Change SYMBOL_VALUE_ADDRESS to be an rvalue
[deliverable/binutils-gdb.git] / gdb / symtab.h
1 /* Symbol table definitions for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (SYMTAB_H)
21 #define SYMTAB_H 1
22
23 #include <array>
24 #include <vector>
25 #include <string>
26 #include "gdbsupport/gdb_vecs.h"
27 #include "gdbtypes.h"
28 #include "gdb_regex.h"
29 #include "gdbsupport/enum-flags.h"
30 #include "gdbsupport/function-view.h"
31 #include "gdbsupport/gdb_optional.h"
32 #include "gdbsupport/next-iterator.h"
33 #include "completer.h"
34
35 /* Opaque declarations. */
36 struct ui_file;
37 struct frame_info;
38 struct symbol;
39 struct obstack;
40 struct objfile;
41 struct block;
42 struct blockvector;
43 struct axs_value;
44 struct agent_expr;
45 struct program_space;
46 struct language_defn;
47 struct common_block;
48 struct obj_section;
49 struct cmd_list_element;
50 class probe;
51 struct lookup_name_info;
52
53 /* How to match a lookup name against a symbol search name. */
54 enum class symbol_name_match_type
55 {
56 /* Wild matching. Matches unqualified symbol names in all
57 namespace/module/packages, etc. */
58 WILD,
59
60 /* Full matching. The lookup name indicates a fully-qualified name,
61 and only matches symbol search names in the specified
62 namespace/module/package. */
63 FULL,
64
65 /* Search name matching. This is like FULL, but the search name did
66 not come from the user; instead it is already a search name
67 retrieved from a SYMBOL_SEARCH_NAME/MSYMBOL_SEARCH_NAME call.
68 For Ada, this avoids re-encoding an already-encoded search name
69 (which would potentially incorrectly lowercase letters in the
70 linkage/search name that should remain uppercase). For C++, it
71 avoids trying to demangle a name we already know is
72 demangled. */
73 SEARCH_NAME,
74
75 /* Expression matching. The same as FULL matching in most
76 languages. The same as WILD matching in Ada. */
77 EXPRESSION,
78 };
79
80 /* Hash the given symbol search name according to LANGUAGE's
81 rules. */
82 extern unsigned int search_name_hash (enum language language,
83 const char *search_name);
84
85 /* Ada-specific bits of a lookup_name_info object. This is lazily
86 constructed on demand. */
87
88 class ada_lookup_name_info final
89 {
90 public:
91 /* Construct. */
92 explicit ada_lookup_name_info (const lookup_name_info &lookup_name);
93
94 /* Compare SYMBOL_SEARCH_NAME with our lookup name, using MATCH_TYPE
95 as name match type. Returns true if there's a match, false
96 otherwise. If non-NULL, store the matching results in MATCH. */
97 bool matches (const char *symbol_search_name,
98 symbol_name_match_type match_type,
99 completion_match_result *comp_match_res) const;
100
101 /* The Ada-encoded lookup name. */
102 const std::string &lookup_name () const
103 { return m_encoded_name; }
104
105 /* Return true if we're supposed to be doing a wild match look
106 up. */
107 bool wild_match_p () const
108 { return m_wild_match_p; }
109
110 /* Return true if we're looking up a name inside package
111 Standard. */
112 bool standard_p () const
113 { return m_standard_p; }
114
115 /* Return true if doing a verbatim match. */
116 bool verbatim_p () const
117 { return m_verbatim_p; }
118
119 private:
120 /* The Ada-encoded lookup name. */
121 std::string m_encoded_name;
122
123 /* Whether the user-provided lookup name was Ada encoded. If so,
124 then return encoded names in the 'matches' method's 'completion
125 match result' output. */
126 bool m_encoded_p : 1;
127
128 /* True if really doing wild matching. Even if the user requests
129 wild matching, some cases require full matching. */
130 bool m_wild_match_p : 1;
131
132 /* True if doing a verbatim match. This is true if the decoded
133 version of the symbol name is wrapped in '<'/'>'. This is an
134 escape hatch users can use to look up symbols the Ada encoding
135 does not understand. */
136 bool m_verbatim_p : 1;
137
138 /* True if the user specified a symbol name that is inside package
139 Standard. Symbol names inside package Standard are handled
140 specially. We always do a non-wild match of the symbol name
141 without the "standard__" prefix, and only search static and
142 global symbols. This was primarily introduced in order to allow
143 the user to specifically access the standard exceptions using,
144 for instance, Standard.Constraint_Error when Constraint_Error is
145 ambiguous (due to the user defining its own Constraint_Error
146 entity inside its program). */
147 bool m_standard_p : 1;
148 };
149
150 /* Language-specific bits of a lookup_name_info object, for languages
151 that do name searching using demangled names (C++/D/Go). This is
152 lazily constructed on demand. */
153
154 struct demangle_for_lookup_info final
155 {
156 public:
157 demangle_for_lookup_info (const lookup_name_info &lookup_name,
158 language lang);
159
160 /* The demangled lookup name. */
161 const std::string &lookup_name () const
162 { return m_demangled_name; }
163
164 private:
165 /* The demangled lookup name. */
166 std::string m_demangled_name;
167 };
168
169 /* Object that aggregates all information related to a symbol lookup
170 name. I.e., the name that is matched against the symbol's search
171 name. Caches per-language information so that it doesn't require
172 recomputing it for every symbol comparison, like for example the
173 Ada encoded name and the symbol's name hash for a given language.
174 The object is conceptually immutable once constructed, and thus has
175 no setters. This is to prevent some code path from tweaking some
176 property of the lookup name for some local reason and accidentally
177 altering the results of any continuing search(es).
178 lookup_name_info objects are generally passed around as a const
179 reference to reinforce that. (They're not passed around by value
180 because they're not small.) */
181 class lookup_name_info final
182 {
183 public:
184 /* Create a new object. */
185 lookup_name_info (std::string name,
186 symbol_name_match_type match_type,
187 bool completion_mode = false,
188 bool ignore_parameters = false)
189 : m_match_type (match_type),
190 m_completion_mode (completion_mode),
191 m_ignore_parameters (ignore_parameters),
192 m_name (std::move (name))
193 {}
194
195 /* Getters. See description of each corresponding field. */
196 symbol_name_match_type match_type () const { return m_match_type; }
197 bool completion_mode () const { return m_completion_mode; }
198 const std::string &name () const { return m_name; }
199 const bool ignore_parameters () const { return m_ignore_parameters; }
200
201 /* Return a version of this lookup name that is usable with
202 comparisons against symbols have no parameter info, such as
203 psymbols and GDB index symbols. */
204 lookup_name_info make_ignore_params () const
205 {
206 return lookup_name_info (m_name, m_match_type, m_completion_mode,
207 true /* ignore params */);
208 }
209
210 /* Get the search name hash for searches in language LANG. */
211 unsigned int search_name_hash (language lang) const
212 {
213 /* Only compute each language's hash once. */
214 if (!m_demangled_hashes_p[lang])
215 {
216 m_demangled_hashes[lang]
217 = ::search_name_hash (lang, language_lookup_name (lang).c_str ());
218 m_demangled_hashes_p[lang] = true;
219 }
220 return m_demangled_hashes[lang];
221 }
222
223 /* Get the search name for searches in language LANG. */
224 const std::string &language_lookup_name (language lang) const
225 {
226 switch (lang)
227 {
228 case language_ada:
229 return ada ().lookup_name ();
230 case language_cplus:
231 return cplus ().lookup_name ();
232 case language_d:
233 return d ().lookup_name ();
234 case language_go:
235 return go ().lookup_name ();
236 default:
237 return m_name;
238 }
239 }
240
241 /* Get the Ada-specific lookup info. */
242 const ada_lookup_name_info &ada () const
243 {
244 maybe_init (m_ada);
245 return *m_ada;
246 }
247
248 /* Get the C++-specific lookup info. */
249 const demangle_for_lookup_info &cplus () const
250 {
251 maybe_init (m_cplus, language_cplus);
252 return *m_cplus;
253 }
254
255 /* Get the D-specific lookup info. */
256 const demangle_for_lookup_info &d () const
257 {
258 maybe_init (m_d, language_d);
259 return *m_d;
260 }
261
262 /* Get the Go-specific lookup info. */
263 const demangle_for_lookup_info &go () const
264 {
265 maybe_init (m_go, language_go);
266 return *m_go;
267 }
268
269 /* Get a reference to a lookup_name_info object that matches any
270 symbol name. */
271 static const lookup_name_info &match_any ();
272
273 private:
274 /* Initialize FIELD, if not initialized yet. */
275 template<typename Field, typename... Args>
276 void maybe_init (Field &field, Args&&... args) const
277 {
278 if (!field)
279 field.emplace (*this, std::forward<Args> (args)...);
280 }
281
282 /* The lookup info as passed to the ctor. */
283 symbol_name_match_type m_match_type;
284 bool m_completion_mode;
285 bool m_ignore_parameters;
286 std::string m_name;
287
288 /* Language-specific info. These fields are filled lazily the first
289 time a lookup is done in the corresponding language. They're
290 mutable because lookup_name_info objects are typically passed
291 around by const reference (see intro), and they're conceptually
292 "cache" that can always be reconstructed from the non-mutable
293 fields. */
294 mutable gdb::optional<ada_lookup_name_info> m_ada;
295 mutable gdb::optional<demangle_for_lookup_info> m_cplus;
296 mutable gdb::optional<demangle_for_lookup_info> m_d;
297 mutable gdb::optional<demangle_for_lookup_info> m_go;
298
299 /* The demangled hashes. Stored in an array with one entry for each
300 possible language. The second array records whether we've
301 already computed the each language's hash. (These are separate
302 arrays instead of a single array of optional<unsigned> to avoid
303 alignment padding). */
304 mutable std::array<unsigned int, nr_languages> m_demangled_hashes;
305 mutable std::array<bool, nr_languages> m_demangled_hashes_p {};
306 };
307
308 /* Comparison function for completion symbol lookup.
309
310 Returns true if the symbol name matches against LOOKUP_NAME.
311
312 SYMBOL_SEARCH_NAME should be a symbol's "search" name.
313
314 On success and if non-NULL, COMP_MATCH_RES->match is set to point
315 to the symbol name as should be presented to the user as a
316 completion match list element. In most languages, this is the same
317 as the symbol's search name, but in some, like Ada, the display
318 name is dynamically computed within the comparison routine.
