*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44 #include "exec.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static int nosymbol (char *, CORE_ADDR *);
58
59 static void tcomplain (void) ATTRIBUTE_NORETURN;
60
61 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
62
63 static int return_zero (void);
64
65 static int return_one (void);
66
67 static int return_minus_one (void);
68
69 void target_ignore (void);
70
71 static void target_command (char *, int);
72
73 static struct target_ops *find_default_run_target (char *);
74
75 static LONGEST default_xfer_partial (struct target_ops *ops,
76 enum target_object object,
77 const char *annex, gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, LONGEST len);
80
81 static LONGEST current_xfer_partial (struct target_ops *ops,
82 enum target_object object,
83 const char *annex, gdb_byte *readbuf,
84 const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 static LONGEST target_xfer_partial (struct target_ops *ops,
88 enum target_object object,
89 const char *annex,
90 void *readbuf, const void *writebuf,
91 ULONGEST offset, LONGEST len);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static void init_dummy_target (void);
97
98 static struct target_ops debug_target;
99
100 static void debug_to_open (char *, int);
101
102 static void debug_to_prepare_to_store (struct regcache *);
103
104 static void debug_to_files_info (struct target_ops *);
105
106 static int debug_to_insert_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_remove_breakpoint (struct gdbarch *,
110 struct bp_target_info *);
111
112 static int debug_to_can_use_hw_breakpoint (int, int, int);
113
114 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
118 struct bp_target_info *);
119
120 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
121 struct expression *);
122
123 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
124 struct expression *);
125
126 static int debug_to_stopped_by_watchpoint (void);
127
128 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
129
130 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
131 CORE_ADDR, CORE_ADDR, int);
132
133 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
134
135 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
136 struct expression *);
137
138 static void debug_to_terminal_init (void);
139
140 static void debug_to_terminal_inferior (void);
141
142 static void debug_to_terminal_ours_for_output (void);
143
144 static void debug_to_terminal_save_ours (void);
145
146 static void debug_to_terminal_ours (void);
147
148 static void debug_to_terminal_info (char *, int);
149
150 static void debug_to_load (char *, int);
151
152 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
153
154 static int debug_to_can_run (void);
155
156 static void debug_to_notice_signals (ptid_t);
157
158 static void debug_to_stop (ptid_t);
159
160 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
161 wierd and mysterious ways. Putting the variable here lets those
162 wierd and mysterious ways keep building while they are being
163 converted to the inferior inheritance structure. */
164 struct target_ops deprecated_child_ops;
165
166 /* Pointer to array of target architecture structures; the size of the
167 array; the current index into the array; the allocated size of the
168 array. */
169 struct target_ops **target_structs;
170 unsigned target_struct_size;
171 unsigned target_struct_index;
172 unsigned target_struct_allocsize;
173 #define DEFAULT_ALLOCSIZE 10
174
175 /* The initial current target, so that there is always a semi-valid
176 current target. */
177
178 static struct target_ops dummy_target;
179
180 /* Top of target stack. */
181
182 static struct target_ops *target_stack;
183
184 /* The target structure we are currently using to talk to a process
185 or file or whatever "inferior" we have. */
186
187 struct target_ops current_target;
188
189 /* Command list for target. */
190
191 static struct cmd_list_element *targetlist = NULL;
192
193 /* Nonzero if we should trust readonly sections from the
194 executable when reading memory. */
195
196 static int trust_readonly = 0;
197
198 /* Nonzero if we should show true memory content including
199 memory breakpoint inserted by gdb. */
200
201 static int show_memory_breakpoints = 0;
202
203 /* These globals control whether GDB attempts to perform these
204 operations; they are useful for targets that need to prevent
205 inadvertant disruption, such as in non-stop mode. */
206
207 int may_write_registers = 1;
208
209 int may_write_memory = 1;
210
211 int may_insert_breakpoints = 1;
212
213 int may_insert_tracepoints = 1;
214
215 int may_insert_fast_tracepoints = 1;
216
217 int may_stop = 1;
218
219 /* Non-zero if we want to see trace of target level stuff. */
220
221 static int targetdebug = 0;
222 static void
223 show_targetdebug (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
227 }
228
229 static void setup_target_debug (void);
230
231 /* The option sets this. */
232 static int stack_cache_enabled_p_1 = 1;
233 /* And set_stack_cache_enabled_p updates this.
234 The reason for the separation is so that we don't flush the cache for
235 on->on transitions. */
236 static int stack_cache_enabled_p = 1;
237
238 /* This is called *after* the stack-cache has been set.
239 Flush the cache for off->on and on->off transitions.
240 There's no real need to flush the cache for on->off transitions,
241 except cleanliness. */
242
243 static void
244 set_stack_cache_enabled_p (char *args, int from_tty,
245 struct cmd_list_element *c)
246 {
247 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
248 target_dcache_invalidate ();
249
250 stack_cache_enabled_p = stack_cache_enabled_p_1;
251 }
252
253 static void
254 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
255 struct cmd_list_element *c, const char *value)
256 {
257 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
258 }
259
260 /* Cache of memory operations, to speed up remote access. */
261 static DCACHE *target_dcache;
262
263 /* Invalidate the target dcache. */
264
265 void
266 target_dcache_invalidate (void)
267 {
268 dcache_invalidate (target_dcache);
269 }
270
271 /* The user just typed 'target' without the name of a target. */
272
273 static void
274 target_command (char *arg, int from_tty)
275 {
276 fputs_filtered ("Argument required (target name). Try `help target'\n",
277 gdb_stdout);
278 }
279
280 /* Default target_has_* methods for process_stratum targets. */
281
282 int
283 default_child_has_all_memory (struct target_ops *ops)
284 {
285 /* If no inferior selected, then we can't read memory here. */
286 if (ptid_equal (inferior_ptid, null_ptid))
287 return 0;
288
289 return 1;
290 }
291
292 int
293 default_child_has_memory (struct target_ops *ops)
294 {
295 /* If no inferior selected, then we can't read memory here. */
296 if (ptid_equal (inferior_ptid, null_ptid))
297 return 0;
298
299 return 1;
300 }
301
302 int
303 default_child_has_stack (struct target_ops *ops)
304 {
305 /* If no inferior selected, there's no stack. */
306 if (ptid_equal (inferior_ptid, null_ptid))
307 return 0;
308
309 return 1;
310 }
311
312 int
313 default_child_has_registers (struct target_ops *ops)
314 {
315 /* Can't read registers from no inferior. */
316 if (ptid_equal (inferior_ptid, null_ptid))
317 return 0;
318
319 return 1;
320 }
321
322 int
323 default_child_has_execution (struct target_ops *ops)
324 {
325 /* If there's no thread selected, then we can't make it run through
326 hoops. */
327 if (ptid_equal (inferior_ptid, null_ptid))
328 return 0;
329
330 return 1;
331 }
332
333
334 int
335 target_has_all_memory_1 (void)
336 {
337 struct target_ops *t;
338
339 for (t = current_target.beneath; t != NULL; t = t->beneath)
340 if (t->to_has_all_memory (t))
341 return 1;
342
343 return 0;
344 }
345
346 int
347 target_has_memory_1 (void)
348 {
349 struct target_ops *t;
350
351 for (t = current_target.beneath; t != NULL; t = t->beneath)
352 if (t->to_has_memory (t))
353 return 1;
354
355 return 0;
356 }
357
358 int
359 target_has_stack_1 (void)
360 {
361 struct target_ops *t;
362
363 for (t = current_target.beneath; t != NULL; t = t->beneath)
364 if (t->to_has_stack (t))
365 return 1;
366
367 return 0;
368 }
369
370 int
371 target_has_registers_1 (void)
372 {
373 struct target_ops *t;
374
375 for (t = current_target.beneath; t != NULL; t = t->beneath)
376 if (t->to_has_registers (t))
377 return 1;
378
379 return 0;
380 }
381
382 int
383 target_has_execution_1 (void)
384 {
385 struct target_ops *t;
386
387 for (t = current_target.beneath; t != NULL; t = t->beneath)
388 if (t->to_has_execution (t))
389 return 1;
390
391 return 0;
392 }
393
394 /* Add a possible target architecture to the list. */
395
396 void
397 add_target (struct target_ops *t)
398 {
399 /* Provide default values for all "must have" methods. */
400 if (t->to_xfer_partial == NULL)
401 t->to_xfer_partial = default_xfer_partial;
402
403 if (t->to_has_all_memory == NULL)
404 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
405
406 if (t->to_has_memory == NULL)
407 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
408
409 if (t->to_has_stack == NULL)
410 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
411
412 if (t->to_has_registers == NULL)
413 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
414
415 if (t->to_has_execution == NULL)
416 t->to_has_execution = (int (*) (struct target_ops *)) return_zero;
417
418 if (!target_structs)
419 {
420 target_struct_allocsize = DEFAULT_ALLOCSIZE;
421 target_structs = (struct target_ops **) xmalloc
422 (target_struct_allocsize * sizeof (*target_structs));
423 }
424 if (target_struct_size >= target_struct_allocsize)
425 {
426 target_struct_allocsize *= 2;
427 target_structs = (struct target_ops **)
428 xrealloc ((char *) target_structs,
429 target_struct_allocsize * sizeof (*target_structs));
430 }
431 target_structs[target_struct_size++] = t;
432
433 if (targetlist == NULL)
434 add_prefix_cmd ("target", class_run, target_command, _("\
435 Connect to a target machine or process.\n\
436 The first argument is the type or protocol of the target machine.\n\
437 Remaining arguments are interpreted by the target protocol. For more\n\
438 information on the arguments for a particular protocol, type\n\
439 `help target ' followed by the protocol name."),
440 &targetlist, "target ", 0, &cmdlist);
441 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
442 }
443
444 /* Stub functions */
445
446 void
447 target_ignore (void)
448 {
449 }
450
451 void
452 target_kill (void)
453 {
454 struct target_ops *t;
455
456 for (t = current_target.beneath; t != NULL; t = t->beneath)
457 if (t->to_kill != NULL)
458 {
459 if (targetdebug)
460 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
461
462 t->to_kill (t);
463 return;
464 }
465
466 noprocess ();
467 }
468
469 void
470 target_load (char *arg, int from_tty)
471 {
472 target_dcache_invalidate ();
473 (*current_target.to_load) (arg, from_tty);
474 }
475
476 void
477 target_create_inferior (char *exec_file, char *args,
478 char **env, int from_tty)
479 {
480 struct target_ops *t;
481
482 for (t = current_target.beneath; t != NULL; t = t->beneath)
483 {
484 if (t->to_create_inferior != NULL)
485 {
486 t->to_create_inferior (t, exec_file, args, env, from_tty);
487 if (targetdebug)
488 fprintf_unfiltered (gdb_stdlog,
489 "target_create_inferior (%s, %s, xxx, %d)\n",
490 exec_file, args, from_tty);
491 return;
492 }
493 }
494
495 internal_error (__FILE__, __LINE__,
496 "could not find a target to create inferior");
497 }
498
499 void
500 target_terminal_inferior (void)
501 {
502 /* A background resume (``run&'') should leave GDB in control of the
503 terminal. Use target_can_async_p, not target_is_async_p, since at
504 this point the target is not async yet. However, if sync_execution
505 is not set, we know it will become async prior to resume. */
506 if (target_can_async_p () && !sync_execution)
507 return;
508
509 /* If GDB is resuming the inferior in the foreground, install
510 inferior's terminal modes. */
511 (*current_target.to_terminal_inferior) ();
512 }
513
514 static int
515 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
516 struct target_ops *t)
517 {
518 errno = EIO; /* Can't read/write this location */
519 return 0; /* No bytes handled */
520 }
521
522 static void
523 tcomplain (void)
524 {
525 error (_("You can't do that when your target is `%s'"),
526 current_target.to_shortname);
527 }
528
529 void
530 noprocess (void)
531 {
532 error (_("You can't do that without a process to debug."));
533 }
534
535 static int
536 nosymbol (char *name, CORE_ADDR *addrp)
537 {
538 return 1; /* Symbol does not exist in target env */
539 }
540
541 static void
542 default_terminal_info (char *args, int from_tty)
543 {
544 printf_unfiltered (_("No saved terminal information.\n"));
545 }
546
547 /* A default implementation for the to_get_ada_task_ptid target method.
