minor reformatting for target.c:read_whatever_is_readable
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44 #include "exec.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static int nosymbol (char *, CORE_ADDR *);
58
59 static void tcomplain (void) ATTRIBUTE_NORETURN;
60
61 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
62
63 static int return_zero (void);
64
65 static int return_one (void);
66
67 static int return_minus_one (void);
68
69 void target_ignore (void);
70
71 static void target_command (char *, int);
72
73 static struct target_ops *find_default_run_target (char *);
74
75 static LONGEST default_xfer_partial (struct target_ops *ops,
76 enum target_object object,
77 const char *annex, gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, LONGEST len);
80
81 static LONGEST current_xfer_partial (struct target_ops *ops,
82 enum target_object object,
83 const char *annex, gdb_byte *readbuf,
84 const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 static LONGEST target_xfer_partial (struct target_ops *ops,
88 enum target_object object,
89 const char *annex,
90 void *readbuf, const void *writebuf,
91 ULONGEST offset, LONGEST len);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static void init_dummy_target (void);
97
98 static struct target_ops debug_target;
99
100 static void debug_to_open (char *, int);
101
102 static void debug_to_prepare_to_store (struct regcache *);
103
104 static void debug_to_files_info (struct target_ops *);
105
106 static int debug_to_insert_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_remove_breakpoint (struct gdbarch *,
110 struct bp_target_info *);
111
112 static int debug_to_can_use_hw_breakpoint (int, int, int);
113
114 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
118 struct bp_target_info *);
119
120 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
121 struct expression *);
122
123 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
124 struct expression *);
125
126 static int debug_to_stopped_by_watchpoint (void);
127
128 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
129
130 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
131 CORE_ADDR, CORE_ADDR, int);
132
133 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
134
135 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
136 struct expression *);
137
138 static void debug_to_terminal_init (void);
139
140 static void debug_to_terminal_inferior (void);
141
142 static void debug_to_terminal_ours_for_output (void);
143
144 static void debug_to_terminal_save_ours (void);
145
146 static void debug_to_terminal_ours (void);
147
148 static void debug_to_terminal_info (char *, int);
149
150 static void debug_to_load (char *, int);
151
152 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
153
154 static int debug_to_can_run (void);
155
156 static void debug_to_notice_signals (ptid_t);
157
158 static void debug_to_stop (ptid_t);
159
160 /* Pointer to array of target architecture structures; the size of the
161 array; the current index into the array; the allocated size of the
162 array. */
163 struct target_ops **target_structs;
164 unsigned target_struct_size;
165 unsigned target_struct_index;
166 unsigned target_struct_allocsize;
167 #define DEFAULT_ALLOCSIZE 10
168
169 /* The initial current target, so that there is always a semi-valid
170 current target. */
171
172 static struct target_ops dummy_target;
173
174 /* Top of target stack. */
175
176 static struct target_ops *target_stack;
177
178 /* The target structure we are currently using to talk to a process
179 or file or whatever "inferior" we have. */
180
181 struct target_ops current_target;
182
183 /* Command list for target. */
184
185 static struct cmd_list_element *targetlist = NULL;
186
187 /* Nonzero if we should trust readonly sections from the
188 executable when reading memory. */
189
190 static int trust_readonly = 0;
191
192 /* Nonzero if we should show true memory content including
193 memory breakpoint inserted by gdb. */
194
195 static int show_memory_breakpoints = 0;
196
197 /* These globals control whether GDB attempts to perform these
198 operations; they are useful for targets that need to prevent
199 inadvertant disruption, such as in non-stop mode. */
200
201 int may_write_registers = 1;
202
203 int may_write_memory = 1;
204
205 int may_insert_breakpoints = 1;
206
207 int may_insert_tracepoints = 1;
208
209 int may_insert_fast_tracepoints = 1;
210
211 int may_stop = 1;
212
213 /* Non-zero if we want to see trace of target level stuff. */
214
215 static int targetdebug = 0;
216 static void
217 show_targetdebug (struct ui_file *file, int from_tty,
218 struct cmd_list_element *c, const char *value)
219 {
220 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
221 }
222
223 static void setup_target_debug (void);
224
225 /* The option sets this. */
226 static int stack_cache_enabled_p_1 = 1;
227 /* And set_stack_cache_enabled_p updates this.
228 The reason for the separation is so that we don't flush the cache for
229 on->on transitions. */
230 static int stack_cache_enabled_p = 1;
231
232 /* This is called *after* the stack-cache has been set.
233 Flush the cache for off->on and on->off transitions.
234 There's no real need to flush the cache for on->off transitions,
235 except cleanliness. */
236
237 static void
238 set_stack_cache_enabled_p (char *args, int from_tty,
239 struct cmd_list_element *c)
240 {
241 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
242 target_dcache_invalidate ();
243
244 stack_cache_enabled_p = stack_cache_enabled_p_1;
245 }
246
247 static void
248 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
252 }
253
254 /* Cache of memory operations, to speed up remote access. */
255 static DCACHE *target_dcache;
256
257 /* Invalidate the target dcache. */
258
259 void
260 target_dcache_invalidate (void)
261 {
262 dcache_invalidate (target_dcache);
263 }
264
265 /* The user just typed 'target' without the name of a target. */
266
267 static void
268 target_command (char *arg, int from_tty)
269 {
270 fputs_filtered ("Argument required (target name). Try `help target'\n",
271 gdb_stdout);
272 }
273
274 /* Default target_has_* methods for process_stratum targets. */
275
276 int
277 default_child_has_all_memory (struct target_ops *ops)
278 {
279 /* If no inferior selected, then we can't read memory here. */
280 if (ptid_equal (inferior_ptid, null_ptid))
281 return 0;
282
283 return 1;
284 }
285
286 int
287 default_child_has_memory (struct target_ops *ops)
288 {
289 /* If no inferior selected, then we can't read memory here. */
290 if (ptid_equal (inferior_ptid, null_ptid))
291 return 0;
292
293 return 1;
294 }
295
296 int
297 default_child_has_stack (struct target_ops *ops)
298 {
299 /* If no inferior selected, there's no stack. */
300 if (ptid_equal (inferior_ptid, null_ptid))
301 return 0;
302
303 return 1;
304 }
305
306 int
307 default_child_has_registers (struct target_ops *ops)
308 {
309 /* Can't read registers from no inferior. */
310 if (ptid_equal (inferior_ptid, null_ptid))
311 return 0;
312
313 return 1;
314 }
315
316 int
317 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
318 {
319 /* If there's no thread selected, then we can't make it run through
320 hoops. */
321 if (ptid_equal (the_ptid, null_ptid))
322 return 0;
323
324 return 1;
325 }
326
327
328 int
329 target_has_all_memory_1 (void)
330 {
331 struct target_ops *t;
332
333 for (t = current_target.beneath; t != NULL; t = t->beneath)
334 if (t->to_has_all_memory (t))
335 return 1;
336
337 return 0;
338 }
339
340 int
341 target_has_memory_1 (void)
342 {
343 struct target_ops *t;
344
345 for (t = current_target.beneath; t != NULL; t = t->beneath)
346 if (t->to_has_memory (t))
347 return 1;
348
349 return 0;
350 }
351
352 int
353 target_has_stack_1 (void)
354 {
355 struct target_ops *t;
356
357 for (t = current_target.beneath; t != NULL; t = t->beneath)
358 if (t->to_has_stack (t))
359 return 1;
360
361 return 0;
362 }
363
364 int
365 target_has_registers_1 (void)
366 {
367 struct target_ops *t;
368
369 for (t = current_target.beneath; t != NULL; t = t->beneath)
370 if (t->to_has_registers (t))
371 return 1;
372
373 return 0;
374 }
375
376 int
377 target_has_execution_1 (ptid_t the_ptid)
378 {
379 struct target_ops *t;
380
381 for (t = current_target.beneath; t != NULL; t = t->beneath)
382 if (t->to_has_execution (t, the_ptid))
383 return 1;
384
385 return 0;
386 }
387
388 int
389 target_has_execution_current (void)
390 {
391 return target_has_execution_1 (inferior_ptid);
392 }
393
394 /* Add a possible target architecture to the list. */
395
396 void
397 add_target (struct target_ops *t)
398 {
399 /* Provide default values for all "must have" methods. */
400 if (t->to_xfer_partial == NULL)
401 t->to_xfer_partial = default_xfer_partial;
402
403 if (t->to_has_all_memory == NULL)
404 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
405
406 if (t->to_has_memory == NULL)
407 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
408
409 if (t->to_has_stack == NULL)
410 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
411
412 if (t->to_has_registers == NULL)
413 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
414
415 if (t->to_has_execution == NULL)
416 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
417
418 if (!target_structs)
419 {
420 target_struct_allocsize = DEFAULT_ALLOCSIZE;
421 target_structs = (struct target_ops **) xmalloc
422 (target_struct_allocsize * sizeof (*target_structs));
423 }
424 if (target_struct_size >= target_struct_allocsize)
425 {
426 target_struct_allocsize *= 2;
427 target_structs = (struct target_ops **)
428 xrealloc ((char *) target_structs,
429 target_struct_allocsize * sizeof (*target_structs));
430 }
431 target_structs[target_struct_size++] = t;
432
433 if (targetlist == NULL)
434 add_prefix_cmd ("target", class_run, target_command, _("\
435 Connect to a target machine or process.\n\
436 The first argument is the type or protocol of the target machine.\n\
437 Remaining arguments are interpreted by the target protocol. For more\n\
438 information on the arguments for a particular protocol, type\n\
439 `help target ' followed by the protocol name."),
440 &targetlist, "target ", 0, &cmdlist);
441 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
442 }
443
444 /* Stub functions */
445
446 void
447 target_ignore (void)
448 {
449 }
450
451 void
452 target_kill (void)
453 {
454 struct target_ops *t;
455
456 for (t = current_target.beneath; t != NULL; t = t->beneath)
457 if (t->to_kill != NULL)
458 {
459 if (targetdebug)
460 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
461
462 t->to_kill (t);
463 return;
464 }
465
466 noprocess ();
467 }
468
469 void
470 target_load (char *arg, int from_tty)
471 {
472 target_dcache_invalidate ();
473 (*current_target.to_load) (arg, from_tty);
474 }
475
476 void
477 target_create_inferior (char *exec_file, char *args,
478 char **env, int from_tty)
479 {
480 struct target_ops *t;
481
482 for (t = current_target.beneath; t != NULL; t = t->beneath)
483 {
484 if (t->to_create_inferior != NULL)
485 {
486 t->to_create_inferior (t, exec_file, args, env, from_tty);
487 if (targetdebug)
488 fprintf_unfiltered (gdb_stdlog,
489 "target_create_inferior (%s, %s, xxx, %d)\n",
490 exec_file, args, from_tty);
491 return;
492 }
493 }
494
495 internal_error (__FILE__, __LINE__,
496 _("could not find a target to create inferior"));
497 }
498
499 void
500 target_terminal_inferior (void)
501 {
502 /* A background resume (``run&'') should leave GDB in control of the
503 terminal. Use target_can_async_p, not target_is_async_p, since at
504 this point the target is not async yet. However, if sync_execution
505 is not set, we know it will become async prior to resume. */
506 if (target_can_async_p () && !sync_execution)
507 return;
508
509 /* If GDB is resuming the inferior in the foreground, install
510 inferior's terminal modes. */
511 (*current_target.to_terminal_inferior) ();
512 }
513
514 static int
515 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
516 struct target_ops *t)
517 {
518 errno = EIO; /* Can't read/write this location. */
519 return 0; /* No bytes handled. */
520 }
521
522 static void
523 tcomplain (void)
524 {
525 error (_("You can't do that when your target is `%s'"),
526 current_target.to_shortname);
527 }
528
529 void
530 noprocess (void)
531 {
532 error (_("You can't do that without a process to debug."));
533 }
534
535 static int
536 nosymbol (char *name, CORE_ADDR *addrp)
537 {
538 return 1; /* Symbol does not exist in target env. */
539 }
540
541 static void
542 default_terminal_info (char *args, int from_tty)
543 {
544 printf_unfiltered (_("No saved terminal information.\n"));
545 }
546
547 /* A default implementation for the to_get_ada_task_ptid target method.
548
549 This function builds the PTID by using both LWP and TID as part of
550 the PTID lwp and tid elements. The pid used is the pid of the
551 inferior_ptid. */
552
553 static ptid_t
554 default_get_ada_task_ptid (long lwp, long tid)
555 {
556 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
557 }
558
559 /* Go through the target stack from top to bottom, copying over zero
560 entries in current_target, then filling in still empty entries. In
561 effect, we are doing class inheritance through the pushed target
562 vectors.
563
564 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
565 is currently implemented, is that it discards any knowledge of
566 which target an inherited method originally belonged to.
