09be1ba2663ad7236ef93eb67c46eff6d06e5951
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44 #include "exec.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static void tcomplain (void) ATTRIBUTE_NORETURN;
58
59 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
60
61 static int return_zero (void);
62
63 static int return_one (void);
64
65 static int return_minus_one (void);
66
67 void target_ignore (void);
68
69 static void target_command (char *, int);
70
71 static struct target_ops *find_default_run_target (char *);
72
73 static LONGEST default_xfer_partial (struct target_ops *ops,
74 enum target_object object,
75 const char *annex, gdb_byte *readbuf,
76 const gdb_byte *writebuf,
77 ULONGEST offset, LONGEST len);
78
79 static LONGEST current_xfer_partial (struct target_ops *ops,
80 enum target_object object,
81 const char *annex, gdb_byte *readbuf,
82 const gdb_byte *writebuf,
83 ULONGEST offset, LONGEST len);
84
85 static LONGEST target_xfer_partial (struct target_ops *ops,
86 enum target_object object,
87 const char *annex,
88 void *readbuf, const void *writebuf,
89 ULONGEST offset, LONGEST len);
90
91 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
92 ptid_t ptid);
93
94 static void init_dummy_target (void);
95
96 static struct target_ops debug_target;
97
98 static void debug_to_open (char *, int);
99
100 static void debug_to_prepare_to_store (struct regcache *);
101
102 static void debug_to_files_info (struct target_ops *);
103
104 static int debug_to_insert_breakpoint (struct gdbarch *,
105 struct bp_target_info *);
106
107 static int debug_to_remove_breakpoint (struct gdbarch *,
108 struct bp_target_info *);
109
110 static int debug_to_can_use_hw_breakpoint (int, int, int);
111
112 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
113 struct bp_target_info *);
114
115 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
116 struct bp_target_info *);
117
118 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
119 struct expression *);
120
121 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
122 struct expression *);
123
124 static int debug_to_stopped_by_watchpoint (void);
125
126 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
127
128 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
129 CORE_ADDR, CORE_ADDR, int);
130
131 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
132
133 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
134 struct expression *);
135
136 static void debug_to_terminal_init (void);
137
138 static void debug_to_terminal_inferior (void);
139
140 static void debug_to_terminal_ours_for_output (void);
141
142 static void debug_to_terminal_save_ours (void);
143
144 static void debug_to_terminal_ours (void);
145
146 static void debug_to_terminal_info (char *, int);
147
148 static void debug_to_load (char *, int);
149
150 static int debug_to_can_run (void);
151
152 static void debug_to_stop (ptid_t);
153
154 /* Pointer to array of target architecture structures; the size of the
155 array; the current index into the array; the allocated size of the
156 array. */
157 struct target_ops **target_structs;
158 unsigned target_struct_size;
159 unsigned target_struct_index;
160 unsigned target_struct_allocsize;
161 #define DEFAULT_ALLOCSIZE 10
162
163 /* The initial current target, so that there is always a semi-valid
164 current target. */
165
166 static struct target_ops dummy_target;
167
168 /* Top of target stack. */
169
170 static struct target_ops *target_stack;
171
172 /* The target structure we are currently using to talk to a process
173 or file or whatever "inferior" we have. */
174
175 struct target_ops current_target;
176
177 /* Command list for target. */
178
179 static struct cmd_list_element *targetlist = NULL;
180
181 /* Nonzero if we should trust readonly sections from the
182 executable when reading memory. */
183
184 static int trust_readonly = 0;
185
186 /* Nonzero if we should show true memory content including
187 memory breakpoint inserted by gdb. */
188
189 static int show_memory_breakpoints = 0;
190
191 /* These globals control whether GDB attempts to perform these
192 operations; they are useful for targets that need to prevent
193 inadvertant disruption, such as in non-stop mode. */
194
195 int may_write_registers = 1;
196
197 int may_write_memory = 1;
198
199 int may_insert_breakpoints = 1;
200
201 int may_insert_tracepoints = 1;
202
203 int may_insert_fast_tracepoints = 1;
204
205 int may_stop = 1;
206
207 /* Non-zero if we want to see trace of target level stuff. */
208
209 static int targetdebug = 0;
210 static void
211 show_targetdebug (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
215 }
216
217 static void setup_target_debug (void);
218
219 /* The option sets this. */
220 static int stack_cache_enabled_p_1 = 1;
221 /* And set_stack_cache_enabled_p updates this.
222 The reason for the separation is so that we don't flush the cache for
223 on->on transitions. */
224 static int stack_cache_enabled_p = 1;
225
226 /* This is called *after* the stack-cache has been set.
227 Flush the cache for off->on and on->off transitions.
228 There's no real need to flush the cache for on->off transitions,
229 except cleanliness. */
230
231 static void
232 set_stack_cache_enabled_p (char *args, int from_tty,
233 struct cmd_list_element *c)
234 {
235 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
236 target_dcache_invalidate ();
237
238 stack_cache_enabled_p = stack_cache_enabled_p_1;
239 }
240
241 static void
242 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244 {
245 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
246 }
247
248 /* Cache of memory operations, to speed up remote access. */
249 static DCACHE *target_dcache;
250
251 /* Invalidate the target dcache. */
252
253 void
254 target_dcache_invalidate (void)
255 {
256 dcache_invalidate (target_dcache);
257 }
258
259 /* The user just typed 'target' without the name of a target. */
260
261 static void
262 target_command (char *arg, int from_tty)
263 {
264 fputs_filtered ("Argument required (target name). Try `help target'\n",
265 gdb_stdout);
266 }
267
268 /* Default target_has_* methods for process_stratum targets. */
269
270 int
271 default_child_has_all_memory (struct target_ops *ops)
272 {
273 /* If no inferior selected, then we can't read memory here. */
274 if (ptid_equal (inferior_ptid, null_ptid))
275 return 0;
276
277 return 1;
278 }
279
280 int
281 default_child_has_memory (struct target_ops *ops)
282 {
283 /* If no inferior selected, then we can't read memory here. */
284 if (ptid_equal (inferior_ptid, null_ptid))
285 return 0;
286
287 return 1;
288 }
289
290 int
291 default_child_has_stack (struct target_ops *ops)
292 {
293 /* If no inferior selected, there's no stack. */
294 if (ptid_equal (inferior_ptid, null_ptid))
295 return 0;
296
297 return 1;
298 }
299
300 int
301 default_child_has_registers (struct target_ops *ops)
302 {
303 /* Can't read registers from no inferior. */
304 if (ptid_equal (inferior_ptid, null_ptid))
305 return 0;
306
307 return 1;
308 }
309
310 int
311 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
312 {
313 /* If there's no thread selected, then we can't make it run through
314 hoops. */
315 if (ptid_equal (the_ptid, null_ptid))
316 return 0;
317
318 return 1;
319 }
320
321
322 int
323 target_has_all_memory_1 (void)
324 {
325 struct target_ops *t;
326
327 for (t = current_target.beneath; t != NULL; t = t->beneath)
328 if (t->to_has_all_memory (t))
329 return 1;
330
331 return 0;
332 }
333
334 int
335 target_has_memory_1 (void)
336 {
337 struct target_ops *t;
338
339 for (t = current_target.beneath; t != NULL; t = t->beneath)
340 if (t->to_has_memory (t))
341 return 1;
342
343 return 0;
344 }
345
346 int
347 target_has_stack_1 (void)
348 {
349 struct target_ops *t;
350
351 for (t = current_target.beneath; t != NULL; t = t->beneath)
352 if (t->to_has_stack (t))
353 return 1;
354
355 return 0;
356 }
357
358 int
359 target_has_registers_1 (void)
360 {
361 struct target_ops *t;
362
363 for (t = current_target.beneath; t != NULL; t = t->beneath)
364 if (t->to_has_registers (t))
365 return 1;
366
367 return 0;
368 }
369
370 int
371 target_has_execution_1 (ptid_t the_ptid)
372 {
373 struct target_ops *t;
374
375 for (t = current_target.beneath; t != NULL; t = t->beneath)
376 if (t->to_has_execution (t, the_ptid))
377 return 1;
378
379 return 0;
380 }
381
382 int
383 target_has_execution_current (void)
384 {
385 return target_has_execution_1 (inferior_ptid);
386 }
387
388 /* Add a possible target architecture to the list. */
389
390 void
391 add_target (struct target_ops *t)
392 {
393 /* Provide default values for all "must have" methods. */
394 if (t->to_xfer_partial == NULL)
395 t->to_xfer_partial = default_xfer_partial;
396
397 if (t->to_has_all_memory == NULL)
398 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
399
400 if (t->to_has_memory == NULL)
401 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
402
403 if (t->to_has_stack == NULL)
404 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
405
406 if (t->to_has_registers == NULL)
407 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
408
409 if (t->to_has_execution == NULL)
410 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
411
412 if (!target_structs)
413 {
414 target_struct_allocsize = DEFAULT_ALLOCSIZE;
415 target_structs = (struct target_ops **) xmalloc
416 (target_struct_allocsize * sizeof (*target_structs));
417 }
418 if (target_struct_size >= target_struct_allocsize)
419 {
420 target_struct_allocsize *= 2;
421 target_structs = (struct target_ops **)
422 xrealloc ((char *) target_structs,
423 target_struct_allocsize * sizeof (*target_structs));
424 }
425 target_structs[target_struct_size++] = t;
426
427 if (targetlist == NULL)
428 add_prefix_cmd ("target", class_run, target_command, _("\
429 Connect to a target machine or process.\n\
430 The first argument is the type or protocol of the target machine.\n\
431 Remaining arguments are interpreted by the target protocol. For more\n\
432 information on the arguments for a particular protocol, type\n\
433 `help target ' followed by the protocol name."),
434 &targetlist, "target ", 0, &cmdlist);
435 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
436 }
437
438 /* Stub functions */
439
440 void
441 target_ignore (void)
442 {
443 }
444
445 void
446 target_kill (void)
447 {
448 struct target_ops *t;
449
450 for (t = current_target.beneath; t != NULL; t = t->beneath)
451 if (t->to_kill != NULL)
452 {
453 if (targetdebug)
454 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
455
456 t->to_kill (t);
457 return;
458 }
459
460 noprocess ();
461 }
462
463 void
464 target_load (char *arg, int from_tty)
465 {
466 target_dcache_invalidate ();
467 (*current_target.to_load) (arg, from_tty);
468 }
469
470 void
471 target_create_inferior (char *exec_file, char *args,
472 char **env, int from_tty)
473 {
474 struct target_ops *t;
475
476 for (t = current_target.beneath; t != NULL; t = t->beneath)
477 {
478 if (t->to_create_inferior != NULL)
479 {
480 t->to_create_inferior (t, exec_file, args, env, from_tty);
481 if (targetdebug)
482 fprintf_unfiltered (gdb_stdlog,
483 "target_create_inferior (%s, %s, xxx, %d)\n",
484 exec_file, args, from_tty);
485 return;
486 }
487 }
488
489 internal_error (__FILE__, __LINE__,
490 _("could not find a target to create inferior"));
491 }
492
493 void
494 target_terminal_inferior (void)
495 {
496 /* A background resume (``run&'') should leave GDB in control of the
497 terminal. Use target_can_async_p, not target_is_async_p, since at
498 this point the target is not async yet. However, if sync_execution
499 is not set, we know it will become async prior to resume. */
500 if (target_can_async_p () && !sync_execution)
501 return;
502
503 /* If GDB is resuming the inferior in the foreground, install
504 inferior's terminal modes. */
505 (*current_target.to_terminal_inferior) ();
506 }
507
508 static int
509 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
510 struct target_ops *t)
511 {
512 errno = EIO; /* Can't read/write this location. */
513 return 0; /* No bytes handled. */
514 }
515
516 static void
517 tcomplain (void)
518 {
519 error (_("You can't do that when your target is `%s'"),
520 current_target.to_shortname);
521 }
522
523 void
524 noprocess (void)
525 {
526 error (_("You can't do that without a process to debug."));
527 }
528
529 static void
530 default_terminal_info (char *args, int from_tty)
531 {
532 printf_unfiltered (_("No saved terminal information.\n"));
533 }
534
535 /* A default implementation for the to_get_ada_task_ptid target method.
536
537 This function builds the PTID by using both LWP and TID as part of
538 the PTID lwp and tid elements. The pid used is the pid of the
539 inferior_ptid. */
540
541 static ptid_t
542 default_get_ada_task_ptid (long lwp, long tid)
543 {
544 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
545 }
546
547 static enum exec_direction_kind
548 default_execution_direction (void)
549 {
550 if (!target_can_execute_reverse)
551 return EXEC_FORWARD;
552 else if (!target_can_async_p ())
553 return EXEC_FORWARD;
554 else
555 gdb_assert_not_reached ("\
556 to_execution_direction must be implemented for reverse async");
557 }
558
559 /* Go through the target stack from top to bottom, copying over zero
560 entries in current_target, then filling in still empty entries. In
561 effect, we are doing class inheritance through the pushed target
562 vectors.
563
564 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
565 is currently implemented, is that it discards any knowledge of
566 which target an inherited method originally belonged to.
