run copyright.sh for 2011.
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44 #include "exec.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static int nosymbol (char *, CORE_ADDR *);
58
59 static void tcomplain (void) ATTRIBUTE_NORETURN;
60
61 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
62
63 static int return_zero (void);
64
65 static int return_one (void);
66
67 static int return_minus_one (void);
68
69 void target_ignore (void);
70
71 static void target_command (char *, int);
72
73 static struct target_ops *find_default_run_target (char *);
74
75 static LONGEST default_xfer_partial (struct target_ops *ops,
76 enum target_object object,
77 const char *annex, gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, LONGEST len);
80
81 static LONGEST current_xfer_partial (struct target_ops *ops,
82 enum target_object object,
83 const char *annex, gdb_byte *readbuf,
84 const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 static LONGEST target_xfer_partial (struct target_ops *ops,
88 enum target_object object,
89 const char *annex,
90 void *readbuf, const void *writebuf,
91 ULONGEST offset, LONGEST len);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static void init_dummy_target (void);
97
98 static struct target_ops debug_target;
99
100 static void debug_to_open (char *, int);
101
102 static void debug_to_prepare_to_store (struct regcache *);
103
104 static void debug_to_files_info (struct target_ops *);
105
106 static int debug_to_insert_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_remove_breakpoint (struct gdbarch *,
110 struct bp_target_info *);
111
112 static int debug_to_can_use_hw_breakpoint (int, int, int);
113
114 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
118 struct bp_target_info *);
119
120 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
121 struct expression *);
122
123 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
124 struct expression *);
125
126 static int debug_to_stopped_by_watchpoint (void);
127
128 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
129
130 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
131 CORE_ADDR, CORE_ADDR, int);
132
133 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
134
135 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
136 struct expression *);
137
138 static void debug_to_terminal_init (void);
139
140 static void debug_to_terminal_inferior (void);
141
142 static void debug_to_terminal_ours_for_output (void);
143
144 static void debug_to_terminal_save_ours (void);
145
146 static void debug_to_terminal_ours (void);
147
148 static void debug_to_terminal_info (char *, int);
149
150 static void debug_to_load (char *, int);
151
152 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
153
154 static int debug_to_can_run (void);
155
156 static void debug_to_notice_signals (ptid_t);
157
158 static void debug_to_stop (ptid_t);
159
160 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
161 wierd and mysterious ways. Putting the variable here lets those
162 wierd and mysterious ways keep building while they are being
163 converted to the inferior inheritance structure. */
164 struct target_ops deprecated_child_ops;
165
166 /* Pointer to array of target architecture structures; the size of the
167 array; the current index into the array; the allocated size of the
168 array. */
169 struct target_ops **target_structs;
170 unsigned target_struct_size;
171 unsigned target_struct_index;
172 unsigned target_struct_allocsize;
173 #define DEFAULT_ALLOCSIZE 10
174
175 /* The initial current target, so that there is always a semi-valid
176 current target. */
177
178 static struct target_ops dummy_target;
179
180 /* Top of target stack. */
181
182 static struct target_ops *target_stack;
183
184 /* The target structure we are currently using to talk to a process
185 or file or whatever "inferior" we have. */
186
187 struct target_ops current_target;
188
189 /* Command list for target. */
190
191 static struct cmd_list_element *targetlist = NULL;
192
193 /* Nonzero if we should trust readonly sections from the
194 executable when reading memory. */
195
196 static int trust_readonly = 0;
197
198 /* Nonzero if we should show true memory content including
199 memory breakpoint inserted by gdb. */
200
201 static int show_memory_breakpoints = 0;
202
203 /* These globals control whether GDB attempts to perform these
204 operations; they are useful for targets that need to prevent
205 inadvertant disruption, such as in non-stop mode. */
206
207 int may_write_registers = 1;
208
209 int may_write_memory = 1;
210
211 int may_insert_breakpoints = 1;
212
213 int may_insert_tracepoints = 1;
214
215 int may_insert_fast_tracepoints = 1;
216
217 int may_stop = 1;
218
219 /* Non-zero if we want to see trace of target level stuff. */
220
221 static int targetdebug = 0;
222 static void
223 show_targetdebug (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
227 }
228
229 static void setup_target_debug (void);
230
231 /* The option sets this. */
232 static int stack_cache_enabled_p_1 = 1;
233 /* And set_stack_cache_enabled_p updates this.
234 The reason for the separation is so that we don't flush the cache for
235 on->on transitions. */
236 static int stack_cache_enabled_p = 1;
237
238 /* This is called *after* the stack-cache has been set.
239 Flush the cache for off->on and on->off transitions.
240 There's no real need to flush the cache for on->off transitions,
241 except cleanliness. */
242
243 static void
244 set_stack_cache_enabled_p (char *args, int from_tty,
245 struct cmd_list_element *c)
246 {
247 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
248 target_dcache_invalidate ();
249
250 stack_cache_enabled_p = stack_cache_enabled_p_1;
251 }
252
253 static void
254 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
255 struct cmd_list_element *c, const char *value)
256 {
257 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
258 }
259
260 /* Cache of memory operations, to speed up remote access. */
261 static DCACHE *target_dcache;
262
263 /* Invalidate the target dcache. */
264
265 void
266 target_dcache_invalidate (void)
267 {
268 dcache_invalidate (target_dcache);
269 }
270
271 /* The user just typed 'target' without the name of a target. */
272
273 static void
274 target_command (char *arg, int from_tty)
275 {
276 fputs_filtered ("Argument required (target name). Try `help target'\n",
277 gdb_stdout);
278 }
279
280 /* Default target_has_* methods for process_stratum targets. */
281
282 int
283 default_child_has_all_memory (struct target_ops *ops)
284 {
285 /* If no inferior selected, then we can't read memory here. */
286 if (ptid_equal (inferior_ptid, null_ptid))
287 return 0;
288
289 return 1;
290 }
291
292 int
293 default_child_has_memory (struct target_ops *ops)
294 {
295 /* If no inferior selected, then we can't read memory here. */
296 if (ptid_equal (inferior_ptid, null_ptid))
297 return 0;
298
299 return 1;
300 }
301
302 int
303 default_child_has_stack (struct target_ops *ops)
304 {
305 /* If no inferior selected, there's no stack. */
306 if (ptid_equal (inferior_ptid, null_ptid))
307 return 0;
308
309 return 1;
310 }
311
312 int
313 default_child_has_registers (struct target_ops *ops)
314 {
315 /* Can't read registers from no inferior. */
316 if (ptid_equal (inferior_ptid, null_ptid))
317 return 0;
318
319 return 1;
320 }
321
322 int
323 default_child_has_execution (struct target_ops *ops)
324 {
325 /* If there's no thread selected, then we can't make it run through
326 hoops. */
327 if (ptid_equal (inferior_ptid, null_ptid))
328 return 0;
329
330 return 1;
331 }
332
333
334 int
335 target_has_all_memory_1 (void)
336 {
337 struct target_ops *t;
338
339 for (t = current_target.beneath; t != NULL; t = t->beneath)
340 if (t->to_has_all_memory (t))
341 return 1;
342
343 return 0;
344 }
345
346 int
347 target_has_memory_1 (void)
348 {
349 struct target_ops *t;
350
351 for (t = current_target.beneath; t != NULL; t = t->beneath)
352 if (t->to_has_memory (t))
353 return 1;
354
355 return 0;
356 }
357
358 int
359 target_has_stack_1 (void)
360 {
361 struct target_ops *t;
362
363 for (t = current_target.beneath; t != NULL; t = t->beneath)
364 if (t->to_has_stack (t))
365 return 1;
366
367 return 0;
368 }
369
370 int
371 target_has_registers_1 (void)
372 {
373 struct target_ops *t;
374
375 for (t = current_target.beneath; t != NULL; t = t->beneath)
376 if (t->to_has_registers (t))
377 return 1;
378
379 return 0;
380 }
381
382 int
383 target_has_execution_1 (void)
384 {
385 struct target_ops *t;
386
387 for (t = current_target.beneath; t != NULL; t = t->beneath)
388 if (t->to_has_execution (t))
389 return 1;
390
391 return 0;
392 }
393
394 /* Add a possible target architecture to the list. */
395
396 void
397 add_target (struct target_ops *t)
398 {
399 /* Provide default values for all "must have" methods. */
400 if (t->to_xfer_partial == NULL)
401 t->to_xfer_partial = default_xfer_partial;
402
403 if (t->to_has_all_memory == NULL)
404 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
405
406 if (t->to_has_memory == NULL)
407 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
408
409 if (t->to_has_stack == NULL)
410 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
411
412 if (t->to_has_registers == NULL)
413 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
414
415 if (t->to_has_execution == NULL)
416 t->to_has_execution = (int (*) (struct target_ops *)) return_zero;
417
418 if (!target_structs)
419 {
420 target_struct_allocsize = DEFAULT_ALLOCSIZE;
421 target_structs = (struct target_ops **) xmalloc
422 (target_struct_allocsize * sizeof (*target_structs));
423 }
424 if (target_struct_size >= target_struct_allocsize)
425 {
426 target_struct_allocsize *= 2;
427 target_structs = (struct target_ops **)
428 xrealloc ((char *) target_structs,
429 target_struct_allocsize * sizeof (*target_structs));
430 }
431 target_structs[target_struct_size++] = t;
432
433 if (targetlist == NULL)
434 add_prefix_cmd ("target", class_run, target_command, _("\
435 Connect to a target machine or process.\n\
436 The first argument is the type or protocol of the target machine.\n\
437 Remaining arguments are interpreted by the target protocol. For more\n\
438 information on the arguments for a particular protocol, type\n\
439 `help target ' followed by the protocol name."),
440 &targetlist, "target ", 0, &cmdlist);
441 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
442 }
443
444 /* Stub functions */
445
446 void
447 target_ignore (void)
448 {
449 }
450
451 void
452 target_kill (void)
453 {
454 struct target_ops *t;
455
456 for (t = current_target.beneath; t != NULL; t = t->beneath)
457 if (t->to_kill != NULL)
458 {
459 if (targetdebug)
460 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
461
462 t->to_kill (t);
463 return;
464 }
465
466 noprocess ();
467 }
468
469 void
470 target_load (char *arg, int from_tty)
471 {
472 target_dcache_invalidate ();
473 (*current_target.to_load) (arg, from_tty);
474 }
475
476 void
477 target_create_inferior (char *exec_file, char *args,
478 char **env, int from_tty)
479 {
480 struct target_ops *t;
481
482 for (t = current_target.beneath; t != NULL; t = t->beneath)
483 {
484 if (t->to_create_inferior != NULL)
485 {
486 t->to_create_inferior (t, exec_file, args, env, from_tty);
487 if (targetdebug)
488 fprintf_unfiltered (gdb_stdlog,
489 "target_create_inferior (%s, %s, xxx, %d)\n",
490 exec_file, args, from_tty);
491 return;
492 }
493 }
494
495 internal_error (__FILE__, __LINE__,
496 "could not find a target to create inferior");
497 }
498
499 void
500 target_terminal_inferior (void)
501 {
502 /* A background resume (``run&'') should leave GDB in control of the
503 terminal. Use target_can_async_p, not target_is_async_p, since at
504 this point the target is not async yet. However, if sync_execution
505 is not set, we know it will become async prior to resume. */
506 if (target_can_async_p () && !sync_execution)
507 return;
508
509 /* If GDB is resuming the inferior in the foreground, install
510 inferior's terminal modes. */
511 (*current_target.to_terminal_inferior) ();
512 }
513
514 static int
515 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
516 struct target_ops *t)
517 {
518 errno = EIO; /* Can't read/write this location */
519 return 0; /* No bytes handled */
520 }
521
522 static void
523 tcomplain (void)
524 {
525 error (_("You can't do that when your target is `%s'"),
526 current_target.to_shortname);
527 }
528
529 void
530 noprocess (void)
531 {
532 error (_("You can't do that without a process to debug."));
533 }
534
535 static int
536 nosymbol (char *name, CORE_ADDR *addrp)
537 {
538 return 1; /* Symbol does not exist in target env */
539 }
540
541 static void
542 default_terminal_info (char *args, int from_tty)
543 {
544 printf_unfiltered (_("No saved terminal information.\n"));
545 }
546
547 /* A default implementation for the to_get_ada_task_ptid target method.
548
549 This function builds the PTID by using both LWP and TID as part of
550 the PTID lwp and tid elements. The pid used is the pid of the
551 inferior_ptid. */
552
553 static ptid_t
554 default_get_ada_task_ptid (long lwp, long tid)
555 {
556 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
557 }
558
559 /* Go through the target stack from top to bottom, copying over zero
560 entries in current_target, then filling in still empty entries. In
561 effect, we are doing class inheritance through the pushed target
562 vectors.
563
564 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
565 is currently implemented, is that it discards any knowledge of
566 which target an inherited method originally belonged to.