548
549 This function builds the PTID by using both LWP and TID as part of
550 the PTID lwp and tid elements. The pid used is the pid of the
551 inferior_ptid. */
552
553 static ptid_t
554 default_get_ada_task_ptid (long lwp, long tid)
555 {
556 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
557 }
558
559 /* Go through the target stack from top to bottom, copying over zero
560 entries in current_target, then filling in still empty entries. In
561 effect, we are doing class inheritance through the pushed target
562 vectors.
563
564 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
565 is currently implemented, is that it discards any knowledge of
566 which target an inherited method originally belonged to.
567 Consequently, new new target methods should instead explicitly and
568 locally search the target stack for the target that can handle the
569 request. */
570
571 static void
572 update_current_target (void)
573 {
574 struct target_ops *t;
575
576 /* First, reset current's contents. */
577 memset (&current_target, 0, sizeof (current_target));
578
579 #define INHERIT(FIELD, TARGET) \
580 if (!current_target.FIELD) \
581 current_target.FIELD = (TARGET)->FIELD
582
583 for (t = target_stack; t; t = t->beneath)
584 {
585 INHERIT (to_shortname, t);
586 INHERIT (to_longname, t);
587 INHERIT (to_doc, t);
588 /* Do not inherit to_open. */
589 /* Do not inherit to_close. */
590 /* Do not inherit to_attach. */
591 INHERIT (to_post_attach, t);
592 INHERIT (to_attach_no_wait, t);
593 /* Do not inherit to_detach. */
594 /* Do not inherit to_disconnect. */
595 /* Do not inherit to_resume. */
596 /* Do not inherit to_wait. */
597 /* Do not inherit to_fetch_registers. */
598 /* Do not inherit to_store_registers. */
599 INHERIT (to_prepare_to_store, t);
600 INHERIT (deprecated_xfer_memory, t);
601 INHERIT (to_files_info, t);
602 INHERIT (to_insert_breakpoint, t);
603 INHERIT (to_remove_breakpoint, t);
604 INHERIT (to_can_use_hw_breakpoint, t);
605 INHERIT (to_insert_hw_breakpoint, t);
606 INHERIT (to_remove_hw_breakpoint, t);
607 INHERIT (to_insert_watchpoint, t);
608 INHERIT (to_remove_watchpoint, t);
609 INHERIT (to_stopped_data_address, t);
610 INHERIT (to_have_steppable_watchpoint, t);
611 INHERIT (to_have_continuable_watchpoint, t);
612 INHERIT (to_stopped_by_watchpoint, t);
613 INHERIT (to_watchpoint_addr_within_range, t);
614 INHERIT (to_region_ok_for_hw_watchpoint, t);
615 INHERIT (to_can_accel_watchpoint_condition, t);
616 INHERIT (to_terminal_init, t);
617 INHERIT (to_terminal_inferior, t);
618 INHERIT (to_terminal_ours_for_output, t);
619 INHERIT (to_terminal_ours, t);
620 INHERIT (to_terminal_save_ours, t);
621 INHERIT (to_terminal_info, t);
622 /* Do not inherit to_kill. */
623 INHERIT (to_load, t);
624 INHERIT (to_lookup_symbol, t);
625 /* Do no inherit to_create_inferior. */
626 INHERIT (to_post_startup_inferior, t);
627 INHERIT (to_acknowledge_created_inferior, t);
628 INHERIT (to_insert_fork_catchpoint, t);
629 INHERIT (to_remove_fork_catchpoint, t);
630 INHERIT (to_insert_vfork_catchpoint, t);
631 INHERIT (to_remove_vfork_catchpoint, t);
632 /* Do not inherit to_follow_fork. */
633 INHERIT (to_insert_exec_catchpoint, t);
634 INHERIT (to_remove_exec_catchpoint, t);
635 INHERIT (to_set_syscall_catchpoint, t);
636 INHERIT (to_has_exited, t);
637 /* Do not inherit to_mourn_inferior. */
638 INHERIT (to_can_run, t);
639 INHERIT (to_notice_signals, t);
640 /* Do not inherit to_thread_alive. */
641 /* Do not inherit to_find_new_threads. */
642 /* Do not inherit to_pid_to_str. */
643 INHERIT (to_extra_thread_info, t);
644 INHERIT (to_stop, t);
645 /* Do not inherit to_xfer_partial. */
646 INHERIT (to_rcmd, t);
647 INHERIT (to_pid_to_exec_file, t);
648 INHERIT (to_log_command, t);
649 INHERIT (to_stratum, t);
650 /* Do not inherit to_has_all_memory */
651 /* Do not inherit to_has_memory */
652 /* Do not inherit to_has_stack */
653 /* Do not inherit to_has_registers */
654 /* Do not inherit to_has_execution */
655 INHERIT (to_has_thread_control, t);
656 INHERIT (to_can_async_p, t);
657 INHERIT (to_is_async_p, t);
658 INHERIT (to_async, t);
659 INHERIT (to_async_mask, t);
660 INHERIT (to_find_memory_regions, t);
661 INHERIT (to_make_corefile_notes, t);
662 INHERIT (to_get_bookmark, t);
663 INHERIT (to_goto_bookmark, t);
664 /* Do not inherit to_get_thread_local_address. */
665 INHERIT (to_can_execute_reverse, t);
666 INHERIT (to_thread_architecture, t);
667 /* Do not inherit to_read_description. */
668 INHERIT (to_get_ada_task_ptid, t);
669 /* Do not inherit to_search_memory. */
670 INHERIT (to_supports_multi_process, t);
671 INHERIT (to_trace_init, t);
672 INHERIT (to_download_tracepoint, t);
673 INHERIT (to_download_trace_state_variable, t);
674 INHERIT (to_trace_set_readonly_regions, t);
675 INHERIT (to_trace_start, t);
676 INHERIT (to_get_trace_status, t);
677 INHERIT (to_trace_stop, t);
678 INHERIT (to_trace_find, t);
679 INHERIT (to_get_trace_state_variable_value, t);
680 INHERIT (to_save_trace_data, t);
681 INHERIT (to_upload_tracepoints, t);
682 INHERIT (to_upload_trace_state_variables, t);
683 INHERIT (to_get_raw_trace_data, t);
684 INHERIT (to_set_disconnected_tracing, t);
685 INHERIT (to_set_circular_trace_buffer, t);
686 INHERIT (to_get_tib_address, t);
687 INHERIT (to_set_permissions, t);
688 INHERIT (to_static_tracepoint_marker_at, t);
689 INHERIT (to_static_tracepoint_markers_by_strid, t);
690 INHERIT (to_magic, t);
691 /* Do not inherit to_memory_map. */
692 /* Do not inherit to_flash_erase. */
693 /* Do not inherit to_flash_done. */
694 }
695 #undef INHERIT
696
697 /* Clean up a target struct so it no longer has any zero pointers in
698 it. Some entries are defaulted to a method that print an error,
699 others are hard-wired to a standard recursive default. */
700
701 #define de_fault(field, value) \
702 if (!current_target.field) \
703 current_target.field = value
704
705 de_fault (to_open,
706 (void (*) (char *, int))
707 tcomplain);
708 de_fault (to_close,
709 (void (*) (int))
710 target_ignore);
711 de_fault (to_post_attach,
712 (void (*) (int))
713 target_ignore);
714 de_fault (to_prepare_to_store,
715 (void (*) (struct regcache *))
716 noprocess);
717 de_fault (deprecated_xfer_memory,
718 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
719 nomemory);
720 de_fault (to_files_info,
721 (void (*) (struct target_ops *))
722 target_ignore);
723 de_fault (to_insert_breakpoint,
724 memory_insert_breakpoint);
725 de_fault (to_remove_breakpoint,
726 memory_remove_breakpoint);
727 de_fault (to_can_use_hw_breakpoint,
728 (int (*) (int, int, int))
729 return_zero);
730 de_fault (to_insert_hw_breakpoint,
731 (int (*) (struct gdbarch *, struct bp_target_info *))
732 return_minus_one);
733 de_fault (to_remove_hw_breakpoint,
734 (int (*) (struct gdbarch *, struct bp_target_info *))
735 return_minus_one);
