Updated copyright notices for most files.
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42
43 static void target_info (char *, int);
44
45 static void maybe_kill_then_attach (char *, int);
46
47 static void kill_or_be_killed (int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
52
53 static int nosymbol (char *, CORE_ADDR *);
54
55 static void tcomplain (void) ATTR_NORETURN;
56
57 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
58
59 static int return_zero (void);
60
61 static int return_one (void);
62
63 static int return_minus_one (void);
64
65 void target_ignore (void);
66
67 static void target_command (char *, int);
68
69 static struct target_ops *find_default_run_target (char *);
70
71 static void nosupport_runtime (void);
72
73 static LONGEST default_xfer_partial (struct target_ops *ops,
74 enum target_object object,
75 const char *annex, gdb_byte *readbuf,
76 const gdb_byte *writebuf,
77 ULONGEST offset, LONGEST len);
78
79 static LONGEST current_xfer_partial (struct target_ops *ops,
80 enum target_object object,
81 const char *annex, gdb_byte *readbuf,
82 const gdb_byte *writebuf,
83 ULONGEST offset, LONGEST len);
84
85 static LONGEST target_xfer_partial (struct target_ops *ops,
86 enum target_object object,
87 const char *annex,
88 void *readbuf, const void *writebuf,
89 ULONGEST offset, LONGEST len);
90
91 static void init_dummy_target (void);
92
93 static struct target_ops debug_target;
94
95 static void debug_to_open (char *, int);
96
97 static void debug_to_close (int);
98
99 static void debug_to_attach (char *, int);
100
101 static void debug_to_detach (char *, int);
102
103 static void debug_to_resume (ptid_t, int, enum target_signal);
104
105 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
106
107 static void debug_to_fetch_registers (struct regcache *, int);
108
109 static void debug_to_store_registers (struct regcache *, int);
110
111 static void debug_to_prepare_to_store (struct regcache *);
112
113 static void debug_to_files_info (struct target_ops *);
114
115 static int debug_to_insert_breakpoint (struct bp_target_info *);
116
117 static int debug_to_remove_breakpoint (struct bp_target_info *);
118
119 static int debug_to_can_use_hw_breakpoint (int, int, int);
120
121 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
122
123 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
124
125 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
126
127 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
128
129 static int debug_to_stopped_by_watchpoint (void);
130
131 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
132
133 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
134
135 static void debug_to_terminal_init (void);
136
137 static void debug_to_terminal_inferior (void);
138
139 static void debug_to_terminal_ours_for_output (void);
140
141 static void debug_to_terminal_save_ours (void);
142
143 static void debug_to_terminal_ours (void);
144
145 static void debug_to_terminal_info (char *, int);
146
147 static void debug_to_kill (void);
148
149 static void debug_to_load (char *, int);
150
151 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
152
153 static void debug_to_mourn_inferior (void);
154
155 static int debug_to_can_run (void);
156
157 static void debug_to_notice_signals (ptid_t);
158
159 static int debug_to_thread_alive (ptid_t);
160
161 static void debug_to_stop (void);
162
163 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
164 wierd and mysterious ways. Putting the variable here lets those
165 wierd and mysterious ways keep building while they are being
166 converted to the inferior inheritance structure. */
167 struct target_ops deprecated_child_ops;
168
169 /* Pointer to array of target architecture structures; the size of the
170 array; the current index into the array; the allocated size of the
171 array. */
172 struct target_ops **target_structs;
173 unsigned target_struct_size;
174 unsigned target_struct_index;
175 unsigned target_struct_allocsize;
176 #define DEFAULT_ALLOCSIZE 10
177
178 /* The initial current target, so that there is always a semi-valid
179 current target. */
180
181 static struct target_ops dummy_target;
182
183 /* Top of target stack. */
184
185 static struct target_ops *target_stack;
186
187 /* The target structure we are currently using to talk to a process
188 or file or whatever "inferior" we have. */
189
190 struct target_ops current_target;
191
192 /* Command list for target. */
193
194 static struct cmd_list_element *targetlist = NULL;
195
196 /* Nonzero if we are debugging an attached outside process
197 rather than an inferior. */
198
199 int attach_flag;
200
201 /* Nonzero if we should trust readonly sections from the
202 executable when reading memory. */
203
204 static int trust_readonly = 0;
205
206 /* Non-zero if we want to see trace of target level stuff. */
207
208 static int targetdebug = 0;
209 static void
210 show_targetdebug (struct ui_file *file, int from_tty,
211 struct cmd_list_element *c, const char *value)
212 {
213 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
214 }
215
216 static void setup_target_debug (void);
217
218 DCACHE *target_dcache;
219
220 /* The user just typed 'target' without the name of a target. */
221
222 static void
223 target_command (char *arg, int from_tty)
224 {
225 fputs_filtered ("Argument required (target name). Try `help target'\n",
226 gdb_stdout);
227 }
228
229 /* Add a possible target architecture to the list. */
230
231 void
232 add_target (struct target_ops *t)
233 {
234 /* Provide default values for all "must have" methods. */
235 if (t->to_xfer_partial == NULL)
236 t->to_xfer_partial = default_xfer_partial;
237
238 if (!target_structs)
239 {
240 target_struct_allocsize = DEFAULT_ALLOCSIZE;
241 target_structs = (struct target_ops **) xmalloc
242 (target_struct_allocsize * sizeof (*target_structs));
243 }
244 if (target_struct_size >= target_struct_allocsize)
245 {
246 target_struct_allocsize *= 2;
247 target_structs = (struct target_ops **)
248 xrealloc ((char *) target_structs,
249 target_struct_allocsize * sizeof (*target_structs));
250 }
251 target_structs[target_struct_size++] = t;
252
253 if (targetlist == NULL)
254 add_prefix_cmd ("target", class_run, target_command, _("\
255 Connect to a target machine or process.\n\
256 The first argument is the type or protocol of the target machine.\n\
257 Remaining arguments are interpreted by the target protocol. For more\n\
258 information on the arguments for a particular protocol, type\n\
259 `help target ' followed by the protocol name."),
260 &targetlist, "target ", 0, &cmdlist);
261 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
262 }
263
264 /* Stub functions */
265
266 void
267 target_ignore (void)
268 {
269 }
270
271 void
272 target_load (char *arg, int from_tty)
273 {
274 dcache_invalidate (target_dcache);
275 (*current_target.to_load) (arg, from_tty);
276 }
277
278 static int
279 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
280 struct target_ops *t)
281 {
282 errno = EIO; /* Can't read/write this location */
283 return 0; /* No bytes handled */
284 }
285
286 static void
287 tcomplain (void)
288 {
289 error (_("You can't do that when your target is `%s'"),
290 current_target.to_shortname);
291 }
292
293 void
294 noprocess (void)
295 {
296 error (_("You can't do that without a process to debug."));
297 }
298
299 static int
300 nosymbol (char *name, CORE_ADDR *addrp)
301 {
302 return 1; /* Symbol does not exist in target env */
303 }
304
305 static void
306 nosupport_runtime (void)
307 {
308 if (ptid_equal (inferior_ptid, null_ptid))
309 noprocess ();
310 else
311 error (_("No run-time support for this"));
312 }
313
314
315 static void
316 default_terminal_info (char *args, int from_tty)
317 {
318 printf_unfiltered (_("No saved terminal information.\n"));
319 }
320
321 /* This is the default target_create_inferior and target_attach function.
322 If the current target is executing, it asks whether to kill it off.
323 If this function returns without calling error(), it has killed off
324 the target, and the operation should be attempted. */
325
326 static void
327 kill_or_be_killed (int from_tty)
328 {
329 if (target_has_execution)
330 {
331 printf_unfiltered (_("You are already running a program:\n"));
332 target_files_info ();
333 if (query ("Kill it? "))
334 {
335 target_kill ();
336 if (target_has_execution)
337 error (_("Killing the program did not help."));
338 return;
339 }
340 else
341 {
342 error (_("Program not killed."));
343 }
344 }
345 tcomplain ();
346 }
347
348 static void
349 maybe_kill_then_attach (char *args, int from_tty)
350 {
351 kill_or_be_killed (from_tty);
352 target_attach (args, from_tty);
353 }
354
355 static void
356 maybe_kill_then_create_inferior (char *exec, char *args, char **env,
357 int from_tty)
358 {
359 kill_or_be_killed (0);
360 target_create_inferior (exec, args, env, from_tty);
361 }
362
363 /* Go through the target stack from top to bottom, copying over zero
364 entries in current_target, then filling in still empty entries. In
365 effect, we are doing class inheritance through the pushed target
366 vectors.
367
368 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
369 is currently implemented, is that it discards any knowledge of
370 which target an inherited method originally belonged to.