567 Consequently, new new target methods should instead explicitly and
568 locally search the target stack for the target that can handle the
569 request. */
570
571 static void
572 update_current_target (void)
573 {
574 struct target_ops *t;
575
576 /* First, reset current's contents. */
577 memset (&current_target, 0, sizeof (current_target));
578
579 #define INHERIT(FIELD, TARGET) \
580 if (!current_target.FIELD) \
581 current_target.FIELD = (TARGET)->FIELD
582
583 for (t = target_stack; t; t = t->beneath)
584 {
585 INHERIT (to_shortname, t);
586 INHERIT (to_longname, t);
587 INHERIT (to_doc, t);
588 /* Do not inherit to_open. */
589 /* Do not inherit to_close. */
590 /* Do not inherit to_attach. */
591 INHERIT (to_post_attach, t);
592 INHERIT (to_attach_no_wait, t);
593 /* Do not inherit to_detach. */
594 /* Do not inherit to_disconnect. */
595 /* Do not inherit to_resume. */
596 /* Do not inherit to_wait. */
597 /* Do not inherit to_fetch_registers. */
598 /* Do not inherit to_store_registers. */
599 INHERIT (to_prepare_to_store, t);
600 INHERIT (deprecated_xfer_memory, t);
601 INHERIT (to_files_info, t);
602 INHERIT (to_insert_breakpoint, t);
603 INHERIT (to_remove_breakpoint, t);
604 INHERIT (to_can_use_hw_breakpoint, t);
605 INHERIT (to_insert_hw_breakpoint, t);
606 INHERIT (to_remove_hw_breakpoint, t);
607 INHERIT (to_insert_watchpoint, t);
608 INHERIT (to_remove_watchpoint, t);
609 INHERIT (to_stopped_data_address, t);
610 INHERIT (to_have_steppable_watchpoint, t);
611 INHERIT (to_have_continuable_watchpoint, t);
612 INHERIT (to_stopped_by_watchpoint, t);
613 INHERIT (to_watchpoint_addr_within_range, t);
614 INHERIT (to_region_ok_for_hw_watchpoint, t);
615 INHERIT (to_can_accel_watchpoint_condition, t);
616 INHERIT (to_terminal_init, t);
617 INHERIT (to_terminal_inferior, t);
618 INHERIT (to_terminal_ours_for_output, t);
619 INHERIT (to_terminal_ours, t);
620 INHERIT (to_terminal_save_ours, t);
621 INHERIT (to_terminal_info, t);
622 /* Do not inherit to_kill. */
623 INHERIT (to_load, t);
624 INHERIT (to_lookup_symbol, t);
625 /* Do no inherit to_create_inferior. */
626 INHERIT (to_post_startup_inferior, t);
627 INHERIT (to_insert_fork_catchpoint, t);
628 INHERIT (to_remove_fork_catchpoint, t);
629 INHERIT (to_insert_vfork_catchpoint, t);
630 INHERIT (to_remove_vfork_catchpoint, t);
631 /* Do not inherit to_follow_fork. */
632 INHERIT (to_insert_exec_catchpoint, t);
633 INHERIT (to_remove_exec_catchpoint, t);
634 INHERIT (to_set_syscall_catchpoint, t);
635 INHERIT (to_has_exited, t);
636 /* Do not inherit to_mourn_inferior. */
637 INHERIT (to_can_run, t);
638 INHERIT (to_notice_signals, t);
639 /* Do not inherit to_thread_alive. */
640 /* Do not inherit to_find_new_threads. */
641 /* Do not inherit to_pid_to_str. */
642 INHERIT (to_extra_thread_info, t);
643 INHERIT (to_stop, t);
644 /* Do not inherit to_xfer_partial. */
645 INHERIT (to_rcmd, t);
646 INHERIT (to_pid_to_exec_file, t);
647 INHERIT (to_log_command, t);
648 INHERIT (to_stratum, t);
649 /* Do not inherit to_has_all_memory */
650 /* Do not inherit to_has_memory */
651 /* Do not inherit to_has_stack */
652 /* Do not inherit to_has_registers */
653 /* Do not inherit to_has_execution */
654 INHERIT (to_has_thread_control, t);
655 INHERIT (to_can_async_p, t);
656 INHERIT (to_is_async_p, t);
657 INHERIT (to_async, t);
658 INHERIT (to_async_mask, t);
659 INHERIT (to_find_memory_regions, t);
660 INHERIT (to_make_corefile_notes, t);
661 INHERIT (to_get_bookmark, t);
662 INHERIT (to_goto_bookmark, t);
663 /* Do not inherit to_get_thread_local_address. */
664 INHERIT (to_can_execute_reverse, t);
665 INHERIT (to_thread_architecture, t);
666 /* Do not inherit to_read_description. */
667 INHERIT (to_get_ada_task_ptid, t);
668 /* Do not inherit to_search_memory. */
669 INHERIT (to_supports_multi_process, t);
670 INHERIT (to_trace_init, t);
671 INHERIT (to_download_tracepoint, t);
672 INHERIT (to_download_trace_state_variable, t);
673 INHERIT (to_trace_set_readonly_regions, t);
674 INHERIT (to_trace_start, t);
675 INHERIT (to_get_trace_status, t);
676 INHERIT (to_trace_stop, t);
677 INHERIT (to_trace_find, t);
678 INHERIT (to_get_trace_state_variable_value, t);
679 INHERIT (to_save_trace_data, t);
680 INHERIT (to_upload_tracepoints, t);
681 INHERIT (to_upload_trace_state_variables, t);
682 INHERIT (to_get_raw_trace_data, t);
683 INHERIT (to_set_disconnected_tracing, t);
684 INHERIT (to_set_circular_trace_buffer, t);
685 INHERIT (to_get_tib_address, t);
686 INHERIT (to_set_permissions, t);
687 INHERIT (to_static_tracepoint_marker_at, t);
688 INHERIT (to_static_tracepoint_markers_by_strid, t);
689 INHERIT (to_magic, t);
690 /* Do not inherit to_memory_map. */
691 /* Do not inherit to_flash_erase. */
692 /* Do not inherit to_flash_done. */
693 }
694 #undef INHERIT
695
696 /* Clean up a target struct so it no longer has any zero pointers in
697 it. Some entries are defaulted to a method that print an error,
698 others are hard-wired to a standard recursive default. */
699
700 #define de_fault(field, value) \
701 if (!current_target.field) \
702 current_target.field = value
703
704 de_fault (to_open,
705 (void (*) (char *, int))
706 tcomplain);
707 de_fault (to_close,
708 (void (*) (int))
709 target_ignore);
710 de_fault (to_post_attach,
711 (void (*) (int))
712 target_ignore);
713 de_fault (to_prepare_to_store,
714 (void (*) (struct regcache *))
715 noprocess);
716 de_fault (deprecated_xfer_memory,
717 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
718 nomemory);
719 de_fault (to_files_info,
720 (void (*) (struct target_ops *))
721 target_ignore);
722 de_fault (to_insert_breakpoint,
723 memory_insert_breakpoint);
724 de_fault (to_remove_breakpoint,
725 memory_remove_breakpoint);
726 de_fault (to_can_use_hw_breakpoint,
727 (int (*) (int, int, int))
728 return_zero);
729 de_fault (to_insert_hw_breakpoint,
730 (int (*) (struct gdbarch *, struct bp_target_info *))
731 return_minus_one);
732 de_fault (to_remove_hw_breakpoint,
733 (int (*) (struct gdbarch *, struct bp_target_info *))
734 return_minus_one);
735 de_fault (to_insert_watchpoint,
736 (int (*) (CORE_ADDR, int, int, struct expression *))
737 return_minus_one);
738 de_fault (to_remove_watchpoint,
739 (int (*) (CORE_ADDR, int, int, struct expression *))
740 return_minus_one);
741 de_fault (to_stopped_by_watchpoint,
742 (int (*) (void))
743 return_zero);
744 de_fault (to_stopped_data_address,
745 (int (*) (struct target_ops *, CORE_ADDR *))
746 return_zero);
747 de_fault (to_watchpoint_addr_within_range,
748 default_watchpoint_addr_within_range);
749 de_fault (to_region_ok_for_hw_watchpoint,
750 default_region_ok_for_hw_watchpoint);
751 de_fault (to_can_accel_watchpoint_condition,
752 (int (*) (CORE_ADDR, int, int, struct expression *))
753 return_zero);
754 de_fault (to_terminal_init,
755 (void (*) (void))
756 target_ignore);
757 de_fault (to_terminal_inferior,
758 (void (*) (void))
759 target_ignore);
760 de_fault (to_terminal_ours_for_output,
761 (void (*) (void))
762 target_ignore);
763 de_fault (to_terminal_ours,
764 (void (*) (void))
765 target_ignore);
766 de_fault (to_terminal_save_ours,
767 (void (*) (void))
768 target_ignore);
769 de_fault (to_terminal_info,
770 default_terminal_info);
771 de_fault (to_load,
772 (void (*) (char *, int))
773 tcomplain);
774 de_fault (to_lookup_symbol,
775 (int (*) (char *, CORE_ADDR *))
776 nosymbol);
777 de_fault (to_post_startup_inferior,
778 (void (*) (ptid_t))
779 target_ignore);
780 de_fault (to_insert_fork_catchpoint,
781 (void (*) (int))
782 tcomplain);
783 de_fault (to_remove_fork_catchpoint,
784 (int (*) (int))
785 tcomplain);
786 de_fault (to_insert_vfork_catchpoint,
787 (void (*) (int))
788 tcomplain);
789 de_fault (to_remove_vfork_catchpoint,
790 (int (*) (int))
791 tcomplain);
792 de_fault (to_insert_exec_catchpoint,
793 (void (*) (int))
794 tcomplain);
795 de_fault (to_remove_exec_catchpoint,
796 (int (*) (int))
797 tcomplain);
798 de_fault (to_set_syscall_catchpoint,
799 (int (*) (int, int, int, int, int *))
800 tcomplain);
801 de_fault (to_has_exited,
802 (int (*) (int, int, int *))
803 return_zero);
804 de_fault (to_can_run,
805 return_zero);
806 de_fault (to_notice_signals,
807 (void (*) (ptid_t))
808 target_ignore);
809 de_fault (to_extra_thread_info,
810 (char *(*) (struct thread_info *))
811 return_zero);
812 de_fault (to_stop,
813 (void (*) (ptid_t))
814 target_ignore);
815 current_target.to_xfer_partial = current_xfer_partial;
816 de_fault (to_rcmd,
817 (void (*) (char *, struct ui_file *))
818 tcomplain);
819 de_fault (to_pid_to_exec_file,
820 (char *(*) (int))
821 return_zero);
822 de_fault (to_async,
823 (void (*) (void (*) (enum inferior_event_type, void*), void*))
824 tcomplain);
825 de_fault (to_async_mask,
826 (int (*) (int))
827 return_one);
828 de_fault (to_thread_architecture,
829 default_thread_architecture);
830 current_target.to_read_description = NULL;
831 de_fault (to_get_ada_task_ptid,
832 (ptid_t (*) (long, long))
833 default_get_ada_task_ptid);
834 de_fault (to_supports_multi_process,
835 (int (*) (void))
836 return_zero);
837 de_fault (to_trace_init,
838 (void (*) (void))
839 tcomplain);
840 de_fault (to_download_tracepoint,
841 (void (*) (struct breakpoint *))
842 tcomplain);
843 de_fault (to_download_trace_state_variable,
844 (void (*) (struct trace_state_variable *))
845 tcomplain);
846 de_fault (to_trace_set_readonly_regions,
847 (void (*) (void))
848 tcomplain);
849 de_fault (to_trace_start,
850 (void (*) (void))
851 tcomplain);
852 de_fault (to_get_trace_status,
853 (int (*) (struct trace_status *))
854 return_minus_one);
855 de_fault (to_trace_stop,
856 (void (*) (void))
857 tcomplain);
858 de_fault (to_trace_find,
859 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
860 return_minus_one);
861 de_fault (to_get_trace_state_variable_value,
862 (int (*) (int, LONGEST *))
863 return_zero);
864 de_fault (to_save_trace_data,
865 (int (*) (const char *))
866 tcomplain);
867 de_fault (to_upload_tracepoints,
868 (int (*) (struct uploaded_tp **))
869 return_zero);
870 de_fault (to_upload_trace_state_variables,
871 (int (*) (struct uploaded_tsv **))
872 return_zero);
873 de_fault (to_get_raw_trace_data,
874 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
875 tcomplain);
876 de_fault (to_set_disconnected_tracing,
877 (void (*) (int))
878 target_ignore);
879 de_fault (to_set_circular_trace_buffer,
880 (void (*) (int))
881 target_ignore);
882 de_fault (to_get_tib_address,
883 (int (*) (ptid_t, CORE_ADDR *))
884 tcomplain);
885 de_fault (to_set_permissions,
886 (void (*) (void))
887 target_ignore);
888 de_fault (to_static_tracepoint_marker_at,
889 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
890 return_zero);
891 de_fault (to_static_tracepoint_markers_by_strid,
892 (VEC(static_tracepoint_marker_p) * (*) (const char *))
893 tcomplain);
894 #undef de_fault
895
896 /* Finally, position the target-stack beneath the squashed
897 "current_target". That way code looking for a non-inherited
898 target method can quickly and simply find it. */
899 current_target.beneath = target_stack;
900
901 if (targetdebug)
902 setup_target_debug ();
903 }
904
905 /* Push a new target type into the stack of the existing target accessors,
906 possibly superseding some of the existing accessors.
907
908 Rather than allow an empty stack, we always have the dummy target at
909 the bottom stratum, so we can call the function vectors without
910 checking them. */
911
912 void
913 push_target (struct target_ops *t)
914 {
915 struct target_ops **cur;
916
917 /* Check magic number. If wrong, it probably means someone changed
918 the struct definition, but not all the places that initialize one. */
919 if (t->to_magic != OPS_MAGIC)
920 {
921 fprintf_unfiltered (gdb_stderr,
922 "Magic number of %s target struct wrong\n",
923 t->to_shortname);
924 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
925 }
926
927 /* Find the proper stratum to install this target in. */
928 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
929 {
930 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
931 break;
932 }
933
934 /* If there's already targets at this stratum, remove them. */
935 /* FIXME: cagney/2003-10-15: I think this should be popping all
936 targets to CUR, and not just those at this stratum level. */
937 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
938 {
939 /* There's already something at this stratum level. Close it,
940 and un-hook it from the stack. */
941 struct target_ops *tmp = (*cur);
942
943 (*cur) = (*cur)->beneath;
944 tmp->beneath = NULL;
945 target_close (tmp, 0);
946 }
947
948 /* We have removed all targets in our stratum, now add the new one. */
949 t->beneath = (*cur);
950 (*cur) = t;
951
952 update_current_target ();
953 }
954
955 /* Remove a target_ops vector from the stack, wherever it may be.