736 de_fault (to_insert_watchpoint,
737 (int (*) (CORE_ADDR, int, int, struct expression *))
738 return_minus_one);
739 de_fault (to_remove_watchpoint,
740 (int (*) (CORE_ADDR, int, int, struct expression *))
741 return_minus_one);
742 de_fault (to_stopped_by_watchpoint,
743 (int (*) (void))
744 return_zero);
745 de_fault (to_stopped_data_address,
746 (int (*) (struct target_ops *, CORE_ADDR *))
747 return_zero);
748 de_fault (to_watchpoint_addr_within_range,
749 default_watchpoint_addr_within_range);
750 de_fault (to_region_ok_for_hw_watchpoint,
751 default_region_ok_for_hw_watchpoint);
752 de_fault (to_can_accel_watchpoint_condition,
753 (int (*) (CORE_ADDR, int, int, struct expression *))
754 return_zero);
755 de_fault (to_terminal_init,
756 (void (*) (void))
757 target_ignore);
758 de_fault (to_terminal_inferior,
759 (void (*) (void))
760 target_ignore);
761 de_fault (to_terminal_ours_for_output,
762 (void (*) (void))
763 target_ignore);
764 de_fault (to_terminal_ours,
765 (void (*) (void))
766 target_ignore);
767 de_fault (to_terminal_save_ours,
768 (void (*) (void))
769 target_ignore);
770 de_fault (to_terminal_info,
771 default_terminal_info);
772 de_fault (to_load,
773 (void (*) (char *, int))
774 tcomplain);
775 de_fault (to_lookup_symbol,
776 (int (*) (char *, CORE_ADDR *))
777 nosymbol);
778 de_fault (to_post_startup_inferior,
779 (void (*) (ptid_t))
780 target_ignore);
781 de_fault (to_acknowledge_created_inferior,
782 (void (*) (int))
783 target_ignore);
784 de_fault (to_insert_fork_catchpoint,
785 (void (*) (int))
786 tcomplain);
787 de_fault (to_remove_fork_catchpoint,
788 (int (*) (int))
789 tcomplain);
790 de_fault (to_insert_vfork_catchpoint,
791 (void (*) (int))
792 tcomplain);
793 de_fault (to_remove_vfork_catchpoint,
794 (int (*) (int))
795 tcomplain);
796 de_fault (to_insert_exec_catchpoint,
797 (void (*) (int))
798 tcomplain);
799 de_fault (to_remove_exec_catchpoint,
800 (int (*) (int))
801 tcomplain);
802 de_fault (to_set_syscall_catchpoint,
803 (int (*) (int, int, int, int, int *))
804 tcomplain);
805 de_fault (to_has_exited,
806 (int (*) (int, int, int *))
807 return_zero);
808 de_fault (to_can_run,
809 return_zero);
810 de_fault (to_notice_signals,
811 (void (*) (ptid_t))
812 target_ignore);
813 de_fault (to_extra_thread_info,
814 (char *(*) (struct thread_info *))
815 return_zero);
816 de_fault (to_stop,
817 (void (*) (ptid_t))
818 target_ignore);
819 current_target.to_xfer_partial = current_xfer_partial;
820 de_fault (to_rcmd,
821 (void (*) (char *, struct ui_file *))
822 tcomplain);
823 de_fault (to_pid_to_exec_file,
824 (char *(*) (int))
825 return_zero);
826 de_fault (to_async,
827 (void (*) (void (*) (enum inferior_event_type, void*), void*))
828 tcomplain);
829 de_fault (to_async_mask,
830 (int (*) (int))
831 return_one);
832 de_fault (to_thread_architecture,
833 default_thread_architecture);
834 current_target.to_read_description = NULL;
835 de_fault (to_get_ada_task_ptid,
836 (ptid_t (*) (long, long))
837 default_get_ada_task_ptid);
838 de_fault (to_supports_multi_process,
839 (int (*) (void))
840 return_zero);
841 de_fault (to_trace_init,
842 (void (*) (void))
843 tcomplain);
844 de_fault (to_download_tracepoint,
845 (void (*) (struct breakpoint *))
846 tcomplain);
847 de_fault (to_download_trace_state_variable,
848 (void (*) (struct trace_state_variable *))
849 tcomplain);
850 de_fault (to_trace_set_readonly_regions,
851 (void (*) (void))
852 tcomplain);
853 de_fault (to_trace_start,
854 (void (*) (void))
855 tcomplain);
856 de_fault (to_get_trace_status,
857 (int (*) (struct trace_status *))
858 return_minus_one);
859 de_fault (to_trace_stop,
860 (void (*) (void))
861 tcomplain);
862 de_fault (to_trace_find,
863 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
864 return_minus_one);
865 de_fault (to_get_trace_state_variable_value,
866 (int (*) (int, LONGEST *))
867 return_zero);
868 de_fault (to_save_trace_data,
869 (int (*) (const char *))
870 tcomplain);
871 de_fault (to_upload_tracepoints,
872 (int (*) (struct uploaded_tp **))
873 return_zero);
874 de_fault (to_upload_trace_state_variables,
875 (int (*) (struct uploaded_tsv **))
876 return_zero);
877 de_fault (to_get_raw_trace_data,
878 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
879 tcomplain);
880 de_fault (to_set_disconnected_tracing,
881 (void (*) (int))
882 target_ignore);
883 de_fault (to_set_circular_trace_buffer,
884 (void (*) (int))
885 target_ignore);
886 de_fault (to_get_tib_address,
887 (int (*) (ptid_t, CORE_ADDR *))
888 tcomplain);
889 de_fault (to_set_permissions,
890 (void (*) (void))
891 target_ignore);
892 de_fault (to_static_tracepoint_marker_at,
893 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
894 return_zero);
895 de_fault (to_static_tracepoint_markers_by_strid,
896 (VEC(static_tracepoint_marker_p) * (*) (const char *))
897 tcomplain);
898 #undef de_fault
899
900 /* Finally, position the target-stack beneath the squashed
901 "current_target". That way code looking for a non-inherited
902 target method can quickly and simply find it. */
903 current_target.beneath = target_stack;
904
905 if (targetdebug)
906 setup_target_debug ();
907 }
908
909 /* Push a new target type into the stack of the existing target accessors,
910 possibly superseding some of the existing accessors.
911
912 Rather than allow an empty stack, we always have the dummy target at
913 the bottom stratum, so we can call the function vectors without
914 checking them. */
915
916 void
917 push_target (struct target_ops *t)
918 {
919 struct target_ops **cur;
920
921 /* Check magic number. If wrong, it probably means someone changed
922 the struct definition, but not all the places that initialize one. */
923 if (t->to_magic != OPS_MAGIC)
924 {
925 fprintf_unfiltered (gdb_stderr,
926 "Magic number of %s target struct wrong\n",
927 t->to_shortname);
928 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
929 }
930
931 /* Find the proper stratum to install this target in. */
932 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
933 {
934 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
935 break;
936 }
937
938 /* If there's already targets at this stratum, remove them. */
939 /* FIXME: cagney/2003-10-15: I think this should be popping all
940 targets to CUR, and not just those at this stratum level. */
941 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
942 {
943 /* There's already something at this stratum level. Close it,
944 and un-hook it from the stack. */
945 struct target_ops *tmp = (*cur);
946
947 (*cur) = (*cur)->beneath;
948 tmp->beneath = NULL;
949 target_close (tmp, 0);
950 }
951
952 /* We have removed all targets in our stratum, now add the new one. */
953 t->beneath = (*cur);
954 (*cur) = t;
955
956 update_current_target ();
957 }
958
959 /* Remove a target_ops vector from the stack, wherever it may be.
