
1217 #define SYMBOL_TYPE(symbol) (symbol)->type
1218 #define SYMBOL_LINE(symbol) (symbol)->line
1219 #define SYMBOL_COMPUTED_OPS(symbol) (SYMBOL_IMPL (symbol).ops_computed)
1220 #define SYMBOL_BLOCK_OPS(symbol) (SYMBOL_IMPL (symbol).ops_block)
1221 #define SYMBOL_REGISTER_OPS(symbol) (SYMBOL_IMPL (symbol).ops_register)
1222 #define SYMBOL_LOCATION_BATON(symbol) (symbol)->aux_value
1223
1224 extern int register_symbol_computed_impl (enum address_class,
1225 const struct symbol_computed_ops *);
1226
1227 extern int register_symbol_block_impl (enum address_class aclass,
1228 const struct symbol_block_ops *ops);
1229
1230 extern int register_symbol_register_impl (enum address_class,
1231 const struct symbol_register_ops *);
1232
1233 /* Return the OBJFILE of SYMBOL.
1234 It is an error to call this if symbol.is_objfile_owned is false, which
1235 only happens for architecture-provided types. */
1236
1237 extern struct objfile *symbol_objfile (const struct symbol *symbol);
1238
1239 /* Return the ARCH of SYMBOL. */
1240
1241 extern struct gdbarch *symbol_arch (const struct symbol *symbol);
1242
1243 /* Return the SYMTAB of SYMBOL.
1244 It is an error to call this if symbol.is_objfile_owned is false, which
1245 only happens for architecture-provided types. */
1246
1247 extern struct symtab *symbol_symtab (const struct symbol *symbol);
1248
1249 /* Set the symtab of SYMBOL to SYMTAB.
1250 It is an error to call this if symbol.is_objfile_owned is false, which
1251 only happens for architecture-provided types. */
1252
1253 extern void symbol_set_symtab (struct symbol *symbol, struct symtab *symtab);
1254
1255 /* An instance of this type is used to represent a C++ template
1256 function. A symbol is really of this type iff
1257 SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION is true. */
1258
1259 struct template_symbol : public symbol
1260 {
1261 /* The number of template arguments. */
1262 int n_template_arguments;
1263
1264 /* The template arguments. This is an array with
1265 N_TEMPLATE_ARGUMENTS elements. */
1266 struct symbol **template_arguments;
1267 };
1268
1269 /* A symbol that represents a Rust virtual table object. */
1270
1271 struct rust_vtable_symbol : public symbol
1272 {
1273 /* The concrete type for which this vtable was created; that is, in
1274 "impl Trait for Type", this is "Type". */
1275 struct type *concrete_type;
1276 };
1277
1278 \f
1279 /* Each item represents a line-->pc (or the reverse) mapping. This is
1280 somewhat more wasteful of space than one might wish, but since only
1281 the files which are actually debugged are read in to core, we don't
1282 waste much space. */
1283
1284 struct linetable_entry
1285 {
1286 int line;
1287 CORE_ADDR pc;
1288 };
1289
1290 /* The order of entries in the linetable is significant. They should
1291 be sorted by increasing values of the pc field. If there is more than
1292 one entry for a given pc, then I'm not sure what should happen (and
1293 I not sure whether we currently handle it the best way).
1294
1295 Example: a C for statement generally looks like this
1296
1297 10 0x100 - for the init/test part of a for stmt.
1298 20 0x200
1299 30 0x300
1300 10 0x400 - for the increment part of a for stmt.
1301
1302 If an entry has a line number of zero, it marks the start of a PC
1303 range for which no line number information is available. It is
1304 acceptable, though wasteful of table space, for such a range to be
1305 zero length. */
1306
1307 struct linetable
1308 {
1309 int nitems;
1310
1311 /* Actually NITEMS elements. If you don't like this use of the
1312 `struct hack', you can shove it up your ANSI (seriously, if the
1313 committee tells us how to do it, we can probably go along). */
1314 struct linetable_entry item[1];
1315 };
1316
1317 /* How to relocate the symbols from each section in a symbol file.
1318 Each struct contains an array of offsets.
1319 The ordering and meaning of the offsets is file-type-dependent;
1320 typically it is indexed by section numbers or symbol types or
1321 something like that.
1322
1323 To give us flexibility in changing the internal representation
1324 of these offsets, the ANOFFSET macro must be used to insert and
1325 extract offset values in the struct. */
1326
1327 struct section_offsets
1328 {
1329 CORE_ADDR offsets[1]; /* As many as needed. */
1330 };
1331
1332 #define ANOFFSET(secoff, whichone) \
1333 ((whichone == -1) \
1334 ? (internal_error (__FILE__, __LINE__, \
1335 _("Section index is uninitialized")), -1) \
1336 : secoff->offsets[whichone])
1337
1338 /* The size of a section_offsets table for N sections. */
1339 #define SIZEOF_N_SECTION_OFFSETS(n) \
1340 (sizeof (struct section_offsets) \
1341 + sizeof (((struct section_offsets *) 0)->offsets) * ((n)-1))
1342
1343 /* Each source file or header is represented by a struct symtab.