371 Consequently, new new target methods should instead explicitly and
372 locally search the target stack for the target that can handle the
373 request. */
374
375 static void
376 update_current_target (void)
377 {
378 struct target_ops *t;
379
380 /* First, reset current's contents. */
381 memset (&current_target, 0, sizeof (current_target));
382
383 #define INHERIT(FIELD, TARGET) \
384 if (!current_target.FIELD) \
385 current_target.FIELD = (TARGET)->FIELD
386
387 for (t = target_stack; t; t = t->beneath)
388 {
389 INHERIT (to_shortname, t);
390 INHERIT (to_longname, t);
391 INHERIT (to_doc, t);
392 INHERIT (to_open, t);
393 INHERIT (to_close, t);
394 INHERIT (to_attach, t);
395 INHERIT (to_post_attach, t);
396 INHERIT (to_detach, t);
397 /* Do not inherit to_disconnect. */
398 INHERIT (to_resume, t);
399 INHERIT (to_wait, t);
400 INHERIT (to_fetch_registers, t);
401 INHERIT (to_store_registers, t);
402 INHERIT (to_prepare_to_store, t);
403 INHERIT (deprecated_xfer_memory, t);
404 INHERIT (to_files_info, t);
405 INHERIT (to_insert_breakpoint, t);
406 INHERIT (to_remove_breakpoint, t);
407 INHERIT (to_can_use_hw_breakpoint, t);
408 INHERIT (to_insert_hw_breakpoint, t);
409 INHERIT (to_remove_hw_breakpoint, t);
410 INHERIT (to_insert_watchpoint, t);
411 INHERIT (to_remove_watchpoint, t);
412 INHERIT (to_stopped_data_address, t);
413 INHERIT (to_stopped_by_watchpoint, t);
414 INHERIT (to_have_steppable_watchpoint, t);
415 INHERIT (to_have_continuable_watchpoint, t);
416 INHERIT (to_region_ok_for_hw_watchpoint, t);
417 INHERIT (to_terminal_init, t);
418 INHERIT (to_terminal_inferior, t);
419 INHERIT (to_terminal_ours_for_output, t);
420 INHERIT (to_terminal_ours, t);
421 INHERIT (to_terminal_save_ours, t);
422 INHERIT (to_terminal_info, t);
423 INHERIT (to_kill, t);
424 INHERIT (to_load, t);
425 INHERIT (to_lookup_symbol, t);
426 INHERIT (to_create_inferior, t);
427 INHERIT (to_post_startup_inferior, t);
428 INHERIT (to_acknowledge_created_inferior, t);
429 INHERIT (to_insert_fork_catchpoint, t);
430 INHERIT (to_remove_fork_catchpoint, t);
431 INHERIT (to_insert_vfork_catchpoint, t);
432 INHERIT (to_remove_vfork_catchpoint, t);
433 /* Do not inherit to_follow_fork. */
434 INHERIT (to_insert_exec_catchpoint, t);
435 INHERIT (to_remove_exec_catchpoint, t);
436 INHERIT (to_reported_exec_events_per_exec_call, t);
437 INHERIT (to_has_exited, t);
438 INHERIT (to_mourn_inferior, t);
439 INHERIT (to_can_run, t);
440 INHERIT (to_notice_signals, t);
441 INHERIT (to_thread_alive, t);
442 INHERIT (to_find_new_threads, t);
443 INHERIT (to_pid_to_str, t);
444 INHERIT (to_extra_thread_info, t);
445 INHERIT (to_stop, t);
446 /* Do not inherit to_xfer_partial. */
447 INHERIT (to_rcmd, t);
448 INHERIT (to_pid_to_exec_file, t);
449 INHERIT (to_log_command, t);
450 INHERIT (to_stratum, t);
451 INHERIT (to_has_all_memory, t);
452 INHERIT (to_has_memory, t);
453 INHERIT (to_has_stack, t);
454 INHERIT (to_has_registers, t);
455 INHERIT (to_has_execution, t);
456 INHERIT (to_has_thread_control, t);
457 INHERIT (to_sections, t);
458 INHERIT (to_sections_end, t);
459 INHERIT (to_can_async_p, t);
460 INHERIT (to_is_async_p, t);
461 INHERIT (to_async, t);
462 INHERIT (to_async_mask_value, t);
463 INHERIT (to_find_memory_regions, t);
464 INHERIT (to_make_corefile_notes, t);
465 INHERIT (to_get_thread_local_address, t);
466 /* Do not inherit to_read_description. */
467 INHERIT (to_magic, t);
468 /* Do not inherit to_memory_map. */
469 /* Do not inherit to_flash_erase. */
470 /* Do not inherit to_flash_done. */
471 }
472 #undef INHERIT
473
474 /* Clean up a target struct so it no longer has any zero pointers in
475 it. Some entries are defaulted to a method that print an error,
476 others are hard-wired to a standard recursive default. */
477
478 #define de_fault(field, value) \
479 if (!current_target.field) \
480 current_target.field = value
481
482 de_fault (to_open,
483 (void (*) (char *, int))
484 tcomplain);
485 de_fault (to_close,
486 (void (*) (int))
487 target_ignore);
488 de_fault (to_attach,
489 maybe_kill_then_attach);
490 de_fault (to_post_attach,
491 (void (*) (int))
492 target_ignore);
493 de_fault (to_detach,
494 (void (*) (char *, int))
495 target_ignore);
496 de_fault (to_resume,
497 (void (*) (ptid_t, int, enum target_signal))
498 noprocess);
499 de_fault (to_wait,
500 (ptid_t (*) (ptid_t, struct target_waitstatus *))
501 noprocess);
502 de_fault (to_fetch_registers,
503 (void (*) (struct regcache *, int))
504 target_ignore);
505 de_fault (to_store_registers,
506 (void (*) (struct regcache *, int))
507 noprocess);
508 de_fault (to_prepare_to_store,
509 (void (*) (struct regcache *))
510 noprocess);
511 de_fault (deprecated_xfer_memory,
512 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
513 nomemory);
514 de_fault (to_files_info,
515 (void (*) (struct target_ops *))
516 target_ignore);
517 de_fault (to_insert_breakpoint,
518 memory_insert_breakpoint);
519 de_fault (to_remove_breakpoint,
520 memory_remove_breakpoint);
521 de_fault (to_can_use_hw_breakpoint,
522 (int (*) (int, int, int))
523 return_zero);
524 de_fault (to_insert_hw_breakpoint,
525 (int (*) (struct bp_target_info *))
526 return_minus_one);
527 de_fault (to_remove_hw_breakpoint,
528 (int (*) (struct bp_target_info *))
529 return_minus_one);
530 de_fault (to_insert_watchpoint,
531 (int (*) (CORE_ADDR, int, int))
532 return_minus_one);
533 de_fault (to_remove_watchpoint,
534 (int (*) (CORE_ADDR, int, int))
535 return_minus_one);
536 de_fault (to_stopped_by_watchpoint,
537 (int (*) (void))
538 return_zero);
539 de_fault (to_stopped_data_address,
540 (int (*) (struct target_ops *, CORE_ADDR *))
541 return_zero);
542 de_fault (to_region_ok_for_hw_watchpoint,
543 default_region_ok_for_hw_watchpoint);
544 de_fault (to_terminal_init,
545 (void (*) (void))
546 target_ignore);
547 de_fault (to_terminal_inferior,
548 (void (*) (void))
549 target_ignore);
550 de_fault (to_terminal_ours_for_output,
551 (void (*) (void))
552 target_ignore);
553 de_fault (to_terminal_ours,
554 (void (*) (void))
555 target_ignore);
556 de_fault (to_terminal_save_ours,
557 (void (*) (void))
558 target_ignore);
559 de_fault (to_terminal_info,
560 default_terminal_info);
561 de_fault (to_kill,
562 (void (*) (void))
563 noprocess);
564 de_fault (to_load,
565 (void (*) (char *, int))
566 tcomplain);
567 de_fault (to_lookup_symbol,
568 (int (*) (char *, CORE_ADDR *))
569 nosymbol);
570 de_fault (to_create_inferior,
571 maybe_kill_then_create_inferior);
572 de_fault (to_post_startup_inferior,
573 (void (*) (ptid_t))
574 target_ignore);
575 de_fault (to_acknowledge_created_inferior,
576 (void (*) (int))
577 target_ignore);
578 de_fault (to_insert_fork_catchpoint,
579 (void (*) (int))
580 tcomplain);
581 de_fault (to_remove_fork_catchpoint,
582 (int (*) (int))
583 tcomplain);
584 de_fault (to_insert_vfork_catchpoint,
585 (void (*) (int))
586 tcomplain);
587 de_fault (to_remove_vfork_catchpoint,
588 (int (*) (int))
589 tcomplain);
590 de_fault (to_insert_exec_catchpoint,
591 (void (*) (int))
592 tcomplain);
593 de_fault (to_remove_exec_catchpoint,
594 (int (*) (int))
595 tcomplain);
596 de_fault (to_reported_exec_events_per_exec_call,
597 (int (*) (void))
598 return_one);
599 de_fault (to_has_exited,
600 (int (*) (int, int, int *))
601 return_zero);
602 de_fault (to_mourn_inferior,
603 (void (*) (void))
604 noprocess);
605 de_fault (to_can_run,
606 return_zero);
607 de_fault (to_notice_signals,
608 (void (*) (ptid_t))
609 target_ignore);
610 de_fault (to_thread_alive,
611 (int (*) (ptid_t))
612 return_zero);
613 de_fault (to_find_new_threads,
614 (void (*) (void))
615 target_ignore);
616 de_fault (to_extra_thread_info,
617 (char *(*) (struct thread_info *))
618 return_zero);
619 de_fault (to_stop,
620 (void (*) (void))
621 target_ignore);
622 current_target.to_xfer_partial = current_xfer_partial;
623 de_fault (to_rcmd,
624 (void (*) (char *, struct ui_file *))
625 tcomplain);
626 de_fault (to_pid_to_exec_file,
627 (char *(*) (int))
628 return_zero);
629 de_fault (to_can_async_p,
630 (int (*) (void))
631 return_zero);
632 de_fault (to_is_async_p,
633 (int (*) (void))
634 return_zero);
635 de_fault (to_async,
636 (void (*) (void (*) (enum inferior_event_type, void*), void*))
637 tcomplain);
638 current_target.to_read_description = NULL;
639 #undef de_fault
640
641 /* Finally, position the target-stack beneath the squashed
642 "current_target". That way code looking for a non-inherited
643 target method can quickly and simply find it. */
644 current_target.beneath = target_stack;
645
646 if (targetdebug)
647 setup_target_debug ();
648 }
649
650 /* Mark OPS as a running target. This reverses the effect
651 of target_mark_exited. */
652
653 void
654 target_mark_running (struct target_ops *ops)
655 {
656 struct target_ops *t;
657
658 for (t = target_stack; t != NULL; t = t->beneath)
659 if (t == ops)
660 break;
661 if (t == NULL)
662 internal_error (__FILE__, __LINE__,
663 "Attempted to mark unpushed target \"%s\" as running",
664 ops->to_shortname);
665
666 ops->to_has_execution = 1;
667 ops->to_has_all_memory = 1;
668 ops->to_has_memory = 1;
669 ops->to_has_stack = 1;
670 ops->to_has_registers = 1;
671
672 update_current_target ();
673 }
674
675 /* Mark OPS as a non-running target. This reverses the effect
676 of target_mark_running. */
677
678 void
679 target_mark_exited (struct target_ops *ops)
680 {
681 struct target_ops *t;
682
683 for (t = target_stack; t != NULL; t = t->beneath)
684 if (t == ops)
685 break;
686 if (t == NULL)
687 internal_error (__FILE__, __LINE__,
688 "Attempted to mark unpushed target \"%s\" as running",
689 ops->to_shortname);
690
691 ops->to_has_execution = 0;
692 ops->to_has_all_memory = 0;
693 ops->to_has_memory = 0;
694 ops->to_has_stack = 0;
695 ops->to_has_registers = 0;
696
697 update_current_target ();
698 }
699
700 /* Push a new target type into the stack of the existing target accessors,
701 possibly superseding some of the existing accessors.
