Don't update target_dcache if it is not initialized
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "gdbcmd.h"
27 #include "symtab.h"
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdb_assert.h"
36 #include "gdbcore.h"
37 #include "exceptions.h"
38 #include "target-descriptions.h"
39 #include "gdbthread.h"
40 #include "solib.h"
41 #include "exec.h"
42 #include "inline-frame.h"
43 #include "tracepoint.h"
44 #include "gdb/fileio.h"
45 #include "agent.h"
46
47 static void target_info (char *, int);
48
49 static void default_terminal_info (const char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static void tcomplain (void) ATTRIBUTE_NORETURN;
57
58 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
59
60 static int return_zero (void);
61
62 static int return_one (void);
63
64 static int return_minus_one (void);
65
66 void target_ignore (void);
67
68 static void target_command (char *, int);
69
70 static struct target_ops *find_default_run_target (char *);
71
72 static LONGEST default_xfer_partial (struct target_ops *ops,
73 enum target_object object,
74 const char *annex, gdb_byte *readbuf,
75 const gdb_byte *writebuf,
76 ULONGEST offset, LONGEST len);
77
78 static LONGEST current_xfer_partial (struct target_ops *ops,
79 enum target_object object,
80 const char *annex, gdb_byte *readbuf,
81 const gdb_byte *writebuf,
82 ULONGEST offset, LONGEST len);
83
84 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
85 ptid_t ptid);
86
87 static void init_dummy_target (void);
88
89 static struct target_ops debug_target;
90
91 static void debug_to_open (char *, int);
92
93 static void debug_to_prepare_to_store (struct regcache *);
94
95 static void debug_to_files_info (struct target_ops *);
96
97 static int debug_to_insert_breakpoint (struct gdbarch *,
98 struct bp_target_info *);
99
100 static int debug_to_remove_breakpoint (struct gdbarch *,
101 struct bp_target_info *);
102
103 static int debug_to_can_use_hw_breakpoint (int, int, int);
104
105 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
106 struct bp_target_info *);
107
108 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
109 struct bp_target_info *);
110
111 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
112 struct expression *);
113
114 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
115 struct expression *);
116
117 static int debug_to_stopped_by_watchpoint (void);
118
119 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
120
121 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
122 CORE_ADDR, CORE_ADDR, int);
123
124 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
125
126 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
127 struct expression *);
128
129 static void debug_to_terminal_init (void);
130
131 static void debug_to_terminal_inferior (void);
132
133 static void debug_to_terminal_ours_for_output (void);
134
135 static void debug_to_terminal_save_ours (void);
136
137 static void debug_to_terminal_ours (void);
138
139 static void debug_to_load (char *, int);
140
141 static int debug_to_can_run (void);
142
143 static void debug_to_stop (ptid_t);
144
145 /* Pointer to array of target architecture structures; the size of the
146 array; the current index into the array; the allocated size of the
147 array. */
148 struct target_ops **target_structs;
149 unsigned target_struct_size;
150 unsigned target_struct_allocsize;
151 #define DEFAULT_ALLOCSIZE 10
152
153 /* The initial current target, so that there is always a semi-valid
154 current target. */
155
156 static struct target_ops dummy_target;
157
158 /* Top of target stack. */
159
160 static struct target_ops *target_stack;
161
162 /* The target structure we are currently using to talk to a process
163 or file or whatever "inferior" we have. */
164
165 struct target_ops current_target;
166
167 /* Command list for target. */
168
169 static struct cmd_list_element *targetlist = NULL;
170
171 /* Nonzero if we should trust readonly sections from the
172 executable when reading memory. */
173
174 static int trust_readonly = 0;
175
176 /* Nonzero if we should show true memory content including
177 memory breakpoint inserted by gdb. */
178
179 static int show_memory_breakpoints = 0;
180
181 /* These globals control whether GDB attempts to perform these
182 operations; they are useful for targets that need to prevent
183 inadvertant disruption, such as in non-stop mode. */
184
185 int may_write_registers = 1;
186
187 int may_write_memory = 1;
188
189 int may_insert_breakpoints = 1;
190
191 int may_insert_tracepoints = 1;
192
193 int may_insert_fast_tracepoints = 1;
194
195 int may_stop = 1;
196
197 /* Non-zero if we want to see trace of target level stuff. */
198
199 static unsigned int targetdebug = 0;
200 static void
201 show_targetdebug (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
205 }
206
207 static void setup_target_debug (void);
208
209 /* The option sets this. */
210 static int stack_cache_enabled_p_1 = 1;
211 /* And set_stack_cache_enabled_p updates this.
212 The reason for the separation is so that we don't flush the cache for
213 on->on transitions. */
214 static int stack_cache_enabled_p = 1;
215
216 /* This is called *after* the stack-cache has been set.
217 Flush the cache for off->on and on->off transitions.
218 There's no real need to flush the cache for on->off transitions,
219 except cleanliness. */
220
221 static void
222 set_stack_cache_enabled_p (char *args, int from_tty,
223 struct cmd_list_element *c)
224 {
225 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
226 target_dcache_invalidate ();
227
228 stack_cache_enabled_p = stack_cache_enabled_p_1;
229 }
230
231 static void
232 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
233 struct cmd_list_element *c, const char *value)
234 {
235 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
236 }
237
238 /* Cache of memory operations, to speed up remote access. */
239 static DCACHE *target_dcache;
240
241 /* Target dcache is initialized or not. */
242
243 static int
244 target_dcache_init_p (void)
245 {
246 return (target_dcache != NULL);
247 }
248
249 /* Invalidate the target dcache. */
250
251 void
252 target_dcache_invalidate (void)
253 {
254 if (target_dcache_init_p ())
255 dcache_invalidate (target_dcache);
256 }
257
258 /* Return the target dcache. Return NULL if target dcache is not
259 initialized yet. */
260
261 DCACHE *
262 target_dcache_get (void)
263 {
264 return target_dcache;
265 }
266
267 /* Return the target dcache. If it is not initialized yet, initialize
268 it. */
269
270 static DCACHE *
271 target_dcache_get_or_init (void)
272 {
273 if (!target_dcache_init_p ())
274 target_dcache = dcache_init ();
275
276 return target_dcache;
277 }
278
279 /* The user just typed 'target' without the name of a target. */
280
281 static void
282 target_command (char *arg, int from_tty)
283 {
284 fputs_filtered ("Argument required (target name). Try `help target'\n",
285 gdb_stdout);
286 }
287
288 /* Default target_has_* methods for process_stratum targets. */
289
290 int
291 default_child_has_all_memory (struct target_ops *ops)
292 {
293 /* If no inferior selected, then we can't read memory here. */
294 if (ptid_equal (inferior_ptid, null_ptid))
295 return 0;
296
297 return 1;
298 }
299
300 int
301 default_child_has_memory (struct target_ops *ops)
302 {
303 /* If no inferior selected, then we can't read memory here. */
304 if (ptid_equal (inferior_ptid, null_ptid))
305 return 0;
306
307 return 1;
308 }
309
310 int
311 default_child_has_stack (struct target_ops *ops)
312 {
313 /* If no inferior selected, there's no stack. */
314 if (ptid_equal (inferior_ptid, null_ptid))
315 return 0;
316
317 return 1;
318 }
319
320 int
321 default_child_has_registers (struct target_ops *ops)
322 {
323 /* Can't read registers from no inferior. */
324 if (ptid_equal (inferior_ptid, null_ptid))
325 return 0;
326
327 return 1;
328 }
329
330 int
331 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
332 {
333 /* If there's no thread selected, then we can't make it run through
334 hoops. */
335 if (ptid_equal (the_ptid, null_ptid))
336 return 0;
337
338 return 1;
339 }
340
341
342 int
343 target_has_all_memory_1 (void)
344 {
345 struct target_ops *t;
346
347 for (t = current_target.beneath; t != NULL; t = t->beneath)
348 if (t->to_has_all_memory (t))
349 return 1;
350
351 return 0;
352 }
353
354 int
355 target_has_memory_1 (void)
356 {
357 struct target_ops *t;
358
359 for (t = current_target.beneath; t != NULL; t = t->beneath)
360 if (t->to_has_memory (t))
361 return 1;
362
363 return 0;
364 }
365
366 int
367 target_has_stack_1 (void)
368 {
369 struct target_ops *t;
370
371 for (t = current_target.beneath; t != NULL; t = t->beneath)
372 if (t->to_has_stack (t))
373 return 1;
374
375 return 0;
376 }
377
378 int
379 target_has_registers_1 (void)
380 {
381 struct target_ops *t;
382
383 for (t = current_target.beneath; t != NULL; t = t->beneath)
384 if (t->to_has_registers (t))
385 return 1;
386
387 return 0;
388 }
389
390 int
391 target_has_execution_1 (ptid_t the_ptid)
392 {
393 struct target_ops *t;
394
395 for (t = current_target.beneath; t != NULL; t = t->beneath)
396 if (t->to_has_execution (t, the_ptid))
397 return 1;
398
399 return 0;
400 }
401
402 int
403 target_has_execution_current (void)
404 {
405 return target_has_execution_1 (inferior_ptid);
406 }
407
408 /* Complete initialization of T. This ensures that various fields in
409 T are set, if needed by the target implementation. */
410
411 void
412 complete_target_initialization (struct target_ops *t)
413 {
414 /* Provide default values for all "must have" methods. */
415 if (t->to_xfer_partial == NULL)
416 t->to_xfer_partial = default_xfer_partial;
417
418 if (t->to_has_all_memory == NULL)
419 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
420
421 if (t->to_has_memory == NULL)
422 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
423
424 if (t->to_has_stack == NULL)
425 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
426
427 if (t->to_has_registers == NULL)
428 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
429
430 if (t->to_has_execution == NULL)
431 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
432 }
433
434 /* Add possible target architecture T to the list and add a new
435 command 'target T->to_shortname'. Set COMPLETER as the command's
436 completer if not NULL. */
437
438 void
439 add_target_with_completer (struct target_ops *t,
440 completer_ftype *completer)
441 {
442 struct cmd_list_element *c;
443
444 complete_target_initialization (t);
445
446 if (!target_structs)
447 {
448 target_struct_allocsize = DEFAULT_ALLOCSIZE;
449 target_structs = (struct target_ops **) xmalloc
450 (target_struct_allocsize * sizeof (*target_structs));
451 }
452 if (target_struct_size >= target_struct_allocsize)
453 {
454 target_struct_allocsize *= 2;
455 target_structs = (struct target_ops **)
456 xrealloc ((char *) target_structs,
457 target_struct_allocsize * sizeof (*target_structs));
458 }
459 target_structs[target_struct_size++] = t;
460
461 if (targetlist == NULL)
462 add_prefix_cmd ("target", class_run, target_command, _("\
463 Connect to a target machine or process.\n\
464 The first argument is the type or protocol of the target machine.\n\
465 Remaining arguments are interpreted by the target protocol. For more\n\
466 information on the arguments for a particular protocol, type\n\
467 `help target ' followed by the protocol name."),
468 &targetlist, "target ", 0, &cmdlist);
469 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
470 &targetlist);
471 if (completer != NULL)
472 set_cmd_completer (c, completer);
473 }
474
475 /* Add a possible target architecture to the list. */
476
477 void
478 add_target (struct target_ops *t)
479 {
480 add_target_with_completer (t, NULL);
481 }
482
483 /* See target.h. */
484
485 void
486 add_deprecated_target_alias (struct target_ops *t, char *alias)
487 {
488 struct cmd_list_element *c;
489 char *alt;
490
491 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
492 see PR cli/15104. */
493 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
494 alt = xstrprintf ("target %s", t->to_shortname);
495 deprecate_cmd (c, alt);
496 }
497
498 /* Stub functions */
499
500 void
501 target_ignore (void)
502 {
503 }
504
505 void
506 target_kill (void)
507 {
508 struct target_ops *t;
509
510 for (t = current_target.beneath; t != NULL; t = t->beneath)
511 if (t->to_kill != NULL)
512 {
513 if (targetdebug)
514 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
515
516 t->to_kill (t);
517 return;
518 }
519
520 noprocess ();
521 }
522
523 void
524 target_load (char *arg, int from_tty)
525 {
526 target_dcache_invalidate ();
527 (*current_target.to_load) (arg, from_tty);
528 }
529
530 void
531 target_create_inferior (char *exec_file, char *args,
532 char **env, int from_tty)
533 {
534 struct target_ops *t;
535
536 for (t = current_target.beneath; t != NULL; t = t->beneath)
537 {
538 if (t->to_create_inferior != NULL)
539 {
540 t->to_create_inferior (t, exec_file, args, env, from_tty);
541 if (targetdebug)
542 fprintf_unfiltered (gdb_stdlog,
543 "target_create_inferior (%s, %s, xxx, %d)\n",
544 exec_file, args, from_tty);
545 return;
546 }
547 }
548
549 internal_error (__FILE__, __LINE__,
550 _("could not find a target to create inferior"));
551 }
552
553 void
554 target_terminal_inferior (void)
555 {
556 /* A background resume (``run&'') should leave GDB in control of the
557 terminal. Use target_can_async_p, not target_is_async_p, since at
558 this point the target is not async yet. However, if sync_execution
559 is not set, we know it will become async prior to resume. */
560 if (target_can_async_p () && !sync_execution)
561 return;
562
563 /* If GDB is resuming the inferior in the foreground, install
564 inferior's terminal modes. */
565 (*current_target.to_terminal_inferior) ();
566 }
567
568 static int
569 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
570 struct target_ops *t)
571 {
572 errno = EIO; /* Can't read/write this location. */
573 return 0; /* No bytes handled. */
574 }
575
576 static void
577 tcomplain (void)
578 {
579 error (_("You can't do that when your target is `%s'"),
580 current_target.to_shortname);
581 }
582
583 void
584 noprocess (void)
585 {
586 error (_("You can't do that without a process to debug."));
587 }
588
589 static void
590 default_terminal_info (const char *args, int from_tty)
591 {
592 printf_unfiltered (_("No saved terminal information.\n"));
593 }
594
595 /* A default implementation for the to_get_ada_task_ptid target method.
596
597 This function builds the PTID by using both LWP and TID as part of
598 the PTID lwp and tid elements. The pid used is the pid of the
599 inferior_ptid. */
600
601 static ptid_t
602 default_get_ada_task_ptid (long lwp, long tid)
603 {
604 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
605 }
606
607 static enum exec_direction_kind
608 default_execution_direction (void)
609 {
610 if (!target_can_execute_reverse)
611 return EXEC_FORWARD;
612 else if (!target_can_async_p ())
613 return EXEC_FORWARD;
614 else
615 gdb_assert_not_reached ("\
616 to_execution_direction must be implemented for reverse async");
617 }
618
619 /* Go through the target stack from top to bottom, copying over zero
620 entries in current_target, then filling in still empty entries. In
621 effect, we are doing class inheritance through the pushed target
622 vectors.
623
624 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
625 is currently implemented, is that it discards any knowledge of
626 which target an inherited method originally belonged to.