567 Consequently, new new target methods should instead explicitly and
568 locally search the target stack for the target that can handle the
569 request. */
570
571 static void
572 update_current_target (void)
573 {
574 struct target_ops *t;
575
576 /* First, reset current's contents. */
577 memset (&current_target, 0, sizeof (current_target));
578
579 #define INHERIT(FIELD, TARGET) \
580 if (!current_target.FIELD) \
581 current_target.FIELD = (TARGET)->FIELD
582
583 for (t = target_stack; t; t = t->beneath)
584 {
585 INHERIT (to_shortname, t);
586 INHERIT (to_longname, t);
587 INHERIT (to_doc, t);
588 /* Do not inherit to_open. */
589 /* Do not inherit to_close. */
590 /* Do not inherit to_attach. */
591 INHERIT (to_post_attach, t);
592 INHERIT (to_attach_no_wait, t);
593 /* Do not inherit to_detach. */
594 /* Do not inherit to_disconnect. */
595 /* Do not inherit to_resume. */
596 /* Do not inherit to_wait. */
597 /* Do not inherit to_fetch_registers. */
598 /* Do not inherit to_store_registers. */
599 INHERIT (to_prepare_to_store, t);
600 INHERIT (deprecated_xfer_memory, t);
601 INHERIT (to_files_info, t);
602 INHERIT (to_insert_breakpoint, t);
603 INHERIT (to_remove_breakpoint, t);
604 INHERIT (to_can_use_hw_breakpoint, t);
605 INHERIT (to_insert_hw_breakpoint, t);
606 INHERIT (to_remove_hw_breakpoint, t);
607 INHERIT (to_insert_watchpoint, t);
608 INHERIT (to_remove_watchpoint, t);
609 INHERIT (to_stopped_data_address, t);
610 INHERIT (to_have_steppable_watchpoint, t);
611 INHERIT (to_have_continuable_watchpoint, t);
612 INHERIT (to_stopped_by_watchpoint, t);
613 INHERIT (to_watchpoint_addr_within_range, t);
614 INHERIT (to_region_ok_for_hw_watchpoint, t);
615 INHERIT (to_can_accel_watchpoint_condition, t);
616 INHERIT (to_terminal_init, t);
617 INHERIT (to_terminal_inferior, t);
618 INHERIT (to_terminal_ours_for_output, t);
619 INHERIT (to_terminal_ours, t);
620 INHERIT (to_terminal_save_ours, t);
621 INHERIT (to_terminal_info, t);
622 /* Do not inherit to_kill. */
623 INHERIT (to_load, t);
624 INHERIT (to_lookup_symbol, t);
625 /* Do no inherit to_create_inferior. */
626 INHERIT (to_post_startup_inferior, t);
627 INHERIT (to_insert_fork_catchpoint, t);
628 INHERIT (to_remove_fork_catchpoint, t);
629 INHERIT (to_insert_vfork_catchpoint, t);
630 INHERIT (to_remove_vfork_catchpoint, t);
631 /* Do not inherit to_follow_fork. */
632 INHERIT (to_insert_exec_catchpoint, t);
633 INHERIT (to_remove_exec_catchpoint, t);
634 INHERIT (to_set_syscall_catchpoint, t);
635 INHERIT (to_has_exited, t);
636 /* Do not inherit to_mourn_inferior. */
637 INHERIT (to_can_run, t);
638 INHERIT (to_notice_signals, t);
639 /* Do not inherit to_thread_alive. */
640 /* Do not inherit to_find_new_threads. */
641 /* Do not inherit to_pid_to_str. */
642 INHERIT (to_extra_thread_info, t);
643 INHERIT (to_thread_name, t);
644 INHERIT (to_stop, t);
645 /* Do not inherit to_xfer_partial. */
646 INHERIT (to_rcmd, t);
647 INHERIT (to_pid_to_exec_file, t);
648 INHERIT (to_log_command, t);
649 INHERIT (to_stratum, t);
650 /* Do not inherit to_has_all_memory. */
651 /* Do not inherit to_has_memory. */
652 /* Do not inherit to_has_stack. */
653 /* Do not inherit to_has_registers. */
654 /* Do not inherit to_has_execution. */
655 INHERIT (to_has_thread_control, t);
656 INHERIT (to_can_async_p, t);
657 INHERIT (to_is_async_p, t);
658 INHERIT (to_async, t);
659 INHERIT (to_async_mask, t);
660 INHERIT (to_find_memory_regions, t);
661 INHERIT (to_make_corefile_notes, t);
662 INHERIT (to_get_bookmark, t);
663 INHERIT (to_goto_bookmark, t);
664 /* Do not inherit to_get_thread_local_address. */
665 INHERIT (to_can_execute_reverse, t);
666 INHERIT (to_thread_architecture, t);
667 /* Do not inherit to_read_description. */
668 INHERIT (to_get_ada_task_ptid, t);
669 /* Do not inherit to_search_memory. */
670 INHERIT (to_supports_multi_process, t);
671 INHERIT (to_trace_init, t);
672 INHERIT (to_download_tracepoint, t);
673 INHERIT (to_download_trace_state_variable, t);
674 INHERIT (to_trace_set_readonly_regions, t);
675 INHERIT (to_trace_start, t);
676 INHERIT (to_get_trace_status, t);
677 INHERIT (to_trace_stop, t);
678 INHERIT (to_trace_find, t);
679 INHERIT (to_get_trace_state_variable_value, t);
680 INHERIT (to_save_trace_data, t);
681 INHERIT (to_upload_tracepoints, t);
682 INHERIT (to_upload_trace_state_variables, t);
683 INHERIT (to_get_raw_trace_data, t);
684 INHERIT (to_set_disconnected_tracing, t);
685 INHERIT (to_set_circular_trace_buffer, t);
686 INHERIT (to_get_tib_address, t);
687 INHERIT (to_set_permissions, t);
688 INHERIT (to_static_tracepoint_marker_at, t);
689 INHERIT (to_static_tracepoint_markers_by_strid, t);
690 INHERIT (to_traceframe_info, t);
691 INHERIT (to_magic, t);
692 /* Do not inherit to_memory_map. */
693 /* Do not inherit to_flash_erase. */
694 /* Do not inherit to_flash_done. */
695 }
696 #undef INHERIT
697
698 /* Clean up a target struct so it no longer has any zero pointers in
699 it. Some entries are defaulted to a method that print an error,
700 others are hard-wired to a standard recursive default. */
701
702 #define de_fault(field, value) \
703 if (!current_target.field) \
704 current_target.field = value
705
706 de_fault (to_open,
707 (void (*) (char *, int))
708 tcomplain);
709 de_fault (to_close,
710 (void (*) (int))
711 target_ignore);
712 de_fault (to_post_attach,
713 (void (*) (int))
714 target_ignore);
715 de_fault (to_prepare_to_store,
716 (void (*) (struct regcache *))
717 noprocess);
718 de_fault (deprecated_xfer_memory,
719 (int (*) (CORE_ADDR, gdb_byte *, int, int,
720 struct mem_attrib *, struct target_ops *))
721 nomemory);
722 de_fault (to_files_info,
723 (void (*) (struct target_ops *))
724 target_ignore);
725 de_fault (to_insert_breakpoint,
726 memory_insert_breakpoint);
727 de_fault (to_remove_breakpoint,
728 memory_remove_breakpoint);
729 de_fault (to_can_use_hw_breakpoint,
730 (int (*) (int, int, int))
731 return_zero);
732 de_fault (to_insert_hw_breakpoint,
733 (int (*) (struct gdbarch *, struct bp_target_info *))
734 return_minus_one);
735 de_fault (to_remove_hw_breakpoint,
736 (int (*) (struct gdbarch *, struct bp_target_info *))
737 return_minus_one);
738 de_fault (to_insert_watchpoint,
739 (int (*) (CORE_ADDR, int, int, struct expression *))
740 return_minus_one);
741 de_fault (to_remove_watchpoint,
742 (int (*) (CORE_ADDR, int, int, struct expression *))
743 return_minus_one);
744 de_fault (to_stopped_by_watchpoint,
745 (int (*) (void))
746 return_zero);
747 de_fault (to_stopped_data_address,
748 (int (*) (struct target_ops *, CORE_ADDR *))
749 return_zero);
750 de_fault (to_watchpoint_addr_within_range,
751 default_watchpoint_addr_within_range);
752 de_fault (to_region_ok_for_hw_watchpoint,
753 default_region_ok_for_hw_watchpoint);
754 de_fault (to_can_accel_watchpoint_condition,
755 (int (*) (CORE_ADDR, int, int, struct expression *))
756 return_zero);
757 de_fault (to_terminal_init,
758 (void (*) (void))
759 target_ignore);
760 de_fault (to_terminal_inferior,
761 (void (*) (void))
762 target_ignore);
763 de_fault (to_terminal_ours_for_output,
764 (void (*) (void))
765 target_ignore);
766 de_fault (to_terminal_ours,
767 (void (*) (void))
768 target_ignore);
769 de_fault (to_terminal_save_ours,
770 (void (*) (void))
771 target_ignore);
772 de_fault (to_terminal_info,
773 default_terminal_info);
774 de_fault (to_load,
775 (void (*) (char *, int))
776 tcomplain);
777 de_fault (to_lookup_symbol,
778 (int (*) (char *, CORE_ADDR *))
779 nosymbol);
780 de_fault (to_post_startup_inferior,
781 (void (*) (ptid_t))
782 target_ignore);
783 de_fault (to_insert_fork_catchpoint,
784 (int (*) (int))
785 return_one);
786 de_fault (to_remove_fork_catchpoint,
787 (int (*) (int))
788 return_one);
789 de_fault (to_insert_vfork_catchpoint,
790 (int (*) (int))
791 return_one);
792 de_fault (to_remove_vfork_catchpoint,
793 (int (*) (int))
794 return_one);
795 de_fault (to_insert_exec_catchpoint,
796 (int (*) (int))
797 return_one);
798 de_fault (to_remove_exec_catchpoint,
799 (int (*) (int))
800 return_one);
801 de_fault (to_set_syscall_catchpoint,
802 (int (*) (int, int, int, int, int *))
803 return_one);
804 de_fault (to_has_exited,
805 (int (*) (int, int, int *))
806 return_zero);
807 de_fault (to_can_run,
808 return_zero);
809 de_fault (to_notice_signals,
810 (void (*) (ptid_t))
811 target_ignore);
812 de_fault (to_extra_thread_info,
813 (char *(*) (struct thread_info *))
814 return_zero);
815 de_fault (to_thread_name,
816 (char *(*) (struct thread_info *))
817 return_zero);
818 de_fault (to_stop,
819 (void (*) (ptid_t))
820 target_ignore);
821 current_target.to_xfer_partial = current_xfer_partial;
822 de_fault (to_rcmd,
823 (void (*) (char *, struct ui_file *))
824 tcomplain);
825 de_fault (to_pid_to_exec_file,
826 (char *(*) (int))
827 return_zero);
828 de_fault (to_async,
829 (void (*) (void (*) (enum inferior_event_type, void*), void*))
830 tcomplain);
831 de_fault (to_async_mask,
832 (int (*) (int))
833 return_one);
834 de_fault (to_thread_architecture,
835 default_thread_architecture);
836 current_target.to_read_description = NULL;
837 de_fault (to_get_ada_task_ptid,
838 (ptid_t (*) (long, long))
839 default_get_ada_task_ptid);
840 de_fault (to_supports_multi_process,
841 (int (*) (void))
842 return_zero);
843 de_fault (to_trace_init,
844 (void (*) (void))
845 tcomplain);
846 de_fault (to_download_tracepoint,
847 (void (*) (struct breakpoint *))
848 tcomplain);
849 de_fault (to_download_trace_state_variable,
850 (void (*) (struct trace_state_variable *))
851 tcomplain);
852 de_fault (to_trace_set_readonly_regions,
853 (void (*) (void))
854 tcomplain);
855 de_fault (to_trace_start,
856 (void (*) (void))
857 tcomplain);
858 de_fault (to_get_trace_status,
859 (int (*) (struct trace_status *))
860 return_minus_one);
861 de_fault (to_trace_stop,
862 (void (*) (void))
863 tcomplain);
864 de_fault (to_trace_find,
865 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
866 return_minus_one);
867 de_fault (to_get_trace_state_variable_value,
868 (int (*) (int, LONGEST *))
869 return_zero);
870 de_fault (to_save_trace_data,
871 (int (*) (const char *))
872 tcomplain);
873 de_fault (to_upload_tracepoints,
874 (int (*) (struct uploaded_tp **))
875 return_zero);
876 de_fault (to_upload_trace_state_variables,
877 (int (*) (struct uploaded_tsv **))
878 return_zero);
879 de_fault (to_get_raw_trace_data,
880 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
881 tcomplain);
882 de_fault (to_set_disconnected_tracing,
883 (void (*) (int))
884 target_ignore);
885 de_fault (to_set_circular_trace_buffer,
886 (void (*) (int))
887 target_ignore);
888 de_fault (to_get_tib_address,
889 (int (*) (ptid_t, CORE_ADDR *))
890 tcomplain);
891 de_fault (to_set_permissions,
892 (void (*) (void))
893 target_ignore);
894 de_fault (to_static_tracepoint_marker_at,
895 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
896 return_zero);
897 de_fault (to_static_tracepoint_markers_by_strid,
898 (VEC(static_tracepoint_marker_p) * (*) (const char *))
899 tcomplain);
900 de_fault (to_traceframe_info,
901 (struct traceframe_info * (*) (void))
902 tcomplain);
903 #undef de_fault
904
905 /* Finally, position the target-stack beneath the squashed
906 "current_target". That way code looking for a non-inherited
907 target method can quickly and simply find it. */
908 current_target.beneath = target_stack;
909
910 if (targetdebug)
911 setup_target_debug ();
912 }
913
914 /* Push a new target type into the stack of the existing target accessors,
915 possibly superseding some of the existing accessors.
916
917 Rather than allow an empty stack, we always have the dummy target at
918 the bottom stratum, so we can call the function vectors without
919 checking them. */
920
921 void
922 push_target (struct target_ops *t)
923 {
924 struct target_ops **cur;
925
926 /* Check magic number. If wrong, it probably means someone changed
927 the struct definition, but not all the places that initialize one. */
928 if (t->to_magic != OPS_MAGIC)
929 {
930 fprintf_unfiltered (gdb_stderr,
931 "Magic number of %s target struct wrong\n",
932 t->to_shortname);
933 internal_error (__FILE__, __LINE__,
934 _("failed internal consistency check"));
935 }
936
937 /* Find the proper stratum to install this target in. */
938 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
939 {
940 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
941 break;
942 }
943
944 /* If there's already targets at this stratum, remove them. */
945 /* FIXME: cagney/2003-10-15: I think this should be popping all
946 targets to CUR, and not just those at this stratum level. */
947 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
948 {
949 /* There's already something at this stratum level. Close it,
950 and un-hook it from the stack. */
951 struct target_ops *tmp = (*cur);
952
953 (*cur) = (*cur)->beneath;
954 tmp->beneath = NULL;
955 target_close (tmp, 0);
956 }
957
958 /* We have removed all targets in our stratum, now add the new one. */
959 t->beneath = (*cur);
960 (*cur) = t;
961
962 update_current_target ();
963 }
964
965 /* Remove a target_ops vector from the stack, wherever it may be.