702
703 Result is zero if the pushed target ended up on top of the stack,
704 nonzero if at least one target is on top of it.
705
706 Rather than allow an empty stack, we always have the dummy target at
707 the bottom stratum, so we can call the function vectors without
708 checking them. */
709
710 int
711 push_target (struct target_ops *t)
712 {
713 struct target_ops **cur;
714
715 /* Check magic number. If wrong, it probably means someone changed
716 the struct definition, but not all the places that initialize one. */
717 if (t->to_magic != OPS_MAGIC)
718 {
719 fprintf_unfiltered (gdb_stderr,
720 "Magic number of %s target struct wrong\n",
721 t->to_shortname);
722 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
723 }
724
725 /* Find the proper stratum to install this target in. */
726 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
727 {
728 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
729 break;
730 }
731
732 /* If there's already targets at this stratum, remove them. */
733 /* FIXME: cagney/2003-10-15: I think this should be popping all
734 targets to CUR, and not just those at this stratum level. */
735 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
736 {
737 /* There's already something at this stratum level. Close it,
738 and un-hook it from the stack. */
739 struct target_ops *tmp = (*cur);
740 (*cur) = (*cur)->beneath;
741 tmp->beneath = NULL;
742 target_close (tmp, 0);
743 }
744
745 /* We have removed all targets in our stratum, now add the new one. */
746 t->beneath = (*cur);
747 (*cur) = t;
748
749 update_current_target ();
750
751 /* Not on top? */
752 return (t != target_stack);
753 }
754
755 /* Remove a target_ops vector from the stack, wherever it may be.
756 Return how many times it was removed (0 or 1). */
757
758 int
759 unpush_target (struct target_ops *t)
760 {
761 struct target_ops **cur;
762 struct target_ops *tmp;
763
764 /* Look for the specified target. Note that we assume that a target
765 can only occur once in the target stack. */
766
767 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
768 {
769 if ((*cur) == t)
770 break;
771 }
772
773 if ((*cur) == NULL)
774 return 0; /* Didn't find target_ops, quit now */
775
776 /* NOTE: cagney/2003-12-06: In '94 the close call was made
777 unconditional by moving it to before the above check that the
778 target was in the target stack (something about "Change the way
779 pushing and popping of targets work to support target overlays
780 and inheritance"). This doesn't make much sense - only open
781 targets should be closed. */
782 target_close (t, 0);
783
784 /* Unchain the target */
785 tmp = (*cur);
786 (*cur) = (*cur)->beneath;
787 tmp->beneath = NULL;
788
789 update_current_target ();
790
791 return 1;
792 }
793
794 void
795 pop_target (void)
796 {
797 target_close (&current_target, 0); /* Let it clean up */
798 if (unpush_target (target_stack) == 1)
799 return;
800
801 fprintf_unfiltered (gdb_stderr,
802 "pop_target couldn't find target %s\n",
803 current_target.to_shortname);
804 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
805 }
806
807 /* Using the objfile specified in BATON, find the address for the
808 current thread's thread-local storage with offset OFFSET. */
809 CORE_ADDR
810 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
811 {
812 volatile CORE_ADDR addr = 0;
813
814 if (target_get_thread_local_address_p ()
815 && gdbarch_fetch_tls_load_module_address_p (current_gdbarch))
816 {
817 ptid_t ptid = inferior_ptid;
818 volatile struct gdb_exception ex;
819
820 TRY_CATCH (ex, RETURN_MASK_ALL)
821 {
822 CORE_ADDR lm_addr;
823
824 /* Fetch the load module address for this objfile. */
825 lm_addr = gdbarch_fetch_tls_load_module_address (current_gdbarch,
826 objfile);
827 /* If it's 0, throw the appropriate exception. */
828 if (lm_addr == 0)
829 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
830 _("TLS load module not found"));
831
832 addr = target_get_thread_local_address (ptid, lm_addr, offset);
833 }
834 /* If an error occurred, print TLS related messages here. Otherwise,
835 throw the error to some higher catcher. */
836 if (ex.reason < 0)
837 {
838 int objfile_is_library = (objfile->flags & OBJF_SHARED);
839
840 switch (ex.error)
841 {
842 case TLS_NO_LIBRARY_SUPPORT_ERROR:
843 error (_("Cannot find thread-local variables in this thread library."));
844 break;
845 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
846 if (objfile_is_library)
847 error (_("Cannot find shared library `%s' in dynamic"
848 " linker's load module list"), objfile->name);
849 else
850 error (_("Cannot find executable file `%s' in dynamic"
851 " linker's load module list"), objfile->name);
852 break;
853 case TLS_NOT_ALLOCATED_YET_ERROR:
854 if (objfile_is_library)
855 error (_("The inferior has not yet allocated storage for"
856 " thread-local variables in\n"
857 "the shared library `%s'\n"
858 "for %s"),
859 objfile->name, target_pid_to_str (ptid));
860 else
861 error (_("The inferior has not yet allocated storage for"
862 " thread-local variables in\n"
863 "the executable `%s'\n"
864 "for %s"),
865 objfile->name, target_pid_to_str (ptid));
866 break;
867 case TLS_GENERIC_ERROR:
868 if (objfile_is_library)
869 error (_("Cannot find thread-local storage for %s, "
870 "shared library %s:\n%s"),
871 target_pid_to_str (ptid),
872 objfile->name, ex.message);
873 else
874 error (_("Cannot find thread-local storage for %s, "
875 "executable file %s:\n%s"),
876 target_pid_to_str (ptid),
877 objfile->name, ex.message);
878 break;
879 default:
880 throw_exception (ex);
881 break;
882 }
883 }
884 }
885 /* It wouldn't be wrong here to try a gdbarch method, too; finding
886 TLS is an ABI-specific thing. But we don't do that yet. */
887 else
888 error (_("Cannot find thread-local variables on this target"));
889
890 return addr;
891 }
892
893 #undef MIN
894 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
895
896 /* target_read_string -- read a null terminated string, up to LEN bytes,
897 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
898 Set *STRING to a pointer to malloc'd memory containing the data; the caller
899 is responsible for freeing it. Return the number of bytes successfully
900 read. */
901
902 int
903 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
904 {
905 int tlen, origlen, offset, i;
906 gdb_byte buf[4];
907 int errcode = 0;
908 char *buffer;
909 int buffer_allocated;
910 char *bufptr;
911 unsigned int nbytes_read = 0;
912
913 gdb_assert (string);
914
915 /* Small for testing. */
916 buffer_allocated = 4;
917 buffer = xmalloc (buffer_allocated);
918 bufptr = buffer;
919
920 origlen = len;
921
922 while (len > 0)
923 {
924 tlen = MIN (len, 4 - (memaddr & 3));
925 offset = memaddr & 3;
926
927 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
928 if (errcode != 0)
929 {
930 /* The transfer request might have crossed the boundary to an
931 unallocated region of memory. Retry the transfer, requesting
932 a single byte. */
933 tlen = 1;
934 offset = 0;
935 errcode = target_read_memory (memaddr, buf, 1);
936 if (errcode != 0)
937 goto done;
938 }
939
940 if (bufptr - buffer + tlen > buffer_allocated)
941 {
942 unsigned int bytes;
943 bytes = bufptr - buffer;
944 buffer_allocated *= 2;
945 buffer = xrealloc (buffer, buffer_allocated);
946 bufptr = buffer + bytes;
947 }
948
949 for (i = 0; i < tlen; i++)
950 {
951 *bufptr++ = buf[i + offset];
952 if (buf[i + offset] == '\000')
953 {
954 nbytes_read += i + 1;
955 goto done;
956 }
957 }
958
959 memaddr += tlen;
960 len -= tlen;
961 nbytes_read += tlen;
962 }
963 done:
964 *string = buffer;
965 if (errnop != NULL)
966 *errnop = errcode;
967 return nbytes_read;
968 }
969
970 /* Find a section containing ADDR. */
971 struct section_table *
972 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
973 {
974 struct section_table *secp;
975 for (secp = target->to_sections;
976 secp < target->to_sections_end;
977 secp++)
978 {
979 if (addr >= secp->addr && addr < secp->endaddr)
980 return secp;
981 }
982 return NULL;
983 }
984
985 /* Perform a partial memory transfer. The arguments and return
986 value are just as for target_xfer_partial. */
987
988 static LONGEST
989 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
990 ULONGEST memaddr, LONGEST len)
991 {
992 LONGEST res;
993 int reg_len;
994 struct mem_region *region;
995
996 /* Zero length requests are ok and require no work. */
997 if (len == 0)
998 return 0;
999
1000 /* Try the executable file, if "trust-readonly-sections" is set. */
1001 if (readbuf != NULL && trust_readonly)
1002 {
1003 struct section_table *secp;
1004
1005 secp = target_section_by_addr (ops, memaddr);
1006 if (secp != NULL
1007 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1008 & SEC_READONLY))
1009 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1010 }
1011
1012 /* Likewise for accesses to unmapped overlay sections. */
1013 if (readbuf != NULL && overlay_debugging)
1014 {
1015 asection *section = find_pc_overlay (memaddr);
1016 if (pc_in_unmapped_range (memaddr, section))
1017 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1018 }
1019
1020 /* Try GDB's internal data cache. */
1021 region = lookup_mem_region (memaddr);
1022 /* region->hi == 0 means there's no upper bound. */
1023 if (memaddr + len < region->hi || region->hi == 0)
1024 reg_len = len;
1025 else
1026 reg_len = region->hi - memaddr;
1027
1028 switch (region->attrib.mode)
1029 {
1030 case MEM_RO:
1031 if (writebuf != NULL)
1032 return -1;
1033 break;
1034
1035 case MEM_WO:
1036 if (readbuf != NULL)
1037 return -1;
1038 break;
1039
1040 case MEM_FLASH:
1041 /* We only support writing to flash during "load" for now. */
1042 if (writebuf != NULL)
1043 error (_("Writing to flash memory forbidden in this context"));
1044 break;
1045
1046 case MEM_NONE:
1047 return -1;
1048 }
1049
1050 if (region->attrib.cache)
1051 {
1052 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1053 memory request will start back at current_target. */
1054 if (readbuf != NULL)
1055 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1056 reg_len, 0);
1057 else
1058 /* FIXME drow/2006-08-09: If we're going to preserve const
1059 correctness dcache_xfer_memory should take readbuf and
1060 writebuf. */
1061 res = dcache_xfer_memory (target_dcache, memaddr,
1062 (void *) writebuf,
1063 reg_len, 1);
1064 if (res <= 0)
1065 return -1;
1066 else
1067 return res;
1068 }
1069
1070 /* If none of those methods found the memory we wanted, fall back
1071 to a target partial transfer. Normally a single call to
1072 to_xfer_partial is enough; if it doesn't recognize an object
1073 it will call the to_xfer_partial of the next target down.