956 Return how many times it was removed (0 or 1). */
957
958 int
959 unpush_target (struct target_ops *t)
960 {
961 struct target_ops **cur;
962 struct target_ops *tmp;
963
964 if (t->to_stratum == dummy_stratum)
965 internal_error (__FILE__, __LINE__,
966 "Attempt to unpush the dummy target");
967
968 /* Look for the specified target. Note that we assume that a target
969 can only occur once in the target stack. */
970
971 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
972 {
973 if ((*cur) == t)
974 break;
975 }
976
977 if ((*cur) == NULL)
978 return 0; /* Didn't find target_ops, quit now */
979
980 /* NOTE: cagney/2003-12-06: In '94 the close call was made
981 unconditional by moving it to before the above check that the
982 target was in the target stack (something about "Change the way
983 pushing and popping of targets work to support target overlays
984 and inheritance"). This doesn't make much sense - only open
985 targets should be closed. */
986 target_close (t, 0);
987
988 /* Unchain the target */
989 tmp = (*cur);
990 (*cur) = (*cur)->beneath;
991 tmp->beneath = NULL;
992
993 update_current_target ();
994
995 return 1;
996 }
997
998 void
999 pop_target (void)
1000 {
1001 target_close (target_stack, 0); /* Let it clean up */
1002 if (unpush_target (target_stack) == 1)
1003 return;
1004
1005 fprintf_unfiltered (gdb_stderr,
1006 "pop_target couldn't find target %s\n",
1007 current_target.to_shortname);
1008 internal_error (__FILE__, __LINE__,
1009 _("failed internal consistency check"));
1010 }
1011
1012 void
1013 pop_all_targets_above (enum strata above_stratum, int quitting)
1014 {
1015 while ((int) (current_target.to_stratum) > (int) above_stratum)
1016 {
1017 target_close (target_stack, quitting);
1018 if (!unpush_target (target_stack))
1019 {
1020 fprintf_unfiltered (gdb_stderr,
1021 "pop_all_targets couldn't find target %s\n",
1022 target_stack->to_shortname);
1023 internal_error (__FILE__, __LINE__,
1024 _("failed internal consistency check"));
1025 break;
1026 }
1027 }
1028 }
1029
1030 void
1031 pop_all_targets (int quitting)
1032 {
1033 pop_all_targets_above (dummy_stratum, quitting);
1034 }
1035
1036 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1037
1038 int
1039 target_is_pushed (struct target_ops *t)
1040 {
1041 struct target_ops **cur;
1042
1043 /* Check magic number. If wrong, it probably means someone changed
1044 the struct definition, but not all the places that initialize one. */
1045 if (t->to_magic != OPS_MAGIC)
1046 {
1047 fprintf_unfiltered (gdb_stderr,
1048 "Magic number of %s target struct wrong\n",
1049 t->to_shortname);
1050 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1051 }
1052
1053 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1054 if (*cur == t)
1055 return 1;
1056
1057 return 0;
1058 }
1059
1060 /* Using the objfile specified in OBJFILE, find the address for the
1061 current thread's thread-local storage with offset OFFSET. */
1062 CORE_ADDR
1063 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1064 {
1065 volatile CORE_ADDR addr = 0;
1066 struct target_ops *target;
1067
1068 for (target = current_target.beneath;
1069 target != NULL;
1070 target = target->beneath)
1071 {
1072 if (target->to_get_thread_local_address != NULL)
1073 break;
1074 }
1075
1076 if (target != NULL
1077 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1078 {
1079 ptid_t ptid = inferior_ptid;
1080 volatile struct gdb_exception ex;
1081
1082 TRY_CATCH (ex, RETURN_MASK_ALL)
1083 {
1084 CORE_ADDR lm_addr;
1085
1086 /* Fetch the load module address for this objfile. */
1087 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1088 objfile);
1089 /* If it's 0, throw the appropriate exception. */
1090 if (lm_addr == 0)
1091 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1092 _("TLS load module not found"));
1093
1094 addr = target->to_get_thread_local_address (target, ptid, lm_addr, offset);
1095 }
1096 /* If an error occurred, print TLS related messages here. Otherwise,
1097 throw the error to some higher catcher. */
1098 if (ex.reason < 0)
1099 {
1100 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1101
1102 switch (ex.error)
1103 {
1104 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1105 error (_("Cannot find thread-local variables in this thread library."));
1106 break;
1107 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1108 if (objfile_is_library)
1109 error (_("Cannot find shared library `%s' in dynamic"
1110 " linker's load module list"), objfile->name);
1111 else
1112 error (_("Cannot find executable file `%s' in dynamic"
1113 " linker's load module list"), objfile->name);
1114 break;
1115 case TLS_NOT_ALLOCATED_YET_ERROR:
1116 if (objfile_is_library)
1117 error (_("The inferior has not yet allocated storage for"
1118 " thread-local variables in\n"
1119 "the shared library `%s'\n"
1120 "for %s"),
1121 objfile->name, target_pid_to_str (ptid));
1122 else
1123 error (_("The inferior has not yet allocated storage for"
1124 " thread-local variables in\n"
1125 "the executable `%s'\n"
1126 "for %s"),
1127 objfile->name, target_pid_to_str (ptid));
1128 break;
1129 case TLS_GENERIC_ERROR:
1130 if (objfile_is_library)
1131 error (_("Cannot find thread-local storage for %s, "
1132 "shared library %s:\n%s"),
1133 target_pid_to_str (ptid),
1134 objfile->name, ex.message);
1135 else
1136 error (_("Cannot find thread-local storage for %s, "
1137 "executable file %s:\n%s"),
1138 target_pid_to_str (ptid),
1139 objfile->name, ex.message);
1140 break;
1141 default:
1142 throw_exception (ex);
1143 break;
1144 }
1145 }
1146 }
1147 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1148 TLS is an ABI-specific thing. But we don't do that yet. */
1149 else
1150 error (_("Cannot find thread-local variables on this target"));
1151
1152 return addr;
1153 }
1154
1155 #undef MIN
1156 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1157
1158 /* target_read_string -- read a null terminated string, up to LEN bytes,
1159 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1160 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1161 is responsible for freeing it. Return the number of bytes successfully
1162 read. */
1163
1164 int
1165 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1166 {
1167 int tlen, origlen, offset, i;
1168 gdb_byte buf[4];
1169 int errcode = 0;
1170 char *buffer;
1171 int buffer_allocated;
1172 char *bufptr;
1173 unsigned int nbytes_read = 0;
1174
1175 gdb_assert (string);
1176
1177 /* Small for testing. */
1178 buffer_allocated = 4;
1179 buffer = xmalloc (buffer_allocated);
1180 bufptr = buffer;
1181
1182 origlen = len;
1183
1184 while (len > 0)
1185 {
1186 tlen = MIN (len, 4 - (memaddr & 3));
1187 offset = memaddr & 3;
1188
1189 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1190 if (errcode != 0)
1191 {
1192 /* The transfer request might have crossed the boundary to an
1193 unallocated region of memory. Retry the transfer, requesting
1194 a single byte. */
1195 tlen = 1;
1196 offset = 0;
1197 errcode = target_read_memory (memaddr, buf, 1);
1198 if (errcode != 0)
1199 goto done;
1200 }
1201
1202 if (bufptr - buffer + tlen > buffer_allocated)
1203 {
1204 unsigned int bytes;
1205
1206 bytes = bufptr - buffer;
1207 buffer_allocated *= 2;
1208 buffer = xrealloc (buffer, buffer_allocated);
1209 bufptr = buffer + bytes;
1210 }
1211
1212 for (i = 0; i < tlen; i++)
1213 {
1214 *bufptr++ = buf[i + offset];
1215 if (buf[i + offset] == '\000')
1216 {
1217 nbytes_read += i + 1;
1218 goto done;
1219 }
1220 }
1221
1222 memaddr += tlen;
1223 len -= tlen;
1224 nbytes_read += tlen;
1225 }
1226 done:
1227 *string = buffer;
1228 if (errnop != NULL)
1229 *errnop = errcode;
1230 return nbytes_read;
1231 }
1232
1233 struct target_section_table *
1234 target_get_section_table (struct target_ops *target)
1235 {
1236 struct target_ops *t;
1237
1238 if (targetdebug)
1239 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1240
1241 for (t = target; t != NULL; t = t->beneath)
1242 if (t->to_get_section_table != NULL)
1243 return (*t->to_get_section_table) (t);
1244
1245 return NULL;
1246 }
1247
1248 /* Find a section containing ADDR. */
1249
1250 struct target_section *
1251 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1252 {
1253 struct target_section_table *table = target_get_section_table (target);
1254 struct target_section *secp;
1255
1256 if (table == NULL)
1257 return NULL;
1258
1259 for (secp = table->sections; secp < table->sections_end; secp++)
1260 {
1261 if (addr >= secp->addr && addr < secp->endaddr)
1262 return secp;
1263 }
1264 return NULL;
1265 }
1266
1267 /* Perform a partial memory transfer.
1268 For docs see target.h, to_xfer_partial. */
1269
1270 static LONGEST
1271 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1272 void *readbuf, const void *writebuf, ULONGEST memaddr,
1273 LONGEST len)
1274 {
1275 LONGEST res;
1276 int reg_len;
1277 struct mem_region *region;
1278 struct inferior *inf;
1279
1280 /* Zero length requests are ok and require no work. */
1281 if (len == 0)
1282 return 0;
1283
1284 /* For accesses to unmapped overlay sections, read directly from
1285 files. Must do this first, as MEMADDR may need adjustment. */
1286 if (readbuf != NULL && overlay_debugging)
1287 {
1288 struct obj_section *section = find_pc_overlay (memaddr);
1289
1290 if (pc_in_unmapped_range (memaddr, section))
1291 {
1292 struct target_section_table *table
1293 = target_get_section_table (ops);
1294 const char *section_name = section->the_bfd_section->name;
1295
1296 memaddr = overlay_mapped_address (memaddr, section);
1297 return section_table_xfer_memory_partial (readbuf, writebuf,
1298 memaddr, len,
1299 table->sections,
1300 table->sections_end,
1301 section_name);
1302 }
1303 }
1304
1305 /* Try the executable files, if "trust-readonly-sections" is set. */
1306 if (readbuf != NULL && trust_readonly)
1307 {
1308 struct target_section *secp;
1309 struct target_section_table *table;
1310
1311 secp = target_section_by_addr (ops, memaddr);
1312 if (secp != NULL
1313 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1314 & SEC_READONLY))
1315 {
1316 table = target_get_section_table (ops);
1317 return section_table_xfer_memory_partial (readbuf, writebuf,
1318 memaddr, len,
1319 table->sections,
1320 table->sections_end,
1321 NULL);
1322 }
1323 }
1324
1325 /* Try GDB's internal data cache. */
1326 region = lookup_mem_region (memaddr);
1327 /* region->hi == 0 means there's no upper bound. */
1328 if (memaddr + len < region->hi || region->hi == 0)
1329 reg_len = len;
1330 else
1331 reg_len = region->hi - memaddr;
1332
1333 switch (region->attrib.mode)
1334 {
1335 case MEM_RO:
1336 if (writebuf != NULL)
1337 return -1;
1338 break;
1339
1340 case MEM_WO:
1341 if (readbuf != NULL)
1342 return -1;
1343 break;
1344
1345 case MEM_FLASH:
1346 /* We only support writing to flash during "load" for now. */
1347 if (writebuf != NULL)
1348 error (_("Writing to flash memory forbidden in this context"));
1349 break;
1350
1351 case MEM_NONE:
1352 return -1;
1353 }
1354
1355 if (!ptid_equal (inferior_ptid, null_ptid))
1356 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1357 else
1358 inf = NULL;
1359
1360 if (inf != NULL
1361 /* The dcache reads whole cache lines; that doesn't play well
1362 with reading from a trace buffer, because reading outside of
1363 the collected memory range fails. */
1364 && get_traceframe_number () == -1
1365 && (region->attrib.cache
1366 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1367 {
1368 if (readbuf != NULL)
1369 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1370 reg_len, 0);
1371 else
1372 /* FIXME drow/2006-08-09: If we're going to preserve const
1373 correctness dcache_xfer_memory should take readbuf and
1374 writebuf. */
1375 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1376 (void *) writebuf,
1377 reg_len, 1);
1378 if (res <= 0)
1379 return -1;
1380 else
1381 {
1382 if (readbuf && !show_memory_breakpoints)
1383 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1384 return res;
1385 }
1386 }
1387
1388 /* If none of those methods found the memory we wanted, fall back
1389 to a target partial transfer. Normally a single call to
1390 to_xfer_partial is enough; if it doesn't recognize an object
1391 it will call the to_xfer_partial of the next target down.
1392 But for memory this won't do. Memory is the only target
1393 object which can be read from more than one valid target.
1394 A core file, for instance, could have some of memory but
1395 delegate other bits to the target below it. So, we must
1396 manually try all targets. */
1397
1398 do
1399 {
1400 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1401 readbuf, writebuf, memaddr, reg_len);
1402 if (res > 0)
1403 break;
1404
1405 /* We want to continue past core files to executables, but not
1406 past a running target's memory. */
1407 if (ops->to_has_all_memory (ops))
1408 break;
1409
1410 ops = ops->beneath;
1411 }
1412 while (ops != NULL);
1413
1414 if (readbuf && !show_memory_breakpoints)
1415 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1416
1417 /* Make sure the cache gets updated no matter what - if we are writing
1418 to the stack. Even if this write is not tagged as such, we still need
1419 to update the cache. */
1420
1421 if (res > 0
1422 && inf != NULL
1423 && writebuf != NULL
1424 && !region->attrib.cache
1425 && stack_cache_enabled_p
1426 && object != TARGET_OBJECT_STACK_MEMORY)
1427 {
1428 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1429 }
1430
1431 /* If we still haven't got anything, return the last error. We
1432 give up. */
1433 return res;
1434 }
1435
1436 static void
1437 restore_show_memory_breakpoints (void *arg)
1438 {
1439 show_memory_breakpoints = (uintptr_t) arg;
1440 }
1441
1442 struct cleanup *
1443 make_show_memory_breakpoints_cleanup (int show)
1444 {
1445 int current = show_memory_breakpoints;
1446
1447 show_memory_breakpoints = show;
1448 return make_cleanup (restore_show_memory_breakpoints,
1449 (void *) (uintptr_t) current);
1450 }
1451
1452 /* For docs see target.h, to_xfer_partial. */
1453
1454 static LONGEST
1455 target_xfer_partial (struct target_ops *ops,
1456 enum target_object object, const char *annex,
1457 void *readbuf, const void *writebuf,
1458 ULONGEST offset, LONGEST len)
1459 {
1460 LONGEST retval;
1461
1462 gdb_assert (ops->to_xfer_partial != NULL);
1463
1464 if (writebuf && !may_write_memory)
1465 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1466 core_addr_to_string_nz (offset), plongest (len));
1467
1468 /* If this is a memory transfer, let the memory-specific code
1469 have a look at it instead. Memory transfers are more
1470 complicated. */
1471 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1472 retval = memory_xfer_partial (ops, object, readbuf,
1473 writebuf, offset, len);
1474 else
1475 {
1476 enum target_object raw_object = object;
1477
1478 /* If this is a raw memory transfer, request the normal
1479 memory object from other layers. */
1480 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1481 raw_object = TARGET_OBJECT_MEMORY;
1482
1483 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1484 writebuf, offset, len);
1485 }
1486
1487 if (targetdebug)
1488 {
1489 const unsigned char *myaddr = NULL;
1490
1491 fprintf_unfiltered (gdb_stdlog,
1492 "%s:target_xfer_partial (%d, %s, %s, %s, %s, %s) = %s",
1493 ops->to_shortname,
1494 (int) object,
1495 (annex ? annex : "(null)"),
1496 host_address_to_string (readbuf),
1497 host_address_to_string (writebuf),
1498 core_addr_to_string_nz (offset),
1499 plongest (len), plongest (retval));
1500
1501 if (readbuf)
1502 myaddr = readbuf;
1503 if (writebuf)
1504 myaddr = writebuf;
1505 if (retval > 0 && myaddr != NULL)
1506 {
1507 int i;
1508
1509 fputs_unfiltered (", bytes =", gdb_stdlog);
1510 for (i = 0; i < retval; i++)
1511 {
1512 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1513 {
1514 if (targetdebug < 2 && i > 0)
1515 {
1516 fprintf_unfiltered (gdb_stdlog, " ...");
1517 break;
1518 }
1519 fprintf_unfiltered (gdb_stdlog, "\n");
1520 }
1521
1522 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1523 }
1524 }
1525
1526 fputc_unfiltered ('\n', gdb_stdlog);
1527 }
1528 return retval;
1529 }
1530
1531 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1532 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1533 if any error occurs.