627 Consequently, new new target methods should instead explicitly and
628 locally search the target stack for the target that can handle the
629 request. */
630
631 static void
632 update_current_target (void)
633 {
634 struct target_ops *t;
635
636 /* First, reset current's contents. */
637 memset (&current_target, 0, sizeof (current_target));
638
639 #define INHERIT(FIELD, TARGET) \
640 if (!current_target.FIELD) \
641 current_target.FIELD = (TARGET)->FIELD
642
643 for (t = target_stack; t; t = t->beneath)
644 {
645 INHERIT (to_shortname, t);
646 INHERIT (to_longname, t);
647 INHERIT (to_doc, t);
648 /* Do not inherit to_open. */
649 /* Do not inherit to_close. */
650 /* Do not inherit to_attach. */
651 INHERIT (to_post_attach, t);
652 INHERIT (to_attach_no_wait, t);
653 /* Do not inherit to_detach. */
654 /* Do not inherit to_disconnect. */
655 /* Do not inherit to_resume. */
656 /* Do not inherit to_wait. */
657 /* Do not inherit to_fetch_registers. */
658 /* Do not inherit to_store_registers. */
659 INHERIT (to_prepare_to_store, t);
660 INHERIT (deprecated_xfer_memory, t);
661 INHERIT (to_files_info, t);
662 INHERIT (to_insert_breakpoint, t);
663 INHERIT (to_remove_breakpoint, t);
664 INHERIT (to_can_use_hw_breakpoint, t);
665 INHERIT (to_insert_hw_breakpoint, t);
666 INHERIT (to_remove_hw_breakpoint, t);
667 /* Do not inherit to_ranged_break_num_registers. */
668 INHERIT (to_insert_watchpoint, t);
669 INHERIT (to_remove_watchpoint, t);
670 /* Do not inherit to_insert_mask_watchpoint. */
671 /* Do not inherit to_remove_mask_watchpoint. */
672 INHERIT (to_stopped_data_address, t);
673 INHERIT (to_have_steppable_watchpoint, t);
674 INHERIT (to_have_continuable_watchpoint, t);
675 INHERIT (to_stopped_by_watchpoint, t);
676 INHERIT (to_watchpoint_addr_within_range, t);
677 INHERIT (to_region_ok_for_hw_watchpoint, t);
678 INHERIT (to_can_accel_watchpoint_condition, t);
679 /* Do not inherit to_masked_watch_num_registers. */
680 INHERIT (to_terminal_init, t);
681 INHERIT (to_terminal_inferior, t);
682 INHERIT (to_terminal_ours_for_output, t);
683 INHERIT (to_terminal_ours, t);
684 INHERIT (to_terminal_save_ours, t);
685 INHERIT (to_terminal_info, t);
686 /* Do not inherit to_kill. */
687 INHERIT (to_load, t);
688 /* Do no inherit to_create_inferior. */
689 INHERIT (to_post_startup_inferior, t);
690 INHERIT (to_insert_fork_catchpoint, t);
691 INHERIT (to_remove_fork_catchpoint, t);
692 INHERIT (to_insert_vfork_catchpoint, t);
693 INHERIT (to_remove_vfork_catchpoint, t);
694 /* Do not inherit to_follow_fork. */
695 INHERIT (to_insert_exec_catchpoint, t);
696 INHERIT (to_remove_exec_catchpoint, t);
697 INHERIT (to_set_syscall_catchpoint, t);
698 INHERIT (to_has_exited, t);
699 /* Do not inherit to_mourn_inferior. */
700 INHERIT (to_can_run, t);
701 /* Do not inherit to_pass_signals. */
702 /* Do not inherit to_program_signals. */
703 /* Do not inherit to_thread_alive. */
704 /* Do not inherit to_find_new_threads. */
705 /* Do not inherit to_pid_to_str. */
706 INHERIT (to_extra_thread_info, t);
707 INHERIT (to_thread_name, t);
708 INHERIT (to_stop, t);
709 /* Do not inherit to_xfer_partial. */
710 INHERIT (to_rcmd, t);
711 INHERIT (to_pid_to_exec_file, t);
712 INHERIT (to_log_command, t);
713 INHERIT (to_stratum, t);
714 /* Do not inherit to_has_all_memory. */
715 /* Do not inherit to_has_memory. */
716 /* Do not inherit to_has_stack. */
717 /* Do not inherit to_has_registers. */
718 /* Do not inherit to_has_execution. */
719 INHERIT (to_has_thread_control, t);
720 INHERIT (to_can_async_p, t);
721 INHERIT (to_is_async_p, t);
722 INHERIT (to_async, t);
723 INHERIT (to_find_memory_regions, t);
724 INHERIT (to_make_corefile_notes, t);
725 INHERIT (to_get_bookmark, t);
726 INHERIT (to_goto_bookmark, t);
727 /* Do not inherit to_get_thread_local_address. */
728 INHERIT (to_can_execute_reverse, t);
729 INHERIT (to_execution_direction, t);
730 INHERIT (to_thread_architecture, t);
731 /* Do not inherit to_read_description. */
732 INHERIT (to_get_ada_task_ptid, t);
733 /* Do not inherit to_search_memory. */
734 INHERIT (to_supports_multi_process, t);
735 INHERIT (to_supports_enable_disable_tracepoint, t);
736 INHERIT (to_supports_string_tracing, t);
737 INHERIT (to_trace_init, t);
738 INHERIT (to_download_tracepoint, t);
739 INHERIT (to_can_download_tracepoint, t);
740 INHERIT (to_download_trace_state_variable, t);
741 INHERIT (to_enable_tracepoint, t);
742 INHERIT (to_disable_tracepoint, t);
743 INHERIT (to_trace_set_readonly_regions, t);
744 INHERIT (to_trace_start, t);
745 INHERIT (to_get_trace_status, t);
746 INHERIT (to_get_tracepoint_status, t);
747 INHERIT (to_trace_stop, t);
748 INHERIT (to_trace_find, t);
749 INHERIT (to_get_trace_state_variable_value, t);
750 INHERIT (to_save_trace_data, t);
751 INHERIT (to_upload_tracepoints, t);
752 INHERIT (to_upload_trace_state_variables, t);
753 INHERIT (to_get_raw_trace_data, t);
754 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
755 INHERIT (to_set_disconnected_tracing, t);
756 INHERIT (to_set_circular_trace_buffer, t);
757 INHERIT (to_set_trace_buffer_size, t);
758 INHERIT (to_set_trace_notes, t);
759 INHERIT (to_get_tib_address, t);
760 INHERIT (to_set_permissions, t);
761 INHERIT (to_static_tracepoint_marker_at, t);
762 INHERIT (to_static_tracepoint_markers_by_strid, t);
763 INHERIT (to_traceframe_info, t);
764 INHERIT (to_use_agent, t);
765 INHERIT (to_can_use_agent, t);
766 INHERIT (to_augmented_libraries_svr4_read, t);
767 INHERIT (to_magic, t);
768 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
769 INHERIT (to_can_run_breakpoint_commands, t);
770 /* Do not inherit to_memory_map. */
771 /* Do not inherit to_flash_erase. */
772 /* Do not inherit to_flash_done. */
773 }
774 #undef INHERIT
775
776 /* Clean up a target struct so it no longer has any zero pointers in
777 it. Some entries are defaulted to a method that print an error,
778 others are hard-wired to a standard recursive default. */
779
780 #define de_fault(field, value) \
781 if (!current_target.field) \
782 current_target.field = value
783
784 de_fault (to_open,
785 (void (*) (char *, int))
786 tcomplain);
787 de_fault (to_close,
788 (void (*) (void))
789 target_ignore);
790 de_fault (to_post_attach,
791 (void (*) (int))
792 target_ignore);
793 de_fault (to_prepare_to_store,
794 (void (*) (struct regcache *))
795 noprocess);
796 de_fault (deprecated_xfer_memory,
797 (int (*) (CORE_ADDR, gdb_byte *, int, int,
798 struct mem_attrib *, struct target_ops *))
799 nomemory);
800 de_fault (to_files_info,
801 (void (*) (struct target_ops *))
802 target_ignore);
803 de_fault (to_insert_breakpoint,
804 memory_insert_breakpoint);
805 de_fault (to_remove_breakpoint,
806 memory_remove_breakpoint);
807 de_fault (to_can_use_hw_breakpoint,
808 (int (*) (int, int, int))
809 return_zero);
810 de_fault (to_insert_hw_breakpoint,
811 (int (*) (struct gdbarch *, struct bp_target_info *))
812 return_minus_one);
813 de_fault (to_remove_hw_breakpoint,
814 (int (*) (struct gdbarch *, struct bp_target_info *))
815 return_minus_one);
816 de_fault (to_insert_watchpoint,
817 (int (*) (CORE_ADDR, int, int, struct expression *))
818 return_minus_one);
819 de_fault (to_remove_watchpoint,
820 (int (*) (CORE_ADDR, int, int, struct expression *))
821 return_minus_one);
822 de_fault (to_stopped_by_watchpoint,
823 (int (*) (void))
824 return_zero);
825 de_fault (to_stopped_data_address,
826 (int (*) (struct target_ops *, CORE_ADDR *))
827 return_zero);
828 de_fault (to_watchpoint_addr_within_range,
829 default_watchpoint_addr_within_range);
830 de_fault (to_region_ok_for_hw_watchpoint,
831 default_region_ok_for_hw_watchpoint);
832 de_fault (to_can_accel_watchpoint_condition,
833 (int (*) (CORE_ADDR, int, int, struct expression *))
834 return_zero);
835 de_fault (to_terminal_init,
836 (void (*) (void))
837 target_ignore);
838 de_fault (to_terminal_inferior,
839 (void (*) (void))
840 target_ignore);
841 de_fault (to_terminal_ours_for_output,
842 (void (*) (void))
843 target_ignore);
844 de_fault (to_terminal_ours,
845 (void (*) (void))
846 target_ignore);
847 de_fault (to_terminal_save_ours,
848 (void (*) (void))
849 target_ignore);
850 de_fault (to_terminal_info,
851 default_terminal_info);
852 de_fault (to_load,
853 (void (*) (char *, int))
854 tcomplain);
855 de_fault (to_post_startup_inferior,
856 (void (*) (ptid_t))
857 target_ignore);
858 de_fault (to_insert_fork_catchpoint,
859 (int (*) (int))
860 return_one);
861 de_fault (to_remove_fork_catchpoint,
862 (int (*) (int))
863 return_one);
864 de_fault (to_insert_vfork_catchpoint,
865 (int (*) (int))
866 return_one);
867 de_fault (to_remove_vfork_catchpoint,
868 (int (*) (int))
869 return_one);
870 de_fault (to_insert_exec_catchpoint,
871 (int (*) (int))
872 return_one);
873 de_fault (to_remove_exec_catchpoint,
874 (int (*) (int))
875 return_one);
876 de_fault (to_set_syscall_catchpoint,
877 (int (*) (int, int, int, int, int *))
878 return_one);
879 de_fault (to_has_exited,
880 (int (*) (int, int, int *))
881 return_zero);
882 de_fault (to_can_run,
883 return_zero);
884 de_fault (to_extra_thread_info,
885 (char *(*) (struct thread_info *))
886 return_zero);
887 de_fault (to_thread_name,
888 (char *(*) (struct thread_info *))
889 return_zero);
890 de_fault (to_stop,
891 (void (*) (ptid_t))
892 target_ignore);
893 current_target.to_xfer_partial = current_xfer_partial;
894 de_fault (to_rcmd,
895 (void (*) (char *, struct ui_file *))
896 tcomplain);
897 de_fault (to_pid_to_exec_file,
898 (char *(*) (int))
899 return_zero);
900 de_fault (to_async,
901 (void (*) (void (*) (enum inferior_event_type, void*), void*))
902 tcomplain);
903 de_fault (to_thread_architecture,
904 default_thread_architecture);
905 current_target.to_read_description = NULL;
906 de_fault (to_get_ada_task_ptid,
907 (ptid_t (*) (long, long))
908 default_get_ada_task_ptid);
909 de_fault (to_supports_multi_process,
910 (int (*) (void))
911 return_zero);
912 de_fault (to_supports_enable_disable_tracepoint,
913 (int (*) (void))
914 return_zero);
915 de_fault (to_supports_string_tracing,
916 (int (*) (void))
917 return_zero);
918 de_fault (to_trace_init,
919 (void (*) (void))
920 tcomplain);
921 de_fault (to_download_tracepoint,
922 (void (*) (struct bp_location *))
923 tcomplain);
924 de_fault (to_can_download_tracepoint,
925 (int (*) (void))
926 return_zero);
927 de_fault (to_download_trace_state_variable,
928 (void (*) (struct trace_state_variable *))
929 tcomplain);
930 de_fault (to_enable_tracepoint,
931 (void (*) (struct bp_location *))
932 tcomplain);
933 de_fault (to_disable_tracepoint,
934 (void (*) (struct bp_location *))
935 tcomplain);
936 de_fault (to_trace_set_readonly_regions,
937 (void (*) (void))
938 tcomplain);
939 de_fault (to_trace_start,
940 (void (*) (void))
941 tcomplain);
942 de_fault (to_get_trace_status,
943 (int (*) (struct trace_status *))
944 return_minus_one);
945 de_fault (to_get_tracepoint_status,
946 (void (*) (struct breakpoint *, struct uploaded_tp *))
947 tcomplain);
948 de_fault (to_trace_stop,
949 (void (*) (void))
950 tcomplain);
951 de_fault (to_trace_find,
952 (int (*) (enum trace_find_type, int, CORE_ADDR, CORE_ADDR, int *))
953 return_minus_one);
954 de_fault (to_get_trace_state_variable_value,
955 (int (*) (int, LONGEST *))
956 return_zero);
957 de_fault (to_save_trace_data,
958 (int (*) (const char *))
959 tcomplain);
960 de_fault (to_upload_tracepoints,
961 (int (*) (struct uploaded_tp **))
962 return_zero);
963 de_fault (to_upload_trace_state_variables,
964 (int (*) (struct uploaded_tsv **))
965 return_zero);
966 de_fault (to_get_raw_trace_data,
967 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
968 tcomplain);
969 de_fault (to_get_min_fast_tracepoint_insn_len,
970 (int (*) (void))
971 return_minus_one);
972 de_fault (to_set_disconnected_tracing,
973 (void (*) (int))
974 target_ignore);
975 de_fault (to_set_circular_trace_buffer,
976 (void (*) (int))
977 target_ignore);
978 de_fault (to_set_trace_buffer_size,
979 (void (*) (LONGEST))
980 target_ignore);
981 de_fault (to_set_trace_notes,
982 (int (*) (const char *, const char *, const char *))
983 return_zero);
984 de_fault (to_get_tib_address,
985 (int (*) (ptid_t, CORE_ADDR *))
986 tcomplain);
987 de_fault (to_set_permissions,
988 (void (*) (void))
989 target_ignore);
990 de_fault (to_static_tracepoint_marker_at,
991 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
992 return_zero);
993 de_fault (to_static_tracepoint_markers_by_strid,
994 (VEC(static_tracepoint_marker_p) * (*) (const char *))
995 tcomplain);
996 de_fault (to_traceframe_info,
997 (struct traceframe_info * (*) (void))
998 return_zero);
999 de_fault (to_supports_evaluation_of_breakpoint_conditions,
1000 (int (*) (void))
1001 return_zero);
1002 de_fault (to_can_run_breakpoint_commands,
1003 (int (*) (void))
1004 return_zero);
1005 de_fault (to_use_agent,
1006 (int (*) (int))
1007 tcomplain);
1008 de_fault (to_can_use_agent,
1009 (int (*) (void))
1010 return_zero);
1011 de_fault (to_augmented_libraries_svr4_read,
1012 (int (*) (void))
1013 return_zero);
1014 de_fault (to_execution_direction, default_execution_direction);
1015
1016 #undef de_fault
1017
1018 /* Finally, position the target-stack beneath the squashed
1019 "current_target". That way code looking for a non-inherited
1020 target method can quickly and simply find it. */
1021 current_target.beneath = target_stack;
1022
1023 if (targetdebug)
1024 setup_target_debug ();
1025 }
1026
1027 /* Push a new target type into the stack of the existing target accessors,
1028 possibly superseding some of the existing accessors.
1029
1030 Rather than allow an empty stack, we always have the dummy target at
1031 the bottom stratum, so we can call the function vectors without
1032 checking them. */
1033
1034 void
1035 push_target (struct target_ops *t)
1036 {
1037 struct target_ops **cur;
1038
1039 /* Check magic number. If wrong, it probably means someone changed
1040 the struct definition, but not all the places that initialize one. */
1041 if (t->to_magic != OPS_MAGIC)
1042 {
1043 fprintf_unfiltered (gdb_stderr,
1044 "Magic number of %s target struct wrong\n",
1045 t->to_shortname);
1046 internal_error (__FILE__, __LINE__,
1047 _("failed internal consistency check"));
1048 }
1049
1050 /* Find the proper stratum to install this target in. */
1051 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1052 {
1053 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
1054 break;
1055 }
1056
1057 /* If there's already targets at this stratum, remove them. */
1058 /* FIXME: cagney/2003-10-15: I think this should be popping all
1059 targets to CUR, and not just those at this stratum level. */
1060 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
1061 {
1062 /* There's already something at this stratum level. Close it,
1063 and un-hook it from the stack. */
1064 struct target_ops *tmp = (*cur);
1065
1066 (*cur) = (*cur)->beneath;
1067 tmp->beneath = NULL;
1068 target_close (tmp);
1069 }
1070
1071 /* We have removed all targets in our stratum, now add the new one. */
1072 t->beneath = (*cur);
1073 (*cur) = t;
1074
1075 update_current_target ();
1076 }
1077
1078 /* Remove a target_ops vector from the stack, wherever it may be.
1079 Return how many times it was removed (0 or 1). */
1080
1081 int
1082 unpush_target (struct target_ops *t)
1083 {
1084 struct target_ops **cur;
1085 struct target_ops *tmp;
1086
1087 if (t->to_stratum == dummy_stratum)
1088 internal_error (__FILE__, __LINE__,
1089 _("Attempt to unpush the dummy target"));
1090
1091 /* Look for the specified target. Note that we assume that a target
1092 can only occur once in the target stack. */
1093
1094 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1095 {
1096 if ((*cur) == t)
1097 break;
1098 }
1099
1100 /* If we don't find target_ops, quit. Only open targets should be
1101 closed. */
1102 if ((*cur) == NULL)
1103 return 0;
1104
1105 /* Unchain the target. */
1106 tmp = (*cur);
1107 (*cur) = (*cur)->beneath;
1108 tmp->beneath = NULL;
1109
1110 update_current_target ();
1111
1112 /* Finally close the target. Note we do this after unchaining, so
1113 any target method calls from within the target_close
1114 implementation don't end up in T anymore. */
1115 target_close (t);
1116
1117 return 1;
1118 }
1119
1120 void
1121 pop_all_targets_above (enum strata above_stratum)
1122 {
1123 while ((int) (current_target.to_stratum) > (int) above_stratum)
1124 {
1125 if (!unpush_target (target_stack))
1126 {
1127 fprintf_unfiltered (gdb_stderr,
1128 "pop_all_targets couldn't find target %s\n",
1129 target_stack->to_shortname);
1130 internal_error (__FILE__, __LINE__,
1131 _("failed internal consistency check"));
1132 break;
1133 }
1134 }
1135 }
1136
1137 void
1138 pop_all_targets (void)
1139 {
1140 pop_all_targets_above (dummy_stratum);
1141 }
1142
1143 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1144
1145 int
1146 target_is_pushed (struct target_ops *t)
1147 {
1148 struct target_ops **cur;
1149
1150 /* Check magic number. If wrong, it probably means someone changed
1151 the struct definition, but not all the places that initialize one. */
1152 if (t->to_magic != OPS_MAGIC)
1153 {
1154 fprintf_unfiltered (gdb_stderr,
1155 "Magic number of %s target struct wrong\n",
1156 t->to_shortname);
1157 internal_error (__FILE__, __LINE__,
1158 _("failed internal consistency check"));
1159 }
1160
1161 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1162 if (*cur == t)
1163 return 1;
1164
1165 return 0;
1166 }
1167
1168 /* Using the objfile specified in OBJFILE, find the address for the
1169 current thread's thread-local storage with offset OFFSET. */
1170 CORE_ADDR
1171 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1172 {
1173 volatile CORE_ADDR addr = 0;
1174 struct target_ops *target;
1175
1176 for (target = current_target.beneath;
1177 target != NULL;
1178 target = target->beneath)
1179 {
1180 if (target->to_get_thread_local_address != NULL)
1181 break;
1182 }
1183
1184 if (target != NULL
1185 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
1186 {
1187 ptid_t ptid = inferior_ptid;
1188 volatile struct gdb_exception ex;
1189
1190 TRY_CATCH (ex, RETURN_MASK_ALL)
1191 {
1192 CORE_ADDR lm_addr;
1193
1194 /* Fetch the load module address for this objfile. */
1195 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
1196 objfile);
1197 /* If it's 0, throw the appropriate exception. */
1198 if (lm_addr == 0)
1199 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1200 _("TLS load module not found"));
1201
1202 addr = target->to_get_thread_local_address (target, ptid,
1203 lm_addr, offset);
1204 }
1205 /* If an error occurred, print TLS related messages here. Otherwise,
1206 throw the error to some higher catcher. */
1207 if (ex.reason < 0)
1208 {
1209 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1210
1211 switch (ex.error)
1212 {
1213 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1214 error (_("Cannot find thread-local variables "
1215 "in this thread library."));
1216 break;
1217 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1218 if (objfile_is_library)
1219 error (_("Cannot find shared library `%s' in dynamic"
1220 " linker's load module list"), objfile_name (objfile));
1221 else
1222 error (_("Cannot find executable file `%s' in dynamic"
1223 " linker's load module list"), objfile_name (objfile));
1224 break;
1225 case TLS_NOT_ALLOCATED_YET_ERROR:
1226 if (objfile_is_library)
1227 error (_("The inferior has not yet allocated storage for"
1228 " thread-local variables in\n"
1229 "the shared library `%s'\n"
1230 "for %s"),
1231 objfile_name (objfile), target_pid_to_str (ptid));
1232 else
1233 error (_("The inferior has not yet allocated storage for"
1234 " thread-local variables in\n"
1235 "the executable `%s'\n"
1236 "for %s"),
1237 objfile_name (objfile), target_pid_to_str (ptid));
1238 break;
1239 case TLS_GENERIC_ERROR:
1240 if (objfile_is_library)
1241 error (_("Cannot find thread-local storage for %s, "
1242 "shared library %s:\n%s"),
1243 target_pid_to_str (ptid),
1244 objfile_name (objfile), ex.message);
1245 else
1246 error (_("Cannot find thread-local storage for %s, "
1247 "executable file %s:\n%s"),
1248 target_pid_to_str (ptid),
1249 objfile_name (objfile), ex.message);
1250 break;
1251 default:
1252 throw_exception (ex);
1253 break;
1254 }
1255 }
1256 }
1257 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1258 TLS is an ABI-specific thing. But we don't do that yet. */
1259 else
1260 error (_("Cannot find thread-local variables on this target"));
1261
1262 return addr;
1263 }
1264
1265 const char *
1266 target_xfer_error_to_string (enum target_xfer_error err)
1267 {
1268 #define CASE(X) case X: return #X
1269 switch (err)
1270 {
1271 CASE(TARGET_XFER_E_IO);
1272 CASE(TARGET_XFER_E_UNAVAILABLE);
1273 default:
1274 return "<unknown>";
1275 }
1276 #undef CASE
1277 };
1278
1279
1280 #undef MIN
1281 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1282
1283 /* target_read_string -- read a null terminated string, up to LEN bytes,
1284 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1285 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1286 is responsible for freeing it. Return the number of bytes successfully
1287 read. */
1288
1289 int
1290 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1291 {
1292 int tlen, offset, i;
1293 gdb_byte buf[4];
1294 int errcode = 0;
1295 char *buffer;
1296 int buffer_allocated;
1297 char *bufptr;
1298 unsigned int nbytes_read = 0;
1299
1300 gdb_assert (string);
1301
1302 /* Small for testing. */
1303 buffer_allocated = 4;
1304 buffer = xmalloc (buffer_allocated);
1305 bufptr = buffer;
1306
1307 while (len > 0)
1308 {
1309 tlen = MIN (len, 4 - (memaddr & 3));
1310 offset = memaddr & 3;
1311
1312 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1313 if (errcode != 0)
1314 {
1315 /* The transfer request might have crossed the boundary to an
1316 unallocated region of memory. Retry the transfer, requesting
1317 a single byte. */
1318 tlen = 1;
1319 offset = 0;
1320 errcode = target_read_memory (memaddr, buf, 1);
1321 if (errcode != 0)
1322 goto done;
1323 }
1324
1325 if (bufptr - buffer + tlen > buffer_allocated)
1326 {
1327 unsigned int bytes;
1328
1329 bytes = bufptr - buffer;
1330 buffer_allocated *= 2;
1331 buffer = xrealloc (buffer, buffer_allocated);
1332 bufptr = buffer + bytes;
1333 }
1334
1335 for (i = 0; i < tlen; i++)
1336 {
1337 *bufptr++ = buf[i + offset];
1338 if (buf[i + offset] == '\000')
1339 {
1340 nbytes_read += i + 1;
1341 goto done;
1342 }
1343 }
1344
1345 memaddr += tlen;
1346 len -= tlen;
1347 nbytes_read += tlen;
1348 }
1349 done:
1350 *string = buffer;
1351 if (errnop != NULL)
1352 *errnop = errcode;
1353 return nbytes_read;
1354 }
1355
1356 struct target_section_table *
1357 target_get_section_table (struct target_ops *target)
1358 {
1359 struct target_ops *t;
1360
1361 if (targetdebug)
1362 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1363
1364 for (t = target; t != NULL; t = t->beneath)
1365 if (t->to_get_section_table != NULL)
1366 return (*t->to_get_section_table) (t);
1367
1368 return NULL;
1369 }
1370
1371 /* Find a section containing ADDR. */
1372
1373 struct target_section *
1374 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1375 {
1376 struct target_section_table *table = target_get_section_table (target);
1377 struct target_section *secp;
1378
1379 if (table == NULL)
1380 return NULL;
1381
1382 for (secp = table->sections; secp < table->sections_end; secp++)
1383 {
1384 if (addr >= secp->addr && addr < secp->endaddr)
1385 return secp;
1386 }
1387 return NULL;
1388 }
1389
1390 /* Read memory from the live target, even if currently inspecting a
1391 traceframe. The return is the same as that of target_read. */
1392
1393 static LONGEST
1394 target_read_live_memory (enum target_object object,
1395 ULONGEST memaddr, gdb_byte *myaddr, LONGEST len)
1396 {
1397 LONGEST ret;
1398 struct cleanup *cleanup;
1399
1400 /* Switch momentarily out of tfind mode so to access live memory.