1344 The name "symtab" is historical, another name for it is "filetab".
1345 These objects are chained through the `next' field. */
1346
1347 struct symtab
1348 {
1349 /* Unordered chain of all filetabs in the compunit, with the exception
1350 that the "main" source file is the first entry in the list. */
1351
1352 struct symtab *next;
1353
1354 /* Backlink to containing compunit symtab. */
1355
1356 struct compunit_symtab *compunit_symtab;
1357
1358 /* Table mapping core addresses to line numbers for this file.
1359 Can be NULL if none. Never shared between different symtabs. */
1360
1361 struct linetable *linetable;
1362
1363 /* Name of this source file. This pointer is never NULL. */
1364
1365 const char *filename;
1366
1367 /* Language of this source file. */
1368
1369 enum language language;
1370
1371 /* Full name of file as found by searching the source path.
1372 NULL if not yet known. */
1373
1374 char *fullname;
1375 };
1376
1377 #define SYMTAB_COMPUNIT(symtab) ((symtab)->compunit_symtab)
1378 #define SYMTAB_LINETABLE(symtab) ((symtab)->linetable)
1379 #define SYMTAB_LANGUAGE(symtab) ((symtab)->language)
1380 #define SYMTAB_BLOCKVECTOR(symtab) \
1381 COMPUNIT_BLOCKVECTOR (SYMTAB_COMPUNIT (symtab))
1382 #define SYMTAB_OBJFILE(symtab) \
1383 COMPUNIT_OBJFILE (SYMTAB_COMPUNIT (symtab))
1384 #define SYMTAB_PSPACE(symtab) (SYMTAB_OBJFILE (symtab)->pspace)
1385 #define SYMTAB_DIRNAME(symtab) \
1386 COMPUNIT_DIRNAME (SYMTAB_COMPUNIT (symtab))
1387
1388 /* Compunit symtabs contain the actual "symbol table", aka blockvector, as well
1389 as the list of all source files (what gdb has historically associated with
1390 the term "symtab").
1391 Additional information is recorded here that is common to all symtabs in a
1392 compilation unit (DWARF or otherwise).
1393
1394 Example:
1395 For the case of a program built out of these files:
1396
1397 foo.c
1398 foo1.h
1399 foo2.h
1400 bar.c
1401 foo1.h
1402 bar.h
1403
1404 This is recorded as:
1405
1406 objfile -> foo.c(cu) -> bar.c(cu) -> NULL
1407 | |
1408 v v
1409 foo.c bar.c
1410 | |
1411 v v
1412 foo1.h foo1.h
1413 | |
1414 v v
1415 foo2.h bar.h
1416 | |
1417 v v
1418 NULL NULL
1419
1420 where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
1421 and the files foo.c, etc. are struct symtab objects. */
1422
1423 struct compunit_symtab
1424 {
1425 /* Unordered chain of all compunit symtabs of this objfile. */
1426 struct compunit_symtab *next;
1427
1428 /* Object file from which this symtab information was read. */
1429 struct objfile *objfile;
1430
1431 /* Name of the symtab.
1432 This is *not* intended to be a usable filename, and is
1433 for debugging purposes only. */
1434 const char *name;
1435
1436 /* Unordered list of file symtabs, except that by convention the "main"
1437 source file (e.g., .c, .cc) is guaranteed to be first.
1438 Each symtab is a file, either the "main" source file (e.g., .c, .cc)
1439 or header (e.g., .h). */
1440 struct symtab *filetabs;
1441
1442 /* Last entry in FILETABS list.
1443 Subfiles are added to the end of the list so they accumulate in order,
1444 with the main source subfile living at the front.
1445 The main reason is so that the main source file symtab is at the head
1446 of the list, and the rest appear in order for debugging convenience. */
1447 struct symtab *last_filetab;
1448
1449 /* Non-NULL string that identifies the format of the debugging information,
1450 such as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful
1451 for automated testing of gdb but may also be information that is
1452 useful to the user. */
1453 const char *debugformat;
1454
1455 /* String of producer version information, or NULL if we don't know. */
1456 const char *producer;
1457
1458 /* Directory in which it was compiled, or NULL if we don't know. */
1459 const char *dirname;
1460
1461 /* List of all symbol scope blocks for this symtab. It is shared among
1462 all symtabs in a given compilation unit. */
1463 const struct blockvector *blockvector;
1464
1465 /* Section in objfile->section_offsets for the blockvector and
1466 the linetable. Probably always SECT_OFF_TEXT. */
1467 int block_line_section;
1468
1469 /* Symtab has been compiled with both optimizations and debug info so that
1470 GDB may stop skipping prologues as variables locations are valid already
1471 at function entry points. */
1472 unsigned int locations_valid : 1;
1473
1474 /* DWARF unwinder for this CU is valid even for epilogues (PC at the return
1475 instruction). This is supported by GCC since 4.5.0. */
1476 unsigned int epilogue_unwind_valid : 1;
1477
1478 /* struct call_site entries for this compilation unit or NULL. */
1479 htab_t call_site_htab;
1480
1481 /* The macro table for this symtab. Like the blockvector, this
1482 is shared between different symtabs in a given compilation unit.