567 Consequently, new new target methods should instead explicitly and
568 locally search the target stack for the target that can handle the
569 request. */
570
571 static void
572 update_current_target (void)
573 {
574 struct target_ops *t;
575
576 /* First, reset current's contents. */
577 memset (&current_target, 0, sizeof (current_target));
578
579 #define INHERIT(FIELD, TARGET) \
580 if (!current_target.FIELD) \
581 current_target.FIELD = (TARGET)->FIELD
582
583 for (t = target_stack; t; t = t->beneath)
584 {
585 INHERIT (to_shortname, t);
586 INHERIT (to_longname, t);
587 INHERIT (to_doc, t);
588 /* Do not inherit to_open. */
589 /* Do not inherit to_close. */
590 /* Do not inherit to_attach. */
591 INHERIT (to_post_attach, t);
592 INHERIT (to_attach_no_wait, t);
593 /* Do not inherit to_detach. */
594 /* Do not inherit to_disconnect. */
595 /* Do not inherit to_resume. */
596 /* Do not inherit to_wait. */
597 /* Do not inherit to_fetch_registers. */
598 /* Do not inherit to_store_registers. */
599 INHERIT (to_prepare_to_store, t);
600 INHERIT (deprecated_xfer_memory, t);
601 INHERIT (to_files_info, t);
602 INHERIT (to_insert_breakpoint, t);
603 INHERIT (to_remove_breakpoint, t);
604 INHERIT (to_can_use_hw_breakpoint, t);
605 INHERIT (to_insert_hw_breakpoint, t);
606 INHERIT (to_remove_hw_breakpoint, t);
607 /* Do not inherit to_ranged_break_num_registers. */
608 INHERIT (to_insert_watchpoint, t);
609 INHERIT (to_remove_watchpoint, t);
610 /* Do not inherit to_insert_mask_watchpoint. */
611 /* Do not inherit to_remove_mask_watchpoint. */
612 INHERIT (to_stopped_data_address, t);
613 INHERIT (to_have_steppable_watchpoint, t);
614 INHERIT (to_have_continuable_watchpoint, t);
615 INHERIT (to_stopped_by_watchpoint, t);
616 INHERIT (to_watchpoint_addr_within_range, t);
617 INHERIT (to_region_ok_for_hw_watchpoint, t);
618 INHERIT (to_can_accel_watchpoint_condition, t);
619 /* Do not inherit to_masked_watch_num_registers. */
620 INHERIT (to_terminal_init, t);
621 INHERIT (to_terminal_inferior, t);
622 INHERIT (to_terminal_ours_for_output, t);
623 INHERIT (to_terminal_ours, t);
624 INHERIT (to_terminal_save_ours, t);
625 INHERIT (to_terminal_info, t);
626 /* Do not inherit to_kill. */
627 INHERIT (to_load, t);
628 /* Do no inherit to_create_inferior. */
629 INHERIT (to_post_startup_inferior, t);
630 INHERIT (to_insert_fork_catchpoint, t);
631 INHERIT (to_remove_fork_catchpoint, t);
632 INHERIT (to_insert_vfork_catchpoint, t);
633 INHERIT (to_remove_vfork_catchpoint, t);
634 /* Do not inherit to_follow_fork. */
635 INHERIT (to_insert_exec_catchpoint, t);
636 INHERIT (to_remove_exec_catchpoint, t);
637 INHERIT (to_set_syscall_catchpoint, t);
638 INHERIT (to_has_exited, t);
639 /* Do not inherit to_mourn_inferior. */
640 INHERIT (to_can_run, t);
641 /* Do not inherit to_pass_signals. */
642 /* Do not inherit to_thread_alive. */
643 /* Do not inherit to_find_new_threads. */
644 /* Do not inherit to_pid_to_str. */
645 INHERIT (to_extra_thread_info, t);
646 INHERIT (to_thread_name, t);
647 INHERIT (to_stop, t);
648 /* Do not inherit to_xfer_partial. */
649 INHERIT (to_rcmd, t);
650 INHERIT (to_pid_to_exec_file, t);
651 INHERIT (to_log_command, t);
652 INHERIT (to_stratum, t);
653 /* Do not inherit to_has_all_memory. */
654 /* Do not inherit to_has_memory. */
655 /* Do not inherit to_has_stack. */
656 /* Do not inherit to_has_registers. */
657 /* Do not inherit to_has_execution. */
658 INHERIT (to_has_thread_control, t);
659 INHERIT (to_can_async_p, t);
660 INHERIT (to_is_async_p, t);
661 INHERIT (to_async, t);
662 INHERIT (to_find_memory_regions, t);
663 INHERIT (to_make_corefile_notes, t);
664 INHERIT (to_get_bookmark, t);
665 INHERIT (to_goto_bookmark, t);
666 /* Do not inherit to_get_thread_local_address. */
667 INHERIT (to_can_execute_reverse, t);
668 INHERIT (to_execution_direction, t);
669 INHERIT (to_thread_architecture, t);
670 /* Do not inherit to_read_description. */
671 INHERIT (to_get_ada_task_ptid, t);
672 /* Do not inherit to_search_memory. */
673 INHERIT (to_supports_multi_process, t);
674 INHERIT (to_supports_enable_disable_tracepoint, t);
675 INHERIT (to_supports_string_tracing, t);
676 INHERIT (to_trace_init, t);
677 INHERIT (to_download_tracepoint, t);
678 INHERIT (to_can_download_tracepoint, t);
679 INHERIT (to_download_trace_state_variable, t);
680 INHERIT (to_enable_tracepoint, t);
681 INHERIT (to_disable_tracepoint, t);
682 INHERIT (to_trace_set_readonly_regions, t);
683 INHERIT (to_trace_start, t);
684 INHERIT (to_get_trace_status, t);
685 INHERIT (to_trace_stop, t);
686 INHERIT (to_trace_find, t);
687 INHERIT (to_get_trace_state_variable_value, t);
688 INHERIT (to_save_trace_data, t);
689 INHERIT (to_upload_tracepoints, t);
690 INHERIT (to_upload_trace_state_variables, t);
691 INHERIT (to_get_raw_trace_data, t);
692 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
693 INHERIT (to_set_disconnected_tracing, t);
694 INHERIT (to_set_circular_trace_buffer, t);
695 INHERIT (to_get_tib_address, t);
696 INHERIT (to_set_permissions, t);
697 INHERIT (to_static_tracepoint_marker_at, t);
698 INHERIT (to_static_tracepoint_markers_by_strid, t);
699 INHERIT (to_traceframe_info, t);
700 INHERIT (to_magic, t);
701 /* Do not inherit to_memory_map. */
702 /* Do not inherit to_flash_erase. */
703 /* Do not inherit to_flash_done. */
704 }
705 #undef INHERIT
706
707 /* Clean up a target struct so it no longer has any zero pointers in
708 it. Some entries are defaulted to a method that print an error,
709 others are hard-wired to a standard recursive default. */
710
711 #define de_fault(field, value) \
712 if (!current_target.field) \
713 current_target.field = value
714
715 de_fault (to_open,
716 (void (*) (char *, int))
717 tcomplain);
718 de_fault (to_close,
719 (void (*) (int))
720 target_ignore);
721 de_fault (to_post_attach,
722 (void (*) (int))
723 target_ignore);
724 de_fault (to_prepare_to_store,
725 (void (*) (struct regcache *))
726 noprocess);
727 de_fault (deprecated_xfer_memory,
728 (int (*) (CORE_ADDR, gdb_byte *, int, int,
729 struct mem_attrib *, struct target_ops *))
730 nomemory);
731 de_fault (to_files_info,
732 (void (*) (struct target_ops *))
733 target_ignore);
734 de_fault (to_insert_breakpoint,
735 memory_insert_breakpoint);
736 de_fault (to_remove_breakpoint,
737 memory_remove_breakpoint);
738 de_fault (to_can_use_hw_breakpoint,
739 (int (*) (int, int, int))
740 return_zero);
741 de_fault (to_insert_hw_breakpoint,
742 (int (*) (struct gdbarch *, struct bp_target_info *))
743 return_minus_one);
744 de_fault (to_remove_hw_breakpoint,
745 (int (*) (struct gdbarch *, struct bp_target_info *))
746 return_minus_one);
747 de_fault (to_insert_watchpoint,
748 (int (*) (CORE_ADDR, int, int, struct expression *))
749 return_minus_one);
750 de_fault (to_remove_watchpoint,
751 (int (*) (CORE_ADDR, int, int, struct expression *))
752 return_minus_one);
753 de_fault (to_stopped_by_watchpoint,
754 (int (*) (void))
755 return_zero);
756 de_fault (to_stopped_data_address,
757 (int (*) (struct target_ops *, CORE_ADDR *))
758 return_zero);
759 de_fault (to_watchpoint_addr_within_range,
760 default_watchpoint_addr_within_range);
761 de_fault (to_region_ok_for_hw_watchpoint,
762 default_region_ok_for_hw_watchpoint);
763 de_fault (to_can_accel_watchpoint_condition,
764 (int (*) (CORE_ADDR, int, int, struct expression *))
765 return_zero);
766 de_fault (to_terminal_init,
767 (void (*) (void))
768 target_ignore);
769 de_fault (to_terminal_inferior,
770 (void (*) (void))
771 target_ignore);
772 de_fault (to_terminal_ours_for_output,
773 (void (*) (void))
774 target_ignore);
775 de_fault (to_terminal_ours,
776 (void (*) (void))
777 target_ignore);
778 de_fault (to_terminal_save_ours,
779 (void (*) (void))
780 target_ignore);
781 de_fault (to_terminal_info,
782 default_terminal_info);
783 de_fault (to_load,
784 (void (*) (char *, int))
785 tcomplain);
786 de_fault (to_post_startup_inferior,
787 (void (*) (ptid_t))
788 target_ignore);
789 de_fault (to_insert_fork_catchpoint,
790 (int (*) (int))
791 return_one);
792 de_fault (to_remove_fork_catchpoint,
793 (int (*) (int))
794 return_one);
795 de_fault (to_insert_vfork_catchpoint,
796 (int (*) (int))
797 return_one);
798 de_fault (to_remove_vfork_catchpoint,
799 (int (*) (int))
800 return_one);
801 de_fault (to_insert_exec_catchpoint,
802 (int (*) (int))
803 return_one);
804 de_fault (to_remove_exec_catchpoint,
805 (int (*) (int))
806 return_one);
807 de_fault (to_set_syscall_catchpoint,
808 (int (*) (int, int, int, int, int *))
809 return_one);
810 de_fault (to_has_exited,
811 (int (*) (int, int, int *))
812 return_zero);
813 de_fault (to_can_run,
814 return_zero);
815 de_fault (to_extra_thread_info,
816 (char *(*) (struct thread_info *))
817 return_zero);
818 de_fault (to_thread_name,
819 (char *(*) (struct thread_info *))
820 return_zero);
821 de_fault (to_stop,
822 (void (*) (ptid_t))
823 target_ignore);
824 current_target.to_xfer_partial = current_xfer_partial;
825 de_fault (to_rcmd,
826 (void (*) (char *, struct ui_file *))
827 tcomplain);
828 de_fault (to_pid_to_exec_file,
829 (char *(*) (int))
830 return_zero);
831 de_fault (to_async,
832 (void (*) (void (*) (enum inferior_event_type, void*), void*))
833 tcomplain);
834 de_fault (to_thread_architecture,
835 default_thread_architecture);
836 current_target.to_read_description = NULL;
837 de_fault (to_get_ada_task_ptid,
838 (ptid_t (*) (long, long))
839 default_get_ada_task_ptid);
840 de_fault (to_supports_multi_process,
841 (int (*) (void))
842 return_zero);
843 de_fault (to_supports_enable_disable_tracepoint,
844 (int (*) (void))
845 return_zero);
846 de_fault (to_supports_string_tracing,
847 (int (*) (void))
848 return_zero);
849 de_fault (to_trace_init,
850 (void (*) (void))
851 tcomplain);
852 de_fault (to_download_tracepoint,
853 (void (*) (struct bp_location *))
854 tcomplain);
855 de_fault (to_can_download_tracepoint,
856 (int (*) (void))
857 return_zero);
858 de_fault (to_download_trace_state_variable,
859 (void (*) (struct trace_state_variable *))
860 tcomplain);
861 de_fault (to_enable_tracepoint,
862 (void (*) (struct bp_location *))
863 tcomplain);
864 de_fault (to_disable_tracepoint,
865 (void (*) (struct bp_location *))
866 tcomplain);
867 de_fault (to_trace_set_readonly_regions,
868 (void (*) (void))
869 tcomplain);
870 de_fault (to_trace_start,
871 (void (*) (void))
872 tcomplain);
873 de_fault (to_get_trace_status,
874 (int (*) (struct trace_status *))
875 return_minus_one);
876 de_fault (to_trace_stop,
877 (void (*) (void))
878 tcomplain);
879 de_fault (to_trace_find,
880 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
881 return_minus_one);
882 de_fault (to_get_trace_state_variable_value,
883 (int (*) (int, LONGEST *))
884 return_zero);
885 de_fault (to_save_trace_data,
886 (int (*) (const char *))
887 tcomplain);
888 de_fault (to_upload_tracepoints,
889 (int (*) (struct uploaded_tp **))
890 return_zero);
891 de_fault (to_upload_trace_state_variables,
892 (int (*) (struct uploaded_tsv **))
893 return_zero);
894 de_fault (to_get_raw_trace_data,
895 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
896 tcomplain);
897 de_fault (to_get_min_fast_tracepoint_insn_len,
898 (int (*) (void))
899 return_minus_one);
900 de_fault (to_set_disconnected_tracing,
901 (void (*) (int))
902 target_ignore);
903 de_fault (to_set_circular_trace_buffer,
904 (void (*) (int))
905 target_ignore);
906 de_fault (to_get_tib_address,
907 (int (*) (ptid_t, CORE_ADDR *))
908 tcomplain);
909 de_fault (to_set_permissions,
910 (void (*) (void))
911 target_ignore);
912 de_fault (to_static_tracepoint_marker_at,
913 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
914 return_zero);
915 de_fault (to_static_tracepoint_markers_by_strid,
916 (VEC(static_tracepoint_marker_p) * (*) (const char *))
917 tcomplain);
918 de_fault (to_traceframe_info,
919 (struct traceframe_info * (*) (void))
920 tcomplain);
921 de_fault (to_execution_direction, default_execution_direction);
922
923 #undef de_fault
924
925 /* Finally, position the target-stack beneath the squashed
926 "current_target". That way code looking for a non-inherited
927 target method can quickly and simply find it. */
928 current_target.beneath = target_stack;
929
930 if (targetdebug)
931 setup_target_debug ();
932 }
933
934 /* Push a new target type into the stack of the existing target accessors,
935 possibly superseding some of the existing accessors.
936
937 Rather than allow an empty stack, we always have the dummy target at
938 the bottom stratum, so we can call the function vectors without
939 checking them. */
940
941 void
942 push_target (struct target_ops *t)
943 {
944 struct target_ops **cur;
945
946 /* Check magic number. If wrong, it probably means someone changed
947 the struct definition, but not all the places that initialize one. */
948 if (t->to_magic != OPS_MAGIC)
949 {
950 fprintf_unfiltered (gdb_stderr,
951 "Magic number of %s target struct wrong\n",
952 t->to_shortname);
953 internal_error (__FILE__, __LINE__,
954 _("failed internal consistency check"));
955 }
956
957 /* Find the proper stratum to install this target in. */
958 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
959 {
960 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
961 break;
962 }
963
964 /* If there's already targets at this stratum, remove them. */
965 /* FIXME: cagney/2003-10-15: I think this should be popping all
966 targets to CUR, and not just those at this stratum level. */
967 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
968 {
969 /* There's already something at this stratum level. Close it,
970 and un-hook it from the stack. */
971 struct target_ops *tmp = (*cur);
972
973 (*cur) = (*cur)->beneath;
974 tmp->beneath = NULL;
975 target_close (tmp, 0);
976 }
977
978 /* We have removed all targets in our stratum, now add the new one. */
979 t->beneath = (*cur);
980 (*cur) = t;
981
982 update_current_target ();
983 }
984
985 /* Remove a target_ops vector from the stack, wherever it may be.