1401 Note that this must not clear global state, such as the frame
1402 cache, which must still remain valid for the previous traceframe.
1403 We may be _building_ the frame cache at this point. */
1404 cleanup = make_cleanup_restore_traceframe_number ();
1405 set_traceframe_number (-1);
1406
1407 ret = target_read (current_target.beneath, object, NULL,
1408 myaddr, memaddr, len);
1409
1410 do_cleanups (cleanup);
1411 return ret;
1412 }
1413
1414 /* Using the set of read-only target sections of OPS, read live
1415 read-only memory. Note that the actual reads start from the
1416 top-most target again.
1417
1418 For interface/parameters/return description see target.h,
1419 to_xfer_partial. */
1420
1421 static LONGEST
1422 memory_xfer_live_readonly_partial (struct target_ops *ops,
1423 enum target_object object,
1424 gdb_byte *readbuf, ULONGEST memaddr,
1425 LONGEST len)
1426 {
1427 struct target_section *secp;
1428 struct target_section_table *table;
1429
1430 secp = target_section_by_addr (ops, memaddr);
1431 if (secp != NULL
1432 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1433 secp->the_bfd_section)
1434 & SEC_READONLY))
1435 {
1436 struct target_section *p;
1437 ULONGEST memend = memaddr + len;
1438
1439 table = target_get_section_table (ops);
1440
1441 for (p = table->sections; p < table->sections_end; p++)
1442 {
1443 if (memaddr >= p->addr)
1444 {
1445 if (memend <= p->endaddr)
1446 {
1447 /* Entire transfer is within this section. */
1448 return target_read_live_memory (object, memaddr,
1449 readbuf, len);
1450 }
1451 else if (memaddr >= p->endaddr)
1452 {
1453 /* This section ends before the transfer starts. */
1454 continue;
1455 }
1456 else
1457 {
1458 /* This section overlaps the transfer. Just do half. */
1459 len = p->endaddr - memaddr;
1460 return target_read_live_memory (object, memaddr,
1461 readbuf, len);
1462 }
1463 }
1464 }
1465 }
1466
1467 return 0;
1468 }
1469
1470 /* Perform a partial memory transfer.
1471 For docs see target.h, to_xfer_partial. */
1472
1473 static LONGEST
1474 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1475 void *readbuf, const void *writebuf, ULONGEST memaddr,
1476 LONGEST len)
1477 {
1478 LONGEST res;
1479 int reg_len;
1480 struct mem_region *region;
1481 struct inferior *inf;
1482
1483 /* For accesses to unmapped overlay sections, read directly from
1484 files. Must do this first, as MEMADDR may need adjustment. */
1485 if (readbuf != NULL && overlay_debugging)
1486 {
1487 struct obj_section *section = find_pc_overlay (memaddr);
1488
1489 if (pc_in_unmapped_range (memaddr, section))
1490 {
1491 struct target_section_table *table
1492 = target_get_section_table (ops);
1493 const char *section_name = section->the_bfd_section->name;
1494
1495 memaddr = overlay_mapped_address (memaddr, section);
1496 return section_table_xfer_memory_partial (readbuf, writebuf,
1497 memaddr, len,
1498 table->sections,
1499 table->sections_end,
1500 section_name);
1501 }
1502 }
1503
1504 /* Try the executable files, if "trust-readonly-sections" is set. */
1505 if (readbuf != NULL && trust_readonly)
1506 {
1507 struct target_section *secp;
1508 struct target_section_table *table;
1509
1510 secp = target_section_by_addr (ops, memaddr);
1511 if (secp != NULL
1512 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1513 secp->the_bfd_section)
1514 & SEC_READONLY))
1515 {
1516 table = target_get_section_table (ops);
1517 return section_table_xfer_memory_partial (readbuf, writebuf,
1518 memaddr, len,
1519 table->sections,
1520 table->sections_end,
1521 NULL);
1522 }
1523 }
1524
1525 /* If reading unavailable memory in the context of traceframes, and
1526 this address falls within a read-only section, fallback to
1527 reading from live memory. */
1528 if (readbuf != NULL && get_traceframe_number () != -1)
1529 {
1530 VEC(mem_range_s) *available;
1531
1532 /* If we fail to get the set of available memory, then the
1533 target does not support querying traceframe info, and so we
1534 attempt reading from the traceframe anyway (assuming the
1535 target implements the old QTro packet then). */
1536 if (traceframe_available_memory (&available, memaddr, len))
1537 {
1538 struct cleanup *old_chain;
1539
1540 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1541
1542 if (VEC_empty (mem_range_s, available)
1543 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1544 {
1545 /* Don't read into the traceframe's available
1546 memory. */
1547 if (!VEC_empty (mem_range_s, available))
1548 {
1549 LONGEST oldlen = len;
1550
1551 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1552 gdb_assert (len <= oldlen);
1553 }
1554
1555 do_cleanups (old_chain);
1556
1557 /* This goes through the topmost target again. */
1558 res = memory_xfer_live_readonly_partial (ops, object,
1559 readbuf, memaddr, len);
1560 if (res > 0)
1561 return res;
1562
1563 /* No use trying further, we know some memory starting
1564 at MEMADDR isn't available. */
1565 return TARGET_XFER_E_UNAVAILABLE;
1566 }
1567
1568 /* Don't try to read more than how much is available, in
1569 case the target implements the deprecated QTro packet to
1570 cater for older GDBs (the target's knowledge of read-only
1571 sections may be outdated by now). */
1572 len = VEC_index (mem_range_s, available, 0)->length;
1573
1574 do_cleanups (old_chain);
1575 }
1576 }
1577
1578 /* Try GDB's internal data cache. */
1579 region = lookup_mem_region (memaddr);
1580 /* region->hi == 0 means there's no upper bound. */
1581 if (memaddr + len < region->hi || region->hi == 0)
1582 reg_len = len;
1583 else
1584 reg_len = region->hi - memaddr;
1585
1586 switch (region->attrib.mode)
1587 {
1588 case MEM_RO:
1589 if (writebuf != NULL)
1590 return -1;
1591 break;
1592
1593 case MEM_WO:
1594 if (readbuf != NULL)
1595 return -1;
1596 break;
1597
1598 case MEM_FLASH:
1599 /* We only support writing to flash during "load" for now. */
1600 if (writebuf != NULL)
1601 error (_("Writing to flash memory forbidden in this context"));
1602 break;
1603
1604 case MEM_NONE:
1605 return -1;
1606 }
1607
1608 if (!ptid_equal (inferior_ptid, null_ptid))
1609 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1610 else
1611 inf = NULL;
1612
1613 if (inf != NULL
1614 /* The dcache reads whole cache lines; that doesn't play well
1615 with reading from a trace buffer, because reading outside of
1616 the collected memory range fails. */
1617 && get_traceframe_number () == -1
1618 && (region->attrib.cache
1619 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1620 {
1621 DCACHE *dcache = target_dcache_get_or_init ();
1622
1623 if (readbuf != NULL)
1624 res = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1625 else
1626 /* FIXME drow/2006-08-09: If we're going to preserve const
1627 correctness dcache_xfer_memory should take readbuf and
1628 writebuf. */
1629 res = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1630 reg_len, 1);
1631 if (res <= 0)
1632 return -1;
1633 else
1634 return res;
1635 }
1636
1637 /* If none of those methods found the memory we wanted, fall back
1638 to a target partial transfer. Normally a single call to
1639 to_xfer_partial is enough; if it doesn't recognize an object
1640 it will call the to_xfer_partial of the next target down.
1641 But for memory this won't do. Memory is the only target
1642 object which can be read from more than one valid target.
1643 A core file, for instance, could have some of memory but
1644 delegate other bits to the target below it. So, we must
1645 manually try all targets. */
1646
1647 do
1648 {
1649 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1650 readbuf, writebuf, memaddr, reg_len);
1651 if (res > 0)
1652 break;
1653
1654 /* We want to continue past core files to executables, but not
1655 past a running target's memory. */
1656 if (ops->to_has_all_memory (ops))
1657 break;
1658
1659 ops = ops->beneath;
1660 }
1661 while (ops != NULL);
1662
1663 /* Make sure the cache gets updated no matter what - if we are writing
1664 to the stack. Even if this write is not tagged as such, we still need
1665 to update the cache. */
1666
1667 if (res > 0
1668 && inf != NULL
1669 && writebuf != NULL
1670 && target_dcache_init_p ()
1671 && !region->attrib.cache
1672 && stack_cache_enabled_p
1673 && object != TARGET_OBJECT_STACK_MEMORY)
1674 {
1675 DCACHE *dcache = target_dcache_get ();
1676
1677 dcache_update (dcache, memaddr, (void *) writebuf, res);
1678 }
1679
1680 /* If we still haven't got anything, return the last error. We
1681 give up. */
1682 return res;
1683 }
1684
1685 /* Perform a partial memory transfer. For docs see target.h,
1686 to_xfer_partial. */
1687
1688 static LONGEST
1689 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1690 void *readbuf, const void *writebuf, ULONGEST memaddr,
1691 LONGEST len)
1692 {
1693 int res;
1694
1695 /* Zero length requests are ok and require no work. */
1696 if (len == 0)
1697 return 0;
1698
1699 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1700 breakpoint insns, thus hiding out from higher layers whether
1701 there are software breakpoints inserted in the code stream. */
1702 if (readbuf != NULL)
1703 {
1704 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len);
1705
1706 if (res > 0 && !show_memory_breakpoints)
1707 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1708 }
1709 else
1710 {
1711 void *buf;
1712 struct cleanup *old_chain;
1713
1714 /* A large write request is likely to be partially satisfied
1715 by memory_xfer_partial_1. We will continually malloc
1716 and free a copy of the entire write request for breakpoint
1717 shadow handling even though we only end up writing a small
1718 subset of it. Cap writes to 4KB to mitigate this. */
1719 len = min (4096, len);
1720
1721 buf = xmalloc (len);
1722 old_chain = make_cleanup (xfree, buf);
1723 memcpy (buf, writebuf, len);
1724
1725 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1726 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len);
1727
1728 do_cleanups (old_chain);
1729 }
1730
1731 return res;
1732 }
1733
1734 static void
1735 restore_show_memory_breakpoints (void *arg)
1736 {
1737 show_memory_breakpoints = (uintptr_t) arg;
1738 }
1739
1740 struct cleanup *
1741 make_show_memory_breakpoints_cleanup (int show)
1742 {
1743 int current = show_memory_breakpoints;
1744
1745 show_memory_breakpoints = show;
1746 return make_cleanup (restore_show_memory_breakpoints,
1747 (void *) (uintptr_t) current);
1748 }
1749
1750 /* For docs see target.h, to_xfer_partial. */
1751
1752 LONGEST
1753 target_xfer_partial (struct target_ops *ops,
1754 enum target_object object, const char *annex,
1755 void *readbuf, const void *writebuf,
1756 ULONGEST offset, LONGEST len)
1757 {
1758 LONGEST retval;
1759
1760 gdb_assert (ops->to_xfer_partial != NULL);
1761
1762 if (writebuf && !may_write_memory)
1763 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1764 core_addr_to_string_nz (offset), plongest (len));
1765
1766 /* If this is a memory transfer, let the memory-specific code
1767 have a look at it instead. Memory transfers are more
1768 complicated. */
1769 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1770 retval = memory_xfer_partial (ops, object, readbuf,
1771 writebuf, offset, len);
1772 else
1773 {
1774 enum target_object raw_object = object;
1775
1776 /* If this is a raw memory transfer, request the normal
1777 memory object from other layers. */
1778 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1779 raw_object = TARGET_OBJECT_MEMORY;
1780
1781 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1782 writebuf, offset, len);
1783 }
1784
1785 if (targetdebug)
1786 {
1787 const unsigned char *myaddr = NULL;
1788
1789 fprintf_unfiltered (gdb_stdlog,
1790 "%s:target_xfer_partial "
1791 "(%d, %s, %s, %s, %s, %s) = %s",
1792 ops->to_shortname,
1793 (int) object,
1794 (annex ? annex : "(null)"),
1795 host_address_to_string (readbuf),
1796 host_address_to_string (writebuf),
1797 core_addr_to_string_nz (offset),
1798 plongest (len), plongest (retval));
1799
1800 if (readbuf)
1801 myaddr = readbuf;
1802 if (writebuf)
1803 myaddr = writebuf;
1804 if (retval > 0 && myaddr != NULL)
1805 {
1806 int i;
1807
1808 fputs_unfiltered (", bytes =", gdb_stdlog);
1809 for (i = 0; i < retval; i++)
1810 {
1811 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1812 {
1813 if (targetdebug < 2 && i > 0)
1814 {
1815 fprintf_unfiltered (gdb_stdlog, " ...");
1816 break;
1817 }
1818 fprintf_unfiltered (gdb_stdlog, "\n");
1819 }
1820
1821 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1822 }
1823 }
1824
1825 fputc_unfiltered ('\n', gdb_stdlog);
1826 }
1827 return retval;
1828 }
1829
1830 /* Read LEN bytes of target memory at address MEMADDR, placing the
1831 results in GDB's memory at MYADDR. Returns either 0 for success or
1832 a target_xfer_error value if any error occurs.
1833
1834 If an error occurs, no guarantee is made about the contents of the data at
1835 MYADDR. In particular, the caller should not depend upon partial reads
1836 filling the buffer with good data. There is no way for the caller to know
1837 how much good data might have been transfered anyway. Callers that can
1838 deal with partial reads should call target_read (which will retry until
1839 it makes no progress, and then return how much was transferred). */
1840
1841 int
1842 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1843 {
1844 /* Dispatch to the topmost target, not the flattened current_target.
1845 Memory accesses check target->to_has_(all_)memory, and the
1846 flattened target doesn't inherit those. */
1847 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1848 myaddr, memaddr, len) == len)
1849 return 0;
1850 else
1851 return TARGET_XFER_E_IO;
1852 }
1853
1854 /* Like target_read_memory, but specify explicitly that this is a read from
1855 the target's stack. This may trigger different cache behavior. */
1856
1857 int
1858 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1859 {
1860 /* Dispatch to the topmost target, not the flattened current_target.