1483 It's debatable whether it *should* be shared among all the symtabs in
1484 the given compilation unit, but it currently is. */
1485 struct macro_table *macro_table;
1486
1487 /* If non-NULL, then this points to a NULL-terminated vector of
1488 included compunits. When searching the static or global
1489 block of this compunit, the corresponding block of all
1490 included compunits will also be searched. Note that this
1491 list must be flattened -- the symbol reader is responsible for
1492 ensuring that this vector contains the transitive closure of all
1493 included compunits. */
1494 struct compunit_symtab **includes;
1495
1496 /* If this is an included compunit, this points to one includer
1497 of the table. This user is considered the canonical compunit
1498 containing this one. An included compunit may itself be
1499 included by another. */
1500 struct compunit_symtab *user;
1501 };
1502
1503 #define COMPUNIT_OBJFILE(cust) ((cust)->objfile)
1504 #define COMPUNIT_FILETABS(cust) ((cust)->filetabs)
1505 #define COMPUNIT_DEBUGFORMAT(cust) ((cust)->debugformat)
1506 #define COMPUNIT_PRODUCER(cust) ((cust)->producer)
1507 #define COMPUNIT_DIRNAME(cust) ((cust)->dirname)
1508 #define COMPUNIT_BLOCKVECTOR(cust) ((cust)->blockvector)
1509 #define COMPUNIT_BLOCK_LINE_SECTION(cust) ((cust)->block_line_section)
1510 #define COMPUNIT_LOCATIONS_VALID(cust) ((cust)->locations_valid)
1511 #define COMPUNIT_EPILOGUE_UNWIND_VALID(cust) ((cust)->epilogue_unwind_valid)
1512 #define COMPUNIT_CALL_SITE_HTAB(cust) ((cust)->call_site_htab)
1513 #define COMPUNIT_MACRO_TABLE(cust) ((cust)->macro_table)
1514
1515 /* A range adapter to allowing iterating over all the file tables
1516 within a compunit. */
1517
1518 struct compunit_filetabs : public next_adapter<struct symtab>
1519 {
1520 compunit_filetabs (struct compunit_symtab *cu)
1521 : next_adapter<struct symtab> (cu->filetabs)
1522 {
1523 }
1524 };
1525
1526 /* Return the primary symtab of CUST. */
1527
1528 extern struct symtab *
1529 compunit_primary_filetab (const struct compunit_symtab *cust);
1530
1531 /* Return the language of CUST. */
1532
1533 extern enum language compunit_language (const struct compunit_symtab *cust);
1534
1535 \f
1536
1537 /* The virtual function table is now an array of structures which have the
1538 form { int16 offset, delta; void *pfn; }.
1539
1540 In normal virtual function tables, OFFSET is unused.
1541 DELTA is the amount which is added to the apparent object's base
1542 address in order to point to the actual object to which the
1543 virtual function should be applied.
1544 PFN is a pointer to the virtual function.
1545
1546 Note that this macro is g++ specific (FIXME). */
1547
1548 #define VTBL_FNADDR_OFFSET 2
1549
1550 /* External variables and functions for the objects described above. */
1551
1552 /* True if we are nested inside psymtab_to_symtab. */
1553
1554 extern int currently_reading_symtab;
1555
1556 /* symtab.c lookup functions */
1557
1558 extern const char multiple_symbols_ask[];
1559 extern const char multiple_symbols_all[];
1560 extern const char multiple_symbols_cancel[];
1561
1562 const char *multiple_symbols_select_mode (void);
1563
1564 bool symbol_matches_domain (enum language symbol_language,
1565 domain_enum symbol_domain,
1566 domain_enum domain);
1567
1568 /* lookup a symbol table by source file name. */
1569
1570 extern struct symtab *lookup_symtab (const char *);
1571
1572 /* An object of this type is passed as the 'is_a_field_of_this'
1573 argument to lookup_symbol and lookup_symbol_in_language. */
1574
1575 struct field_of_this_result
1576 {
1577 /* The type in which the field was found. If this is NULL then the
1578 symbol was not found in 'this'. If non-NULL, then one of the
1579 other fields will be non-NULL as well. */
1580
1581 struct type *type;
1582
1583 /* If the symbol was found as an ordinary field of 'this', then this
1584 is non-NULL and points to the particular field. */
1585
1586 struct field *field;
1587
1588 /* If the symbol was found as a function field of 'this', then this
1589 is non-NULL and points to the particular field. */
1590
1591 struct fn_fieldlist *fn_field;
1592 };
1593
1594 /* Find the definition for a specified symbol name NAME
1595 in domain DOMAIN in language LANGUAGE, visible from lexical block BLOCK
1596 if non-NULL or from global/static blocks if BLOCK is NULL.
1597 Returns the struct symbol pointer, or NULL if no symbol is found.
1598 C++: if IS_A_FIELD_OF_THIS is non-NULL on entry, check to see if
1599 NAME is a field of the current implied argument `this'. If so fill in the
1600 fields of IS_A_FIELD_OF_THIS, otherwise the fields are set to NULL.