1074 But for memory this won't do. Memory is the only target
1075 object which can be read from more than one valid target.
1076 A core file, for instance, could have some of memory but
1077 delegate other bits to the target below it. So, we must
1078 manually try all targets. */
1079
1080 do
1081 {
1082 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1083 readbuf, writebuf, memaddr, reg_len);
1084 if (res > 0)
1085 return res;
1086
1087 /* We want to continue past core files to executables, but not
1088 past a running target's memory. */
1089 if (ops->to_has_all_memory)
1090 return res;
1091
1092 ops = ops->beneath;
1093 }
1094 while (ops != NULL);
1095
1096 /* If we still haven't got anything, return the last error. We
1097 give up. */
1098 return res;
1099 }
1100
1101 static LONGEST
1102 target_xfer_partial (struct target_ops *ops,
1103 enum target_object object, const char *annex,
1104 void *readbuf, const void *writebuf,
1105 ULONGEST offset, LONGEST len)
1106 {
1107 LONGEST retval;
1108
1109 gdb_assert (ops->to_xfer_partial != NULL);
1110
1111 /* If this is a memory transfer, let the memory-specific code
1112 have a look at it instead. Memory transfers are more
1113 complicated. */
1114 if (object == TARGET_OBJECT_MEMORY)
1115 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1116 else
1117 {
1118 enum target_object raw_object = object;
1119
1120 /* If this is a raw memory transfer, request the normal
1121 memory object from other layers. */
1122 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1123 raw_object = TARGET_OBJECT_MEMORY;
1124
1125 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1126 writebuf, offset, len);
1127 }
1128
1129 if (targetdebug)
1130 {
1131 const unsigned char *myaddr = NULL;
1132
1133 fprintf_unfiltered (gdb_stdlog,
1134 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
1135 ops->to_shortname,
1136 (int) object,
1137 (annex ? annex : "(null)"),
1138 (long) readbuf, (long) writebuf,
1139 paddr_nz (offset), paddr_d (len), paddr_d (retval));
1140
1141 if (readbuf)
1142 myaddr = readbuf;
1143 if (writebuf)
1144 myaddr = writebuf;
1145 if (retval > 0 && myaddr != NULL)
1146 {
1147 int i;
1148
1149 fputs_unfiltered (", bytes =", gdb_stdlog);
1150 for (i = 0; i < retval; i++)
1151 {
1152 if ((((long) &(myaddr[i])) & 0xf) == 0)
1153 {
1154 if (targetdebug < 2 && i > 0)
1155 {
1156 fprintf_unfiltered (gdb_stdlog, " ...");
1157 break;
1158 }
1159 fprintf_unfiltered (gdb_stdlog, "\n");
1160 }
1161
1162 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1163 }
1164 }
1165
1166 fputc_unfiltered ('\n', gdb_stdlog);
1167 }
1168 return retval;
1169 }
1170
1171 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1172 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1173 if any error occurs.
1174
1175 If an error occurs, no guarantee is made about the contents of the data at
1176 MYADDR. In particular, the caller should not depend upon partial reads
1177 filling the buffer with good data. There is no way for the caller to know
1178 how much good data might have been transfered anyway. Callers that can
1179 deal with partial reads should call target_read (which will retry until
1180 it makes no progress, and then return how much was transferred). */
1181
1182 int
1183 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1184 {
1185 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1186 myaddr, memaddr, len) == len)
1187 return 0;
1188 else
1189 return EIO;
1190 }
1191
1192 int
1193 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1194 {
1195 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1196 myaddr, memaddr, len) == len)
1197 return 0;
1198 else
1199 return EIO;
1200 }
1201
1202 /* Fetch the target's memory map. */
1203
1204 VEC(mem_region_s) *
1205 target_memory_map (void)
1206 {
1207 VEC(mem_region_s) *result;
1208 struct mem_region *last_one, *this_one;
1209 int ix;
1210 struct target_ops *t;
1211
1212 if (targetdebug)
1213 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1214
1215 for (t = current_target.beneath; t != NULL; t = t->beneath)
1216 if (t->to_memory_map != NULL)
1217 break;
1218
1219 if (t == NULL)
1220 return NULL;
1221
1222 result = t->to_memory_map (t);
1223 if (result == NULL)
1224 return NULL;
1225
1226 qsort (VEC_address (mem_region_s, result),
1227 VEC_length (mem_region_s, result),
1228 sizeof (struct mem_region), mem_region_cmp);
1229
1230 /* Check that regions do not overlap. Simultaneously assign
1231 a numbering for the "mem" commands to use to refer to
1232 each region. */
1233 last_one = NULL;
1234 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1235 {
1236 this_one->number = ix;
1237
1238 if (last_one && last_one->hi > this_one->lo)
1239 {
1240 warning (_("Overlapping regions in memory map: ignoring"));
1241 VEC_free (mem_region_s, result);
1242 return NULL;
1243 }
1244 last_one = this_one;
1245 }
1246
1247 return result;
1248 }
1249
1250 void
1251 target_flash_erase (ULONGEST address, LONGEST length)
1252 {
1253 struct target_ops *t;
1254
1255 for (t = current_target.beneath; t != NULL; t = t->beneath)
1256 if (t->to_flash_erase != NULL)
1257 {
1258 if (targetdebug)
1259 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1260 paddr (address), phex (length, 0));
1261 t->to_flash_erase (t, address, length);
1262 return;
1263 }
1264
1265 tcomplain ();
1266 }
1267
1268 void
1269 target_flash_done (void)
1270 {
1271 struct target_ops *t;
1272
1273 for (t = current_target.beneath; t != NULL; t = t->beneath)
1274 if (t->to_flash_done != NULL)
1275 {
1276 if (targetdebug)
1277 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1278 t->to_flash_done (t);
1279 return;
1280 }
1281
1282 tcomplain ();
1283 }
1284
1285 #ifndef target_stopped_data_address_p
1286 int
1287 target_stopped_data_address_p (struct target_ops *target)
1288 {
1289 if (target->to_stopped_data_address
1290 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1291 return 0;
1292 if (target->to_stopped_data_address == debug_to_stopped_data_address
1293 && (debug_target.to_stopped_data_address
1294 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1295 return 0;
1296 return 1;
1297 }
1298 #endif
1299
1300 static void
1301 show_trust_readonly (struct ui_file *file, int from_tty,
1302 struct cmd_list_element *c, const char *value)
1303 {
1304 fprintf_filtered (file, _("\
1305 Mode for reading from readonly sections is %s.\n"),
1306 value);
1307 }
1308
1309 /* More generic transfers. */
1310
1311 static LONGEST
1312 default_xfer_partial (struct target_ops *ops, enum target_object object,
1313 const char *annex, gdb_byte *readbuf,
1314 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1315 {
1316 if (object == TARGET_OBJECT_MEMORY
1317 && ops->deprecated_xfer_memory != NULL)
1318 /* If available, fall back to the target's
1319 "deprecated_xfer_memory" method. */
1320 {
1321 int xfered = -1;
1322 errno = 0;
1323 if (writebuf != NULL)
1324 {
1325 void *buffer = xmalloc (len);
1326 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1327 memcpy (buffer, writebuf, len);
1328 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1329 1/*write*/, NULL, ops);
1330 do_cleanups (cleanup);
1331 }
1332 if (readbuf != NULL)
1333 xfered = ops->deprecated_xfer_memory (offset, readbuf, len, 0/*read*/,
1334 NULL, ops);
1335 if (xfered > 0)
1336 return xfered;
1337 else if (xfered == 0 && errno == 0)
1338 /* "deprecated_xfer_memory" uses 0, cross checked against
1339 ERRNO as one indication of an error. */
1340 return 0;
1341 else
1342 return -1;
1343 }
1344 else if (ops->beneath != NULL)
1345 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1346 readbuf, writebuf, offset, len);
1347 else
1348 return -1;
1349 }
1350
1351 /* The xfer_partial handler for the topmost target. Unlike the default,
1352 it does not need to handle memory specially; it just passes all
1353 requests down the stack. */
1354
1355 static LONGEST
1356 current_xfer_partial (struct target_ops *ops, enum target_object object,
1357 const char *annex, gdb_byte *readbuf,
1358 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1359 {
1360 if (ops->beneath != NULL)
1361 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1362 readbuf, writebuf, offset, len);
1363 else
1364 return -1;
1365 }
1366
1367 /* Target vector read/write partial wrapper functions.