986 Return how many times it was removed (0 or 1). */
987
988 int
989 unpush_target (struct target_ops *t)
990 {
991 struct target_ops **cur;
992 struct target_ops *tmp;
993
994 if (t->to_stratum == dummy_stratum)
995 internal_error (__FILE__, __LINE__,
996 _("Attempt to unpush the dummy target"));
997
998 /* Look for the specified target. Note that we assume that a target
999 can only occur once in the target stack. */
1000
1001 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1002 {
1003 if ((*cur) == t)
1004 break;
1005 }
1006
1007 if ((*cur) == NULL)
1008 return 0; /* Didn't find target_ops, quit now. */
1009
1010 /* NOTE: cagney/2003-12-06: In '94 the close call was made
1011 unconditional by moving it to before the above check that the
1012 target was in the target stack (something about "Change the way
1013 pushing and popping of targets work to support target overlays
1014 and inheritance"). This doesn't make much sense - only open
1015 targets should be closed. */
1016 target_close (t, 0);
1017
1018 /* Unchain the target. */
1019 tmp = (*cur);
1020 (*cur) = (*cur)->beneath;
1021 tmp->beneath = NULL;
1022
1023 update_current_target ();
1024
1025 return 1;
1026 }
1027
1028 void
1029 pop_target (void)
1030 {
1031 target_close (target_stack, 0); /* Let it clean up. */
1032 if (unpush_target (target_stack) == 1)
1033 return;
1034
1035 fprintf_unfiltered (gdb_stderr,
1036 "pop_target couldn't find target %s\n",
1037 current_target.to_shortname);
1038 internal_error (__FILE__, __LINE__,
1039 _("failed internal consistency check"));
1040 }
1041
1042 void
1043 pop_all_targets_above (enum strata above_stratum, int quitting)
1044 {
1045 while ((int) (current_target.to_stratum) > (int) above_stratum)
1046 {
1047 target_close (target_stack, quitting);
1048 if (!unpush_target (target_stack))
1049 {
1050 fprintf_unfiltered (gdb_stderr,
1051 "pop_all_targets couldn't find target %s\n",
1052 target_stack->to_shortname);
1053 internal_error (__FILE__, __LINE__,
1054 _("failed internal consistency check"));
1055 break;
1056 }
1057 }
1058 }
1059
1060 void
1061 pop_all_targets (int quitting)
1062 {
1063 pop_all_targets_above (dummy_stratum, quitting);
1064 }
1065
1066 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1067
1068 int
1069 target_is_pushed (struct target_ops *t)
1070 {
1071 struct target_ops **cur;
1072
1073 /* Check magic number. If wrong, it probably means someone changed
1074 the struct definition, but not all the places that initialize one. */
1075 if (t->to_magic != OPS_MAGIC)
1076 {
1077 fprintf_unfiltered (gdb_stderr,
1078 "Magic number of %s target struct wrong\n",
1079 t->to_shortname);
1080 internal_error (__FILE__, __LINE__,
1081 _("failed internal consistency check"));
1082 }
1083
1084 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1085 if (*cur == t)
1086 return 1;
1087
1088 return 0;
1089 }
1090
1091 /* Using the objfile specified in OBJFILE, find the address for the
1092 current thread's thread-local storage with offset OFFSET. */
1093 CORE_ADDR
1094 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1095 {
1096 volatile CORE_ADDR addr = 0;
1097 struct target_ops *target;
1098
1099 for (target = current_target.beneath;
1100 target != NULL;
1101 target = target->beneath)
1102 {
1103 if (target->to_get_thread_local_address != NULL)
1104 break;
1105 }
1106
1107 if (target != NULL
1108 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1109 {
1110 ptid_t ptid = inferior_ptid;
1111 volatile struct gdb_exception ex;
1112
1113 TRY_CATCH (ex, RETURN_MASK_ALL)
1114 {
1115 CORE_ADDR lm_addr;
1116
1117 /* Fetch the load module address for this objfile. */
1118 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1119 objfile);
1120 /* If it's 0, throw the appropriate exception. */
1121 if (lm_addr == 0)
1122 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1123 _("TLS load module not found"));
1124
1125 addr = target->to_get_thread_local_address (target, ptid,
1126 lm_addr, offset);
1127 }
1128 /* If an error occurred, print TLS related messages here. Otherwise,
1129 throw the error to some higher catcher. */
1130 if (ex.reason < 0)
1131 {
1132 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1133
1134 switch (ex.error)
1135 {
1136 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1137 error (_("Cannot find thread-local variables "
1138 "in this thread library."));
1139 break;
1140 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1141 if (objfile_is_library)
1142 error (_("Cannot find shared library `%s' in dynamic"
1143 " linker's load module list"), objfile->name);
1144 else
1145 error (_("Cannot find executable file `%s' in dynamic"
1146 " linker's load module list"), objfile->name);
1147 break;
1148 case TLS_NOT_ALLOCATED_YET_ERROR:
1149 if (objfile_is_library)
1150 error (_("The inferior has not yet allocated storage for"
1151 " thread-local variables in\n"
1152 "the shared library `%s'\n"
1153 "for %s"),
1154 objfile->name, target_pid_to_str (ptid));
1155 else
1156 error (_("The inferior has not yet allocated storage for"
1157 " thread-local variables in\n"
1158 "the executable `%s'\n"
1159 "for %s"),
1160 objfile->name, target_pid_to_str (ptid));
1161 break;
1162 case TLS_GENERIC_ERROR:
1163 if (objfile_is_library)
1164 error (_("Cannot find thread-local storage for %s, "
1165 "shared library %s:\n%s"),
1166 target_pid_to_str (ptid),
1167 objfile->name, ex.message);
1168 else
1169 error (_("Cannot find thread-local storage for %s, "
1170 "executable file %s:\n%s"),
1171 target_pid_to_str (ptid),
1172 objfile->name, ex.message);
1173 break;
1174 default:
1175 throw_exception (ex);
1176 break;
1177 }
1178 }
1179 }
1180 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1181 TLS is an ABI-specific thing. But we don't do that yet. */
1182 else
1183 error (_("Cannot find thread-local variables on this target"));
1184
1185 return addr;
1186 }
1187
1188 #undef MIN
1189 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1190
1191 /* target_read_string -- read a null terminated string, up to LEN bytes,
1192 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1193 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1194 is responsible for freeing it. Return the number of bytes successfully
1195 read. */
1196
1197 int
1198 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1199 {
1200 int tlen, origlen, offset, i;
1201 gdb_byte buf[4];
1202 int errcode = 0;
1203 char *buffer;
1204 int buffer_allocated;
1205 char *bufptr;
1206 unsigned int nbytes_read = 0;
1207
1208 gdb_assert (string);
1209
1210 /* Small for testing. */
1211 buffer_allocated = 4;
1212 buffer = xmalloc (buffer_allocated);
1213 bufptr = buffer;
1214
1215 origlen = len;
1216
1217 while (len > 0)
1218 {
1219 tlen = MIN (len, 4 - (memaddr & 3));
1220 offset = memaddr & 3;
1221
1222 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1223 if (errcode != 0)
1224 {
1225 /* The transfer request might have crossed the boundary to an
1226 unallocated region of memory. Retry the transfer, requesting
1227 a single byte. */
1228 tlen = 1;
1229 offset = 0;
1230 errcode = target_read_memory (memaddr, buf, 1);
1231 if (errcode != 0)
1232 goto done;
1233 }
1234
1235 if (bufptr - buffer + tlen > buffer_allocated)
1236 {
1237 unsigned int bytes;
1238
1239 bytes = bufptr - buffer;
1240 buffer_allocated *= 2;
1241 buffer = xrealloc (buffer, buffer_allocated);
1242 bufptr = buffer + bytes;
1243 }
1244
1245 for (i = 0; i < tlen; i++)
1246 {
1247 *bufptr++ = buf[i + offset];
1248 if (buf[i + offset] == '\000')
1249 {
1250 nbytes_read += i + 1;
1251 goto done;
1252 }
1253 }
1254
1255 memaddr += tlen;
1256 len -= tlen;
1257 nbytes_read += tlen;
1258 }
1259 done:
1260 *string = buffer;
1261 if (errnop != NULL)
1262 *errnop = errcode;
1263 return nbytes_read;
1264 }
1265
1266 struct target_section_table *
1267 target_get_section_table (struct target_ops *target)
1268 {
1269 struct target_ops *t;
1270
1271 if (targetdebug)
1272 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1273
1274 for (t = target; t != NULL; t = t->beneath)
1275 if (t->to_get_section_table != NULL)
1276 return (*t->to_get_section_table) (t);
1277
1278 return NULL;
1279 }
1280
1281 /* Find a section containing ADDR. */
1282
1283 struct target_section *
1284 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1285 {
1286 struct target_section_table *table = target_get_section_table (target);
1287 struct target_section *secp;
1288
1289 if (table == NULL)
1290 return NULL;
1291
1292 for (secp = table->sections; secp < table->sections_end; secp++)
1293 {
1294 if (addr >= secp->addr && addr < secp->endaddr)
1295 return secp;
1296 }
1297 return NULL;
1298 }
1299
1300 /* Read memory from the live target, even if currently inspecting a
1301 traceframe. The return is the same as that of target_read. */
1302
1303 static LONGEST
1304 target_read_live_memory (enum target_object object,
1305 ULONGEST memaddr, gdb_byte *myaddr, LONGEST len)
1306 {
1307 int ret;
1308 struct cleanup *cleanup;
1309
1310 /* Switch momentarily out of tfind mode so to access live memory.
1311 Note that this must not clear global state, such as the frame
1312 cache, which must still remain valid for the previous traceframe.
1313 We may be _building_ the frame cache at this point. */
1314 cleanup = make_cleanup_restore_traceframe_number ();
1315 set_traceframe_number (-1);
1316
1317 ret = target_read (current_target.beneath, object, NULL,
1318 myaddr, memaddr, len);
1319
1320 do_cleanups (cleanup);
1321 return ret;
1322 }
1323
1324 /* Using the set of read-only target sections of OPS, read live
1325 read-only memory. Note that the actual reads start from the
1326 top-most target again.
1327
1328 For interface/parameters/return description see target.h,
1329 to_xfer_partial. */
1330
1331 static LONGEST
1332 memory_xfer_live_readonly_partial (struct target_ops *ops,
1333 enum target_object object,
1334 gdb_byte *readbuf, ULONGEST memaddr,
1335 LONGEST len)
1336 {
1337 struct target_section *secp;
1338 struct target_section_table *table;
1339
1340 secp = target_section_by_addr (ops, memaddr);
1341 if (secp != NULL
1342 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1343 & SEC_READONLY))
1344 {
1345 struct target_section *p;
1346 ULONGEST memend = memaddr + len;
1347
1348 table = target_get_section_table (ops);
1349
1350 for (p = table->sections; p < table->sections_end; p++)
1351 {
1352 if (memaddr >= p->addr)
1353 {
1354 if (memend <= p->endaddr)
1355 {
1356 /* Entire transfer is within this section. */
1357 return target_read_live_memory (object, memaddr,
1358 readbuf, len);
1359 }
1360 else if (memaddr >= p->endaddr)
1361 {
1362 /* This section ends before the transfer starts. */
1363 continue;
1364 }
1365 else
1366 {
1367 /* This section overlaps the transfer. Just do half. */
1368 len = p->endaddr - memaddr;
1369 return target_read_live_memory (object, memaddr,
1370 readbuf, len);
1371 }
1372 }
1373 }
1374 }
1375
1376 return 0;
1377 }
1378
1379 /* Perform a partial memory transfer.
1380 For docs see target.h, to_xfer_partial. */
1381
1382 static LONGEST
1383 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1384 void *readbuf, const void *writebuf, ULONGEST memaddr,
1385 LONGEST len)
1386 {
1387 LONGEST res;
1388 int reg_len;
1389 struct mem_region *region;
1390 struct inferior *inf;
1391
1392 /* Zero length requests are ok and require no work. */
1393 if (len == 0)
1394 return 0;
1395
1396 /* For accesses to unmapped overlay sections, read directly from
1397 files. Must do this first, as MEMADDR may need adjustment. */
1398 if (readbuf != NULL && overlay_debugging)
1399 {
1400 struct obj_section *section = find_pc_overlay (memaddr);
1401
1402 if (pc_in_unmapped_range (memaddr, section))
1403 {
1404 struct target_section_table *table
1405 = target_get_section_table (ops);
1406 const char *section_name = section->the_bfd_section->name;
1407
1408 memaddr = overlay_mapped_address (memaddr, section);
1409 return section_table_xfer_memory_partial (readbuf, writebuf,
1410 memaddr, len,
1411 table->sections,
1412 table->sections_end,
1413 section_name);
1414 }
1415 }
1416
1417 /* Try the executable files, if "trust-readonly-sections" is set. */
1418 if (readbuf != NULL && trust_readonly)
1419 {
1420 struct target_section *secp;
1421 struct target_section_table *table;
1422
1423 secp = target_section_by_addr (ops, memaddr);
1424 if (secp != NULL
1425 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1426 & SEC_READONLY))
1427 {
1428 table = target_get_section_table (ops);
1429 return section_table_xfer_memory_partial (readbuf, writebuf,
1430 memaddr, len,
1431 table->sections,
1432 table->sections_end,
1433 NULL);
1434 }
1435 }
1436
1437 /* If reading unavailable memory in the context of traceframes, and
1438 this address falls within a read-only section, fallback to
1439 reading from live memory. */
1440 if (readbuf != NULL && get_traceframe_number () != -1)
1441 {
1442 VEC(mem_range_s) *available;
1443
1444 /* If we fail to get the set of available memory, then the
1445 target does not support querying traceframe info, and so we
1446 attempt reading from the traceframe anyway (assuming the
1447 target implements the old QTro packet then). */
1448 if (traceframe_available_memory (&available, memaddr, len))
1449 {
1450 struct cleanup *old_chain;
1451
1452 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1453
1454 if (VEC_empty (mem_range_s, available)
1455 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1456 {
1457 /* Don't read into the traceframe's available
1458 memory. */
1459 if (!VEC_empty (mem_range_s, available))
1460 {
1461 LONGEST oldlen = len;
1462
1463 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1464 gdb_assert (len <= oldlen);
1465 }
1466
1467 do_cleanups (old_chain);
1468
1469 /* This goes through the topmost target again. */
1470 res = memory_xfer_live_readonly_partial (ops, object,
1471 readbuf, memaddr, len);
1472 if (res > 0)
1473 return res;
1474
1475 /* No use trying further, we know some memory starting
1476 at MEMADDR isn't available. */
1477 return -1;
1478 }
1479
1480 /* Don't try to read more than how much is available, in
1481 case the target implements the deprecated QTro packet to
1482 cater for older GDBs (the target's knowledge of read-only
1483 sections may be outdated by now). */
1484 len = VEC_index (mem_range_s, available, 0)->length;
1485
1486 do_cleanups (old_chain);
1487 }
1488 }
1489
1490 /* Try GDB's internal data cache. */
1491 region = lookup_mem_region (memaddr);
1492 /* region->hi == 0 means there's no upper bound. */
1493 if (memaddr + len < region->hi || region->hi == 0)
1494 reg_len = len;
1495 else
1496 reg_len = region->hi - memaddr;
1497
1498 switch (region->attrib.mode)
1499 {
1500 case MEM_RO:
1501 if (writebuf != NULL)
1502 return -1;
1503 break;
1504
1505 case MEM_WO:
1506 if (readbuf != NULL)
1507 return -1;
1508 break;
1509
1510 case MEM_FLASH:
1511 /* We only support writing to flash during "load" for now. */
1512 if (writebuf != NULL)
1513 error (_("Writing to flash memory forbidden in this context"));
1514 break;
1515
1516 case MEM_NONE:
1517 return -1;
1518 }
1519
1520 if (!ptid_equal (inferior_ptid, null_ptid))
1521 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1522 else
1523 inf = NULL;
1524
1525 if (inf != NULL
1526 /* The dcache reads whole cache lines; that doesn't play well
1527 with reading from a trace buffer, because reading outside of
1528 the collected memory range fails. */
1529 && get_traceframe_number () == -1
1530 && (region->attrib.cache
1531 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1532 {
1533 if (readbuf != NULL)
1534 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1535 reg_len, 0);
1536 else
1537 /* FIXME drow/2006-08-09: If we're going to preserve const
1538 correctness dcache_xfer_memory should take readbuf and
1539 writebuf. */
1540 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1541 (void *) writebuf,
1542 reg_len, 1);
1543 if (res <= 0)
1544 return -1;
1545 else
1546 {
1547 if (readbuf && !show_memory_breakpoints)
1548 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1549 return res;
1550 }
1551 }
1552
1553 /* If none of those methods found the memory we wanted, fall back
1554 to a target partial transfer. Normally a single call to
1555 to_xfer_partial is enough; if it doesn't recognize an object
1556 it will call the to_xfer_partial of the next target down.
1557 But for memory this won't do. Memory is the only target
1558 object which can be read from more than one valid target.