1601 The symbol's section is fixed up if necessary. */
1602
1603 extern struct block_symbol
1604 lookup_symbol_in_language (const char *,
1605 const struct block *,
1606 const domain_enum,
1607 enum language,
1608 struct field_of_this_result *);
1609
1610 /* Same as lookup_symbol_in_language, but using the current language. */
1611
1612 extern struct block_symbol lookup_symbol (const char *,
1613 const struct block *,
1614 const domain_enum,
1615 struct field_of_this_result *);
1616
1617 /* Find the definition for a specified symbol search name in domain
1618 DOMAIN, visible from lexical block BLOCK if non-NULL or from
1619 global/static blocks if BLOCK is NULL. The passed-in search name
1620 should not come from the user; instead it should already be a
1621 search name as retrieved from a
1622 SYMBOL_SEARCH_NAME/MSYMBOL_SEARCH_NAME call. See definition of
1623 symbol_name_match_type::SEARCH_NAME. Returns the struct symbol
1624 pointer, or NULL if no symbol is found. The symbol's section is
1625 fixed up if necessary. */
1626
1627 extern struct block_symbol lookup_symbol_search_name (const char *search_name,
1628 const struct block *block,
1629 domain_enum domain);
1630
1631 /* A default version of lookup_symbol_nonlocal for use by languages
1632 that can't think of anything better to do.
1633 This implements the C lookup rules. */
1634
1635 extern struct block_symbol
1636 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
1637 const char *,
1638 const struct block *,
1639 const domain_enum);
1640
1641 /* Some helper functions for languages that need to write their own
1642 lookup_symbol_nonlocal functions. */
1643
1644 /* Lookup a symbol in the static block associated to BLOCK, if there
1645 is one; do nothing if BLOCK is NULL or a global block.
1646 Upon success fixes up the symbol's section if necessary. */
1647
1648 extern struct block_symbol
1649 lookup_symbol_in_static_block (const char *name,
1650 const struct block *block,
1651 const domain_enum domain);
1652
1653 /* Search all static file-level symbols for NAME from DOMAIN.
1654 Upon success fixes up the symbol's section if necessary. */
1655
1656 extern struct block_symbol lookup_static_symbol (const char *name,
1657 const domain_enum domain);
1658
1659 /* Lookup a symbol in all files' global blocks.
1660
1661 If BLOCK is non-NULL then it is used for two things:
1662 1) If a target-specific lookup routine for libraries exists, then use the
1663 routine for the objfile of BLOCK, and
1664 2) The objfile of BLOCK is used to assist in determining the search order
1665 if the target requires it.
1666 See gdbarch_iterate_over_objfiles_in_search_order.
1667
1668 Upon success fixes up the symbol's section if necessary. */
1669
1670 extern struct block_symbol
1671 lookup_global_symbol (const char *name,
1672 const struct block *block,
1673 const domain_enum domain);
1674
1675 /* Lookup a symbol in block BLOCK.
1676 Upon success fixes up the symbol's section if necessary. */
1677
1678 extern struct symbol *
1679 lookup_symbol_in_block (const char *name,
1680 symbol_name_match_type match_type,
1681 const struct block *block,
1682 const domain_enum domain);
1683
1684 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1685 found, or NULL if not found. */
1686
1687 extern struct block_symbol
1688 lookup_language_this (const struct language_defn *lang,
1689 const struct block *block);
1690
1691 /* Lookup a [struct, union, enum] by name, within a specified block. */
1692
1693 extern struct type *lookup_struct (const char *, const struct block *);
1694
1695 extern struct type *lookup_union (const char *, const struct block *);
1696
1697 extern struct type *lookup_enum (const char *, const struct block *);
1698
1699 /* from blockframe.c: */
1700
1701 /* lookup the function symbol corresponding to the address. The
1702 return value will not be an inlined function; the containing
1703 function will be returned instead. */
1704
1705 extern struct symbol *find_pc_function (CORE_ADDR);
1706
1707 /* lookup the function corresponding to the address and section. The
1708 return value will not be an inlined function; the containing
1709 function will be returned instead. */
1710
1711 extern struct symbol *find_pc_sect_function (CORE_ADDR, struct obj_section *);
1712
1713 /* lookup the function symbol corresponding to the address and
1714 section. The return value will be the closest enclosing function,
1715 which might be an inline function. */
1716
1717 extern struct symbol *find_pc_sect_containing_function
1718 (CORE_ADDR pc, struct obj_section *section);
1719
1720 /* Find the symbol at the given address. Returns NULL if no symbol
1721 found. Only exact matches for ADDRESS are considered. */
1722
1723 extern struct symbol *find_symbol_at_address (CORE_ADDR);
1724
1725 /* Finds the "function" (text symbol) that is smaller than PC but
1726 greatest of all of the potential text symbols in SECTION. Sets
1727 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
1728 If ENDADDR is non-null, then set *ENDADDR to be the end of the
1729 function (exclusive). If the optional parameter BLOCK is non-null,
1730 then set *BLOCK to the address of the block corresponding to the
1731 function symbol, if such a symbol could be found during the lookup;
1732 nullptr is used as a return value for *BLOCK if no block is found.
1733 This function either succeeds or fails (not halfway succeeds). If
1734 it succeeds, it sets *NAME, *ADDRESS, and *ENDADDR to real
1735 information and returns true. If it fails, it sets *NAME, *ADDRESS
1736 and *ENDADDR to zero and returns false.