1534
1535 If an error occurs, no guarantee is made about the contents of the data at
1536 MYADDR. In particular, the caller should not depend upon partial reads
1537 filling the buffer with good data. There is no way for the caller to know
1538 how much good data might have been transfered anyway. Callers that can
1539 deal with partial reads should call target_read (which will retry until
1540 it makes no progress, and then return how much was transferred). */
1541
1542 int
1543 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1544 {
1545 /* Dispatch to the topmost target, not the flattened current_target.
1546 Memory accesses check target->to_has_(all_)memory, and the
1547 flattened target doesn't inherit those. */
1548 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1549 myaddr, memaddr, len) == len)
1550 return 0;
1551 else
1552 return EIO;
1553 }
1554
1555 /* Like target_read_memory, but specify explicitly that this is a read from
1556 the target's stack. This may trigger different cache behavior. */
1557
1558 int
1559 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1560 {
1561 /* Dispatch to the topmost target, not the flattened current_target.
1562 Memory accesses check target->to_has_(all_)memory, and the
1563 flattened target doesn't inherit those. */
1564
1565 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1566 myaddr, memaddr, len) == len)
1567 return 0;
1568 else
1569 return EIO;
1570 }
1571
1572 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1573 Returns either 0 for success or an errno value if any error occurs.
1574 If an error occurs, no guarantee is made about how much data got written.
1575 Callers that can deal with partial writes should call target_write. */
1576
1577 int
1578 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1579 {
1580 /* Dispatch to the topmost target, not the flattened current_target.
1581 Memory accesses check target->to_has_(all_)memory, and the
1582 flattened target doesn't inherit those. */
1583 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1584 myaddr, memaddr, len) == len)
1585 return 0;
1586 else
1587 return EIO;
1588 }
1589
1590 /* Fetch the target's memory map. */
1591
1592 VEC(mem_region_s) *
1593 target_memory_map (void)
1594 {
1595 VEC(mem_region_s) *result;
1596 struct mem_region *last_one, *this_one;
1597 int ix;
1598 struct target_ops *t;
1599
1600 if (targetdebug)
1601 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1602
1603 for (t = current_target.beneath; t != NULL; t = t->beneath)
1604 if (t->to_memory_map != NULL)
1605 break;
1606
1607 if (t == NULL)
1608 return NULL;
1609
1610 result = t->to_memory_map (t);
1611 if (result == NULL)
1612 return NULL;
1613
1614 qsort (VEC_address (mem_region_s, result),
1615 VEC_length (mem_region_s, result),
1616 sizeof (struct mem_region), mem_region_cmp);
1617
1618 /* Check that regions do not overlap. Simultaneously assign
1619 a numbering for the "mem" commands to use to refer to
1620 each region. */
1621 last_one = NULL;
1622 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1623 {
1624 this_one->number = ix;
1625
1626 if (last_one && last_one->hi > this_one->lo)
1627 {
1628 warning (_("Overlapping regions in memory map: ignoring"));
1629 VEC_free (mem_region_s, result);
1630 return NULL;
1631 }
1632 last_one = this_one;
1633 }
1634
1635 return result;
1636 }
1637
1638 void
1639 target_flash_erase (ULONGEST address, LONGEST length)
1640 {
1641 struct target_ops *t;
1642
1643 for (t = current_target.beneath; t != NULL; t = t->beneath)
1644 if (t->to_flash_erase != NULL)
1645 {
1646 if (targetdebug)
1647 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1648 hex_string (address), phex (length, 0));
1649 t->to_flash_erase (t, address, length);
1650 return;
1651 }
1652
1653 tcomplain ();
1654 }
1655
1656 void
1657 target_flash_done (void)
1658 {
1659 struct target_ops *t;
1660
1661 for (t = current_target.beneath; t != NULL; t = t->beneath)
1662 if (t->to_flash_done != NULL)
1663 {
1664 if (targetdebug)
1665 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1666 t->to_flash_done (t);
1667 return;
1668 }
1669
1670 tcomplain ();
1671 }
1672
1673 static void
1674 show_trust_readonly (struct ui_file *file, int from_tty,
1675 struct cmd_list_element *c, const char *value)
1676 {
1677 fprintf_filtered (file, _("\
1678 Mode for reading from readonly sections is %s.\n"),
1679 value);
1680 }
1681
1682 /* More generic transfers. */
1683
1684 static LONGEST
1685 default_xfer_partial (struct target_ops *ops, enum target_object object,
1686 const char *annex, gdb_byte *readbuf,
1687 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1688 {
1689 if (object == TARGET_OBJECT_MEMORY
1690 && ops->deprecated_xfer_memory != NULL)
1691 /* If available, fall back to the target's
1692 "deprecated_xfer_memory" method. */
1693 {
1694 int xfered = -1;
1695
1696 errno = 0;
1697 if (writebuf != NULL)
1698 {
1699 void *buffer = xmalloc (len);
1700 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1701
1702 memcpy (buffer, writebuf, len);
1703 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1704 1/*write*/, NULL, ops);
1705 do_cleanups (cleanup);
1706 }
1707 if (readbuf != NULL)
1708 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1709 0/*read*/, NULL, ops);
1710 if (xfered > 0)
1711 return xfered;
1712 else if (xfered == 0 && errno == 0)
1713 /* "deprecated_xfer_memory" uses 0, cross checked against
1714 ERRNO as one indication of an error. */
1715 return 0;
1716 else
1717 return -1;
1718 }
1719 else if (ops->beneath != NULL)
1720 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1721 readbuf, writebuf, offset, len);
1722 else
1723 return -1;
1724 }
1725
1726 /* The xfer_partial handler for the topmost target. Unlike the default,
1727 it does not need to handle memory specially; it just passes all
1728 requests down the stack. */
1729
1730 static LONGEST
1731 current_xfer_partial (struct target_ops *ops, enum target_object object,
1732 const char *annex, gdb_byte *readbuf,
1733 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1734 {
1735 if (ops->beneath != NULL)
1736 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1737 readbuf, writebuf, offset, len);
1738 else
1739 return -1;
1740 }
1741
1742 /* Target vector read/write partial wrapper functions. */
1743
1744 static LONGEST
1745 target_read_partial (struct target_ops *ops,
1746 enum target_object object,
1747 const char *annex, gdb_byte *buf,
1748 ULONGEST offset, LONGEST len)
1749 {
1750 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1751 }
1752
1753 static LONGEST
1754 target_write_partial (struct target_ops *ops,
1755 enum target_object object,
1756 const char *annex, const gdb_byte *buf,
1757 ULONGEST offset, LONGEST len)
1758 {
1759 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1760 }
1761
1762 /* Wrappers to perform the full transfer. */
1763
1764 /* For docs on target_read see target.h. */
1765
1766 LONGEST
1767 target_read (struct target_ops *ops,
1768 enum target_object object,
1769 const char *annex, gdb_byte *buf,
1770 ULONGEST offset, LONGEST len)
1771 {
1772 LONGEST xfered = 0;
1773
1774 while (xfered < len)
1775 {
1776 LONGEST xfer = target_read_partial (ops, object, annex,
1777 (gdb_byte *) buf + xfered,
1778 offset + xfered, len - xfered);
1779
1780 /* Call an observer, notifying them of the xfer progress? */
1781 if (xfer == 0)
1782 return xfered;
1783 if (xfer < 0)
1784 return -1;
1785 xfered += xfer;
1786 QUIT;
1787 }
1788 return len;
1789 }
1790
1791 /** Assuming that the entire [begin, end) range of memory cannot be read,
1792 try to read whatever subrange is possible to read.
1793
1794 The function results, in RESULT, either zero or one memory block.
1795 If there's a readable subrange at the beginning, it is completely
1796 read and returned. Any further readable subrange will not be read.
1797 Otherwise, if there's a readable subrange at the end, it will be
1798 completely read and returned. Any readable subranges before it (obviously,
1799 not starting at the beginning), will be ignored. In other cases --
1800 either no readable subrange, or readable subrange (s) that is neither
1801 at the beginning, or end, nothing is returned.
1802
1803 The purpose of this function is to handle a read across a boundary of
1804 accessible memory in a case when memory map is not available. The above
1805 restrictions are fine for this case, but will give incorrect results if
1806 the memory is 'patchy'. However, supporting 'patchy' memory would require
1807 trying to read every single byte, and it seems unacceptable solution.
1808 Explicit memory map is recommended for this case -- and
1809 target_read_memory_robust will take care of reading multiple ranges then. */
1810
1811 static void
1812 read_whatever_is_readable (struct target_ops *ops, ULONGEST begin, ULONGEST end,
1813 VEC(memory_read_result_s) **result)
1814 {
1815 gdb_byte *buf = xmalloc (end-begin);
1816 ULONGEST current_begin = begin;
1817 ULONGEST current_end = end;
1818 int forward;
1819 memory_read_result_s r;
1820
1821 /* If we previously failed to read 1 byte, nothing can be done here. */
1822 if (end - begin <= 1)
1823 return;
1824
1825 /* Check that either first or the last byte is readable, and give up
1826 if not. This heuristic is meant to permit reading accessible memory
1827 at the boundary of accessible region. */
1828 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1829 buf, begin, 1) == 1)
1830 {
1831 forward = 1;
1832 ++current_begin;
1833 }
1834 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1835 buf + (end-begin) - 1, end - 1, 1) == 1)
1836 {
1837 forward = 0;
1838 --current_end;
1839 }
1840 else
1841 {
1842 return;
1843 }
1844
1845 /* Loop invariant is that the [current_begin, current_end) was previously
1846 found to be not readable as a whole.
1847
1848 Note loop condition -- if the range has 1 byte, we can't divide the range
1849 so there's no point trying further. */
1850 while (current_end - current_begin > 1)
1851 {
1852 ULONGEST first_half_begin, first_half_end;
1853 ULONGEST second_half_begin, second_half_end;
1854 LONGEST xfer;
1855
1856 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1857 if (forward)
1858 {
1859 first_half_begin = current_begin;
1860 first_half_end = middle;
1861 second_half_begin = middle;
1862 second_half_end = current_end;
1863 }
1864 else
1865 {
1866 first_half_begin = middle;
1867 first_half_end = current_end;
1868 second_half_begin = current_begin;
1869 second_half_end = middle;
1870 }
1871
1872 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1873 buf + (first_half_begin - begin),
1874 first_half_begin,
1875 first_half_end - first_half_begin);
1876
1877 if (xfer == first_half_end - first_half_begin)
1878 {
1879 /* This half reads up fine. So, the error must be in the other half. */
1880 current_begin = second_half_begin;
1881 current_end = second_half_end;
1882 }
1883 else
1884 {
1885 /* This half is not readable. Because we've tried one byte, we
1886 know some part of this half if actually redable. Go to the next
1887 iteration to divide again and try to read.