319
320 Also, on success and if non-NULL, COMP_MATCH_RES->match_for_lcd
321 points the part of SYMBOL_SEARCH_NAME that was considered to match
322 LOOKUP_NAME. E.g., in C++, in linespec/wild mode, if the symbol is
323 "foo::function()" and LOOKUP_NAME is "function(", MATCH_FOR_LCD
324 points to "function()" inside SYMBOL_SEARCH_NAME. */
325 typedef bool (symbol_name_matcher_ftype)
326 (const char *symbol_search_name,
327 const lookup_name_info &lookup_name,
328 completion_match_result *comp_match_res);
329
330 /* Some of the structures in this file are space critical.
331 The space-critical structures are:
332
333 struct general_symbol_info
334 struct symbol
335 struct partial_symbol
336
337 These structures are laid out to encourage good packing.
338 They use ENUM_BITFIELD and short int fields, and they order the
339 structure members so that fields less than a word are next
340 to each other so they can be packed together. */
341
342 /* Rearranged: used ENUM_BITFIELD and rearranged field order in
343 all the space critical structures (plus struct minimal_symbol).
344 Memory usage dropped from 99360768 bytes to 90001408 bytes.
345 I measured this with before-and-after tests of
346 "HEAD-old-gdb -readnow HEAD-old-gdb" and
347 "HEAD-new-gdb -readnow HEAD-old-gdb" on native i686-pc-linux-gnu,
348 red hat linux 8, with LD_LIBRARY_PATH=/usr/lib/debug,
349 typing "maint space 1" at the first command prompt.
350
351 Here is another measurement (from andrew c):
352 # no /usr/lib/debug, just plain glibc, like a normal user
353 gdb HEAD-old-gdb
354 (gdb) break internal_error
355 (gdb) run
356 (gdb) maint internal-error
357 (gdb) backtrace
358 (gdb) maint space 1
359
360 gdb gdb_6_0_branch 2003-08-19 space used: 8896512
361 gdb HEAD 2003-08-19 space used: 8904704
362 gdb HEAD 2003-08-21 space used: 8396800 (+symtab.h)
363 gdb HEAD 2003-08-21 space used: 8265728 (+gdbtypes.h)
364
365 The third line shows the savings from the optimizations in symtab.h.
366 The fourth line shows the savings from the optimizations in
367 gdbtypes.h. Both optimizations are in gdb HEAD now.
368
369 --chastain 2003-08-21 */
370
371 /* Define a structure for the information that is common to all symbol types,
372 including minimal symbols, partial symbols, and full symbols. In a
373 multilanguage environment, some language specific information may need to
374 be recorded along with each symbol. */
375
376 /* This structure is space critical. See space comments at the top. */
377
378 struct general_symbol_info
379 {
380 /* Name of the symbol. This is a required field. Storage for the
381 name is allocated on the objfile_obstack for the associated
382 objfile. For languages like C++ that make a distinction between
383 the mangled name and demangled name, this is the mangled
384 name. */
385
386 const char *name;
387
388 /* Value of the symbol. Which member of this union to use, and what
389 it means, depends on what kind of symbol this is and its
390 SYMBOL_CLASS. See comments there for more details. All of these
391 are in host byte order (though what they point to might be in
392 target byte order, e.g. LOC_CONST_BYTES). */
393
394 union
395 {
396 LONGEST ivalue;
397
398 const struct block *block;
399
400 const gdb_byte *bytes;
401
402 CORE_ADDR address;
403
404 /* A common block. Used with LOC_COMMON_BLOCK. */
405
406 const struct common_block *common_block;
407
408 /* For opaque typedef struct chain. */
409
410 struct symbol *chain;
411 }
412 value;
413
414 /* Since one and only one language can apply, wrap the language specific
415 information inside a union. */
416
417 union
418 {
419 /* A pointer to an obstack that can be used for storage associated
420 with this symbol. This is only used by Ada, and only when the
421 'ada_mangled' field is zero. */
422 struct obstack *obstack;
423
424 /* This is used by languages which wish to store a demangled name.
425 currently used by Ada, C++, and Objective C. */
426 const char *demangled_name;
427 }
428 language_specific;
429
430 /* Record the source code language that applies to this symbol.
431 This is used to select one of the fields from the language specific
432 union above. */
433
434 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
435
436 /* This is only used by Ada. If set, then the 'demangled_name' field
437 of language_specific is valid. Otherwise, the 'obstack' field is
438 valid. */
439 unsigned int ada_mangled : 1;
440
441 /* Which section is this symbol in? This is an index into
442 section_offsets for this objfile. Negative means that the symbol
443 does not get relocated relative to a section. */
444
445 short section;
446 };
447
448 extern void symbol_set_demangled_name (struct general_symbol_info *,
449 const char *,
450 struct obstack *);
451
452 extern const char *symbol_get_demangled_name
453 (const struct general_symbol_info *);
454
455 extern CORE_ADDR symbol_overlayed_address (CORE_ADDR, struct obj_section *);
456
457 /* Note that all the following SYMBOL_* macros are used with the
458 SYMBOL argument being either a partial symbol or
459 a full symbol. Both types have a ginfo field. In particular
460 the SYMBOL_SET_LANGUAGE, SYMBOL_DEMANGLED_NAME, etc.
461 macros cannot be entirely substituted by
462 functions, unless the callers are changed to pass in the ginfo
463 field only, instead of the SYMBOL parameter. */
464
465 #define SYMBOL_VALUE(symbol) (symbol)->ginfo.value.ivalue
466 #define SYMBOL_VALUE_ADDRESS(symbol) ((symbol)->ginfo.value.address + 0)
467 #define SET_SYMBOL_VALUE_ADDRESS(symbol, new_value) \
468 ((symbol)->ginfo.value.address = (new_value))
469 #define SYMBOL_VALUE_BYTES(symbol) (symbol)->ginfo.value.bytes
470 #define SYMBOL_VALUE_COMMON_BLOCK(symbol) (symbol)->ginfo.value.common_block
471 #define SYMBOL_BLOCK_VALUE(symbol) (symbol)->ginfo.value.block
472 #define SYMBOL_VALUE_CHAIN(symbol) (symbol)->ginfo.value.chain
473 #define SYMBOL_LANGUAGE(symbol) (symbol)->ginfo.language
474 #define SYMBOL_SECTION(symbol) (symbol)->ginfo.section
475 #define SYMBOL_OBJ_SECTION(objfile, symbol) \
476 (((symbol)->ginfo.section >= 0) \
477 ? (&(((objfile)->sections)[(symbol)->ginfo.section])) \
478 : NULL)
479
480 /* Initializes the language dependent portion of a symbol
481 depending upon the language for the symbol. */
482 #define SYMBOL_SET_LANGUAGE(symbol,language,obstack) \
483 (symbol_set_language (&(symbol)->ginfo, (language), (obstack)))
484 extern void symbol_set_language (struct general_symbol_info *symbol,
485 enum language language,
486 struct obstack *obstack);
487
488 /* Set just the linkage name of a symbol; do not try to demangle
489 it. Used for constructs which do not have a mangled name,
490 e.g. struct tags. Unlike SYMBOL_SET_NAMES, linkage_name must
491 be terminated and either already on the objfile's obstack or
492 permanently allocated. */
493 #define SYMBOL_SET_LINKAGE_NAME(symbol,linkage_name) \
494 (symbol)->ginfo.name = (linkage_name)
495
496 /* Set the linkage and natural names of a symbol, by demangling
497 the linkage name. */
498 #define SYMBOL_SET_NAMES(symbol,linkage_name,len,copy_name,objfile) \
499 symbol_set_names (&(symbol)->ginfo, linkage_name, len, copy_name, \
500 (objfile)->per_bfd)
501 extern void symbol_set_names (struct general_symbol_info *symbol,
502 const char *linkage_name, int len, bool copy_name,
503 struct objfile_per_bfd_storage *per_bfd);
504
505 /* Now come lots of name accessor macros. Short version as to when to
506 use which: Use SYMBOL_NATURAL_NAME to refer to the name of the
507 symbol in the original source code. Use SYMBOL_LINKAGE_NAME if you
508 want to know what the linker thinks the symbol's name is. Use
509 SYMBOL_PRINT_NAME for output. Use SYMBOL_DEMANGLED_NAME if you
510 specifically need to know whether SYMBOL_NATURAL_NAME and
511 SYMBOL_LINKAGE_NAME are different. */
512
513 /* Return SYMBOL's "natural" name, i.e. the name that it was called in
514 the original source code. In languages like C++ where symbols may
515 be mangled for ease of manipulation by the linker, this is the
516 demangled name. */
517
518 #define SYMBOL_NATURAL_NAME(symbol) \
519 (symbol_natural_name (&(symbol)->ginfo))
520 extern const char *symbol_natural_name
521 (const struct general_symbol_info *symbol);
522
523 /* Return SYMBOL's name from the point of view of the linker. In
524 languages like C++ where symbols may be mangled for ease of
525 manipulation by the linker, this is the mangled name; otherwise,
526 it's the same as SYMBOL_NATURAL_NAME. */
527
528 #define SYMBOL_LINKAGE_NAME(symbol) (symbol)->ginfo.name
529
530 /* Return the demangled name for a symbol based on the language for
531 that symbol. If no demangled name exists, return NULL. */
532 #define SYMBOL_DEMANGLED_NAME(symbol) \
533 (symbol_demangled_name (&(symbol)->ginfo))
534 extern const char *symbol_demangled_name
535 (const struct general_symbol_info *symbol);
536
537 /* Macro that returns a version of the name of a symbol that is
538 suitable for output. In C++ this is the "demangled" form of the
539 name if demangle is on and the "mangled" form of the name if
540 demangle is off. In other languages this is just the symbol name.
541 The result should never be NULL. Don't use this for internal
542 purposes (e.g. storing in a hashtable): it's only suitable for output.
543
544 N.B. symbol may be anything with a ginfo member,
545 e.g., struct symbol or struct minimal_symbol. */
546
547 #define SYMBOL_PRINT_NAME(symbol) \
548 (demangle ? SYMBOL_NATURAL_NAME (symbol) : SYMBOL_LINKAGE_NAME (symbol))
549 extern bool demangle;
550
551 /* Macro that returns the name to be used when sorting and searching symbols.