1737
1738 If the function in question occupies non-contiguous ranges,
1739 *ADDRESS and *ENDADDR are (subject to the conditions noted above) set
1740 to the start and end of the range in which PC is found. Thus
1741 *ADDRESS <= PC < *ENDADDR with no intervening gaps (in which ranges
1742 from other functions might be found).
1743
1744 This property allows find_pc_partial_function to be used (as it had
1745 been prior to the introduction of non-contiguous range support) by
1746 various tdep files for finding a start address and limit address
1747 for prologue analysis. This still isn't ideal, however, because we
1748 probably shouldn't be doing prologue analysis (in which
1749 instructions are scanned to determine frame size and stack layout)
1750 for any range that doesn't contain the entry pc. Moreover, a good
1751 argument can be made that prologue analysis ought to be performed
1752 starting from the entry pc even when PC is within some other range.
1753 This might suggest that *ADDRESS and *ENDADDR ought to be set to the
1754 limits of the entry pc range, but that will cause the
1755 *ADDRESS <= PC < *ENDADDR condition to be violated; many of the
1756 callers of find_pc_partial_function expect this condition to hold.
1757
1758 Callers which require the start and/or end addresses for the range
1759 containing the entry pc should instead call
1760 find_function_entry_range_from_pc. */
1761
1762 extern bool find_pc_partial_function (CORE_ADDR pc, const char **name,
1763 CORE_ADDR *address, CORE_ADDR *endaddr,
1764 const struct block **block = nullptr);
1765
1766 /* Like find_pc_partial_function, above, but *ADDRESS and *ENDADDR are
1767 set to start and end addresses of the range containing the entry pc.
1768
1769 Note that it is not necessarily the case that (for non-NULL ADDRESS
1770 and ENDADDR arguments) the *ADDRESS <= PC < *ENDADDR condition will
1771 hold.
1772
1773 See comment for find_pc_partial_function, above, for further
1774 explanation. */
1775
1776 extern bool find_function_entry_range_from_pc (CORE_ADDR pc,
1777 const char **name,
1778 CORE_ADDR *address,
1779 CORE_ADDR *endaddr);
1780
1781 /* Return the type of a function with its first instruction exactly at
1782 the PC address. Return NULL otherwise. */
1783
1784 extern struct type *find_function_type (CORE_ADDR pc);
1785
1786 /* See if we can figure out the function's actual type from the type
1787 that the resolver returns. RESOLVER_FUNADDR is the address of the
1788 ifunc resolver. */
1789
1790 extern struct type *find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr);
1791
1792 /* Find the GNU ifunc minimal symbol that matches SYM. */
1793 extern bound_minimal_symbol find_gnu_ifunc (const symbol *sym);
1794
1795 extern void clear_pc_function_cache (void);
1796
1797 /* Expand symtab containing PC, SECTION if not already expanded. */
1798
1799 extern void expand_symtab_containing_pc (CORE_ADDR, struct obj_section *);
1800
1801 /* lookup full symbol table by address. */
1802
1803 extern struct compunit_symtab *find_pc_compunit_symtab (CORE_ADDR);
1804
1805 /* lookup full symbol table by address and section. */
1806
1807 extern struct compunit_symtab *
1808 find_pc_sect_compunit_symtab (CORE_ADDR, struct obj_section *);
1809
1810 extern bool find_pc_line_pc_range (CORE_ADDR, CORE_ADDR *, CORE_ADDR *);
1811
1812 extern void reread_symbols (void);
1813
1814 /* Look up a type named NAME in STRUCT_DOMAIN in the current language.
1815 The type returned must not be opaque -- i.e., must have at least one field
1816 defined. */
1817
1818 extern struct type *lookup_transparent_type (const char *);
1819
1820 extern struct type *basic_lookup_transparent_type (const char *);
1821
1822 /* Macro for name of symbol to indicate a file compiled with gcc. */
1823 #ifndef GCC_COMPILED_FLAG_SYMBOL
1824 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
1825 #endif
1826
1827 /* Macro for name of symbol to indicate a file compiled with gcc2. */
1828 #ifndef GCC2_COMPILED_FLAG_SYMBOL
1829 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled."
1830 #endif
1831
1832 extern bool in_gnu_ifunc_stub (CORE_ADDR pc);
1833
1834 /* Functions for resolving STT_GNU_IFUNC symbols which are implemented only
1835 for ELF symbol files. */
1836
1837 struct gnu_ifunc_fns
1838 {
1839 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
1840 CORE_ADDR (*gnu_ifunc_resolve_addr) (struct gdbarch *gdbarch, CORE_ADDR pc);
1841
1842 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
1843 bool (*gnu_ifunc_resolve_name) (const char *function_name,
1844 CORE_ADDR *function_address_p);
1845
1846 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
1847 void (*gnu_ifunc_resolver_stop) (struct breakpoint *b);
1848
1849 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
1850 void (*gnu_ifunc_resolver_return_stop) (struct breakpoint *b);
1851 };
1852
1853 #define gnu_ifunc_resolve_addr gnu_ifunc_fns_p->gnu_ifunc_resolve_addr
1854 #define gnu_ifunc_resolve_name gnu_ifunc_fns_p->gnu_ifunc_resolve_name
1855 #define gnu_ifunc_resolver_stop gnu_ifunc_fns_p->gnu_ifunc_resolver_stop
1856 #define gnu_ifunc_resolver_return_stop \
1857 gnu_ifunc_fns_p->gnu_ifunc_resolver_return_stop
1858
1859 extern const struct gnu_ifunc_fns *gnu_ifunc_fns_p;
1860
1861 extern CORE_ADDR find_solib_trampoline_target (struct frame_info *, CORE_ADDR);
1862
1863 struct symtab_and_line
1864 {
1865 /* The program space of this sal. */
1866 struct program_space *pspace = NULL;
1867
1868 struct symtab *symtab = NULL;
1869 struct symbol *symbol = NULL;
1870 struct obj_section *section = NULL;
1871 struct minimal_symbol *msymbol = NULL;
1872 /* Line number. Line numbers start at 1 and proceed through symtab->nlines.