1368
1369 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1370 (inbuf, outbuf)", instead of separate read/write methods, make life
1371 easier. */
1372
1373 static LONGEST
1374 target_read_partial (struct target_ops *ops,
1375 enum target_object object,
1376 const char *annex, gdb_byte *buf,
1377 ULONGEST offset, LONGEST len)
1378 {
1379 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1380 }
1381
1382 static LONGEST
1383 target_write_partial (struct target_ops *ops,
1384 enum target_object object,
1385 const char *annex, const gdb_byte *buf,
1386 ULONGEST offset, LONGEST len)
1387 {
1388 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1389 }
1390
1391 /* Wrappers to perform the full transfer. */
1392 LONGEST
1393 target_read (struct target_ops *ops,
1394 enum target_object object,
1395 const char *annex, gdb_byte *buf,
1396 ULONGEST offset, LONGEST len)
1397 {
1398 LONGEST xfered = 0;
1399 while (xfered < len)
1400 {
1401 LONGEST xfer = target_read_partial (ops, object, annex,
1402 (gdb_byte *) buf + xfered,
1403 offset + xfered, len - xfered);
1404 /* Call an observer, notifying them of the xfer progress? */
1405 if (xfer == 0)
1406 return xfered;
1407 if (xfer < 0)
1408 return -1;
1409 xfered += xfer;
1410 QUIT;
1411 }
1412 return len;
1413 }
1414
1415 /* An alternative to target_write with progress callbacks. */
1416
1417 LONGEST
1418 target_write_with_progress (struct target_ops *ops,
1419 enum target_object object,
1420 const char *annex, const gdb_byte *buf,
1421 ULONGEST offset, LONGEST len,
1422 void (*progress) (ULONGEST, void *), void *baton)
1423 {
1424 LONGEST xfered = 0;
1425
1426 /* Give the progress callback a chance to set up. */
1427 if (progress)
1428 (*progress) (0, baton);
1429
1430 while (xfered < len)
1431 {
1432 LONGEST xfer = target_write_partial (ops, object, annex,
1433 (gdb_byte *) buf + xfered,
1434 offset + xfered, len - xfered);
1435
1436 if (xfer == 0)
1437 return xfered;
1438 if (xfer < 0)
1439 return -1;
1440
1441 if (progress)
1442 (*progress) (xfer, baton);
1443
1444 xfered += xfer;
1445 QUIT;
1446 }
1447 return len;
1448 }
1449
1450 LONGEST
1451 target_write (struct target_ops *ops,
1452 enum target_object object,
1453 const char *annex, const gdb_byte *buf,
1454 ULONGEST offset, LONGEST len)
1455 {
1456 return target_write_with_progress (ops, object, annex, buf, offset, len,
1457 NULL, NULL);
1458 }
1459
1460 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1461 the size of the transferred data. PADDING additional bytes are
1462 available in *BUF_P. This is a helper function for
1463 target_read_alloc; see the declaration of that function for more
1464 information. */
1465
1466 static LONGEST
1467 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1468 const char *annex, gdb_byte **buf_p, int padding)
1469 {
1470 size_t buf_alloc, buf_pos;
1471 gdb_byte *buf;
1472 LONGEST n;
1473
1474 /* This function does not have a length parameter; it reads the
1475 entire OBJECT). Also, it doesn't support objects fetched partly
1476 from one target and partly from another (in a different stratum,
1477 e.g. a core file and an executable). Both reasons make it
1478 unsuitable for reading memory. */
1479 gdb_assert (object != TARGET_OBJECT_MEMORY);
1480
1481 /* Start by reading up to 4K at a time. The target will throttle
1482 this number down if necessary. */
1483 buf_alloc = 4096;
1484 buf = xmalloc (buf_alloc);
1485 buf_pos = 0;
1486 while (1)
1487 {
1488 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1489 buf_pos, buf_alloc - buf_pos - padding);
1490 if (n < 0)
1491 {
1492 /* An error occurred. */
1493 xfree (buf);
1494 return -1;
1495 }
1496 else if (n == 0)
1497 {
1498 /* Read all there was. */
1499 if (buf_pos == 0)
1500 xfree (buf);
1501 else
1502 *buf_p = buf;
1503 return buf_pos;
1504 }
1505
1506 buf_pos += n;
1507
1508 /* If the buffer is filling up, expand it. */
1509 if (buf_alloc < buf_pos * 2)
1510 {
1511 buf_alloc *= 2;
1512 buf = xrealloc (buf, buf_alloc);
1513 }
1514
1515 QUIT;
1516 }
1517 }
1518
1519 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1520 the size of the transferred data. See the declaration in "target.h"
1521 function for more information about the return value. */
1522
1523 LONGEST
1524 target_read_alloc (struct target_ops *ops, enum target_object object,
1525 const char *annex, gdb_byte **buf_p)
1526 {
1527 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1528 }
1529
1530 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1531 returned as a string, allocated using xmalloc. If an error occurs
1532 or the transfer is unsupported, NULL is returned. Empty objects
1533 are returned as allocated but empty strings. A warning is issued
1534 if the result contains any embedded NUL bytes. */
1535
1536 char *
1537 target_read_stralloc (struct target_ops *ops, enum target_object object,
1538 const char *annex)
1539 {
1540 gdb_byte *buffer;
1541 LONGEST transferred;
1542
1543 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1544
1545 if (transferred < 0)
1546 return NULL;
1547
1548 if (transferred == 0)
1549 return xstrdup ("");
1550
1551 buffer[transferred] = 0;
1552 if (strlen (buffer) < transferred)
1553 warning (_("target object %d, annex %s, "
1554 "contained unexpected null characters"),
1555 (int) object, annex ? annex : "(none)");
1556
1557 return (char *) buffer;
1558 }
1559
1560 /* Memory transfer methods. */
1561
1562 void
1563 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1564 LONGEST len)
1565 {
1566 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1567 != len)
1568 memory_error (EIO, addr);
1569 }
1570
1571 ULONGEST
1572 get_target_memory_unsigned (struct target_ops *ops,
1573 CORE_ADDR addr, int len)
1574 {
1575 gdb_byte buf[sizeof (ULONGEST)];
1576
1577 gdb_assert (len <= sizeof (buf));
1578 get_target_memory (ops, addr, buf, len);
1579 return extract_unsigned_integer (buf, len);
1580 }
1581
1582 static void
1583 target_info (char *args, int from_tty)
1584 {
1585 struct target_ops *t;
1586 int has_all_mem = 0;
1587
1588 if (symfile_objfile != NULL)
1589 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1590
1591 for (t = target_stack; t != NULL; t = t->beneath)
1592 {
1593 if (!t->to_has_memory)
1594 continue;
1595
1596 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1597 continue;
1598 if (has_all_mem)
1599 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1600 printf_unfiltered ("%s:\n", t->to_longname);
1601 (t->to_files_info) (t);
1602 has_all_mem = t->to_has_all_memory;
1603 }
1604 }
1605
1606 /* This function is called before any new inferior is created, e.g.
1607 by running a program, attaching, or connecting to a target.
1608 It cleans up any state from previous invocations which might
1609 change between runs. This is a subset of what target_preopen
1610 resets (things which might change between targets). */
1611
1612 void
1613 target_pre_inferior (int from_tty)
1614 {
1615 invalidate_target_mem_regions ();
1616
1617 target_clear_description ();
1618 }
1619
1620 /* This is to be called by the open routine before it does
1621 anything. */
1622
1623 void
1624 target_preopen (int from_tty)
1625 {
1626 dont_repeat ();
1627
1628 if (target_has_execution)
1629 {
1630 if (!from_tty
1631 || query (_("A program is being debugged already. Kill it? ")))
1632 target_kill ();
1633 else
1634 error (_("Program not killed."));
1635 }
1636
1637 /* Calling target_kill may remove the target from the stack. But if
1638 it doesn't (which seems like a win for UDI), remove it now. */
1639
1640 if (target_has_execution)
1641 pop_target ();
1642
1643 target_pre_inferior (from_tty);
1644 }
1645
1646 /* Detach a target after doing deferred register stores. */
1647
1648 void
1649 target_detach (char *args, int from_tty)
1650 {
1651 (current_target.to_detach) (args, from_tty);
1652 }
1653
1654 void
1655 target_disconnect (char *args, int from_tty)
1656 {
1657 struct target_ops *t;
1658
1659 for (t = current_target.beneath; t != NULL; t = t->beneath)
1660 if (t->to_disconnect != NULL)
1661 {
1662 if (targetdebug)
1663 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1664 args, from_tty);
1665 t->to_disconnect (t, args, from_tty);
1666 return;
1667 }
1668
1669 tcomplain ();
1670 }
1671
1672 int
1673 target_async_mask (int mask)
1674 {
1675 int saved_async_masked_status = target_async_mask_value;
1676 target_async_mask_value = mask;
1677 return saved_async_masked_status;
1678 }
1679
1680 /* Look through the list of possible targets for a target that can
1681 follow forks. */
1682
1683 int
1684 target_follow_fork (int follow_child)
1685 {
1686 struct target_ops *t;
1687
1688 for (t = current_target.beneath; t != NULL; t = t->beneath)
1689 {
1690 if (t->to_follow_fork != NULL)
1691 {
1692 int retval = t->to_follow_fork (t, follow_child);
1693 if (targetdebug)
1694 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1695 follow_child, retval);
1696 return retval;
1697 }
1698 }
1699
1700 /* Some target returned a fork event, but did not know how to follow it. */
1701 internal_error (__FILE__, __LINE__,
1702 "could not find a target to follow fork");
1703 }
1704
1705 /* Look for a target which can describe architectural features, starting
1706 from TARGET. If we find one, return its description. */
1707
1708 const struct target_desc *
1709 target_read_description (struct target_ops *target)
1710 {
1711 struct target_ops *t;
1712
1713 for (t = target; t != NULL; t = t->beneath)
1714 if (t->to_read_description != NULL)
1715 {
1716 const struct target_desc *tdesc;
1717
1718 tdesc = t->to_read_description (t);
1719 if (tdesc)
1720 return tdesc;
1721 }
1722
1723 return NULL;
1724 }
1725
1726 /* Look through the list of possible targets for a target that can
1727 execute a run or attach command without any other data. This is
1728 used to locate the default process stratum.