552 In C++, we search for the demangled form of a name,
553 and so sort symbols accordingly. In Ada, however, we search by mangled
554 name. If there is no distinct demangled name, then SYMBOL_SEARCH_NAME
555 returns the same value (same pointer) as SYMBOL_LINKAGE_NAME. */
556 #define SYMBOL_SEARCH_NAME(symbol) \
557 (symbol_search_name (&(symbol)->ginfo))
558 extern const char *symbol_search_name (const struct general_symbol_info *ginfo);
559
560 /* Return true if NAME matches the "search" name of SYMBOL, according
561 to the symbol's language. */
562 #define SYMBOL_MATCHES_SEARCH_NAME(symbol, name) \
563 symbol_matches_search_name (&(symbol)->ginfo, (name))
564
565 /* Helper for SYMBOL_MATCHES_SEARCH_NAME that works with both symbols
566 and psymbols. */
567 extern bool symbol_matches_search_name
568 (const struct general_symbol_info *gsymbol,
569 const lookup_name_info &name);
570
571 /* Compute the hash of the given symbol search name of a symbol of
572 language LANGUAGE. */
573 extern unsigned int search_name_hash (enum language language,
574 const char *search_name);
575
576 /* Classification types for a minimal symbol. These should be taken as
577 "advisory only", since if gdb can't easily figure out a
578 classification it simply selects mst_unknown. It may also have to
579 guess when it can't figure out which is a better match between two
580 types (mst_data versus mst_bss) for example. Since the minimal
581 symbol info is sometimes derived from the BFD library's view of a
582 file, we need to live with what information bfd supplies. */
583
584 enum minimal_symbol_type
585 {
586 mst_unknown = 0, /* Unknown type, the default */
587 mst_text, /* Generally executable instructions */
588
589 /* A GNU ifunc symbol, in the .text section. GDB uses to know
590 whether the user is setting a breakpoint on a GNU ifunc function,
591 and thus GDB needs to actually set the breakpoint on the target
592 function. It is also used to know whether the program stepped
593 into an ifunc resolver -- the resolver may get a separate
594 symbol/alias under a different name, but it'll have the same
595 address as the ifunc symbol. */
596 mst_text_gnu_ifunc, /* Executable code returning address
597 of executable code */
598
599 /* A GNU ifunc function descriptor symbol, in a data section
600 (typically ".opd"). Seen on architectures that use function
601 descriptors, like PPC64/ELFv1. In this case, this symbol's value
602 is the address of the descriptor. There'll be a corresponding
603 mst_text_gnu_ifunc synthetic symbol for the text/entry
604 address. */
605 mst_data_gnu_ifunc, /* Executable code returning address
606 of executable code */
607
608 mst_slot_got_plt, /* GOT entries for .plt sections */
609 mst_data, /* Generally initialized data */
610 mst_bss, /* Generally uninitialized data */
611 mst_abs, /* Generally absolute (nonrelocatable) */
612 /* GDB uses mst_solib_trampoline for the start address of a shared
613 library trampoline entry. Breakpoints for shared library functions
614 are put there if the shared library is not yet loaded.
615 After the shared library is loaded, lookup_minimal_symbol will
616 prefer the minimal symbol from the shared library (usually
617 a mst_text symbol) over the mst_solib_trampoline symbol, and the
618 breakpoints will be moved to their true address in the shared
619 library via breakpoint_re_set. */
620 mst_solib_trampoline, /* Shared library trampoline code */
621 /* For the mst_file* types, the names are only guaranteed to be unique
622 within a given .o file. */
623 mst_file_text, /* Static version of mst_text */
624 mst_file_data, /* Static version of mst_data */
625 mst_file_bss, /* Static version of mst_bss */
626 nr_minsym_types
627 };
628
629 /* The number of enum minimal_symbol_type values, with some padding for
630 reasonable growth. */
631 #define MINSYM_TYPE_BITS 4
632 gdb_static_assert (nr_minsym_types <= (1 << MINSYM_TYPE_BITS));
633
634 /* Define a simple structure used to hold some very basic information about
635 all defined global symbols (text, data, bss, abs, etc). The only required
636 information is the general_symbol_info.
637
638 In many cases, even if a file was compiled with no special options for
639 debugging at all, as long as was not stripped it will contain sufficient
640 information to build a useful minimal symbol table using this structure.
641 Even when a file contains enough debugging information to build a full
642 symbol table, these minimal symbols are still useful for quickly mapping
643 between names and addresses, and vice versa. They are also sometimes
644 used to figure out what full symbol table entries need to be read in. */
645
646 struct minimal_symbol : public general_symbol_info
647 {
648 /* Size of this symbol. dbx_end_psymtab in dbxread.c uses this
649 information to calculate the end of the partial symtab based on the
650 address of the last symbol plus the size of the last symbol. */
651
652 unsigned long size;
653
654 /* Which source file is this symbol in? Only relevant for mst_file_*. */
655 const char *filename;
656
657 /* Classification type for this minimal symbol. */
658
659 ENUM_BITFIELD(minimal_symbol_type) type : MINSYM_TYPE_BITS;
660
661 /* Non-zero if this symbol was created by gdb.
662 Such symbols do not appear in the output of "info var|fun". */
663 unsigned int created_by_gdb : 1;
664
665 /* Two flag bits provided for the use of the target. */
666 unsigned int target_flag_1 : 1;
667 unsigned int target_flag_2 : 1;
668
669 /* Nonzero iff the size of the minimal symbol has been set.
670 Symbol size information can sometimes not be determined, because
671 the object file format may not carry that piece of information. */
672 unsigned int has_size : 1;
673
674 /* Minimal symbols with the same hash key are kept on a linked
675 list. This is the link. */
676
677 struct minimal_symbol *hash_next;
678
679 /* Minimal symbols are stored in two different hash tables. This is
680 the `next' pointer for the demangled hash table. */
681
682 struct minimal_symbol *demangled_hash_next;
683
684 /* True if this symbol is of some data type. */
685
686 bool data_p () const;
687
688 /* True if MSYMBOL is of some text type. */
689
690 bool text_p () const;
691 };
692
693 #define MSYMBOL_TARGET_FLAG_1(msymbol) (msymbol)->target_flag_1
694 #define MSYMBOL_TARGET_FLAG_2(msymbol) (msymbol)->target_flag_2
695 #define MSYMBOL_SIZE(msymbol) ((msymbol)->size + 0)
696 #define SET_MSYMBOL_SIZE(msymbol, sz) \
697 do \
698 { \
699 (msymbol)->size = sz; \
700 (msymbol)->has_size = 1; \
701 } while (0)
702 #define MSYMBOL_HAS_SIZE(msymbol) ((msymbol)->has_size + 0)
703 #define MSYMBOL_TYPE(msymbol) (msymbol)->type
704
705 #define MSYMBOL_VALUE(symbol) (symbol)->value.ivalue
706 /* The unrelocated address of the minimal symbol. */
707 #define MSYMBOL_VALUE_RAW_ADDRESS(symbol) ((symbol)->value.address + 0)
708 /* The relocated address of the minimal symbol, using the section
709 offsets from OBJFILE. */
710 #define MSYMBOL_VALUE_ADDRESS(objfile, symbol) \
711 ((symbol)->value.address \
712 + ANOFFSET ((objfile)->section_offsets, ((symbol)->section)))
713 /* For a bound minsym, we can easily compute the address directly. */
714 #define BMSYMBOL_VALUE_ADDRESS(symbol) \
715 MSYMBOL_VALUE_ADDRESS ((symbol).objfile, (symbol).minsym)
716 #define SET_MSYMBOL_VALUE_ADDRESS(symbol, new_value) \
717 ((symbol)->value.address = (new_value))
718 #define MSYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
719 #define MSYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
720 #define MSYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
721 #define MSYMBOL_LANGUAGE(symbol) (symbol)->language
722 #define MSYMBOL_SECTION(symbol) (symbol)->section
723 #define MSYMBOL_OBJ_SECTION(objfile, symbol) \
724 (((symbol)->section >= 0) \
725 ? (&(((objfile)->sections)[(symbol)->section])) \
726 : NULL)
727
728 #define MSYMBOL_NATURAL_NAME(symbol) \
729 (symbol_natural_name (symbol))
730 #define MSYMBOL_LINKAGE_NAME(symbol) (symbol)->name
731 #define MSYMBOL_PRINT_NAME(symbol) \
732 (demangle ? MSYMBOL_NATURAL_NAME (symbol) : MSYMBOL_LINKAGE_NAME (symbol))
733 #define MSYMBOL_DEMANGLED_NAME(symbol) \
734 (symbol_demangled_name (symbol))
735 #define MSYMBOL_SEARCH_NAME(symbol) \
736 (symbol_search_name (symbol))
737
738 #include "minsyms.h"
739
740 \f
741
742 /* Represent one symbol name; a variable, constant, function or typedef. */
743
744 /* Different name domains for symbols. Looking up a symbol specifies a
745 domain and ignores symbol definitions in other name domains. */
746
747 typedef enum domain_enum_tag
748 {
749 /* UNDEF_DOMAIN is used when a domain has not been discovered or
750 none of the following apply. This usually indicates an error either
751 in the symbol information or in gdb's handling of symbols. */
752
753 UNDEF_DOMAIN,
754
755 /* VAR_DOMAIN is the usual domain. In C, this contains variables,
756 function names, typedef names and enum type values. */
757
758 VAR_DOMAIN,
759
760 /* STRUCT_DOMAIN is used in C to hold struct, union and enum type names.
761 Thus, if `struct foo' is used in a C program, it produces a symbol named
762 `foo' in the STRUCT_DOMAIN. */
763
764 STRUCT_DOMAIN,
765
766 /* MODULE_DOMAIN is used in Fortran to hold module type names. */
767
768 MODULE_DOMAIN,
769
770 /* LABEL_DOMAIN may be used for names of labels (for gotos). */
771
772 LABEL_DOMAIN,
773
774 /* Fortran common blocks. Their naming must be separate from VAR_DOMAIN.
775 They also always use LOC_COMMON_BLOCK. */
776 COMMON_BLOCK_DOMAIN,
777
778 /* This must remain last. */
779 NR_DOMAINS
780 } domain_enum;
781
782 /* The number of bits in a symbol used to represent the domain. */
783
784 #define SYMBOL_DOMAIN_BITS 3
785 gdb_static_assert (NR_DOMAINS <= (1 << SYMBOL_DOMAIN_BITS));
786
787 extern const char *domain_name (domain_enum);
788
789 /* Searching domains, used for `search_symbols'. Element numbers are
790 hardcoded in GDB, check all enum uses before changing it. */
791
792 enum search_domain
793 {
794 /* Everything in VAR_DOMAIN minus FUNCTIONS_DOMAIN and
795 TYPES_DOMAIN. */
796 VARIABLES_DOMAIN = 0,
797
798 /* All functions -- for some reason not methods, though. */
799 FUNCTIONS_DOMAIN = 1,
800
801 /* All defined types */
802 TYPES_DOMAIN = 2,
803
804 /* Any type. */
805 ALL_DOMAIN = 3
806 };
807
808 extern const char *search_domain_name (enum search_domain);
809
810 /* An address-class says where to find the value of a symbol. */
811
812 enum address_class
813 {
814 /* Not used; catches errors. */
815
816 LOC_UNDEF,
817
818 /* Value is constant int SYMBOL_VALUE, host byteorder. */
819
820 LOC_CONST,
821
822 /* Value is at fixed address SYMBOL_VALUE_ADDRESS. */
823
824 LOC_STATIC,
825
826 /* Value is in register. SYMBOL_VALUE is the register number
827 in the original debug format. SYMBOL_REGISTER_OPS holds a
828 function that can be called to transform this into the
829 actual register number this represents in a specific target
830 architecture (gdbarch).