1873 0 is never a valid line number; it is used to indicate that line number
1874 information is not available. */
1875 int line = 0;
1876
1877 CORE_ADDR pc = 0;
1878 CORE_ADDR end = 0;
1879 bool explicit_pc = false;
1880 bool explicit_line = false;
1881
1882 /* The probe associated with this symtab_and_line. */
1883 probe *prob = NULL;
1884 /* If PROBE is not NULL, then this is the objfile in which the probe
1885 originated. */
1886 struct objfile *objfile = NULL;
1887 };
1888
1889 \f
1890
1891 /* Given a pc value, return line number it is in. Second arg nonzero means
1892 if pc is on the boundary use the previous statement's line number. */
1893
1894 extern struct symtab_and_line find_pc_line (CORE_ADDR, int);
1895
1896 /* Same function, but specify a section as well as an address. */
1897
1898 extern struct symtab_and_line find_pc_sect_line (CORE_ADDR,
1899 struct obj_section *, int);
1900
1901 /* Wrapper around find_pc_line to just return the symtab. */
1902
1903 extern struct symtab *find_pc_line_symtab (CORE_ADDR);
1904
1905 /* Given a symtab and line number, return the pc there. */
1906
1907 extern bool find_line_pc (struct symtab *, int, CORE_ADDR *);
1908
1909 extern bool find_line_pc_range (struct symtab_and_line, CORE_ADDR *,
1910 CORE_ADDR *);
1911
1912 extern void resolve_sal_pc (struct symtab_and_line *);
1913
1914 /* solib.c */
1915
1916 extern void clear_solib (void);
1917
1918 /* The reason we're calling into a completion match list collector
1919 function. */
1920 enum class complete_symbol_mode
1921 {
1922 /* Completing an expression. */
1923 EXPRESSION,
1924
1925 /* Completing a linespec. */
1926 LINESPEC,
1927 };
1928
1929 extern void default_collect_symbol_completion_matches_break_on
1930 (completion_tracker &tracker,
1931 complete_symbol_mode mode,
1932 symbol_name_match_type name_match_type,
1933 const char *text, const char *word, const char *break_on,
1934 enum type_code code);
1935 extern void default_collect_symbol_completion_matches
1936 (completion_tracker &tracker,
1937 complete_symbol_mode,
1938 symbol_name_match_type name_match_type,
1939 const char *,
1940 const char *,
1941 enum type_code);
1942 extern void collect_symbol_completion_matches
1943 (completion_tracker &tracker,
1944 complete_symbol_mode mode,
1945 symbol_name_match_type name_match_type,
1946 const char *, const char *);
1947 extern void collect_symbol_completion_matches_type (completion_tracker &tracker,
1948 const char *, const char *,
1949 enum type_code);
1950
1951 extern void collect_file_symbol_completion_matches
1952 (completion_tracker &tracker,
1953 complete_symbol_mode,
1954 symbol_name_match_type name_match_type,
1955 const char *, const char *, const char *);
1956
1957 extern completion_list
1958 make_source_files_completion_list (const char *, const char *);
1959
1960 /* Return whether SYM is a function/method, as opposed to a data symbol. */
1961
1962 extern bool symbol_is_function_or_method (symbol *sym);
1963
1964 /* Return whether MSYMBOL is a function/method, as opposed to a data
1965 symbol */
1966
1967 extern bool symbol_is_function_or_method (minimal_symbol *msymbol);
1968
1969 /* Return whether SYM should be skipped in completion mode MODE. In
1970 linespec mode, we're only interested in functions/methods. */
1971
1972 template<typename Symbol>
1973 static bool
1974 completion_skip_symbol (complete_symbol_mode mode, Symbol *sym)
1975 {
1976 return (mode == complete_symbol_mode::LINESPEC
1977 && !symbol_is_function_or_method (sym));
1978 }
1979
1980 /* symtab.c */
1981
1982 bool matching_obj_sections (struct obj_section *, struct obj_section *);
1983
1984 extern struct symtab *find_line_symtab (struct symtab *, int, int *, bool *);
1985
1986 /* Given a function symbol SYM, find the symtab and line for the start
1987 of the function. If FUNFIRSTLINE is true, we want the first line
1988 of real code inside the function. */
1989 extern symtab_and_line find_function_start_sal (symbol *sym, bool
1990 funfirstline);
1991
1992 /* Same, but start with a function address/section instead of a
1993 symbol. */
1994 extern symtab_and_line find_function_start_sal (CORE_ADDR func_addr,
1995 obj_section *section,
1996 bool funfirstline);
1997
1998 extern void skip_prologue_sal (struct symtab_and_line *);
1999
2000 /* symtab.c */
2001
2002 extern CORE_ADDR skip_prologue_using_sal (struct gdbarch *gdbarch,
2003 CORE_ADDR func_addr);
2004
2005 extern struct symbol *fixup_symbol_section (struct symbol *,
2006 struct objfile *);
2007
2008 /* If MSYMBOL is an text symbol, look for a function debug symbol with
2009 the same address. Returns NULL if not found. This is necessary in
2010 case a function is an alias to some other function, because debug
2011 information is only emitted for the alias target function's
2012 definition, not for the alias. */
2013 extern symbol *find_function_alias_target (bound_minimal_symbol msymbol);
2014
2015 /* Symbol searching */
2016 /* Note: struct symbol_search, search_symbols, et.al. are declared here,