1861 Memory accesses check target->to_has_(all_)memory, and the
1862 flattened target doesn't inherit those. */
1863
1864 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1865 myaddr, memaddr, len) == len)
1866 return 0;
1867 else
1868 return TARGET_XFER_E_IO;
1869 }
1870
1871 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1872 Returns either 0 for success or a target_xfer_error value if any
1873 error occurs. If an error occurs, no guarantee is made about how
1874 much data got written. Callers that can deal with partial writes
1875 should call target_write. */
1876
1877 int
1878 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1879 {
1880 /* Dispatch to the topmost target, not the flattened current_target.
1881 Memory accesses check target->to_has_(all_)memory, and the
1882 flattened target doesn't inherit those. */
1883 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1884 myaddr, memaddr, len) == len)
1885 return 0;
1886 else
1887 return TARGET_XFER_E_IO;
1888 }
1889
1890 /* Write LEN bytes from MYADDR to target raw memory at address
1891 MEMADDR. Returns either 0 for success or a target_xfer_error value
1892 if any error occurs. If an error occurs, no guarantee is made
1893 about how much data got written. Callers that can deal with
1894 partial writes should call target_write. */
1895
1896 int
1897 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1898 {
1899 /* Dispatch to the topmost target, not the flattened current_target.
1900 Memory accesses check target->to_has_(all_)memory, and the
1901 flattened target doesn't inherit those. */
1902 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1903 myaddr, memaddr, len) == len)
1904 return 0;
1905 else
1906 return TARGET_XFER_E_IO;
1907 }
1908
1909 /* Fetch the target's memory map. */
1910
1911 VEC(mem_region_s) *
1912 target_memory_map (void)
1913 {
1914 VEC(mem_region_s) *result;
1915 struct mem_region *last_one, *this_one;
1916 int ix;
1917 struct target_ops *t;
1918
1919 if (targetdebug)
1920 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1921
1922 for (t = current_target.beneath; t != NULL; t = t->beneath)
1923 if (t->to_memory_map != NULL)
1924 break;
1925
1926 if (t == NULL)
1927 return NULL;
1928
1929 result = t->to_memory_map (t);
1930 if (result == NULL)
1931 return NULL;
1932
1933 qsort (VEC_address (mem_region_s, result),
1934 VEC_length (mem_region_s, result),
1935 sizeof (struct mem_region), mem_region_cmp);
1936
1937 /* Check that regions do not overlap. Simultaneously assign
1938 a numbering for the "mem" commands to use to refer to
1939 each region. */
1940 last_one = NULL;
1941 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1942 {
1943 this_one->number = ix;
1944
1945 if (last_one && last_one->hi > this_one->lo)
1946 {
1947 warning (_("Overlapping regions in memory map: ignoring"));
1948 VEC_free (mem_region_s, result);
1949 return NULL;
1950 }
1951 last_one = this_one;
1952 }
1953
1954 return result;
1955 }
1956
1957 void
1958 target_flash_erase (ULONGEST address, LONGEST length)
1959 {
1960 struct target_ops *t;
1961
1962 for (t = current_target.beneath; t != NULL; t = t->beneath)
1963 if (t->to_flash_erase != NULL)
1964 {
1965 if (targetdebug)
1966 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1967 hex_string (address), phex (length, 0));
1968 t->to_flash_erase (t, address, length);
1969 return;
1970 }
1971
1972 tcomplain ();
1973 }
1974
1975 void
1976 target_flash_done (void)
1977 {
1978 struct target_ops *t;
1979
1980 for (t = current_target.beneath; t != NULL; t = t->beneath)
1981 if (t->to_flash_done != NULL)
1982 {
1983 if (targetdebug)
1984 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1985 t->to_flash_done (t);
1986 return;
1987 }
1988
1989 tcomplain ();
1990 }
1991
1992 static void
1993 show_trust_readonly (struct ui_file *file, int from_tty,
1994 struct cmd_list_element *c, const char *value)
1995 {
1996 fprintf_filtered (file,
1997 _("Mode for reading from readonly sections is %s.\n"),
1998 value);
1999 }
2000
2001 /* More generic transfers. */
2002
2003 static LONGEST
2004 default_xfer_partial (struct target_ops *ops, enum target_object object,
2005 const char *annex, gdb_byte *readbuf,
2006 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
2007 {
2008 if (object == TARGET_OBJECT_MEMORY
2009 && ops->deprecated_xfer_memory != NULL)
2010 /* If available, fall back to the target's
2011 "deprecated_xfer_memory" method. */
2012 {
2013 int xfered = -1;
2014
2015 errno = 0;
2016 if (writebuf != NULL)
2017 {
2018 void *buffer = xmalloc (len);
2019 struct cleanup *cleanup = make_cleanup (xfree, buffer);
2020
2021 memcpy (buffer, writebuf, len);
2022 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
2023 1/*write*/, NULL, ops);
2024 do_cleanups (cleanup);
2025 }
2026 if (readbuf != NULL)
2027 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
2028 0/*read*/, NULL, ops);
2029 if (xfered > 0)
2030 return xfered;
2031 else if (xfered == 0 && errno == 0)
2032 /* "deprecated_xfer_memory" uses 0, cross checked against
2033 ERRNO as one indication of an error. */
2034 return 0;
2035 else
2036 return -1;
2037 }
2038 else if (ops->beneath != NULL)
2039 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
2040 readbuf, writebuf, offset, len);
2041 else
2042 return -1;
2043 }
2044
2045 /* The xfer_partial handler for the topmost target. Unlike the default,
2046 it does not need to handle memory specially; it just passes all
2047 requests down the stack. */
2048
2049 static LONGEST
2050 current_xfer_partial (struct target_ops *ops, enum target_object object,
2051 const char *annex, gdb_byte *readbuf,
2052 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
2053 {
2054 if (ops->beneath != NULL)
2055 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
2056 readbuf, writebuf, offset, len);
2057 else
2058 return -1;
2059 }
2060
2061 /* Target vector read/write partial wrapper functions. */
2062
2063 static LONGEST
2064 target_read_partial (struct target_ops *ops,
2065 enum target_object object,
2066 const char *annex, gdb_byte *buf,
2067 ULONGEST offset, LONGEST len)
2068 {
2069 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
2070 }
2071
2072 static LONGEST
2073 target_write_partial (struct target_ops *ops,
2074 enum target_object object,
2075 const char *annex, const gdb_byte *buf,
2076 ULONGEST offset, LONGEST len)
2077 {
2078 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
2079 }
2080
2081 /* Wrappers to perform the full transfer. */
2082
2083 /* For docs on target_read see target.h. */
2084
2085 LONGEST
2086 target_read (struct target_ops *ops,
2087 enum target_object object,
2088 const char *annex, gdb_byte *buf,
2089 ULONGEST offset, LONGEST len)
2090 {
2091 LONGEST xfered = 0;
2092
2093 while (xfered < len)
2094 {
2095 LONGEST xfer = target_read_partial (ops, object, annex,
2096 (gdb_byte *) buf + xfered,
2097 offset + xfered, len - xfered);
2098
2099 /* Call an observer, notifying them of the xfer progress? */
2100 if (xfer == 0)
2101 return xfered;
2102 if (xfer < 0)
2103 return -1;
2104 xfered += xfer;
2105 QUIT;
2106 }
2107 return len;
2108 }
2109
2110 /* Assuming that the entire [begin, end) range of memory cannot be
2111 read, try to read whatever subrange is possible to read.
2112
2113 The function returns, in RESULT, either zero or one memory block.
2114 If there's a readable subrange at the beginning, it is completely
2115 read and returned. Any further readable subrange will not be read.
2116 Otherwise, if there's a readable subrange at the end, it will be
2117 completely read and returned. Any readable subranges before it
2118 (obviously, not starting at the beginning), will be ignored. In
2119 other cases -- either no readable subrange, or readable subrange(s)
2120 that is neither at the beginning, or end, nothing is returned.
2121
2122 The purpose of this function is to handle a read across a boundary
2123 of accessible memory in a case when memory map is not available.
2124 The above restrictions are fine for this case, but will give
2125 incorrect results if the memory is 'patchy'. However, supporting
2126 'patchy' memory would require trying to read every single byte,
2127 and it seems unacceptable solution. Explicit memory map is
2128 recommended for this case -- and target_read_memory_robust will
2129 take care of reading multiple ranges then. */
2130
2131 static void
2132 read_whatever_is_readable (struct target_ops *ops,
2133 ULONGEST begin, ULONGEST end,
2134 VEC(memory_read_result_s) **result)
2135 {
2136 gdb_byte *buf = xmalloc (end - begin);
2137 ULONGEST current_begin = begin;
2138 ULONGEST current_end = end;
2139 int forward;
2140 memory_read_result_s r;
2141
2142 /* If we previously failed to read 1 byte, nothing can be done here. */
2143 if (end - begin <= 1)
2144 {
2145 xfree (buf);
2146 return;
2147 }
2148
2149 /* Check that either first or the last byte is readable, and give up
2150 if not. This heuristic is meant to permit reading accessible memory
2151 at the boundary of accessible region. */
2152 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2153 buf, begin, 1) == 1)
2154 {
2155 forward = 1;
2156 ++current_begin;
2157 }
2158 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2159 buf + (end-begin) - 1, end - 1, 1) == 1)
2160 {
2161 forward = 0;
2162 --current_end;
2163 }
2164 else
2165 {
2166 xfree (buf);
2167 return;
2168 }
2169
2170 /* Loop invariant is that the [current_begin, current_end) was previously
2171 found to be not readable as a whole.
2172
2173 Note loop condition -- if the range has 1 byte, we can't divide the range
2174 so there's no point trying further. */
2175 while (current_end - current_begin > 1)
2176 {
2177 ULONGEST first_half_begin, first_half_end;
2178 ULONGEST second_half_begin, second_half_end;
2179 LONGEST xfer;
2180 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2181
2182 if (forward)
2183 {
2184 first_half_begin = current_begin;
2185 first_half_end = middle;
2186 second_half_begin = middle;
2187 second_half_end = current_end;
2188 }
2189 else
2190 {
2191 first_half_begin = middle;
2192 first_half_end = current_end;
2193 second_half_begin = current_begin;
2194 second_half_end = middle;
2195 }
2196
2197 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2198 buf + (first_half_begin - begin),
2199 first_half_begin,
2200 first_half_end - first_half_begin);
2201
2202 if (xfer == first_half_end - first_half_begin)
2203 {
2204 /* This half reads up fine. So, the error must be in the
2205 other half. */
2206 current_begin = second_half_begin;
2207 current_end = second_half_end;
2208 }
2209 else
2210 {
2211 /* This half is not readable. Because we've tried one byte, we
2212 know some part of this half if actually redable. Go to the next
2213 iteration to divide again and try to read.
2214
2215 We don't handle the other half, because this function only tries
2216 to read a single readable subrange. */
2217 current_begin = first_half_begin;
2218 current_end = first_half_end;
2219 }
2220 }
2221
2222 if (forward)
2223 {
2224 /* The [begin, current_begin) range has been read. */
2225 r.begin = begin;
2226 r.end = current_begin;
2227 r.data = buf;
2228 }
2229 else
2230 {
2231 /* The [current_end, end) range has been read. */
2232 LONGEST rlen = end - current_end;
2233
2234 r.data = xmalloc (rlen);
2235 memcpy (r.data, buf + current_end - begin, rlen);
2236 r.begin = current_end;
2237 r.end = end;
2238 xfree (buf);
2239 }
2240 VEC_safe_push(memory_read_result_s, (*result), &r);
2241 }
2242
2243 void
2244 free_memory_read_result_vector (void *x)
2245 {
2246 VEC(memory_read_result_s) *v = x;
2247 memory_read_result_s *current;
2248 int ix;
2249
2250 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2251 {
2252 xfree (current->data);
2253 }
2254 VEC_free (memory_read_result_s, v);
2255 }
2256
2257 VEC(memory_read_result_s) *
2258 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2259 {
2260 VEC(memory_read_result_s) *result = 0;
2261
2262 LONGEST xfered = 0;
2263 while (xfered < len)
2264 {
2265 struct mem_region *region = lookup_mem_region (offset + xfered);
2266 LONGEST rlen;
2267
2268 /* If there is no explicit region, a fake one should be created. */
2269 gdb_assert (region);
2270
2271 if (region->hi == 0)
2272 rlen = len - xfered;
2273 else
2274 rlen = region->hi - offset;
2275
2276 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2277 {
2278 /* Cannot read this region. Note that we can end up here only
2279 if the region is explicitly marked inaccessible, or
2280 'inaccessible-by-default' is in effect. */
2281 xfered += rlen;
2282 }
2283 else
2284 {
2285 LONGEST to_read = min (len - xfered, rlen);
2286 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2287
2288 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2289 (gdb_byte *) buffer,
2290 offset + xfered, to_read);
2291 /* Call an observer, notifying them of the xfer progress? */
2292 if (xfer <= 0)
2293 {
2294 /* Got an error reading full chunk. See if maybe we can read
2295 some subrange. */
2296 xfree (buffer);
2297 read_whatever_is_readable (ops, offset + xfered,
2298 offset + xfered + to_read, &result);
2299 xfered += to_read;
2300 }
2301 else
2302 {
2303 struct memory_read_result r;
2304 r.data = buffer;
2305 r.begin = offset + xfered;
2306 r.end = r.begin + xfer;
2307 VEC_safe_push (memory_read_result_s, result, &r);
2308 xfered += xfer;
2309 }
2310 QUIT;
2311 }
2312 }
2313 return result;
2314 }
2315
2316
2317 /* An alternative to target_write with progress callbacks. */
2318
2319 LONGEST
2320 target_write_with_progress (struct target_ops *ops,
2321 enum target_object object,
2322 const char *annex, const gdb_byte *buf,
2323 ULONGEST offset, LONGEST len,
2324 void (*progress) (ULONGEST, void *), void *baton)
2325 {
2326 LONGEST xfered = 0;
2327
2328 /* Give the progress callback a chance to set up. */
2329 if (progress)
2330 (*progress) (0, baton);
2331
2332 while (xfered < len)
2333 {
2334 LONGEST xfer = target_write_partial (ops, object, annex,
2335 (gdb_byte *) buf + xfered,
2336 offset + xfered, len - xfered);
2337
2338 if (xfer == 0)
2339 return xfered;
2340 if (xfer < 0)
2341 return -1;
2342
2343 if (progress)
2344 (*progress) (xfer, baton);
2345
2346 xfered += xfer;
2347 QUIT;
2348 }
2349 return len;
2350 }
2351
2352 /* For docs on target_write see target.h. */
2353
2354 LONGEST
2355 target_write (struct target_ops *ops,
2356 enum target_object object,
2357 const char *annex, const gdb_byte *buf,
2358 ULONGEST offset, LONGEST len)
2359 {
2360 return target_write_with_progress (ops, object, annex, buf, offset, len,
2361 NULL, NULL);
2362 }
2363
2364 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2365 the size of the transferred data. PADDING additional bytes are
2366 available in *BUF_P. This is a helper function for
2367 target_read_alloc; see the declaration of that function for more
2368 information. */
2369
2370 static LONGEST
2371 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2372 const char *annex, gdb_byte **buf_p, int padding)
2373 {
2374 size_t buf_alloc, buf_pos;
2375 gdb_byte *buf;
2376 LONGEST n;
2377
2378 /* This function does not have a length parameter; it reads the
2379 entire OBJECT). Also, it doesn't support objects fetched partly
2380 from one target and partly from another (in a different stratum,
2381 e.g. a core file and an executable). Both reasons make it
2382 unsuitable for reading memory. */
2383 gdb_assert (object != TARGET_OBJECT_MEMORY);
2384
2385 /* Start by reading up to 4K at a time. The target will throttle
2386 this number down if necessary. */
2387 buf_alloc = 4096;
2388 buf = xmalloc (buf_alloc);
2389 buf_pos = 0;
2390 while (1)
2391 {
2392 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2393 buf_pos, buf_alloc - buf_pos - padding);
2394 if (n < 0)
2395 {
2396 /* An error occurred. */
2397 xfree (buf);
2398 return -1;
2399 }
2400 else if (n == 0)
2401 {
2402 /* Read all there was. */
2403 if (buf_pos == 0)
2404 xfree (buf);
2405 else
2406 *buf_p = buf;
2407 return buf_pos;
2408 }
2409
2410 buf_pos += n;
2411
2412 /* If the buffer is filling up, expand it. */
2413 if (buf_alloc < buf_pos * 2)
2414 {
2415 buf_alloc *= 2;
2416 buf = xrealloc (buf, buf_alloc);
2417 }
2418
2419 QUIT;
2420 }
2421 }
2422
2423 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2424 the size of the transferred data. See the declaration in "target.h"
2425 function for more information about the return value. */
2426
2427 LONGEST
2428 target_read_alloc (struct target_ops *ops, enum target_object object,
2429 const char *annex, gdb_byte **buf_p)
2430 {
2431 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2432 }
2433
2434 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2435 returned as a string, allocated using xmalloc. If an error occurs
2436 or the transfer is unsupported, NULL is returned. Empty objects
2437 are returned as allocated but empty strings. A warning is issued
2438 if the result contains any embedded NUL bytes. */
2439
2440 char *
2441 target_read_stralloc (struct target_ops *ops, enum target_object object,
2442 const char *annex)
2443 {
2444 gdb_byte *buffer;
2445 char *bufstr;
2446 LONGEST i, transferred;
2447
2448 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2449 bufstr = (char *) buffer;
2450
2451 if (transferred < 0)
2452 return NULL;
2453
2454 if (transferred == 0)
2455 return xstrdup ("");
2456
2457 bufstr[transferred] = 0;
2458
2459 /* Check for embedded NUL bytes; but allow trailing NULs. */
2460 for (i = strlen (bufstr); i < transferred; i++)
2461 if (bufstr[i] != 0)
2462 {
2463 warning (_("target object %d, annex %s, "
2464 "contained unexpected null characters"),
2465 (int) object, annex ? annex : "(none)");
2466 break;
2467 }
2468
2469 return bufstr;
2470 }
2471
2472 /* Memory transfer methods. */
2473
2474 void
2475 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2476 LONGEST len)
2477 {
2478 /* This method is used to read from an alternate, non-current
2479 target. This read must bypass the overlay support (as symbols
2480 don't match this target), and GDB's internal cache (wrong cache
2481 for this target). */
2482 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2483 != len)
2484 memory_error (TARGET_XFER_E_IO, addr);
2485 }
2486
2487 ULONGEST
2488 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2489 int len, enum bfd_endian byte_order)
2490 {
2491 gdb_byte buf[sizeof (ULONGEST)];
2492
2493 gdb_assert (len <= sizeof (buf));
2494 get_target_memory (ops, addr, buf, len);
2495 return extract_unsigned_integer (buf, len, byte_order);
2496 }
2497
2498 int
2499 target_insert_breakpoint (struct gdbarch *gdbarch,
2500 struct bp_target_info *bp_tgt)
2501 {
2502 if (!may_insert_breakpoints)
2503 {
2504 warning (_("May not insert breakpoints"));
2505 return 1;
2506 }
2507
2508 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2509 }
2510
2511 int
2512 target_remove_breakpoint (struct gdbarch *gdbarch,
2513 struct bp_target_info *bp_tgt)
2514 {
2515 /* This is kind of a weird case to handle, but the permission might
2516 have been changed after breakpoints were inserted - in which case
2517 we should just take the user literally and assume that any
2518 breakpoints should be left in place. */
2519 if (!may_insert_breakpoints)
2520 {
2521 warning (_("May not remove breakpoints"));
2522 return 1;
2523 }
2524
2525 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2526 }
2527
2528 static void
2529 target_info (char *args, int from_tty)
2530 {
2531 struct target_ops *t;
2532 int has_all_mem = 0;
2533
2534 if (symfile_objfile != NULL)
2535 printf_unfiltered (_("Symbols from \"%s\".\n"),
2536 objfile_name (symfile_objfile));
2537
2538 for (t = target_stack; t != NULL; t = t->beneath)
2539 {
2540 if (!(*t->to_has_memory) (t))
2541 continue;
2542
2543 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2544 continue;
2545 if (has_all_mem)
2546 printf_unfiltered (_("\tWhile running this, "
2547 "GDB does not access memory from...\n"));
2548 printf_unfiltered ("%s:\n", t->to_longname);
2549 (t->to_files_info) (t);
2550 has_all_mem = (*t->to_has_all_memory) (t);
2551 }
2552 }
2553
2554 /* This function is called before any new inferior is created, e.g.