831
832 For some symbol formats (stabs, for some compilers at least),
833 the compiler generates two symbols, an argument and a register.
834 In some cases we combine them to a single LOC_REGISTER in symbol
835 reading, but currently not for all cases (e.g. it's passed on the
836 stack and then loaded into a register). */
837
838 LOC_REGISTER,
839
840 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */
841
842 LOC_ARG,
843
844 /* Value address is at SYMBOL_VALUE offset in arglist. */
845
846 LOC_REF_ARG,
847
848 /* Value is in specified register. Just like LOC_REGISTER except the
849 register holds the address of the argument instead of the argument
850 itself. This is currently used for the passing of structs and unions
851 on sparc and hppa. It is also used for call by reference where the
852 address is in a register, at least by mipsread.c. */
853
854 LOC_REGPARM_ADDR,
855
856 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */
857
858 LOC_LOCAL,
859
860 /* Value not used; definition in SYMBOL_TYPE. Symbols in the domain
861 STRUCT_DOMAIN all have this class. */
862
863 LOC_TYPEDEF,
864
865 /* Value is address SYMBOL_VALUE_ADDRESS in the code. */
866
867 LOC_LABEL,
868
869 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'.
870 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address
871 of the block. Function names have this class. */
872
873 LOC_BLOCK,
874
875 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in
876 target byte order. */
877
878 LOC_CONST_BYTES,
879
880 /* Value is at fixed address, but the address of the variable has
881 to be determined from the minimal symbol table whenever the
882 variable is referenced.
883 This happens if debugging information for a global symbol is
884 emitted and the corresponding minimal symbol is defined
885 in another object file or runtime common storage.
886 The linker might even remove the minimal symbol if the global
887 symbol is never referenced, in which case the symbol remains
888 unresolved.
889
890 GDB would normally find the symbol in the minimal symbol table if it will
891 not find it in the full symbol table. But a reference to an external
892 symbol in a local block shadowing other definition requires full symbol
893 without possibly having its address available for LOC_STATIC. Testcase
894 is provided as `gdb.dwarf2/dw2-unresolved.exp'.
895
896 This is also used for thread local storage (TLS) variables. In this case,
897 the address of the TLS variable must be determined when the variable is
898 referenced, from the MSYMBOL_VALUE_RAW_ADDRESS, which is the offset
899 of the TLS variable in the thread local storage of the shared
900 library/object. */
901
902 LOC_UNRESOLVED,
903
904 /* The variable does not actually exist in the program.
905 The value is ignored. */
906
907 LOC_OPTIMIZED_OUT,
908
909 /* The variable's address is computed by a set of location
910 functions (see "struct symbol_computed_ops" below). */
911 LOC_COMPUTED,
912
913 /* The variable uses general_symbol_info->value->common_block field.
914 It also always uses COMMON_BLOCK_DOMAIN. */
915 LOC_COMMON_BLOCK,
916
917 /* Not used, just notes the boundary of the enum. */
918 LOC_FINAL_VALUE
919 };
920
921 /* The number of bits needed for values in enum address_class, with some
922 padding for reasonable growth, and room for run-time registered address
923 classes. See symtab.c:MAX_SYMBOL_IMPLS.
924 This is a #define so that we can have a assertion elsewhere to
925 verify that we have reserved enough space for synthetic address
926 classes. */
927 #define SYMBOL_ACLASS_BITS 5
928 gdb_static_assert (LOC_FINAL_VALUE <= (1 << SYMBOL_ACLASS_BITS));
929
930 /* The methods needed to implement LOC_COMPUTED. These methods can
931 use the symbol's .aux_value for additional per-symbol information.
932
933 At present this is only used to implement location expressions. */
934
935 struct symbol_computed_ops
936 {
937
938 /* Return the value of the variable SYMBOL, relative to the stack
939 frame FRAME. If the variable has been optimized out, return
940 zero.
941
942 Iff `read_needs_frame (SYMBOL)' is not SYMBOL_NEEDS_FRAME, then
943 FRAME may be zero. */
944
945 struct value *(*read_variable) (struct symbol * symbol,
946 struct frame_info * frame);
947
948 /* Read variable SYMBOL like read_variable at (callee) FRAME's function
949 entry. SYMBOL should be a function parameter, otherwise
950 NO_ENTRY_VALUE_ERROR will be thrown. */
951 struct value *(*read_variable_at_entry) (struct symbol *symbol,
952 struct frame_info *frame);
953
954 /* Find the "symbol_needs_kind" value for the given symbol. This
955 value determines whether reading the symbol needs memory (e.g., a
956 global variable), just registers (a thread-local), or a frame (a
957 local variable). */
958 enum symbol_needs_kind (*get_symbol_read_needs) (struct symbol * symbol);
959
960 /* Write to STREAM a natural-language description of the location of
961 SYMBOL, in the context of ADDR. */
962 void (*describe_location) (struct symbol * symbol, CORE_ADDR addr,
963 struct ui_file * stream);
964
965 /* Non-zero if this symbol's address computation is dependent on PC. */
966 unsigned char location_has_loclist;
967
968 /* Tracepoint support. Append bytecodes to the tracepoint agent
969 expression AX that push the address of the object SYMBOL. Set
970 VALUE appropriately. Note --- for objects in registers, this
971 needn't emit any code; as long as it sets VALUE properly, then
972 the caller will generate the right code in the process of
973 treating this as an lvalue or rvalue. */
974
975 void (*tracepoint_var_ref) (struct symbol *symbol, struct agent_expr *ax,
976 struct axs_value *value);
977
978 /* Generate C code to compute the location of SYMBOL. The C code is
979 emitted to STREAM. GDBARCH is the current architecture and PC is
980 the PC at which SYMBOL's location should be evaluated.
981 REGISTERS_USED is a vector indexed by register number; the
982 generator function should set an element in this vector if the
983 corresponding register is needed by the location computation.
984 The generated C code must assign the location to a local
985 variable; this variable's name is RESULT_NAME. */
986
987 void (*generate_c_location) (struct symbol *symbol, string_file *stream,
988 struct gdbarch *gdbarch,
989 unsigned char *registers_used,
990 CORE_ADDR pc, const char *result_name);
991
992 };
993
994 /* The methods needed to implement LOC_BLOCK for inferior functions.
995 These methods can use the symbol's .aux_value for additional
996 per-symbol information. */
997
998 struct symbol_block_ops
999 {
1000 /* Fill in *START and *LENGTH with DWARF block data of function
1001 FRAMEFUNC valid for inferior context address PC. Set *LENGTH to
1002 zero if such location is not valid for PC; *START is left
1003 uninitialized in such case. */
1004 void (*find_frame_base_location) (struct symbol *framefunc, CORE_ADDR pc,
1005 const gdb_byte **start, size_t *length);
1006
1007 /* Return the frame base address. FRAME is the frame for which we want to
1008 compute the base address while FRAMEFUNC is the symbol for the
1009 corresponding function. Return 0 on failure (FRAMEFUNC may not hold the
1010 information we need).
1011
1012 This method is designed to work with static links (nested functions
1013 handling). Static links are function properties whose evaluation returns
1014 the frame base address for the enclosing frame. However, there are
1015 multiple definitions for "frame base": the content of the frame base
1016 register, the CFA as defined by DWARF unwinding information, ...
1017
1018 So this specific method is supposed to compute the frame base address such
1019 as for nested fuctions, the static link computes the same address. For
1020 instance, considering DWARF debugging information, the static link is
1021 computed with DW_AT_static_link and this method must be used to compute
1022 the corresponding DW_AT_frame_base attribute. */
1023 CORE_ADDR (*get_frame_base) (struct symbol *framefunc,
1024 struct frame_info *frame);
1025 };
1026
1027 /* Functions used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1028
1029 struct symbol_register_ops
1030 {
1031 int (*register_number) (struct symbol *symbol, struct gdbarch *gdbarch);
1032 };
1033
1034 /* Objects of this type are used to find the address class and the
1035 various computed ops vectors of a symbol. */
1036
1037 struct symbol_impl
1038 {
1039 enum address_class aclass;
1040
1041 /* Used with LOC_COMPUTED. */
1042 const struct symbol_computed_ops *ops_computed;
1043
1044 /* Used with LOC_BLOCK. */
1045 const struct symbol_block_ops *ops_block;
1046
1047 /* Used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1048 const struct symbol_register_ops *ops_register;
1049 };
1050
1051 /* struct symbol has some subclasses. This enum is used to
1052 differentiate between them. */
1053
1054 enum symbol_subclass_kind
1055 {
1056 /* Plain struct symbol. */
1057 SYMBOL_NONE,
1058
1059 /* struct template_symbol. */
1060 SYMBOL_TEMPLATE,
1061
1062 /* struct rust_vtable_symbol. */
1063 SYMBOL_RUST_VTABLE
1064 };
1065
1066 /* This structure is space critical. See space comments at the top. */
1067
1068 struct symbol
1069 {
1070
1071 /* The general symbol info required for all types of symbols. */
1072
1073 struct general_symbol_info ginfo;
1074
1075 /* Data type of value */
1076
1077 struct type *type;
1078
1079 /* The owner of this symbol.
1080 Which one to use is defined by symbol.is_objfile_owned. */
1081
1082 union
1083 {
1084 /* The symbol table containing this symbol. This is the file associated
1085 with LINE. It can be NULL during symbols read-in but it is never NULL
1086 during normal operation. */
1087 struct symtab *symtab;
1088
1089 /* For types defined by the architecture. */
1090 struct gdbarch *arch;
1091 } owner;
1092
1093 /* Domain code. */
1094
1095 ENUM_BITFIELD(domain_enum_tag) domain : SYMBOL_DOMAIN_BITS;
1096
1097 /* Address class. This holds an index into the 'symbol_impls'
1098 table. The actual enum address_class value is stored there,
1099 alongside any per-class ops vectors. */
1100
1101 unsigned int aclass_index : SYMBOL_ACLASS_BITS;
1102
1103 /* If non-zero then symbol is objfile-owned, use owner.symtab.
1104 Otherwise symbol is arch-owned, use owner.arch. */
1105
1106 unsigned int is_objfile_owned : 1;
1107
1108 /* Whether this is an argument. */
1109
1110 unsigned is_argument : 1;
1111
1112 /* Whether this is an inlined function (class LOC_BLOCK only). */
1113 unsigned is_inlined : 1;
1114
1115 /* The concrete type of this symbol. */
1116
1117 ENUM_BITFIELD (symbol_subclass_kind) subclass : 2;
1118
1119 /* Line number of this symbol's definition, except for inlined
1120 functions. For an inlined function (class LOC_BLOCK and
1121 SYMBOL_INLINED set) this is the line number of the function's call
1122 site. Inlined function symbols are not definitions, and they are
1123 never found by symbol table lookup.