2017 instead of making them local to symtab.c, for gdbtk's sake. */
2018
2019 /* When using search_symbols, a vector of the following structs is
2020 returned. */
2021 struct symbol_search
2022 {
2023 symbol_search (int block_, struct symbol *symbol_)
2024 : block (block_),
2025 symbol (symbol_)
2026 {
2027 msymbol.minsym = nullptr;
2028 msymbol.objfile = nullptr;
2029 }
2030
2031 symbol_search (int block_, struct minimal_symbol *minsym,
2032 struct objfile *objfile)
2033 : block (block_),
2034 symbol (nullptr)
2035 {
2036 msymbol.minsym = minsym;
2037 msymbol.objfile = objfile;
2038 }
2039
2040 bool operator< (const symbol_search &other) const
2041 {
2042 return compare_search_syms (*this, other) < 0;
2043 }
2044
2045 bool operator== (const symbol_search &other) const
2046 {
2047 return compare_search_syms (*this, other) == 0;
2048 }
2049
2050 /* The block in which the match was found. Could be, for example,
2051 STATIC_BLOCK or GLOBAL_BLOCK. */
2052 int block;
2053
2054 /* Information describing what was found.
2055
2056 If symbol is NOT NULL, then information was found for this match. */
2057 struct symbol *symbol;
2058
2059 /* If msymbol is non-null, then a match was made on something for
2060 which only minimal_symbols exist. */
2061 struct bound_minimal_symbol msymbol;
2062
2063 private:
2064
2065 static int compare_search_syms (const symbol_search &sym_a,
2066 const symbol_search &sym_b);
2067 };
2068
2069 extern std::vector<symbol_search> search_symbols (const char *,
2070 enum search_domain,
2071 const char *,
2072 int,
2073 const char **,
2074 bool);
2075
2076 /* When searching for Fortran symbols within modules (functions/variables)
2077 we return a vector of this type. The first item in the pair is the
2078 module symbol, and the second item is the symbol for the function or
2079 variable we found. */
2080 typedef std::pair<symbol_search, symbol_search> module_symbol_search;
2081
2082 /* Searches the symbols to find function and variables symbols (depending
2083 on KIND) within Fortran modules. The MODULE_REGEXP matches against the
2084 name of the module, REGEXP matches against the name of the symbol within
2085 the module, and TYPE_REGEXP matches against the type of the symbol
2086 within the module. */
2087 extern std::vector<module_symbol_search> search_module_symbols
2088 (const char *module_regexp, const char *regexp,
2089 const char *type_regexp, search_domain kind);
2090
2091 extern bool treg_matches_sym_type_name (const compiled_regex &treg,
2092 const struct symbol *sym);
2093
2094 /* The name of the ``main'' function. */
2095 extern const char *main_name ();
2096 extern enum language main_language (void);
2097
2098 /* Lookup symbol NAME from DOMAIN in MAIN_OBJFILE's global or static blocks,
2099 as specified by BLOCK_INDEX.
2100 This searches MAIN_OBJFILE as well as any associated separate debug info
2101 objfiles of MAIN_OBJFILE.
2102 BLOCK_INDEX can be GLOBAL_BLOCK or STATIC_BLOCK.
2103 Upon success fixes up the symbol's section if necessary. */
2104
2105 extern struct block_symbol
2106 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2107 enum block_enum block_index,
2108 const char *name,
2109 const domain_enum domain);
2110
2111 /* Return 1 if the supplied producer string matches the ARM RealView
2112 compiler (armcc). */
2113 bool producer_is_realview (const char *producer);
2114
2115 void fixup_section (struct general_symbol_info *ginfo,
2116 CORE_ADDR addr, struct objfile *objfile);
2117
2118 /* Look up objfile containing BLOCK. */
2119
2120 struct objfile *lookup_objfile_from_block (const struct block *block);
2121
2122 extern unsigned int symtab_create_debug;
2123
2124 extern unsigned int symbol_lookup_debug;
2125
2126 extern bool basenames_may_differ;
2127
2128 bool compare_filenames_for_search (const char *filename,
2129 const char *search_name);
2130
2131 bool compare_glob_filenames_for_search (const char *filename,
2132 const char *search_name);
2133
2134 bool iterate_over_some_symtabs (const char *name,
2135 const char *real_path,
2136 struct compunit_symtab *first,
2137 struct compunit_symtab *after_last,
2138 gdb::function_view<bool (symtab *)> callback);
2139
2140 void iterate_over_symtabs (const char *name,
2141 gdb::function_view<bool (symtab *)> callback);
2142
2143
2144 std::vector<CORE_ADDR> find_pcs_for_symtab_line
2145 (struct symtab *symtab, int line, struct linetable_entry **best_entry);
2146
2147 /* Prototype for callbacks for LA_ITERATE_OVER_SYMBOLS. The callback
2148 is called once per matching symbol SYM. The callback should return
2149 true to indicate that LA_ITERATE_OVER_SYMBOLS should continue
2150 iterating, or false to indicate that the iteration should end. */
2151
2152 typedef bool (symbol_found_callback_ftype) (struct block_symbol *bsym);
2153
2154 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2155
2156 For each symbol that matches, CALLBACK is called. The symbol is
2157 passed to the callback.