966 Return how many times it was removed (0 or 1). */
967
968 int
969 unpush_target (struct target_ops *t)
970 {
971 struct target_ops **cur;
972 struct target_ops *tmp;
973
974 if (t->to_stratum == dummy_stratum)
975 internal_error (__FILE__, __LINE__,
976 _("Attempt to unpush the dummy target"));
977
978 /* Look for the specified target. Note that we assume that a target
979 can only occur once in the target stack. */
980
981 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
982 {
983 if ((*cur) == t)
984 break;
985 }
986
987 if ((*cur) == NULL)
988 return 0; /* Didn't find target_ops, quit now. */
989
990 /* NOTE: cagney/2003-12-06: In '94 the close call was made
991 unconditional by moving it to before the above check that the
992 target was in the target stack (something about "Change the way
993 pushing and popping of targets work to support target overlays
994 and inheritance"). This doesn't make much sense - only open
995 targets should be closed. */
996 target_close (t, 0);
997
998 /* Unchain the target. */
999 tmp = (*cur);
1000 (*cur) = (*cur)->beneath;
1001 tmp->beneath = NULL;
1002
1003 update_current_target ();
1004
1005 return 1;
1006 }
1007
1008 void
1009 pop_target (void)
1010 {
1011 target_close (target_stack, 0); /* Let it clean up. */
1012 if (unpush_target (target_stack) == 1)
1013 return;
1014
1015 fprintf_unfiltered (gdb_stderr,
1016 "pop_target couldn't find target %s\n",
1017 current_target.to_shortname);
1018 internal_error (__FILE__, __LINE__,
1019 _("failed internal consistency check"));
1020 }
1021
1022 void
1023 pop_all_targets_above (enum strata above_stratum, int quitting)
1024 {
1025 while ((int) (current_target.to_stratum) > (int) above_stratum)
1026 {
1027 target_close (target_stack, quitting);
1028 if (!unpush_target (target_stack))
1029 {
1030 fprintf_unfiltered (gdb_stderr,
1031 "pop_all_targets couldn't find target %s\n",
1032 target_stack->to_shortname);
1033 internal_error (__FILE__, __LINE__,
1034 _("failed internal consistency check"));
1035 break;
1036 }
1037 }
1038 }
1039
1040 void
1041 pop_all_targets (int quitting)
1042 {
1043 pop_all_targets_above (dummy_stratum, quitting);
1044 }
1045
1046 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1047
1048 int
1049 target_is_pushed (struct target_ops *t)
1050 {
1051 struct target_ops **cur;
1052
1053 /* Check magic number. If wrong, it probably means someone changed
1054 the struct definition, but not all the places that initialize one. */
1055 if (t->to_magic != OPS_MAGIC)
1056 {
1057 fprintf_unfiltered (gdb_stderr,
1058 "Magic number of %s target struct wrong\n",
1059 t->to_shortname);
1060 internal_error (__FILE__, __LINE__,
1061 _("failed internal consistency check"));
1062 }
1063
1064 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1065 if (*cur == t)
1066 return 1;
1067
1068 return 0;
1069 }
1070
1071 /* Using the objfile specified in OBJFILE, find the address for the
1072 current thread's thread-local storage with offset OFFSET. */
1073 CORE_ADDR
1074 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1075 {
1076 volatile CORE_ADDR addr = 0;
1077 struct target_ops *target;
1078
1079 for (target = current_target.beneath;
1080 target != NULL;
1081 target = target->beneath)
1082 {
1083 if (target->to_get_thread_local_address != NULL)
1084 break;
1085 }
1086
1087 if (target != NULL
1088 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1089 {
1090 ptid_t ptid = inferior_ptid;
1091 volatile struct gdb_exception ex;
1092
1093 TRY_CATCH (ex, RETURN_MASK_ALL)
1094 {
1095 CORE_ADDR lm_addr;
1096
1097 /* Fetch the load module address for this objfile. */
1098 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1099 objfile);
1100 /* If it's 0, throw the appropriate exception. */
1101 if (lm_addr == 0)
1102 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1103 _("TLS load module not found"));
1104
1105 addr = target->to_get_thread_local_address (target, ptid,
1106 lm_addr, offset);
1107 }
1108 /* If an error occurred, print TLS related messages here. Otherwise,
1109 throw the error to some higher catcher. */
1110 if (ex.reason < 0)
1111 {
1112 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1113
1114 switch (ex.error)
1115 {
1116 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1117 error (_("Cannot find thread-local variables "
1118 "in this thread library."));
1119 break;
1120 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1121 if (objfile_is_library)
1122 error (_("Cannot find shared library `%s' in dynamic"
1123 " linker's load module list"), objfile->name);
1124 else
1125 error (_("Cannot find executable file `%s' in dynamic"
1126 " linker's load module list"), objfile->name);
1127 break;
1128 case TLS_NOT_ALLOCATED_YET_ERROR:
1129 if (objfile_is_library)
1130 error (_("The inferior has not yet allocated storage for"
1131 " thread-local variables in\n"
1132 "the shared library `%s'\n"
1133 "for %s"),
1134 objfile->name, target_pid_to_str (ptid));
1135 else
1136 error (_("The inferior has not yet allocated storage for"
1137 " thread-local variables in\n"
1138 "the executable `%s'\n"
1139 "for %s"),
1140 objfile->name, target_pid_to_str (ptid));
1141 break;
1142 case TLS_GENERIC_ERROR:
1143 if (objfile_is_library)
1144 error (_("Cannot find thread-local storage for %s, "
1145 "shared library %s:\n%s"),
1146 target_pid_to_str (ptid),
1147 objfile->name, ex.message);
1148 else
1149 error (_("Cannot find thread-local storage for %s, "
1150 "executable file %s:\n%s"),
1151 target_pid_to_str (ptid),
1152 objfile->name, ex.message);
1153 break;
1154 default:
1155 throw_exception (ex);
1156 break;
1157 }
1158 }
1159 }
1160 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1161 TLS is an ABI-specific thing. But we don't do that yet. */
1162 else
1163 error (_("Cannot find thread-local variables on this target"));
1164
1165 return addr;
1166 }
1167
1168 #undef MIN
1169 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1170
1171 /* target_read_string -- read a null terminated string, up to LEN bytes,
1172 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1173 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1174 is responsible for freeing it. Return the number of bytes successfully
1175 read. */
1176
1177 int
1178 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1179 {
1180 int tlen, origlen, offset, i;
1181 gdb_byte buf[4];
1182 int errcode = 0;
1183 char *buffer;
1184 int buffer_allocated;
1185 char *bufptr;
1186 unsigned int nbytes_read = 0;
1187
1188 gdb_assert (string);
1189
1190 /* Small for testing. */
1191 buffer_allocated = 4;
1192 buffer = xmalloc (buffer_allocated);
1193 bufptr = buffer;
1194
1195 origlen = len;
1196
1197 while (len > 0)
1198 {
1199 tlen = MIN (len, 4 - (memaddr & 3));
1200 offset = memaddr & 3;
1201
1202 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1203 if (errcode != 0)
1204 {
1205 /* The transfer request might have crossed the boundary to an
1206 unallocated region of memory. Retry the transfer, requesting
1207 a single byte. */
1208 tlen = 1;
1209 offset = 0;
1210 errcode = target_read_memory (memaddr, buf, 1);
1211 if (errcode != 0)
1212 goto done;
1213 }
1214
1215 if (bufptr - buffer + tlen > buffer_allocated)
1216 {
1217 unsigned int bytes;
1218
1219 bytes = bufptr - buffer;
1220 buffer_allocated *= 2;
1221 buffer = xrealloc (buffer, buffer_allocated);
1222 bufptr = buffer + bytes;
1223 }
1224
1225 for (i = 0; i < tlen; i++)
1226 {
1227 *bufptr++ = buf[i + offset];
1228 if (buf[i + offset] == '\000')
1229 {
1230 nbytes_read += i + 1;
1231 goto done;
1232 }
1233 }
1234
1235 memaddr += tlen;
1236 len -= tlen;
1237 nbytes_read += tlen;
1238 }
1239 done:
1240 *string = buffer;
1241 if (errnop != NULL)
1242 *errnop = errcode;
1243 return nbytes_read;
1244 }
1245
1246 struct target_section_table *
1247 target_get_section_table (struct target_ops *target)
1248 {
1249 struct target_ops *t;
1250
1251 if (targetdebug)
1252 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1253
1254 for (t = target; t != NULL; t = t->beneath)
1255 if (t->to_get_section_table != NULL)
1256 return (*t->to_get_section_table) (t);
1257
1258 return NULL;
1259 }
1260
1261 /* Find a section containing ADDR. */
1262
1263 struct target_section *
1264 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1265 {
1266 struct target_section_table *table = target_get_section_table (target);
1267 struct target_section *secp;
1268
1269 if (table == NULL)
1270 return NULL;
1271
1272 for (secp = table->sections; secp < table->sections_end; secp++)
1273 {
1274 if (addr >= secp->addr && addr < secp->endaddr)
1275 return secp;
1276 }
1277 return NULL;
1278 }
1279
1280 /* Read memory from the live target, even if currently inspecting a
1281 traceframe. The return is the same as that of target_read. */
1282
1283 static LONGEST
1284 target_read_live_memory (enum target_object object,
1285 ULONGEST memaddr, gdb_byte *myaddr, LONGEST len)
1286 {
1287 int ret;
1288 struct cleanup *cleanup;
1289
1290 /* Switch momentarily out of tfind mode so to access live memory.
1291 Note that this must not clear global state, such as the frame
1292 cache, which must still remain valid for the previous traceframe.
1293 We may be _building_ the frame cache at this point. */
1294 cleanup = make_cleanup_restore_traceframe_number ();
1295 set_traceframe_number (-1);
1296
1297 ret = target_read (current_target.beneath, object, NULL,
1298 myaddr, memaddr, len);
1299
1300 do_cleanups (cleanup);
1301 return ret;
1302 }
1303
1304 /* Using the set of read-only target sections of OPS, read live
1305 read-only memory. Note that the actual reads start from the
1306 top-most target again.
1307
1308 For interface/parameters/return description see target.h,
1309 to_xfer_partial. */
1310
1311 static LONGEST
1312 memory_xfer_live_readonly_partial (struct target_ops *ops,
1313 enum target_object object,
1314 gdb_byte *readbuf, ULONGEST memaddr,
1315 LONGEST len)
1316 {
1317 struct target_section *secp;
1318 struct target_section_table *table;
1319
1320 secp = target_section_by_addr (ops, memaddr);
1321 if (secp != NULL
1322 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1323 & SEC_READONLY))
1324 {
1325 struct target_section *p;
1326 ULONGEST memend = memaddr + len;
1327
1328 table = target_get_section_table (ops);
1329
1330 for (p = table->sections; p < table->sections_end; p++)
1331 {
1332 if (memaddr >= p->addr)
1333 {
1334 if (memend <= p->endaddr)
1335 {
1336 /* Entire transfer is within this section. */
1337 return target_read_live_memory (object, memaddr,
1338 readbuf, len);
1339 }
1340 else if (memaddr >= p->endaddr)
1341 {
1342 /* This section ends before the transfer starts. */
1343 continue;
1344 }
1345 else
1346 {
1347 /* This section overlaps the transfer. Just do half. */
1348 len = p->endaddr - memaddr;
1349 return target_read_live_memory (object, memaddr,
1350 readbuf, len);
1351 }
1352 }
1353 }
1354 }
1355
1356 return 0;
1357 }
1358
1359 /* Perform a partial memory transfer.
1360 For docs see target.h, to_xfer_partial. */
1361
1362 static LONGEST
1363 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1364 void *readbuf, const void *writebuf, ULONGEST memaddr,
1365 LONGEST len)
1366 {
1367 LONGEST res;
1368 int reg_len;
1369 struct mem_region *region;
1370 struct inferior *inf;
1371
1372 /* Zero length requests are ok and require no work. */
1373 if (len == 0)
1374 return 0;
1375
1376 /* For accesses to unmapped overlay sections, read directly from
1377 files. Must do this first, as MEMADDR may need adjustment. */
1378 if (readbuf != NULL && overlay_debugging)
1379 {
1380 struct obj_section *section = find_pc_overlay (memaddr);
1381
1382 if (pc_in_unmapped_range (memaddr, section))
1383 {
1384 struct target_section_table *table
1385 = target_get_section_table (ops);
1386 const char *section_name = section->the_bfd_section->name;
1387
1388 memaddr = overlay_mapped_address (memaddr, section);
1389 return section_table_xfer_memory_partial (readbuf, writebuf,
1390 memaddr, len,
1391 table->sections,
1392 table->sections_end,
1393 section_name);
1394 }
1395 }
1396
1397 /* Try the executable files, if "trust-readonly-sections" is set. */
1398 if (readbuf != NULL && trust_readonly)
1399 {
1400 struct target_section *secp;
1401 struct target_section_table *table;
1402
1403 secp = target_section_by_addr (ops, memaddr);
1404 if (secp != NULL
1405 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1406 & SEC_READONLY))
1407 {
1408 table = target_get_section_table (ops);
1409 return section_table_xfer_memory_partial (readbuf, writebuf,
1410 memaddr, len,
1411 table->sections,
1412 table->sections_end,
1413 NULL);
1414 }
1415 }
1416
1417 /* If reading unavailable memory in the context of traceframes, and
1418 this address falls within a read-only section, fallback to
1419 reading from live memory. */
1420 if (readbuf != NULL && get_traceframe_number () != -1)
1421 {
1422 VEC(mem_range_s) *available;
1423
1424 /* If we fail to get the set of available memory, then the
1425 target does not support querying traceframe info, and so we
1426 attempt reading from the traceframe anyway (assuming the
1427 target implements the old QTro packet then). */
1428 if (traceframe_available_memory (&available, memaddr, len))
1429 {
1430 struct cleanup *old_chain;
1431
1432 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1433
1434 if (VEC_empty (mem_range_s, available)
1435 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1436 {
1437 /* Don't read into the traceframe's available
1438 memory. */
1439 if (!VEC_empty (mem_range_s, available))
1440 {
1441 LONGEST oldlen = len;
1442
1443 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1444 gdb_assert (len <= oldlen);
1445 }
1446
1447 do_cleanups (old_chain);
1448
1449 /* This goes through the topmost target again. */
1450 res = memory_xfer_live_readonly_partial (ops, object,
1451 readbuf, memaddr, len);
1452 if (res > 0)
1453 return res;
1454
1455 /* No use trying further, we know some memory starting
1456 at MEMADDR isn't available. */
1457 return -1;
1458 }
1459
1460 /* Don't try to read more than how much is available, in
1461 case the target implements the deprecated QTro packet to
1462 cater for older GDBs (the target's knowledge of read-only
1463 sections may be outdated by now). */
1464 len = VEC_index (mem_range_s, available, 0)->length;
1465
1466 do_cleanups (old_chain);
1467 }
1468 }
1469
1470 /* Try GDB's internal data cache. */
1471 region = lookup_mem_region (memaddr);
1472 /* region->hi == 0 means there's no upper bound. */
1473 if (memaddr + len < region->hi || region->hi == 0)
1474 reg_len = len;
1475 else
1476 reg_len = region->hi - memaddr;
1477
1478 switch (region->attrib.mode)
1479 {
1480 case MEM_RO:
1481 if (writebuf != NULL)
1482 return -1;
1483 break;
1484
1485 case MEM_WO:
1486 if (readbuf != NULL)
1487 return -1;
1488 break;
1489
1490 case MEM_FLASH:
1491 /* We only support writing to flash during "load" for now. */
1492 if (writebuf != NULL)
1493 error (_("Writing to flash memory forbidden in this context"));
1494 break;
1495
1496 case MEM_NONE:
1497 return -1;
1498 }
1499
1500 if (!ptid_equal (inferior_ptid, null_ptid))
1501 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1502 else
1503 inf = NULL;
1504
1505 if (inf != NULL
1506 /* The dcache reads whole cache lines; that doesn't play well
1507 with reading from a trace buffer, because reading outside of
1508 the collected memory range fails. */
1509 && get_traceframe_number () == -1
1510 && (region->attrib.cache
1511 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1512 {
1513 if (readbuf != NULL)
1514 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1515 reg_len, 0);
1516 else
1517 /* FIXME drow/2006-08-09: If we're going to preserve const
1518 correctness dcache_xfer_memory should take readbuf and
1519 writebuf. */
1520 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1521 (void *) writebuf,
1522 reg_len, 1);
1523 if (res <= 0)
1524 return -1;
1525 else
1526 {
1527 if (readbuf && !show_memory_breakpoints)
1528 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1529 return res;
1530 }
1531 }
1532
1533 /* If none of those methods found the memory we wanted, fall back
1534 to a target partial transfer. Normally a single call to
1535 to_xfer_partial is enough; if it doesn't recognize an object
1536 it will call the to_xfer_partial of the next target down.
1537 But for memory this won't do. Memory is the only target
1538 object which can be read from more than one valid target.