1124 If this symbol is arch-owned, LINE shall be zero.
1125
1126 FIXME: Should we really make the assumption that nobody will try
1127 to debug files longer than 64K lines? What about machine
1128 generated programs? */
1129
1130 unsigned short line;
1131
1132 /* An arbitrary data pointer, allowing symbol readers to record
1133 additional information on a per-symbol basis. Note that this data
1134 must be allocated using the same obstack as the symbol itself. */
1135 /* So far it is only used by:
1136 LOC_COMPUTED: to find the location information
1137 LOC_BLOCK (DWARF2 function): information used internally by the
1138 DWARF 2 code --- specifically, the location expression for the frame
1139 base for this function. */
1140 /* FIXME drow/2003-02-21: For the LOC_BLOCK case, it might be better
1141 to add a magic symbol to the block containing this information,
1142 or to have a generic debug info annotation slot for symbols. */
1143
1144 void *aux_value;
1145
1146 struct symbol *hash_next;
1147 };
1148
1149 /* Several lookup functions return both a symbol and the block in which the
1150 symbol is found. This structure is used in these cases. */
1151
1152 struct block_symbol
1153 {
1154 /* The symbol that was found, or NULL if no symbol was found. */
1155 struct symbol *symbol;
1156
1157 /* If SYMBOL is not NULL, then this is the block in which the symbol is
1158 defined. */
1159 const struct block *block;
1160 };
1161
1162 extern const struct symbol_impl *symbol_impls;
1163
1164 /* Note: There is no accessor macro for symbol.owner because it is
1165 "private". */
1166
1167 #define SYMBOL_DOMAIN(symbol) (symbol)->domain
1168 #define SYMBOL_IMPL(symbol) (symbol_impls[(symbol)->aclass_index])
1169 #define SYMBOL_ACLASS_INDEX(symbol) (symbol)->aclass_index
1170 #define SYMBOL_CLASS(symbol) (SYMBOL_IMPL (symbol).aclass)
1171 #define SYMBOL_OBJFILE_OWNED(symbol) ((symbol)->is_objfile_owned)
1172 #define SYMBOL_IS_ARGUMENT(symbol) (symbol)->is_argument
1173 #define SYMBOL_INLINED(symbol) (symbol)->is_inlined
1174 #define SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION(symbol) \
1175 (((symbol)->subclass) == SYMBOL_TEMPLATE)
1176 #define SYMBOL_TYPE(symbol) (symbol)->type
1177 #define SYMBOL_LINE(symbol) (symbol)->line
1178 #define SYMBOL_COMPUTED_OPS(symbol) (SYMBOL_IMPL (symbol).ops_computed)
1179 #define SYMBOL_BLOCK_OPS(symbol) (SYMBOL_IMPL (symbol).ops_block)
1180 #define SYMBOL_REGISTER_OPS(symbol) (SYMBOL_IMPL (symbol).ops_register)
1181 #define SYMBOL_LOCATION_BATON(symbol) (symbol)->aux_value
1182
1183 extern int register_symbol_computed_impl (enum address_class,
1184 const struct symbol_computed_ops *);
1185
1186 extern int register_symbol_block_impl (enum address_class aclass,
1187 const struct symbol_block_ops *ops);
1188
1189 extern int register_symbol_register_impl (enum address_class,
1190 const struct symbol_register_ops *);
1191
1192 /* Return the OBJFILE of SYMBOL.
1193 It is an error to call this if symbol.is_objfile_owned is false, which
1194 only happens for architecture-provided types. */
1195
1196 extern struct objfile *symbol_objfile (const struct symbol *symbol);
1197
1198 /* Return the ARCH of SYMBOL. */
1199
1200 extern struct gdbarch *symbol_arch (const struct symbol *symbol);
1201
1202 /* Return the SYMTAB of SYMBOL.
1203 It is an error to call this if symbol.is_objfile_owned is false, which
1204 only happens for architecture-provided types. */
1205
1206 extern struct symtab *symbol_symtab (const struct symbol *symbol);
1207
1208 /* Set the symtab of SYMBOL to SYMTAB.
1209 It is an error to call this if symbol.is_objfile_owned is false, which
1210 only happens for architecture-provided types. */
1211
1212 extern void symbol_set_symtab (struct symbol *symbol, struct symtab *symtab);
1213
1214 /* An instance of this type is used to represent a C++ template
1215 function. A symbol is really of this type iff
1216 SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION is true. */
1217
1218 struct template_symbol : public symbol
1219 {
1220 /* The number of template arguments. */
1221 int n_template_arguments;
1222
1223 /* The template arguments. This is an array with
1224 N_TEMPLATE_ARGUMENTS elements. */
1225 struct symbol **template_arguments;
1226 };
1227
1228 /* A symbol that represents a Rust virtual table object. */
1229
1230 struct rust_vtable_symbol : public symbol
1231 {
1232 /* The concrete type for which this vtable was created; that is, in
1233 "impl Trait for Type", this is "Type". */
1234 struct type *concrete_type;
1235 };
1236
1237 \f
1238 /* Each item represents a line-->pc (or the reverse) mapping. This is
1239 somewhat more wasteful of space than one might wish, but since only
1240 the files which are actually debugged are read in to core, we don't
1241 waste much space. */
1242
1243 struct linetable_entry
1244 {
1245 int line;
1246 CORE_ADDR pc;
1247 };
1248
1249 /* The order of entries in the linetable is significant. They should
1250 be sorted by increasing values of the pc field. If there is more than
1251 one entry for a given pc, then I'm not sure what should happen (and
1252 I not sure whether we currently handle it the best way).
1253
1254 Example: a C for statement generally looks like this
1255
1256 10 0x100 - for the init/test part of a for stmt.
1257 20 0x200
1258 30 0x300
1259 10 0x400 - for the increment part of a for stmt.
1260
1261 If an entry has a line number of zero, it marks the start of a PC
1262 range for which no line number information is available. It is
1263 acceptable, though wasteful of table space, for such a range to be
1264 zero length. */
1265
1266 struct linetable
1267 {
1268 int nitems;
1269
1270 /* Actually NITEMS elements. If you don't like this use of the
1271 `struct hack', you can shove it up your ANSI (seriously, if the
1272 committee tells us how to do it, we can probably go along). */
1273 struct linetable_entry item[1];
1274 };
1275
1276 /* How to relocate the symbols from each section in a symbol file.
1277 Each struct contains an array of offsets.
1278 The ordering and meaning of the offsets is file-type-dependent;
1279 typically it is indexed by section numbers or symbol types or
1280 something like that.
1281
1282 To give us flexibility in changing the internal representation
1283 of these offsets, the ANOFFSET macro must be used to insert and
1284 extract offset values in the struct. */
1285
1286 struct section_offsets
1287 {
1288 CORE_ADDR offsets[1]; /* As many as needed. */
1289 };
1290
1291 #define ANOFFSET(secoff, whichone) \
1292 ((whichone == -1) \
1293 ? (internal_error (__FILE__, __LINE__, \
1294 _("Section index is uninitialized")), -1) \
1295 : secoff->offsets[whichone])
1296
1297 /* The size of a section_offsets table for N sections. */
1298 #define SIZEOF_N_SECTION_OFFSETS(n) \
1299 (sizeof (struct section_offsets) \
1300 + sizeof (((struct section_offsets *) 0)->offsets) * ((n)-1))
1301
1302 /* Each source file or header is represented by a struct symtab.
1303 The name "symtab" is historical, another name for it is "filetab".
1304 These objects are chained through the `next' field. */
1305
1306 struct symtab
1307 {
1308 /* Unordered chain of all filetabs in the compunit, with the exception
1309 that the "main" source file is the first entry in the list. */
1310
1311 struct symtab *next;
1312
1313 /* Backlink to containing compunit symtab. */
1314
1315 struct compunit_symtab *compunit_symtab;
1316
1317 /* Table mapping core addresses to line numbers for this file.
1318 Can be NULL if none. Never shared between different symtabs. */
1319
1320 struct linetable *linetable;
1321
1322 /* Name of this source file. This pointer is never NULL. */
1323
1324 const char *filename;
1325
1326 /* Language of this source file. */
1327
1328 enum language language;
1329
1330 /* Full name of file as found by searching the source path.
1331 NULL if not yet known. */
1332
1333 char *fullname;
1334 };
1335
1336 #define SYMTAB_COMPUNIT(symtab) ((symtab)->compunit_symtab)
1337 #define SYMTAB_LINETABLE(symtab) ((symtab)->linetable)
1338 #define SYMTAB_LANGUAGE(symtab) ((symtab)->language)
1339 #define SYMTAB_BLOCKVECTOR(symtab) \
1340 COMPUNIT_BLOCKVECTOR (SYMTAB_COMPUNIT (symtab))
1341 #define SYMTAB_OBJFILE(symtab) \
1342 COMPUNIT_OBJFILE (SYMTAB_COMPUNIT (symtab))
1343 #define SYMTAB_PSPACE(symtab) (SYMTAB_OBJFILE (symtab)->pspace)
1344 #define SYMTAB_DIRNAME(symtab) \
1345 COMPUNIT_DIRNAME (SYMTAB_COMPUNIT (symtab))
1346
1347 /* Compunit symtabs contain the actual "symbol table", aka blockvector, as well
1348 as the list of all source files (what gdb has historically associated with
1349 the term "symtab").
1350 Additional information is recorded here that is common to all symtabs in a
1351 compilation unit (DWARF or otherwise).
1352
1353 Example:
1354 For the case of a program built out of these files:
1355
1356 foo.c
1357 foo1.h
1358 foo2.h
1359 bar.c
1360 foo1.h
1361 bar.h
1362
1363 This is recorded as:
1364
1365 objfile -> foo.c(cu) -> bar.c(cu) -> NULL
1366 | |
1367 v v
1368 foo.c bar.c
1369 | |
1370 v v
1371 foo1.h foo1.h
1372 | |
1373 v v
1374 foo2.h bar.h
1375 | |
1376 v v
1377 NULL NULL
1378
1379 where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
1380 and the files foo.c, etc. are struct symtab objects. */
1381
1382 struct compunit_symtab
1383 {
1384 /* Unordered chain of all compunit symtabs of this objfile. */
1385 struct compunit_symtab *next;
1386
1387 /* Object file from which this symtab information was read. */
1388 struct objfile *objfile;
1389
1390 /* Name of the symtab.