2158
2159 If CALLBACK returns false, the iteration ends and this function
2160 returns false. Otherwise, the search continues, and the function
2161 eventually returns true. */
2162
2163 bool iterate_over_symbols (const struct block *block,
2164 const lookup_name_info &name,
2165 const domain_enum domain,
2166 gdb::function_view<symbol_found_callback_ftype> callback);
2167
2168 /* Like iterate_over_symbols, but if all calls to CALLBACK return
2169 true, then calls CALLBACK one additional time with a block_symbol
2170 that has a valid block but a NULL symbol. */
2171
2172 bool iterate_over_symbols_terminated
2173 (const struct block *block,
2174 const lookup_name_info &name,
2175 const domain_enum domain,
2176 gdb::function_view<symbol_found_callback_ftype> callback);
2177
2178 /* Storage type used by demangle_for_lookup. demangle_for_lookup
2179 either returns a const char * pointer that points to either of the
2180 fields of this type, or a pointer to the input NAME. This is done
2181 this way because the underlying functions that demangle_for_lookup
2182 calls either return a std::string (e.g., cp_canonicalize_string) or
2183 a malloc'ed buffer (libiberty's demangled), and we want to avoid
2184 unnecessary reallocation/string copying. */
2185 class demangle_result_storage
2186 {
2187 public:
2188
2189 /* Swap the std::string storage with STR, and return a pointer to
2190 the beginning of the new string. */
2191 const char *swap_string (std::string &str)
2192 {
2193 std::swap (m_string, str);
2194 return m_string.c_str ();
2195 }
2196
2197 /* Set the malloc storage to now point at PTR. Any previous malloc
2198 storage is released. */
2199 const char *set_malloc_ptr (char *ptr)
2200 {
2201 m_malloc.reset (ptr);
2202 return ptr;
2203 }
2204
2205 private:
2206
2207 /* The storage. */
2208 std::string m_string;
2209 gdb::unique_xmalloc_ptr<char> m_malloc;
2210 };
2211
2212 const char *
2213 demangle_for_lookup (const char *name, enum language lang,
2214 demangle_result_storage &storage);
2215
2216 struct symbol *allocate_symbol (struct objfile *);
2217
2218 void initialize_objfile_symbol (struct symbol *);
2219
2220 struct template_symbol *allocate_template_symbol (struct objfile *);
2221
2222 /* Test to see if the symbol of language SYMBOL_LANGUAGE specified by
2223 SYMNAME (which is already demangled for C++ symbols) matches
2224 SYM_TEXT in the first SYM_TEXT_LEN characters. If so, add it to
2225 the current completion list. */
2226 void completion_list_add_name (completion_tracker &tracker,
2227 language symbol_language,
2228 const char *symname,
2229 const lookup_name_info &lookup_name,
2230 const char *text, const char *word);
2231
2232 /* A simple symbol searching class. */
2233
2234 class symbol_searcher
2235 {
2236 public:
2237 /* Returns the symbols found for the search. */
2238 const std::vector<block_symbol> &
2239 matching_symbols () const
2240 {
2241 return m_symbols;
2242 }
2243
2244 /* Returns the minimal symbols found for the search. */
2245 const std::vector<bound_minimal_symbol> &
2246 matching_msymbols () const
2247 {
2248 return m_minimal_symbols;
2249 }
2250
2251 /* Search for all symbols named NAME in LANGUAGE with DOMAIN, restricting
2252 search to FILE_SYMTABS and SEARCH_PSPACE, both of which may be NULL
2253 to search all symtabs and program spaces. */
2254 void find_all_symbols (const std::string &name,
2255 const struct language_defn *language,
2256 enum search_domain search_domain,
2257 std::vector<symtab *> *search_symtabs,
2258 struct program_space *search_pspace);
2259
2260 /* Reset this object to perform another search. */
2261 void reset ()
2262 {
2263 m_symbols.clear ();
2264 m_minimal_symbols.clear ();
2265 }
2266
2267 private:
2268 /* Matching debug symbols. */
2269 std::vector<block_symbol> m_symbols;
2270
2271 /* Matching non-debug symbols. */
2272 std::vector<bound_minimal_symbol> m_minimal_symbols;
2273 };
2274
2275 #endif /* !defined(SYMTAB_H) */
This page took 0.072883 seconds and 5 git commands to generate.