960 Return how many times it was removed (0 or 1). */
961
962 int
963 unpush_target (struct target_ops *t)
964 {
965 struct target_ops **cur;
966 struct target_ops *tmp;
967
968 if (t->to_stratum == dummy_stratum)
969 internal_error (__FILE__, __LINE__,
970 "Attempt to unpush the dummy target");
971
972 /* Look for the specified target. Note that we assume that a target
973 can only occur once in the target stack. */
974
975 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
976 {
977 if ((*cur) == t)
978 break;
979 }
980
981 if ((*cur) == NULL)
982 return 0; /* Didn't find target_ops, quit now */
983
984 /* NOTE: cagney/2003-12-06: In '94 the close call was made
985 unconditional by moving it to before the above check that the
986 target was in the target stack (something about "Change the way
987 pushing and popping of targets work to support target overlays
988 and inheritance"). This doesn't make much sense - only open
989 targets should be closed. */
990 target_close (t, 0);
991
992 /* Unchain the target */
993 tmp = (*cur);
994 (*cur) = (*cur)->beneath;
995 tmp->beneath = NULL;
996
997 update_current_target ();
998
999 return 1;
1000 }
1001
1002 void
1003 pop_target (void)
1004 {
1005 target_close (target_stack, 0); /* Let it clean up */
1006 if (unpush_target (target_stack) == 1)
1007 return;
1008
1009 fprintf_unfiltered (gdb_stderr,
1010 "pop_target couldn't find target %s\n",
1011 current_target.to_shortname);
1012 internal_error (__FILE__, __LINE__,
1013 _("failed internal consistency check"));
1014 }
1015
1016 void
1017 pop_all_targets_above (enum strata above_stratum, int quitting)
1018 {
1019 while ((int) (current_target.to_stratum) > (int) above_stratum)
1020 {
1021 target_close (target_stack, quitting);
1022 if (!unpush_target (target_stack))
1023 {
1024 fprintf_unfiltered (gdb_stderr,
1025 "pop_all_targets couldn't find target %s\n",
1026 target_stack->to_shortname);
1027 internal_error (__FILE__, __LINE__,
1028 _("failed internal consistency check"));
1029 break;
1030 }
1031 }
1032 }
1033
1034 void
1035 pop_all_targets (int quitting)
1036 {
1037 pop_all_targets_above (dummy_stratum, quitting);
1038 }
1039
1040 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1041
1042 int
1043 target_is_pushed (struct target_ops *t)
1044 {
1045 struct target_ops **cur;
1046
1047 /* Check magic number. If wrong, it probably means someone changed
1048 the struct definition, but not all the places that initialize one. */
1049 if (t->to_magic != OPS_MAGIC)
1050 {
1051 fprintf_unfiltered (gdb_stderr,
1052 "Magic number of %s target struct wrong\n",
1053 t->to_shortname);
1054 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1055 }
1056
1057 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1058 if (*cur == t)
1059 return 1;
1060
1061 return 0;
1062 }
1063
1064 /* Using the objfile specified in OBJFILE, find the address for the
1065 current thread's thread-local storage with offset OFFSET. */
1066 CORE_ADDR
1067 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1068 {
1069 volatile CORE_ADDR addr = 0;
1070 struct target_ops *target;
1071
1072 for (target = current_target.beneath;
1073 target != NULL;
1074 target = target->beneath)
1075 {
1076 if (target->to_get_thread_local_address != NULL)
1077 break;
1078 }
1079
1080 if (target != NULL
1081 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1082 {
1083 ptid_t ptid = inferior_ptid;
1084 volatile struct gdb_exception ex;
1085
1086 TRY_CATCH (ex, RETURN_MASK_ALL)
1087 {
1088 CORE_ADDR lm_addr;
1089
1090 /* Fetch the load module address for this objfile. */
1091 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1092 objfile);
1093 /* If it's 0, throw the appropriate exception. */
1094 if (lm_addr == 0)
1095 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1096 _("TLS load module not found"));
1097
1098 addr = target->to_get_thread_local_address (target, ptid, lm_addr, offset);
1099 }
1100 /* If an error occurred, print TLS related messages here. Otherwise,
1101 throw the error to some higher catcher. */
1102 if (ex.reason < 0)
1103 {
1104 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1105
1106 switch (ex.error)
1107 {
1108 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1109 error (_("Cannot find thread-local variables in this thread library."));
1110 break;
1111 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1112 if (objfile_is_library)
1113 error (_("Cannot find shared library `%s' in dynamic"
1114 " linker's load module list"), objfile->name);
1115 else
1116 error (_("Cannot find executable file `%s' in dynamic"
1117 " linker's load module list"), objfile->name);
1118 break;
1119 case TLS_NOT_ALLOCATED_YET_ERROR:
1120 if (objfile_is_library)
1121 error (_("The inferior has not yet allocated storage for"
1122 " thread-local variables in\n"
1123 "the shared library `%s'\n"
1124 "for %s"),
1125 objfile->name, target_pid_to_str (ptid));
1126 else
1127 error (_("The inferior has not yet allocated storage for"
1128 " thread-local variables in\n"
1129 "the executable `%s'\n"
1130 "for %s"),
1131 objfile->name, target_pid_to_str (ptid));
1132 break;
1133 case TLS_GENERIC_ERROR:
1134 if (objfile_is_library)
1135 error (_("Cannot find thread-local storage for %s, "
1136 "shared library %s:\n%s"),
1137 target_pid_to_str (ptid),
1138 objfile->name, ex.message);
1139 else
1140 error (_("Cannot find thread-local storage for %s, "
1141 "executable file %s:\n%s"),
1142 target_pid_to_str (ptid),
1143 objfile->name, ex.message);
1144 break;
1145 default:
1146 throw_exception (ex);
1147 break;
1148 }
1149 }
1150 }
1151 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1152 TLS is an ABI-specific thing. But we don't do that yet. */
1153 else
1154 error (_("Cannot find thread-local variables on this target"));
1155
1156 return addr;
1157 }
1158
1159 #undef MIN
1160 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1161
1162 /* target_read_string -- read a null terminated string, up to LEN bytes,
1163 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1164 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1165 is responsible for freeing it. Return the number of bytes successfully
1166 read. */
1167
1168 int
1169 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1170 {
1171 int tlen, origlen, offset, i;
1172 gdb_byte buf[4];
1173 int errcode = 0;
1174 char *buffer;
1175 int buffer_allocated;
1176 char *bufptr;
1177 unsigned int nbytes_read = 0;
1178
1179 gdb_assert (string);
1180
1181 /* Small for testing. */
1182 buffer_allocated = 4;
1183 buffer = xmalloc (buffer_allocated);
1184 bufptr = buffer;
1185
1186 origlen = len;
1187
1188 while (len > 0)
1189 {
1190 tlen = MIN (len, 4 - (memaddr & 3));
1191 offset = memaddr & 3;
1192
1193 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1194 if (errcode != 0)
1195 {
1196 /* The transfer request might have crossed the boundary to an
1197 unallocated region of memory. Retry the transfer, requesting
1198 a single byte. */
1199 tlen = 1;
1200 offset = 0;
1201 errcode = target_read_memory (memaddr, buf, 1);
1202 if (errcode != 0)
1203 goto done;
1204 }
1205
1206 if (bufptr - buffer + tlen > buffer_allocated)
1207 {
1208 unsigned int bytes;
1209
1210 bytes = bufptr - buffer;
1211 buffer_allocated *= 2;
1212 buffer = xrealloc (buffer, buffer_allocated);
1213 bufptr = buffer + bytes;
1214 }
1215
1216 for (i = 0; i < tlen; i++)
1217 {
1218 *bufptr++ = buf[i + offset];
1219 if (buf[i + offset] == '\000')
1220 {
1221 nbytes_read += i + 1;
1222 goto done;
1223 }
1224 }
1225
1226 memaddr += tlen;
1227 len -= tlen;
1228 nbytes_read += tlen;
1229 }
1230 done:
1231 *string = buffer;
1232 if (errnop != NULL)
1233 *errnop = errcode;
1234 return nbytes_read;
1235 }
1236
1237 struct target_section_table *
1238 target_get_section_table (struct target_ops *target)
1239 {
1240 struct target_ops *t;
1241
1242 if (targetdebug)
1243 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1244
1245 for (t = target; t != NULL; t = t->beneath)
1246 if (t->to_get_section_table != NULL)
1247 return (*t->to_get_section_table) (t);
1248
1249 return NULL;
1250 }
1251
1252 /* Find a section containing ADDR. */
1253
1254 struct target_section *
1255 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1256 {
1257 struct target_section_table *table = target_get_section_table (target);
1258 struct target_section *secp;
1259
1260 if (table == NULL)
1261 return NULL;
1262
1263 for (secp = table->sections; secp < table->sections_end; secp++)
1264 {
1265 if (addr >= secp->addr && addr < secp->endaddr)
1266 return secp;
1267 }
1268 return NULL;
1269 }
1270
1271 /* Perform a partial memory transfer.
1272 For docs see target.h, to_xfer_partial. */
1273
1274 static LONGEST
1275 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1276 void *readbuf, const void *writebuf, ULONGEST memaddr,
1277 LONGEST len)
1278 {
1279 LONGEST res;
1280 int reg_len;
1281 struct mem_region *region;
1282 struct inferior *inf;
1283
1284 /* Zero length requests are ok and require no work. */
1285 if (len == 0)
1286 return 0;
1287
1288 /* For accesses to unmapped overlay sections, read directly from
1289 files. Must do this first, as MEMADDR may need adjustment. */
1290 if (readbuf != NULL && overlay_debugging)
1291 {
1292 struct obj_section *section = find_pc_overlay (memaddr);
1293
1294 if (pc_in_unmapped_range (memaddr, section))
1295 {
1296 struct target_section_table *table
1297 = target_get_section_table (ops);
1298 const char *section_name = section->the_bfd_section->name;
1299
1300 memaddr = overlay_mapped_address (memaddr, section);
1301 return section_table_xfer_memory_partial (readbuf, writebuf,
1302 memaddr, len,
1303 table->sections,
1304 table->sections_end,
1305 section_name);
1306 }
1307 }
1308
1309 /* Try the executable files, if "trust-readonly-sections" is set. */
1310 if (readbuf != NULL && trust_readonly)
1311 {
1312 struct target_section *secp;
1313 struct target_section_table *table;
1314
1315 secp = target_section_by_addr (ops, memaddr);
1316 if (secp != NULL
1317 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1318 & SEC_READONLY))
1319 {
1320 table = target_get_section_table (ops);
1321 return section_table_xfer_memory_partial (readbuf, writebuf,
1322 memaddr, len,
1323 table->sections,
1324 table->sections_end,
1325 NULL);
1326 }
1327 }
1328
1329 /* Try GDB's internal data cache. */
1330 region = lookup_mem_region (memaddr);
1331 /* region->hi == 0 means there's no upper bound. */
1332 if (memaddr + len < region->hi || region->hi == 0)
1333 reg_len = len;
1334 else
1335 reg_len = region->hi - memaddr;
1336
1337 switch (region->attrib.mode)
1338 {
1339 case MEM_RO:
1340 if (writebuf != NULL)
1341 return -1;
1342 break;
1343
1344 case MEM_WO:
1345 if (readbuf != NULL)
1346 return -1;
1347 break;
1348
1349 case MEM_FLASH:
1350 /* We only support writing to flash during "load" for now. */
1351 if (writebuf != NULL)
1352 error (_("Writing to flash memory forbidden in this context"));
1353 break;
1354
1355 case MEM_NONE:
1356 return -1;
1357 }
1358
1359 if (!ptid_equal (inferior_ptid, null_ptid))
1360 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1361 else
1362 inf = NULL;
1363
1364 if (inf != NULL
1365 /* The dcache reads whole cache lines; that doesn't play well
1366 with reading from a trace buffer, because reading outside of
1367 the collected memory range fails. */
1368 && get_traceframe_number () == -1
1369 && (region->attrib.cache
1370 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1371 {
1372 if (readbuf != NULL)
1373 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1374 reg_len, 0);
1375 else
1376 /* FIXME drow/2006-08-09: If we're going to preserve const
1377 correctness dcache_xfer_memory should take readbuf and
1378 writebuf. */
1379 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1380 (void *) writebuf,
1381 reg_len, 1);
1382 if (res <= 0)
1383 return -1;
1384 else
1385 {
1386 if (readbuf && !show_memory_breakpoints)
1387 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1388 return res;
1389 }
1390 }
1391
1392 /* If none of those methods found the memory we wanted, fall back
1393 to a target partial transfer. Normally a single call to
1394 to_xfer_partial is enough; if it doesn't recognize an object
1395 it will call the to_xfer_partial of the next target down.
1396 But for memory this won't do. Memory is the only target
1397 object which can be read from more than one valid target.