1391 This is *not* intended to be a usable filename, and is
1392 for debugging purposes only. */
1393 const char *name;
1394
1395 /* Unordered list of file symtabs, except that by convention the "main"
1396 source file (e.g., .c, .cc) is guaranteed to be first.
1397 Each symtab is a file, either the "main" source file (e.g., .c, .cc)
1398 or header (e.g., .h). */
1399 struct symtab *filetabs;
1400
1401 /* Last entry in FILETABS list.
1402 Subfiles are added to the end of the list so they accumulate in order,
1403 with the main source subfile living at the front.
1404 The main reason is so that the main source file symtab is at the head
1405 of the list, and the rest appear in order for debugging convenience. */
1406 struct symtab *last_filetab;
1407
1408 /* Non-NULL string that identifies the format of the debugging information,
1409 such as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful
1410 for automated testing of gdb but may also be information that is
1411 useful to the user. */
1412 const char *debugformat;
1413
1414 /* String of producer version information, or NULL if we don't know. */
1415 const char *producer;
1416
1417 /* Directory in which it was compiled, or NULL if we don't know. */
1418 const char *dirname;
1419
1420 /* List of all symbol scope blocks for this symtab. It is shared among
1421 all symtabs in a given compilation unit. */
1422 const struct blockvector *blockvector;
1423
1424 /* Section in objfile->section_offsets for the blockvector and
1425 the linetable. Probably always SECT_OFF_TEXT. */
1426 int block_line_section;
1427
1428 /* Symtab has been compiled with both optimizations and debug info so that
1429 GDB may stop skipping prologues as variables locations are valid already
1430 at function entry points. */
1431 unsigned int locations_valid : 1;
1432
1433 /* DWARF unwinder for this CU is valid even for epilogues (PC at the return
1434 instruction). This is supported by GCC since 4.5.0. */
1435 unsigned int epilogue_unwind_valid : 1;
1436
1437 /* struct call_site entries for this compilation unit or NULL. */
1438 htab_t call_site_htab;
1439
1440 /* The macro table for this symtab. Like the blockvector, this
1441 is shared between different symtabs in a given compilation unit.
1442 It's debatable whether it *should* be shared among all the symtabs in
1443 the given compilation unit, but it currently is. */
1444 struct macro_table *macro_table;
1445
1446 /* If non-NULL, then this points to a NULL-terminated vector of
1447 included compunits. When searching the static or global
1448 block of this compunit, the corresponding block of all
1449 included compunits will also be searched. Note that this
1450 list must be flattened -- the symbol reader is responsible for
1451 ensuring that this vector contains the transitive closure of all
1452 included compunits. */
1453 struct compunit_symtab **includes;
1454
1455 /* If this is an included compunit, this points to one includer
1456 of the table. This user is considered the canonical compunit
1457 containing this one. An included compunit may itself be
1458 included by another. */
1459 struct compunit_symtab *user;
1460 };
1461
1462 #define COMPUNIT_OBJFILE(cust) ((cust)->objfile)
1463 #define COMPUNIT_FILETABS(cust) ((cust)->filetabs)
1464 #define COMPUNIT_DEBUGFORMAT(cust) ((cust)->debugformat)
1465 #define COMPUNIT_PRODUCER(cust) ((cust)->producer)
1466 #define COMPUNIT_DIRNAME(cust) ((cust)->dirname)
1467 #define COMPUNIT_BLOCKVECTOR(cust) ((cust)->blockvector)
1468 #define COMPUNIT_BLOCK_LINE_SECTION(cust) ((cust)->block_line_section)
1469 #define COMPUNIT_LOCATIONS_VALID(cust) ((cust)->locations_valid)
1470 #define COMPUNIT_EPILOGUE_UNWIND_VALID(cust) ((cust)->epilogue_unwind_valid)
1471 #define COMPUNIT_CALL_SITE_HTAB(cust) ((cust)->call_site_htab)
1472 #define COMPUNIT_MACRO_TABLE(cust) ((cust)->macro_table)
1473
1474 /* A range adapter to allowing iterating over all the file tables
1475 within a compunit. */
1476
1477 struct compunit_filetabs : public next_adapter<struct symtab>
1478 {
1479 compunit_filetabs (struct compunit_symtab *cu)
1480 : next_adapter<struct symtab> (cu->filetabs)
1481 {
1482 }
1483 };
1484
1485 /* Return the primary symtab of CUST. */
1486
1487 extern struct symtab *
1488 compunit_primary_filetab (const struct compunit_symtab *cust);
1489
1490 /* Return the language of CUST. */
1491
1492 extern enum language compunit_language (const struct compunit_symtab *cust);
1493
1494 \f
1495
1496 /* The virtual function table is now an array of structures which have the
1497 form { int16 offset, delta; void *pfn; }.
1498
1499 In normal virtual function tables, OFFSET is unused.
1500 DELTA is the amount which is added to the apparent object's base
1501 address in order to point to the actual object to which the
1502 virtual function should be applied.
1503 PFN is a pointer to the virtual function.
1504
1505 Note that this macro is g++ specific (FIXME). */
1506
1507 #define VTBL_FNADDR_OFFSET 2
1508
1509 /* External variables and functions for the objects described above. */
1510
1511 /* True if we are nested inside psymtab_to_symtab. */
1512
1513 extern int currently_reading_symtab;
1514
1515 /* symtab.c lookup functions */
1516
1517 extern const char multiple_symbols_ask[];
1518 extern const char multiple_symbols_all[];
1519 extern const char multiple_symbols_cancel[];
1520
1521 const char *multiple_symbols_select_mode (void);
1522
1523 bool symbol_matches_domain (enum language symbol_language,
1524 domain_enum symbol_domain,
1525 domain_enum domain);
1526
1527 /* lookup a symbol table by source file name. */
1528
1529 extern struct symtab *lookup_symtab (const char *);
1530
1531 /* An object of this type is passed as the 'is_a_field_of_this'
1532 argument to lookup_symbol and lookup_symbol_in_language. */
1533
1534 struct field_of_this_result
1535 {
1536 /* The type in which the field was found. If this is NULL then the
1537 symbol was not found in 'this'. If non-NULL, then one of the
1538 other fields will be non-NULL as well. */
1539
1540 struct type *type;
1541
1542 /* If the symbol was found as an ordinary field of 'this', then this
1543 is non-NULL and points to the particular field. */
1544
1545 struct field *field;
1546
1547 /* If the symbol was found as a function field of 'this', then this
1548 is non-NULL and points to the particular field. */
1549
1550 struct fn_fieldlist *fn_field;
1551 };
1552
1553 /* Find the definition for a specified symbol name NAME
1554 in domain DOMAIN in language LANGUAGE, visible from lexical block BLOCK
1555 if non-NULL or from global/static blocks if BLOCK is NULL.
1556 Returns the struct symbol pointer, or NULL if no symbol is found.
1557 C++: if IS_A_FIELD_OF_THIS is non-NULL on entry, check to see if
1558 NAME is a field of the current implied argument `this'. If so fill in the
1559 fields of IS_A_FIELD_OF_THIS, otherwise the fields are set to NULL.
1560 The symbol's section is fixed up if necessary. */
1561
1562 extern struct block_symbol
1563 lookup_symbol_in_language (const char *,
1564 const struct block *,
1565 const domain_enum,
1566 enum language,
1567 struct field_of_this_result *);
1568
1569 /* Same as lookup_symbol_in_language, but using the current language. */
1570
1571 extern struct block_symbol lookup_symbol (const char *,
1572 const struct block *,
1573 const domain_enum,
1574 struct field_of_this_result *);
1575
1576 /* Find the definition for a specified symbol search name in domain
1577 DOMAIN, visible from lexical block BLOCK if non-NULL or from
1578 global/static blocks if BLOCK is NULL. The passed-in search name
1579 should not come from the user; instead it should already be a
1580 search name as retrieved from a
1581 SYMBOL_SEARCH_NAME/MSYMBOL_SEARCH_NAME call. See definition of
1582 symbol_name_match_type::SEARCH_NAME. Returns the struct symbol
1583 pointer, or NULL if no symbol is found. The symbol's section is
1584 fixed up if necessary. */
1585
1586 extern struct block_symbol lookup_symbol_search_name (const char *search_name,
1587 const struct block *block,
1588 domain_enum domain);
1589
1590 /* A default version of lookup_symbol_nonlocal for use by languages
1591 that can't think of anything better to do.
1592 This implements the C lookup rules. */
1593
1594 extern struct block_symbol
1595 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
1596 const char *,
1597 const struct block *,
1598 const domain_enum);
1599
1600 /* Some helper functions for languages that need to write their own
1601 lookup_symbol_nonlocal functions. */
1602
1603 /* Lookup a symbol in the static block associated to BLOCK, if there
1604 is one; do nothing if BLOCK is NULL or a global block.
1605 Upon success fixes up the symbol's section if necessary. */
1606
1607 extern struct block_symbol
1608 lookup_symbol_in_static_block (const char *name,
1609 const struct block *block,
1610 const domain_enum domain);
1611
1612 /* Search all static file-level symbols for NAME from DOMAIN.
1613 Upon success fixes up the symbol's section if necessary. */
1614
1615 extern struct block_symbol lookup_static_symbol (const char *name,
1616 const domain_enum domain);
1617
1618 /* Lookup a symbol in all files' global blocks.
1619
1620 If BLOCK is non-NULL then it is used for two things:
1621 1) If a target-specific lookup routine for libraries exists, then use the
1622 routine for the objfile of BLOCK, and
1623 2) The objfile of BLOCK is used to assist in determining the search order
1624 if the target requires it.
1625 See gdbarch_iterate_over_objfiles_in_search_order.
1626
1627 Upon success fixes up the symbol's section if necessary. */
1628
1629 extern struct block_symbol
1630 lookup_global_symbol (const char *name,
1631 const struct block *block,
1632 const domain_enum domain);
1633
1634 /* Lookup a symbol in block BLOCK.