1539 A core file, for instance, could have some of memory but
1540 delegate other bits to the target below it. So, we must
1541 manually try all targets. */
1542
1543 do
1544 {
1545 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1546 readbuf, writebuf, memaddr, reg_len);
1547 if (res > 0)
1548 break;
1549
1550 /* We want to continue past core files to executables, but not
1551 past a running target's memory. */
1552 if (ops->to_has_all_memory (ops))
1553 break;
1554
1555 ops = ops->beneath;
1556 }
1557 while (ops != NULL);
1558
1559 if (res > 0 && readbuf != NULL && !show_memory_breakpoints)
1560 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1561
1562 /* Make sure the cache gets updated no matter what - if we are writing
1563 to the stack. Even if this write is not tagged as such, we still need
1564 to update the cache. */
1565
1566 if (res > 0
1567 && inf != NULL
1568 && writebuf != NULL
1569 && !region->attrib.cache
1570 && stack_cache_enabled_p
1571 && object != TARGET_OBJECT_STACK_MEMORY)
1572 {
1573 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1574 }
1575
1576 /* If we still haven't got anything, return the last error. We
1577 give up. */
1578 return res;
1579 }
1580
1581 static void
1582 restore_show_memory_breakpoints (void *arg)
1583 {
1584 show_memory_breakpoints = (uintptr_t) arg;
1585 }
1586
1587 struct cleanup *
1588 make_show_memory_breakpoints_cleanup (int show)
1589 {
1590 int current = show_memory_breakpoints;
1591
1592 show_memory_breakpoints = show;
1593 return make_cleanup (restore_show_memory_breakpoints,
1594 (void *) (uintptr_t) current);
1595 }
1596
1597 /* For docs see target.h, to_xfer_partial. */
1598
1599 static LONGEST
1600 target_xfer_partial (struct target_ops *ops,
1601 enum target_object object, const char *annex,
1602 void *readbuf, const void *writebuf,
1603 ULONGEST offset, LONGEST len)
1604 {
1605 LONGEST retval;
1606
1607 gdb_assert (ops->to_xfer_partial != NULL);
1608
1609 if (writebuf && !may_write_memory)
1610 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1611 core_addr_to_string_nz (offset), plongest (len));
1612
1613 /* If this is a memory transfer, let the memory-specific code
1614 have a look at it instead. Memory transfers are more
1615 complicated. */
1616 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1617 retval = memory_xfer_partial (ops, object, readbuf,
1618 writebuf, offset, len);
1619 else
1620 {
1621 enum target_object raw_object = object;
1622
1623 /* If this is a raw memory transfer, request the normal
1624 memory object from other layers. */
1625 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1626 raw_object = TARGET_OBJECT_MEMORY;
1627
1628 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1629 writebuf, offset, len);
1630 }
1631
1632 if (targetdebug)
1633 {
1634 const unsigned char *myaddr = NULL;
1635
1636 fprintf_unfiltered (gdb_stdlog,
1637 "%s:target_xfer_partial "
1638 "(%d, %s, %s, %s, %s, %s) = %s",
1639 ops->to_shortname,
1640 (int) object,
1641 (annex ? annex : "(null)"),
1642 host_address_to_string (readbuf),
1643 host_address_to_string (writebuf),
1644 core_addr_to_string_nz (offset),
1645 plongest (len), plongest (retval));
1646
1647 if (readbuf)
1648 myaddr = readbuf;
1649 if (writebuf)
1650 myaddr = writebuf;
1651 if (retval > 0 && myaddr != NULL)
1652 {
1653 int i;
1654
1655 fputs_unfiltered (", bytes =", gdb_stdlog);
1656 for (i = 0; i < retval; i++)
1657 {
1658 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1659 {
1660 if (targetdebug < 2 && i > 0)
1661 {
1662 fprintf_unfiltered (gdb_stdlog, " ...");
1663 break;
1664 }
1665 fprintf_unfiltered (gdb_stdlog, "\n");
1666 }
1667
1668 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1669 }
1670 }
1671
1672 fputc_unfiltered ('\n', gdb_stdlog);
1673 }
1674 return retval;
1675 }
1676
1677 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1678 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1679 if any error occurs.
1680
1681 If an error occurs, no guarantee is made about the contents of the data at
1682 MYADDR. In particular, the caller should not depend upon partial reads
1683 filling the buffer with good data. There is no way for the caller to know
1684 how much good data might have been transfered anyway. Callers that can
1685 deal with partial reads should call target_read (which will retry until
1686 it makes no progress, and then return how much was transferred). */
1687
1688 int
1689 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1690 {
1691 /* Dispatch to the topmost target, not the flattened current_target.
1692 Memory accesses check target->to_has_(all_)memory, and the
1693 flattened target doesn't inherit those. */
1694 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1695 myaddr, memaddr, len) == len)
1696 return 0;
1697 else
1698 return EIO;
1699 }
1700
1701 /* Like target_read_memory, but specify explicitly that this is a read from
1702 the target's stack. This may trigger different cache behavior. */
1703
1704 int
1705 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1706 {
1707 /* Dispatch to the topmost target, not the flattened current_target.
1708 Memory accesses check target->to_has_(all_)memory, and the
1709 flattened target doesn't inherit those. */
1710
1711 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1712 myaddr, memaddr, len) == len)
1713 return 0;
1714 else
1715 return EIO;
1716 }
1717
1718 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1719 Returns either 0 for success or an errno value if any error occurs.
1720 If an error occurs, no guarantee is made about how much data got written.
1721 Callers that can deal with partial writes should call target_write. */
1722
1723 int
1724 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1725 {
1726 /* Dispatch to the topmost target, not the flattened current_target.
1727 Memory accesses check target->to_has_(all_)memory, and the
1728 flattened target doesn't inherit those. */
1729 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1730 myaddr, memaddr, len) == len)
1731 return 0;
1732 else
1733 return EIO;
1734 }
1735
1736 /* Fetch the target's memory map. */
1737
1738 VEC(mem_region_s) *
1739 target_memory_map (void)
1740 {
1741 VEC(mem_region_s) *result;
1742 struct mem_region *last_one, *this_one;
1743 int ix;
1744 struct target_ops *t;
1745
1746 if (targetdebug)
1747 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1748
1749 for (t = current_target.beneath; t != NULL; t = t->beneath)
1750 if (t->to_memory_map != NULL)
1751 break;
1752
1753 if (t == NULL)
1754 return NULL;
1755
1756 result = t->to_memory_map (t);
1757 if (result == NULL)
1758 return NULL;
1759
1760 qsort (VEC_address (mem_region_s, result),
1761 VEC_length (mem_region_s, result),
1762 sizeof (struct mem_region), mem_region_cmp);
1763
1764 /* Check that regions do not overlap. Simultaneously assign
1765 a numbering for the "mem" commands to use to refer to
1766 each region. */
1767 last_one = NULL;
1768 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1769 {
1770 this_one->number = ix;
1771
1772 if (last_one && last_one->hi > this_one->lo)
1773 {
1774 warning (_("Overlapping regions in memory map: ignoring"));
1775 VEC_free (mem_region_s, result);
1776 return NULL;
1777 }
1778 last_one = this_one;
1779 }
1780
1781 return result;
1782 }
1783
1784 void
1785 target_flash_erase (ULONGEST address, LONGEST length)
1786 {
1787 struct target_ops *t;
1788
1789 for (t = current_target.beneath; t != NULL; t = t->beneath)
1790 if (t->to_flash_erase != NULL)
1791 {
1792 if (targetdebug)
1793 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1794 hex_string (address), phex (length, 0));
1795 t->to_flash_erase (t, address, length);
1796 return;
1797 }
1798
1799 tcomplain ();
1800 }
1801
1802 void
1803 target_flash_done (void)
1804 {
1805 struct target_ops *t;
1806
1807 for (t = current_target.beneath; t != NULL; t = t->beneath)
1808 if (t->to_flash_done != NULL)
1809 {
1810 if (targetdebug)
1811 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1812 t->to_flash_done (t);
1813 return;
1814 }
1815
1816 tcomplain ();
1817 }
1818
1819 static void
1820 show_trust_readonly (struct ui_file *file, int from_tty,
1821 struct cmd_list_element *c, const char *value)
1822 {
1823 fprintf_filtered (file,
1824 _("Mode for reading from readonly sections is %s.\n"),
1825 value);
1826 }
1827
1828 /* More generic transfers. */
1829
1830 static LONGEST
1831 default_xfer_partial (struct target_ops *ops, enum target_object object,
1832 const char *annex, gdb_byte *readbuf,
1833 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1834 {
1835 if (object == TARGET_OBJECT_MEMORY
1836 && ops->deprecated_xfer_memory != NULL)
1837 /* If available, fall back to the target's
1838 "deprecated_xfer_memory" method. */
1839 {
1840 int xfered = -1;
1841
1842 errno = 0;
1843 if (writebuf != NULL)
1844 {
1845 void *buffer = xmalloc (len);
1846 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1847
1848 memcpy (buffer, writebuf, len);
1849 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1850 1/*write*/, NULL, ops);
1851 do_cleanups (cleanup);
1852 }
1853 if (readbuf != NULL)
1854 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1855 0/*read*/, NULL, ops);
1856 if (xfered > 0)
1857 return xfered;
1858 else if (xfered == 0 && errno == 0)
1859 /* "deprecated_xfer_memory" uses 0, cross checked against
1860 ERRNO as one indication of an error. */
1861 return 0;
1862 else
1863 return -1;
1864 }
1865 else if (ops->beneath != NULL)
1866 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1867 readbuf, writebuf, offset, len);
1868 else
1869 return -1;
1870 }
1871
1872 /* The xfer_partial handler for the topmost target. Unlike the default,
1873 it does not need to handle memory specially; it just passes all
1874 requests down the stack. */
1875
1876 static LONGEST
1877 current_xfer_partial (struct target_ops *ops, enum target_object object,
1878 const char *annex, gdb_byte *readbuf,
1879 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1880 {
1881 if (ops->beneath != NULL)
1882 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1883 readbuf, writebuf, offset, len);
1884 else
1885 return -1;
1886 }
1887
1888 /* Target vector read/write partial wrapper functions. */
1889
1890 static LONGEST
1891 target_read_partial (struct target_ops *ops,
1892 enum target_object object,
1893 const char *annex, gdb_byte *buf,
1894 ULONGEST offset, LONGEST len)
1895 {
1896 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1897 }
1898
1899 static LONGEST
1900 target_write_partial (struct target_ops *ops,
1901 enum target_object object,
1902 const char *annex, const gdb_byte *buf,
1903 ULONGEST offset, LONGEST len)
1904 {
1905 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1906 }
1907
1908 /* Wrappers to perform the full transfer. */
1909
1910 /* For docs on target_read see target.h. */
1911
1912 LONGEST
1913 target_read (struct target_ops *ops,
1914 enum target_object object,
1915 const char *annex, gdb_byte *buf,
1916 ULONGEST offset, LONGEST len)
1917 {
1918 LONGEST xfered = 0;
1919
1920 while (xfered < len)
1921 {
1922 LONGEST xfer = target_read_partial (ops, object, annex,
1923 (gdb_byte *) buf + xfered,
1924 offset + xfered, len - xfered);
1925
1926 /* Call an observer, notifying them of the xfer progress? */
1927 if (xfer == 0)
1928 return xfered;
1929 if (xfer < 0)
1930 return -1;
1931 xfered += xfer;
1932 QUIT;
1933 }
1934 return len;
1935 }
1936
1937 /* Assuming that the entire [begin, end) range of memory cannot be
1938 read, try to read whatever subrange is possible to read.
1939
1940 The function returns, in RESULT, either zero or one memory block.
1941 If there's a readable subrange at the beginning, it is completely
1942 read and returned. Any further readable subrange will not be read.
1943 Otherwise, if there's a readable subrange at the end, it will be
1944 completely read and returned. Any readable subranges before it
1945 (obviously, not starting at the beginning), will be ignored. In
1946 other cases -- either no readable subrange, or readable subrange(s)
1947 that is neither at the beginning, or end, nothing is returned.
1948
1949 The purpose of this function is to handle a read across a boundary
1950 of accessible memory in a case when memory map is not available.
1951 The above restrictions are fine for this case, but will give
1952 incorrect results if the memory is 'patchy'. However, supporting
1953 'patchy' memory would require trying to read every single byte,
1954 and it seems unacceptable solution. Explicit memory map is
1955 recommended for this case -- and target_read_memory_robust will
1956 take care of reading multiple ranges then. */
1957
1958 static void
1959 read_whatever_is_readable (struct target_ops *ops,
1960 ULONGEST begin, ULONGEST end,
1961 VEC(memory_read_result_s) **result)
1962 {
1963 gdb_byte *buf = xmalloc (end - begin);
1964 ULONGEST current_begin = begin;
1965 ULONGEST current_end = end;
1966 int forward;
1967 memory_read_result_s r;
1968
1969 /* If we previously failed to read 1 byte, nothing can be done here. */
1970 if (end - begin <= 1)
1971 return;
1972
1973 /* Check that either first or the last byte is readable, and give up
1974 if not. This heuristic is meant to permit reading accessible memory
1975 at the boundary of accessible region. */
1976 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1977 buf, begin, 1) == 1)
1978 {
1979 forward = 1;
1980 ++current_begin;
1981 }
1982 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1983 buf + (end-begin) - 1, end - 1, 1) == 1)
1984 {
1985 forward = 0;
1986 --current_end;
1987 }
1988 else
1989 {
1990 return;
1991 }
1992
1993 /* Loop invariant is that the [current_begin, current_end) was previously
1994 found to be not readable as a whole.
1995
1996 Note loop condition -- if the range has 1 byte, we can't divide the range
1997 so there's no point trying further. */
1998 while (current_end - current_begin > 1)
1999 {
2000 ULONGEST first_half_begin, first_half_end;
2001 ULONGEST second_half_begin, second_half_end;
2002 LONGEST xfer;
2003 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2004
2005 if (forward)
2006 {
2007 first_half_begin = current_begin;
2008 first_half_end = middle;
2009 second_half_begin = middle;
2010 second_half_end = current_end;
2011 }
2012 else
2013 {
2014 first_half_begin = middle;
2015 first_half_end = current_end;
2016 second_half_begin = current_begin;
2017 second_half_end = middle;
2018 }
2019
2020 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2021 buf + (first_half_begin - begin),
2022 first_half_begin,
2023 first_half_end - first_half_begin);
2024
2025 if (xfer == first_half_end - first_half_begin)
2026 {
2027 /* This half reads up fine. So, the error must be in the
2028 other half. */
2029 current_begin = second_half_begin;
2030 current_end = second_half_end;
2031 }
2032 else
2033 {
2034 /* This half is not readable. Because we've tried one byte, we
2035 know some part of this half if actually redable. Go to the next
2036 iteration to divide again and try to read.