1398 A core file, for instance, could have some of memory but
1399 delegate other bits to the target below it. So, we must
1400 manually try all targets. */
1401
1402 do
1403 {
1404 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1405 readbuf, writebuf, memaddr, reg_len);
1406 if (res > 0)
1407 break;
1408
1409 /* We want to continue past core files to executables, but not
1410 past a running target's memory. */
1411 if (ops->to_has_all_memory (ops))
1412 break;
1413
1414 ops = ops->beneath;
1415 }
1416 while (ops != NULL);
1417
1418 if (readbuf && !show_memory_breakpoints)
1419 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1420
1421 /* Make sure the cache gets updated no matter what - if we are writing
1422 to the stack. Even if this write is not tagged as such, we still need
1423 to update the cache. */
1424
1425 if (res > 0
1426 && inf != NULL
1427 && writebuf != NULL
1428 && !region->attrib.cache
1429 && stack_cache_enabled_p
1430 && object != TARGET_OBJECT_STACK_MEMORY)
1431 {
1432 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1433 }
1434
1435 /* If we still haven't got anything, return the last error. We
1436 give up. */
1437 return res;
1438 }
1439
1440 static void
1441 restore_show_memory_breakpoints (void *arg)
1442 {
1443 show_memory_breakpoints = (uintptr_t) arg;
1444 }
1445
1446 struct cleanup *
1447 make_show_memory_breakpoints_cleanup (int show)
1448 {
1449 int current = show_memory_breakpoints;
1450
1451 show_memory_breakpoints = show;
1452 return make_cleanup (restore_show_memory_breakpoints,
1453 (void *) (uintptr_t) current);
1454 }
1455
1456 /* For docs see target.h, to_xfer_partial. */
1457
1458 static LONGEST
1459 target_xfer_partial (struct target_ops *ops,
1460 enum target_object object, const char *annex,
1461 void *readbuf, const void *writebuf,
1462 ULONGEST offset, LONGEST len)
1463 {
1464 LONGEST retval;
1465
1466 gdb_assert (ops->to_xfer_partial != NULL);
1467
1468 if (writebuf && !may_write_memory)
1469 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1470 core_addr_to_string_nz (offset), plongest (len));
1471
1472 /* If this is a memory transfer, let the memory-specific code
1473 have a look at it instead. Memory transfers are more
1474 complicated. */
1475 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1476 retval = memory_xfer_partial (ops, object, readbuf,
1477 writebuf, offset, len);
1478 else
1479 {
1480 enum target_object raw_object = object;
1481
1482 /* If this is a raw memory transfer, request the normal
1483 memory object from other layers. */
1484 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1485 raw_object = TARGET_OBJECT_MEMORY;
1486
1487 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1488 writebuf, offset, len);
1489 }
1490
1491 if (targetdebug)
1492 {
1493 const unsigned char *myaddr = NULL;
1494
1495 fprintf_unfiltered (gdb_stdlog,
1496 "%s:target_xfer_partial (%d, %s, %s, %s, %s, %s) = %s",
1497 ops->to_shortname,
1498 (int) object,
1499 (annex ? annex : "(null)"),
1500 host_address_to_string (readbuf),
1501 host_address_to_string (writebuf),
1502 core_addr_to_string_nz (offset),
1503 plongest (len), plongest (retval));
1504
1505 if (readbuf)
1506 myaddr = readbuf;
1507 if (writebuf)
1508 myaddr = writebuf;
1509 if (retval > 0 && myaddr != NULL)
1510 {
1511 int i;
1512
1513 fputs_unfiltered (", bytes =", gdb_stdlog);
1514 for (i = 0; i < retval; i++)
1515 {
1516 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1517 {
1518 if (targetdebug < 2 && i > 0)
1519 {
1520 fprintf_unfiltered (gdb_stdlog, " ...");
1521 break;
1522 }
1523 fprintf_unfiltered (gdb_stdlog, "\n");
1524 }
1525
1526 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1527 }
1528 }
1529
1530 fputc_unfiltered ('\n', gdb_stdlog);
1531 }
1532 return retval;
1533 }
1534
1535 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1536 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1537 if any error occurs.
1538
1539 If an error occurs, no guarantee is made about the contents of the data at
1540 MYADDR. In particular, the caller should not depend upon partial reads
1541 filling the buffer with good data. There is no way for the caller to know
1542 how much good data might have been transfered anyway. Callers that can
1543 deal with partial reads should call target_read (which will retry until
1544 it makes no progress, and then return how much was transferred). */
1545
1546 int
1547 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1548 {
1549 /* Dispatch to the topmost target, not the flattened current_target.
1550 Memory accesses check target->to_has_(all_)memory, and the
1551 flattened target doesn't inherit those. */
1552 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1553 myaddr, memaddr, len) == len)
1554 return 0;
1555 else
1556 return EIO;
1557 }
1558
1559 /* Like target_read_memory, but specify explicitly that this is a read from
1560 the target's stack. This may trigger different cache behavior. */
1561
1562 int
1563 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1564 {
1565 /* Dispatch to the topmost target, not the flattened current_target.
1566 Memory accesses check target->to_has_(all_)memory, and the
1567 flattened target doesn't inherit those. */
1568
1569 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1570 myaddr, memaddr, len) == len)
1571 return 0;
1572 else
1573 return EIO;
1574 }
1575
1576 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1577 Returns either 0 for success or an errno value if any error occurs.
1578 If an error occurs, no guarantee is made about how much data got written.
1579 Callers that can deal with partial writes should call target_write. */
1580
1581 int
1582 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1583 {
1584 /* Dispatch to the topmost target, not the flattened current_target.
1585 Memory accesses check target->to_has_(all_)memory, and the
1586 flattened target doesn't inherit those. */
1587 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1588 myaddr, memaddr, len) == len)
1589 return 0;
1590 else
1591 return EIO;
1592 }
1593
1594 /* Fetch the target's memory map. */
1595
1596 VEC(mem_region_s) *
1597 target_memory_map (void)
1598 {
1599 VEC(mem_region_s) *result;
1600 struct mem_region *last_one, *this_one;
1601 int ix;
1602 struct target_ops *t;
1603
1604 if (targetdebug)
1605 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1606
1607 for (t = current_target.beneath; t != NULL; t = t->beneath)
1608 if (t->to_memory_map != NULL)
1609 break;
1610
1611 if (t == NULL)
1612 return NULL;
1613
1614 result = t->to_memory_map (t);
1615 if (result == NULL)
1616 return NULL;
1617
1618 qsort (VEC_address (mem_region_s, result),
1619 VEC_length (mem_region_s, result),
1620 sizeof (struct mem_region), mem_region_cmp);
1621
1622 /* Check that regions do not overlap. Simultaneously assign
1623 a numbering for the "mem" commands to use to refer to
1624 each region. */
1625 last_one = NULL;
1626 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1627 {
1628 this_one->number = ix;
1629
1630 if (last_one && last_one->hi > this_one->lo)
1631 {
1632 warning (_("Overlapping regions in memory map: ignoring"));
1633 VEC_free (mem_region_s, result);
1634 return NULL;
1635 }
1636 last_one = this_one;
1637 }
1638
1639 return result;
1640 }
1641
1642 void
1643 target_flash_erase (ULONGEST address, LONGEST length)
1644 {
1645 struct target_ops *t;
1646
1647 for (t = current_target.beneath; t != NULL; t = t->beneath)
1648 if (t->to_flash_erase != NULL)
1649 {
1650 if (targetdebug)
1651 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1652 hex_string (address), phex (length, 0));
1653 t->to_flash_erase (t, address, length);
1654 return;
1655 }
1656
1657 tcomplain ();
1658 }
1659
1660 void
1661 target_flash_done (void)
1662 {
1663 struct target_ops *t;
1664
1665 for (t = current_target.beneath; t != NULL; t = t->beneath)
1666 if (t->to_flash_done != NULL)
1667 {
1668 if (targetdebug)
1669 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1670 t->to_flash_done (t);
1671 return;
1672 }
1673
1674 tcomplain ();
1675 }
1676
1677 static void
1678 show_trust_readonly (struct ui_file *file, int from_tty,
1679 struct cmd_list_element *c, const char *value)
1680 {
1681 fprintf_filtered (file, _("\
1682 Mode for reading from readonly sections is %s.\n"),
1683 value);
1684 }
1685
1686 /* More generic transfers. */
1687
1688 static LONGEST
1689 default_xfer_partial (struct target_ops *ops, enum target_object object,
1690 const char *annex, gdb_byte *readbuf,
1691 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1692 {
1693 if (object == TARGET_OBJECT_MEMORY
1694 && ops->deprecated_xfer_memory != NULL)
1695 /* If available, fall back to the target's
1696 "deprecated_xfer_memory" method. */
1697 {
1698 int xfered = -1;
1699
1700 errno = 0;
1701 if (writebuf != NULL)
1702 {
1703 void *buffer = xmalloc (len);
1704 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1705
1706 memcpy (buffer, writebuf, len);
1707 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1708 1/*write*/, NULL, ops);
1709 do_cleanups (cleanup);
1710 }
1711 if (readbuf != NULL)
1712 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1713 0/*read*/, NULL, ops);
1714 if (xfered > 0)
1715 return xfered;
1716 else if (xfered == 0 && errno == 0)
1717 /* "deprecated_xfer_memory" uses 0, cross checked against
1718 ERRNO as one indication of an error. */
1719 return 0;
1720 else
1721 return -1;
1722 }
1723 else if (ops->beneath != NULL)
1724 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1725 readbuf, writebuf, offset, len);
1726 else
1727 return -1;
1728 }
1729
1730 /* The xfer_partial handler for the topmost target. Unlike the default,
1731 it does not need to handle memory specially; it just passes all
1732 requests down the stack. */
1733
1734 static LONGEST
1735 current_xfer_partial (struct target_ops *ops, enum target_object object,
1736 const char *annex, gdb_byte *readbuf,
1737 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1738 {
1739 if (ops->beneath != NULL)
1740 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1741 readbuf, writebuf, offset, len);
1742 else
1743 return -1;
1744 }
1745
1746 /* Target vector read/write partial wrapper functions. */
1747
1748 static LONGEST
1749 target_read_partial (struct target_ops *ops,
1750 enum target_object object,
1751 const char *annex, gdb_byte *buf,
1752 ULONGEST offset, LONGEST len)
1753 {
1754 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1755 }
1756
1757 static LONGEST
1758 target_write_partial (struct target_ops *ops,
1759 enum target_object object,
1760 const char *annex, const gdb_byte *buf,
1761 ULONGEST offset, LONGEST len)
1762 {
1763 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1764 }
1765
1766 /* Wrappers to perform the full transfer. */
1767
1768 /* For docs on target_read see target.h. */
1769
1770 LONGEST
1771 target_read (struct target_ops *ops,
1772 enum target_object object,
1773 const char *annex, gdb_byte *buf,
1774 ULONGEST offset, LONGEST len)
1775 {
1776 LONGEST xfered = 0;
1777
1778 while (xfered < len)
1779 {
1780 LONGEST xfer = target_read_partial (ops, object, annex,
1781 (gdb_byte *) buf + xfered,
1782 offset + xfered, len - xfered);
1783
1784 /* Call an observer, notifying them of the xfer progress? */
1785 if (xfer == 0)
1786 return xfered;
1787 if (xfer < 0)
1788 return -1;
1789 xfered += xfer;
1790 QUIT;
1791 }
1792 return len;
1793 }
1794
1795 LONGEST
1796 target_read_until_error (struct target_ops *ops,
1797 enum target_object object,
1798 const char *annex, gdb_byte *buf,
1799 ULONGEST offset, LONGEST len)
1800 {
1801 LONGEST xfered = 0;
1802
1803 while (xfered < len)
1804 {
1805 LONGEST xfer = target_read_partial (ops, object, annex,
1806 (gdb_byte *) buf + xfered,
1807 offset + xfered, len - xfered);
1808
1809 /* Call an observer, notifying them of the xfer progress? */
1810 if (xfer == 0)
1811 return xfered;
1812 if (xfer < 0)
1813 {
1814 /* We've got an error. Try to read in smaller blocks. */
1815 ULONGEST start = offset + xfered;
1816 ULONGEST remaining = len - xfered;
1817 ULONGEST half;
1818
1819 /* If an attempt was made to read a random memory address,
1820 it's likely that the very first byte is not accessible.