1635 Upon success fixes up the symbol's section if necessary. */
1636
1637 extern struct symbol *
1638 lookup_symbol_in_block (const char *name,
1639 symbol_name_match_type match_type,
1640 const struct block *block,
1641 const domain_enum domain);
1642
1643 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1644 found, or NULL if not found. */
1645
1646 extern struct block_symbol
1647 lookup_language_this (const struct language_defn *lang,
1648 const struct block *block);
1649
1650 /* Lookup a [struct, union, enum] by name, within a specified block. */
1651
1652 extern struct type *lookup_struct (const char *, const struct block *);
1653
1654 extern struct type *lookup_union (const char *, const struct block *);
1655
1656 extern struct type *lookup_enum (const char *, const struct block *);
1657
1658 /* from blockframe.c: */
1659
1660 /* lookup the function symbol corresponding to the address. The
1661 return value will not be an inlined function; the containing
1662 function will be returned instead. */
1663
1664 extern struct symbol *find_pc_function (CORE_ADDR);
1665
1666 /* lookup the function corresponding to the address and section. The
1667 return value will not be an inlined function; the containing
1668 function will be returned instead. */
1669
1670 extern struct symbol *find_pc_sect_function (CORE_ADDR, struct obj_section *);
1671
1672 /* lookup the function symbol corresponding to the address and
1673 section. The return value will be the closest enclosing function,
1674 which might be an inline function. */
1675
1676 extern struct symbol *find_pc_sect_containing_function
1677 (CORE_ADDR pc, struct obj_section *section);
1678
1679 /* Find the symbol at the given address. Returns NULL if no symbol
1680 found. Only exact matches for ADDRESS are considered. */
1681
1682 extern struct symbol *find_symbol_at_address (CORE_ADDR);
1683
1684 /* Finds the "function" (text symbol) that is smaller than PC but
1685 greatest of all of the potential text symbols in SECTION. Sets
1686 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
1687 If ENDADDR is non-null, then set *ENDADDR to be the end of the
1688 function (exclusive). If the optional parameter BLOCK is non-null,
1689 then set *BLOCK to the address of the block corresponding to the
1690 function symbol, if such a symbol could be found during the lookup;
1691 nullptr is used as a return value for *BLOCK if no block is found.
1692 This function either succeeds or fails (not halfway succeeds). If
1693 it succeeds, it sets *NAME, *ADDRESS, and *ENDADDR to real
1694 information and returns true. If it fails, it sets *NAME, *ADDRESS
1695 and *ENDADDR to zero and returns false.
1696
1697 If the function in question occupies non-contiguous ranges,
1698 *ADDRESS and *ENDADDR are (subject to the conditions noted above) set
1699 to the start and end of the range in which PC is found. Thus
1700 *ADDRESS <= PC < *ENDADDR with no intervening gaps (in which ranges
1701 from other functions might be found).
1702
1703 This property allows find_pc_partial_function to be used (as it had
1704 been prior to the introduction of non-contiguous range support) by
1705 various tdep files for finding a start address and limit address
1706 for prologue analysis. This still isn't ideal, however, because we
1707 probably shouldn't be doing prologue analysis (in which
1708 instructions are scanned to determine frame size and stack layout)
1709 for any range that doesn't contain the entry pc. Moreover, a good
1710 argument can be made that prologue analysis ought to be performed
1711 starting from the entry pc even when PC is within some other range.
1712 This might suggest that *ADDRESS and *ENDADDR ought to be set to the
1713 limits of the entry pc range, but that will cause the
1714 *ADDRESS <= PC < *ENDADDR condition to be violated; many of the
1715 callers of find_pc_partial_function expect this condition to hold.
1716
1717 Callers which require the start and/or end addresses for the range
1718 containing the entry pc should instead call
1719 find_function_entry_range_from_pc. */
1720
1721 extern bool find_pc_partial_function (CORE_ADDR pc, const char **name,
1722 CORE_ADDR *address, CORE_ADDR *endaddr,
1723 const struct block **block = nullptr);
1724
1725 /* Like find_pc_partial_function, above, but *ADDRESS and *ENDADDR are
1726 set to start and end addresses of the range containing the entry pc.
1727
1728 Note that it is not necessarily the case that (for non-NULL ADDRESS
1729 and ENDADDR arguments) the *ADDRESS <= PC < *ENDADDR condition will
1730 hold.
1731
1732 See comment for find_pc_partial_function, above, for further
1733 explanation. */
1734
1735 extern bool find_function_entry_range_from_pc (CORE_ADDR pc,
1736 const char **name,
1737 CORE_ADDR *address,
1738 CORE_ADDR *endaddr);
1739
1740 /* Return the type of a function with its first instruction exactly at
1741 the PC address. Return NULL otherwise. */
1742
1743 extern struct type *find_function_type (CORE_ADDR pc);
1744
1745 /* See if we can figure out the function's actual type from the type
1746 that the resolver returns. RESOLVER_FUNADDR is the address of the
1747 ifunc resolver. */
1748
1749 extern struct type *find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr);
1750
1751 /* Find the GNU ifunc minimal symbol that matches SYM. */
1752 extern bound_minimal_symbol find_gnu_ifunc (const symbol *sym);
1753
1754 extern void clear_pc_function_cache (void);
1755
1756 /* Expand symtab containing PC, SECTION if not already expanded. */
1757
1758 extern void expand_symtab_containing_pc (CORE_ADDR, struct obj_section *);
1759
1760 /* lookup full symbol table by address. */
1761
1762 extern struct compunit_symtab *find_pc_compunit_symtab (CORE_ADDR);
1763
1764 /* lookup full symbol table by address and section. */
1765
1766 extern struct compunit_symtab *
1767 find_pc_sect_compunit_symtab (CORE_ADDR, struct obj_section *);
1768
1769 extern bool find_pc_line_pc_range (CORE_ADDR, CORE_ADDR *, CORE_ADDR *);
1770
1771 extern void reread_symbols (void);
1772
1773 /* Look up a type named NAME in STRUCT_DOMAIN in the current language.
1774 The type returned must not be opaque -- i.e., must have at least one field
1775 defined. */
1776
1777 extern struct type *lookup_transparent_type (const char *);
1778
1779 extern struct type *basic_lookup_transparent_type (const char *);
1780
1781 /* Macro for name of symbol to indicate a file compiled with gcc. */
1782 #ifndef GCC_COMPILED_FLAG_SYMBOL
1783 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
1784 #endif
1785
1786 /* Macro for name of symbol to indicate a file compiled with gcc2. */
1787 #ifndef GCC2_COMPILED_FLAG_SYMBOL
1788 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled."
1789 #endif
1790
1791 extern bool in_gnu_ifunc_stub (CORE_ADDR pc);
1792
1793 /* Functions for resolving STT_GNU_IFUNC symbols which are implemented only
1794 for ELF symbol files. */
1795
1796 struct gnu_ifunc_fns
1797 {
1798 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
1799 CORE_ADDR (*gnu_ifunc_resolve_addr) (struct gdbarch *gdbarch, CORE_ADDR pc);
1800
1801 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
1802 bool (*gnu_ifunc_resolve_name) (const char *function_name,
1803 CORE_ADDR *function_address_p);
1804
1805 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
1806 void (*gnu_ifunc_resolver_stop) (struct breakpoint *b);
1807
1808 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
1809 void (*gnu_ifunc_resolver_return_stop) (struct breakpoint *b);
1810 };
1811
1812 #define gnu_ifunc_resolve_addr gnu_ifunc_fns_p->gnu_ifunc_resolve_addr
1813 #define gnu_ifunc_resolve_name gnu_ifunc_fns_p->gnu_ifunc_resolve_name
1814 #define gnu_ifunc_resolver_stop gnu_ifunc_fns_p->gnu_ifunc_resolver_stop
1815 #define gnu_ifunc_resolver_return_stop \
1816 gnu_ifunc_fns_p->gnu_ifunc_resolver_return_stop
1817
1818 extern const struct gnu_ifunc_fns *gnu_ifunc_fns_p;
1819
1820 extern CORE_ADDR find_solib_trampoline_target (struct frame_info *, CORE_ADDR);
1821
1822 struct symtab_and_line
1823 {
1824 /* The program space of this sal. */
1825 struct program_space *pspace = NULL;
1826
1827 struct symtab *symtab = NULL;
1828 struct symbol *symbol = NULL;
1829 struct obj_section *section = NULL;
1830 struct minimal_symbol *msymbol = NULL;
1831 /* Line number. Line numbers start at 1 and proceed through symtab->nlines.