1559 A core file, for instance, could have some of memory but
1560 delegate other bits to the target below it. So, we must
1561 manually try all targets. */
1562
1563 do
1564 {
1565 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1566 readbuf, writebuf, memaddr, reg_len);
1567 if (res > 0)
1568 break;
1569
1570 /* We want to continue past core files to executables, but not
1571 past a running target's memory. */
1572 if (ops->to_has_all_memory (ops))
1573 break;
1574
1575 ops = ops->beneath;
1576 }
1577 while (ops != NULL);
1578
1579 if (res > 0 && readbuf != NULL && !show_memory_breakpoints)
1580 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1581
1582 /* Make sure the cache gets updated no matter what - if we are writing
1583 to the stack. Even if this write is not tagged as such, we still need
1584 to update the cache. */
1585
1586 if (res > 0
1587 && inf != NULL
1588 && writebuf != NULL
1589 && !region->attrib.cache
1590 && stack_cache_enabled_p
1591 && object != TARGET_OBJECT_STACK_MEMORY)
1592 {
1593 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1594 }
1595
1596 /* If we still haven't got anything, return the last error. We
1597 give up. */
1598 return res;
1599 }
1600
1601 static void
1602 restore_show_memory_breakpoints (void *arg)
1603 {
1604 show_memory_breakpoints = (uintptr_t) arg;
1605 }
1606
1607 struct cleanup *
1608 make_show_memory_breakpoints_cleanup (int show)
1609 {
1610 int current = show_memory_breakpoints;
1611
1612 show_memory_breakpoints = show;
1613 return make_cleanup (restore_show_memory_breakpoints,
1614 (void *) (uintptr_t) current);
1615 }
1616
1617 /* For docs see target.h, to_xfer_partial. */
1618
1619 static LONGEST
1620 target_xfer_partial (struct target_ops *ops,
1621 enum target_object object, const char *annex,
1622 void *readbuf, const void *writebuf,
1623 ULONGEST offset, LONGEST len)
1624 {
1625 LONGEST retval;
1626
1627 gdb_assert (ops->to_xfer_partial != NULL);
1628
1629 if (writebuf && !may_write_memory)
1630 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1631 core_addr_to_string_nz (offset), plongest (len));
1632
1633 /* If this is a memory transfer, let the memory-specific code
1634 have a look at it instead. Memory transfers are more
1635 complicated. */
1636 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1637 retval = memory_xfer_partial (ops, object, readbuf,
1638 writebuf, offset, len);
1639 else
1640 {
1641 enum target_object raw_object = object;
1642
1643 /* If this is a raw memory transfer, request the normal
1644 memory object from other layers. */
1645 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1646 raw_object = TARGET_OBJECT_MEMORY;
1647
1648 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1649 writebuf, offset, len);
1650 }
1651
1652 if (targetdebug)
1653 {
1654 const unsigned char *myaddr = NULL;
1655
1656 fprintf_unfiltered (gdb_stdlog,
1657 "%s:target_xfer_partial "
1658 "(%d, %s, %s, %s, %s, %s) = %s",
1659 ops->to_shortname,
1660 (int) object,
1661 (annex ? annex : "(null)"),
1662 host_address_to_string (readbuf),
1663 host_address_to_string (writebuf),
1664 core_addr_to_string_nz (offset),
1665 plongest (len), plongest (retval));
1666
1667 if (readbuf)
1668 myaddr = readbuf;
1669 if (writebuf)
1670 myaddr = writebuf;
1671 if (retval > 0 && myaddr != NULL)
1672 {
1673 int i;
1674
1675 fputs_unfiltered (", bytes =", gdb_stdlog);
1676 for (i = 0; i < retval; i++)
1677 {
1678 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1679 {
1680 if (targetdebug < 2 && i > 0)
1681 {
1682 fprintf_unfiltered (gdb_stdlog, " ...");
1683 break;
1684 }
1685 fprintf_unfiltered (gdb_stdlog, "\n");
1686 }
1687
1688 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1689 }
1690 }
1691
1692 fputc_unfiltered ('\n', gdb_stdlog);
1693 }
1694 return retval;
1695 }
1696
1697 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1698 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1699 if any error occurs.
1700
1701 If an error occurs, no guarantee is made about the contents of the data at
1702 MYADDR. In particular, the caller should not depend upon partial reads
1703 filling the buffer with good data. There is no way for the caller to know
1704 how much good data might have been transfered anyway. Callers that can
1705 deal with partial reads should call target_read (which will retry until
1706 it makes no progress, and then return how much was transferred). */
1707
1708 int
1709 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1710 {
1711 /* Dispatch to the topmost target, not the flattened current_target.
1712 Memory accesses check target->to_has_(all_)memory, and the
1713 flattened target doesn't inherit those. */
1714 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1715 myaddr, memaddr, len) == len)
1716 return 0;
1717 else
1718 return EIO;
1719 }
1720
1721 /* Like target_read_memory, but specify explicitly that this is a read from
1722 the target's stack. This may trigger different cache behavior. */
1723
1724 int
1725 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1726 {
1727 /* Dispatch to the topmost target, not the flattened current_target.
1728 Memory accesses check target->to_has_(all_)memory, and the
1729 flattened target doesn't inherit those. */
1730
1731 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1732 myaddr, memaddr, len) == len)
1733 return 0;
1734 else
1735 return EIO;
1736 }
1737
1738 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1739 Returns either 0 for success or an errno value if any error occurs.
1740 If an error occurs, no guarantee is made about how much data got written.
1741 Callers that can deal with partial writes should call target_write. */
1742
1743 int
1744 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1745 {
1746 /* Dispatch to the topmost target, not the flattened current_target.
1747 Memory accesses check target->to_has_(all_)memory, and the
1748 flattened target doesn't inherit those. */
1749 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1750 myaddr, memaddr, len) == len)
1751 return 0;
1752 else
1753 return EIO;
1754 }
1755
1756 /* Fetch the target's memory map. */
1757
1758 VEC(mem_region_s) *
1759 target_memory_map (void)
1760 {
1761 VEC(mem_region_s) *result;
1762 struct mem_region *last_one, *this_one;
1763 int ix;
1764 struct target_ops *t;
1765
1766 if (targetdebug)
1767 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1768
1769 for (t = current_target.beneath; t != NULL; t = t->beneath)
1770 if (t->to_memory_map != NULL)
1771 break;
1772
1773 if (t == NULL)
1774 return NULL;
1775
1776 result = t->to_memory_map (t);
1777 if (result == NULL)
1778 return NULL;
1779
1780 qsort (VEC_address (mem_region_s, result),
1781 VEC_length (mem_region_s, result),
1782 sizeof (struct mem_region), mem_region_cmp);
1783
1784 /* Check that regions do not overlap. Simultaneously assign
1785 a numbering for the "mem" commands to use to refer to
1786 each region. */
1787 last_one = NULL;
1788 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1789 {
1790 this_one->number = ix;
1791
1792 if (last_one && last_one->hi > this_one->lo)
1793 {
1794 warning (_("Overlapping regions in memory map: ignoring"));
1795 VEC_free (mem_region_s, result);
1796 return NULL;
1797 }
1798 last_one = this_one;
1799 }
1800
1801 return result;
1802 }
1803
1804 void
1805 target_flash_erase (ULONGEST address, LONGEST length)
1806 {
1807 struct target_ops *t;
1808
1809 for (t = current_target.beneath; t != NULL; t = t->beneath)
1810 if (t->to_flash_erase != NULL)
1811 {
1812 if (targetdebug)
1813 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1814 hex_string (address), phex (length, 0));
1815 t->to_flash_erase (t, address, length);
1816 return;
1817 }
1818
1819 tcomplain ();
1820 }
1821
1822 void
1823 target_flash_done (void)
1824 {
1825 struct target_ops *t;
1826
1827 for (t = current_target.beneath; t != NULL; t = t->beneath)
1828 if (t->to_flash_done != NULL)
1829 {
1830 if (targetdebug)
1831 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1832 t->to_flash_done (t);
1833 return;
1834 }
1835
1836 tcomplain ();
1837 }
1838
1839 static void
1840 show_trust_readonly (struct ui_file *file, int from_tty,
1841 struct cmd_list_element *c, const char *value)
1842 {
1843 fprintf_filtered (file,
1844 _("Mode for reading from readonly sections is %s.\n"),
1845 value);
1846 }
1847
1848 /* More generic transfers. */
1849
1850 static LONGEST
1851 default_xfer_partial (struct target_ops *ops, enum target_object object,
1852 const char *annex, gdb_byte *readbuf,
1853 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1854 {
1855 if (object == TARGET_OBJECT_MEMORY
1856 && ops->deprecated_xfer_memory != NULL)
1857 /* If available, fall back to the target's
1858 "deprecated_xfer_memory" method. */
1859 {
1860 int xfered = -1;
1861
1862 errno = 0;
1863 if (writebuf != NULL)
1864 {
1865 void *buffer = xmalloc (len);
1866 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1867
1868 memcpy (buffer, writebuf, len);
1869 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1870 1/*write*/, NULL, ops);
1871 do_cleanups (cleanup);
1872 }
1873 if (readbuf != NULL)
1874 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1875 0/*read*/, NULL, ops);
1876 if (xfered > 0)
1877 return xfered;
1878 else if (xfered == 0 && errno == 0)
1879 /* "deprecated_xfer_memory" uses 0, cross checked against
1880 ERRNO as one indication of an error. */
1881 return 0;
1882 else
1883 return -1;
1884 }
1885 else if (ops->beneath != NULL)
1886 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1887 readbuf, writebuf, offset, len);
1888 else
1889 return -1;
1890 }
1891
1892 /* The xfer_partial handler for the topmost target. Unlike the default,
1893 it does not need to handle memory specially; it just passes all
1894 requests down the stack. */
1895
1896 static LONGEST
1897 current_xfer_partial (struct target_ops *ops, enum target_object object,
1898 const char *annex, gdb_byte *readbuf,
1899 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1900 {
1901 if (ops->beneath != NULL)
1902 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1903 readbuf, writebuf, offset, len);
1904 else
1905 return -1;
1906 }
1907
1908 /* Target vector read/write partial wrapper functions. */
1909
1910 static LONGEST
1911 target_read_partial (struct target_ops *ops,
1912 enum target_object object,
1913 const char *annex, gdb_byte *buf,
1914 ULONGEST offset, LONGEST len)
1915 {
1916 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1917 }
1918
1919 static LONGEST
1920 target_write_partial (struct target_ops *ops,
1921 enum target_object object,
1922 const char *annex, const gdb_byte *buf,
1923 ULONGEST offset, LONGEST len)
1924 {
1925 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1926 }
1927
1928 /* Wrappers to perform the full transfer. */
1929
1930 /* For docs on target_read see target.h. */
1931
1932 LONGEST
1933 target_read (struct target_ops *ops,
1934 enum target_object object,
1935 const char *annex, gdb_byte *buf,
1936 ULONGEST offset, LONGEST len)
1937 {
1938 LONGEST xfered = 0;
1939
1940 while (xfered < len)
1941 {
1942 LONGEST xfer = target_read_partial (ops, object, annex,
1943 (gdb_byte *) buf + xfered,
1944 offset + xfered, len - xfered);
1945
1946 /* Call an observer, notifying them of the xfer progress? */
1947 if (xfer == 0)
1948 return xfered;
1949 if (xfer < 0)
1950 return -1;
1951 xfered += xfer;
1952 QUIT;
1953 }
1954 return len;
1955 }
1956
1957 /* Assuming that the entire [begin, end) range of memory cannot be
1958 read, try to read whatever subrange is possible to read.
1959
1960 The function returns, in RESULT, either zero or one memory block.
1961 If there's a readable subrange at the beginning, it is completely
1962 read and returned. Any further readable subrange will not be read.
1963 Otherwise, if there's a readable subrange at the end, it will be
1964 completely read and returned. Any readable subranges before it
1965 (obviously, not starting at the beginning), will be ignored. In
1966 other cases -- either no readable subrange, or readable subrange(s)
1967 that is neither at the beginning, or end, nothing is returned.
1968
1969 The purpose of this function is to handle a read across a boundary
1970 of accessible memory in a case when memory map is not available.
1971 The above restrictions are fine for this case, but will give
1972 incorrect results if the memory is 'patchy'. However, supporting
1973 'patchy' memory would require trying to read every single byte,
1974 and it seems unacceptable solution. Explicit memory map is
1975 recommended for this case -- and target_read_memory_robust will
1976 take care of reading multiple ranges then. */
1977
1978 static void
1979 read_whatever_is_readable (struct target_ops *ops,
1980 ULONGEST begin, ULONGEST end,
1981 VEC(memory_read_result_s) **result)
1982 {
1983 gdb_byte *buf = xmalloc (end - begin);
1984 ULONGEST current_begin = begin;
1985 ULONGEST current_end = end;
1986 int forward;
1987 memory_read_result_s r;
1988
1989 /* If we previously failed to read 1 byte, nothing can be done here. */
1990 if (end - begin <= 1)
1991 {
1992 xfree (buf);
1993 return;
1994 }
1995
1996 /* Check that either first or the last byte is readable, and give up
1997 if not. This heuristic is meant to permit reading accessible memory
1998 at the boundary of accessible region. */
1999 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2000 buf, begin, 1) == 1)
2001 {
2002 forward = 1;
2003 ++current_begin;
2004 }
2005 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2006 buf + (end-begin) - 1, end - 1, 1) == 1)
2007 {
2008 forward = 0;
2009 --current_end;
2010 }
2011 else
2012 {
2013 xfree (buf);
2014 return;
2015 }
2016
2017 /* Loop invariant is that the [current_begin, current_end) was previously
2018 found to be not readable as a whole.
2019
2020 Note loop condition -- if the range has 1 byte, we can't divide the range
2021 so there's no point trying further. */
2022 while (current_end - current_begin > 1)
2023 {
2024 ULONGEST first_half_begin, first_half_end;
2025 ULONGEST second_half_begin, second_half_end;
2026 LONGEST xfer;
2027 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2028
2029 if (forward)
2030 {
2031 first_half_begin = current_begin;
2032 first_half_end = middle;
2033 second_half_begin = middle;
2034 second_half_end = current_end;
2035 }
2036 else
2037 {
2038 first_half_begin = middle;
2039 first_half_end = current_end;
2040 second_half_begin = current_begin;
2041 second_half_end = middle;
2042 }
2043
2044 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2045 buf + (first_half_begin - begin),
2046 first_half_begin,
2047 first_half_end - first_half_begin);
2048
2049 if (xfer == first_half_end - first_half_begin)
2050 {
2051 /* This half reads up fine. So, the error must be in the
2052 other half. */
2053 current_begin = second_half_begin;
2054 current_end = second_half_end;
2055 }
2056 else
2057 {
2058 /* This half is not readable. Because we've tried one byte, we
2059 know some part of this half if actually redable. Go to the next
2060 iteration to divide again and try to read.