2555 by running a program, attaching, or connecting to a target.
2556 It cleans up any state from previous invocations which might
2557 change between runs. This is a subset of what target_preopen
2558 resets (things which might change between targets). */
2559
2560 void
2561 target_pre_inferior (int from_tty)
2562 {
2563 /* Clear out solib state. Otherwise the solib state of the previous
2564 inferior might have survived and is entirely wrong for the new
2565 target. This has been observed on GNU/Linux using glibc 2.3. How
2566 to reproduce:
2567
2568 bash$ ./foo&
2569 [1] 4711
2570 bash$ ./foo&
2571 [1] 4712
2572 bash$ gdb ./foo
2573 [...]
2574 (gdb) attach 4711
2575 (gdb) detach
2576 (gdb) attach 4712
2577 Cannot access memory at address 0xdeadbeef
2578 */
2579
2580 /* In some OSs, the shared library list is the same/global/shared
2581 across inferiors. If code is shared between processes, so are
2582 memory regions and features. */
2583 if (!gdbarch_has_global_solist (target_gdbarch ()))
2584 {
2585 no_shared_libraries (NULL, from_tty);
2586
2587 invalidate_target_mem_regions ();
2588
2589 target_clear_description ();
2590 }
2591
2592 agent_capability_invalidate ();
2593 }
2594
2595 /* Callback for iterate_over_inferiors. Gets rid of the given
2596 inferior. */
2597
2598 static int
2599 dispose_inferior (struct inferior *inf, void *args)
2600 {
2601 struct thread_info *thread;
2602
2603 thread = any_thread_of_process (inf->pid);
2604 if (thread)
2605 {
2606 switch_to_thread (thread->ptid);
2607
2608 /* Core inferiors actually should be detached, not killed. */
2609 if (target_has_execution)
2610 target_kill ();
2611 else
2612 target_detach (NULL, 0);
2613 }
2614
2615 return 0;
2616 }
2617
2618 /* This is to be called by the open routine before it does
2619 anything. */
2620
2621 void
2622 target_preopen (int from_tty)
2623 {
2624 dont_repeat ();
2625
2626 if (have_inferiors ())
2627 {
2628 if (!from_tty
2629 || !have_live_inferiors ()
2630 || query (_("A program is being debugged already. Kill it? ")))
2631 iterate_over_inferiors (dispose_inferior, NULL);
2632 else
2633 error (_("Program not killed."));
2634 }
2635
2636 /* Calling target_kill may remove the target from the stack. But if
2637 it doesn't (which seems like a win for UDI), remove it now. */
2638 /* Leave the exec target, though. The user may be switching from a
2639 live process to a core of the same program. */
2640 pop_all_targets_above (file_stratum);
2641
2642 target_pre_inferior (from_tty);
2643 }
2644
2645 /* Detach a target after doing deferred register stores. */
2646
2647 void
2648 target_detach (const char *args, int from_tty)
2649 {
2650 struct target_ops* t;
2651
2652 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2653 /* Don't remove global breakpoints here. They're removed on
2654 disconnection from the target. */
2655 ;
2656 else
2657 /* If we're in breakpoints-always-inserted mode, have to remove
2658 them before detaching. */
2659 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2660
2661 prepare_for_detach ();
2662
2663 for (t = current_target.beneath; t != NULL; t = t->beneath)
2664 {
2665 if (t->to_detach != NULL)
2666 {
2667 t->to_detach (t, args, from_tty);
2668 if (targetdebug)
2669 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2670 args, from_tty);
2671 return;
2672 }
2673 }
2674
2675 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2676 }
2677
2678 void
2679 target_disconnect (char *args, int from_tty)
2680 {
2681 struct target_ops *t;
2682
2683 /* If we're in breakpoints-always-inserted mode or if breakpoints
2684 are global across processes, we have to remove them before
2685 disconnecting. */
2686 remove_breakpoints ();
2687
2688 for (t = current_target.beneath; t != NULL; t = t->beneath)
2689 if (t->to_disconnect != NULL)
2690 {
2691 if (targetdebug)
2692 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2693 args, from_tty);
2694 t->to_disconnect (t, args, from_tty);
2695 return;
2696 }
2697
2698 tcomplain ();
2699 }
2700
2701 ptid_t
2702 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2703 {
2704 struct target_ops *t;
2705
2706 for (t = current_target.beneath; t != NULL; t = t->beneath)
2707 {
2708 if (t->to_wait != NULL)
2709 {
2710 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2711
2712 if (targetdebug)
2713 {
2714 char *status_string;
2715 char *options_string;
2716
2717 status_string = target_waitstatus_to_string (status);
2718 options_string = target_options_to_string (options);
2719 fprintf_unfiltered (gdb_stdlog,
2720 "target_wait (%d, status, options={%s})"
2721 " = %d, %s\n",
2722 ptid_get_pid (ptid), options_string,
2723 ptid_get_pid (retval), status_string);
2724 xfree (status_string);
2725 xfree (options_string);
2726 }
2727
2728 return retval;
2729 }
2730 }
2731
2732 noprocess ();
2733 }
2734
2735 char *
2736 target_pid_to_str (ptid_t ptid)
2737 {
2738 struct target_ops *t;
2739
2740 for (t = current_target.beneath; t != NULL; t = t->beneath)
2741 {
2742 if (t->to_pid_to_str != NULL)
2743 return (*t->to_pid_to_str) (t, ptid);
2744 }
2745
2746 return normal_pid_to_str (ptid);
2747 }
2748
2749 char *
2750 target_thread_name (struct thread_info *info)
2751 {
2752 struct target_ops *t;
2753
2754 for (t = current_target.beneath; t != NULL; t = t->beneath)
2755 {
2756 if (t->to_thread_name != NULL)
2757 return (*t->to_thread_name) (info);
2758 }
2759
2760 return NULL;
2761 }
2762
2763 void
2764 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2765 {
2766 struct target_ops *t;
2767
2768 target_dcache_invalidate ();
2769
2770 for (t = current_target.beneath; t != NULL; t = t->beneath)
2771 {
2772 if (t->to_resume != NULL)
2773 {
2774 t->to_resume (t, ptid, step, signal);
2775 if (targetdebug)
2776 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2777 ptid_get_pid (ptid),
2778 step ? "step" : "continue",
2779 gdb_signal_to_name (signal));
2780
2781 registers_changed_ptid (ptid);
2782 set_executing (ptid, 1);
2783 set_running (ptid, 1);
2784 clear_inline_frame_state (ptid);
2785 return;
2786 }
2787 }
2788
2789 noprocess ();
2790 }
2791
2792 void
2793 target_pass_signals (int numsigs, unsigned char *pass_signals)
2794 {
2795 struct target_ops *t;
2796
2797 for (t = current_target.beneath; t != NULL; t = t->beneath)
2798 {
2799 if (t->to_pass_signals != NULL)
2800 {
2801 if (targetdebug)
2802 {
2803 int i;
2804
2805 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2806 numsigs);
2807
2808 for (i = 0; i < numsigs; i++)
2809 if (pass_signals[i])
2810 fprintf_unfiltered (gdb_stdlog, " %s",
2811 gdb_signal_to_name (i));
2812
2813 fprintf_unfiltered (gdb_stdlog, " })\n");
2814 }
2815
2816 (*t->to_pass_signals) (numsigs, pass_signals);
2817 return;
2818 }
2819 }
2820 }
2821
2822 void
2823 target_program_signals (int numsigs, unsigned char *program_signals)
2824 {
2825 struct target_ops *t;
2826
2827 for (t = current_target.beneath; t != NULL; t = t->beneath)
2828 {
2829 if (t->to_program_signals != NULL)
2830 {
2831 if (targetdebug)
2832 {
2833 int i;
2834
2835 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2836 numsigs);
2837
2838 for (i = 0; i < numsigs; i++)
2839 if (program_signals[i])
2840 fprintf_unfiltered (gdb_stdlog, " %s",
2841 gdb_signal_to_name (i));
2842
2843 fprintf_unfiltered (gdb_stdlog, " })\n");
2844 }
2845
2846 (*t->to_program_signals) (numsigs, program_signals);
2847 return;
2848 }
2849 }
2850 }
2851
2852 /* Look through the list of possible targets for a target that can
2853 follow forks. */
2854
2855 int
2856 target_follow_fork (int follow_child, int detach_fork)
2857 {
2858 struct target_ops *t;
2859
2860 for (t = current_target.beneath; t != NULL; t = t->beneath)
2861 {
2862 if (t->to_follow_fork != NULL)
2863 {
2864 int retval = t->to_follow_fork (t, follow_child, detach_fork);
2865
2866 if (targetdebug)
2867 fprintf_unfiltered (gdb_stdlog,
2868 "target_follow_fork (%d, %d) = %d\n",
2869 follow_child, detach_fork, retval);
2870 return retval;
2871 }
2872 }
2873
2874 /* Some target returned a fork event, but did not know how to follow it. */
2875 internal_error (__FILE__, __LINE__,
2876 _("could not find a target to follow fork"));
2877 }
2878
2879 void
2880 target_mourn_inferior (void)
2881 {
2882 struct target_ops *t;
2883
2884 for (t = current_target.beneath; t != NULL; t = t->beneath)
2885 {
2886 if (t->to_mourn_inferior != NULL)
2887 {
2888 t->to_mourn_inferior (t);
2889 if (targetdebug)
2890 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2891
2892 /* We no longer need to keep handles on any of the object files.
2893 Make sure to release them to avoid unnecessarily locking any
2894 of them while we're not actually debugging. */
2895 bfd_cache_close_all ();
2896
2897 return;
2898 }
2899 }
2900
2901 internal_error (__FILE__, __LINE__,
2902 _("could not find a target to follow mourn inferior"));
2903 }
2904
2905 /* Look for a target which can describe architectural features, starting
2906 from TARGET. If we find one, return its description. */
2907
2908 const struct target_desc *
2909 target_read_description (struct target_ops *target)
2910 {
2911 struct target_ops *t;
2912
2913 for (t = target; t != NULL; t = t->beneath)
2914 if (t->to_read_description != NULL)
2915 {
2916 const struct target_desc *tdesc;
2917
2918 tdesc = t->to_read_description (t);
2919 if (tdesc)
2920 return tdesc;
2921 }
2922
2923 return NULL;
2924 }
2925
2926 /* The default implementation of to_search_memory.
2927 This implements a basic search of memory, reading target memory and
2928 performing the search here (as opposed to performing the search in on the
2929 target side with, for example, gdbserver). */
2930
2931 int
2932 simple_search_memory (struct target_ops *ops,
2933 CORE_ADDR start_addr, ULONGEST search_space_len,
2934 const gdb_byte *pattern, ULONGEST pattern_len,
2935 CORE_ADDR *found_addrp)
2936 {
2937 /* NOTE: also defined in find.c testcase. */
2938 #define SEARCH_CHUNK_SIZE 16000
2939 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2940 /* Buffer to hold memory contents for searching. */
2941 gdb_byte *search_buf;
2942 unsigned search_buf_size;
2943 struct cleanup *old_cleanups;
2944
2945 search_buf_size = chunk_size + pattern_len - 1;
2946
2947 /* No point in trying to allocate a buffer larger than the search space. */
2948 if (search_space_len < search_buf_size)
2949 search_buf_size = search_space_len;
2950
2951 search_buf = malloc (search_buf_size);
2952 if (search_buf == NULL)
2953 error (_("Unable to allocate memory to perform the search."));
2954 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2955
2956 /* Prime the search buffer. */
2957
2958 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2959 search_buf, start_addr, search_buf_size) != search_buf_size)
2960 {
2961 warning (_("Unable to access %s bytes of target "
2962 "memory at %s, halting search."),
2963 pulongest (search_buf_size), hex_string (start_addr));
2964 do_cleanups (old_cleanups);
2965 return -1;
2966 }
2967
2968 /* Perform the search.
2969
2970 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2971 When we've scanned N bytes we copy the trailing bytes to the start and
2972 read in another N bytes. */
2973
2974 while (search_space_len >= pattern_len)
2975 {
2976 gdb_byte *found_ptr;
2977 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2978
2979 found_ptr = memmem (search_buf, nr_search_bytes,
2980 pattern, pattern_len);
2981
2982 if (found_ptr != NULL)
2983 {
2984 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2985
2986 *found_addrp = found_addr;
2987 do_cleanups (old_cleanups);
2988 return 1;
2989 }
2990
2991 /* Not found in this chunk, skip to next chunk. */
2992
2993 /* Don't let search_space_len wrap here, it's unsigned. */
2994 if (search_space_len >= chunk_size)
2995 search_space_len -= chunk_size;
2996 else
2997 search_space_len = 0;
2998
2999 if (search_space_len >= pattern_len)
3000 {
3001 unsigned keep_len = search_buf_size - chunk_size;
3002 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
3003 int nr_to_read;
3004
3005 /* Copy the trailing part of the previous iteration to the front
3006 of the buffer for the next iteration. */
3007 gdb_assert (keep_len == pattern_len - 1);
3008 memcpy (search_buf, search_buf + chunk_size, keep_len);
3009
3010 nr_to_read = min (search_space_len - keep_len, chunk_size);
3011
3012 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
3013 search_buf + keep_len, read_addr,
3014 nr_to_read) != nr_to_read)
3015 {
3016 warning (_("Unable to access %s bytes of target "
3017 "memory at %s, halting search."),
3018 plongest (nr_to_read),
3019 hex_string (read_addr));
3020 do_cleanups (old_cleanups);
3021 return -1;
3022 }
3023
3024 start_addr += chunk_size;
3025 }
3026 }
3027
3028 /* Not found. */
3029
3030 do_cleanups (old_cleanups);
3031 return 0;
3032 }
3033
3034 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
3035 sequence of bytes in PATTERN with length PATTERN_LEN.
3036
3037 The result is 1 if found, 0 if not found, and -1 if there was an error
3038 requiring halting of the search (e.g. memory read error).
3039 If the pattern is found the address is recorded in FOUND_ADDRP. */
3040
3041 int
3042 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
3043 const gdb_byte *pattern, ULONGEST pattern_len,
3044 CORE_ADDR *found_addrp)
3045 {
3046 struct target_ops *t;
3047 int found;
3048
3049 /* We don't use INHERIT to set current_target.to_search_memory,
3050 so we have to scan the target stack and handle targetdebug
3051 ourselves. */
3052
3053 if (targetdebug)
3054 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
3055 hex_string (start_addr));
3056
3057 for (t = current_target.beneath; t != NULL; t = t->beneath)
3058 if (t->to_search_memory != NULL)
3059 break;
3060
3061 if (t != NULL)
3062 {
3063 found = t->to_search_memory (t, start_addr, search_space_len,
3064 pattern, pattern_len, found_addrp);
3065 }
3066 else
3067 {
3068 /* If a special version of to_search_memory isn't available, use the
3069 simple version. */
3070 found = simple_search_memory (current_target.beneath,
3071 start_addr, search_space_len,
3072 pattern, pattern_len, found_addrp);
3073 }
3074
3075 if (targetdebug)
3076 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
3077
3078 return found;
3079 }
3080
3081 /* Look through the currently pushed targets. If none of them will
3082 be able to restart the currently running process, issue an error
3083 message. */
3084
3085 void
3086 target_require_runnable (void)
3087 {
3088 struct target_ops *t;
3089
3090 for (t = target_stack; t != NULL; t = t->beneath)
3091 {
3092 /* If this target knows how to create a new program, then
3093 assume we will still be able to after killing the current
3094 one. Either killing and mourning will not pop T, or else
3095 find_default_run_target will find it again. */
3096 if (t->to_create_inferior != NULL)
3097 return;
3098
3099 /* Do not worry about thread_stratum targets that can not
3100 create inferiors. Assume they will be pushed again if
3101 necessary, and continue to the process_stratum. */
3102 if (t->to_stratum == thread_stratum
3103 || t->to_stratum == arch_stratum)
3104 continue;
3105
3106 error (_("The \"%s\" target does not support \"run\". "
3107 "Try \"help target\" or \"continue\"."),
3108 t->to_shortname);
3109 }
3110
3111 /* This function is only called if the target is running. In that
3112 case there should have been a process_stratum target and it
3113 should either know how to create inferiors, or not... */
3114 internal_error (__FILE__, __LINE__, _("No targets found"));
3115 }
3116
3117 /* Look through the list of possible targets for a target that can
3118 execute a run or attach command without any other data. This is
3119 used to locate the default process stratum.