2037
2038 We don't handle the other half, because this function only tries
2039 to read a single readable subrange. */
2040 current_begin = first_half_begin;
2041 current_end = first_half_end;
2042 }
2043 }
2044
2045 if (forward)
2046 {
2047 /* The [begin, current_begin) range has been read. */
2048 r.begin = begin;
2049 r.end = current_begin;
2050 r.data = buf;
2051 }
2052 else
2053 {
2054 /* The [current_end, end) range has been read. */
2055 LONGEST rlen = end - current_end;
2056
2057 r.data = xmalloc (rlen);
2058 memcpy (r.data, buf + current_end - begin, rlen);
2059 r.begin = current_end;
2060 r.end = end;
2061 xfree (buf);
2062 }
2063 VEC_safe_push(memory_read_result_s, (*result), &r);
2064 }
2065
2066 void
2067 free_memory_read_result_vector (void *x)
2068 {
2069 VEC(memory_read_result_s) *v = x;
2070 memory_read_result_s *current;
2071 int ix;
2072
2073 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2074 {
2075 xfree (current->data);
2076 }
2077 VEC_free (memory_read_result_s, v);
2078 }
2079
2080 VEC(memory_read_result_s) *
2081 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2082 {
2083 VEC(memory_read_result_s) *result = 0;
2084
2085 LONGEST xfered = 0;
2086 while (xfered < len)
2087 {
2088 struct mem_region *region = lookup_mem_region (offset + xfered);
2089 LONGEST rlen;
2090
2091 /* If there is no explicit region, a fake one should be created. */
2092 gdb_assert (region);
2093
2094 if (region->hi == 0)
2095 rlen = len - xfered;
2096 else
2097 rlen = region->hi - offset;
2098
2099 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2100 {
2101 /* Cannot read this region. Note that we can end up here only
2102 if the region is explicitly marked inaccessible, or
2103 'inaccessible-by-default' is in effect. */
2104 xfered += rlen;
2105 }
2106 else
2107 {
2108 LONGEST to_read = min (len - xfered, rlen);
2109 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2110
2111 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2112 (gdb_byte *) buffer,
2113 offset + xfered, to_read);
2114 /* Call an observer, notifying them of the xfer progress? */
2115 if (xfer <= 0)
2116 {
2117 /* Got an error reading full chunk. See if maybe we can read
2118 some subrange. */
2119 xfree (buffer);
2120 read_whatever_is_readable (ops, offset + xfered,
2121 offset + xfered + to_read, &result);
2122 xfered += to_read;
2123 }
2124 else
2125 {
2126 struct memory_read_result r;
2127 r.data = buffer;
2128 r.begin = offset + xfered;
2129 r.end = r.begin + xfer;
2130 VEC_safe_push (memory_read_result_s, result, &r);
2131 xfered += xfer;
2132 }
2133 QUIT;
2134 }
2135 }
2136 return result;
2137 }
2138
2139
2140 /* An alternative to target_write with progress callbacks. */
2141
2142 LONGEST
2143 target_write_with_progress (struct target_ops *ops,
2144 enum target_object object,
2145 const char *annex, const gdb_byte *buf,
2146 ULONGEST offset, LONGEST len,
2147 void (*progress) (ULONGEST, void *), void *baton)
2148 {
2149 LONGEST xfered = 0;
2150
2151 /* Give the progress callback a chance to set up. */
2152 if (progress)
2153 (*progress) (0, baton);
2154
2155 while (xfered < len)
2156 {
2157 LONGEST xfer = target_write_partial (ops, object, annex,
2158 (gdb_byte *) buf + xfered,
2159 offset + xfered, len - xfered);
2160
2161 if (xfer == 0)
2162 return xfered;
2163 if (xfer < 0)
2164 return -1;
2165
2166 if (progress)
2167 (*progress) (xfer, baton);
2168
2169 xfered += xfer;
2170 QUIT;
2171 }
2172 return len;
2173 }
2174
2175 /* For docs on target_write see target.h. */
2176
2177 LONGEST
2178 target_write (struct target_ops *ops,
2179 enum target_object object,
2180 const char *annex, const gdb_byte *buf,
2181 ULONGEST offset, LONGEST len)
2182 {
2183 return target_write_with_progress (ops, object, annex, buf, offset, len,
2184 NULL, NULL);
2185 }
2186
2187 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2188 the size of the transferred data. PADDING additional bytes are
2189 available in *BUF_P. This is a helper function for
2190 target_read_alloc; see the declaration of that function for more
2191 information. */
2192
2193 static LONGEST
2194 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2195 const char *annex, gdb_byte **buf_p, int padding)
2196 {
2197 size_t buf_alloc, buf_pos;
2198 gdb_byte *buf;
2199 LONGEST n;
2200
2201 /* This function does not have a length parameter; it reads the
2202 entire OBJECT). Also, it doesn't support objects fetched partly
2203 from one target and partly from another (in a different stratum,
2204 e.g. a core file and an executable). Both reasons make it
2205 unsuitable for reading memory. */
2206 gdb_assert (object != TARGET_OBJECT_MEMORY);
2207
2208 /* Start by reading up to 4K at a time. The target will throttle
2209 this number down if necessary. */
2210 buf_alloc = 4096;
2211 buf = xmalloc (buf_alloc);
2212 buf_pos = 0;
2213 while (1)
2214 {
2215 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2216 buf_pos, buf_alloc - buf_pos - padding);
2217 if (n < 0)
2218 {
2219 /* An error occurred. */
2220 xfree (buf);
2221 return -1;
2222 }
2223 else if (n == 0)
2224 {
2225 /* Read all there was. */
2226 if (buf_pos == 0)
2227 xfree (buf);
2228 else
2229 *buf_p = buf;
2230 return buf_pos;
2231 }
2232
2233 buf_pos += n;
2234
2235 /* If the buffer is filling up, expand it. */
2236 if (buf_alloc < buf_pos * 2)
2237 {
2238 buf_alloc *= 2;
2239 buf = xrealloc (buf, buf_alloc);
2240 }
2241
2242 QUIT;
2243 }
2244 }
2245
2246 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2247 the size of the transferred data. See the declaration in "target.h"
2248 function for more information about the return value. */
2249
2250 LONGEST
2251 target_read_alloc (struct target_ops *ops, enum target_object object,
2252 const char *annex, gdb_byte **buf_p)
2253 {
2254 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2255 }
2256
2257 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2258 returned as a string, allocated using xmalloc. If an error occurs
2259 or the transfer is unsupported, NULL is returned. Empty objects
2260 are returned as allocated but empty strings. A warning is issued
2261 if the result contains any embedded NUL bytes. */
2262
2263 char *
2264 target_read_stralloc (struct target_ops *ops, enum target_object object,
2265 const char *annex)
2266 {
2267 gdb_byte *buffer;
2268 LONGEST transferred;
2269
2270 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2271
2272 if (transferred < 0)
2273 return NULL;
2274
2275 if (transferred == 0)
2276 return xstrdup ("");
2277
2278 buffer[transferred] = 0;
2279 if (strlen (buffer) < transferred)
2280 warning (_("target object %d, annex %s, "
2281 "contained unexpected null characters"),
2282 (int) object, annex ? annex : "(none)");
2283
2284 return (char *) buffer;
2285 }
2286
2287 /* Memory transfer methods. */
2288
2289 void
2290 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2291 LONGEST len)
2292 {
2293 /* This method is used to read from an alternate, non-current
2294 target. This read must bypass the overlay support (as symbols
2295 don't match this target), and GDB's internal cache (wrong cache
2296 for this target). */
2297 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2298 != len)
2299 memory_error (EIO, addr);
2300 }
2301
2302 ULONGEST
2303 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2304 int len, enum bfd_endian byte_order)
2305 {
2306 gdb_byte buf[sizeof (ULONGEST)];
2307
2308 gdb_assert (len <= sizeof (buf));
2309 get_target_memory (ops, addr, buf, len);
2310 return extract_unsigned_integer (buf, len, byte_order);
2311 }
2312
2313 int
2314 target_insert_breakpoint (struct gdbarch *gdbarch,
2315 struct bp_target_info *bp_tgt)
2316 {
2317 if (!may_insert_breakpoints)
2318 {
2319 warning (_("May not insert breakpoints"));
2320 return 1;
2321 }
2322
2323 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2324 }
2325
2326 int
2327 target_remove_breakpoint (struct gdbarch *gdbarch,
2328 struct bp_target_info *bp_tgt)
2329 {
2330 /* This is kind of a weird case to handle, but the permission might
2331 have been changed after breakpoints were inserted - in which case
2332 we should just take the user literally and assume that any
2333 breakpoints should be left in place. */
2334 if (!may_insert_breakpoints)
2335 {
2336 warning (_("May not remove breakpoints"));
2337 return 1;
2338 }
2339
2340 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2341 }
2342
2343 static void
2344 target_info (char *args, int from_tty)
2345 {
2346 struct target_ops *t;
2347 int has_all_mem = 0;
2348
2349 if (symfile_objfile != NULL)
2350 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2351
2352 for (t = target_stack; t != NULL; t = t->beneath)
2353 {
2354 if (!(*t->to_has_memory) (t))
2355 continue;
2356
2357 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2358 continue;
2359 if (has_all_mem)
2360 printf_unfiltered (_("\tWhile running this, "
2361 "GDB does not access memory from...\n"));
2362 printf_unfiltered ("%s:\n", t->to_longname);
2363 (t->to_files_info) (t);
2364 has_all_mem = (*t->to_has_all_memory) (t);
2365 }
2366 }
2367
2368 /* This function is called before any new inferior is created, e.g.
2369 by running a program, attaching, or connecting to a target.
2370 It cleans up any state from previous invocations which might
2371 change between runs. This is a subset of what target_preopen
2372 resets (things which might change between targets). */
2373
2374 void
2375 target_pre_inferior (int from_tty)
2376 {
2377 /* Clear out solib state. Otherwise the solib state of the previous
2378 inferior might have survived and is entirely wrong for the new
2379 target. This has been observed on GNU/Linux using glibc 2.3. How
2380 to reproduce:
2381
2382 bash$ ./foo&
2383 [1] 4711
2384 bash$ ./foo&
2385 [1] 4712
2386 bash$ gdb ./foo
2387 [...]
2388 (gdb) attach 4711
2389 (gdb) detach
2390 (gdb) attach 4712
2391 Cannot access memory at address 0xdeadbeef
2392 */
2393
2394 /* In some OSs, the shared library list is the same/global/shared
2395 across inferiors. If code is shared between processes, so are
2396 memory regions and features. */
2397 if (!gdbarch_has_global_solist (target_gdbarch))
2398 {
2399 no_shared_libraries (NULL, from_tty);
2400
2401 invalidate_target_mem_regions ();
2402
2403 target_clear_description ();
2404 }
2405 }
2406
2407 /* Callback for iterate_over_inferiors. Gets rid of the given
2408 inferior. */
2409
2410 static int
2411 dispose_inferior (struct inferior *inf, void *args)
2412 {
2413 struct thread_info *thread;
2414
2415 thread = any_thread_of_process (inf->pid);
2416 if (thread)
2417 {
2418 switch_to_thread (thread->ptid);
2419
2420 /* Core inferiors actually should be detached, not killed. */
2421 if (target_has_execution)
2422 target_kill ();
2423 else
2424 target_detach (NULL, 0);
2425 }
2426
2427 return 0;
2428 }
2429
2430 /* This is to be called by the open routine before it does
2431 anything. */
2432
2433 void
2434 target_preopen (int from_tty)
2435 {
2436 dont_repeat ();
2437
2438 if (have_inferiors ())
2439 {
2440 if (!from_tty
2441 || !have_live_inferiors ()
2442 || query (_("A program is being debugged already. Kill it? ")))
2443 iterate_over_inferiors (dispose_inferior, NULL);
2444 else
2445 error (_("Program not killed."));
2446 }
2447
2448 /* Calling target_kill may remove the target from the stack. But if
2449 it doesn't (which seems like a win for UDI), remove it now. */
2450 /* Leave the exec target, though. The user may be switching from a
2451 live process to a core of the same program. */
2452 pop_all_targets_above (file_stratum, 0);
2453
2454 target_pre_inferior (from_tty);
2455 }
2456
2457 /* Detach a target after doing deferred register stores. */
2458
2459 void
2460 target_detach (char *args, int from_tty)
2461 {
2462 struct target_ops* t;
2463
2464 if (gdbarch_has_global_breakpoints (target_gdbarch))
2465 /* Don't remove global breakpoints here. They're removed on
2466 disconnection from the target. */
2467 ;
2468 else
2469 /* If we're in breakpoints-always-inserted mode, have to remove
2470 them before detaching. */
2471 remove_breakpoints_pid (PIDGET (inferior_ptid));
2472
2473 prepare_for_detach ();
2474
2475 for (t = current_target.beneath; t != NULL; t = t->beneath)
2476 {
2477 if (t->to_detach != NULL)
2478 {
2479 t->to_detach (t, args, from_tty);
2480 if (targetdebug)
2481 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2482 args, from_tty);
2483 return;
2484 }
2485 }
2486
2487 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2488 }
2489
2490 void
2491 target_disconnect (char *args, int from_tty)
2492 {
2493 struct target_ops *t;
2494
2495 /* If we're in breakpoints-always-inserted mode or if breakpoints
2496 are global across processes, we have to remove them before
2497 disconnecting. */
2498 remove_breakpoints ();
2499
2500 for (t = current_target.beneath; t != NULL; t = t->beneath)
2501 if (t->to_disconnect != NULL)
2502 {
2503 if (targetdebug)
2504 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2505 args, from_tty);
2506 t->to_disconnect (t, args, from_tty);
2507 return;
2508 }
2509
2510 tcomplain ();
2511 }
2512
2513 ptid_t
2514 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2515 {
2516 struct target_ops *t;
2517
2518 for (t = current_target.beneath; t != NULL; t = t->beneath)
2519 {
2520 if (t->to_wait != NULL)
2521 {
2522 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2523
2524 if (targetdebug)
2525 {
2526 char *status_string;
2527
2528 status_string = target_waitstatus_to_string (status);
2529 fprintf_unfiltered (gdb_stdlog,
2530 "target_wait (%d, status) = %d, %s\n",
2531 PIDGET (ptid), PIDGET (retval),
2532 status_string);
2533 xfree (status_string);
2534 }
2535
2536 return retval;
2537 }
2538 }
2539
2540 noprocess ();
2541 }
2542
2543 char *
2544 target_pid_to_str (ptid_t ptid)
2545 {
2546 struct target_ops *t;
2547
2548 for (t = current_target.beneath; t != NULL; t = t->beneath)
2549 {
2550 if (t->to_pid_to_str != NULL)
2551 return (*t->to_pid_to_str) (t, ptid);
2552 }
2553
2554 return normal_pid_to_str (ptid);
2555 }
2556
2557 char *
2558 target_thread_name (struct thread_info *info)
2559 {
2560 struct target_ops *t;
2561
2562 for (t = current_target.beneath; t != NULL; t = t->beneath)
2563 {
2564 if (t->to_thread_name != NULL)
2565 return (*t->to_thread_name) (info);
2566 }
2567
2568 return NULL;
2569 }
2570
2571 void
2572 target_resume (ptid_t ptid, int step, enum target_signal signal)
2573 {
2574 struct target_ops *t;
2575
2576 target_dcache_invalidate ();
2577
2578 for (t = current_target.beneath; t != NULL; t = t->beneath)
2579 {
2580 if (t->to_resume != NULL)
2581 {
2582 t->to_resume (t, ptid, step, signal);
2583 if (targetdebug)
2584 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2585 PIDGET (ptid),
2586 step ? "step" : "continue",
2587 target_signal_to_name (signal));
2588
2589 registers_changed_ptid (ptid);
2590 set_executing (ptid, 1);
2591 set_running (ptid, 1);
2592 clear_inline_frame_state (ptid);
2593 return;
2594 }
2595 }
2596
2597 noprocess ();
2598 }
2599 /* Look through the list of possible targets for a target that can
2600 follow forks. */
2601
2602 int
2603 target_follow_fork (int follow_child)
2604 {
2605 struct target_ops *t;
2606
2607 for (t = current_target.beneath; t != NULL; t = t->beneath)
2608 {
2609 if (t->to_follow_fork != NULL)
2610 {
2611 int retval = t->to_follow_fork (t, follow_child);
2612
2613 if (targetdebug)
2614 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2615 follow_child, retval);
2616 return retval;
2617 }
2618 }
2619
2620 /* Some target returned a fork event, but did not know how to follow it. */
2621 internal_error (__FILE__, __LINE__,
2622 _("could not find a target to follow fork"));
2623 }
2624
2625 void
2626 target_mourn_inferior (void)
2627 {
2628 struct target_ops *t;
2629
2630 for (t = current_target.beneath; t != NULL; t = t->beneath)
2631 {
2632 if (t->to_mourn_inferior != NULL)
2633 {
2634 t->to_mourn_inferior (t);
2635 if (targetdebug)
2636 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2637
2638 /* We no longer need to keep handles on any of the object files.