2061
2062 We don't handle the other half, because this function only tries
2063 to read a single readable subrange. */
2064 current_begin = first_half_begin;
2065 current_end = first_half_end;
2066 }
2067 }
2068
2069 if (forward)
2070 {
2071 /* The [begin, current_begin) range has been read. */
2072 r.begin = begin;
2073 r.end = current_begin;
2074 r.data = buf;
2075 }
2076 else
2077 {
2078 /* The [current_end, end) range has been read. */
2079 LONGEST rlen = end - current_end;
2080
2081 r.data = xmalloc (rlen);
2082 memcpy (r.data, buf + current_end - begin, rlen);
2083 r.begin = current_end;
2084 r.end = end;
2085 xfree (buf);
2086 }
2087 VEC_safe_push(memory_read_result_s, (*result), &r);
2088 }
2089
2090 void
2091 free_memory_read_result_vector (void *x)
2092 {
2093 VEC(memory_read_result_s) *v = x;
2094 memory_read_result_s *current;
2095 int ix;
2096
2097 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2098 {
2099 xfree (current->data);
2100 }
2101 VEC_free (memory_read_result_s, v);
2102 }
2103
2104 VEC(memory_read_result_s) *
2105 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2106 {
2107 VEC(memory_read_result_s) *result = 0;
2108
2109 LONGEST xfered = 0;
2110 while (xfered < len)
2111 {
2112 struct mem_region *region = lookup_mem_region (offset + xfered);
2113 LONGEST rlen;
2114
2115 /* If there is no explicit region, a fake one should be created. */
2116 gdb_assert (region);
2117
2118 if (region->hi == 0)
2119 rlen = len - xfered;
2120 else
2121 rlen = region->hi - offset;
2122
2123 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2124 {
2125 /* Cannot read this region. Note that we can end up here only
2126 if the region is explicitly marked inaccessible, or
2127 'inaccessible-by-default' is in effect. */
2128 xfered += rlen;
2129 }
2130 else
2131 {
2132 LONGEST to_read = min (len - xfered, rlen);
2133 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2134
2135 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2136 (gdb_byte *) buffer,
2137 offset + xfered, to_read);
2138 /* Call an observer, notifying them of the xfer progress? */
2139 if (xfer <= 0)
2140 {
2141 /* Got an error reading full chunk. See if maybe we can read
2142 some subrange. */
2143 xfree (buffer);
2144 read_whatever_is_readable (ops, offset + xfered,
2145 offset + xfered + to_read, &result);
2146 xfered += to_read;
2147 }
2148 else
2149 {
2150 struct memory_read_result r;
2151 r.data = buffer;
2152 r.begin = offset + xfered;
2153 r.end = r.begin + xfer;
2154 VEC_safe_push (memory_read_result_s, result, &r);
2155 xfered += xfer;
2156 }
2157 QUIT;
2158 }
2159 }
2160 return result;
2161 }
2162
2163
2164 /* An alternative to target_write with progress callbacks. */
2165
2166 LONGEST
2167 target_write_with_progress (struct target_ops *ops,
2168 enum target_object object,
2169 const char *annex, const gdb_byte *buf,
2170 ULONGEST offset, LONGEST len,
2171 void (*progress) (ULONGEST, void *), void *baton)
2172 {
2173 LONGEST xfered = 0;
2174
2175 /* Give the progress callback a chance to set up. */
2176 if (progress)
2177 (*progress) (0, baton);
2178
2179 while (xfered < len)
2180 {
2181 LONGEST xfer = target_write_partial (ops, object, annex,
2182 (gdb_byte *) buf + xfered,
2183 offset + xfered, len - xfered);
2184
2185 if (xfer == 0)
2186 return xfered;
2187 if (xfer < 0)
2188 return -1;
2189
2190 if (progress)
2191 (*progress) (xfer, baton);
2192
2193 xfered += xfer;
2194 QUIT;
2195 }
2196 return len;
2197 }
2198
2199 /* For docs on target_write see target.h. */
2200
2201 LONGEST
2202 target_write (struct target_ops *ops,
2203 enum target_object object,
2204 const char *annex, const gdb_byte *buf,
2205 ULONGEST offset, LONGEST len)
2206 {
2207 return target_write_with_progress (ops, object, annex, buf, offset, len,
2208 NULL, NULL);
2209 }
2210
2211 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2212 the size of the transferred data. PADDING additional bytes are
2213 available in *BUF_P. This is a helper function for
2214 target_read_alloc; see the declaration of that function for more
2215 information. */
2216
2217 static LONGEST
2218 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2219 const char *annex, gdb_byte **buf_p, int padding)
2220 {
2221 size_t buf_alloc, buf_pos;
2222 gdb_byte *buf;
2223 LONGEST n;
2224
2225 /* This function does not have a length parameter; it reads the
2226 entire OBJECT). Also, it doesn't support objects fetched partly
2227 from one target and partly from another (in a different stratum,
2228 e.g. a core file and an executable). Both reasons make it
2229 unsuitable for reading memory. */
2230 gdb_assert (object != TARGET_OBJECT_MEMORY);
2231
2232 /* Start by reading up to 4K at a time. The target will throttle
2233 this number down if necessary. */
2234 buf_alloc = 4096;
2235 buf = xmalloc (buf_alloc);
2236 buf_pos = 0;
2237 while (1)
2238 {
2239 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2240 buf_pos, buf_alloc - buf_pos - padding);
2241 if (n < 0)
2242 {
2243 /* An error occurred. */
2244 xfree (buf);
2245 return -1;
2246 }
2247 else if (n == 0)
2248 {
2249 /* Read all there was. */
2250 if (buf_pos == 0)
2251 xfree (buf);
2252 else
2253 *buf_p = buf;
2254 return buf_pos;
2255 }
2256
2257 buf_pos += n;
2258
2259 /* If the buffer is filling up, expand it. */
2260 if (buf_alloc < buf_pos * 2)
2261 {
2262 buf_alloc *= 2;
2263 buf = xrealloc (buf, buf_alloc);
2264 }
2265
2266 QUIT;
2267 }
2268 }
2269
2270 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2271 the size of the transferred data. See the declaration in "target.h"
2272 function for more information about the return value. */
2273
2274 LONGEST
2275 target_read_alloc (struct target_ops *ops, enum target_object object,
2276 const char *annex, gdb_byte **buf_p)
2277 {
2278 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2279 }
2280
2281 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2282 returned as a string, allocated using xmalloc. If an error occurs
2283 or the transfer is unsupported, NULL is returned. Empty objects
2284 are returned as allocated but empty strings. A warning is issued
2285 if the result contains any embedded NUL bytes. */
2286
2287 char *
2288 target_read_stralloc (struct target_ops *ops, enum target_object object,
2289 const char *annex)
2290 {
2291 gdb_byte *buffer;
2292 LONGEST transferred;
2293
2294 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2295
2296 if (transferred < 0)
2297 return NULL;
2298
2299 if (transferred == 0)
2300 return xstrdup ("");
2301
2302 buffer[transferred] = 0;
2303 if (strlen (buffer) < transferred)
2304 warning (_("target object %d, annex %s, "
2305 "contained unexpected null characters"),
2306 (int) object, annex ? annex : "(none)");
2307
2308 return (char *) buffer;
2309 }
2310
2311 /* Memory transfer methods. */
2312
2313 void
2314 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2315 LONGEST len)
2316 {
2317 /* This method is used to read from an alternate, non-current
2318 target. This read must bypass the overlay support (as symbols
2319 don't match this target), and GDB's internal cache (wrong cache
2320 for this target). */
2321 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2322 != len)
2323 memory_error (EIO, addr);
2324 }
2325
2326 ULONGEST
2327 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2328 int len, enum bfd_endian byte_order)
2329 {
2330 gdb_byte buf[sizeof (ULONGEST)];
2331
2332 gdb_assert (len <= sizeof (buf));
2333 get_target_memory (ops, addr, buf, len);
2334 return extract_unsigned_integer (buf, len, byte_order);
2335 }
2336
2337 int
2338 target_insert_breakpoint (struct gdbarch *gdbarch,
2339 struct bp_target_info *bp_tgt)
2340 {
2341 if (!may_insert_breakpoints)
2342 {
2343 warning (_("May not insert breakpoints"));
2344 return 1;
2345 }
2346
2347 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2348 }
2349
2350 int
2351 target_remove_breakpoint (struct gdbarch *gdbarch,
2352 struct bp_target_info *bp_tgt)
2353 {
2354 /* This is kind of a weird case to handle, but the permission might
2355 have been changed after breakpoints were inserted - in which case
2356 we should just take the user literally and assume that any
2357 breakpoints should be left in place. */
2358 if (!may_insert_breakpoints)
2359 {
2360 warning (_("May not remove breakpoints"));
2361 return 1;
2362 }
2363
2364 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2365 }
2366
2367 static void
2368 target_info (char *args, int from_tty)
2369 {
2370 struct target_ops *t;
2371 int has_all_mem = 0;
2372
2373 if (symfile_objfile != NULL)
2374 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2375
2376 for (t = target_stack; t != NULL; t = t->beneath)
2377 {
2378 if (!(*t->to_has_memory) (t))
2379 continue;
2380
2381 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2382 continue;
2383 if (has_all_mem)
2384 printf_unfiltered (_("\tWhile running this, "
2385 "GDB does not access memory from...\n"));
2386 printf_unfiltered ("%s:\n", t->to_longname);
2387 (t->to_files_info) (t);
2388 has_all_mem = (*t->to_has_all_memory) (t);
2389 }
2390 }
2391
2392 /* This function is called before any new inferior is created, e.g.
2393 by running a program, attaching, or connecting to a target.
2394 It cleans up any state from previous invocations which might
2395 change between runs. This is a subset of what target_preopen
2396 resets (things which might change between targets). */
2397
2398 void
2399 target_pre_inferior (int from_tty)
2400 {
2401 /* Clear out solib state. Otherwise the solib state of the previous
2402 inferior might have survived and is entirely wrong for the new
2403 target. This has been observed on GNU/Linux using glibc 2.3. How
2404 to reproduce:
2405
2406 bash$ ./foo&
2407 [1] 4711
2408 bash$ ./foo&
2409 [1] 4712
2410 bash$ gdb ./foo
2411 [...]
2412 (gdb) attach 4711
2413 (gdb) detach
2414 (gdb) attach 4712
2415 Cannot access memory at address 0xdeadbeef
2416 */
2417
2418 /* In some OSs, the shared library list is the same/global/shared
2419 across inferiors. If code is shared between processes, so are
2420 memory regions and features. */
2421 if (!gdbarch_has_global_solist (target_gdbarch))
2422 {
2423 no_shared_libraries (NULL, from_tty);
2424
2425 invalidate_target_mem_regions ();
2426
2427 target_clear_description ();
2428 }
2429 }
2430
2431 /* Callback for iterate_over_inferiors. Gets rid of the given
2432 inferior. */
2433
2434 static int
2435 dispose_inferior (struct inferior *inf, void *args)
2436 {
2437 struct thread_info *thread;
2438
2439 thread = any_thread_of_process (inf->pid);
2440 if (thread)
2441 {
2442 switch_to_thread (thread->ptid);
2443
2444 /* Core inferiors actually should be detached, not killed. */
2445 if (target_has_execution)
2446 target_kill ();
2447 else
2448 target_detach (NULL, 0);
2449 }
2450
2451 return 0;
2452 }
2453
2454 /* This is to be called by the open routine before it does
2455 anything. */
2456
2457 void
2458 target_preopen (int from_tty)
2459 {
2460 dont_repeat ();
2461
2462 if (have_inferiors ())
2463 {
2464 if (!from_tty
2465 || !have_live_inferiors ()
2466 || query (_("A program is being debugged already. Kill it? ")))
2467 iterate_over_inferiors (dispose_inferior, NULL);
2468 else
2469 error (_("Program not killed."));
2470 }
2471
2472 /* Calling target_kill may remove the target from the stack. But if
2473 it doesn't (which seems like a win for UDI), remove it now. */
2474 /* Leave the exec target, though. The user may be switching from a
2475 live process to a core of the same program. */
2476 pop_all_targets_above (file_stratum, 0);
2477
2478 target_pre_inferior (from_tty);
2479 }
2480
2481 /* Detach a target after doing deferred register stores. */
2482
2483 void
2484 target_detach (char *args, int from_tty)
2485 {
2486 struct target_ops* t;
2487
2488 if (gdbarch_has_global_breakpoints (target_gdbarch))
2489 /* Don't remove global breakpoints here. They're removed on
2490 disconnection from the target. */
2491 ;
2492 else
2493 /* If we're in breakpoints-always-inserted mode, have to remove
2494 them before detaching. */
2495 remove_breakpoints_pid (PIDGET (inferior_ptid));
2496
2497 prepare_for_detach ();
2498
2499 for (t = current_target.beneath; t != NULL; t = t->beneath)
2500 {
2501 if (t->to_detach != NULL)
2502 {
2503 t->to_detach (t, args, from_tty);
2504 if (targetdebug)
2505 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2506 args, from_tty);
2507 return;
2508 }
2509 }
2510
2511 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2512 }
2513
2514 void
2515 target_disconnect (char *args, int from_tty)
2516 {
2517 struct target_ops *t;
2518
2519 /* If we're in breakpoints-always-inserted mode or if breakpoints
2520 are global across processes, we have to remove them before
2521 disconnecting. */
2522 remove_breakpoints ();
2523
2524 for (t = current_target.beneath; t != NULL; t = t->beneath)
2525 if (t->to_disconnect != NULL)
2526 {
2527 if (targetdebug)
2528 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2529 args, from_tty);
2530 t->to_disconnect (t, args, from_tty);
2531 return;
2532 }
2533
2534 tcomplain ();
2535 }
2536
2537 ptid_t
2538 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2539 {
2540 struct target_ops *t;
2541
2542 for (t = current_target.beneath; t != NULL; t = t->beneath)
2543 {
2544 if (t->to_wait != NULL)
2545 {
2546 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2547
2548 if (targetdebug)
2549 {
2550 char *status_string;
2551
2552 status_string = target_waitstatus_to_string (status);
2553 fprintf_unfiltered (gdb_stdlog,
2554 "target_wait (%d, status) = %d, %s\n",
2555 PIDGET (ptid), PIDGET (retval),
2556 status_string);
2557 xfree (status_string);
2558 }
2559
2560 return retval;
2561 }
2562 }
2563
2564 noprocess ();
2565 }
2566
2567 char *
2568 target_pid_to_str (ptid_t ptid)
2569 {
2570 struct target_ops *t;
2571
2572 for (t = current_target.beneath; t != NULL; t = t->beneath)
2573 {
2574 if (t->to_pid_to_str != NULL)
2575 return (*t->to_pid_to_str) (t, ptid);
2576 }
2577
2578 return normal_pid_to_str (ptid);
2579 }
2580
2581 char *
2582 target_thread_name (struct thread_info *info)
2583 {
2584 struct target_ops *t;
2585
2586 for (t = current_target.beneath; t != NULL; t = t->beneath)
2587 {
2588 if (t->to_thread_name != NULL)
2589 return (*t->to_thread_name) (info);
2590 }
2591
2592 return NULL;
2593 }
2594
2595 void
2596 target_resume (ptid_t ptid, int step, enum target_signal signal)
2597 {
2598 struct target_ops *t;
2599
2600 target_dcache_invalidate ();
2601
2602 for (t = current_target.beneath; t != NULL; t = t->beneath)
2603 {
2604 if (t->to_resume != NULL)
2605 {
2606 t->to_resume (t, ptid, step, signal);
2607 if (targetdebug)
2608 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2609 PIDGET (ptid),
2610 step ? "step" : "continue",
2611 target_signal_to_name (signal));
2612
2613 registers_changed_ptid (ptid);
2614 set_executing (ptid, 1);
2615 set_running (ptid, 1);
2616 clear_inline_frame_state (ptid);
2617 return;
2618 }
2619 }
2620
2621 noprocess ();
2622 }
2623
2624 void
2625 target_pass_signals (int numsigs, unsigned char *pass_signals)
2626 {
2627 struct target_ops *t;
2628
2629 for (t = current_target.beneath; t != NULL; t = t->beneath)
2630 {
2631 if (t->to_pass_signals != NULL)
2632 {
2633 if (targetdebug)
2634 {
2635 int i;
2636
2637 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2638 numsigs);
2639
2640 for (i = 0; i < numsigs; i++)
2641 if (pass_signals[i])
2642 fprintf_unfiltered (gdb_stdlog, " %s",
2643 target_signal_to_name (i));
2644
2645 fprintf_unfiltered (gdb_stdlog, " })\n");
2646 }
2647
2648 (*t->to_pass_signals) (numsigs, pass_signals);
2649 return;
2650 }
2651 }
2652 }
2653
2654 /* Look through the list of possible targets for a target that can
2655 follow forks. */
2656
2657 int
2658 target_follow_fork (int follow_child)
2659 {
2660 struct target_ops *t;
2661
2662 for (t = current_target.beneath; t != NULL; t = t->beneath)
2663 {
2664 if (t->to_follow_fork != NULL)
2665 {
2666 int retval = t->to_follow_fork (t, follow_child);
2667
2668 if (targetdebug)
2669 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2670 follow_child, retval);
2671 return retval;
2672 }
2673 }
2674
2675 /* Some target returned a fork event, but did not know how to follow it. */
2676 internal_error (__FILE__, __LINE__,
2677 _("could not find a target to follow fork"));
2678 }
2679
2680 void
2681 target_mourn_inferior (void)
2682 {
2683 struct target_ops *t;
2684
2685 for (t = current_target.beneath; t != NULL; t = t->beneath)
2686 {
2687 if (t->to_mourn_inferior != NULL)
2688 {
2689 t->to_mourn_inferior (t);
2690 if (targetdebug)
2691 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2692
2693 /* We no longer need to keep handles on any of the object files.