1821 Try reading the first byte, to avoid doing log N tries
1822 below. */
1823 xfer = target_read_partial (ops, object, annex,
1824 (gdb_byte *) buf + xfered, start, 1);
1825 if (xfer <= 0)
1826 return xfered;
1827 start += 1;
1828 remaining -= 1;
1829 half = remaining/2;
1830
1831 while (half > 0)
1832 {
1833 xfer = target_read_partial (ops, object, annex,
1834 (gdb_byte *) buf + xfered,
1835 start, half);
1836 if (xfer == 0)
1837 return xfered;
1838 if (xfer < 0)
1839 {
1840 remaining = half;
1841 }
1842 else
1843 {
1844 /* We have successfully read the first half. So, the
1845 error must be in the second half. Adjust start and
1846 remaining to point at the second half. */
1847 xfered += xfer;
1848 start += xfer;
1849 remaining -= xfer;
1850 }
1851 half = remaining/2;
1852 }
1853
1854 return xfered;
1855 }
1856 xfered += xfer;
1857 QUIT;
1858 }
1859 return len;
1860 }
1861
1862 /* An alternative to target_write with progress callbacks. */
1863
1864 LONGEST
1865 target_write_with_progress (struct target_ops *ops,
1866 enum target_object object,
1867 const char *annex, const gdb_byte *buf,
1868 ULONGEST offset, LONGEST len,
1869 void (*progress) (ULONGEST, void *), void *baton)
1870 {
1871 LONGEST xfered = 0;
1872
1873 /* Give the progress callback a chance to set up. */
1874 if (progress)
1875 (*progress) (0, baton);
1876
1877 while (xfered < len)
1878 {
1879 LONGEST xfer = target_write_partial (ops, object, annex,
1880 (gdb_byte *) buf + xfered,
1881 offset + xfered, len - xfered);
1882
1883 if (xfer == 0)
1884 return xfered;
1885 if (xfer < 0)
1886 return -1;
1887
1888 if (progress)
1889 (*progress) (xfer, baton);
1890
1891 xfered += xfer;
1892 QUIT;
1893 }
1894 return len;
1895 }
1896
1897 /* For docs on target_write see target.h. */
1898
1899 LONGEST
1900 target_write (struct target_ops *ops,
1901 enum target_object object,
1902 const char *annex, const gdb_byte *buf,
1903 ULONGEST offset, LONGEST len)
1904 {
1905 return target_write_with_progress (ops, object, annex, buf, offset, len,
1906 NULL, NULL);
1907 }
1908
1909 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1910 the size of the transferred data. PADDING additional bytes are
1911 available in *BUF_P. This is a helper function for
1912 target_read_alloc; see the declaration of that function for more
1913 information. */
1914
1915 static LONGEST
1916 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1917 const char *annex, gdb_byte **buf_p, int padding)
1918 {
1919 size_t buf_alloc, buf_pos;
1920 gdb_byte *buf;
1921 LONGEST n;
1922
1923 /* This function does not have a length parameter; it reads the
1924 entire OBJECT). Also, it doesn't support objects fetched partly
1925 from one target and partly from another (in a different stratum,
1926 e.g. a core file and an executable). Both reasons make it
1927 unsuitable for reading memory. */
1928 gdb_assert (object != TARGET_OBJECT_MEMORY);
1929
1930 /* Start by reading up to 4K at a time. The target will throttle
1931 this number down if necessary. */
1932 buf_alloc = 4096;
1933 buf = xmalloc (buf_alloc);
1934 buf_pos = 0;
1935 while (1)
1936 {
1937 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1938 buf_pos, buf_alloc - buf_pos - padding);
1939 if (n < 0)
1940 {
1941 /* An error occurred. */
1942 xfree (buf);
1943 return -1;
1944 }
1945 else if (n == 0)
1946 {
1947 /* Read all there was. */
1948 if (buf_pos == 0)
1949 xfree (buf);
1950 else
1951 *buf_p = buf;
1952 return buf_pos;
1953 }
1954
1955 buf_pos += n;
1956
1957 /* If the buffer is filling up, expand it. */
1958 if (buf_alloc < buf_pos * 2)
1959 {
1960 buf_alloc *= 2;
1961 buf = xrealloc (buf, buf_alloc);
1962 }
1963
1964 QUIT;
1965 }
1966 }
1967
1968 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1969 the size of the transferred data. See the declaration in "target.h"
1970 function for more information about the return value. */
1971
1972 LONGEST
1973 target_read_alloc (struct target_ops *ops, enum target_object object,
1974 const char *annex, gdb_byte **buf_p)
1975 {
1976 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1977 }
1978
1979 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1980 returned as a string, allocated using xmalloc. If an error occurs
1981 or the transfer is unsupported, NULL is returned. Empty objects
1982 are returned as allocated but empty strings. A warning is issued
1983 if the result contains any embedded NUL bytes. */
1984
1985 char *
1986 target_read_stralloc (struct target_ops *ops, enum target_object object,
1987 const char *annex)
1988 {
1989 gdb_byte *buffer;
1990 LONGEST transferred;
1991
1992 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1993
1994 if (transferred < 0)
1995 return NULL;
1996
1997 if (transferred == 0)
1998 return xstrdup ("");
1999
2000 buffer[transferred] = 0;
2001 if (strlen (buffer) < transferred)
2002 warning (_("target object %d, annex %s, "
2003 "contained unexpected null characters"),
2004 (int) object, annex ? annex : "(none)");
2005
2006 return (char *) buffer;
2007 }
2008
2009 /* Memory transfer methods. */
2010
2011 void
2012 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2013 LONGEST len)
2014 {
2015 /* This method is used to read from an alternate, non-current
2016 target. This read must bypass the overlay support (as symbols
2017 don't match this target), and GDB's internal cache (wrong cache
2018 for this target). */
2019 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2020 != len)
2021 memory_error (EIO, addr);
2022 }
2023
2024 ULONGEST
2025 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2026 int len, enum bfd_endian byte_order)
2027 {
2028 gdb_byte buf[sizeof (ULONGEST)];
2029
2030 gdb_assert (len <= sizeof (buf));
2031 get_target_memory (ops, addr, buf, len);
2032 return extract_unsigned_integer (buf, len, byte_order);
2033 }
2034
2035 int
2036 target_insert_breakpoint (struct gdbarch *gdbarch,
2037 struct bp_target_info *bp_tgt)
2038 {
2039 if (!may_insert_breakpoints)
2040 {
2041 warning (_("May not insert breakpoints"));
2042 return 1;
2043 }
2044
2045 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2046 }
2047
2048 int
2049 target_remove_breakpoint (struct gdbarch *gdbarch,
2050 struct bp_target_info *bp_tgt)
2051 {
2052 /* This is kind of a weird case to handle, but the permission might
2053 have been changed after breakpoints were inserted - in which case
2054 we should just take the user literally and assume that any
2055 breakpoints should be left in place. */
2056 if (!may_insert_breakpoints)
2057 {
2058 warning (_("May not remove breakpoints"));
2059 return 1;
2060 }
2061
2062 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2063 }
2064
2065 static void
2066 target_info (char *args, int from_tty)
2067 {
2068 struct target_ops *t;
2069 int has_all_mem = 0;
2070
2071 if (symfile_objfile != NULL)
2072 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2073
2074 for (t = target_stack; t != NULL; t = t->beneath)
2075 {
2076 if (!(*t->to_has_memory) (t))
2077 continue;
2078
2079 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2080 continue;
2081 if (has_all_mem)
2082 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
2083 printf_unfiltered ("%s:\n", t->to_longname);
2084 (t->to_files_info) (t);
2085 has_all_mem = (*t->to_has_all_memory) (t);
2086 }
2087 }
2088
2089 /* This function is called before any new inferior is created, e.g.
2090 by running a program, attaching, or connecting to a target.
2091 It cleans up any state from previous invocations which might
2092 change between runs. This is a subset of what target_preopen
2093 resets (things which might change between targets). */
2094
2095 void
2096 target_pre_inferior (int from_tty)
2097 {
2098 /* Clear out solib state. Otherwise the solib state of the previous
2099 inferior might have survived and is entirely wrong for the new
2100 target. This has been observed on GNU/Linux using glibc 2.3. How
2101 to reproduce:
2102
2103 bash$ ./foo&
2104 [1] 4711
2105 bash$ ./foo&
2106 [1] 4712
2107 bash$ gdb ./foo
2108 [...]