1729
1730 Result is always valid (error() is called for errors). */
1731
1732 static struct target_ops *
1733 find_default_run_target (char *do_mesg)
1734 {
1735 struct target_ops **t;
1736 struct target_ops *runable = NULL;
1737 int count;
1738
1739 count = 0;
1740
1741 for (t = target_structs; t < target_structs + target_struct_size;
1742 ++t)
1743 {
1744 if ((*t)->to_can_run && target_can_run (*t))
1745 {
1746 runable = *t;
1747 ++count;
1748 }
1749 }
1750
1751 if (count != 1)
1752 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
1753
1754 return runable;
1755 }
1756
1757 void
1758 find_default_attach (char *args, int from_tty)
1759 {
1760 struct target_ops *t;
1761
1762 t = find_default_run_target ("attach");
1763 (t->to_attach) (args, from_tty);
1764 return;
1765 }
1766
1767 void
1768 find_default_create_inferior (char *exec_file, char *allargs, char **env,
1769 int from_tty)
1770 {
1771 struct target_ops *t;
1772
1773 t = find_default_run_target ("run");
1774 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
1775 return;
1776 }
1777
1778 static int
1779 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1780 {
1781 return (len <= TYPE_LENGTH (builtin_type_void_data_ptr));
1782 }
1783
1784 static int
1785 return_zero (void)
1786 {
1787 return 0;
1788 }
1789
1790 static int
1791 return_one (void)
1792 {
1793 return 1;
1794 }
1795
1796 static int
1797 return_minus_one (void)
1798 {
1799 return -1;
1800 }
1801
1802 /*
1803 * Resize the to_sections pointer. Also make sure that anyone that
1804 * was holding on to an old value of it gets updated.
1805 * Returns the old size.
1806 */
1807
1808 int
1809 target_resize_to_sections (struct target_ops *target, int num_added)
1810 {
1811 struct target_ops **t;
1812 struct section_table *old_value;
1813 int old_count;
1814
1815 old_value = target->to_sections;
1816
1817 if (target->to_sections)
1818 {
1819 old_count = target->to_sections_end - target->to_sections;
1820 target->to_sections = (struct section_table *)
1821 xrealloc ((char *) target->to_sections,
1822 (sizeof (struct section_table)) * (num_added + old_count));
1823 }
1824 else
1825 {
1826 old_count = 0;
1827 target->to_sections = (struct section_table *)
1828 xmalloc ((sizeof (struct section_table)) * num_added);
1829 }
1830 target->to_sections_end = target->to_sections + (num_added + old_count);
1831
1832 /* Check to see if anyone else was pointing to this structure.
1833 If old_value was null, then no one was. */
1834
1835 if (old_value)
1836 {
1837 for (t = target_structs; t < target_structs + target_struct_size;
1838 ++t)
1839 {
1840 if ((*t)->to_sections == old_value)
1841 {
1842 (*t)->to_sections = target->to_sections;
1843 (*t)->to_sections_end = target->to_sections_end;
1844 }
1845 }
1846 /* There is a flattened view of the target stack in current_target,
1847 so its to_sections pointer might also need updating. */
1848 if (current_target.to_sections == old_value)
1849 {
1850 current_target.to_sections = target->to_sections;
1851 current_target.to_sections_end = target->to_sections_end;
1852 }
1853 }
1854
1855 return old_count;
1856
1857 }
1858
1859 /* Remove all target sections taken from ABFD.
1860
1861 Scan the current target stack for targets whose section tables
1862 refer to sections from BFD, and remove those sections. We use this
1863 when we notice that the inferior has unloaded a shared object, for
1864 example. */
1865 void
1866 remove_target_sections (bfd *abfd)
1867 {
1868 struct target_ops **t;
1869
1870 for (t = target_structs; t < target_structs + target_struct_size; t++)
1871 {
1872 struct section_table *src, *dest;
1873
1874 dest = (*t)->to_sections;
1875 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
1876 if (src->bfd != abfd)
1877 {
1878 /* Keep this section. */
1879 if (dest < src) *dest = *src;
1880 dest++;
1881 }
1882
1883 /* If we've dropped any sections, resize the section table. */
1884 if (dest < src)
1885 target_resize_to_sections (*t, dest - src);
1886 }
1887 }
1888
1889
1890
1891
1892 /* Find a single runnable target in the stack and return it. If for
1893 some reason there is more than one, return NULL. */
1894
1895 struct target_ops *
1896 find_run_target (void)
1897 {
1898 struct target_ops **t;
1899 struct target_ops *runable = NULL;
1900 int count;
1901
1902 count = 0;
1903
1904 for (t = target_structs; t < target_structs + target_struct_size; ++t)
1905 {
1906 if ((*t)->to_can_run && target_can_run (*t))
1907 {
1908 runable = *t;
1909 ++count;
1910 }
1911 }
1912
1913 return (count == 1 ? runable : NULL);
1914 }
1915
1916 /* Find a single core_stratum target in the list of targets and return it.
1917 If for some reason there is more than one, return NULL. */
1918
1919 struct target_ops *
1920 find_core_target (void)
1921 {
1922 struct target_ops **t;
1923 struct target_ops *runable = NULL;
1924 int count;
1925
1926 count = 0;
1927
1928 for (t = target_structs; t < target_structs + target_struct_size;
1929 ++t)
1930 {
1931 if ((*t)->to_stratum == core_stratum)
1932 {
1933 runable = *t;
1934 ++count;
1935 }
1936 }
1937
1938 return (count == 1 ? runable : NULL);
1939 }
1940
1941 /*
1942 * Find the next target down the stack from the specified target.
1943 */
1944
1945 struct target_ops *
1946 find_target_beneath (struct target_ops *t)
1947 {
1948 return t->beneath;
1949 }
1950
1951 \f
1952 /* The inferior process has died. Long live the inferior! */
1953
1954 void
1955 generic_mourn_inferior (void)
1956 {
1957 extern int show_breakpoint_hit_counts;
1958
1959 inferior_ptid = null_ptid;
1960 attach_flag = 0;
1961 breakpoint_init_inferior (inf_exited);
1962 registers_changed ();
1963
1964 reopen_exec_file ();
1965 reinit_frame_cache ();
1966
1967 /* It is confusing to the user for ignore counts to stick around
1968 from previous runs of the inferior. So clear them. */
1969 /* However, it is more confusing for the ignore counts to disappear when
1970 using hit counts. So don't clear them if we're counting hits. */
1971 if (!show_breakpoint_hit_counts)
1972 breakpoint_clear_ignore_counts ();
1973
1974 if (deprecated_detach_hook)
1975 deprecated_detach_hook ();
1976 }
1977 \f
1978 /* Helper function for child_wait and the derivatives of child_wait.