2639 Make sure to release them to avoid unnecessarily locking any
2640 of them while we're not actually debugging. */
2641 bfd_cache_close_all ();
2642
2643 return;
2644 }
2645 }
2646
2647 internal_error (__FILE__, __LINE__,
2648 _("could not find a target to follow mourn inferior"));
2649 }
2650
2651 /* Look for a target which can describe architectural features, starting
2652 from TARGET. If we find one, return its description. */
2653
2654 const struct target_desc *
2655 target_read_description (struct target_ops *target)
2656 {
2657 struct target_ops *t;
2658
2659 for (t = target; t != NULL; t = t->beneath)
2660 if (t->to_read_description != NULL)
2661 {
2662 const struct target_desc *tdesc;
2663
2664 tdesc = t->to_read_description (t);
2665 if (tdesc)
2666 return tdesc;
2667 }
2668
2669 return NULL;
2670 }
2671
2672 /* The default implementation of to_search_memory.
2673 This implements a basic search of memory, reading target memory and
2674 performing the search here (as opposed to performing the search in on the
2675 target side with, for example, gdbserver). */
2676
2677 int
2678 simple_search_memory (struct target_ops *ops,
2679 CORE_ADDR start_addr, ULONGEST search_space_len,
2680 const gdb_byte *pattern, ULONGEST pattern_len,
2681 CORE_ADDR *found_addrp)
2682 {
2683 /* NOTE: also defined in find.c testcase. */
2684 #define SEARCH_CHUNK_SIZE 16000
2685 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2686 /* Buffer to hold memory contents for searching. */
2687 gdb_byte *search_buf;
2688 unsigned search_buf_size;
2689 struct cleanup *old_cleanups;
2690
2691 search_buf_size = chunk_size + pattern_len - 1;
2692
2693 /* No point in trying to allocate a buffer larger than the search space. */
2694 if (search_space_len < search_buf_size)
2695 search_buf_size = search_space_len;
2696
2697 search_buf = malloc (search_buf_size);
2698 if (search_buf == NULL)
2699 error (_("Unable to allocate memory to perform the search."));
2700 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2701
2702 /* Prime the search buffer. */
2703
2704 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2705 search_buf, start_addr, search_buf_size) != search_buf_size)
2706 {
2707 warning (_("Unable to access target memory at %s, halting search."),
2708 hex_string (start_addr));
2709 do_cleanups (old_cleanups);
2710 return -1;
2711 }
2712
2713 /* Perform the search.
2714
2715 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2716 When we've scanned N bytes we copy the trailing bytes to the start and
2717 read in another N bytes. */
2718
2719 while (search_space_len >= pattern_len)
2720 {
2721 gdb_byte *found_ptr;
2722 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2723
2724 found_ptr = memmem (search_buf, nr_search_bytes,
2725 pattern, pattern_len);
2726
2727 if (found_ptr != NULL)
2728 {
2729 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2730
2731 *found_addrp = found_addr;
2732 do_cleanups (old_cleanups);
2733 return 1;
2734 }
2735
2736 /* Not found in this chunk, skip to next chunk. */
2737
2738 /* Don't let search_space_len wrap here, it's unsigned. */
2739 if (search_space_len >= chunk_size)
2740 search_space_len -= chunk_size;
2741 else
2742 search_space_len = 0;
2743
2744 if (search_space_len >= pattern_len)
2745 {
2746 unsigned keep_len = search_buf_size - chunk_size;
2747 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2748 int nr_to_read;
2749
2750 /* Copy the trailing part of the previous iteration to the front
2751 of the buffer for the next iteration. */
2752 gdb_assert (keep_len == pattern_len - 1);
2753 memcpy (search_buf, search_buf + chunk_size, keep_len);
2754
2755 nr_to_read = min (search_space_len - keep_len, chunk_size);
2756
2757 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2758 search_buf + keep_len, read_addr,
2759 nr_to_read) != nr_to_read)
2760 {
2761 warning (_("Unable to access target "
2762 "memory at %s, halting search."),
2763 hex_string (read_addr));
2764 do_cleanups (old_cleanups);
2765 return -1;
2766 }
2767
2768 start_addr += chunk_size;
2769 }
2770 }
2771
2772 /* Not found. */
2773
2774 do_cleanups (old_cleanups);
2775 return 0;
2776 }
2777
2778 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2779 sequence of bytes in PATTERN with length PATTERN_LEN.
2780
2781 The result is 1 if found, 0 if not found, and -1 if there was an error
2782 requiring halting of the search (e.g. memory read error).
2783 If the pattern is found the address is recorded in FOUND_ADDRP. */
2784
2785 int
2786 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2787 const gdb_byte *pattern, ULONGEST pattern_len,
2788 CORE_ADDR *found_addrp)
2789 {
2790 struct target_ops *t;
2791 int found;
2792
2793 /* We don't use INHERIT to set current_target.to_search_memory,
2794 so we have to scan the target stack and handle targetdebug
2795 ourselves. */
2796
2797 if (targetdebug)
2798 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2799 hex_string (start_addr));
2800
2801 for (t = current_target.beneath; t != NULL; t = t->beneath)
2802 if (t->to_search_memory != NULL)
2803 break;
2804
2805 if (t != NULL)
2806 {
2807 found = t->to_search_memory (t, start_addr, search_space_len,
2808 pattern, pattern_len, found_addrp);
2809 }
2810 else
2811 {
2812 /* If a special version of to_search_memory isn't available, use the
2813 simple version. */
2814 found = simple_search_memory (current_target.beneath,
2815 start_addr, search_space_len,
2816 pattern, pattern_len, found_addrp);
2817 }
2818
2819 if (targetdebug)
2820 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2821
2822 return found;
2823 }
2824
2825 /* Look through the currently pushed targets. If none of them will
2826 be able to restart the currently running process, issue an error
2827 message. */
2828
2829 void
2830 target_require_runnable (void)
2831 {
2832 struct target_ops *t;
2833
2834 for (t = target_stack; t != NULL; t = t->beneath)
2835 {
2836 /* If this target knows how to create a new program, then
2837 assume we will still be able to after killing the current
2838 one. Either killing and mourning will not pop T, or else
2839 find_default_run_target will find it again. */
2840 if (t->to_create_inferior != NULL)
2841 return;
2842
2843 /* Do not worry about thread_stratum targets that can not
2844 create inferiors. Assume they will be pushed again if
2845 necessary, and continue to the process_stratum. */
2846 if (t->to_stratum == thread_stratum
2847 || t->to_stratum == arch_stratum)
2848 continue;
2849
2850 error (_("The \"%s\" target does not support \"run\". "
2851 "Try \"help target\" or \"continue\"."),
2852 t->to_shortname);
2853 }
2854
2855 /* This function is only called if the target is running. In that
2856 case there should have been a process_stratum target and it
2857 should either know how to create inferiors, or not... */
2858 internal_error (__FILE__, __LINE__, _("No targets found"));
2859 }
2860
2861 /* Look through the list of possible targets for a target that can
2862 execute a run or attach command without any other data. This is
2863 used to locate the default process stratum.
2864
2865 If DO_MESG is not NULL, the result is always valid (error() is
2866 called for errors); else, return NULL on error. */
2867
2868 static struct target_ops *
2869 find_default_run_target (char *do_mesg)
2870 {
2871 struct target_ops **t;
2872 struct target_ops *runable = NULL;
2873 int count;
2874
2875 count = 0;
2876
2877 for (t = target_structs; t < target_structs + target_struct_size;
2878 ++t)
2879 {
2880 if ((*t)->to_can_run && target_can_run (*t))
2881 {
2882 runable = *t;
2883 ++count;
2884 }
2885 }
2886
2887 if (count != 1)
2888 {
2889 if (do_mesg)
2890 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2891 else
2892 return NULL;
2893 }
2894
2895 return runable;
2896 }
2897
2898 void
2899 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2900 {
2901 struct target_ops *t;
2902
2903 t = find_default_run_target ("attach");
2904 (t->to_attach) (t, args, from_tty);
2905 return;
2906 }
2907
2908 void
2909 find_default_create_inferior (struct target_ops *ops,
2910 char *exec_file, char *allargs, char **env,
2911 int from_tty)
2912 {
2913 struct target_ops *t;
2914
2915 t = find_default_run_target ("run");
2916 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2917 return;
2918 }
2919
2920 static int
2921 find_default_can_async_p (void)
2922 {
2923 struct target_ops *t;
2924
2925 /* This may be called before the target is pushed on the stack;
2926 look for the default process stratum. If there's none, gdb isn't
2927 configured with a native debugger, and target remote isn't
2928 connected yet. */
2929 t = find_default_run_target (NULL);
2930 if (t && t->to_can_async_p)
2931 return (t->to_can_async_p) ();
2932 return 0;
2933 }
2934
2935 static int
2936 find_default_is_async_p (void)
2937 {
2938 struct target_ops *t;
2939
2940 /* This may be called before the target is pushed on the stack;
2941 look for the default process stratum. If there's none, gdb isn't
2942 configured with a native debugger, and target remote isn't
2943 connected yet. */
2944 t = find_default_run_target (NULL);
2945 if (t && t->to_is_async_p)
2946 return (t->to_is_async_p) ();
2947 return 0;
2948 }
2949
2950 static int
2951 find_default_supports_non_stop (void)
2952 {
2953 struct target_ops *t;
2954
2955 t = find_default_run_target (NULL);
2956 if (t && t->to_supports_non_stop)
2957 return (t->to_supports_non_stop) ();
2958 return 0;
2959 }
2960
2961 int
2962 target_supports_non_stop (void)
2963 {
2964 struct target_ops *t;
2965
2966 for (t = &current_target; t != NULL; t = t->beneath)
2967 if (t->to_supports_non_stop)
2968 return t->to_supports_non_stop ();
2969
2970 return 0;
2971 }
2972
2973
2974 char *
2975 target_get_osdata (const char *type)
2976 {
2977 struct target_ops *t;
2978
2979 /* If we're already connected to something that can get us OS
2980 related data, use it. Otherwise, try using the native
2981 target. */
2982 if (current_target.to_stratum >= process_stratum)
2983 t = current_target.beneath;
2984 else
2985 t = find_default_run_target ("get OS data");
2986
2987 if (!t)
2988 return NULL;
2989
2990 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2991 }
2992
2993 /* Determine the current address space of thread PTID. */
2994
2995 struct address_space *
2996 target_thread_address_space (ptid_t ptid)
2997 {
2998 struct address_space *aspace;
2999 struct inferior *inf;
3000 struct target_ops *t;
3001
3002 for (t = current_target.beneath; t != NULL; t = t->beneath)
3003 {
3004 if (t->to_thread_address_space != NULL)
3005 {
3006 aspace = t->to_thread_address_space (t, ptid);
3007 gdb_assert (aspace);
3008
3009 if (targetdebug)
3010 fprintf_unfiltered (gdb_stdlog,
3011 "target_thread_address_space (%s) = %d\n",
3012 target_pid_to_str (ptid),
3013 address_space_num (aspace));
3014 return aspace;
3015 }
3016 }
3017
3018 /* Fall-back to the "main" address space of the inferior. */
3019 inf = find_inferior_pid (ptid_get_pid (ptid));
3020
3021 if (inf == NULL || inf->aspace == NULL)
3022 internal_error (__FILE__, __LINE__,
3023 _("Can't determine the current "
3024 "address space of thread %s\n"),
3025 target_pid_to_str (ptid));
3026
3027 return inf->aspace;
3028 }
3029
3030 static int
3031 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3032 {
3033 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
3034 }
3035
3036 static int
3037 default_watchpoint_addr_within_range (struct target_ops *target,
3038 CORE_ADDR addr,
3039 CORE_ADDR start, int length)
3040 {
3041 return addr >= start && addr < start + length;
3042 }
3043
3044 static struct gdbarch *
3045 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3046 {
3047 return target_gdbarch;
3048 }
3049
3050 static int
3051 return_zero (void)
3052 {
3053 return 0;
3054 }
3055
3056 static int
3057 return_one (void)
3058 {
3059 return 1;
3060 }
3061
3062 static int
3063 return_minus_one (void)
3064 {
3065 return -1;
3066 }
3067
3068 /* Find a single runnable target in the stack and return it. If for
3069 some reason there is more than one, return NULL. */
3070
3071 struct target_ops *
3072 find_run_target (void)
3073 {
3074 struct target_ops **t;
3075 struct target_ops *runable = NULL;
3076 int count;
3077
3078 count = 0;
3079
3080 for (t = target_structs; t < target_structs + target_struct_size; ++t)
3081 {
3082 if ((*t)->to_can_run && target_can_run (*t))
3083 {
3084 runable = *t;
3085 ++count;
3086 }
3087 }
3088
3089 return (count == 1 ? runable : NULL);
3090 }
3091
3092 /*
3093 * Find the next target down the stack from the specified target.
3094 */
3095
3096 struct target_ops *
3097 find_target_beneath (struct target_ops *t)
3098 {
3099 return t->beneath;
3100 }
3101
3102 \f
3103 /* The inferior process has died. Long live the inferior! */
3104
3105 void
3106 generic_mourn_inferior (void)
3107 {
3108 ptid_t ptid;
3109
3110 ptid = inferior_ptid;
3111 inferior_ptid = null_ptid;
3112
3113 if (!ptid_equal (ptid, null_ptid))
3114 {
3115 int pid = ptid_get_pid (ptid);
3116 exit_inferior (pid);
3117 }
3118
3119 breakpoint_init_inferior (inf_exited);
3120 registers_changed ();
3121
3122 reopen_exec_file ();
3123 reinit_frame_cache ();
3124
3125 if (deprecated_detach_hook)
3126 deprecated_detach_hook ();
3127 }
3128 \f
3129 /* Helper function for child_wait and the derivatives of child_wait.