2109 (gdb) attach 4711
2110 (gdb) detach
2111 (gdb) attach 4712
2112 Cannot access memory at address 0xdeadbeef
2113 */
2114
2115 /* In some OSs, the shared library list is the same/global/shared
2116 across inferiors. If code is shared between processes, so are
2117 memory regions and features. */
2118 if (!gdbarch_has_global_solist (target_gdbarch))
2119 {
2120 no_shared_libraries (NULL, from_tty);
2121
2122 invalidate_target_mem_regions ();
2123
2124 target_clear_description ();
2125 }
2126 }
2127
2128 /* Callback for iterate_over_inferiors. Gets rid of the given
2129 inferior. */
2130
2131 static int
2132 dispose_inferior (struct inferior *inf, void *args)
2133 {
2134 struct thread_info *thread;
2135
2136 thread = any_thread_of_process (inf->pid);
2137 if (thread)
2138 {
2139 switch_to_thread (thread->ptid);
2140
2141 /* Core inferiors actually should be detached, not killed. */
2142 if (target_has_execution)
2143 target_kill ();
2144 else
2145 target_detach (NULL, 0);
2146 }
2147
2148 return 0;
2149 }
2150
2151 /* This is to be called by the open routine before it does
2152 anything. */
2153
2154 void
2155 target_preopen (int from_tty)
2156 {
2157 dont_repeat ();
2158
2159 if (have_inferiors ())
2160 {
2161 if (!from_tty
2162 || !have_live_inferiors ()
2163 || query (_("A program is being debugged already. Kill it? ")))
2164 iterate_over_inferiors (dispose_inferior, NULL);
2165 else
2166 error (_("Program not killed."));
2167 }
2168
2169 /* Calling target_kill may remove the target from the stack. But if
2170 it doesn't (which seems like a win for UDI), remove it now. */
2171 /* Leave the exec target, though. The user may be switching from a
2172 live process to a core of the same program. */
2173 pop_all_targets_above (file_stratum, 0);
2174
2175 target_pre_inferior (from_tty);
2176 }
2177
2178 /* Detach a target after doing deferred register stores. */
2179
2180 void
2181 target_detach (char *args, int from_tty)
2182 {
2183 struct target_ops* t;
2184
2185 if (gdbarch_has_global_breakpoints (target_gdbarch))
2186 /* Don't remove global breakpoints here. They're removed on
2187 disconnection from the target. */
2188 ;
2189 else
2190 /* If we're in breakpoints-always-inserted mode, have to remove
2191 them before detaching. */
2192 remove_breakpoints_pid (PIDGET (inferior_ptid));
2193
2194 prepare_for_detach ();
2195
2196 for (t = current_target.beneath; t != NULL; t = t->beneath)
2197 {
2198 if (t->to_detach != NULL)
2199 {
2200 t->to_detach (t, args, from_tty);
2201 if (targetdebug)
2202 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2203 args, from_tty);
2204 return;
2205 }
2206 }
2207
2208 internal_error (__FILE__, __LINE__, "could not find a target to detach");
2209 }
2210
2211 void
2212 target_disconnect (char *args, int from_tty)
2213 {
2214 struct target_ops *t;
2215
2216 /* If we're in breakpoints-always-inserted mode or if breakpoints
2217 are global across processes, we have to remove them before
2218 disconnecting. */
2219 remove_breakpoints ();
2220
2221 for (t = current_target.beneath; t != NULL; t = t->beneath)
2222 if (t->to_disconnect != NULL)
2223 {
2224 if (targetdebug)
2225 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2226 args, from_tty);
2227 t->to_disconnect (t, args, from_tty);
2228 return;
2229 }
2230
2231 tcomplain ();
2232 }
2233
2234 ptid_t
2235 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2236 {
2237 struct target_ops *t;
2238
2239 for (t = current_target.beneath; t != NULL; t = t->beneath)
2240 {
2241 if (t->to_wait != NULL)
2242 {
2243 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2244
2245 if (targetdebug)
2246 {
2247 char *status_string;
2248
2249 status_string = target_waitstatus_to_string (status);
2250 fprintf_unfiltered (gdb_stdlog,
2251 "target_wait (%d, status) = %d, %s\n",
2252 PIDGET (ptid), PIDGET (retval),
2253 status_string);
2254 xfree (status_string);
2255 }
2256
2257 return retval;
2258 }
2259 }
2260
2261 noprocess ();
2262 }
2263
2264 char *
2265 target_pid_to_str (ptid_t ptid)
2266 {
2267 struct target_ops *t;
2268
2269 for (t = current_target.beneath; t != NULL; t = t->beneath)
2270 {
2271 if (t->to_pid_to_str != NULL)
2272 return (*t->to_pid_to_str) (t, ptid);
2273 }
2274
2275 return normal_pid_to_str (ptid);
2276 }
2277
2278 void
2279 target_resume (ptid_t ptid, int step, enum target_signal signal)
2280 {
2281 struct target_ops *t;
2282
2283 target_dcache_invalidate ();
2284
2285 for (t = current_target.beneath; t != NULL; t = t->beneath)
2286 {
2287 if (t->to_resume != NULL)
2288 {
2289 t->to_resume (t, ptid, step, signal);
2290 if (targetdebug)
2291 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2292 PIDGET (ptid),
2293 step ? "step" : "continue",
2294 target_signal_to_name (signal));
2295
2296 registers_changed_ptid (ptid);
2297 set_executing (ptid, 1);
2298 set_running (ptid, 1);
2299 clear_inline_frame_state (ptid);
2300 return;
2301 }
2302 }
2303
2304 noprocess ();
2305 }
2306 /* Look through the list of possible targets for a target that can
2307 follow forks. */
2308
2309 int
2310 target_follow_fork (int follow_child)
2311 {
2312 struct target_ops *t;
2313
2314 for (t = current_target.beneath; t != NULL; t = t->beneath)
2315 {
2316 if (t->to_follow_fork != NULL)
2317 {
2318 int retval = t->to_follow_fork (t, follow_child);
2319
2320 if (targetdebug)
2321 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2322 follow_child, retval);
2323 return retval;
2324 }
2325 }
2326
2327 /* Some target returned a fork event, but did not know how to follow it. */
2328 internal_error (__FILE__, __LINE__,
2329 "could not find a target to follow fork");
2330 }
2331
2332 void
2333 target_mourn_inferior (void)
2334 {
2335 struct target_ops *t;
2336
2337 for (t = current_target.beneath; t != NULL; t = t->beneath)
2338 {
2339 if (t->to_mourn_inferior != NULL)
2340 {
2341 t->to_mourn_inferior (t);
2342 if (targetdebug)
2343 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2344
2345 /* We no longer need to keep handles on any of the object files.
2346 Make sure to release them to avoid unnecessarily locking any
2347 of them while we're not actually debugging. */
2348 bfd_cache_close_all ();
2349
2350 return;
2351 }
2352 }
2353
2354 internal_error (__FILE__, __LINE__,
2355 "could not find a target to follow mourn inferior");
2356 }
2357
2358 /* Look for a target which can describe architectural features, starting
2359 from TARGET. If we find one, return its description. */
2360
2361 const struct target_desc *
2362 target_read_description (struct target_ops *target)
2363 {
2364 struct target_ops *t;
2365
2366 for (t = target; t != NULL; t = t->beneath)
2367 if (t->to_read_description != NULL)
2368 {
2369 const struct target_desc *tdesc;
2370
2371 tdesc = t->to_read_description (t);
2372 if (tdesc)
2373 return tdesc;
2374 }
2375
2376 return NULL;
2377 }
2378
2379 /* The default implementation of to_search_memory.
2380 This implements a basic search of memory, reading target memory and
2381 performing the search here (as opposed to performing the search in on the
2382 target side with, for example, gdbserver). */
2383
2384 int
2385 simple_search_memory (struct target_ops *ops,
2386 CORE_ADDR start_addr, ULONGEST search_space_len,
2387 const gdb_byte *pattern, ULONGEST pattern_len,
2388 CORE_ADDR *found_addrp)
2389 {
2390 /* NOTE: also defined in find.c testcase. */
2391 #define SEARCH_CHUNK_SIZE 16000
2392 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2393 /* Buffer to hold memory contents for searching. */
2394 gdb_byte *search_buf;
2395 unsigned search_buf_size;
2396 struct cleanup *old_cleanups;
2397
2398 search_buf_size = chunk_size + pattern_len - 1;
2399
2400 /* No point in trying to allocate a buffer larger than the search space. */
2401 if (search_space_len < search_buf_size)
2402 search_buf_size = search_space_len;
2403
2404 search_buf = malloc (search_buf_size);
2405 if (search_buf == NULL)
2406 error (_("Unable to allocate memory to perform the search."));
2407 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2408
2409 /* Prime the search buffer. */
2410
2411 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2412 search_buf, start_addr, search_buf_size) != search_buf_size)
2413 {
2414 warning (_("Unable to access target memory at %s, halting search."),
2415 hex_string (start_addr));
2416 do_cleanups (old_cleanups);
2417 return -1;
2418 }
2419
2420 /* Perform the search.
2421
2422 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2423 When we've scanned N bytes we copy the trailing bytes to the start and
2424 read in another N bytes. */
2425
2426 while (search_space_len >= pattern_len)
2427 {
2428 gdb_byte *found_ptr;
2429 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2430
2431 found_ptr = memmem (search_buf, nr_search_bytes,
2432 pattern, pattern_len);
2433
2434 if (found_ptr != NULL)
2435 {
2436 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2437
2438 *found_addrp = found_addr;
2439 do_cleanups (old_cleanups);
2440 return 1;
2441 }
2442
2443 /* Not found in this chunk, skip to next chunk. */
2444
2445 /* Don't let search_space_len wrap here, it's unsigned. */
2446 if (search_space_len >= chunk_size)
2447 search_space_len -= chunk_size;
2448 else
2449 search_space_len = 0;
2450
2451 if (search_space_len >= pattern_len)
2452 {
2453 unsigned keep_len = search_buf_size - chunk_size;
2454 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2455 int nr_to_read;
2456
2457 /* Copy the trailing part of the previous iteration to the front
2458 of the buffer for the next iteration. */
2459 gdb_assert (keep_len == pattern_len - 1);
2460 memcpy (search_buf, search_buf + chunk_size, keep_len);
2461
2462 nr_to_read = min (search_space_len - keep_len, chunk_size);
2463
2464 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2465 search_buf + keep_len, read_addr,
2466 nr_to_read) != nr_to_read)
2467 {
2468 warning (_("Unable to access target memory at %s, halting search."),
2469 hex_string (read_addr));
2470 do_cleanups (old_cleanups);
2471 return -1;
2472 }
2473
2474 start_addr += chunk_size;
2475 }
2476 }
2477
2478 /* Not found. */
2479
2480 do_cleanups (old_cleanups);
2481 return 0;
2482 }
2483
2484 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2485 sequence of bytes in PATTERN with length PATTERN_LEN.