2694 Make sure to release them to avoid unnecessarily locking any
2695 of them while we're not actually debugging. */
2696 bfd_cache_close_all ();
2697
2698 return;
2699 }
2700 }
2701
2702 internal_error (__FILE__, __LINE__,
2703 _("could not find a target to follow mourn inferior"));
2704 }
2705
2706 /* Look for a target which can describe architectural features, starting
2707 from TARGET. If we find one, return its description. */
2708
2709 const struct target_desc *
2710 target_read_description (struct target_ops *target)
2711 {
2712 struct target_ops *t;
2713
2714 for (t = target; t != NULL; t = t->beneath)
2715 if (t->to_read_description != NULL)
2716 {
2717 const struct target_desc *tdesc;
2718
2719 tdesc = t->to_read_description (t);
2720 if (tdesc)
2721 return tdesc;
2722 }
2723
2724 return NULL;
2725 }
2726
2727 /* The default implementation of to_search_memory.
2728 This implements a basic search of memory, reading target memory and
2729 performing the search here (as opposed to performing the search in on the
2730 target side with, for example, gdbserver). */
2731
2732 int
2733 simple_search_memory (struct target_ops *ops,
2734 CORE_ADDR start_addr, ULONGEST search_space_len,
2735 const gdb_byte *pattern, ULONGEST pattern_len,
2736 CORE_ADDR *found_addrp)
2737 {
2738 /* NOTE: also defined in find.c testcase. */
2739 #define SEARCH_CHUNK_SIZE 16000
2740 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2741 /* Buffer to hold memory contents for searching. */
2742 gdb_byte *search_buf;
2743 unsigned search_buf_size;
2744 struct cleanup *old_cleanups;
2745
2746 search_buf_size = chunk_size + pattern_len - 1;
2747
2748 /* No point in trying to allocate a buffer larger than the search space. */
2749 if (search_space_len < search_buf_size)
2750 search_buf_size = search_space_len;
2751
2752 search_buf = malloc (search_buf_size);
2753 if (search_buf == NULL)
2754 error (_("Unable to allocate memory to perform the search."));
2755 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2756
2757 /* Prime the search buffer. */
2758
2759 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2760 search_buf, start_addr, search_buf_size) != search_buf_size)
2761 {
2762 warning (_("Unable to access target memory at %s, halting search."),
2763 hex_string (start_addr));
2764 do_cleanups (old_cleanups);
2765 return -1;
2766 }
2767
2768 /* Perform the search.
2769
2770 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2771 When we've scanned N bytes we copy the trailing bytes to the start and
2772 read in another N bytes. */
2773
2774 while (search_space_len >= pattern_len)
2775 {
2776 gdb_byte *found_ptr;
2777 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2778
2779 found_ptr = memmem (search_buf, nr_search_bytes,
2780 pattern, pattern_len);
2781
2782 if (found_ptr != NULL)
2783 {
2784 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2785
2786 *found_addrp = found_addr;
2787 do_cleanups (old_cleanups);
2788 return 1;
2789 }
2790
2791 /* Not found in this chunk, skip to next chunk. */
2792
2793 /* Don't let search_space_len wrap here, it's unsigned. */
2794 if (search_space_len >= chunk_size)
2795 search_space_len -= chunk_size;
2796 else
2797 search_space_len = 0;
2798
2799 if (search_space_len >= pattern_len)
2800 {
2801 unsigned keep_len = search_buf_size - chunk_size;
2802 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2803 int nr_to_read;
2804
2805 /* Copy the trailing part of the previous iteration to the front
2806 of the buffer for the next iteration. */
2807 gdb_assert (keep_len == pattern_len - 1);
2808 memcpy (search_buf, search_buf + chunk_size, keep_len);
2809
2810 nr_to_read = min (search_space_len - keep_len, chunk_size);
2811
2812 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2813 search_buf + keep_len, read_addr,
2814 nr_to_read) != nr_to_read)
2815 {
2816 warning (_("Unable to access target "
2817 "memory at %s, halting search."),
2818 hex_string (read_addr));
2819 do_cleanups (old_cleanups);
2820 return -1;
2821 }
2822
2823 start_addr += chunk_size;
2824 }
2825 }
2826
2827 /* Not found. */
2828
2829 do_cleanups (old_cleanups);
2830 return 0;
2831 }
2832
2833 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2834 sequence of bytes in PATTERN with length PATTERN_LEN.
2835
2836 The result is 1 if found, 0 if not found, and -1 if there was an error
2837 requiring halting of the search (e.g. memory read error).
2838 If the pattern is found the address is recorded in FOUND_ADDRP. */
2839
2840 int
2841 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2842 const gdb_byte *pattern, ULONGEST pattern_len,
2843 CORE_ADDR *found_addrp)
2844 {
2845 struct target_ops *t;
2846 int found;
2847
2848 /* We don't use INHERIT to set current_target.to_search_memory,
2849 so we have to scan the target stack and handle targetdebug
2850 ourselves. */
2851
2852 if (targetdebug)
2853 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2854 hex_string (start_addr));
2855
2856 for (t = current_target.beneath; t != NULL; t = t->beneath)
2857 if (t->to_search_memory != NULL)
2858 break;
2859
2860 if (t != NULL)
2861 {
2862 found = t->to_search_memory (t, start_addr, search_space_len,
2863 pattern, pattern_len, found_addrp);
2864 }
2865 else
2866 {
2867 /* If a special version of to_search_memory isn't available, use the
2868 simple version. */
2869 found = simple_search_memory (current_target.beneath,
2870 start_addr, search_space_len,
2871 pattern, pattern_len, found_addrp);
2872 }
2873
2874 if (targetdebug)
2875 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2876
2877 return found;
2878 }
2879
2880 /* Look through the currently pushed targets. If none of them will
2881 be able to restart the currently running process, issue an error
2882 message. */
2883
2884 void
2885 target_require_runnable (void)
2886 {
2887 struct target_ops *t;
2888
2889 for (t = target_stack; t != NULL; t = t->beneath)
2890 {
2891 /* If this target knows how to create a new program, then
2892 assume we will still be able to after killing the current
2893 one. Either killing and mourning will not pop T, or else
2894 find_default_run_target will find it again. */
2895 if (t->to_create_inferior != NULL)
2896 return;
2897
2898 /* Do not worry about thread_stratum targets that can not
2899 create inferiors. Assume they will be pushed again if
2900 necessary, and continue to the process_stratum. */
2901 if (t->to_stratum == thread_stratum
2902 || t->to_stratum == arch_stratum)
2903 continue;
2904
2905 error (_("The \"%s\" target does not support \"run\". "
2906 "Try \"help target\" or \"continue\"."),
2907 t->to_shortname);
2908 }
2909
2910 /* This function is only called if the target is running. In that
2911 case there should have been a process_stratum target and it
2912 should either know how to create inferiors, or not... */
2913 internal_error (__FILE__, __LINE__, _("No targets found"));
2914 }
2915
2916 /* Look through the list of possible targets for a target that can
2917 execute a run or attach command without any other data. This is
2918 used to locate the default process stratum.
2919
2920 If DO_MESG is not NULL, the result is always valid (error() is
2921 called for errors); else, return NULL on error. */
2922
2923 static struct target_ops *
2924 find_default_run_target (char *do_mesg)
2925 {
2926 struct target_ops **t;
2927 struct target_ops *runable = NULL;
2928 int count;
2929
2930 count = 0;
2931
2932 for (t = target_structs; t < target_structs + target_struct_size;
2933 ++t)
2934 {
2935 if ((*t)->to_can_run && target_can_run (*t))
2936 {
2937 runable = *t;
2938 ++count;
2939 }
2940 }
2941
2942 if (count != 1)
2943 {
2944 if (do_mesg)
2945 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2946 else
2947 return NULL;
2948 }
2949
2950 return runable;
2951 }
2952
2953 void
2954 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2955 {
2956 struct target_ops *t;
2957
2958 t = find_default_run_target ("attach");
2959 (t->to_attach) (t, args, from_tty);
2960 return;
2961 }
2962
2963 void
2964 find_default_create_inferior (struct target_ops *ops,
2965 char *exec_file, char *allargs, char **env,
2966 int from_tty)
2967 {
2968 struct target_ops *t;
2969
2970 t = find_default_run_target ("run");
2971 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2972 return;
2973 }
2974
2975 static int
2976 find_default_can_async_p (void)
2977 {
2978 struct target_ops *t;
2979
2980 /* This may be called before the target is pushed on the stack;
2981 look for the default process stratum. If there's none, gdb isn't
2982 configured with a native debugger, and target remote isn't
2983 connected yet. */
2984 t = find_default_run_target (NULL);
2985 if (t && t->to_can_async_p)
2986 return (t->to_can_async_p) ();
2987 return 0;
2988 }
2989
2990 static int
2991 find_default_is_async_p (void)
2992 {
2993 struct target_ops *t;
2994
2995 /* This may be called before the target is pushed on the stack;
2996 look for the default process stratum. If there's none, gdb isn't
2997 configured with a native debugger, and target remote isn't
2998 connected yet. */
2999 t = find_default_run_target (NULL);
3000 if (t && t->to_is_async_p)
3001 return (t->to_is_async_p) ();
3002 return 0;
3003 }
3004
3005 static int
3006 find_default_supports_non_stop (void)
3007 {
3008 struct target_ops *t;
3009
3010 t = find_default_run_target (NULL);
3011 if (t && t->to_supports_non_stop)
3012 return (t->to_supports_non_stop) ();
3013 return 0;
3014 }
3015
3016 int
3017 target_supports_non_stop (void)
3018 {
3019 struct target_ops *t;
3020
3021 for (t = &current_target; t != NULL; t = t->beneath)
3022 if (t->to_supports_non_stop)
3023 return t->to_supports_non_stop ();
3024
3025 return 0;
3026 }
3027
3028 static int
3029 find_default_supports_disable_randomization (void)
3030 {
3031 struct target_ops *t;
3032
3033 t = find_default_run_target (NULL);
3034 if (t && t->to_supports_disable_randomization)
3035 return (t->to_supports_disable_randomization) ();
3036 return 0;
3037 }
3038
3039 int
3040 target_supports_disable_randomization (void)
3041 {
3042 struct target_ops *t;
3043
3044 for (t = &current_target; t != NULL; t = t->beneath)
3045 if (t->to_supports_disable_randomization)
3046 return t->to_supports_disable_randomization ();
3047
3048 return 0;
3049 }
3050
3051 char *
3052 target_get_osdata (const char *type)
3053 {
3054 struct target_ops *t;
3055
3056 /* If we're already connected to something that can get us OS
3057 related data, use it. Otherwise, try using the native
3058 target. */
3059 if (current_target.to_stratum >= process_stratum)
3060 t = current_target.beneath;
3061 else
3062 t = find_default_run_target ("get OS data");
3063
3064 if (!t)
3065 return NULL;
3066
3067 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3068 }
3069
3070 /* Determine the current address space of thread PTID. */
3071
3072 struct address_space *
3073 target_thread_address_space (ptid_t ptid)
3074 {
3075 struct address_space *aspace;
3076 struct inferior *inf;
3077 struct target_ops *t;
3078
3079 for (t = current_target.beneath; t != NULL; t = t->beneath)
3080 {
3081 if (t->to_thread_address_space != NULL)
3082 {
3083 aspace = t->to_thread_address_space (t, ptid);
3084 gdb_assert (aspace);
3085
3086 if (targetdebug)
3087 fprintf_unfiltered (gdb_stdlog,
3088 "target_thread_address_space (%s) = %d\n",
3089 target_pid_to_str (ptid),
3090 address_space_num (aspace));
3091 return aspace;
3092 }
3093 }
3094
3095 /* Fall-back to the "main" address space of the inferior. */
3096 inf = find_inferior_pid (ptid_get_pid (ptid));
3097
3098 if (inf == NULL || inf->aspace == NULL)
3099 internal_error (__FILE__, __LINE__,
3100 _("Can't determine the current "
3101 "address space of thread %s\n"),
3102 target_pid_to_str (ptid));
3103
3104 return inf->aspace;
3105 }
3106
3107 static int
3108 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3109 {
3110 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
3111 }
3112
3113 static int
3114 default_watchpoint_addr_within_range (struct target_ops *target,
3115 CORE_ADDR addr,
3116 CORE_ADDR start, int length)
3117 {
3118 return addr >= start && addr < start + length;
3119 }
3120
3121 static struct gdbarch *
3122 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3123 {
3124 return target_gdbarch;
3125 }
3126
3127 static int
3128 return_zero (void)
3129 {
3130 return 0;
3131 }
3132
3133 static int
3134 return_one (void)
3135 {
3136 return 1;
3137 }
3138
3139 static int
3140 return_minus_one (void)
3141 {
3142 return -1;
3143 }
3144
3145 /* Find a single runnable target in the stack and return it. If for
3146 some reason there is more than one, return NULL. */
3147
3148 struct target_ops *
3149 find_run_target (void)
3150 {
3151 struct target_ops **t;
3152 struct target_ops *runable = NULL;
3153 int count;
3154
3155 count = 0;
3156
3157 for (t = target_structs; t < target_structs + target_struct_size; ++t)
3158 {
3159 if ((*t)->to_can_run && target_can_run (*t))
3160 {
3161 runable = *t;
3162 ++count;
3163 }
3164 }
3165
3166 return (count == 1 ? runable : NULL);
3167 }
3168
3169 /*
3170 * Find the next target down the stack from the specified target.
3171 */
3172
3173 struct target_ops *
3174 find_target_beneath (struct target_ops *t)
3175 {
3176 return t->beneath;
3177 }
3178
3179 \f
3180 /* The inferior process has died. Long live the inferior! */
3181
3182 void
3183 generic_mourn_inferior (void)
3184 {
3185 ptid_t ptid;
3186
3187 ptid = inferior_ptid;
3188 inferior_ptid = null_ptid;
3189
3190 if (!ptid_equal (ptid, null_ptid))
3191 {
3192 int pid = ptid_get_pid (ptid);
3193 exit_inferior (pid);
3194 }
3195
3196 breakpoint_init_inferior (inf_exited);
3197 registers_changed ();
3198
3199 reopen_exec_file ();
3200 reinit_frame_cache ();
3201
3202 if (deprecated_detach_hook)
3203 deprecated_detach_hook ();
3204 }
3205 \f
3206 /* Helper function for child_wait and the derivatives of child_wait.