3120
3121 If DO_MESG is not NULL, the result is always valid (error() is
3122 called for errors); else, return NULL on error. */
3123
3124 static struct target_ops *
3125 find_default_run_target (char *do_mesg)
3126 {
3127 struct target_ops **t;
3128 struct target_ops *runable = NULL;
3129 int count;
3130
3131 count = 0;
3132
3133 for (t = target_structs; t < target_structs + target_struct_size;
3134 ++t)
3135 {
3136 if ((*t)->to_can_run && target_can_run (*t))
3137 {
3138 runable = *t;
3139 ++count;
3140 }
3141 }
3142
3143 if (count != 1)
3144 {
3145 if (do_mesg)
3146 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3147 else
3148 return NULL;
3149 }
3150
3151 return runable;
3152 }
3153
3154 void
3155 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3156 {
3157 struct target_ops *t;
3158
3159 t = find_default_run_target ("attach");
3160 (t->to_attach) (t, args, from_tty);
3161 return;
3162 }
3163
3164 void
3165 find_default_create_inferior (struct target_ops *ops,
3166 char *exec_file, char *allargs, char **env,
3167 int from_tty)
3168 {
3169 struct target_ops *t;
3170
3171 t = find_default_run_target ("run");
3172 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3173 return;
3174 }
3175
3176 static int
3177 find_default_can_async_p (void)
3178 {
3179 struct target_ops *t;
3180
3181 /* This may be called before the target is pushed on the stack;
3182 look for the default process stratum. If there's none, gdb isn't
3183 configured with a native debugger, and target remote isn't
3184 connected yet. */
3185 t = find_default_run_target (NULL);
3186 if (t && t->to_can_async_p)
3187 return (t->to_can_async_p) ();
3188 return 0;
3189 }
3190
3191 static int
3192 find_default_is_async_p (void)
3193 {
3194 struct target_ops *t;
3195
3196 /* This may be called before the target is pushed on the stack;
3197 look for the default process stratum. If there's none, gdb isn't
3198 configured with a native debugger, and target remote isn't
3199 connected yet. */
3200 t = find_default_run_target (NULL);
3201 if (t && t->to_is_async_p)
3202 return (t->to_is_async_p) ();
3203 return 0;
3204 }
3205
3206 static int
3207 find_default_supports_non_stop (void)
3208 {
3209 struct target_ops *t;
3210
3211 t = find_default_run_target (NULL);
3212 if (t && t->to_supports_non_stop)
3213 return (t->to_supports_non_stop) ();
3214 return 0;
3215 }
3216
3217 int
3218 target_supports_non_stop (void)
3219 {
3220 struct target_ops *t;
3221
3222 for (t = &current_target; t != NULL; t = t->beneath)
3223 if (t->to_supports_non_stop)
3224 return t->to_supports_non_stop ();
3225
3226 return 0;
3227 }
3228
3229 /* Implement the "info proc" command. */
3230
3231 int
3232 target_info_proc (char *args, enum info_proc_what what)
3233 {
3234 struct target_ops *t;
3235
3236 /* If we're already connected to something that can get us OS
3237 related data, use it. Otherwise, try using the native
3238 target. */
3239 if (current_target.to_stratum >= process_stratum)
3240 t = current_target.beneath;
3241 else
3242 t = find_default_run_target (NULL);
3243
3244 for (; t != NULL; t = t->beneath)
3245 {
3246 if (t->to_info_proc != NULL)
3247 {
3248 t->to_info_proc (t, args, what);
3249
3250 if (targetdebug)
3251 fprintf_unfiltered (gdb_stdlog,
3252 "target_info_proc (\"%s\", %d)\n", args, what);
3253
3254 return 1;
3255 }
3256 }
3257
3258 return 0;
3259 }
3260
3261 static int
3262 find_default_supports_disable_randomization (void)
3263 {
3264 struct target_ops *t;
3265
3266 t = find_default_run_target (NULL);
3267 if (t && t->to_supports_disable_randomization)
3268 return (t->to_supports_disable_randomization) ();
3269 return 0;
3270 }
3271
3272 int
3273 target_supports_disable_randomization (void)
3274 {
3275 struct target_ops *t;
3276
3277 for (t = &current_target; t != NULL; t = t->beneath)
3278 if (t->to_supports_disable_randomization)
3279 return t->to_supports_disable_randomization ();
3280
3281 return 0;
3282 }
3283
3284 char *
3285 target_get_osdata (const char *type)
3286 {
3287 struct target_ops *t;
3288
3289 /* If we're already connected to something that can get us OS
3290 related data, use it. Otherwise, try using the native
3291 target. */
3292 if (current_target.to_stratum >= process_stratum)
3293 t = current_target.beneath;
3294 else
3295 t = find_default_run_target ("get OS data");
3296
3297 if (!t)
3298 return NULL;
3299
3300 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3301 }
3302
3303 /* Determine the current address space of thread PTID. */
3304
3305 struct address_space *
3306 target_thread_address_space (ptid_t ptid)
3307 {
3308 struct address_space *aspace;
3309 struct inferior *inf;
3310 struct target_ops *t;
3311
3312 for (t = current_target.beneath; t != NULL; t = t->beneath)
3313 {
3314 if (t->to_thread_address_space != NULL)
3315 {
3316 aspace = t->to_thread_address_space (t, ptid);
3317 gdb_assert (aspace);
3318
3319 if (targetdebug)
3320 fprintf_unfiltered (gdb_stdlog,
3321 "target_thread_address_space (%s) = %d\n",
3322 target_pid_to_str (ptid),
3323 address_space_num (aspace));
3324 return aspace;
3325 }
3326 }
3327
3328 /* Fall-back to the "main" address space of the inferior. */
3329 inf = find_inferior_pid (ptid_get_pid (ptid));
3330
3331 if (inf == NULL || inf->aspace == NULL)
3332 internal_error (__FILE__, __LINE__,
3333 _("Can't determine the current "
3334 "address space of thread %s\n"),
3335 target_pid_to_str (ptid));
3336
3337 return inf->aspace;
3338 }
3339
3340
3341 /* Target file operations. */
3342
3343 static struct target_ops *
3344 default_fileio_target (void)
3345 {
3346 /* If we're already connected to something that can perform
3347 file I/O, use it. Otherwise, try using the native target. */
3348 if (current_target.to_stratum >= process_stratum)
3349 return current_target.beneath;
3350 else
3351 return find_default_run_target ("file I/O");
3352 }
3353
3354 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3355 target file descriptor, or -1 if an error occurs (and set
3356 *TARGET_ERRNO). */
3357 int
3358 target_fileio_open (const char *filename, int flags, int mode,
3359 int *target_errno)
3360 {
3361 struct target_ops *t;
3362
3363 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3364 {
3365 if (t->to_fileio_open != NULL)
3366 {
3367 int fd = t->to_fileio_open (filename, flags, mode, target_errno);
3368
3369 if (targetdebug)
3370 fprintf_unfiltered (gdb_stdlog,
3371 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3372 filename, flags, mode,
3373 fd, fd != -1 ? 0 : *target_errno);
3374 return fd;
3375 }
3376 }
3377
3378 *target_errno = FILEIO_ENOSYS;
3379 return -1;
3380 }
3381
3382 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3383 Return the number of bytes written, or -1 if an error occurs
3384 (and set *TARGET_ERRNO). */
3385 int
3386 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3387 ULONGEST offset, int *target_errno)
3388 {
3389 struct target_ops *t;
3390
3391 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3392 {
3393 if (t->to_fileio_pwrite != NULL)
3394 {
3395 int ret = t->to_fileio_pwrite (fd, write_buf, len, offset,
3396 target_errno);
3397
3398 if (targetdebug)
3399 fprintf_unfiltered (gdb_stdlog,
3400 "target_fileio_pwrite (%d,...,%d,%s) "
3401 "= %d (%d)\n",
3402 fd, len, pulongest (offset),
3403 ret, ret != -1 ? 0 : *target_errno);
3404 return ret;
3405 }
3406 }
3407
3408 *target_errno = FILEIO_ENOSYS;
3409 return -1;
3410 }
3411
3412 /* Read up to LEN bytes FD on the target into READ_BUF.
3413 Return the number of bytes read, or -1 if an error occurs
3414 (and set *TARGET_ERRNO). */
3415 int
3416 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3417 ULONGEST offset, int *target_errno)
3418 {
3419 struct target_ops *t;
3420
3421 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3422 {
3423 if (t->to_fileio_pread != NULL)
3424 {
3425 int ret = t->to_fileio_pread (fd, read_buf, len, offset,
3426 target_errno);
3427
3428 if (targetdebug)
3429 fprintf_unfiltered (gdb_stdlog,
3430 "target_fileio_pread (%d,...,%d,%s) "
3431 "= %d (%d)\n",
3432 fd, len, pulongest (offset),
3433 ret, ret != -1 ? 0 : *target_errno);
3434 return ret;
3435 }
3436 }
3437
3438 *target_errno = FILEIO_ENOSYS;
3439 return -1;
3440 }
3441
3442 /* Close FD on the target. Return 0, or -1 if an error occurs
3443 (and set *TARGET_ERRNO). */
3444 int
3445 target_fileio_close (int fd, int *target_errno)
3446 {
3447 struct target_ops *t;
3448
3449 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3450 {
3451 if (t->to_fileio_close != NULL)
3452 {
3453 int ret = t->to_fileio_close (fd, target_errno);
3454
3455 if (targetdebug)
3456 fprintf_unfiltered (gdb_stdlog,
3457 "target_fileio_close (%d) = %d (%d)\n",
3458 fd, ret, ret != -1 ? 0 : *target_errno);
3459 return ret;
3460 }
3461 }
3462
3463 *target_errno = FILEIO_ENOSYS;
3464 return -1;
3465 }
3466
3467 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3468 occurs (and set *TARGET_ERRNO). */
3469 int
3470 target_fileio_unlink (const char *filename, int *target_errno)
3471 {
3472 struct target_ops *t;
3473
3474 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3475 {
3476 if (t->to_fileio_unlink != NULL)
3477 {
3478 int ret = t->to_fileio_unlink (filename, target_errno);
3479
3480 if (targetdebug)
3481 fprintf_unfiltered (gdb_stdlog,
3482 "target_fileio_unlink (%s) = %d (%d)\n",
3483 filename, ret, ret != -1 ? 0 : *target_errno);
3484 return ret;
3485 }
3486 }
3487
3488 *target_errno = FILEIO_ENOSYS;
3489 return -1;
3490 }
3491
3492 /* Read value of symbolic link FILENAME on the target. Return a
3493 null-terminated string allocated via xmalloc, or NULL if an error
3494 occurs (and set *TARGET_ERRNO). */
3495 char *
3496 target_fileio_readlink (const char *filename, int *target_errno)
3497 {
3498 struct target_ops *t;
3499
3500 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3501 {
3502 if (t->to_fileio_readlink != NULL)
3503 {
3504 char *ret = t->to_fileio_readlink (filename, target_errno);
3505
3506 if (targetdebug)
3507 fprintf_unfiltered (gdb_stdlog,
3508 "target_fileio_readlink (%s) = %s (%d)\n",
3509 filename, ret? ret : "(nil)",
3510 ret? 0 : *target_errno);
3511 return ret;
3512 }
3513 }
3514
3515 *target_errno = FILEIO_ENOSYS;
3516 return NULL;
3517 }
3518
3519 static void
3520 target_fileio_close_cleanup (void *opaque)
3521 {
3522 int fd = *(int *) opaque;
3523 int target_errno;
3524
3525 target_fileio_close (fd, &target_errno);
3526 }
3527
3528 /* Read target file FILENAME. Store the result in *BUF_P and
3529 return the size of the transferred data. PADDING additional bytes are
3530 available in *BUF_P. This is a helper function for
3531 target_fileio_read_alloc; see the declaration of that function for more
3532 information. */
3533
3534 static LONGEST
3535 target_fileio_read_alloc_1 (const char *filename,
3536 gdb_byte **buf_p, int padding)
3537 {
3538 struct cleanup *close_cleanup;
3539 size_t buf_alloc, buf_pos;
3540 gdb_byte *buf;
3541 LONGEST n;
3542 int fd;
3543 int target_errno;
3544
3545 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3546 if (fd == -1)
3547 return -1;
3548
3549 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3550
3551 /* Start by reading up to 4K at a time. The target will throttle
3552 this number down if necessary. */
3553 buf_alloc = 4096;
3554 buf = xmalloc (buf_alloc);
3555 buf_pos = 0;
3556 while (1)
3557 {
3558 n = target_fileio_pread (fd, &buf[buf_pos],
3559 buf_alloc - buf_pos - padding, buf_pos,
3560 &target_errno);
3561 if (n < 0)
3562 {
3563 /* An error occurred. */
3564 do_cleanups (close_cleanup);
3565 xfree (buf);
3566 return -1;
3567 }
3568 else if (n == 0)
3569 {
3570 /* Read all there was. */
3571 do_cleanups (close_cleanup);
3572 if (buf_pos == 0)
3573 xfree (buf);
3574 else
3575 *buf_p = buf;
3576 return buf_pos;
3577 }
3578
3579 buf_pos += n;
3580
3581 /* If the buffer is filling up, expand it. */
3582 if (buf_alloc < buf_pos * 2)
3583 {
3584 buf_alloc *= 2;
3585 buf = xrealloc (buf, buf_alloc);
3586 }
3587
3588 QUIT;
3589 }
3590 }
3591
3592 /* Read target file FILENAME. Store the result in *BUF_P and return
3593 the size of the transferred data. See the declaration in "target.h"
3594 function for more information about the return value. */
3595
3596 LONGEST
3597 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3598 {
3599 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3600 }
3601
3602 /* Read target file FILENAME. The result is NUL-terminated and
3603 returned as a string, allocated using xmalloc. If an error occurs
3604 or the transfer is unsupported, NULL is returned. Empty objects
3605 are returned as allocated but empty strings. A warning is issued
3606 if the result contains any embedded NUL bytes. */
3607
3608 char *
3609 target_fileio_read_stralloc (const char *filename)
3610 {
3611 gdb_byte *buffer;
3612 char *bufstr;
3613 LONGEST i, transferred;
3614
3615 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3616 bufstr = (char *) buffer;
3617
3618 if (transferred < 0)
3619 return NULL;
3620
3621 if (transferred == 0)
3622 return xstrdup ("");
3623
3624 bufstr[transferred] = 0;
3625
3626 /* Check for embedded NUL bytes; but allow trailing NULs. */
3627 for (i = strlen (bufstr); i < transferred; i++)
3628 if (bufstr[i] != 0)
3629 {
3630 warning (_("target file %s "
3631 "contained unexpected null characters"),
3632 filename);
3633 break;
3634 }
3635
3636 return bufstr;
3637 }
3638
3639
3640 static int
3641 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3642 {
3643 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3644 }
3645
3646 static int
3647 default_watchpoint_addr_within_range (struct target_ops *target,
3648 CORE_ADDR addr,
3649 CORE_ADDR start, int length)
3650 {
3651 return addr >= start && addr < start + length;
3652 }
3653
3654 static struct gdbarch *
3655 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3656 {
3657 return target_gdbarch ();
3658 }
3659
3660 static int
3661 return_zero (void)
3662 {
3663 return 0;
3664 }
3665
3666 static int
3667 return_one (void)
3668 {
3669 return 1;
3670 }
3671
3672 static int
3673 return_minus_one (void)
3674 {
3675 return -1;
3676 }
3677
3678 /*
3679 * Find the next target down the stack from the specified target.