1979 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
1980 translation of that in OURSTATUS. */
1981 void
1982 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
1983 {
1984 if (WIFEXITED (hoststatus))
1985 {
1986 ourstatus->kind = TARGET_WAITKIND_EXITED;
1987 ourstatus->value.integer = WEXITSTATUS (hoststatus);
1988 }
1989 else if (!WIFSTOPPED (hoststatus))
1990 {
1991 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
1992 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
1993 }
1994 else
1995 {
1996 ourstatus->kind = TARGET_WAITKIND_STOPPED;
1997 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
1998 }
1999 }
2000 \f
2001 /* Returns zero to leave the inferior alone, one to interrupt it. */
2002 int (*target_activity_function) (void);
2003 int target_activity_fd;
2004 \f
2005 /* Convert a normal process ID to a string. Returns the string in a
2006 static buffer. */
2007
2008 char *
2009 normal_pid_to_str (ptid_t ptid)
2010 {
2011 static char buf[32];
2012
2013 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2014 return buf;
2015 }
2016
2017 /* Error-catcher for target_find_memory_regions */
2018 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2019 {
2020 error (_("No target."));
2021 return 0;
2022 }
2023
2024 /* Error-catcher for target_make_corefile_notes */
2025 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2026 {
2027 error (_("No target."));
2028 return NULL;
2029 }
2030
2031 /* Set up the handful of non-empty slots needed by the dummy target
2032 vector. */
2033
2034 static void
2035 init_dummy_target (void)
2036 {
2037 dummy_target.to_shortname = "None";
2038 dummy_target.to_longname = "None";
2039 dummy_target.to_doc = "";
2040 dummy_target.to_attach = find_default_attach;
2041 dummy_target.to_create_inferior = find_default_create_inferior;
2042 dummy_target.to_pid_to_str = normal_pid_to_str;
2043 dummy_target.to_stratum = dummy_stratum;
2044 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2045 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2046 dummy_target.to_xfer_partial = default_xfer_partial;
2047 dummy_target.to_magic = OPS_MAGIC;
2048 }
2049 \f
2050 static void
2051 debug_to_open (char *args, int from_tty)
2052 {
2053 debug_target.to_open (args, from_tty);
2054
2055 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2056 }
2057
2058 static void
2059 debug_to_close (int quitting)
2060 {
2061 target_close (&debug_target, quitting);
2062 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2063 }
2064
2065 void
2066 target_close (struct target_ops *targ, int quitting)
2067 {
2068 if (targ->to_xclose != NULL)
2069 targ->to_xclose (targ, quitting);
2070 else if (targ->to_close != NULL)
2071 targ->to_close (quitting);
2072 }
2073
2074 static void
2075 debug_to_attach (char *args, int from_tty)
2076 {
2077 debug_target.to_attach (args, from_tty);
2078
2079 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2080 }
2081
2082
2083 static void
2084 debug_to_post_attach (int pid)
2085 {
2086 debug_target.to_post_attach (pid);
2087
2088 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2089 }
2090
2091 static void
2092 debug_to_detach (char *args, int from_tty)
2093 {
2094 debug_target.to_detach (args, from_tty);
2095
2096 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2097 }
2098
2099 static void
2100 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2101 {
2102 debug_target.to_resume (ptid, step, siggnal);
2103
2104 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2105 step ? "step" : "continue",
2106 target_signal_to_name (siggnal));
2107 }
2108
2109 static ptid_t
2110 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2111 {
2112 ptid_t retval;
2113
2114 retval = debug_target.to_wait (ptid, status);
2115
2116 fprintf_unfiltered (gdb_stdlog,
2117 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2118 PIDGET (retval));
2119 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2120 switch (status->kind)
2121 {
2122 case TARGET_WAITKIND_EXITED:
2123 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2124 status->value.integer);
2125 break;
2126 case TARGET_WAITKIND_STOPPED:
2127 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2128 target_signal_to_name (status->value.sig));
2129 break;
2130 case TARGET_WAITKIND_SIGNALLED:
2131 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2132 target_signal_to_name (status->value.sig));
2133 break;
2134 case TARGET_WAITKIND_LOADED:
2135 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2136 break;
2137 case TARGET_WAITKIND_FORKED:
2138 fprintf_unfiltered (gdb_stdlog, "forked\n");
2139 break;
2140 case TARGET_WAITKIND_VFORKED:
2141 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2142 break;
2143 case TARGET_WAITKIND_EXECD:
2144 fprintf_unfiltered (gdb_stdlog, "execd\n");
2145 break;
2146 case TARGET_WAITKIND_SPURIOUS:
2147 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2148 break;
2149 default:
2150 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2151 break;
2152 }
2153
2154 return retval;
2155 }
2156
2157 static void
2158 debug_print_register (const char * func,
2159 struct regcache *regcache, int regno)
2160 {
2161 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2162 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2163 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2164 + gdbarch_num_pseudo_regs (gdbarch)
2165 && gdbarch_register_name (gdbarch, regno) != NULL
2166 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2167 fprintf_unfiltered (gdb_stdlog, "(%s)",
2168 gdbarch_register_name (gdbarch, regno));
2169 else
2170 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2171 if (regno >= 0)
2172 {
2173 int i, size = register_size (gdbarch, regno);
2174 unsigned char buf[MAX_REGISTER_SIZE];
2175 regcache_cooked_read (regcache, regno, buf);
2176 fprintf_unfiltered (gdb_stdlog, " = ");
2177 for (i = 0; i < size; i++)
2178 {
2179 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2180 }
2181 if (size <= sizeof (LONGEST))
2182 {
2183 ULONGEST val = extract_unsigned_integer (buf, size);
2184 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
2185 paddr_nz (val), paddr_d (val));
2186 }
2187 }
2188 fprintf_unfiltered (gdb_stdlog, "\n");
2189 }
2190
2191 static void
2192 debug_to_fetch_registers (struct regcache *regcache, int regno)
2193 {
2194 debug_target.to_fetch_registers (regcache, regno);
2195 debug_print_register ("target_fetch_registers", regcache, regno);
2196 }
2197
2198 static void
2199 debug_to_store_registers (struct regcache *regcache, int regno)
2200 {
2201 debug_target.to_store_registers (regcache, regno);
2202 debug_print_register ("target_store_registers", regcache, regno);
2203 fprintf_unfiltered (gdb_stdlog, "\n");
2204 }
2205
2206 static void
2207 debug_to_prepare_to_store (struct regcache *regcache)
2208 {
2209 debug_target.to_prepare_to_store (regcache);
2210
2211 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2212 }
2213
2214 static int
2215 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2216 int write, struct mem_attrib *attrib,
2217 struct target_ops *target)
2218 {
2219 int retval;
2220
2221 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2222 attrib, target);
2223
2224 fprintf_unfiltered (gdb_stdlog,
2225 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2226 (unsigned int) memaddr, /* possable truncate long long */
2227 len, write ? "write" : "read", retval);
2228
2229 if (retval > 0)
2230 {
2231 int i;
2232
2233 fputs_unfiltered (", bytes =", gdb_stdlog);
2234 for (i = 0; i < retval; i++)
2235 {
2236 if ((((long) &(myaddr[i])) & 0xf) == 0)
2237 {
2238 if (targetdebug < 2 && i > 0)
2239 {
2240 fprintf_unfiltered (gdb_stdlog, " ...");
2241 break;
2242 }
2243 fprintf_unfiltered (gdb_stdlog, "\n");
2244 }
2245
2246 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2247 }
2248 }
2249
2250 fputc_unfiltered ('\n', gdb_stdlog);
2251
2252 return retval;
2253 }
2254
2255 static void
2256 debug_to_files_info (struct target_ops *target)
2257 {
2258 debug_target.to_files_info (target);
2259
2260 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2261 }
2262
2263 static int
2264 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2265 {
2266 int retval;
2267
2268 retval = debug_target.to_insert_breakpoint (bp_tgt);
2269
2270 fprintf_unfiltered (gdb_stdlog,
2271 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2272 (unsigned long) bp_tgt->placed_address,
2273 (unsigned long) retval);
2274 return retval;
2275 }
2276
2277 static int
2278 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2279 {
2280 int retval;
2281
2282 retval = debug_target.to_remove_breakpoint (bp_tgt);
2283
2284 fprintf_unfiltered (gdb_stdlog,
2285 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2286 (unsigned long) bp_tgt->placed_address,
2287 (unsigned long) retval);
2288 return retval;
2289 }
2290
2291 static int
2292 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2293 {
2294 int retval;
2295
2296 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2297
2298 fprintf_unfiltered (gdb_stdlog,
2299 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2300 (unsigned long) type,
2301 (unsigned long) cnt,
2302 (unsigned long) from_tty,
2303 (unsigned long) retval);
2304 return retval;
2305 }
2306
2307 static int
2308 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2309 {
2310 CORE_ADDR retval;
2311
2312 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2313
2314 fprintf_unfiltered (gdb_stdlog,
2315 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2316 (unsigned long) addr,
2317 (unsigned long) len,
2318 (unsigned long) retval);
2319 return retval;
2320 }
2321
2322 static int
2323 debug_to_stopped_by_watchpoint (void)
2324 {
2325 int retval;
2326
2327 retval = debug_target.to_stopped_by_watchpoint ();
2328
2329 fprintf_unfiltered (gdb_stdlog,
2330 "STOPPED_BY_WATCHPOINT () = %ld\n",
2331 (unsigned long) retval);
2332 return retval;
2333 }
2334
2335 static int
2336 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2337 {
2338 int retval;
2339
2340 retval = debug_target.to_stopped_data_address (target, addr);
2341
2342 fprintf_unfiltered (gdb_stdlog,
2343 "target_stopped_data_address ([0x%lx]) = %ld\n",
2344 (unsigned long)*addr,
2345 (unsigned long)retval);
2346 return retval;
2347 }
2348
2349 static int
2350 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2351 {
2352 int retval;
2353
2354 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2355
2356 fprintf_unfiltered (gdb_stdlog,
2357 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2358 (unsigned long) bp_tgt->placed_address,
2359 (unsigned long) retval);
2360 return retval;
2361 }
2362
2363 static int
2364 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2365 {
2366 int retval;
2367
2368 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2369
2370 fprintf_unfiltered (gdb_stdlog,
2371 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2372 (unsigned long) bp_tgt->placed_address,
2373 (unsigned long) retval);
2374 return retval;
2375 }
2376
2377 static int
2378 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2379 {
2380 int retval;
2381
2382 retval = debug_target.to_insert_watchpoint (addr, len, type);
2383
2384 fprintf_unfiltered (gdb_stdlog,
2385 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2386 (unsigned long) addr, len, type, (unsigned long) retval);
2387 return retval;
2388 }
2389
2390 static int
2391 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2392 {
2393 int retval;
2394
2395 retval = debug_target.to_remove_watchpoint (addr, len, type);
2396
2397 fprintf_unfiltered (gdb_stdlog,
2398 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2399 (unsigned long) addr, len, type, (unsigned long) retval);
2400 return retval;
2401 }
2402
2403 static void
2404 debug_to_terminal_init (void)
2405 {
2406 debug_target.to_terminal_init ();