3207 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
3208 translation of that in OURSTATUS. */
3209 void
3210 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
3211 {
3212 if (WIFEXITED (hoststatus))
3213 {
3214 ourstatus->kind = TARGET_WAITKIND_EXITED;
3215 ourstatus->value.integer = WEXITSTATUS (hoststatus);
3216 }
3217 else if (!WIFSTOPPED (hoststatus))
3218 {
3219 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3220 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
3221 }
3222 else
3223 {
3224 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3225 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
3226 }
3227 }
3228 \f
3229 /* Convert a normal process ID to a string. Returns the string in a
3230 static buffer. */
3231
3232 char *
3233 normal_pid_to_str (ptid_t ptid)
3234 {
3235 static char buf[32];
3236
3237 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3238 return buf;
3239 }
3240
3241 static char *
3242 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3243 {
3244 return normal_pid_to_str (ptid);
3245 }
3246
3247 /* Error-catcher for target_find_memory_regions. */
3248 static int
3249 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3250 {
3251 error (_("Command not implemented for this target."));
3252 return 0;
3253 }
3254
3255 /* Error-catcher for target_make_corefile_notes. */
3256 static char *
3257 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3258 {
3259 error (_("Command not implemented for this target."));
3260 return NULL;
3261 }
3262
3263 /* Error-catcher for target_get_bookmark. */
3264 static gdb_byte *
3265 dummy_get_bookmark (char *ignore1, int ignore2)
3266 {
3267 tcomplain ();
3268 return NULL;
3269 }
3270
3271 /* Error-catcher for target_goto_bookmark. */
3272 static void
3273 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3274 {
3275 tcomplain ();
3276 }
3277
3278 /* Set up the handful of non-empty slots needed by the dummy target
3279 vector. */
3280
3281 static void
3282 init_dummy_target (void)
3283 {
3284 dummy_target.to_shortname = "None";
3285 dummy_target.to_longname = "None";
3286 dummy_target.to_doc = "";
3287 dummy_target.to_attach = find_default_attach;
3288 dummy_target.to_detach =
3289 (void (*)(struct target_ops *, char *, int))target_ignore;
3290 dummy_target.to_create_inferior = find_default_create_inferior;
3291 dummy_target.to_can_async_p = find_default_can_async_p;
3292 dummy_target.to_is_async_p = find_default_is_async_p;
3293 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3294 dummy_target.to_supports_disable_randomization
3295 = find_default_supports_disable_randomization;
3296 dummy_target.to_pid_to_str = dummy_pid_to_str;
3297 dummy_target.to_stratum = dummy_stratum;
3298 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3299 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3300 dummy_target.to_get_bookmark = dummy_get_bookmark;
3301 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3302 dummy_target.to_xfer_partial = default_xfer_partial;
3303 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3304 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3305 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3306 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3307 dummy_target.to_has_execution
3308 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3309 dummy_target.to_stopped_by_watchpoint = return_zero;
3310 dummy_target.to_stopped_data_address =
3311 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3312 dummy_target.to_magic = OPS_MAGIC;
3313 }
3314 \f
3315 static void
3316 debug_to_open (char *args, int from_tty)
3317 {
3318 debug_target.to_open (args, from_tty);
3319
3320 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3321 }
3322
3323 void
3324 target_close (struct target_ops *targ, int quitting)
3325 {
3326 if (targ->to_xclose != NULL)
3327 targ->to_xclose (targ, quitting);
3328 else if (targ->to_close != NULL)
3329 targ->to_close (quitting);
3330
3331 if (targetdebug)
3332 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
3333 }
3334
3335 void
3336 target_attach (char *args, int from_tty)
3337 {
3338 struct target_ops *t;
3339
3340 for (t = current_target.beneath; t != NULL; t = t->beneath)
3341 {
3342 if (t->to_attach != NULL)
3343 {
3344 t->to_attach (t, args, from_tty);
3345 if (targetdebug)
3346 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3347 args, from_tty);
3348 return;
3349 }
3350 }
3351
3352 internal_error (__FILE__, __LINE__,
3353 _("could not find a target to attach"));
3354 }
3355
3356 int
3357 target_thread_alive (ptid_t ptid)
3358 {
3359 struct target_ops *t;
3360
3361 for (t = current_target.beneath; t != NULL; t = t->beneath)
3362 {
3363 if (t->to_thread_alive != NULL)
3364 {
3365 int retval;
3366
3367 retval = t->to_thread_alive (t, ptid);
3368 if (targetdebug)
3369 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3370 PIDGET (ptid), retval);
3371
3372 return retval;
3373 }
3374 }
3375
3376 return 0;
3377 }
3378
3379 void
3380 target_find_new_threads (void)
3381 {
3382 struct target_ops *t;
3383
3384 for (t = current_target.beneath; t != NULL; t = t->beneath)
3385 {
3386 if (t->to_find_new_threads != NULL)
3387 {
3388 t->to_find_new_threads (t);
3389 if (targetdebug)
3390 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3391
3392 return;
3393 }
3394 }
3395 }
3396
3397 void
3398 target_stop (ptid_t ptid)
3399 {
3400 if (!may_stop)
3401 {
3402 warning (_("May not interrupt or stop the target, ignoring attempt"));
3403 return;
3404 }
3405
3406 (*current_target.to_stop) (ptid);
3407 }
3408
3409 static void
3410 debug_to_post_attach (int pid)
3411 {
3412 debug_target.to_post_attach (pid);
3413
3414 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3415 }
3416
3417 /* Return a pretty printed form of target_waitstatus.
3418 Space for the result is malloc'd, caller must free. */
3419
3420 char *
3421 target_waitstatus_to_string (const struct target_waitstatus *ws)
3422 {
3423 const char *kind_str = "status->kind = ";
3424
3425 switch (ws->kind)
3426 {
3427 case TARGET_WAITKIND_EXITED:
3428 return xstrprintf ("%sexited, status = %d",
3429 kind_str, ws->value.integer);
3430 case TARGET_WAITKIND_STOPPED:
3431 return xstrprintf ("%sstopped, signal = %s",
3432 kind_str, target_signal_to_name (ws->value.sig));
3433 case TARGET_WAITKIND_SIGNALLED:
3434 return xstrprintf ("%ssignalled, signal = %s",
3435 kind_str, target_signal_to_name (ws->value.sig));
3436 case TARGET_WAITKIND_LOADED:
3437 return xstrprintf ("%sloaded", kind_str);
3438 case TARGET_WAITKIND_FORKED:
3439 return xstrprintf ("%sforked", kind_str);
3440 case TARGET_WAITKIND_VFORKED:
3441 return xstrprintf ("%svforked", kind_str);
3442 case TARGET_WAITKIND_EXECD:
3443 return xstrprintf ("%sexecd", kind_str);
3444 case TARGET_WAITKIND_SYSCALL_ENTRY:
3445 return xstrprintf ("%sentered syscall", kind_str);
3446 case TARGET_WAITKIND_SYSCALL_RETURN:
3447 return xstrprintf ("%sexited syscall", kind_str);
3448 case TARGET_WAITKIND_SPURIOUS:
3449 return xstrprintf ("%sspurious", kind_str);
3450 case TARGET_WAITKIND_IGNORE:
3451 return xstrprintf ("%signore", kind_str);
3452 case TARGET_WAITKIND_NO_HISTORY:
3453 return xstrprintf ("%sno-history", kind_str);
3454 case TARGET_WAITKIND_NO_RESUMED:
3455 return xstrprintf ("%sno-resumed", kind_str);
3456 default:
3457 return xstrprintf ("%sunknown???", kind_str);
3458 }
3459 }
3460
3461 static void
3462 debug_print_register (const char * func,
3463 struct regcache *regcache, int regno)
3464 {
3465 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3466
3467 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3468 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3469 && gdbarch_register_name (gdbarch, regno) != NULL
3470 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3471 fprintf_unfiltered (gdb_stdlog, "(%s)",
3472 gdbarch_register_name (gdbarch, regno));
3473 else
3474 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3475 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3476 {
3477 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3478 int i, size = register_size (gdbarch, regno);
3479 unsigned char buf[MAX_REGISTER_SIZE];
3480
3481 regcache_raw_collect (regcache, regno, buf);
3482 fprintf_unfiltered (gdb_stdlog, " = ");
3483 for (i = 0; i < size; i++)
3484 {
3485 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3486 }
3487 if (size <= sizeof (LONGEST))
3488 {
3489 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3490
3491 fprintf_unfiltered (gdb_stdlog, " %s %s",
3492 core_addr_to_string_nz (val), plongest (val));
3493 }
3494 }
3495 fprintf_unfiltered (gdb_stdlog, "\n");
3496 }
3497
3498 void
3499 target_fetch_registers (struct regcache *regcache, int regno)
3500 {
3501 struct target_ops *t;
3502
3503 for (t = current_target.beneath; t != NULL; t = t->beneath)
3504 {
3505 if (t->to_fetch_registers != NULL)
3506 {
3507 t->to_fetch_registers (t, regcache, regno);
3508 if (targetdebug)
3509 debug_print_register ("target_fetch_registers", regcache, regno);
3510 return;
3511 }
3512 }
3513 }
3514
3515 void
3516 target_store_registers (struct regcache *regcache, int regno)
3517 {
3518 struct target_ops *t;
3519
3520 if (!may_write_registers)
3521 error (_("Writing to registers is not allowed (regno %d)"), regno);
3522
3523 for (t = current_target.beneath; t != NULL; t = t->beneath)
3524 {
3525 if (t->to_store_registers != NULL)
3526 {
3527 t->to_store_registers (t, regcache, regno);
3528 if (targetdebug)
3529 {
3530 debug_print_register ("target_store_registers", regcache, regno);
3531 }
3532 return;
3533 }
3534 }
3535
3536 noprocess ();
3537 }
3538
3539 int
3540 target_core_of_thread (ptid_t ptid)
3541 {
3542 struct target_ops *t;
3543
3544 for (t = current_target.beneath; t != NULL; t = t->beneath)
3545 {
3546 if (t->to_core_of_thread != NULL)
3547 {
3548 int retval = t->to_core_of_thread (t, ptid);
3549
3550 if (targetdebug)
3551 fprintf_unfiltered (gdb_stdlog,
3552 "target_core_of_thread (%d) = %d\n",
3553 PIDGET (ptid), retval);
3554 return retval;
3555 }
3556 }
3557
3558 return -1;
3559 }
3560
3561 int
3562 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3563 {
3564 struct target_ops *t;
3565
3566 for (t = current_target.beneath; t != NULL; t = t->beneath)
3567 {
3568 if (t->to_verify_memory != NULL)
3569 {
3570 int retval = t->to_verify_memory (t, data, memaddr, size);
3571
3572 if (targetdebug)
3573 fprintf_unfiltered (gdb_stdlog,
3574 "target_verify_memory (%s, %s) = %d\n",
3575 paddress (target_gdbarch, memaddr),
3576 pulongest (size),
3577 retval);
3578 return retval;
3579 }
3580 }
3581
3582 tcomplain ();
3583 }
3584
3585 /* The documentation for this function is in its prototype declaration in
3586 target.h. */
3587
3588 int
3589 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3590 {
3591 struct target_ops *t;
3592
3593 for (t = current_target.beneath; t != NULL; t = t->beneath)
3594 if (t->to_insert_mask_watchpoint != NULL)
3595 {
3596 int ret;
3597
3598 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
3599
3600 if (targetdebug)
3601 fprintf_unfiltered (gdb_stdlog, "\
3602 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3603 core_addr_to_string (addr),
3604 core_addr_to_string (mask), rw, ret);
3605
3606 return ret;
3607 }
3608
3609 return 1;
3610 }
3611
3612 /* The documentation for this function is in its prototype declaration in
3613 target.h. */
3614
3615 int
3616 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3617 {
3618 struct target_ops *t;
3619
3620 for (t = current_target.beneath; t != NULL; t = t->beneath)
3621 if (t->to_remove_mask_watchpoint != NULL)
3622 {
3623 int ret;
3624
3625 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
3626
3627 if (targetdebug)
3628 fprintf_unfiltered (gdb_stdlog, "\
3629 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3630 core_addr_to_string (addr),
3631 core_addr_to_string (mask), rw, ret);
3632
3633 return ret;
3634 }
3635
3636 return 1;
3637 }
3638
3639 /* The documentation for this function is in its prototype declaration
3640 in target.h. */
3641
3642 int
3643 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3644 {
3645 struct target_ops *t;
3646
3647 for (t = current_target.beneath; t != NULL; t = t->beneath)
3648 if (t->to_masked_watch_num_registers != NULL)
3649 return t->to_masked_watch_num_registers (t, addr, mask);
3650
3651 return -1;
3652 }
3653
3654 /* The documentation for this function is in its prototype declaration
3655 in target.h. */
3656
3657 int
3658 target_ranged_break_num_registers (void)
3659 {
3660 struct target_ops *t;
3661
3662 for (t = current_target.beneath; t != NULL; t = t->beneath)
3663 if (t->to_ranged_break_num_registers != NULL)
3664 return t->to_ranged_break_num_registers (t);
3665
3666 return -1;
3667 }
3668
3669 static void
3670 debug_to_prepare_to_store (struct regcache *regcache)
3671 {
3672 debug_target.to_prepare_to_store (regcache);
3673
3674 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3675 }
3676
3677 static int
3678 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
3679 int write, struct mem_attrib *attrib,
3680 struct target_ops *target)
3681 {
3682 int retval;
3683
3684 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
3685 attrib, target);
3686
3687 fprintf_unfiltered (gdb_stdlog,
3688 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
3689 paddress (target_gdbarch, memaddr), len,
3690 write ? "write" : "read", retval);
3691
3692 if (retval > 0)
3693 {
3694 int i;
3695
3696 fputs_unfiltered (", bytes =", gdb_stdlog);
3697 for (i = 0; i < retval; i++)
3698 {
3699 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
3700 {
3701 if (targetdebug < 2 && i > 0)
3702 {
3703 fprintf_unfiltered (gdb_stdlog, " ...");
3704 break;
3705 }
3706 fprintf_unfiltered (gdb_stdlog, "\n");
3707 }
3708
3709 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
3710 }
3711 }
3712
3713 fputc_unfiltered ('\n', gdb_stdlog);
3714
3715 return retval;
3716 }
3717
3718 static void
3719 debug_to_files_info (struct target_ops *target)
3720 {
3721 debug_target.to_files_info (target);
3722
3723 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3724 }
3725
3726 static int
3727 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
3728 struct bp_target_info *bp_tgt)
3729 {
3730 int retval;
3731
3732 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
3733
3734 fprintf_unfiltered (gdb_stdlog,
3735 "target_insert_breakpoint (%s, xxx) = %ld\n",
3736 core_addr_to_string (bp_tgt->placed_address),
3737 (unsigned long) retval);
3738 return retval;
3739 }
3740
3741 static int
3742 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
3743 struct bp_target_info *bp_tgt)
3744 {
3745 int retval;
3746
3747 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
3748
3749 fprintf_unfiltered (gdb_stdlog,
3750 "target_remove_breakpoint (%s, xxx) = %ld\n",
3751 core_addr_to_string (bp_tgt->placed_address),
3752 (unsigned long) retval);
3753 return retval;
3754 }
3755
3756 static int
3757 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
3758 {
3759 int retval;
3760
3761 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
3762
3763 fprintf_unfiltered (gdb_stdlog,
3764 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3765 (unsigned long) type,
3766 (unsigned long) cnt,
3767 (unsigned long) from_tty,
3768 (unsigned long) retval);
3769 return retval;
3770 }
3771
3772 static int
3773 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3774 {
3775 CORE_ADDR retval;
3776
3777 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
3778
3779 fprintf_unfiltered (gdb_stdlog,
3780 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
3781 core_addr_to_string (addr), (unsigned long) len,
3782 core_addr_to_string (retval));
3783 return retval;
3784 }
3785
3786 static int
3787 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
3788 struct expression *cond)
3789 {
3790 int retval;
3791
3792 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
3793 rw, cond);
3794
3795 fprintf_unfiltered (gdb_stdlog,
3796 "target_can_accel_watchpoint_condition "
3797 "(%s, %d, %d, %s) = %ld\n",
3798 core_addr_to_string (addr), len, rw,
3799 host_address_to_string (cond), (unsigned long) retval);
3800 return retval;
3801 }
3802
3803 static int
3804 debug_to_stopped_by_watchpoint (void)
3805 {
3806 int retval;
3807
3808 retval = debug_target.to_stopped_by_watchpoint ();
3809
3810 fprintf_unfiltered (gdb_stdlog,
3811 "target_stopped_by_watchpoint () = %ld\n",
3812 (unsigned long) retval);
3813 return retval;
3814 }
3815
3816 static int
3817 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3818 {
3819 int retval;
3820
3821 retval = debug_target.to_stopped_data_address (target, addr);
3822
3823 fprintf_unfiltered (gdb_stdlog,
3824 "target_stopped_data_address ([%s]) = %ld\n",
3825 core_addr_to_string (*addr),
3826 (unsigned long)retval);
3827 return retval;
3828 }
3829
3830 static int
3831 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3832 CORE_ADDR addr,
3833 CORE_ADDR start, int length)
3834 {
3835 int retval;
3836
3837 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3838 start, length);
3839
3840 fprintf_filtered (gdb_stdlog,
3841 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
3842 core_addr_to_string (addr), core_addr_to_string (start),
3843 length, retval);
3844 return retval;
3845 }
3846
3847 static int
3848 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
3849 struct bp_target_info *bp_tgt)
3850 {
3851 int retval;
3852
3853 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
3854