3680 */
3681
3682 struct target_ops *
3683 find_target_beneath (struct target_ops *t)
3684 {
3685 return t->beneath;
3686 }
3687
3688 \f
3689 /* The inferior process has died. Long live the inferior! */
3690
3691 void
3692 generic_mourn_inferior (void)
3693 {
3694 ptid_t ptid;
3695
3696 ptid = inferior_ptid;
3697 inferior_ptid = null_ptid;
3698
3699 /* Mark breakpoints uninserted in case something tries to delete a
3700 breakpoint while we delete the inferior's threads (which would
3701 fail, since the inferior is long gone). */
3702 mark_breakpoints_out ();
3703
3704 if (!ptid_equal (ptid, null_ptid))
3705 {
3706 int pid = ptid_get_pid (ptid);
3707 exit_inferior (pid);
3708 }
3709
3710 /* Note this wipes step-resume breakpoints, so needs to be done
3711 after exit_inferior, which ends up referencing the step-resume
3712 breakpoints through clear_thread_inferior_resources. */
3713 breakpoint_init_inferior (inf_exited);
3714
3715 registers_changed ();
3716
3717 reopen_exec_file ();
3718 reinit_frame_cache ();
3719
3720 if (deprecated_detach_hook)
3721 deprecated_detach_hook ();
3722 }
3723 \f
3724 /* Convert a normal process ID to a string. Returns the string in a
3725 static buffer. */
3726
3727 char *
3728 normal_pid_to_str (ptid_t ptid)
3729 {
3730 static char buf[32];
3731
3732 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3733 return buf;
3734 }
3735
3736 static char *
3737 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3738 {
3739 return normal_pid_to_str (ptid);
3740 }
3741
3742 /* Error-catcher for target_find_memory_regions. */
3743 static int
3744 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3745 {
3746 error (_("Command not implemented for this target."));
3747 return 0;
3748 }
3749
3750 /* Error-catcher for target_make_corefile_notes. */
3751 static char *
3752 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3753 {
3754 error (_("Command not implemented for this target."));
3755 return NULL;
3756 }
3757
3758 /* Error-catcher for target_get_bookmark. */
3759 static gdb_byte *
3760 dummy_get_bookmark (char *ignore1, int ignore2)
3761 {
3762 tcomplain ();
3763 return NULL;
3764 }
3765
3766 /* Error-catcher for target_goto_bookmark. */
3767 static void
3768 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3769 {
3770 tcomplain ();
3771 }
3772
3773 /* Set up the handful of non-empty slots needed by the dummy target
3774 vector. */
3775
3776 static void
3777 init_dummy_target (void)
3778 {
3779 dummy_target.to_shortname = "None";
3780 dummy_target.to_longname = "None";
3781 dummy_target.to_doc = "";
3782 dummy_target.to_attach = find_default_attach;
3783 dummy_target.to_detach =
3784 (void (*)(struct target_ops *, const char *, int))target_ignore;
3785 dummy_target.to_create_inferior = find_default_create_inferior;
3786 dummy_target.to_can_async_p = find_default_can_async_p;
3787 dummy_target.to_is_async_p = find_default_is_async_p;
3788 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3789 dummy_target.to_supports_disable_randomization
3790 = find_default_supports_disable_randomization;
3791 dummy_target.to_pid_to_str = dummy_pid_to_str;
3792 dummy_target.to_stratum = dummy_stratum;
3793 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3794 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3795 dummy_target.to_get_bookmark = dummy_get_bookmark;
3796 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3797 dummy_target.to_xfer_partial = default_xfer_partial;
3798 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3799 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3800 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3801 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3802 dummy_target.to_has_execution
3803 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3804 dummy_target.to_stopped_by_watchpoint = return_zero;
3805 dummy_target.to_stopped_data_address =
3806 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3807 dummy_target.to_magic = OPS_MAGIC;
3808 }
3809 \f
3810 static void
3811 debug_to_open (char *args, int from_tty)
3812 {
3813 debug_target.to_open (args, from_tty);
3814
3815 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3816 }
3817
3818 void
3819 target_close (struct target_ops *targ)
3820 {
3821 gdb_assert (!target_is_pushed (targ));
3822
3823 if (targ->to_xclose != NULL)
3824 targ->to_xclose (targ);
3825 else if (targ->to_close != NULL)
3826 targ->to_close ();
3827
3828 if (targetdebug)
3829 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3830 }
3831
3832 void
3833 target_attach (char *args, int from_tty)
3834 {
3835 struct target_ops *t;
3836
3837 for (t = current_target.beneath; t != NULL; t = t->beneath)
3838 {
3839 if (t->to_attach != NULL)
3840 {
3841 t->to_attach (t, args, from_tty);
3842 if (targetdebug)
3843 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3844 args, from_tty);
3845 return;
3846 }
3847 }
3848
3849 internal_error (__FILE__, __LINE__,
3850 _("could not find a target to attach"));
3851 }
3852
3853 int
3854 target_thread_alive (ptid_t ptid)
3855 {
3856 struct target_ops *t;
3857
3858 for (t = current_target.beneath; t != NULL; t = t->beneath)
3859 {
3860 if (t->to_thread_alive != NULL)
3861 {
3862 int retval;
3863
3864 retval = t->to_thread_alive (t, ptid);
3865 if (targetdebug)
3866 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3867 ptid_get_pid (ptid), retval);
3868
3869 return retval;
3870 }
3871 }
3872
3873 return 0;
3874 }
3875
3876 void
3877 target_find_new_threads (void)
3878 {
3879 struct target_ops *t;
3880
3881 for (t = current_target.beneath; t != NULL; t = t->beneath)
3882 {
3883 if (t->to_find_new_threads != NULL)
3884 {
3885 t->to_find_new_threads (t);
3886 if (targetdebug)
3887 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3888
3889 return;
3890 }
3891 }
3892 }
3893
3894 void
3895 target_stop (ptid_t ptid)
3896 {
3897 if (!may_stop)
3898 {
3899 warning (_("May not interrupt or stop the target, ignoring attempt"));
3900 return;
3901 }
3902
3903 (*current_target.to_stop) (ptid);
3904 }
3905
3906 static void
3907 debug_to_post_attach (int pid)
3908 {
3909 debug_target.to_post_attach (pid);
3910
3911 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3912 }
3913
3914 /* Concatenate ELEM to LIST, a comma separate list, and return the
3915 result. The LIST incoming argument is released. */
3916
3917 static char *
3918 str_comma_list_concat_elem (char *list, const char *elem)
3919 {
3920 if (list == NULL)
3921 return xstrdup (elem);
3922 else
3923 return reconcat (list, list, ", ", elem, (char *) NULL);
3924 }
3925
3926 /* Helper for target_options_to_string. If OPT is present in
3927 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3928 Returns the new resulting string. OPT is removed from
3929 TARGET_OPTIONS. */
3930
3931 static char *
3932 do_option (int *target_options, char *ret,
3933 int opt, char *opt_str)
3934 {
3935 if ((*target_options & opt) != 0)
3936 {
3937 ret = str_comma_list_concat_elem (ret, opt_str);
3938 *target_options &= ~opt;
3939 }
3940
3941 return ret;
3942 }
3943
3944 char *
3945 target_options_to_string (int target_options)
3946 {
3947 char *ret = NULL;
3948
3949 #define DO_TARG_OPTION(OPT) \
3950 ret = do_option (&target_options, ret, OPT, #OPT)
3951
3952 DO_TARG_OPTION (TARGET_WNOHANG);
3953
3954 if (target_options != 0)
3955 ret = str_comma_list_concat_elem (ret, "unknown???");
3956
3957 if (ret == NULL)
3958 ret = xstrdup ("");
3959 return ret;
3960 }
3961
3962 static void
3963 debug_print_register (const char * func,
3964 struct regcache *regcache, int regno)
3965 {
3966 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3967
3968 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3969 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3970 && gdbarch_register_name (gdbarch, regno) != NULL
3971 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3972 fprintf_unfiltered (gdb_stdlog, "(%s)",
3973 gdbarch_register_name (gdbarch, regno));
3974 else
3975 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3976 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3977 {
3978 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3979 int i, size = register_size (gdbarch, regno);
3980 gdb_byte buf[MAX_REGISTER_SIZE];
3981
3982 regcache_raw_collect (regcache, regno, buf);
3983 fprintf_unfiltered (gdb_stdlog, " = ");
3984 for (i = 0; i < size; i++)
3985 {
3986 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3987 }
3988 if (size <= sizeof (LONGEST))
3989 {
3990 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3991
3992 fprintf_unfiltered (gdb_stdlog, " %s %s",
3993 core_addr_to_string_nz (val), plongest (val));
3994 }
3995 }
3996 fprintf_unfiltered (gdb_stdlog, "\n");
3997 }
3998
3999 void
4000 target_fetch_registers (struct regcache *regcache, int regno)
4001 {
4002 struct target_ops *t;
4003
4004 for (t = current_target.beneath; t != NULL; t = t->beneath)
4005 {
4006 if (t->to_fetch_registers != NULL)
4007 {
4008 t->to_fetch_registers (t, regcache, regno);
4009 if (targetdebug)
4010 debug_print_register ("target_fetch_registers", regcache, regno);
4011 return;
4012 }
4013 }
4014 }
4015
4016 void
4017 target_store_registers (struct regcache *regcache, int regno)
4018 {
4019 struct target_ops *t;
4020
4021 if (!may_write_registers)
4022 error (_("Writing to registers is not allowed (regno %d)"), regno);
4023
4024 for (t = current_target.beneath; t != NULL; t = t->beneath)
4025 {
4026 if (t->to_store_registers != NULL)
4027 {
4028 t->to_store_registers (t, regcache, regno);
4029 if (targetdebug)
4030 {
4031 debug_print_register ("target_store_registers", regcache, regno);
4032 }
4033 return;
4034 }
4035 }
4036
4037 noprocess ();
4038 }
4039
4040 int
4041 target_core_of_thread (ptid_t ptid)
4042 {
4043 struct target_ops *t;
4044
4045 for (t = current_target.beneath; t != NULL; t = t->beneath)
4046 {
4047 if (t->to_core_of_thread != NULL)
4048 {
4049 int retval = t->to_core_of_thread (t, ptid);
4050
4051 if (targetdebug)
4052 fprintf_unfiltered (gdb_stdlog,
4053 "target_core_of_thread (%d) = %d\n",
4054 ptid_get_pid (ptid), retval);
4055 return retval;
4056 }
4057 }
4058
4059 return -1;
4060 }
4061
4062 int
4063 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
4064 {
4065 struct target_ops *t;
4066
4067 for (t = current_target.beneath; t != NULL; t = t->beneath)
4068 {
4069 if (t->to_verify_memory != NULL)
4070 {
4071 int retval = t->to_verify_memory (t, data, memaddr, size);
4072
4073 if (targetdebug)
4074 fprintf_unfiltered (gdb_stdlog,
4075 "target_verify_memory (%s, %s) = %d\n",
4076 paddress (target_gdbarch (), memaddr),
4077 pulongest (size),
4078 retval);
4079 return retval;
4080 }
4081 }
4082
4083 tcomplain ();
4084 }
4085
4086 /* The documentation for this function is in its prototype declaration in
4087 target.h. */
4088
4089 int
4090 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4091 {
4092 struct target_ops *t;
4093
4094 for (t = current_target.beneath; t != NULL; t = t->beneath)
4095 if (t->to_insert_mask_watchpoint != NULL)
4096 {
4097 int ret;
4098
4099 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
4100
4101 if (targetdebug)
4102 fprintf_unfiltered (gdb_stdlog, "\
4103 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
4104 core_addr_to_string (addr),
4105 core_addr_to_string (mask), rw, ret);
4106
4107 return ret;
4108 }
4109
4110 return 1;
4111 }
4112
4113 /* The documentation for this function is in its prototype declaration in
4114 target.h. */
4115
4116 int
4117 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4118 {
4119 struct target_ops *t;
4120
4121 for (t = current_target.beneath; t != NULL; t = t->beneath)
4122 if (t->to_remove_mask_watchpoint != NULL)
4123 {
4124 int ret;
4125
4126 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
4127
4128 if (targetdebug)
4129 fprintf_unfiltered (gdb_stdlog, "\
4130 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
4131 core_addr_to_string (addr),
4132 core_addr_to_string (mask), rw, ret);
4133
4134 return ret;
4135 }
4136
4137 return 1;
4138 }
4139
4140 /* The documentation for this function is in its prototype declaration
4141 in target.h. */
4142
4143 int
4144 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4145 {
4146 struct target_ops *t;
4147
4148 for (t = current_target.beneath; t != NULL; t = t->beneath)
4149 if (t->to_masked_watch_num_registers != NULL)
4150 return t->to_masked_watch_num_registers (t, addr, mask);
4151
4152 return -1;
4153 }
4154
4155 /* The documentation for this function is in its prototype declaration
4156 in target.h. */
4157
4158 int
4159 target_ranged_break_num_registers (void)
4160 {
4161 struct target_ops *t;
4162
4163 for (t = current_target.beneath; t != NULL; t = t->beneath)
4164 if (t->to_ranged_break_num_registers != NULL)
4165 return t->to_ranged_break_num_registers (t);
4166
4167 return -1;
4168 }
4169
4170 /* See target.h. */
4171
4172 int
4173 target_supports_btrace (void)
4174 {
4175 struct target_ops *t;
4176
4177 for (t = current_target.beneath; t != NULL; t = t->beneath)
4178 if (t->to_supports_btrace != NULL)
4179 return t->to_supports_btrace ();
4180
4181 return 0;
4182 }
4183
4184 /* See target.h. */
4185
4186 struct btrace_target_info *
4187 target_enable_btrace (ptid_t ptid)
4188 {
4189 struct target_ops *t;
4190
4191 for (t = current_target.beneath; t != NULL; t = t->beneath)
4192 if (t->to_enable_btrace != NULL)
4193 return t->to_enable_btrace (ptid);
4194
4195 tcomplain ();
4196 return NULL;
4197 }
4198
4199 /* See target.h. */
4200
4201 void
4202 target_disable_btrace (struct btrace_target_info *btinfo)
4203 {
4204 struct target_ops *t;
4205
4206 for (t = current_target.beneath; t != NULL; t = t->beneath)
4207 if (t->to_disable_btrace != NULL)
4208 {
4209 t->to_disable_btrace (btinfo);
4210 return;
4211 }
4212
4213 tcomplain ();
4214 }
4215
4216 /* See target.h. */
4217
4218 void
4219 target_teardown_btrace (struct btrace_target_info *btinfo)
4220 {
4221 struct target_ops *t;
4222
4223 for (t = current_target.beneath; t != NULL; t = t->beneath)
4224 if (t->to_teardown_btrace != NULL)
4225 {
4226 t->to_teardown_btrace (btinfo);
4227 return;
4228 }
4229
4230 tcomplain ();
4231 }
4232
4233 /* See target.h. */
4234
4235 VEC (btrace_block_s) *
4236 target_read_btrace (struct btrace_target_info *btinfo,
4237 enum btrace_read_type type)
4238 {
4239 struct target_ops *t;
4240
4241 for (t = current_target.beneath; t != NULL; t = t->beneath)
4242 if (t->to_read_btrace != NULL)
4243 return t->to_read_btrace (btinfo, type);
4244
4245 tcomplain ();
4246 return NULL;
4247 }
4248
4249 /* See target.h. */
4250
4251 void
4252 target_stop_recording (void)
4253 {
4254 struct target_ops *t;
4255
4256 for (t = current_target.beneath; t != NULL; t = t->beneath)
4257 if (t->to_stop_recording != NULL)
4258 {
4259 t->to_stop_recording ();
4260 return;
4261 }
4262
4263 /* This is optional. */
4264 }
4265
4266 /* See target.h. */
4267
4268 void
4269 target_info_record (void)
4270 {
4271 struct target_ops *t;
4272
4273 for (t = current_target.beneath; t != NULL; t = t->beneath)
4274 if (t->to_info_record != NULL)
4275 {
4276 t->to_info_record ();
4277 return;
4278 }
4279
4280 tcomplain ();
4281 }
4282
4283 /* See target.h. */
4284
4285 void
4286 target_save_record (const char *filename)
4287 {
4288 struct target_ops *t;
4289
4290 for (t = current_target.beneath; t != NULL; t = t->beneath)
4291 if (t->to_save_record != NULL)
4292 {
4293 t->to_save_record (filename);
4294 return;
4295 }
4296
4297 tcomplain ();
4298 }
4299
4300 /* See target.h. */
4301
4302 int
4303 target_supports_delete_record (void)
4304 {
4305 struct target_ops *t;
4306
4307 for (t = current_target.beneath; t != NULL; t = t->beneath)
4308 if (t->to_delete_record != NULL)
4309 return 1;
4310
4311 return 0;
4312 }
4313
4314 /* See target.h. */
4315
4316 void
4317 target_delete_record (void)
4318 {
4319 struct target_ops *t;
4320
4321 for (t = current_target.beneath; t != NULL; t = t->beneath)
4322 if (t->to_delete_record != NULL)
4323 {
4324 t->to_delete_record ();
4325 return;
4326 }
4327
4328 tcomplain ();
4329 }
4330
4331 /* See target.h. */
4332
4333 int
4334 target_record_is_replaying (void)
4335 {
4336 struct target_ops *t;
4337
4338 for (t = current_target.beneath; t != NULL; t = t->beneath)
4339 if (t->to_record_is_replaying != NULL)
4340 return t->to_record_is_replaying ();
4341
4342 return 0;
4343 }
4344
4345 /* See target.h. */
4346
4347 void
4348 target_goto_record_begin (void)
4349 {
4350 struct target_ops *t;
4351
4352 for (t = current_target.beneath; t != NULL; t = t->beneath)
4353 if (t->to_goto_record_begin != NULL)
4354 {
4355 t->to_goto_record_begin ();
4356 return;
4357 }
4358
4359 tcomplain ();
4360 }
4361
4362 /* See target.h. */
4363
4364 void
4365 target_goto_record_end (void)
4366 {
4367 struct target_ops *t;
4368
4369 for (t = current_target.beneath; t != NULL; t = t->beneath)
4370 if (t->to_goto_record_end != NULL)
4371 {
4372 t->to_goto_record_end ();
4373 return;
4374 }
4375
4376 tcomplain ();
4377 }
4378
4379 /* See target.h. */
4380
4381 void
4382 target_goto_record (ULONGEST insn)
4383 {
4384 struct target_ops *t;
4385
4386 for (t = current_target.beneath; t != NULL; t = t->beneath)
4387 if (t->to_goto_record != NULL)
4388 {
4389 t->to_goto_record (insn);
4390 return;
4391 }
4392
4393 tcomplain ();
4394 }
4395
4396 /* See target.h. */
4397
4398 void
4399 target_insn_history (int size, int flags)
4400 {
4401 struct target_ops *t;
4402
4403 for (t = current_target.beneath; t != NULL; t = t->beneath)
4404 if (t->to_insn_history != NULL)
4405 {
4406 t->to_insn_history (size, flags);
4407 return;
4408 }
4409
4410 tcomplain ();
4411 }
4412
4413 /* See target.h. */
4414
4415 void
4416 target_insn_history_from (ULONGEST from, int size, int flags)
4417 {
4418 struct target_ops *t;
4419
4420 for (t = current_target.beneath; t != NULL; t = t->beneath)
4421 if (t->to_insn_history_from != NULL)
4422 {
4423 t->to_insn_history_from (from, size, flags);
4424 return;
4425 }
4426
4427 tcomplain ();
4428 }
4429
4430 /* See target.h. */
4431
4432 void
4433 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4434 {
4435 struct target_ops *t;
4436
4437 for (t = current_target.beneath; t != NULL; t = t->beneath)
4438 if (t->to_insn_history_range != NULL)
4439 {
4440 t->to_insn_history_range (begin, end, flags);
4441 return;
4442 }
4443
4444 tcomplain ();
4445 }
4446
4447 /* See target.h. */
4448
4449 void
4450 target_call_history (int size, int flags)
4451 {
4452 struct target_ops *t;
4453
4454 for (t = current_target.beneath; t != NULL; t = t->beneath)
4455 if (t->to_call_history != NULL)
4456 {
4457 t->to_call_history (size, flags);
4458 return;
4459 }
4460
4461 tcomplain ();
4462 }
4463
4464 /* See target.h. */
4465
4466 void
4467 target_call_history_from (ULONGEST begin, int size, int flags)
4468 {
4469 struct target_ops *t;
4470
4471 for (t = current_target.beneath; t != NULL; t = t->beneath)
4472 if (t->to_call_history_from != NULL)
4473 {
4474 t->to_call_history_from (begin, size, flags);
4475 return;
4476 }
4477
4478 tcomplain ();
4479 }
4480
4481 /* See target.h. */
4482
4483 void
4484 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4485 {
4486 struct target_ops *t;
4487
4488 for (t = current_target.beneath; t != NULL; t = t->beneath)
4489 if (t->to_call_history_range != NULL)
4490 {
4491 t->to_call_history_range (begin, end, flags);
4492 return;
4493 }
4494
4495 tcomplain ();
4496 }
4497
4498 static void
4499 debug_to_prepare_to_store (struct regcache *regcache)
4500 {
4501 debug_target.to_prepare_to_store (regcache);
4502
4503 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4504 }
4505
4506 static int
4507 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4508 int write, struct mem_attrib *attrib,
4509 struct target_ops *target)
4510 {
4511 int retval;
4512
4513 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4514 attrib, target);
4515
4516 fprintf_unfiltered (gdb_stdlog,
4517 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4518 paddress (target_gdbarch (), memaddr), len,
4519 write ? "write" : "read", retval);
4520
4521 if (retval > 0)
4522 {
4523 int i;
4524
4525 fputs_unfiltered (", bytes =", gdb_stdlog);
4526 for (i = 0; i < retval; i++)
4527 {
4528 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4529 {
4530 if (targetdebug < 2 && i > 0)
4531 {
4532 fprintf_unfiltered (gdb_stdlog, " ...");
4533 break;
4534 }
4535 fprintf_unfiltered (gdb_stdlog, "\n");
4536 }
4537
4538 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4539 }
4540 }
4541
4542 fputc_unfiltered ('\n', gdb_stdlog);
4543
4544 return retval;
4545 }
4546
4547 static void
4548 debug_to_files_info (struct target_ops *target)
4549 {
4550 debug_target.to_files_info (target);
4551
4552 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4553 }
4554
4555 static int