1888
1889 We don't handle the other half, because this function only tries
1890 to read a single readable subrange. */
1891 current_begin = first_half_begin;
1892 current_end = first_half_end;
1893 }
1894 }
1895
1896 if (forward)
1897 {
1898 /* The [begin, current_begin) range has been read. */
1899 r.begin = begin;
1900 r.end = current_begin;
1901 r.data = buf;
1902 }
1903 else
1904 {
1905 /* The [current_end, end) range has been read. */
1906 LONGEST rlen = end - current_end;
1907 r.data = xmalloc (rlen);
1908 memcpy (r.data, buf + current_end - begin, rlen);
1909 r.begin = current_end;
1910 r.end = end;
1911 xfree (buf);
1912 }
1913 VEC_safe_push(memory_read_result_s, (*result), &r);
1914 }
1915
1916 void
1917 free_memory_read_result_vector (void *x)
1918 {
1919 VEC(memory_read_result_s) *v = x;
1920 memory_read_result_s *current;
1921 int ix;
1922
1923 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1924 {
1925 xfree (current->data);
1926 }
1927 VEC_free (memory_read_result_s, v);
1928 }
1929
1930 VEC(memory_read_result_s) *
1931 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1932 {
1933 VEC(memory_read_result_s) *result = 0;
1934
1935 LONGEST xfered = 0;
1936 while (xfered < len)
1937 {
1938 struct mem_region *region = lookup_mem_region (offset + xfered);
1939 LONGEST rlen;
1940
1941 /* If there is no explicit region, a fake one should be created. */
1942 gdb_assert (region);
1943
1944 if (region->hi == 0)
1945 rlen = len - xfered;
1946 else
1947 rlen = region->hi - offset;
1948
1949 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1950 {
1951 /* Cannot read this region. Note that we can end up here only
1952 if the region is explicitly marked inaccessible, or
1953 'inaccessible-by-default' is in effect. */
1954 xfered += rlen;
1955 }
1956 else
1957 {
1958 LONGEST to_read = min (len - xfered, rlen);
1959 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1960
1961 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1962 (gdb_byte *) buffer,
1963 offset + xfered, to_read);
1964 /* Call an observer, notifying them of the xfer progress? */
1965 if (xfer <= 0)
1966 {
1967 /* Got an error reading full chunk. See if maybe we can read
1968 some subrange. */
1969 xfree (buffer);
1970 read_whatever_is_readable (ops, offset + xfered, offset + xfered + to_read, &result);
1971 xfered += to_read;
1972 }
1973 else
1974 {
1975 struct memory_read_result r;
1976 r.data = buffer;
1977 r.begin = offset + xfered;
1978 r.end = r.begin + xfer;
1979 VEC_safe_push (memory_read_result_s, result, &r);
1980 xfered += xfer;
1981 }
1982 QUIT;
1983 }
1984 }
1985 return result;
1986 }
1987
1988
1989 /* An alternative to target_write with progress callbacks. */
1990
1991 LONGEST
1992 target_write_with_progress (struct target_ops *ops,
1993 enum target_object object,
1994 const char *annex, const gdb_byte *buf,
1995 ULONGEST offset, LONGEST len,
1996 void (*progress) (ULONGEST, void *), void *baton)
1997 {
1998 LONGEST xfered = 0;
1999
2000 /* Give the progress callback a chance to set up. */
2001 if (progress)
2002 (*progress) (0, baton);
2003
2004 while (xfered < len)
2005 {
2006 LONGEST xfer = target_write_partial (ops, object, annex,
2007 (gdb_byte *) buf + xfered,
2008 offset + xfered, len - xfered);
2009
2010 if (xfer == 0)
2011 return xfered;
2012 if (xfer < 0)
2013 return -1;
2014
2015 if (progress)
2016 (*progress) (xfer, baton);
2017
2018 xfered += xfer;
2019 QUIT;
2020 }
2021 return len;
2022 }
2023
2024 /* For docs on target_write see target.h. */
2025
2026 LONGEST
2027 target_write (struct target_ops *ops,
2028 enum target_object object,
2029 const char *annex, const gdb_byte *buf,
2030 ULONGEST offset, LONGEST len)
2031 {
2032 return target_write_with_progress (ops, object, annex, buf, offset, len,
2033 NULL, NULL);
2034 }
2035
2036 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2037 the size of the transferred data. PADDING additional bytes are
2038 available in *BUF_P. This is a helper function for
2039 target_read_alloc; see the declaration of that function for more
2040 information. */
2041
2042 static LONGEST
2043 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2044 const char *annex, gdb_byte **buf_p, int padding)
2045 {
2046 size_t buf_alloc, buf_pos;
2047 gdb_byte *buf;
2048 LONGEST n;
2049
2050 /* This function does not have a length parameter; it reads the
2051 entire OBJECT). Also, it doesn't support objects fetched partly
2052 from one target and partly from another (in a different stratum,
2053 e.g. a core file and an executable). Both reasons make it
2054 unsuitable for reading memory. */
2055 gdb_assert (object != TARGET_OBJECT_MEMORY);
2056
2057 /* Start by reading up to 4K at a time. The target will throttle
2058 this number down if necessary. */
2059 buf_alloc = 4096;
2060 buf = xmalloc (buf_alloc);
2061 buf_pos = 0;
2062 while (1)
2063 {
2064 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2065 buf_pos, buf_alloc - buf_pos - padding);
2066 if (n < 0)
2067 {
2068 /* An error occurred. */
2069 xfree (buf);
2070 return -1;
2071 }
2072 else if (n == 0)
2073 {
2074 /* Read all there was. */
2075 if (buf_pos == 0)
2076 xfree (buf);
2077 else
2078 *buf_p = buf;
2079 return buf_pos;
2080 }
2081
2082 buf_pos += n;
2083
2084 /* If the buffer is filling up, expand it. */
2085 if (buf_alloc < buf_pos * 2)
2086 {
2087 buf_alloc *= 2;
2088 buf = xrealloc (buf, buf_alloc);
2089 }
2090
2091 QUIT;
2092 }
2093 }
2094
2095 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2096 the size of the transferred data. See the declaration in "target.h"
2097 function for more information about the return value. */
2098
2099 LONGEST
2100 target_read_alloc (struct target_ops *ops, enum target_object object,
2101 const char *annex, gdb_byte **buf_p)
2102 {
2103 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2104 }
2105
2106 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2107 returned as a string, allocated using xmalloc. If an error occurs
2108 or the transfer is unsupported, NULL is returned. Empty objects
2109 are returned as allocated but empty strings. A warning is issued
2110 if the result contains any embedded NUL bytes. */
2111
2112 char *
2113 target_read_stralloc (struct target_ops *ops, enum target_object object,
2114 const char *annex)
2115 {
2116 gdb_byte *buffer;
2117 LONGEST transferred;
2118
2119 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2120
2121 if (transferred < 0)
2122 return NULL;
2123
2124 if (transferred == 0)
2125 return xstrdup ("");
2126
2127 buffer[transferred] = 0;
2128 if (strlen (buffer) < transferred)
2129 warning (_("target object %d, annex %s, "
2130 "contained unexpected null characters"),
2131 (int) object, annex ? annex : "(none)");
2132
2133 return (char *) buffer;
2134 }
2135
2136 /* Memory transfer methods. */
2137
2138 void
2139 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2140 LONGEST len)
2141 {
2142 /* This method is used to read from an alternate, non-current
2143 target. This read must bypass the overlay support (as symbols
2144 don't match this target), and GDB's internal cache (wrong cache
2145 for this target). */
2146 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2147 != len)
2148 memory_error (EIO, addr);
2149 }
2150
2151 ULONGEST
2152 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2153 int len, enum bfd_endian byte_order)
2154 {
2155 gdb_byte buf[sizeof (ULONGEST)];
2156
2157 gdb_assert (len <= sizeof (buf));
2158 get_target_memory (ops, addr, buf, len);
2159 return extract_unsigned_integer (buf, len, byte_order);
2160 }
2161
2162 int
2163 target_insert_breakpoint (struct gdbarch *gdbarch,
2164 struct bp_target_info *bp_tgt)
2165 {
2166 if (!may_insert_breakpoints)
2167 {
2168 warning (_("May not insert breakpoints"));
2169 return 1;
2170 }
2171
2172 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2173 }
2174
2175 int
2176 target_remove_breakpoint (struct gdbarch *gdbarch,
2177 struct bp_target_info *bp_tgt)
2178 {
2179 /* This is kind of a weird case to handle, but the permission might
2180 have been changed after breakpoints were inserted - in which case
2181 we should just take the user literally and assume that any
2182 breakpoints should be left in place. */
2183 if (!may_insert_breakpoints)
2184 {
2185 warning (_("May not remove breakpoints"));
2186 return 1;
2187 }
2188
2189 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2190 }
2191
2192 static void
2193 target_info (char *args, int from_tty)
2194 {
2195 struct target_ops *t;
2196 int has_all_mem = 0;
2197
2198 if (symfile_objfile != NULL)
2199 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2200
2201 for (t = target_stack; t != NULL; t = t->beneath)
2202 {
2203 if (!(*t->to_has_memory) (t))
2204 continue;
2205
2206 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2207 continue;
2208 if (has_all_mem)
2209 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
2210 printf_unfiltered ("%s:\n", t->to_longname);
2211 (t->to_files_info) (t);
2212 has_all_mem = (*t->to_has_all_memory) (t);
2213 }
2214 }
2215
2216 /* This function is called before any new inferior is created, e.g.
2217 by running a program, attaching, or connecting to a target.
2218 It cleans up any state from previous invocations which might
2219 change between runs. This is a subset of what target_preopen
2220 resets (things which might change between targets). */
2221
2222 void
2223 target_pre_inferior (int from_tty)
2224 {
2225 /* Clear out solib state. Otherwise the solib state of the previous
2226 inferior might have survived and is entirely wrong for the new
2227 target. This has been observed on GNU/Linux using glibc 2.3. How
2228 to reproduce:
2229
2230 bash$ ./foo&
2231 [1] 4711
2232 bash$ ./foo&
2233 [1] 4712
2234 bash$ gdb ./foo
2235 [...]
2236 (gdb) attach 4711
2237 (gdb) detach
2238 (gdb) attach 4712
2239 Cannot access memory at address 0xdeadbeef
2240 */
2241
2242 /* In some OSs, the shared library list is the same/global/shared
2243 across inferiors. If code is shared between processes, so are
2244 memory regions and features. */
2245 if (!gdbarch_has_global_solist (target_gdbarch))
2246 {
2247 no_shared_libraries (NULL, from_tty);
2248
2249 invalidate_target_mem_regions ();
2250
2251 target_clear_description ();
2252 }
2253 }
2254
2255 /* Callback for iterate_over_inferiors. Gets rid of the given
2256 inferior. */
2257
2258 static int
2259 dispose_inferior (struct inferior *inf, void *args)
2260 {
2261 struct thread_info *thread;
2262
2263 thread = any_thread_of_process (inf->pid);
2264 if (thread)
2265 {
2266 switch_to_thread (thread->ptid);
2267
2268 /* Core inferiors actually should be detached, not killed. */
2269 if (target_has_execution)
2270 target_kill ();
2271 else
2272 target_detach (NULL, 0);
2273 }
2274
2275 return 0;
2276 }
2277
2278 /* This is to be called by the open routine before it does
2279 anything. */
2280
2281 void
2282 target_preopen (int from_tty)
2283 {
2284 dont_repeat ();
2285
2286 if (have_inferiors ())
2287 {
2288 if (!from_tty
2289 || !have_live_inferiors ()
2290 || query (_("A program is being debugged already. Kill it? ")))
2291 iterate_over_inferiors (dispose_inferior, NULL);
2292 else
2293 error (_("Program not killed."));
2294 }
2295
2296 /* Calling target_kill may remove the target from the stack. But if
2297 it doesn't (which seems like a win for UDI), remove it now. */
2298 /* Leave the exec target, though. The user may be switching from a
2299 live process to a core of the same program. */
2300 pop_all_targets_above (file_stratum, 0);
2301
2302 target_pre_inferior (from_tty);
2303 }
2304
2305 /* Detach a target after doing deferred register stores. */
2306
2307 void
2308 target_detach (char *args, int from_tty)
2309 {
2310 struct target_ops* t;
2311
2312 if (gdbarch_has_global_breakpoints (target_gdbarch))
2313 /* Don't remove global breakpoints here. They're removed on
2314 disconnection from the target. */
2315 ;
2316 else
2317 /* If we're in breakpoints-always-inserted mode, have to remove
2318 them before detaching. */
2319 remove_breakpoints_pid (PIDGET (inferior_ptid));
2320
2321 prepare_for_detach ();
2322
2323 for (t = current_target.beneath; t != NULL; t = t->beneath)
2324 {
2325 if (t->to_detach != NULL)
2326 {
2327 t->to_detach (t, args, from_tty);
2328 if (targetdebug)
2329 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2330 args, from_tty);
2331 return;
2332 }
2333 }
2334
2335 internal_error (__FILE__, __LINE__, "could not find a target to detach");
2336 }
2337
2338 void
2339 target_disconnect (char *args, int from_tty)
2340 {
2341 struct target_ops *t;
2342
2343 /* If we're in breakpoints-always-inserted mode or if breakpoints
2344 are global across processes, we have to remove them before
2345 disconnecting. */
2346 remove_breakpoints ();
2347
2348 for (t = current_target.beneath; t != NULL; t = t->beneath)
2349 if (t->to_disconnect != NULL)
2350 {
2351 if (targetdebug)
2352 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2353 args, from_tty);
2354 t->to_disconnect (t, args, from_tty);
2355 return;
2356 }
2357
2358 tcomplain ();
2359 }
2360
2361 ptid_t
2362 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2363 {
2364 struct target_ops *t;
2365
2366 for (t = current_target.beneath; t != NULL; t = t->beneath)
2367 {
2368 if (t->to_wait != NULL)
2369 {
2370 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2371
2372 if (targetdebug)
2373 {
2374 char *status_string;
2375
2376 status_string = target_waitstatus_to_string (status);
2377 fprintf_unfiltered (gdb_stdlog,
2378 "target_wait (%d, status) = %d, %s\n",
2379 PIDGET (ptid), PIDGET (retval),
2380 status_string);
2381 xfree (status_string);
2382 }
2383
2384 return retval;
2385 }
2386 }
2387
2388 noprocess ();
2389 }
2390
2391 char *
2392 target_pid_to_str (ptid_t ptid)
2393 {
2394 struct target_ops *t;
2395
2396 for (t = current_target.beneath; t != NULL; t = t->beneath)
2397 {
2398 if (t->to_pid_to_str != NULL)
2399 return (*t->to_pid_to_str) (t, ptid);
2400 }
2401
2402 return normal_pid_to_str (ptid);
2403 }
2404
2405 void
2406 target_resume (ptid_t ptid, int step, enum target_signal signal)
2407 {
2408 struct target_ops *t;
2409
2410 target_dcache_invalidate ();
2411
2412 for (t = current_target.beneath; t != NULL; t = t->beneath)
2413 {
2414 if (t->to_resume != NULL)
2415 {
2416 t->to_resume (t, ptid, step, signal);
2417 if (targetdebug)
2418 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2419 PIDGET (ptid),
2420 step ? "step" : "continue",
2421 target_signal_to_name (signal));
2422
2423 registers_changed_ptid (ptid);
2424 set_executing (ptid, 1);
2425 set_running (ptid, 1);
2426 clear_inline_frame_state (ptid);
2427 return;
2428 }
2429 }
2430
2431 noprocess ();
2432 }
2433 /* Look through the list of possible targets for a target that can
2434 follow forks. */
2435
2436 int
2437 target_follow_fork (int follow_child)
2438 {
2439 struct target_ops *t;
2440
2441 for (t = current_target.beneath; t != NULL; t = t->beneath)
2442 {
2443 if (t->to_follow_fork != NULL)
2444 {
2445 int retval = t->to_follow_fork (t, follow_child);
2446
2447 if (targetdebug)
2448 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2449 follow_child, retval);
2450 return retval;
2451 }
2452 }
2453
2454 /* Some target returned a fork event, but did not know how to follow it. */
2455 internal_error (__FILE__, __LINE__,
2456 "could not find a target to follow fork");
2457 }
2458
2459 void
2460 target_mourn_inferior (void)
2461 {
2462 struct target_ops *t;
2463
2464 for (t = current_target.beneath; t != NULL; t = t->beneath)
2465 {
2466 if (t->to_mourn_inferior != NULL)
2467 {
2468 t->to_mourn_inferior (t);
2469 if (targetdebug)
2470 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2471
2472 /* We no longer need to keep handles on any of the object files.
2473 Make sure to release them to avoid unnecessarily locking any
2474 of them while we're not actually debugging. */
2475 bfd_cache_close_all ();
2476
2477 return;
2478 }
2479 }
2480
2481 internal_error (__FILE__, __LINE__,
2482 "could not find a target to follow mourn inferior");
2483 }
2484
2485 /* Look for a target which can describe architectural features, starting
2486 from TARGET. If we find one, return its description. */
2487
2488 const struct target_desc *
2489 target_read_description (struct target_ops *target)
2490 {
2491 struct target_ops *t;
2492
2493 for (t = target; t != NULL; t = t->beneath)
2494 if (t->to_read_description != NULL)
2495 {
2496 const struct target_desc *tdesc;
2497
2498 tdesc = t->to_read_description (t);
2499 if (tdesc)
2500 return tdesc;
2501 }
2502
2503 return NULL;
2504 }
2505
2506 /* The default implementation of to_search_memory.