3855 fprintf_unfiltered (gdb_stdlog,
3856 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
3857 core_addr_to_string (bp_tgt->placed_address),
3858 (unsigned long) retval);
3859 return retval;
3860 }
3861
3862 static int
3863 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
3864 struct bp_target_info *bp_tgt)
3865 {
3866 int retval;
3867
3868 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
3869
3870 fprintf_unfiltered (gdb_stdlog,
3871 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
3872 core_addr_to_string (bp_tgt->placed_address),
3873 (unsigned long) retval);
3874 return retval;
3875 }
3876
3877 static int
3878 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
3879 struct expression *cond)
3880 {
3881 int retval;
3882
3883 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
3884
3885 fprintf_unfiltered (gdb_stdlog,
3886 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
3887 core_addr_to_string (addr), len, type,
3888 host_address_to_string (cond), (unsigned long) retval);
3889 return retval;
3890 }
3891
3892 static int
3893 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
3894 struct expression *cond)
3895 {
3896 int retval;
3897
3898 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
3899
3900 fprintf_unfiltered (gdb_stdlog,
3901 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
3902 core_addr_to_string (addr), len, type,
3903 host_address_to_string (cond), (unsigned long) retval);
3904 return retval;
3905 }
3906
3907 static void
3908 debug_to_terminal_init (void)
3909 {
3910 debug_target.to_terminal_init ();
3911
3912 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3913 }
3914
3915 static void
3916 debug_to_terminal_inferior (void)
3917 {
3918 debug_target.to_terminal_inferior ();
3919
3920 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3921 }
3922
3923 static void
3924 debug_to_terminal_ours_for_output (void)
3925 {
3926 debug_target.to_terminal_ours_for_output ();
3927
3928 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3929 }
3930
3931 static void
3932 debug_to_terminal_ours (void)
3933 {
3934 debug_target.to_terminal_ours ();
3935
3936 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3937 }
3938
3939 static void
3940 debug_to_terminal_save_ours (void)
3941 {
3942 debug_target.to_terminal_save_ours ();
3943
3944 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3945 }
3946
3947 static void
3948 debug_to_terminal_info (char *arg, int from_tty)
3949 {
3950 debug_target.to_terminal_info (arg, from_tty);
3951
3952 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3953 from_tty);
3954 }
3955
3956 static void
3957 debug_to_load (char *args, int from_tty)
3958 {
3959 debug_target.to_load (args, from_tty);
3960
3961 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3962 }
3963
3964 static void
3965 debug_to_post_startup_inferior (ptid_t ptid)
3966 {
3967 debug_target.to_post_startup_inferior (ptid);
3968
3969 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3970 PIDGET (ptid));
3971 }
3972
3973 static int
3974 debug_to_insert_fork_catchpoint (int pid)
3975 {
3976 int retval;
3977
3978 retval = debug_target.to_insert_fork_catchpoint (pid);
3979
3980 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
3981 pid, retval);
3982
3983 return retval;
3984 }
3985
3986 static int
3987 debug_to_remove_fork_catchpoint (int pid)
3988 {
3989 int retval;
3990
3991 retval = debug_target.to_remove_fork_catchpoint (pid);
3992
3993 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3994 pid, retval);
3995
3996 return retval;
3997 }
3998
3999 static int
4000 debug_to_insert_vfork_catchpoint (int pid)
4001 {
4002 int retval;
4003
4004 retval = debug_target.to_insert_vfork_catchpoint (pid);
4005
4006 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4007 pid, retval);
4008
4009 return retval;
4010 }
4011
4012 static int
4013 debug_to_remove_vfork_catchpoint (int pid)
4014 {
4015 int retval;
4016
4017 retval = debug_target.to_remove_vfork_catchpoint (pid);
4018
4019 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4020 pid, retval);
4021
4022 return retval;
4023 }
4024
4025 static int
4026 debug_to_insert_exec_catchpoint (int pid)
4027 {
4028 int retval;
4029
4030 retval = debug_target.to_insert_exec_catchpoint (pid);
4031
4032 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4033 pid, retval);
4034
4035 return retval;
4036 }
4037
4038 static int
4039 debug_to_remove_exec_catchpoint (int pid)
4040 {
4041 int retval;
4042
4043 retval = debug_target.to_remove_exec_catchpoint (pid);
4044
4045 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4046 pid, retval);
4047
4048 return retval;
4049 }
4050
4051 static int
4052 debug_to_has_exited (int pid, int wait_status, int *exit_status)
4053 {
4054 int has_exited;
4055
4056 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
4057
4058 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4059 pid, wait_status, *exit_status, has_exited);
4060
4061 return has_exited;
4062 }
4063
4064 static int
4065 debug_to_can_run (void)
4066 {
4067 int retval;
4068
4069 retval = debug_target.to_can_run ();
4070
4071 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4072
4073 return retval;
4074 }
4075
4076 static struct gdbarch *
4077 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4078 {
4079 struct gdbarch *retval;
4080
4081 retval = debug_target.to_thread_architecture (ops, ptid);
4082
4083 fprintf_unfiltered (gdb_stdlog,
4084 "target_thread_architecture (%s) = %s [%s]\n",
4085 target_pid_to_str (ptid),
4086 host_address_to_string (retval),
4087 gdbarch_bfd_arch_info (retval)->printable_name);
4088 return retval;
4089 }
4090
4091 static void
4092 debug_to_stop (ptid_t ptid)
4093 {
4094 debug_target.to_stop (ptid);
4095
4096 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4097 target_pid_to_str (ptid));
4098 }
4099
4100 static void
4101 debug_to_rcmd (char *command,
4102 struct ui_file *outbuf)
4103 {
4104 debug_target.to_rcmd (command, outbuf);
4105 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4106 }
4107
4108 static char *
4109 debug_to_pid_to_exec_file (int pid)
4110 {
4111 char *exec_file;
4112
4113 exec_file = debug_target.to_pid_to_exec_file (pid);
4114
4115 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4116 pid, exec_file);
4117
4118 return exec_file;
4119 }
4120
4121 static void
4122 setup_target_debug (void)
4123 {
4124 memcpy (&debug_target, &current_target, sizeof debug_target);
4125
4126 current_target.to_open = debug_to_open;
4127 current_target.to_post_attach = debug_to_post_attach;
4128 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4129 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4130 current_target.to_files_info = debug_to_files_info;
4131 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4132 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4133 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4134 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4135 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4136 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4137 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4138 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4139 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4140 current_target.to_watchpoint_addr_within_range
4141 = debug_to_watchpoint_addr_within_range;
4142 current_target.to_region_ok_for_hw_watchpoint
4143 = debug_to_region_ok_for_hw_watchpoint;
4144 current_target.to_can_accel_watchpoint_condition
4145 = debug_to_can_accel_watchpoint_condition;
4146 current_target.to_terminal_init = debug_to_terminal_init;
4147 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4148 current_target.to_terminal_ours_for_output
4149 = debug_to_terminal_ours_for_output;
4150 current_target.to_terminal_ours = debug_to_terminal_ours;
4151 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4152 current_target.to_terminal_info = debug_to_terminal_info;
4153 current_target.to_load = debug_to_load;
4154 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4155 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4156 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4157 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4158 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4159 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4160 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4161 current_target.to_has_exited = debug_to_has_exited;
4162 current_target.to_can_run = debug_to_can_run;
4163 current_target.to_stop = debug_to_stop;
4164 current_target.to_rcmd = debug_to_rcmd;
4165 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4166 current_target.to_thread_architecture = debug_to_thread_architecture;
4167 }
4168 \f
4169
4170 static char targ_desc[] =
4171 "Names of targets and files being debugged.\nShows the entire \
4172 stack of targets currently in use (including the exec-file,\n\
4173 core-file, and process, if any), as well as the symbol file name.";
4174
4175 static void
4176 do_monitor_command (char *cmd,
4177 int from_tty)
4178 {
4179 if ((current_target.to_rcmd
4180 == (void (*) (char *, struct ui_file *)) tcomplain)
4181 || (current_target.to_rcmd == debug_to_rcmd
4182 && (debug_target.to_rcmd
4183 == (void (*) (char *, struct ui_file *)) tcomplain)))
4184 error (_("\"monitor\" command not supported by this target."));
4185 target_rcmd (cmd, gdb_stdtarg);
4186 }
4187
4188 /* Print the name of each layers of our target stack. */
4189
4190 static void
4191 maintenance_print_target_stack (char *cmd, int from_tty)
4192 {
4193 struct target_ops *t;
4194
4195 printf_filtered (_("The current target stack is:\n"));
4196
4197 for (t = target_stack; t != NULL; t = t->beneath)
4198 {
4199 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4200 }
4201 }
4202
4203 /* Controls if async mode is permitted. */
4204 int target_async_permitted = 0;
4205
4206 /* The set command writes to this variable. If the inferior is
4207 executing, linux_nat_async_permitted is *not* updated. */
4208 static int target_async_permitted_1 = 0;
4209
4210 static void
4211 set_maintenance_target_async_permitted (char *args, int from_tty,
4212 struct cmd_list_element *c)
4213 {
4214 if (have_live_inferiors ())
4215 {
4216 target_async_permitted_1 = target_async_permitted;
4217 error (_("Cannot change this setting while the inferior is running."));
4218 }
4219
4220 target_async_permitted = target_async_permitted_1;
4221 }
4222
4223 static void
4224 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
4225 struct cmd_list_element *c,
4226 const char *value)
4227 {
4228 fprintf_filtered (file,
4229 _("Controlling the inferior in "
4230 "asynchronous mode is %s.\n"), value);
4231 }
4232
4233 /* Temporary copies of permission settings. */
4234
4235 static int may_write_registers_1 = 1;
4236 static int may_write_memory_1 = 1;
4237 static int may_insert_breakpoints_1 = 1;
4238 static int may_insert_tracepoints_1 = 1;
4239 static int may_insert_fast_tracepoints_1 = 1;
4240 static int may_stop_1 = 1;
4241
4242 /* Make the user-set values match the real values again. */
4243
4244 void
4245 update_target_permissions (void)
4246 {
4247 may_write_registers_1 = may_write_registers;
4248 may_write_memory_1 = may_write_memory;
4249 may_insert_breakpoints_1 = may_insert_breakpoints;
4250 may_insert_tracepoints_1 = may_insert_tracepoints;
4251 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4252 may_stop_1 = may_stop;
4253 }
4254
4255 /* The one function handles (most of) the permission flags in the same
4256 way. */
4257
4258 static void
4259 set_target_permissions (char *args, int from_tty,
4260 struct cmd_list_element *c)
4261 {
4262 if (target_has_execution)
4263 {
4264 update_target_permissions ();
4265 error (_("Cannot change this setting while the inferior is running."));
4266 }
4267
4268 /* Make the real values match the user-changed values. */
4269 may_write_registers = may_write_registers_1;
4270 may_insert_breakpoints = may_insert_breakpoints_1;
4271 may_insert_tracepoints = may_insert_tracepoints_1;
4272 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4273 may_stop = may_stop_1;
4274 update_observer_mode ();
4275 }
4276
4277 /* Set memory write permission independently of observer mode. */
4278
4279 static void
4280 set_write_memory_permission (char *args, int from_tty,
4281 struct cmd_list_element *c)
4282 {
4283 /* Make the real values match the user-changed values. */
4284 may_write_memory = may_write_memory_1;
4285 update_observer_mode ();
4286 }
4287
4288
4289 void
4290 initialize_targets (void)
4291 {
4292 init_dummy_target ();
4293 push_target (&dummy_target);
4294
4295 add_info ("target", target_info, targ_desc);
4296 add_info ("files", target_info, targ_desc);
4297
4298 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4299 Set target debugging."), _("\
4300 Show target debugging."), _("\
4301 When non-zero, target debugging is enabled. Higher numbers are more\n\
4302 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4303 command."),
4304 NULL,
4305 show_targetdebug,
4306 &setdebuglist, &showdebuglist);
4307
4308 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4309 &trust_readonly, _("\
4310 Set mode for reading from readonly sections."), _("\
4311 Show mode for reading from readonly sections."), _("\
4312 When this mode is on, memory reads from readonly sections (such as .text)\n\
4313 will be read from the object file instead of from the target. This will\n\
4314 result in significant performance improvement for remote targets."),
4315 NULL,
4316 show_trust_readonly,
4317 &setlist, &showlist);
4318
4319 add_com ("monitor", class_obscure, do_monitor_command,
4320 _("Send a command to the remote monitor (remote targets only)."));
4321
4322 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4323 _("Print the name of each layer of the internal target stack."),
4324 &maintenanceprintlist);
4325
4326 add_setshow_boolean_cmd ("target-async", no_class,
4327 &target_async_permitted_1, _("\
4328 Set whether gdb controls the inferior in asynchronous mode."), _("\
4329 Show whether gdb controls the inferior in asynchronous mode."), _("\
4330 Tells gdb whether to control the inferior in asynchronous mode."),
4331 set_maintenance_target_async_permitted,
4332 show_maintenance_target_async_permitted,
4333 &setlist,
4334 &showlist);
4335
4336 add_setshow_boolean_cmd ("stack-cache", class_support,
4337 &stack_cache_enabled_p_1, _("\
4338 Set cache use for stack access."), _("\
4339 Show cache use for stack access."), _("\
4340 When on, use the data cache for all stack access, regardless of any\n\
4341 configured memory regions. This improves remote performance significantly.\n\
4342 By default, caching for stack access is on."),
4343 set_stack_cache_enabled_p,
4344 show_stack_cache_enabled_p,
4345 &setlist, &showlist);
4346
4347 add_setshow_boolean_cmd ("may-write-registers", class_support,
4348 &may_write_registers_1, _("\
4349 Set permission to write into registers."), _("\
4350 Show permission to write into registers."), _("\
4351 When this permission is on, GDB may write into the target's registers.\n\
4352 Otherwise, any sort of write attempt will result in an error."),
4353 set_target_permissions, NULL,
4354 &setlist, &showlist);
4355
4356 add_setshow_boolean_cmd ("may-write-memory", class_support,
4357 &may_write_memory_1, _("\
4358 Set permission to write into target memory."), _("\
4359 Show permission to write into target memory."), _("\
4360 When this permission is on, GDB may write into the target's memory.\n\
4361 Otherwise, any sort of write attempt will result in an error."),
4362 set_write_memory_permission, NULL,
4363 &setlist, &showlist);
4364
4365 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4366 &may_insert_breakpoints_1, _("\
4367 Set permission to insert breakpoints in the target."), _("\
4368 Show permission to insert breakpoints in the target."), _("\
4369 When this permission is on, GDB may insert breakpoints in the program.\n\
4370 Otherwise, any sort of insertion attempt will result in an error."),
4371 set_target_permissions, NULL,
4372 &setlist, &showlist);
4373
4374 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4375 &may_insert_tracepoints_1, _("\
4376 Set permission to insert tracepoints in the target."), _("\
4377 Show permission to insert tracepoints in the target."), _("\
4378 When this permission is on, GDB may insert tracepoints in the program.\n\
4379 Otherwise, any sort of insertion attempt will result in an error."),
4380 set_target_permissions, NULL,
4381 &setlist, &showlist);
4382
4383 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4384 &may_insert_fast_tracepoints_1, _("\
4385 Set permission to insert fast tracepoints in the target."), _("\
4386 Show permission to insert fast tracepoints in the target."), _("\
4387 When this permission is on, GDB may insert fast tracepoints.\n\
4388 Otherwise, any sort of insertion attempt will result in an error."),
4389 set_target_permissions, NULL,
4390 &setlist, &showlist);
4391
4392 add_setshow_boolean_cmd ("may-interrupt", class_support,
4393 &may_stop_1, _("\
4394 Set permission to interrupt or signal the target."), _("\
4395 Show permission to interrupt or signal the target."), _("\
4396 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4397 Otherwise, any attempt to interrupt or stop will be ignored."),
4398 set_target_permissions, NULL,
4399 &setlist, &showlist);
4400
4401
4402 target_dcache = dcache_init ();
4403 }
This page took 0.170556 seconds and 3 git commands to generate.