1832 0 is never a valid line number; it is used to indicate that line number
1833 information is not available. */
1834 int line = 0;
1835
1836 CORE_ADDR pc = 0;
1837 CORE_ADDR end = 0;
1838 bool explicit_pc = false;
1839 bool explicit_line = false;
1840
1841 /* The probe associated with this symtab_and_line. */
1842 probe *prob = NULL;
1843 /* If PROBE is not NULL, then this is the objfile in which the probe
1844 originated. */
1845 struct objfile *objfile = NULL;
1846 };
1847
1848 \f
1849
1850 /* Given a pc value, return line number it is in. Second arg nonzero means
1851 if pc is on the boundary use the previous statement's line number. */
1852
1853 extern struct symtab_and_line find_pc_line (CORE_ADDR, int);
1854
1855 /* Same function, but specify a section as well as an address. */
1856
1857 extern struct symtab_and_line find_pc_sect_line (CORE_ADDR,
1858 struct obj_section *, int);
1859
1860 /* Wrapper around find_pc_line to just return the symtab. */
1861
1862 extern struct symtab *find_pc_line_symtab (CORE_ADDR);
1863
1864 /* Given a symtab and line number, return the pc there. */
1865
1866 extern bool find_line_pc (struct symtab *, int, CORE_ADDR *);
1867
1868 extern bool find_line_pc_range (struct symtab_and_line, CORE_ADDR *,
1869 CORE_ADDR *);
1870
1871 extern void resolve_sal_pc (struct symtab_and_line *);
1872
1873 /* solib.c */
1874
1875 extern void clear_solib (void);
1876
1877 /* The reason we're calling into a completion match list collector
1878 function. */
1879 enum class complete_symbol_mode
1880 {
1881 /* Completing an expression. */
1882 EXPRESSION,
1883
1884 /* Completing a linespec. */
1885 LINESPEC,
1886 };
1887
1888 extern void default_collect_symbol_completion_matches_break_on
1889 (completion_tracker &tracker,
1890 complete_symbol_mode mode,
1891 symbol_name_match_type name_match_type,
1892 const char *text, const char *word, const char *break_on,
1893 enum type_code code);
1894 extern void default_collect_symbol_completion_matches
1895 (completion_tracker &tracker,
1896 complete_symbol_mode,
1897 symbol_name_match_type name_match_type,
1898 const char *,
1899 const char *,
1900 enum type_code);
1901 extern void collect_symbol_completion_matches
1902 (completion_tracker &tracker,
1903 complete_symbol_mode mode,
1904 symbol_name_match_type name_match_type,
1905 const char *, const char *);
1906 extern void collect_symbol_completion_matches_type (completion_tracker &tracker,
1907 const char *, const char *,
1908 enum type_code);
1909
1910 extern void collect_file_symbol_completion_matches
1911 (completion_tracker &tracker,
1912 complete_symbol_mode,
1913 symbol_name_match_type name_match_type,
1914 const char *, const char *, const char *);
1915
1916 extern completion_list
1917 make_source_files_completion_list (const char *, const char *);
1918
1919 /* Return whether SYM is a function/method, as opposed to a data symbol. */
1920
1921 extern bool symbol_is_function_or_method (symbol *sym);
1922
1923 /* Return whether MSYMBOL is a function/method, as opposed to a data
1924 symbol */
1925
1926 extern bool symbol_is_function_or_method (minimal_symbol *msymbol);
1927
1928 /* Return whether SYM should be skipped in completion mode MODE. In
1929 linespec mode, we're only interested in functions/methods. */
1930
1931 template<typename Symbol>
1932 static bool
1933 completion_skip_symbol (complete_symbol_mode mode, Symbol *sym)
1934 {
1935 return (mode == complete_symbol_mode::LINESPEC
1936 && !symbol_is_function_or_method (sym));
1937 }
1938
1939 /* symtab.c */
1940
1941 bool matching_obj_sections (struct obj_section *, struct obj_section *);
1942
1943 extern struct symtab *find_line_symtab (struct symtab *, int, int *, bool *);
1944
1945 /* Given a function symbol SYM, find the symtab and line for the start
1946 of the function. If FUNFIRSTLINE is true, we want the first line
1947 of real code inside the function. */
1948 extern symtab_and_line find_function_start_sal (symbol *sym, bool
1949 funfirstline);
1950
1951 /* Same, but start with a function address/section instead of a
1952 symbol. */
1953 extern symtab_and_line find_function_start_sal (CORE_ADDR func_addr,
1954 obj_section *section,
1955 bool funfirstline);
1956
1957 extern void skip_prologue_sal (struct symtab_and_line *);
1958
1959 /* symtab.c */
1960
1961 extern CORE_ADDR skip_prologue_using_sal (struct gdbarch *gdbarch,
1962 CORE_ADDR func_addr);
1963
1964 extern struct symbol *fixup_symbol_section (struct symbol *,
1965 struct objfile *);
1966
1967 /* If MSYMBOL is an text symbol, look for a function debug symbol with
1968 the same address. Returns NULL if not found. This is necessary in
1969 case a function is an alias to some other function, because debug
1970 information is only emitted for the alias target function's
1971 definition, not for the alias. */
1972 extern symbol *find_function_alias_target (bound_minimal_symbol msymbol);
1973
1974 /* Symbol searching */
1975 /* Note: struct symbol_search, search_symbols, et.al. are declared here,
1976 instead of making them local to symtab.c, for gdbtk's sake. */
1977
1978 /* When using search_symbols, a vector of the following structs is
1979 returned. */
1980 struct symbol_search
1981 {
1982 symbol_search (int block_, struct symbol *symbol_)
1983 : block (block_),
1984 symbol (symbol_)
1985 {
1986 msymbol.minsym = nullptr;
1987 msymbol.objfile = nullptr;
1988 }
1989
1990 symbol_search (int block_, struct minimal_symbol *minsym,
1991 struct objfile *objfile)
1992 : block (block_),
1993 symbol (nullptr)
1994 {
1995 msymbol.minsym = minsym;
1996 msymbol.objfile = objfile;
1997 }
1998
1999 bool operator< (const symbol_search &other) const
2000 {
2001 return compare_search_syms (*this, other) < 0;
2002 }
2003
2004 bool operator== (const symbol_search &other) const
2005 {
2006 return compare_search_syms (*this, other) == 0;
2007 }
2008
2009 /* The block in which the match was found. Could be, for example,
2010 STATIC_BLOCK or GLOBAL_BLOCK. */
2011 int block;
2012
2013 /* Information describing what was found.
2014
2015 If symbol is NOT NULL, then information was found for this match. */
2016 struct symbol *symbol;
2017
2018 /* If msymbol is non-null, then a match was made on something for
2019 which only minimal_symbols exist. */
2020 struct bound_minimal_symbol msymbol;
2021
2022 private:
2023
2024 static int compare_search_syms (const symbol_search &sym_a,
2025 const symbol_search &sym_b);
2026 };
2027
2028 extern std::vector<symbol_search> search_symbols (const char *,
2029 enum search_domain,
2030 const char *,
2031 int,
2032 const char **,
2033 bool);
2034 extern bool treg_matches_sym_type_name (const compiled_regex &treg,
2035 const struct symbol *sym);
2036
2037 /* The name of the ``main'' function. */
2038 extern const char *main_name ();
2039 extern enum language main_language (void);
2040
2041 /* Lookup symbol NAME from DOMAIN in MAIN_OBJFILE's global or static blocks,
2042 as specified by BLOCK_INDEX.
2043 This searches MAIN_OBJFILE as well as any associated separate debug info
2044 objfiles of MAIN_OBJFILE.
2045 BLOCK_INDEX can be GLOBAL_BLOCK or STATIC_BLOCK.
2046 Upon success fixes up the symbol's section if necessary. */
2047
2048 extern struct block_symbol
2049 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2050 enum block_enum block_index,
2051 const char *name,
2052 const domain_enum domain);
2053
2054 /* Return 1 if the supplied producer string matches the ARM RealView
2055 compiler (armcc). */
2056 bool producer_is_realview (const char *producer);
2057
2058 void fixup_section (struct general_symbol_info *ginfo,
2059 CORE_ADDR addr, struct objfile *objfile);
2060
2061 /* Look up objfile containing BLOCK. */
2062
2063 struct objfile *lookup_objfile_from_block (const struct block *block);
2064
2065 extern unsigned int symtab_create_debug;
2066
2067 extern unsigned int symbol_lookup_debug;
2068
2069 extern bool basenames_may_differ;
2070
2071 bool compare_filenames_for_search (const char *filename,
2072 const char *search_name);
2073
2074 bool compare_glob_filenames_for_search (const char *filename,
2075 const char *search_name);
2076
2077 bool iterate_over_some_symtabs (const char *name,
2078 const char *real_path,
2079 struct compunit_symtab *first,
2080 struct compunit_symtab *after_last,
2081 gdb::function_view<bool (symtab *)> callback);
2082
2083 void iterate_over_symtabs (const char *name,
2084 gdb::function_view<bool (symtab *)> callback);
2085
2086
2087 std::vector<CORE_ADDR> find_pcs_for_symtab_line
2088 (struct symtab *symtab, int line, struct linetable_entry **best_entry);
2089
2090 /* Prototype for callbacks for LA_ITERATE_OVER_SYMBOLS. The callback
2091 is called once per matching symbol SYM. The callback should return
2092 true to indicate that LA_ITERATE_OVER_SYMBOLS should continue
2093 iterating, or false to indicate that the iteration should end. */
2094
2095 typedef bool (symbol_found_callback_ftype) (struct block_symbol *bsym);
2096
2097 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2098
2099 For each symbol that matches, CALLBACK is called. The symbol is
2100 passed to the callback.
2101
2102 If CALLBACK returns false, the iteration ends and this function
2103 returns false. Otherwise, the search continues, and the function
2104 eventually returns true. */
2105
2106 bool iterate_over_symbols (const struct block *block,
2107 const lookup_name_info &name,
2108 const domain_enum domain,
2109 gdb::function_view<symbol_found_callback_ftype> callback);
2110
2111 /* Like iterate_over_symbols, but if all calls to CALLBACK return
2112 true, then calls CALLBACK one additional time with a block_symbol
2113 that has a valid block but a NULL symbol. */
2114
2115 bool iterate_over_symbols_terminated
2116 (const struct block *block,
2117 const lookup_name_info &name,
2118 const domain_enum domain,
2119 gdb::function_view<symbol_found_callback_ftype> callback);
2120
2121 /* Storage type used by demangle_for_lookup. demangle_for_lookup
2122 either returns a const char * pointer that points to either of the
2123 fields of this type, or a pointer to the input NAME. This is done
2124 this way because the underlying functions that demangle_for_lookup
2125 calls either return a std::string (e.g., cp_canonicalize_string) or
2126 a malloc'ed buffer (libiberty's demangled), and we want to avoid
2127 unnecessary reallocation/string copying. */
2128 class demangle_result_storage
2129 {
2130 public:
2131
2132 /* Swap the std::string storage with STR, and return a pointer to
2133 the beginning of the new string. */
2134 const char *swap_string (std::string &str)
2135 {
2136 std::swap (m_string, str);
2137 return m_string.c_str ();
2138 }
2139
2140 /* Set the malloc storage to now point at PTR. Any previous malloc
2141 storage is released. */
2142 const char *set_malloc_ptr (char *ptr)
2143 {
2144 m_malloc.reset (ptr);
2145 return ptr;
2146 }
2147
2148 private:
2149
2150 /* The storage. */
2151 std::string m_string;
2152 gdb::unique_xmalloc_ptr<char> m_malloc;
2153 };
2154
2155 const char *
2156 demangle_for_lookup (const char *name, enum language lang,
2157 demangle_result_storage &storage);
2158
2159 struct symbol *allocate_symbol (struct objfile *);
2160
2161 void initialize_objfile_symbol (struct symbol *);
2162
2163 struct template_symbol *allocate_template_symbol (struct objfile *);
2164
2165 /* Test to see if the symbol of language SYMBOL_LANGUAGE specified by
2166 SYMNAME (which is already demangled for C++ symbols) matches
2167 SYM_TEXT in the first SYM_TEXT_LEN characters. If so, add it to
2168 the current completion list. */
2169 void completion_list_add_name (completion_tracker &tracker,
2170 language symbol_language,
2171 const char *symname,
2172 const lookup_name_info &lookup_name,
2173 const char *text, const char *word);
2174
2175 /* A simple symbol searching class. */
2176
2177 class symbol_searcher
2178 {
2179 public:
2180 /* Returns the symbols found for the search. */
2181 const std::vector<block_symbol> &
2182 matching_symbols () const
2183 {
2184 return m_symbols;
2185 }
2186
2187 /* Returns the minimal symbols found for the search. */
2188 const std::vector<bound_minimal_symbol> &
2189 matching_msymbols () const
2190 {
2191 return m_minimal_symbols;
2192 }
2193
2194 /* Search for all symbols named NAME in LANGUAGE with DOMAIN, restricting
2195 search to FILE_SYMTABS and SEARCH_PSPACE, both of which may be NULL
2196 to search all symtabs and program spaces. */
2197 void find_all_symbols (const std::string &name,
2198 const struct language_defn *language,
2199 enum search_domain search_domain,
2200 std::vector<symtab *> *search_symtabs,
2201 struct program_space *search_pspace);
2202
2203 /* Reset this object to perform another search. */
2204 void reset ()
2205 {
2206 m_symbols.clear ();
2207 m_minimal_symbols.clear ();
2208 }
2209
2210 private:
2211 /* Matching debug symbols. */
2212 std::vector<block_symbol> m_symbols;
2213
2214 /* Matching non-debug symbols. */
2215 std::vector<bound_minimal_symbol> m_minimal_symbols;
2216 };
2217
2218 #endif /* !defined(SYMTAB_H) */
This page took 0.089169 seconds and 5 git commands to generate.