2507 This implements a basic search of memory, reading target memory and
2508 performing the search here (as opposed to performing the search in on the
2509 target side with, for example, gdbserver). */
2510
2511 int
2512 simple_search_memory (struct target_ops *ops,
2513 CORE_ADDR start_addr, ULONGEST search_space_len,
2514 const gdb_byte *pattern, ULONGEST pattern_len,
2515 CORE_ADDR *found_addrp)
2516 {
2517 /* NOTE: also defined in find.c testcase. */
2518 #define SEARCH_CHUNK_SIZE 16000
2519 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2520 /* Buffer to hold memory contents for searching. */
2521 gdb_byte *search_buf;
2522 unsigned search_buf_size;
2523 struct cleanup *old_cleanups;
2524
2525 search_buf_size = chunk_size + pattern_len - 1;
2526
2527 /* No point in trying to allocate a buffer larger than the search space. */
2528 if (search_space_len < search_buf_size)
2529 search_buf_size = search_space_len;
2530
2531 search_buf = malloc (search_buf_size);
2532 if (search_buf == NULL)
2533 error (_("Unable to allocate memory to perform the search."));
2534 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2535
2536 /* Prime the search buffer. */
2537
2538 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2539 search_buf, start_addr, search_buf_size) != search_buf_size)
2540 {
2541 warning (_("Unable to access target memory at %s, halting search."),
2542 hex_string (start_addr));
2543 do_cleanups (old_cleanups);
2544 return -1;
2545 }
2546
2547 /* Perform the search.
2548
2549 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2550 When we've scanned N bytes we copy the trailing bytes to the start and
2551 read in another N bytes. */
2552
2553 while (search_space_len >= pattern_len)
2554 {
2555 gdb_byte *found_ptr;
2556 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2557
2558 found_ptr = memmem (search_buf, nr_search_bytes,
2559 pattern, pattern_len);
2560
2561 if (found_ptr != NULL)
2562 {
2563 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2564
2565 *found_addrp = found_addr;
2566 do_cleanups (old_cleanups);
2567 return 1;
2568 }
2569
2570 /* Not found in this chunk, skip to next chunk. */
2571
2572 /* Don't let search_space_len wrap here, it's unsigned. */
2573 if (search_space_len >= chunk_size)
2574 search_space_len -= chunk_size;
2575 else
2576 search_space_len = 0;
2577
2578 if (search_space_len >= pattern_len)
2579 {
2580 unsigned keep_len = search_buf_size - chunk_size;
2581 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2582 int nr_to_read;
2583
2584 /* Copy the trailing part of the previous iteration to the front
2585 of the buffer for the next iteration. */
2586 gdb_assert (keep_len == pattern_len - 1);
2587 memcpy (search_buf, search_buf + chunk_size, keep_len);
2588
2589 nr_to_read = min (search_space_len - keep_len, chunk_size);
2590
2591 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2592 search_buf + keep_len, read_addr,
2593 nr_to_read) != nr_to_read)
2594 {
2595 warning (_("Unable to access target memory at %s, halting search."),
2596 hex_string (read_addr));
2597 do_cleanups (old_cleanups);
2598 return -1;
2599 }
2600
2601 start_addr += chunk_size;
2602 }
2603 }
2604
2605 /* Not found. */
2606
2607 do_cleanups (old_cleanups);
2608 return 0;
2609 }
2610
2611 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2612 sequence of bytes in PATTERN with length PATTERN_LEN.
2613
2614 The result is 1 if found, 0 if not found, and -1 if there was an error
2615 requiring halting of the search (e.g. memory read error).
2616 If the pattern is found the address is recorded in FOUND_ADDRP. */
2617
2618 int
2619 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2620 const gdb_byte *pattern, ULONGEST pattern_len,
2621 CORE_ADDR *found_addrp)
2622 {
2623 struct target_ops *t;
2624 int found;
2625
2626 /* We don't use INHERIT to set current_target.to_search_memory,
2627 so we have to scan the target stack and handle targetdebug
2628 ourselves. */
2629
2630 if (targetdebug)
2631 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2632 hex_string (start_addr));
2633
2634 for (t = current_target.beneath; t != NULL; t = t->beneath)
2635 if (t->to_search_memory != NULL)
2636 break;
2637
2638 if (t != NULL)
2639 {
2640 found = t->to_search_memory (t, start_addr, search_space_len,
2641 pattern, pattern_len, found_addrp);
2642 }
2643 else
2644 {
2645 /* If a special version of to_search_memory isn't available, use the
2646 simple version. */
2647 found = simple_search_memory (current_target.beneath,
2648 start_addr, search_space_len,
2649 pattern, pattern_len, found_addrp);
2650 }
2651
2652 if (targetdebug)
2653 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2654
2655 return found;
2656 }
2657
2658 /* Look through the currently pushed targets. If none of them will
2659 be able to restart the currently running process, issue an error
2660 message. */
2661
2662 void
2663 target_require_runnable (void)
2664 {
2665 struct target_ops *t;
2666
2667 for (t = target_stack; t != NULL; t = t->beneath)
2668 {
2669 /* If this target knows how to create a new program, then
2670 assume we will still be able to after killing the current
2671 one. Either killing and mourning will not pop T, or else
2672 find_default_run_target will find it again. */
2673 if (t->to_create_inferior != NULL)
2674 return;
2675
2676 /* Do not worry about thread_stratum targets that can not
2677 create inferiors. Assume they will be pushed again if
2678 necessary, and continue to the process_stratum. */
2679 if (t->to_stratum == thread_stratum
2680 || t->to_stratum == arch_stratum)
2681 continue;
2682
2683 error (_("\
2684 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2685 t->to_shortname);
2686 }
2687
2688 /* This function is only called if the target is running. In that
2689 case there should have been a process_stratum target and it
2690 should either know how to create inferiors, or not... */
2691 internal_error (__FILE__, __LINE__, "No targets found");
2692 }
2693
2694 /* Look through the list of possible targets for a target that can
2695 execute a run or attach command without any other data. This is
2696 used to locate the default process stratum.
2697
2698 If DO_MESG is not NULL, the result is always valid (error() is
2699 called for errors); else, return NULL on error. */
2700
2701 static struct target_ops *
2702 find_default_run_target (char *do_mesg)
2703 {
2704 struct target_ops **t;
2705 struct target_ops *runable = NULL;
2706 int count;
2707
2708 count = 0;
2709
2710 for (t = target_structs; t < target_structs + target_struct_size;
2711 ++t)
2712 {
2713 if ((*t)->to_can_run && target_can_run (*t))
2714 {
2715 runable = *t;
2716 ++count;
2717 }
2718 }
2719
2720 if (count != 1)
2721 {
2722 if (do_mesg)
2723 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2724 else
2725 return NULL;
2726 }
2727
2728 return runable;
2729 }
2730
2731 void
2732 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2733 {
2734 struct target_ops *t;
2735
2736 t = find_default_run_target ("attach");
2737 (t->to_attach) (t, args, from_tty);
2738 return;
2739 }
2740
2741 void
2742 find_default_create_inferior (struct target_ops *ops,
2743 char *exec_file, char *allargs, char **env,
2744 int from_tty)
2745 {
2746 struct target_ops *t;
2747
2748 t = find_default_run_target ("run");
2749 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2750 return;
2751 }
2752
2753 static int
2754 find_default_can_async_p (void)
2755 {
2756 struct target_ops *t;
2757
2758 /* This may be called before the target is pushed on the stack;
2759 look for the default process stratum. If there's none, gdb isn't
2760 configured with a native debugger, and target remote isn't
2761 connected yet. */
2762 t = find_default_run_target (NULL);
2763 if (t && t->to_can_async_p)
2764 return (t->to_can_async_p) ();
2765 return 0;
2766 }
2767
2768 static int
2769 find_default_is_async_p (void)
2770 {
2771 struct target_ops *t;
2772
2773 /* This may be called before the target is pushed on the stack;
2774 look for the default process stratum. If there's none, gdb isn't
2775 configured with a native debugger, and target remote isn't
2776 connected yet. */
2777 t = find_default_run_target (NULL);
2778 if (t && t->to_is_async_p)
2779 return (t->to_is_async_p) ();
2780 return 0;
2781 }
2782
2783 static int
2784 find_default_supports_non_stop (void)
2785 {
2786 struct target_ops *t;
2787
2788 t = find_default_run_target (NULL);
2789 if (t && t->to_supports_non_stop)
2790 return (t->to_supports_non_stop) ();
2791 return 0;
2792 }
2793
2794 int
2795 target_supports_non_stop (void)
2796 {
2797 struct target_ops *t;
2798
2799 for (t = &current_target; t != NULL; t = t->beneath)
2800 if (t->to_supports_non_stop)
2801 return t->to_supports_non_stop ();
2802
2803 return 0;
2804 }
2805
2806
2807 char *
2808 target_get_osdata (const char *type)
2809 {
2810 struct target_ops *t;
2811
2812 /* If we're already connected to something that can get us OS
2813 related data, use it. Otherwise, try using the native
2814 target. */
2815 if (current_target.to_stratum >= process_stratum)
2816 t = current_target.beneath;
2817 else
2818 t = find_default_run_target ("get OS data");
2819
2820 if (!t)
2821 return NULL;
2822
2823 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2824 }
2825
2826 /* Determine the current address space of thread PTID. */
2827
2828 struct address_space *
2829 target_thread_address_space (ptid_t ptid)
2830 {
2831 struct address_space *aspace;
2832 struct inferior *inf;
2833 struct target_ops *t;
2834
2835 for (t = current_target.beneath; t != NULL; t = t->beneath)
2836 {
2837 if (t->to_thread_address_space != NULL)
2838 {
2839 aspace = t->to_thread_address_space (t, ptid);
2840 gdb_assert (aspace);
2841
2842 if (targetdebug)
2843 fprintf_unfiltered (gdb_stdlog,
2844 "target_thread_address_space (%s) = %d\n",
2845 target_pid_to_str (ptid),
2846 address_space_num (aspace));
2847 return aspace;
2848 }
2849 }
2850
2851 /* Fall-back to the "main" address space of the inferior. */
2852 inf = find_inferior_pid (ptid_get_pid (ptid));
2853
2854 if (inf == NULL || inf->aspace == NULL)
2855 internal_error (__FILE__, __LINE__, "\
2856 Can't determine the current address space of thread %s\n",
2857 target_pid_to_str (ptid));
2858
2859 return inf->aspace;
2860 }
2861
2862 static int
2863 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2864 {
2865 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2866 }
2867
2868 static int
2869 default_watchpoint_addr_within_range (struct target_ops *target,
2870 CORE_ADDR addr,
2871 CORE_ADDR start, int length)
2872 {
2873 return addr >= start && addr < start + length;
2874 }
2875
2876 static struct gdbarch *
2877 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2878 {
2879 return target_gdbarch;
2880 }
2881
2882 static int
2883 return_zero (void)
2884 {
2885 return 0;
2886 }
2887
2888 static int
2889 return_one (void)
2890 {
2891 return 1;
2892 }
2893
2894 static int
2895 return_minus_one (void)
2896 {
2897 return -1;
2898 }
2899
2900 /* Find a single runnable target in the stack and return it. If for
2901 some reason there is more than one, return NULL. */
2902
2903 struct target_ops *
2904 find_run_target (void)
2905 {
2906 struct target_ops **t;
2907 struct target_ops *runable = NULL;
2908 int count;
2909
2910 count = 0;
2911
2912 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2913 {
2914 if ((*t)->to_can_run && target_can_run (*t))
2915 {
2916 runable = *t;
2917 ++count;
2918 }
2919 }
2920
2921 return (count == 1 ? runable : NULL);
2922 }
2923
2924 /*
2925 * Find the next target down the stack from the specified target.
2926 */
2927
2928 struct target_ops *
2929 find_target_beneath (struct target_ops *t)
2930 {
2931 return t->beneath;
2932 }
2933
2934 \f
2935 /* The inferior process has died. Long live the inferior! */
2936
2937 void
2938 generic_mourn_inferior (void)
2939 {
2940 ptid_t ptid;
2941
2942 ptid = inferior_ptid;
2943 inferior_ptid = null_ptid;
2944
2945 if (!ptid_equal (ptid, null_ptid))
2946 {
2947 int pid = ptid_get_pid (ptid);
2948 exit_inferior (pid);
2949 }
2950
2951 breakpoint_init_inferior (inf_exited);
2952 registers_changed ();
2953
2954 reopen_exec_file ();
2955 reinit_frame_cache ();
2956
2957 if (deprecated_detach_hook)
2958 deprecated_detach_hook ();
2959 }
2960 \f
2961 /* Helper function for child_wait and the derivatives of child_wait.