3130 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
3131 translation of that in OURSTATUS. */
3132 void
3133 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
3134 {
3135 if (WIFEXITED (hoststatus))
3136 {
3137 ourstatus->kind = TARGET_WAITKIND_EXITED;
3138 ourstatus->value.integer = WEXITSTATUS (hoststatus);
3139 }
3140 else if (!WIFSTOPPED (hoststatus))
3141 {
3142 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3143 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
3144 }
3145 else
3146 {
3147 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3148 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
3149 }
3150 }
3151 \f
3152 /* Convert a normal process ID to a string. Returns the string in a
3153 static buffer. */
3154
3155 char *
3156 normal_pid_to_str (ptid_t ptid)
3157 {
3158 static char buf[32];
3159
3160 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3161 return buf;
3162 }
3163
3164 static char *
3165 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3166 {
3167 return normal_pid_to_str (ptid);
3168 }
3169
3170 /* Error-catcher for target_find_memory_regions. */
3171 static int
3172 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3173 {
3174 error (_("Command not implemented for this target."));
3175 return 0;
3176 }
3177
3178 /* Error-catcher for target_make_corefile_notes. */
3179 static char *
3180 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3181 {
3182 error (_("Command not implemented for this target."));
3183 return NULL;
3184 }
3185
3186 /* Error-catcher for target_get_bookmark. */
3187 static gdb_byte *
3188 dummy_get_bookmark (char *ignore1, int ignore2)
3189 {
3190 tcomplain ();
3191 return NULL;
3192 }
3193
3194 /* Error-catcher for target_goto_bookmark. */
3195 static void
3196 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3197 {
3198 tcomplain ();
3199 }
3200
3201 /* Set up the handful of non-empty slots needed by the dummy target
3202 vector. */
3203
3204 static void
3205 init_dummy_target (void)
3206 {
3207 dummy_target.to_shortname = "None";
3208 dummy_target.to_longname = "None";
3209 dummy_target.to_doc = "";
3210 dummy_target.to_attach = find_default_attach;
3211 dummy_target.to_detach =
3212 (void (*)(struct target_ops *, char *, int))target_ignore;
3213 dummy_target.to_create_inferior = find_default_create_inferior;
3214 dummy_target.to_can_async_p = find_default_can_async_p;
3215 dummy_target.to_is_async_p = find_default_is_async_p;
3216 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3217 dummy_target.to_pid_to_str = dummy_pid_to_str;
3218 dummy_target.to_stratum = dummy_stratum;
3219 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3220 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3221 dummy_target.to_get_bookmark = dummy_get_bookmark;
3222 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3223 dummy_target.to_xfer_partial = default_xfer_partial;
3224 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3225 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3226 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3227 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3228 dummy_target.to_has_execution
3229 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3230 dummy_target.to_stopped_by_watchpoint = return_zero;
3231 dummy_target.to_stopped_data_address =
3232 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3233 dummy_target.to_magic = OPS_MAGIC;
3234 }
3235 \f
3236 static void
3237 debug_to_open (char *args, int from_tty)
3238 {
3239 debug_target.to_open (args, from_tty);
3240
3241 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3242 }
3243
3244 void
3245 target_close (struct target_ops *targ, int quitting)
3246 {
3247 if (targ->to_xclose != NULL)
3248 targ->to_xclose (targ, quitting);
3249 else if (targ->to_close != NULL)
3250 targ->to_close (quitting);
3251
3252 if (targetdebug)
3253 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
3254 }
3255
3256 void
3257 target_attach (char *args, int from_tty)
3258 {
3259 struct target_ops *t;
3260
3261 for (t = current_target.beneath; t != NULL; t = t->beneath)
3262 {
3263 if (t->to_attach != NULL)
3264 {
3265 t->to_attach (t, args, from_tty);
3266 if (targetdebug)
3267 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3268 args, from_tty);
3269 return;
3270 }
3271 }
3272
3273 internal_error (__FILE__, __LINE__,
3274 _("could not find a target to attach"));
3275 }
3276
3277 int
3278 target_thread_alive (ptid_t ptid)
3279 {
3280 struct target_ops *t;
3281
3282 for (t = current_target.beneath; t != NULL; t = t->beneath)
3283 {
3284 if (t->to_thread_alive != NULL)
3285 {
3286 int retval;
3287
3288 retval = t->to_thread_alive (t, ptid);
3289 if (targetdebug)
3290 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3291 PIDGET (ptid), retval);
3292
3293 return retval;
3294 }
3295 }
3296
3297 return 0;
3298 }
3299
3300 void
3301 target_find_new_threads (void)
3302 {
3303 struct target_ops *t;
3304
3305 for (t = current_target.beneath; t != NULL; t = t->beneath)
3306 {
3307 if (t->to_find_new_threads != NULL)
3308 {
3309 t->to_find_new_threads (t);
3310 if (targetdebug)
3311 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3312
3313 return;
3314 }
3315 }
3316 }
3317
3318 void
3319 target_stop (ptid_t ptid)
3320 {
3321 if (!may_stop)
3322 {
3323 warning (_("May not interrupt or stop the target, ignoring attempt"));
3324 return;
3325 }
3326
3327 (*current_target.to_stop) (ptid);
3328 }
3329
3330 static void
3331 debug_to_post_attach (int pid)
3332 {
3333 debug_target.to_post_attach (pid);
3334
3335 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3336 }
3337
3338 /* Return a pretty printed form of target_waitstatus.
3339 Space for the result is malloc'd, caller must free. */
3340
3341 char *
3342 target_waitstatus_to_string (const struct target_waitstatus *ws)
3343 {
3344 const char *kind_str = "status->kind = ";
3345
3346 switch (ws->kind)
3347 {
3348 case TARGET_WAITKIND_EXITED:
3349 return xstrprintf ("%sexited, status = %d",
3350 kind_str, ws->value.integer);
3351 case TARGET_WAITKIND_STOPPED:
3352 return xstrprintf ("%sstopped, signal = %s",
3353 kind_str, target_signal_to_name (ws->value.sig));
3354 case TARGET_WAITKIND_SIGNALLED:
3355 return xstrprintf ("%ssignalled, signal = %s",
3356 kind_str, target_signal_to_name (ws->value.sig));
3357 case TARGET_WAITKIND_LOADED:
3358 return xstrprintf ("%sloaded", kind_str);
3359 case TARGET_WAITKIND_FORKED:
3360 return xstrprintf ("%sforked", kind_str);
3361 case TARGET_WAITKIND_VFORKED:
3362 return xstrprintf ("%svforked", kind_str);
3363 case TARGET_WAITKIND_EXECD:
3364 return xstrprintf ("%sexecd", kind_str);
3365 case TARGET_WAITKIND_SYSCALL_ENTRY:
3366 return xstrprintf ("%sentered syscall", kind_str);
3367 case TARGET_WAITKIND_SYSCALL_RETURN:
3368 return xstrprintf ("%sexited syscall", kind_str);
3369 case TARGET_WAITKIND_SPURIOUS:
3370 return xstrprintf ("%sspurious", kind_str);
3371 case TARGET_WAITKIND_IGNORE:
3372 return xstrprintf ("%signore", kind_str);
3373 case TARGET_WAITKIND_NO_HISTORY:
3374 return xstrprintf ("%sno-history", kind_str);
3375 default:
3376 return xstrprintf ("%sunknown???", kind_str);
3377 }
3378 }
3379
3380 static void
3381 debug_print_register (const char * func,
3382 struct regcache *regcache, int regno)
3383 {
3384 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3385
3386 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3387 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3388 && gdbarch_register_name (gdbarch, regno) != NULL
3389 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3390 fprintf_unfiltered (gdb_stdlog, "(%s)",
3391 gdbarch_register_name (gdbarch, regno));
3392 else
3393 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3394 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3395 {
3396 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3397 int i, size = register_size (gdbarch, regno);
3398 unsigned char buf[MAX_REGISTER_SIZE];
3399
3400 regcache_raw_collect (regcache, regno, buf);
3401 fprintf_unfiltered (gdb_stdlog, " = ");
3402 for (i = 0; i < size; i++)
3403 {
3404 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3405 }
3406 if (size <= sizeof (LONGEST))
3407 {
3408 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3409
3410 fprintf_unfiltered (gdb_stdlog, " %s %s",
3411 core_addr_to_string_nz (val), plongest (val));
3412 }
3413 }
3414 fprintf_unfiltered (gdb_stdlog, "\n");
3415 }
3416
3417 void
3418 target_fetch_registers (struct regcache *regcache, int regno)
3419 {
3420 struct target_ops *t;
3421
3422 for (t = current_target.beneath; t != NULL; t = t->beneath)
3423 {
3424 if (t->to_fetch_registers != NULL)
3425 {
3426 t->to_fetch_registers (t, regcache, regno);
3427 if (targetdebug)
3428 debug_print_register ("target_fetch_registers", regcache, regno);
3429 return;
3430 }
3431 }
3432 }
3433
3434 void
3435 target_store_registers (struct regcache *regcache, int regno)
3436 {
3437 struct target_ops *t;
3438
3439 if (!may_write_registers)
3440 error (_("Writing to registers is not allowed (regno %d)"), regno);
3441
3442 for (t = current_target.beneath; t != NULL; t = t->beneath)
3443 {
3444 if (t->to_store_registers != NULL)
3445 {
3446 t->to_store_registers (t, regcache, regno);
3447 if (targetdebug)
3448 {
3449 debug_print_register ("target_store_registers", regcache, regno);
3450 }
3451 return;
3452 }
3453 }
3454
3455 noprocess ();
3456 }
3457
3458 int
3459 target_core_of_thread (ptid_t ptid)
3460 {
3461 struct target_ops *t;
3462
3463 for (t = current_target.beneath; t != NULL; t = t->beneath)
3464 {
3465 if (t->to_core_of_thread != NULL)
3466 {
3467 int retval = t->to_core_of_thread (t, ptid);
3468
3469 if (targetdebug)
3470 fprintf_unfiltered (gdb_stdlog,
3471 "target_core_of_thread (%d) = %d\n",
3472 PIDGET (ptid), retval);
3473 return retval;
3474 }
3475 }
3476
3477 return -1;
3478 }
3479
3480 int
3481 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3482 {
3483 struct target_ops *t;
3484
3485 for (t = current_target.beneath; t != NULL; t = t->beneath)
3486 {
3487 if (t->to_verify_memory != NULL)
3488 {
3489 int retval = t->to_verify_memory (t, data, memaddr, size);
3490
3491 if (targetdebug)
3492 fprintf_unfiltered (gdb_stdlog,
3493 "target_verify_memory (%s, %s) = %d\n",
3494 paddress (target_gdbarch, memaddr),
3495 pulongest (size),
3496 retval);
3497 return retval;
3498 }
3499 }
3500
3501 tcomplain ();
3502 }
3503
3504 static void
3505 debug_to_prepare_to_store (struct regcache *regcache)
3506 {
3507 debug_target.to_prepare_to_store (regcache);
3508
3509 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3510 }
3511
3512 static int
3513 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
3514 int write, struct mem_attrib *attrib,
3515 struct target_ops *target)
3516 {
3517 int retval;
3518
3519 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
3520 attrib, target);
3521
3522 fprintf_unfiltered (gdb_stdlog,
3523 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
3524 paddress (target_gdbarch, memaddr), len,
3525 write ? "write" : "read", retval);
3526
3527 if (retval > 0)
3528 {
3529 int i;
3530
3531 fputs_unfiltered (", bytes =", gdb_stdlog);
3532 for (i = 0; i < retval; i++)
3533 {
3534 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
3535 {
3536 if (targetdebug < 2 && i > 0)
3537 {
3538 fprintf_unfiltered (gdb_stdlog, " ...");
3539 break;
3540 }
3541 fprintf_unfiltered (gdb_stdlog, "\n");
3542 }
3543
3544 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
3545 }
3546 }
3547
3548 fputc_unfiltered ('\n', gdb_stdlog);
3549
3550 return retval;
3551 }
3552
3553 static void
3554 debug_to_files_info (struct target_ops *target)
3555 {
3556 debug_target.to_files_info (target);
3557
3558 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3559 }
3560
3561 static int
3562 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
3563 struct bp_target_info *bp_tgt)
3564 {
3565 int retval;
3566
3567 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
3568
3569 fprintf_unfiltered (gdb_stdlog,
3570 "target_insert_breakpoint (%s, xxx) = %ld\n",
3571 core_addr_to_string (bp_tgt->placed_address),
3572 (unsigned long) retval);
3573 return retval;
3574 }
3575
3576 static int
3577 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
3578 struct bp_target_info *bp_tgt)
3579 {
3580 int retval;
3581
3582 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
3583
3584 fprintf_unfiltered (gdb_stdlog,
3585 "target_remove_breakpoint (%s, xxx) = %ld\n",
3586 core_addr_to_string (bp_tgt->placed_address),
3587 (unsigned long) retval);
3588 return retval;
3589 }
3590
3591 static int
3592 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
3593 {
3594 int retval;
3595
3596 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
3597
3598 fprintf_unfiltered (gdb_stdlog,
3599 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3600 (unsigned long) type,
3601 (unsigned long) cnt,
3602 (unsigned long) from_tty,
3603 (unsigned long) retval);
3604 return retval;
3605 }
3606
3607 static int
3608 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3609 {
3610 CORE_ADDR retval;
3611
3612 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
3613
3614 fprintf_unfiltered (gdb_stdlog,
3615 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
3616 core_addr_to_string (addr), (unsigned long) len,
3617 core_addr_to_string (retval));
3618 return retval;
3619 }
3620
3621 static int
3622 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
3623 struct expression *cond)
3624 {
3625 int retval;
3626
3627 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
3628 rw, cond);
3629
3630 fprintf_unfiltered (gdb_stdlog,
3631 "target_can_accel_watchpoint_condition "
3632 "(%s, %d, %d, %s) = %ld\n",
3633 core_addr_to_string (addr), len, rw,
3634 host_address_to_string (cond), (unsigned long) retval);
3635 return retval;
3636 }
3637
3638 static int
3639 debug_to_stopped_by_watchpoint (void)
3640 {
3641 int retval;
3642
3643 retval = debug_target.to_stopped_by_watchpoint ();
3644
3645 fprintf_unfiltered (gdb_stdlog,
3646 "target_stopped_by_watchpoint () = %ld\n",
3647 (unsigned long) retval);
3648 return retval;
3649 }
3650
3651 static int
3652 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3653 {
3654 int retval;
3655
3656 retval = debug_target.to_stopped_data_address (target, addr);
3657
3658 fprintf_unfiltered (gdb_stdlog,
3659 "target_stopped_data_address ([%s]) = %ld\n",
3660 core_addr_to_string (*addr),
3661 (unsigned long)retval);
3662 return retval;
3663 }
3664
3665 static int
3666 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3667 CORE_ADDR addr,
3668 CORE_ADDR start, int length)
3669 {
3670 int retval;
3671
3672 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3673 start, length);
3674
3675 fprintf_filtered (gdb_stdlog,
3676 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
3677 core_addr_to_string (addr), core_addr_to_string (start),
3678 length, retval);
3679 return retval;
3680 }
3681
3682 static int
3683 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
3684 struct bp_target_info *bp_tgt)
3685 {
3686 int retval;
3687
3688 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
3689
3690 fprintf_unfiltered (gdb_stdlog,
3691 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
3692 core_addr_to_string (bp_tgt->placed_address),
3693 (unsigned long) retval);
3694 return retval;
3695 }
3696
3697 static int
3698 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
3699 struct bp_target_info *bp_tgt)
3700 {
3701 int retval;
3702
3703 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
3704
3705 fprintf_unfiltered (gdb_stdlog,
3706 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
3707 core_addr_to_string (bp_tgt->placed_address),
3708 (unsigned long) retval);
3709 return retval;
3710 }
3711
3712 static int
3713 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
3714 struct expression *cond)
3715 {
3716 int retval;
3717
3718 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
3719
3720 fprintf_unfiltered (gdb_stdlog,
3721 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
3722 core_addr_to_string (addr), len, type,
3723 host_address_to_string (cond), (unsigned long) retval);
3724 return retval;
3725 }
3726
3727 static int
3728 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
3729 struct expression *cond)
3730 {
3731 int retval;
3732
3733 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
3734
3735 fprintf_unfiltered (gdb_stdlog,
3736 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
3737 core_addr_to_string (addr), len, type,
3738 host_address_to_string (cond), (unsigned long) retval);
3739 return retval;
3740 }