2407
2408 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2409 }
2410
2411 static void
2412 debug_to_terminal_inferior (void)
2413 {
2414 debug_target.to_terminal_inferior ();
2415
2416 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2417 }
2418
2419 static void
2420 debug_to_terminal_ours_for_output (void)
2421 {
2422 debug_target.to_terminal_ours_for_output ();
2423
2424 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2425 }
2426
2427 static void
2428 debug_to_terminal_ours (void)
2429 {
2430 debug_target.to_terminal_ours ();
2431
2432 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2433 }
2434
2435 static void
2436 debug_to_terminal_save_ours (void)
2437 {
2438 debug_target.to_terminal_save_ours ();
2439
2440 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2441 }
2442
2443 static void
2444 debug_to_terminal_info (char *arg, int from_tty)
2445 {
2446 debug_target.to_terminal_info (arg, from_tty);
2447
2448 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2449 from_tty);
2450 }
2451
2452 static void
2453 debug_to_kill (void)
2454 {
2455 debug_target.to_kill ();
2456
2457 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2458 }
2459
2460 static void
2461 debug_to_load (char *args, int from_tty)
2462 {
2463 debug_target.to_load (args, from_tty);
2464
2465 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2466 }
2467
2468 static int
2469 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2470 {
2471 int retval;
2472
2473 retval = debug_target.to_lookup_symbol (name, addrp);
2474
2475 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2476
2477 return retval;
2478 }
2479
2480 static void
2481 debug_to_create_inferior (char *exec_file, char *args, char **env,
2482 int from_tty)
2483 {
2484 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2485
2486 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2487 exec_file, args, from_tty);
2488 }
2489
2490 static void
2491 debug_to_post_startup_inferior (ptid_t ptid)
2492 {
2493 debug_target.to_post_startup_inferior (ptid);
2494
2495 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2496 PIDGET (ptid));
2497 }
2498
2499 static void
2500 debug_to_acknowledge_created_inferior (int pid)
2501 {
2502 debug_target.to_acknowledge_created_inferior (pid);
2503
2504 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2505 pid);
2506 }
2507
2508 static void
2509 debug_to_insert_fork_catchpoint (int pid)
2510 {
2511 debug_target.to_insert_fork_catchpoint (pid);
2512
2513 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2514 pid);
2515 }
2516
2517 static int
2518 debug_to_remove_fork_catchpoint (int pid)
2519 {
2520 int retval;
2521
2522 retval = debug_target.to_remove_fork_catchpoint (pid);
2523
2524 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2525 pid, retval);
2526
2527 return retval;
2528 }
2529
2530 static void
2531 debug_to_insert_vfork_catchpoint (int pid)
2532 {
2533 debug_target.to_insert_vfork_catchpoint (pid);
2534
2535 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2536 pid);
2537 }
2538
2539 static int
2540 debug_to_remove_vfork_catchpoint (int pid)
2541 {
2542 int retval;
2543
2544 retval = debug_target.to_remove_vfork_catchpoint (pid);
2545
2546 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2547 pid, retval);
2548
2549 return retval;
2550 }
2551
2552 static void
2553 debug_to_insert_exec_catchpoint (int pid)
2554 {
2555 debug_target.to_insert_exec_catchpoint (pid);
2556
2557 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2558 pid);
2559 }
2560
2561 static int
2562 debug_to_remove_exec_catchpoint (int pid)
2563 {
2564 int retval;
2565
2566 retval = debug_target.to_remove_exec_catchpoint (pid);
2567
2568 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2569 pid, retval);
2570
2571 return retval;
2572 }
2573
2574 static int
2575 debug_to_reported_exec_events_per_exec_call (void)
2576 {
2577 int reported_exec_events;
2578
2579 reported_exec_events = debug_target.to_reported_exec_events_per_exec_call ();
2580
2581 fprintf_unfiltered (gdb_stdlog,
2582 "target_reported_exec_events_per_exec_call () = %d\n",
2583 reported_exec_events);
2584
2585 return reported_exec_events;
2586 }
2587
2588 static int
2589 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2590 {
2591 int has_exited;
2592
2593 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2594
2595 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2596 pid, wait_status, *exit_status, has_exited);
2597
2598 return has_exited;
2599 }
2600
2601 static void
2602 debug_to_mourn_inferior (void)
2603 {
2604 debug_target.to_mourn_inferior ();
2605
2606 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2607 }
2608
2609 static int
2610 debug_to_can_run (void)
2611 {
2612 int retval;
2613
2614 retval = debug_target.to_can_run ();
2615
2616 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2617
2618 return retval;
2619 }
2620
2621 static void
2622 debug_to_notice_signals (ptid_t ptid)
2623 {
2624 debug_target.to_notice_signals (ptid);
2625
2626 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2627 PIDGET (ptid));
2628 }
2629
2630 static int
2631 debug_to_thread_alive (ptid_t ptid)
2632 {
2633 int retval;
2634
2635 retval = debug_target.to_thread_alive (ptid);
2636
2637 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2638 PIDGET (ptid), retval);
2639
2640 return retval;
2641 }
2642
2643 static void
2644 debug_to_find_new_threads (void)
2645 {
2646 debug_target.to_find_new_threads ();
2647
2648 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2649 }
2650
2651 static void
2652 debug_to_stop (void)
2653 {
2654 debug_target.to_stop ();
2655
2656 fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
2657 }
2658
2659 static void
2660 debug_to_rcmd (char *command,
2661 struct ui_file *outbuf)
2662 {
2663 debug_target.to_rcmd (command, outbuf);
2664 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
2665 }
2666
2667 static char *
2668 debug_to_pid_to_exec_file (int pid)
2669 {
2670 char *exec_file;
2671
2672 exec_file = debug_target.to_pid_to_exec_file (pid);
2673
2674 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
2675 pid, exec_file);
2676
2677 return exec_file;
2678 }
2679
2680 static void
2681 setup_target_debug (void)
2682 {
2683 memcpy (&debug_target, &current_target, sizeof debug_target);
2684
2685 current_target.to_open = debug_to_open;
2686 current_target.to_close = debug_to_close;
2687 current_target.to_attach = debug_to_attach;
2688 current_target.to_post_attach = debug_to_post_attach;
2689 current_target.to_detach = debug_to_detach;
2690 current_target.to_resume = debug_to_resume;
2691 current_target.to_wait = debug_to_wait;
2692 current_target.to_fetch_registers = debug_to_fetch_registers;
2693 current_target.to_store_registers = debug_to_store_registers;
2694 current_target.to_prepare_to_store = debug_to_prepare_to_store;
2695 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
2696 current_target.to_files_info = debug_to_files_info;
2697 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
2698 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
2699 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
2700 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
2701 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
2702 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
2703 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
2704 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
2705 current_target.to_stopped_data_address = debug_to_stopped_data_address;
2706 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
2707 current_target.to_terminal_init = debug_to_terminal_init;
2708 current_target.to_terminal_inferior = debug_to_terminal_inferior;
2709 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
2710 current_target.to_terminal_ours = debug_to_terminal_ours;
2711 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
2712 current_target.to_terminal_info = debug_to_terminal_info;
2713 current_target.to_kill = debug_to_kill;
2714 current_target.to_load = debug_to_load;
2715 current_target.to_lookup_symbol = debug_to_lookup_symbol;
2716 current_target.to_create_inferior = debug_to_create_inferior;
2717 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
2718 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
2719 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
2720 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
2721 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
2722 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
2723 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
2724 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
2725 current_target.to_reported_exec_events_per_exec_call = debug_to_reported_exec_events_per_exec_call;
2726 current_target.to_has_exited = debug_to_has_exited;
2727 current_target.to_mourn_inferior = debug_to_mourn_inferior;
2728 current_target.to_can_run = debug_to_can_run;
2729 current_target.to_notice_signals = debug_to_notice_signals;
2730 current_target.to_thread_alive = debug_to_thread_alive;
2731 current_target.to_find_new_threads = debug_to_find_new_threads;
2732 current_target.to_stop = debug_to_stop;
2733 current_target.to_rcmd = debug_to_rcmd;
2734 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
2735 }
2736 \f
2737
2738 static char targ_desc[] =
2739 "Names of targets and files being debugged.\n\
2740 Shows the entire stack of targets currently in use (including the exec-file,\n\
2741 core-file, and process, if any), as well as the symbol file name.";
2742
2743 static void
2744 do_monitor_command (char *cmd,
2745 int from_tty)
2746 {
2747 if ((current_target.to_rcmd
2748 == (void (*) (char *, struct ui_file *)) tcomplain)
2749 || (current_target.to_rcmd == debug_to_rcmd
2750 && (debug_target.to_rcmd
2751 == (void (*) (char *, struct ui_file *)) tcomplain)))
2752 error (_("\"monitor\" command not supported by this target."));
2753 target_rcmd (cmd, gdb_stdtarg);
2754 }
2755
2756 /* Print the name of each layers of our target stack. */
2757
2758 static void
2759 maintenance_print_target_stack (char *cmd, int from_tty)
2760 {
2761 struct target_ops *t;
2762
2763 printf_filtered (_("The current target stack is:\n"));
2764
2765 for (t = target_stack; t != NULL; t = t->beneath)
2766 {
2767 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
2768 }
2769 }
2770
2771 void
2772 initialize_targets (void)
2773 {
2774 init_dummy_target ();
2775 push_target (&dummy_target);
2776
2777 add_info ("target", target_info, targ_desc);
2778 add_info ("files", target_info, targ_desc);
2779
2780 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
2781 Set target debugging."), _("\
2782 Show target debugging."), _("\
2783 When non-zero, target debugging is enabled. Higher numbers are more\n\
2784 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
2785 command."),
2786 NULL,
2787 show_targetdebug,
2788 &setdebuglist, &showdebuglist);
2789
2790 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
2791 &trust_readonly, _("\
2792 Set mode for reading from readonly sections."), _("\
2793 Show mode for reading from readonly sections."), _("\
2794 When this mode is on, memory reads from readonly sections (such as .text)\n\
2795 will be read from the object file instead of from the target. This will\n\
2796 result in significant performance improvement for remote targets."),
2797 NULL,
2798 show_trust_readonly,
2799 &setlist, &showlist);
2800
2801 add_com ("monitor", class_obscure, do_monitor_command,
2802 _("Send a command to the remote monitor (remote targets only)."));
2803
2804 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
2805 _("Print the name of each layer of the internal target stack."),
2806 &maintenanceprintlist);
2807
2808 target_dcache = dcache_init ();
2809 }
This page took 0.131106 seconds and 4 git commands to generate.