4556 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
4557 struct bp_target_info *bp_tgt)
4558 {
4559 int retval;
4560
4561 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
4562
4563 fprintf_unfiltered (gdb_stdlog,
4564 "target_insert_breakpoint (%s, xxx) = %ld\n",
4565 core_addr_to_string (bp_tgt->placed_address),
4566 (unsigned long) retval);
4567 return retval;
4568 }
4569
4570 static int
4571 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
4572 struct bp_target_info *bp_tgt)
4573 {
4574 int retval;
4575
4576 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
4577
4578 fprintf_unfiltered (gdb_stdlog,
4579 "target_remove_breakpoint (%s, xxx) = %ld\n",
4580 core_addr_to_string (bp_tgt->placed_address),
4581 (unsigned long) retval);
4582 return retval;
4583 }
4584
4585 static int
4586 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
4587 {
4588 int retval;
4589
4590 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
4591
4592 fprintf_unfiltered (gdb_stdlog,
4593 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4594 (unsigned long) type,
4595 (unsigned long) cnt,
4596 (unsigned long) from_tty,
4597 (unsigned long) retval);
4598 return retval;
4599 }
4600
4601 static int
4602 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
4603 {
4604 CORE_ADDR retval;
4605
4606 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
4607
4608 fprintf_unfiltered (gdb_stdlog,
4609 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4610 core_addr_to_string (addr), (unsigned long) len,
4611 core_addr_to_string (retval));
4612 return retval;
4613 }
4614
4615 static int
4616 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
4617 struct expression *cond)
4618 {
4619 int retval;
4620
4621 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
4622 rw, cond);
4623
4624 fprintf_unfiltered (gdb_stdlog,
4625 "target_can_accel_watchpoint_condition "
4626 "(%s, %d, %d, %s) = %ld\n",
4627 core_addr_to_string (addr), len, rw,
4628 host_address_to_string (cond), (unsigned long) retval);
4629 return retval;
4630 }
4631
4632 static int
4633 debug_to_stopped_by_watchpoint (void)
4634 {
4635 int retval;
4636
4637 retval = debug_target.to_stopped_by_watchpoint ();
4638
4639 fprintf_unfiltered (gdb_stdlog,
4640 "target_stopped_by_watchpoint () = %ld\n",
4641 (unsigned long) retval);
4642 return retval;
4643 }
4644
4645 static int
4646 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4647 {
4648 int retval;
4649
4650 retval = debug_target.to_stopped_data_address (target, addr);
4651
4652 fprintf_unfiltered (gdb_stdlog,
4653 "target_stopped_data_address ([%s]) = %ld\n",
4654 core_addr_to_string (*addr),
4655 (unsigned long)retval);
4656 return retval;
4657 }
4658
4659 static int
4660 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4661 CORE_ADDR addr,
4662 CORE_ADDR start, int length)
4663 {
4664 int retval;
4665
4666 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4667 start, length);
4668
4669 fprintf_filtered (gdb_stdlog,
4670 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4671 core_addr_to_string (addr), core_addr_to_string (start),
4672 length, retval);
4673 return retval;
4674 }
4675
4676 static int
4677 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
4678 struct bp_target_info *bp_tgt)
4679 {
4680 int retval;
4681
4682 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
4683
4684 fprintf_unfiltered (gdb_stdlog,
4685 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4686 core_addr_to_string (bp_tgt->placed_address),
4687 (unsigned long) retval);
4688 return retval;
4689 }
4690
4691 static int
4692 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
4693 struct bp_target_info *bp_tgt)
4694 {
4695 int retval;
4696
4697 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
4698
4699 fprintf_unfiltered (gdb_stdlog,
4700 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4701 core_addr_to_string (bp_tgt->placed_address),
4702 (unsigned long) retval);
4703 return retval;
4704 }
4705
4706 static int
4707 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
4708 struct expression *cond)
4709 {
4710 int retval;
4711
4712 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
4713
4714 fprintf_unfiltered (gdb_stdlog,
4715 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4716 core_addr_to_string (addr), len, type,
4717 host_address_to_string (cond), (unsigned long) retval);
4718 return retval;
4719 }
4720
4721 static int
4722 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
4723 struct expression *cond)
4724 {
4725 int retval;
4726
4727 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
4728
4729 fprintf_unfiltered (gdb_stdlog,
4730 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4731 core_addr_to_string (addr), len, type,
4732 host_address_to_string (cond), (unsigned long) retval);
4733 return retval;
4734 }
4735
4736 static void
4737 debug_to_terminal_init (void)
4738 {
4739 debug_target.to_terminal_init ();
4740
4741 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4742 }
4743
4744 static void
4745 debug_to_terminal_inferior (void)
4746 {
4747 debug_target.to_terminal_inferior ();
4748
4749 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4750 }
4751
4752 static void
4753 debug_to_terminal_ours_for_output (void)
4754 {
4755 debug_target.to_terminal_ours_for_output ();
4756
4757 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4758 }
4759
4760 static void
4761 debug_to_terminal_ours (void)
4762 {
4763 debug_target.to_terminal_ours ();
4764
4765 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4766 }
4767
4768 static void
4769 debug_to_terminal_save_ours (void)
4770 {
4771 debug_target.to_terminal_save_ours ();
4772
4773 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4774 }
4775
4776 static void
4777 debug_to_terminal_info (const char *arg, int from_tty)
4778 {
4779 debug_target.to_terminal_info (arg, from_tty);
4780
4781 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4782 from_tty);
4783 }
4784
4785 static void
4786 debug_to_load (char *args, int from_tty)
4787 {
4788 debug_target.to_load (args, from_tty);
4789
4790 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4791 }
4792
4793 static void
4794 debug_to_post_startup_inferior (ptid_t ptid)
4795 {
4796 debug_target.to_post_startup_inferior (ptid);
4797
4798 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4799 ptid_get_pid (ptid));
4800 }
4801
4802 static int
4803 debug_to_insert_fork_catchpoint (int pid)
4804 {
4805 int retval;
4806
4807 retval = debug_target.to_insert_fork_catchpoint (pid);
4808
4809 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4810 pid, retval);
4811
4812 return retval;
4813 }
4814
4815 static int
4816 debug_to_remove_fork_catchpoint (int pid)
4817 {
4818 int retval;
4819
4820 retval = debug_target.to_remove_fork_catchpoint (pid);
4821
4822 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4823 pid, retval);
4824
4825 return retval;
4826 }
4827
4828 static int
4829 debug_to_insert_vfork_catchpoint (int pid)
4830 {
4831 int retval;
4832
4833 retval = debug_target.to_insert_vfork_catchpoint (pid);
4834
4835 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4836 pid, retval);
4837
4838 return retval;
4839 }
4840
4841 static int
4842 debug_to_remove_vfork_catchpoint (int pid)
4843 {
4844 int retval;
4845
4846 retval = debug_target.to_remove_vfork_catchpoint (pid);
4847
4848 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4849 pid, retval);
4850
4851 return retval;
4852 }
4853
4854 static int
4855 debug_to_insert_exec_catchpoint (int pid)
4856 {
4857 int retval;
4858
4859 retval = debug_target.to_insert_exec_catchpoint (pid);
4860
4861 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4862 pid, retval);
4863
4864 return retval;
4865 }
4866
4867 static int
4868 debug_to_remove_exec_catchpoint (int pid)
4869 {
4870 int retval;
4871
4872 retval = debug_target.to_remove_exec_catchpoint (pid);
4873
4874 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4875 pid, retval);
4876
4877 return retval;
4878 }
4879
4880 static int
4881 debug_to_has_exited (int pid, int wait_status, int *exit_status)
4882 {
4883 int has_exited;
4884
4885 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
4886
4887 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4888 pid, wait_status, *exit_status, has_exited);
4889
4890 return has_exited;
4891 }
4892
4893 static int
4894 debug_to_can_run (void)
4895 {
4896 int retval;
4897
4898 retval = debug_target.to_can_run ();
4899
4900 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4901
4902 return retval;
4903 }
4904
4905 static struct gdbarch *
4906 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4907 {
4908 struct gdbarch *retval;
4909
4910 retval = debug_target.to_thread_architecture (ops, ptid);
4911
4912 fprintf_unfiltered (gdb_stdlog,
4913 "target_thread_architecture (%s) = %s [%s]\n",
4914 target_pid_to_str (ptid),
4915 host_address_to_string (retval),
4916 gdbarch_bfd_arch_info (retval)->printable_name);
4917 return retval;
4918 }
4919
4920 static void
4921 debug_to_stop (ptid_t ptid)
4922 {
4923 debug_target.to_stop (ptid);
4924
4925 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4926 target_pid_to_str (ptid));
4927 }
4928
4929 static void
4930 debug_to_rcmd (char *command,
4931 struct ui_file *outbuf)
4932 {
4933 debug_target.to_rcmd (command, outbuf);
4934 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4935 }
4936
4937 static char *
4938 debug_to_pid_to_exec_file (int pid)
4939 {
4940 char *exec_file;
4941
4942 exec_file = debug_target.to_pid_to_exec_file (pid);
4943
4944 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4945 pid, exec_file);
4946
4947 return exec_file;
4948 }
4949
4950 static void
4951 setup_target_debug (void)
4952 {
4953 memcpy (&debug_target, &current_target, sizeof debug_target);
4954
4955 current_target.to_open = debug_to_open;
4956 current_target.to_post_attach = debug_to_post_attach;
4957 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4958 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4959 current_target.to_files_info = debug_to_files_info;
4960 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4961 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4962 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4963 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4964 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4965 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4966 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4967 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4968 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4969 current_target.to_watchpoint_addr_within_range
4970 = debug_to_watchpoint_addr_within_range;
4971 current_target.to_region_ok_for_hw_watchpoint
4972 = debug_to_region_ok_for_hw_watchpoint;
4973 current_target.to_can_accel_watchpoint_condition
4974 = debug_to_can_accel_watchpoint_condition;
4975 current_target.to_terminal_init = debug_to_terminal_init;
4976 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4977 current_target.to_terminal_ours_for_output
4978 = debug_to_terminal_ours_for_output;
4979 current_target.to_terminal_ours = debug_to_terminal_ours;
4980 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4981 current_target.to_terminal_info = debug_to_terminal_info;
4982 current_target.to_load = debug_to_load;
4983 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4984 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4985 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4986 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4987 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4988 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4989 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4990 current_target.to_has_exited = debug_to_has_exited;
4991 current_target.to_can_run = debug_to_can_run;
4992 current_target.to_stop = debug_to_stop;
4993 current_target.to_rcmd = debug_to_rcmd;
4994 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4995 current_target.to_thread_architecture = debug_to_thread_architecture;
4996 }
4997 \f
4998
4999 static char targ_desc[] =
5000 "Names of targets and files being debugged.\nShows the entire \
5001 stack of targets currently in use (including the exec-file,\n\
5002 core-file, and process, if any), as well as the symbol file name.";
5003
5004 static void
5005 do_monitor_command (char *cmd,
5006 int from_tty)
5007 {
5008 if ((current_target.to_rcmd
5009 == (void (*) (char *, struct ui_file *)) tcomplain)
5010 || (current_target.to_rcmd == debug_to_rcmd
5011 && (debug_target.to_rcmd
5012 == (void (*) (char *, struct ui_file *)) tcomplain)))
5013 error (_("\"monitor\" command not supported by this target."));
5014 target_rcmd (cmd, gdb_stdtarg);
5015 }
5016
5017 /* Print the name of each layers of our target stack. */
5018
5019 static void
5020 maintenance_print_target_stack (char *cmd, int from_tty)
5021 {
5022 struct target_ops *t;
5023
5024 printf_filtered (_("The current target stack is:\n"));
5025
5026 for (t = target_stack; t != NULL; t = t->beneath)
5027 {
5028 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
5029 }
5030 }
5031
5032 /* Controls if async mode is permitted. */
5033 int target_async_permitted = 0;
5034
5035 /* The set command writes to this variable. If the inferior is
5036 executing, target_async_permitted is *not* updated. */
5037 static int target_async_permitted_1 = 0;
5038
5039 static void
5040 set_target_async_command (char *args, int from_tty,
5041 struct cmd_list_element *c)
5042 {
5043 if (have_live_inferiors ())
5044 {
5045 target_async_permitted_1 = target_async_permitted;
5046 error (_("Cannot change this setting while the inferior is running."));
5047 }
5048
5049 target_async_permitted = target_async_permitted_1;
5050 }
5051
5052 static void
5053 show_target_async_command (struct ui_file *file, int from_tty,
5054 struct cmd_list_element *c,
5055 const char *value)
5056 {
5057 fprintf_filtered (file,
5058 _("Controlling the inferior in "
5059 "asynchronous mode is %s.\n"), value);
5060 }
5061
5062 /* Temporary copies of permission settings. */
5063
5064 static int may_write_registers_1 = 1;
5065 static int may_write_memory_1 = 1;
5066 static int may_insert_breakpoints_1 = 1;
5067 static int may_insert_tracepoints_1 = 1;
5068 static int may_insert_fast_tracepoints_1 = 1;
5069 static int may_stop_1 = 1;
5070
5071 /* Make the user-set values match the real values again. */
5072
5073 void
5074 update_target_permissions (void)
5075 {
5076 may_write_registers_1 = may_write_registers;
5077 may_write_memory_1 = may_write_memory;
5078 may_insert_breakpoints_1 = may_insert_breakpoints;
5079 may_insert_tracepoints_1 = may_insert_tracepoints;
5080 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
5081 may_stop_1 = may_stop;
5082 }
5083
5084 /* The one function handles (most of) the permission flags in the same
5085 way. */
5086
5087 static void
5088 set_target_permissions (char *args, int from_tty,
5089 struct cmd_list_element *c)
5090 {
5091 if (target_has_execution)
5092 {
5093 update_target_permissions ();
5094 error (_("Cannot change this setting while the inferior is running."));
5095 }
5096
5097 /* Make the real values match the user-changed values. */
5098 may_write_registers = may_write_registers_1;
5099 may_insert_breakpoints = may_insert_breakpoints_1;
5100 may_insert_tracepoints = may_insert_tracepoints_1;
5101 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
5102 may_stop = may_stop_1;
5103 update_observer_mode ();
5104 }
5105
5106 /* Set memory write permission independently of observer mode. */
5107
5108 static void
5109 set_write_memory_permission (char *args, int from_tty,
5110 struct cmd_list_element *c)
5111 {
5112 /* Make the real values match the user-changed values. */
5113 may_write_memory = may_write_memory_1;
5114 update_observer_mode ();
5115 }
5116
5117
5118 void
5119 initialize_targets (void)
5120 {
5121 init_dummy_target ();
5122 push_target (&dummy_target);
5123
5124 add_info ("target", target_info, targ_desc);
5125 add_info ("files", target_info, targ_desc);
5126
5127 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
5128 Set target debugging."), _("\
5129 Show target debugging."), _("\
5130 When non-zero, target debugging is enabled. Higher numbers are more\n\
5131 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
5132 command."),
5133 NULL,
5134 show_targetdebug,
5135 &setdebuglist, &showdebuglist);
5136
5137 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
5138 &trust_readonly, _("\
5139 Set mode for reading from readonly sections."), _("\
5140 Show mode for reading from readonly sections."), _("\
5141 When this mode is on, memory reads from readonly sections (such as .text)\n\
5142 will be read from the object file instead of from the target. This will\n\
5143 result in significant performance improvement for remote targets."),
5144 NULL,
5145 show_trust_readonly,
5146 &setlist, &showlist);
5147
5148 add_com ("monitor", class_obscure, do_monitor_command,
5149 _("Send a command to the remote monitor (remote targets only)."));
5150
5151 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
5152 _("Print the name of each layer of the internal target stack."),
5153 &maintenanceprintlist);
5154
5155 add_setshow_boolean_cmd ("target-async", no_class,
5156 &target_async_permitted_1, _("\
5157 Set whether gdb controls the inferior in asynchronous mode."), _("\
5158 Show whether gdb controls the inferior in asynchronous mode."), _("\
5159 Tells gdb whether to control the inferior in asynchronous mode."),
5160 set_target_async_command,
5161 show_target_async_command,
5162 &setlist,
5163 &showlist);
5164
5165 add_setshow_boolean_cmd ("stack-cache", class_support,
5166 &stack_cache_enabled_p_1, _("\
5167 Set cache use for stack access."), _("\
5168 Show cache use for stack access."), _("\
5169 When on, use the data cache for all stack access, regardless of any\n\
5170 configured memory regions. This improves remote performance significantly.\n\
5171 By default, caching for stack access is on."),
5172 set_stack_cache_enabled_p,
5173 show_stack_cache_enabled_p,
5174 &setlist, &showlist);
5175
5176 add_setshow_boolean_cmd ("may-write-registers", class_support,
5177 &may_write_registers_1, _("\
5178 Set permission to write into registers."), _("\
5179 Show permission to write into registers."), _("\
5180 When this permission is on, GDB may write into the target's registers.\n\
5181 Otherwise, any sort of write attempt will result in an error."),
5182 set_target_permissions, NULL,
5183 &setlist, &showlist);
5184
5185 add_setshow_boolean_cmd ("may-write-memory", class_support,
5186 &may_write_memory_1, _("\
5187 Set permission to write into target memory."), _("\
5188 Show permission to write into target memory."), _("\
5189 When this permission is on, GDB may write into the target's memory.\n\
5190 Otherwise, any sort of write attempt will result in an error."),
5191 set_write_memory_permission, NULL,
5192 &setlist, &showlist);
5193
5194 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
5195 &may_insert_breakpoints_1, _("\
5196 Set permission to insert breakpoints in the target."), _("\
5197 Show permission to insert breakpoints in the target."), _("\
5198 When this permission is on, GDB may insert breakpoints in the program.\n\
5199 Otherwise, any sort of insertion attempt will result in an error."),
5200 set_target_permissions, NULL,
5201 &setlist, &showlist);
5202
5203 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
5204 &may_insert_tracepoints_1, _("\
5205 Set permission to insert tracepoints in the target."), _("\
5206 Show permission to insert tracepoints in the target."), _("\
5207 When this permission is on, GDB may insert tracepoints in the program.\n\
5208 Otherwise, any sort of insertion attempt will result in an error."),
5209 set_target_permissions, NULL,
5210 &setlist, &showlist);
5211
5212 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
5213 &may_insert_fast_tracepoints_1, _("\
5214 Set permission to insert fast tracepoints in the target."), _("\
5215 Show permission to insert fast tracepoints in the target."), _("\
5216 When this permission is on, GDB may insert fast tracepoints.\n\
5217 Otherwise, any sort of insertion attempt will result in an error."),
5218 set_target_permissions, NULL,
5219 &setlist, &showlist);
5220
5221 add_setshow_boolean_cmd ("may-interrupt", class_support,
5222 &may_stop_1, _("\
5223 Set permission to interrupt or signal the target."), _("\
5224 Show permission to interrupt or signal the target."), _("\
5225 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5226 Otherwise, any attempt to interrupt or stop will be ignored."),
5227 set_target_permissions, NULL,
5228 &setlist, &showlist);
5229 }
This page took 0.135684 seconds and 4 git commands to generate.