2962 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2963 translation of that in OURSTATUS. */
2964 void
2965 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2966 {
2967 if (WIFEXITED (hoststatus))
2968 {
2969 ourstatus->kind = TARGET_WAITKIND_EXITED;
2970 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2971 }
2972 else if (!WIFSTOPPED (hoststatus))
2973 {
2974 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2975 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2976 }
2977 else
2978 {
2979 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2980 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2981 }
2982 }
2983 \f
2984 /* Convert a normal process ID to a string. Returns the string in a
2985 static buffer. */
2986
2987 char *
2988 normal_pid_to_str (ptid_t ptid)
2989 {
2990 static char buf[32];
2991
2992 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2993 return buf;
2994 }
2995
2996 static char *
2997 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
2998 {
2999 return normal_pid_to_str (ptid);
3000 }
3001
3002 /* Error-catcher for target_find_memory_regions. */
3003 static int
3004 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3005 {
3006 error (_("Command not implemented for this target."));
3007 return 0;
3008 }
3009
3010 /* Error-catcher for target_make_corefile_notes. */
3011 static char *
3012 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3013 {
3014 error (_("Command not implemented for this target."));
3015 return NULL;
3016 }
3017
3018 /* Error-catcher for target_get_bookmark. */
3019 static gdb_byte *
3020 dummy_get_bookmark (char *ignore1, int ignore2)
3021 {
3022 tcomplain ();
3023 return NULL;
3024 }
3025
3026 /* Error-catcher for target_goto_bookmark. */
3027 static void
3028 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3029 {
3030 tcomplain ();
3031 }
3032
3033 /* Set up the handful of non-empty slots needed by the dummy target
3034 vector. */
3035
3036 static void
3037 init_dummy_target (void)
3038 {
3039 dummy_target.to_shortname = "None";
3040 dummy_target.to_longname = "None";
3041 dummy_target.to_doc = "";
3042 dummy_target.to_attach = find_default_attach;
3043 dummy_target.to_detach =
3044 (void (*)(struct target_ops *, char *, int))target_ignore;
3045 dummy_target.to_create_inferior = find_default_create_inferior;
3046 dummy_target.to_can_async_p = find_default_can_async_p;
3047 dummy_target.to_is_async_p = find_default_is_async_p;
3048 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3049 dummy_target.to_pid_to_str = dummy_pid_to_str;
3050 dummy_target.to_stratum = dummy_stratum;
3051 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3052 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3053 dummy_target.to_get_bookmark = dummy_get_bookmark;
3054 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3055 dummy_target.to_xfer_partial = default_xfer_partial;
3056 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3057 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3058 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3059 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3060 dummy_target.to_has_execution = (int (*) (struct target_ops *)) return_zero;
3061 dummy_target.to_stopped_by_watchpoint = return_zero;
3062 dummy_target.to_stopped_data_address =
3063 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3064 dummy_target.to_magic = OPS_MAGIC;
3065 }
3066 \f
3067 static void
3068 debug_to_open (char *args, int from_tty)
3069 {
3070 debug_target.to_open (args, from_tty);
3071
3072 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3073 }
3074
3075 void
3076 target_close (struct target_ops *targ, int quitting)
3077 {
3078 if (targ->to_xclose != NULL)
3079 targ->to_xclose (targ, quitting);
3080 else if (targ->to_close != NULL)
3081 targ->to_close (quitting);
3082
3083 if (targetdebug)
3084 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
3085 }
3086
3087 void
3088 target_attach (char *args, int from_tty)
3089 {
3090 struct target_ops *t;
3091
3092 for (t = current_target.beneath; t != NULL; t = t->beneath)
3093 {
3094 if (t->to_attach != NULL)
3095 {
3096 t->to_attach (t, args, from_tty);
3097 if (targetdebug)
3098 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3099 args, from_tty);
3100 return;
3101 }
3102 }
3103
3104 internal_error (__FILE__, __LINE__,
3105 "could not find a target to attach");
3106 }
3107
3108 int
3109 target_thread_alive (ptid_t ptid)
3110 {
3111 struct target_ops *t;
3112
3113 for (t = current_target.beneath; t != NULL; t = t->beneath)
3114 {
3115 if (t->to_thread_alive != NULL)
3116 {
3117 int retval;
3118
3119 retval = t->to_thread_alive (t, ptid);
3120 if (targetdebug)
3121 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3122 PIDGET (ptid), retval);
3123
3124 return retval;
3125 }
3126 }
3127
3128 return 0;
3129 }
3130
3131 void
3132 target_find_new_threads (void)
3133 {
3134 struct target_ops *t;
3135
3136 for (t = current_target.beneath; t != NULL; t = t->beneath)
3137 {
3138 if (t->to_find_new_threads != NULL)
3139 {
3140 t->to_find_new_threads (t);
3141 if (targetdebug)
3142 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3143
3144 return;
3145 }
3146 }
3147 }
3148
3149 void
3150 target_stop (ptid_t ptid)
3151 {
3152 if (!may_stop)
3153 {
3154 warning (_("May not interrupt or stop the target, ignoring attempt"));
3155 return;
3156 }
3157
3158 (*current_target.to_stop) (ptid);
3159 }
3160
3161 static void
3162 debug_to_post_attach (int pid)
3163 {
3164 debug_target.to_post_attach (pid);
3165
3166 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3167 }
3168
3169 /* Return a pretty printed form of target_waitstatus.
3170 Space for the result is malloc'd, caller must free. */
3171
3172 char *
3173 target_waitstatus_to_string (const struct target_waitstatus *ws)
3174 {
3175 const char *kind_str = "status->kind = ";
3176
3177 switch (ws->kind)
3178 {
3179 case TARGET_WAITKIND_EXITED:
3180 return xstrprintf ("%sexited, status = %d",
3181 kind_str, ws->value.integer);
3182 case TARGET_WAITKIND_STOPPED:
3183 return xstrprintf ("%sstopped, signal = %s",
3184 kind_str, target_signal_to_name (ws->value.sig));
3185 case TARGET_WAITKIND_SIGNALLED:
3186 return xstrprintf ("%ssignalled, signal = %s",
3187 kind_str, target_signal_to_name (ws->value.sig));
3188 case TARGET_WAITKIND_LOADED:
3189 return xstrprintf ("%sloaded", kind_str);
3190 case TARGET_WAITKIND_FORKED:
3191 return xstrprintf ("%sforked", kind_str);
3192 case TARGET_WAITKIND_VFORKED:
3193 return xstrprintf ("%svforked", kind_str);
3194 case TARGET_WAITKIND_EXECD:
3195 return xstrprintf ("%sexecd", kind_str);
3196 case TARGET_WAITKIND_SYSCALL_ENTRY:
3197 return xstrprintf ("%sentered syscall", kind_str);
3198 case TARGET_WAITKIND_SYSCALL_RETURN:
3199 return xstrprintf ("%sexited syscall", kind_str);
3200 case TARGET_WAITKIND_SPURIOUS:
3201 return xstrprintf ("%sspurious", kind_str);
3202 case TARGET_WAITKIND_IGNORE:
3203 return xstrprintf ("%signore", kind_str);
3204 case TARGET_WAITKIND_NO_HISTORY:
3205 return xstrprintf ("%sno-history", kind_str);
3206 default:
3207 return xstrprintf ("%sunknown???", kind_str);
3208 }
3209 }
3210
3211 static void
3212 debug_print_register (const char * func,
3213 struct regcache *regcache, int regno)
3214 {
3215 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3216
3217 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3218 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3219 && gdbarch_register_name (gdbarch, regno) != NULL
3220 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3221 fprintf_unfiltered (gdb_stdlog, "(%s)",
3222 gdbarch_register_name (gdbarch, regno));
3223 else
3224 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3225 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3226 {
3227 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3228 int i, size = register_size (gdbarch, regno);
3229 unsigned char buf[MAX_REGISTER_SIZE];
3230
3231 regcache_raw_collect (regcache, regno, buf);
3232 fprintf_unfiltered (gdb_stdlog, " = ");
3233 for (i = 0; i < size; i++)
3234 {
3235 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3236 }
3237 if (size <= sizeof (LONGEST))
3238 {
3239 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3240
3241 fprintf_unfiltered (gdb_stdlog, " %s %s",
3242 core_addr_to_string_nz (val), plongest (val));
3243 }
3244 }
3245 fprintf_unfiltered (gdb_stdlog, "\n");
3246 }
3247
3248 void
3249 target_fetch_registers (struct regcache *regcache, int regno)
3250 {
3251 struct target_ops *t;
3252
3253 for (t = current_target.beneath; t != NULL; t = t->beneath)
3254 {
3255 if (t->to_fetch_registers != NULL)
3256 {
3257 t->to_fetch_registers (t, regcache, regno);
3258 if (targetdebug)
3259 debug_print_register ("target_fetch_registers", regcache, regno);
3260 return;
3261 }
3262 }
3263 }
3264
3265 void
3266 target_store_registers (struct regcache *regcache, int regno)
3267 {
3268 struct target_ops *t;
3269
3270 if (!may_write_registers)
3271 error (_("Writing to registers is not allowed (regno %d)"), regno);
3272
3273 for (t = current_target.beneath; t != NULL; t = t->beneath)
3274 {
3275 if (t->to_store_registers != NULL)
3276 {
3277 t->to_store_registers (t, regcache, regno);
3278 if (targetdebug)
3279 {
3280 debug_print_register ("target_store_registers", regcache, regno);
3281 }
3282 return;
3283 }
3284 }
3285
3286 noprocess ();
3287 }
3288
3289 int
3290 target_core_of_thread (ptid_t ptid)
3291 {
3292 struct target_ops *t;
3293
3294 for (t = current_target.beneath; t != NULL; t = t->beneath)
3295 {
3296 if (t->to_core_of_thread != NULL)
3297 {
3298 int retval = t->to_core_of_thread (t, ptid);
3299
3300 if (targetdebug)
3301 fprintf_unfiltered (gdb_stdlog, "target_core_of_thread (%d) = %d\n",
3302 PIDGET (ptid), retval);
3303 return retval;
3304 }
3305 }
3306
3307 return -1;
3308 }
3309
3310 int
3311 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3312 {
3313 struct target_ops *t;
3314
3315 for (t = current_target.beneath; t != NULL; t = t->beneath)
3316 {
3317 if (t->to_verify_memory != NULL)
3318 {
3319 int retval = t->to_verify_memory (t, data, memaddr, size);
3320
3321 if (targetdebug)
3322 fprintf_unfiltered (gdb_stdlog, "target_verify_memory (%s, %s) = %d\n",
3323 paddress (target_gdbarch, memaddr),
3324 pulongest (size),
3325 retval);
3326 return retval;
3327 }
3328 }
3329
3330 tcomplain ();
3331 }
3332
3333 static void
3334 debug_to_prepare_to_store (struct regcache *regcache)
3335 {
3336 debug_target.to_prepare_to_store (regcache);
3337
3338 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3339 }
3340
3341 static int
3342 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
3343 int write, struct mem_attrib *attrib,
3344 struct target_ops *target)
3345 {
3346 int retval;
3347
3348 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
3349 attrib, target);
3350
3351 fprintf_unfiltered (gdb_stdlog,
3352 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
3353 paddress (target_gdbarch, memaddr), len,
3354 write ? "write" : "read", retval);
3355
3356 if (retval > 0)
3357 {
3358 int i;
3359
3360 fputs_unfiltered (", bytes =", gdb_stdlog);
3361 for (i = 0; i < retval; i++)
3362 {
3363 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
3364 {
3365 if (targetdebug < 2 && i > 0)
3366 {
3367 fprintf_unfiltered (gdb_stdlog, " ...");
3368 break;
3369 }
3370 fprintf_unfiltered (gdb_stdlog, "\n");
3371 }
3372
3373 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
3374 }
3375 }
3376
3377 fputc_unfiltered ('\n', gdb_stdlog);
3378
3379 return retval;
3380 }
3381
3382 static void
3383 debug_to_files_info (struct target_ops *target)
3384 {
3385 debug_target.to_files_info (target);
3386
3387 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3388 }
3389
3390 static int
3391 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
3392 struct bp_target_info *bp_tgt)
3393 {
3394 int retval;
3395
3396 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
3397
3398 fprintf_unfiltered (gdb_stdlog,
3399 "target_insert_breakpoint (%s, xxx) = %ld\n",
3400 core_addr_to_string (bp_tgt->placed_address),
3401 (unsigned long) retval);
3402 return retval;
3403 }
3404
3405 static int
3406 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
3407 struct bp_target_info *bp_tgt)
3408 {
3409 int retval;
3410
3411 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
3412
3413 fprintf_unfiltered (gdb_stdlog,
3414 "target_remove_breakpoint (%s, xxx) = %ld\n",
3415 core_addr_to_string (bp_tgt->placed_address),
3416 (unsigned long) retval);
3417 return retval;
3418 }
3419
3420 static int
3421 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
3422 {
3423 int retval;
3424
3425 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
3426
3427 fprintf_unfiltered (gdb_stdlog,
3428 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3429 (unsigned long) type,
3430 (unsigned long) cnt,
3431 (unsigned long) from_tty,
3432 (unsigned long) retval);
3433 return retval;
3434 }
3435
3436 static int
3437 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3438 {
3439 CORE_ADDR retval;
3440
3441 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
3442
3443 fprintf_unfiltered (gdb_stdlog,
3444 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
3445 core_addr_to_string (addr), (unsigned long) len,
3446 core_addr_to_string (retval));
3447 return retval;
3448 }
3449
3450 static int
3451 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
3452 struct expression *cond)
3453 {
3454 int retval;
3455
3456 retval = debug_target.to_can_accel_watchpoint_condition (addr, len, rw, cond);
3457
3458 fprintf_unfiltered (gdb_stdlog,
3459 "target_can_accel_watchpoint_condition (%s, %d, %d, %s) = %ld\n",
3460 core_addr_to_string (addr), len, rw,
3461 host_address_to_string (cond), (unsigned long) retval);
3462 return retval;
3463 }
3464
3465 static int
3466 debug_to_stopped_by_watchpoint (void)
3467 {
3468 int retval;
3469
3470 retval = debug_target.to_stopped_by_watchpoint ();
3471
3472 fprintf_unfiltered (gdb_stdlog,
3473 "target_stopped_by_watchpoint () = %ld\n",
3474 (unsigned long) retval);
3475 return retval;
3476 }
3477
3478 static int
3479 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3480 {
3481 int retval;
3482
3483 retval = debug_target.to_stopped_data_address (target, addr);
3484
3485 fprintf_unfiltered (gdb_stdlog,
3486 "target_stopped_data_address ([%s]) = %ld\n",
3487 core_addr_to_string (*addr),
3488 (unsigned long)retval);
3489 return retval;
3490 }
3491
3492 static int
3493 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3494 CORE_ADDR addr,
3495 CORE_ADDR start, int length)
3496 {
3497 int retval;
3498
3499 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3500 start, length);
3501
3502 fprintf_filtered (gdb_stdlog,
3503 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
3504 core_addr_to_string (addr), core_addr_to_string (start),
3505 length, retval);
3506 return retval;
3507 }
3508
3509 static int
3510 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
3511 struct bp_target_info *bp_tgt)
3512 {
3513 int retval;
3514
3515 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
3516
3517 fprintf_unfiltered (gdb_stdlog,
3518 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
3519 core_addr_to_string (bp_tgt->placed_address),
3520 (unsigned long) retval);
3521 return retval;
3522 }
3523
3524 static int
3525 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
3526 struct bp_target_info *bp_tgt)
3527 {
3528 int retval;
3529
3530 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
3531
3532 fprintf_unfiltered (gdb_stdlog,
3533 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
3534 core_addr_to_string (bp_tgt->placed_address),
3535 (unsigned long) retval);
3536 return retval;
3537 }
3538
3539 static int
3540 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
3541 struct expression *cond)
3542 {
3543 int retval;
3544
3545 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
3546
3547 fprintf_unfiltered (gdb_stdlog,
3548 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
3549 core_addr_to_string (addr), len, type,
3550 host_address_to_string (cond), (unsigned long) retval);
3551 return retval;
3552 }
3553
3554 static int
3555 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
3556 struct expression *cond)
3557 {
3558 int retval;
3559
3560 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
3561
3562 fprintf_unfiltered (gdb_stdlog,
3563 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