3741
3742 static void
3743 debug_to_terminal_init (void)
3744 {
3745 debug_target.to_terminal_init ();
3746
3747 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3748 }
3749
3750 static void
3751 debug_to_terminal_inferior (void)
3752 {
3753 debug_target.to_terminal_inferior ();
3754
3755 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3756 }
3757
3758 static void
3759 debug_to_terminal_ours_for_output (void)
3760 {
3761 debug_target.to_terminal_ours_for_output ();
3762
3763 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3764 }
3765
3766 static void
3767 debug_to_terminal_ours (void)
3768 {
3769 debug_target.to_terminal_ours ();
3770
3771 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3772 }
3773
3774 static void
3775 debug_to_terminal_save_ours (void)
3776 {
3777 debug_target.to_terminal_save_ours ();
3778
3779 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3780 }
3781
3782 static void
3783 debug_to_terminal_info (char *arg, int from_tty)
3784 {
3785 debug_target.to_terminal_info (arg, from_tty);
3786
3787 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3788 from_tty);
3789 }
3790
3791 static void
3792 debug_to_load (char *args, int from_tty)
3793 {
3794 debug_target.to_load (args, from_tty);
3795
3796 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3797 }
3798
3799 static int
3800 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
3801 {
3802 int retval;
3803
3804 retval = debug_target.to_lookup_symbol (name, addrp);
3805
3806 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
3807
3808 return retval;
3809 }
3810
3811 static void
3812 debug_to_post_startup_inferior (ptid_t ptid)
3813 {
3814 debug_target.to_post_startup_inferior (ptid);
3815
3816 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3817 PIDGET (ptid));
3818 }
3819
3820 static int
3821 debug_to_insert_fork_catchpoint (int pid)
3822 {
3823 int retval;
3824
3825 retval = debug_target.to_insert_fork_catchpoint (pid);
3826
3827 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
3828 pid, retval);
3829
3830 return retval;
3831 }
3832
3833 static int
3834 debug_to_remove_fork_catchpoint (int pid)
3835 {
3836 int retval;
3837
3838 retval = debug_target.to_remove_fork_catchpoint (pid);
3839
3840 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3841 pid, retval);
3842
3843 return retval;
3844 }
3845
3846 static int
3847 debug_to_insert_vfork_catchpoint (int pid)
3848 {
3849 int retval;
3850
3851 retval = debug_target.to_insert_vfork_catchpoint (pid);
3852
3853 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
3854 pid, retval);
3855
3856 return retval;
3857 }
3858
3859 static int
3860 debug_to_remove_vfork_catchpoint (int pid)
3861 {
3862 int retval;
3863
3864 retval = debug_target.to_remove_vfork_catchpoint (pid);
3865
3866 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3867 pid, retval);
3868
3869 return retval;
3870 }
3871
3872 static int
3873 debug_to_insert_exec_catchpoint (int pid)
3874 {
3875 int retval;
3876
3877 retval = debug_target.to_insert_exec_catchpoint (pid);
3878
3879 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
3880 pid, retval);
3881
3882 return retval;
3883 }
3884
3885 static int
3886 debug_to_remove_exec_catchpoint (int pid)
3887 {
3888 int retval;
3889
3890 retval = debug_target.to_remove_exec_catchpoint (pid);
3891
3892 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3893 pid, retval);
3894
3895 return retval;
3896 }
3897
3898 static int
3899 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3900 {
3901 int has_exited;
3902
3903 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3904
3905 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3906 pid, wait_status, *exit_status, has_exited);
3907
3908 return has_exited;
3909 }
3910
3911 static int
3912 debug_to_can_run (void)
3913 {
3914 int retval;
3915
3916 retval = debug_target.to_can_run ();
3917
3918 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3919
3920 return retval;
3921 }
3922
3923 static void
3924 debug_to_notice_signals (ptid_t ptid)
3925 {
3926 debug_target.to_notice_signals (ptid);
3927
3928 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3929 PIDGET (ptid));
3930 }
3931
3932 static struct gdbarch *
3933 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
3934 {
3935 struct gdbarch *retval;
3936
3937 retval = debug_target.to_thread_architecture (ops, ptid);
3938
3939 fprintf_unfiltered (gdb_stdlog,
3940 "target_thread_architecture (%s) = %s [%s]\n",
3941 target_pid_to_str (ptid),
3942 host_address_to_string (retval),
3943 gdbarch_bfd_arch_info (retval)->printable_name);
3944 return retval;
3945 }
3946
3947 static void
3948 debug_to_stop (ptid_t ptid)
3949 {
3950 debug_target.to_stop (ptid);
3951
3952 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3953 target_pid_to_str (ptid));
3954 }
3955
3956 static void
3957 debug_to_rcmd (char *command,
3958 struct ui_file *outbuf)
3959 {
3960 debug_target.to_rcmd (command, outbuf);
3961 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3962 }
3963
3964 static char *
3965 debug_to_pid_to_exec_file (int pid)
3966 {
3967 char *exec_file;
3968
3969 exec_file = debug_target.to_pid_to_exec_file (pid);
3970
3971 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3972 pid, exec_file);
3973
3974 return exec_file;
3975 }
3976
3977 static void
3978 setup_target_debug (void)
3979 {
3980 memcpy (&debug_target, &current_target, sizeof debug_target);
3981
3982 current_target.to_open = debug_to_open;
3983 current_target.to_post_attach = debug_to_post_attach;
3984 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3985 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3986 current_target.to_files_info = debug_to_files_info;
3987 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3988 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3989 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3990 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3991 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3992 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3993 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3994 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3995 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3996 current_target.to_watchpoint_addr_within_range
3997 = debug_to_watchpoint_addr_within_range;
3998 current_target.to_region_ok_for_hw_watchpoint
3999 = debug_to_region_ok_for_hw_watchpoint;
4000 current_target.to_can_accel_watchpoint_condition
4001 = debug_to_can_accel_watchpoint_condition;
4002 current_target.to_terminal_init = debug_to_terminal_init;
4003 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4004 current_target.to_terminal_ours_for_output
4005 = debug_to_terminal_ours_for_output;
4006 current_target.to_terminal_ours = debug_to_terminal_ours;
4007 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4008 current_target.to_terminal_info = debug_to_terminal_info;
4009 current_target.to_load = debug_to_load;
4010 current_target.to_lookup_symbol = debug_to_lookup_symbol;
4011 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4012 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4013 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4014 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4015 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4016 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4017 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4018 current_target.to_has_exited = debug_to_has_exited;
4019 current_target.to_can_run = debug_to_can_run;
4020 current_target.to_notice_signals = debug_to_notice_signals;
4021 current_target.to_stop = debug_to_stop;
4022 current_target.to_rcmd = debug_to_rcmd;
4023 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4024 current_target.to_thread_architecture = debug_to_thread_architecture;
4025 }
4026 \f
4027
4028 static char targ_desc[] =
4029 "Names of targets and files being debugged.\nShows the entire \
4030 stack of targets currently in use (including the exec-file,\n\
4031 core-file, and process, if any), as well as the symbol file name.";
4032
4033 static void
4034 do_monitor_command (char *cmd,
4035 int from_tty)
4036 {
4037 if ((current_target.to_rcmd
4038 == (void (*) (char *, struct ui_file *)) tcomplain)
4039 || (current_target.to_rcmd == debug_to_rcmd
4040 && (debug_target.to_rcmd
4041 == (void (*) (char *, struct ui_file *)) tcomplain)))
4042 error (_("\"monitor\" command not supported by this target."));
4043 target_rcmd (cmd, gdb_stdtarg);
4044 }
4045
4046 /* Print the name of each layers of our target stack. */
4047
4048 static void
4049 maintenance_print_target_stack (char *cmd, int from_tty)
4050 {
4051 struct target_ops *t;
4052
4053 printf_filtered (_("The current target stack is:\n"));
4054
4055 for (t = target_stack; t != NULL; t = t->beneath)
4056 {
4057 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4058 }
4059 }
4060
4061 /* Controls if async mode is permitted. */
4062 int target_async_permitted = 0;
4063
4064 /* The set command writes to this variable. If the inferior is
4065 executing, linux_nat_async_permitted is *not* updated. */
4066 static int target_async_permitted_1 = 0;
4067
4068 static void
4069 set_maintenance_target_async_permitted (char *args, int from_tty,
4070 struct cmd_list_element *c)
4071 {
4072 if (have_live_inferiors ())
4073 {
4074 target_async_permitted_1 = target_async_permitted;
4075 error (_("Cannot change this setting while the inferior is running."));
4076 }
4077
4078 target_async_permitted = target_async_permitted_1;
4079 }
4080
4081 static void
4082 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
4083 struct cmd_list_element *c,
4084 const char *value)
4085 {
4086 fprintf_filtered (file,
4087 _("Controlling the inferior in "
4088 "asynchronous mode is %s.\n"), value);
4089 }
4090
4091 /* Temporary copies of permission settings. */
4092
4093 static int may_write_registers_1 = 1;
4094 static int may_write_memory_1 = 1;
4095 static int may_insert_breakpoints_1 = 1;
4096 static int may_insert_tracepoints_1 = 1;
4097 static int may_insert_fast_tracepoints_1 = 1;
4098 static int may_stop_1 = 1;
4099
4100 /* Make the user-set values match the real values again. */
4101
4102 void
4103 update_target_permissions (void)
4104 {
4105 may_write_registers_1 = may_write_registers;
4106 may_write_memory_1 = may_write_memory;
4107 may_insert_breakpoints_1 = may_insert_breakpoints;
4108 may_insert_tracepoints_1 = may_insert_tracepoints;
4109 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4110 may_stop_1 = may_stop;
4111 }
4112
4113 /* The one function handles (most of) the permission flags in the same
4114 way. */
4115
4116 static void
4117 set_target_permissions (char *args, int from_tty,
4118 struct cmd_list_element *c)
4119 {
4120 if (target_has_execution)
4121 {
4122 update_target_permissions ();
4123 error (_("Cannot change this setting while the inferior is running."));
4124 }
4125
4126 /* Make the real values match the user-changed values. */
4127 may_write_registers = may_write_registers_1;
4128 may_insert_breakpoints = may_insert_breakpoints_1;
4129 may_insert_tracepoints = may_insert_tracepoints_1;
4130 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4131 may_stop = may_stop_1;
4132 update_observer_mode ();
4133 }
4134
4135 /* Set memory write permission independently of observer mode. */
4136
4137 static void
4138 set_write_memory_permission (char *args, int from_tty,
4139 struct cmd_list_element *c)
4140 {
4141 /* Make the real values match the user-changed values. */
4142 may_write_memory = may_write_memory_1;
4143 update_observer_mode ();
4144 }
4145
4146
4147 void
4148 initialize_targets (void)
4149 {
4150 init_dummy_target ();
4151 push_target (&dummy_target);
4152
4153 add_info ("target", target_info, targ_desc);
4154 add_info ("files", target_info, targ_desc);
4155
4156 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4157 Set target debugging."), _("\
4158 Show target debugging."), _("\
4159 When non-zero, target debugging is enabled. Higher numbers are more\n\
4160 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4161 command."),
4162 NULL,
4163 show_targetdebug,
4164 &setdebuglist, &showdebuglist);
4165
4166 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4167 &trust_readonly, _("\
4168 Set mode for reading from readonly sections."), _("\
4169 Show mode for reading from readonly sections."), _("\
4170 When this mode is on, memory reads from readonly sections (such as .text)\n\
4171 will be read from the object file instead of from the target. This will\n\
4172 result in significant performance improvement for remote targets."),
4173 NULL,
4174 show_trust_readonly,
4175 &setlist, &showlist);
4176
4177 add_com ("monitor", class_obscure, do_monitor_command,
4178 _("Send a command to the remote monitor (remote targets only)."));
4179
4180 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4181 _("Print the name of each layer of the internal target stack."),
4182 &maintenanceprintlist);
4183
4184 add_setshow_boolean_cmd ("target-async", no_class,
4185 &target_async_permitted_1, _("\
4186 Set whether gdb controls the inferior in asynchronous mode."), _("\
4187 Show whether gdb controls the inferior in asynchronous mode."), _("\
4188 Tells gdb whether to control the inferior in asynchronous mode."),
4189 set_maintenance_target_async_permitted,
4190 show_maintenance_target_async_permitted,
4191 &setlist,
4192 &showlist);
4193
4194 add_setshow_boolean_cmd ("stack-cache", class_support,
4195 &stack_cache_enabled_p_1, _("\
4196 Set cache use for stack access."), _("\
4197 Show cache use for stack access."), _("\
4198 When on, use the data cache for all stack access, regardless of any\n\
4199 configured memory regions. This improves remote performance significantly.\n\
4200 By default, caching for stack access is on."),
4201 set_stack_cache_enabled_p,
4202 show_stack_cache_enabled_p,
4203 &setlist, &showlist);
4204
4205 add_setshow_boolean_cmd ("may-write-registers", class_support,
4206 &may_write_registers_1, _("\
4207 Set permission to write into registers."), _("\
4208 Show permission to write into registers."), _("\
4209 When this permission is on, GDB may write into the target's registers.\n\
4210 Otherwise, any sort of write attempt will result in an error."),
4211 set_target_permissions, NULL,
4212 &setlist, &showlist);
4213
4214 add_setshow_boolean_cmd ("may-write-memory", class_support,
4215 &may_write_memory_1, _("\
4216 Set permission to write into target memory."), _("\
4217 Show permission to write into target memory."), _("\
4218 When this permission is on, GDB may write into the target's memory.\n\
4219 Otherwise, any sort of write attempt will result in an error."),
4220 set_write_memory_permission, NULL,
4221 &setlist, &showlist);
4222
4223 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4224 &may_insert_breakpoints_1, _("\
4225 Set permission to insert breakpoints in the target."), _("\
4226 Show permission to insert breakpoints in the target."), _("\
4227 When this permission is on, GDB may insert breakpoints in the program.\n\
4228 Otherwise, any sort of insertion attempt will result in an error."),
4229 set_target_permissions, NULL,
4230 &setlist, &showlist);
4231
4232 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4233 &may_insert_tracepoints_1, _("\
4234 Set permission to insert tracepoints in the target."), _("\
4235 Show permission to insert tracepoints in the target."), _("\
4236 When this permission is on, GDB may insert tracepoints in the program.\n\
4237 Otherwise, any sort of insertion attempt will result in an error."),
4238 set_target_permissions, NULL,
4239 &setlist, &showlist);
4240
4241 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4242 &may_insert_fast_tracepoints_1, _("\
4243 Set permission to insert fast tracepoints in the target."), _("\
4244 Show permission to insert fast tracepoints in the target."), _("\
4245 When this permission is on, GDB may insert fast tracepoints.\n\
4246 Otherwise, any sort of insertion attempt will result in an error."),
4247 set_target_permissions, NULL,
4248 &setlist, &showlist);
4249
4250 add_setshow_boolean_cmd ("may-interrupt", class_support,
4251 &may_stop_1, _("\
4252 Set permission to interrupt or signal the target."), _("\
4253 Show permission to interrupt or signal the target."), _("\
4254 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4255 Otherwise, any attempt to interrupt or stop will be ignored."),
4256 set_target_permissions, NULL,
4257 &setlist, &showlist);
4258
4259
4260 target_dcache = dcache_init ();
4261 }
This page took 0.173164 seconds and 4 git commands to generate.