3564 core_addr_to_string (addr), len, type,
3565 host_address_to_string (cond), (unsigned long) retval);
3566 return retval;
3567 }
3568
3569 static void
3570 debug_to_terminal_init (void)
3571 {
3572 debug_target.to_terminal_init ();
3573
3574 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3575 }
3576
3577 static void
3578 debug_to_terminal_inferior (void)
3579 {
3580 debug_target.to_terminal_inferior ();
3581
3582 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3583 }
3584
3585 static void
3586 debug_to_terminal_ours_for_output (void)
3587 {
3588 debug_target.to_terminal_ours_for_output ();
3589
3590 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3591 }
3592
3593 static void
3594 debug_to_terminal_ours (void)
3595 {
3596 debug_target.to_terminal_ours ();
3597
3598 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3599 }
3600
3601 static void
3602 debug_to_terminal_save_ours (void)
3603 {
3604 debug_target.to_terminal_save_ours ();
3605
3606 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3607 }
3608
3609 static void
3610 debug_to_terminal_info (char *arg, int from_tty)
3611 {
3612 debug_target.to_terminal_info (arg, from_tty);
3613
3614 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3615 from_tty);
3616 }
3617
3618 static void
3619 debug_to_load (char *args, int from_tty)
3620 {
3621 debug_target.to_load (args, from_tty);
3622
3623 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3624 }
3625
3626 static int
3627 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
3628 {
3629 int retval;
3630
3631 retval = debug_target.to_lookup_symbol (name, addrp);
3632
3633 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
3634
3635 return retval;
3636 }
3637
3638 static void
3639 debug_to_post_startup_inferior (ptid_t ptid)
3640 {
3641 debug_target.to_post_startup_inferior (ptid);
3642
3643 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3644 PIDGET (ptid));
3645 }
3646
3647 static void
3648 debug_to_insert_fork_catchpoint (int pid)
3649 {
3650 debug_target.to_insert_fork_catchpoint (pid);
3651
3652 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
3653 pid);
3654 }
3655
3656 static int
3657 debug_to_remove_fork_catchpoint (int pid)
3658 {
3659 int retval;
3660
3661 retval = debug_target.to_remove_fork_catchpoint (pid);
3662
3663 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3664 pid, retval);
3665
3666 return retval;
3667 }
3668
3669 static void
3670 debug_to_insert_vfork_catchpoint (int pid)
3671 {
3672 debug_target.to_insert_vfork_catchpoint (pid);
3673
3674 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
3675 pid);
3676 }
3677
3678 static int
3679 debug_to_remove_vfork_catchpoint (int pid)
3680 {
3681 int retval;
3682
3683 retval = debug_target.to_remove_vfork_catchpoint (pid);
3684
3685 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3686 pid, retval);
3687
3688 return retval;
3689 }
3690
3691 static void
3692 debug_to_insert_exec_catchpoint (int pid)
3693 {
3694 debug_target.to_insert_exec_catchpoint (pid);
3695
3696 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
3697 pid);
3698 }
3699
3700 static int
3701 debug_to_remove_exec_catchpoint (int pid)
3702 {
3703 int retval;
3704
3705 retval = debug_target.to_remove_exec_catchpoint (pid);
3706
3707 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3708 pid, retval);
3709
3710 return retval;
3711 }
3712
3713 static int
3714 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3715 {
3716 int has_exited;
3717
3718 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3719
3720 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3721 pid, wait_status, *exit_status, has_exited);
3722
3723 return has_exited;
3724 }
3725
3726 static int
3727 debug_to_can_run (void)
3728 {
3729 int retval;
3730
3731 retval = debug_target.to_can_run ();
3732
3733 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3734
3735 return retval;
3736 }
3737
3738 static void
3739 debug_to_notice_signals (ptid_t ptid)
3740 {
3741 debug_target.to_notice_signals (ptid);
3742
3743 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3744 PIDGET (ptid));
3745 }
3746
3747 static struct gdbarch *
3748 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
3749 {
3750 struct gdbarch *retval;
3751
3752 retval = debug_target.to_thread_architecture (ops, ptid);
3753
3754 fprintf_unfiltered (gdb_stdlog, "target_thread_architecture (%s) = %s [%s]\n",
3755 target_pid_to_str (ptid), host_address_to_string (retval),
3756 gdbarch_bfd_arch_info (retval)->printable_name);
3757 return retval;
3758 }
3759
3760 static void
3761 debug_to_stop (ptid_t ptid)
3762 {
3763 debug_target.to_stop (ptid);
3764
3765 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3766 target_pid_to_str (ptid));
3767 }
3768
3769 static void
3770 debug_to_rcmd (char *command,
3771 struct ui_file *outbuf)
3772 {
3773 debug_target.to_rcmd (command, outbuf);
3774 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3775 }
3776
3777 static char *
3778 debug_to_pid_to_exec_file (int pid)
3779 {
3780 char *exec_file;
3781
3782 exec_file = debug_target.to_pid_to_exec_file (pid);
3783
3784 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3785 pid, exec_file);
3786
3787 return exec_file;
3788 }
3789
3790 static void
3791 setup_target_debug (void)
3792 {
3793 memcpy (&debug_target, &current_target, sizeof debug_target);
3794
3795 current_target.to_open = debug_to_open;
3796 current_target.to_post_attach = debug_to_post_attach;
3797 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3798 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3799 current_target.to_files_info = debug_to_files_info;
3800 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3801 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3802 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3803 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3804 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3805 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3806 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3807 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3808 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3809 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3810 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3811 current_target.to_can_accel_watchpoint_condition = debug_to_can_accel_watchpoint_condition;
3812 current_target.to_terminal_init = debug_to_terminal_init;
3813 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3814 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3815 current_target.to_terminal_ours = debug_to_terminal_ours;
3816 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3817 current_target.to_terminal_info = debug_to_terminal_info;
3818 current_target.to_load = debug_to_load;
3819 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3820 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3821 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3822 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3823 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3824 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3825 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3826 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3827 current_target.to_has_exited = debug_to_has_exited;
3828 current_target.to_can_run = debug_to_can_run;
3829 current_target.to_notice_signals = debug_to_notice_signals;
3830 current_target.to_stop = debug_to_stop;
3831 current_target.to_rcmd = debug_to_rcmd;
3832 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3833 current_target.to_thread_architecture = debug_to_thread_architecture;
3834 }
3835 \f
3836
3837 static char targ_desc[] =
3838 "Names of targets and files being debugged.\n\
3839 Shows the entire stack of targets currently in use (including the exec-file,\n\
3840 core-file, and process, if any), as well as the symbol file name.";
3841
3842 static void
3843 do_monitor_command (char *cmd,
3844 int from_tty)
3845 {
3846 if ((current_target.to_rcmd
3847 == (void (*) (char *, struct ui_file *)) tcomplain)
3848 || (current_target.to_rcmd == debug_to_rcmd
3849 && (debug_target.to_rcmd
3850 == (void (*) (char *, struct ui_file *)) tcomplain)))
3851 error (_("\"monitor\" command not supported by this target."));
3852 target_rcmd (cmd, gdb_stdtarg);
3853 }
3854
3855 /* Print the name of each layers of our target stack. */
3856
3857 static void
3858 maintenance_print_target_stack (char *cmd, int from_tty)
3859 {
3860 struct target_ops *t;
3861
3862 printf_filtered (_("The current target stack is:\n"));
3863
3864 for (t = target_stack; t != NULL; t = t->beneath)
3865 {
3866 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3867 }
3868 }
3869
3870 /* Controls if async mode is permitted. */
3871 int target_async_permitted = 0;
3872
3873 /* The set command writes to this variable. If the inferior is
3874 executing, linux_nat_async_permitted is *not* updated. */
3875 static int target_async_permitted_1 = 0;
3876
3877 static void
3878 set_maintenance_target_async_permitted (char *args, int from_tty,
3879 struct cmd_list_element *c)
3880 {
3881 if (have_live_inferiors ())
3882 {
3883 target_async_permitted_1 = target_async_permitted;
3884 error (_("Cannot change this setting while the inferior is running."));
3885 }
3886
3887 target_async_permitted = target_async_permitted_1;
3888 }
3889
3890 static void
3891 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3892 struct cmd_list_element *c,
3893 const char *value)
3894 {
3895 fprintf_filtered (file, _("\
3896 Controlling the inferior in asynchronous mode is %s.\n"), value);
3897 }
3898
3899 /* Temporary copies of permission settings. */
3900
3901 static int may_write_registers_1 = 1;
3902 static int may_write_memory_1 = 1;
3903 static int may_insert_breakpoints_1 = 1;
3904 static int may_insert_tracepoints_1 = 1;
3905 static int may_insert_fast_tracepoints_1 = 1;
3906 static int may_stop_1 = 1;
3907
3908 /* Make the user-set values match the real values again. */
3909
3910 void
3911 update_target_permissions (void)
3912 {
3913 may_write_registers_1 = may_write_registers;
3914 may_write_memory_1 = may_write_memory;
3915 may_insert_breakpoints_1 = may_insert_breakpoints;
3916 may_insert_tracepoints_1 = may_insert_tracepoints;
3917 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3918 may_stop_1 = may_stop;
3919 }
3920
3921 /* The one function handles (most of) the permission flags in the same
3922 way. */
3923
3924 static void
3925 set_target_permissions (char *args, int from_tty,
3926 struct cmd_list_element *c)
3927 {
3928 if (target_has_execution)
3929 {
3930 update_target_permissions ();
3931 error (_("Cannot change this setting while the inferior is running."));
3932 }
3933
3934 /* Make the real values match the user-changed values. */
3935 may_write_registers = may_write_registers_1;
3936 may_insert_breakpoints = may_insert_breakpoints_1;
3937 may_insert_tracepoints = may_insert_tracepoints_1;
3938 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3939 may_stop = may_stop_1;
3940 update_observer_mode ();
3941 }
3942
3943 /* Set memory write permission independently of observer mode. */
3944
3945 static void
3946 set_write_memory_permission (char *args, int from_tty,
3947 struct cmd_list_element *c)
3948 {
3949 /* Make the real values match the user-changed values. */
3950 may_write_memory = may_write_memory_1;
3951 update_observer_mode ();
3952 }
3953
3954
3955 void
3956 initialize_targets (void)
3957 {
3958 init_dummy_target ();
3959 push_target (&dummy_target);
3960
3961 add_info ("target", target_info, targ_desc);
3962 add_info ("files", target_info, targ_desc);
3963
3964 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3965 Set target debugging."), _("\
3966 Show target debugging."), _("\
3967 When non-zero, target debugging is enabled. Higher numbers are more\n\
3968 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3969 command."),
3970 NULL,
3971 show_targetdebug,
3972 &setdebuglist, &showdebuglist);
3973
3974 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3975 &trust_readonly, _("\
3976 Set mode for reading from readonly sections."), _("\
3977 Show mode for reading from readonly sections."), _("\
3978 When this mode is on, memory reads from readonly sections (such as .text)\n\
3979 will be read from the object file instead of from the target. This will\n\
3980 result in significant performance improvement for remote targets."),
3981 NULL,
3982 show_trust_readonly,
3983 &setlist, &showlist);
3984
3985 add_com ("monitor", class_obscure, do_monitor_command,
3986 _("Send a command to the remote monitor (remote targets only)."));
3987
3988 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3989 _("Print the name of each layer of the internal target stack."),
3990 &maintenanceprintlist);
3991
3992 add_setshow_boolean_cmd ("target-async", no_class,
3993 &target_async_permitted_1, _("\
3994 Set whether gdb controls the inferior in asynchronous mode."), _("\
3995 Show whether gdb controls the inferior in asynchronous mode."), _("\
3996 Tells gdb whether to control the inferior in asynchronous mode."),
3997 set_maintenance_target_async_permitted,
3998 show_maintenance_target_async_permitted,
3999 &setlist,
4000 &showlist);
4001
4002 add_setshow_boolean_cmd ("stack-cache", class_support,
4003 &stack_cache_enabled_p_1, _("\
4004 Set cache use for stack access."), _("\
4005 Show cache use for stack access."), _("\
4006 When on, use the data cache for all stack access, regardless of any\n\
4007 configured memory regions. This improves remote performance significantly.\n\
4008 By default, caching for stack access is on."),
4009 set_stack_cache_enabled_p,
4010 show_stack_cache_enabled_p,
4011 &setlist, &showlist);
4012
4013 add_setshow_boolean_cmd ("may-write-registers", class_support,
4014 &may_write_registers_1, _("\
4015 Set permission to write into registers."), _("\
4016 Show permission to write into registers."), _("\
4017 When this permission is on, GDB may write into the target's registers.\n\
4018 Otherwise, any sort of write attempt will result in an error."),
4019 set_target_permissions, NULL,
4020 &setlist, &showlist);
4021
4022 add_setshow_boolean_cmd ("may-write-memory", class_support,
4023 &may_write_memory_1, _("\
4024 Set permission to write into target memory."), _("\
4025 Show permission to write into target memory."), _("\
4026 When this permission is on, GDB may write into the target's memory.\n\
4027 Otherwise, any sort of write attempt will result in an error."),
4028 set_write_memory_permission, NULL,
4029 &setlist, &showlist);
4030
4031 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4032 &may_insert_breakpoints_1, _("\
4033 Set permission to insert breakpoints in the target."), _("\
4034 Show permission to insert breakpoints in the target."), _("\
4035 When this permission is on, GDB may insert breakpoints in the program.\n\
4036 Otherwise, any sort of insertion attempt will result in an error."),
4037 set_target_permissions, NULL,
4038 &setlist, &showlist);
4039
4040 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4041 &may_insert_tracepoints_1, _("\
4042 Set permission to insert tracepoints in the target."), _("\
4043 Show permission to insert tracepoints in the target."), _("\
4044 When this permission is on, GDB may insert tracepoints in the program.\n\
4045 Otherwise, any sort of insertion attempt will result in an error."),
4046 set_target_permissions, NULL,
4047 &setlist, &showlist);
4048
4049 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4050 &may_insert_fast_tracepoints_1, _("\
4051 Set permission to insert fast tracepoints in the target."), _("\
4052 Show permission to insert fast tracepoints in the target."), _("\
4053 When this permission is on, GDB may insert fast tracepoints.\n\
4054 Otherwise, any sort of insertion attempt will result in an error."),
4055 set_target_permissions, NULL,
4056 &setlist, &showlist);
4057
4058 add_setshow_boolean_cmd ("may-interrupt", class_support,
4059 &may_stop_1, _("\
4060 Set permission to interrupt or signal the target."), _("\
4061 Show permission to interrupt or signal the target."), _("\
4062 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4063 Otherwise, any attempt to interrupt or stop will be ignored."),
4064 set_target_permissions, NULL,
4065 &setlist, &showlist);
4066
4067
4068 target_dcache = dcache_init ();
4069 }
This page took 0.122274 seconds and 4 git commands to generate.