2486
2487 The result is 1 if found, 0 if not found, and -1 if there was an error
2488 requiring halting of the search (e.g. memory read error).
2489 If the pattern is found the address is recorded in FOUND_ADDRP. */
2490
2491 int
2492 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2493 const gdb_byte *pattern, ULONGEST pattern_len,
2494 CORE_ADDR *found_addrp)
2495 {
2496 struct target_ops *t;
2497 int found;
2498
2499 /* We don't use INHERIT to set current_target.to_search_memory,
2500 so we have to scan the target stack and handle targetdebug
2501 ourselves. */
2502
2503 if (targetdebug)
2504 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2505 hex_string (start_addr));
2506
2507 for (t = current_target.beneath; t != NULL; t = t->beneath)
2508 if (t->to_search_memory != NULL)
2509 break;
2510
2511 if (t != NULL)
2512 {
2513 found = t->to_search_memory (t, start_addr, search_space_len,
2514 pattern, pattern_len, found_addrp);
2515 }
2516 else
2517 {
2518 /* If a special version of to_search_memory isn't available, use the
2519 simple version. */
2520 found = simple_search_memory (current_target.beneath,
2521 start_addr, search_space_len,
2522 pattern, pattern_len, found_addrp);
2523 }
2524
2525 if (targetdebug)
2526 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2527
2528 return found;
2529 }
2530
2531 /* Look through the currently pushed targets. If none of them will
2532 be able to restart the currently running process, issue an error
2533 message. */
2534
2535 void
2536 target_require_runnable (void)
2537 {
2538 struct target_ops *t;
2539
2540 for (t = target_stack; t != NULL; t = t->beneath)
2541 {
2542 /* If this target knows how to create a new program, then
2543 assume we will still be able to after killing the current
2544 one. Either killing and mourning will not pop T, or else
2545 find_default_run_target will find it again. */
2546 if (t->to_create_inferior != NULL)
2547 return;
2548
2549 /* Do not worry about thread_stratum targets that can not
2550 create inferiors. Assume they will be pushed again if
2551 necessary, and continue to the process_stratum. */
2552 if (t->to_stratum == thread_stratum
2553 || t->to_stratum == arch_stratum)
2554 continue;
2555
2556 error (_("\
2557 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2558 t->to_shortname);
2559 }
2560
2561 /* This function is only called if the target is running. In that
2562 case there should have been a process_stratum target and it
2563 should either know how to create inferiors, or not... */
2564 internal_error (__FILE__, __LINE__, "No targets found");
2565 }
2566
2567 /* Look through the list of possible targets for a target that can
2568 execute a run or attach command without any other data. This is
2569 used to locate the default process stratum.
2570
2571 If DO_MESG is not NULL, the result is always valid (error() is
2572 called for errors); else, return NULL on error. */
2573
2574 static struct target_ops *
2575 find_default_run_target (char *do_mesg)
2576 {
2577 struct target_ops **t;
2578 struct target_ops *runable = NULL;
2579 int count;
2580
2581 count = 0;
2582
2583 for (t = target_structs; t < target_structs + target_struct_size;
2584 ++t)
2585 {
2586 if ((*t)->to_can_run && target_can_run (*t))
2587 {
2588 runable = *t;
2589 ++count;
2590 }
2591 }
2592
2593 if (count != 1)
2594 {
2595 if (do_mesg)
2596 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2597 else
2598 return NULL;
2599 }
2600
2601 return runable;
2602 }
2603
2604 void
2605 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2606 {
2607 struct target_ops *t;
2608
2609 t = find_default_run_target ("attach");
2610 (t->to_attach) (t, args, from_tty);
2611 return;
2612 }
2613
2614 void
2615 find_default_create_inferior (struct target_ops *ops,
2616 char *exec_file, char *allargs, char **env,
2617 int from_tty)
2618 {
2619 struct target_ops *t;
2620
2621 t = find_default_run_target ("run");
2622 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2623 return;
2624 }
2625
2626 static int
2627 find_default_can_async_p (void)
2628 {
2629 struct target_ops *t;
2630
2631 /* This may be called before the target is pushed on the stack;
2632 look for the default process stratum. If there's none, gdb isn't
2633 configured with a native debugger, and target remote isn't
2634 connected yet. */
2635 t = find_default_run_target (NULL);
2636 if (t && t->to_can_async_p)
2637 return (t->to_can_async_p) ();
2638 return 0;
2639 }
2640
2641 static int
2642 find_default_is_async_p (void)
2643 {
2644 struct target_ops *t;
2645
2646 /* This may be called before the target is pushed on the stack;
2647 look for the default process stratum. If there's none, gdb isn't
2648 configured with a native debugger, and target remote isn't
2649 connected yet. */
2650 t = find_default_run_target (NULL);
2651 if (t && t->to_is_async_p)
2652 return (t->to_is_async_p) ();
2653 return 0;
2654 }
2655
2656 static int
2657 find_default_supports_non_stop (void)
2658 {
2659 struct target_ops *t;
2660
2661 t = find_default_run_target (NULL);
2662 if (t && t->to_supports_non_stop)
2663 return (t->to_supports_non_stop) ();
2664 return 0;
2665 }
2666
2667 int
2668 target_supports_non_stop (void)
2669 {
2670 struct target_ops *t;
2671
2672 for (t = &current_target; t != NULL; t = t->beneath)
2673 if (t->to_supports_non_stop)
2674 return t->to_supports_non_stop ();
2675
2676 return 0;
2677 }
2678
2679
2680 char *
2681 target_get_osdata (const char *type)
2682 {
2683 struct target_ops *t;
2684
2685 /* If we're already connected to something that can get us OS
2686 related data, use it. Otherwise, try using the native
2687 target. */
2688 if (current_target.to_stratum >= process_stratum)
2689 t = current_target.beneath;
2690 else
2691 t = find_default_run_target ("get OS data");
2692
2693 if (!t)
2694 return NULL;
2695
2696 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2697 }
2698
2699 /* Determine the current address space of thread PTID. */
2700
2701 struct address_space *
2702 target_thread_address_space (ptid_t ptid)
2703 {
2704 struct address_space *aspace;
2705 struct inferior *inf;
2706 struct target_ops *t;
2707
2708 for (t = current_target.beneath; t != NULL; t = t->beneath)
2709 {
2710 if (t->to_thread_address_space != NULL)
2711 {
2712 aspace = t->to_thread_address_space (t, ptid);
2713 gdb_assert (aspace);
2714
2715 if (targetdebug)
2716 fprintf_unfiltered (gdb_stdlog,
2717 "target_thread_address_space (%s) = %d\n",
2718 target_pid_to_str (ptid),
2719 address_space_num (aspace));
2720 return aspace;
2721 }
2722 }
2723
2724 /* Fall-back to the "main" address space of the inferior. */
2725 inf = find_inferior_pid (ptid_get_pid (ptid));
2726
2727 if (inf == NULL || inf->aspace == NULL)
2728 internal_error (__FILE__, __LINE__, "\
2729 Can't determine the current address space of thread %s\n",
2730 target_pid_to_str (ptid));
2731
2732 return inf->aspace;
2733 }
2734
2735 static int
2736 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2737 {
2738 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2739 }
2740
2741 static int
2742 default_watchpoint_addr_within_range (struct target_ops *target,
2743 CORE_ADDR addr,
2744 CORE_ADDR start, int length)
2745 {
2746 return addr >= start && addr < start + length;
2747 }
2748
2749 static struct gdbarch *
2750 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2751 {
2752 return target_gdbarch;
2753 }
2754
2755 static int
2756 return_zero (void)
2757 {
2758 return 0;
2759 }
2760
2761 static int
2762 return_one (void)
2763 {
2764 return 1;
2765 }
2766
2767 static int
2768 return_minus_one (void)
2769 {
2770 return -1;
2771 }
2772
2773 /* Find a single runnable target in the stack and return it. If for
2774 some reason there is more than one, return NULL. */
2775
2776 struct target_ops *
2777 find_run_target (void)
2778 {
2779 struct target_ops **t;
2780 struct target_ops *runable = NULL;
2781 int count;
2782
2783 count = 0;
2784
2785 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2786 {
2787 if ((*t)->to_can_run && target_can_run (*t))
2788 {
2789 runable = *t;
2790 ++count;
2791 }
2792 }
2793
2794 return (count == 1 ? runable : NULL);
2795 }
2796
2797 /*
2798 * Find the next target down the stack from the specified target.
2799 */
2800
2801 struct target_ops *
2802 find_target_beneath (struct target_ops *t)
2803 {
2804 return t->beneath;
2805 }
2806
2807 \f
2808 /* The inferior process has died. Long live the inferior! */
2809
2810 void
2811 generic_mourn_inferior (void)
2812 {
2813 ptid_t ptid;
2814
2815 ptid = inferior_ptid;
2816 inferior_ptid = null_ptid;
2817
2818 if (!ptid_equal (ptid, null_ptid))
2819 {
2820 int pid = ptid_get_pid (ptid);
2821 exit_inferior (pid);
2822 }
2823
2824 breakpoint_init_inferior (inf_exited);
2825 registers_changed ();
2826
2827 reopen_exec_file ();
2828 reinit_frame_cache ();
2829
2830 if (deprecated_detach_hook)
2831 deprecated_detach_hook ();
2832 }
2833 \f
2834 /* Helper function for child_wait and the derivatives of child_wait.
2835 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2836 translation of that in OURSTATUS. */
2837 void
2838 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2839 {
2840 if (WIFEXITED (hoststatus))
2841 {
2842 ourstatus->kind = TARGET_WAITKIND_EXITED;
2843 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2844 }
2845 else if (!WIFSTOPPED (hoststatus))
2846 {
2847 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2848 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2849 }
2850 else
2851 {
2852 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2853 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2854 }
2855 }
2856 \f
2857 /* Convert a normal process ID to a string. Returns the string in a
2858 static buffer. */
2859
2860 char *
2861 normal_pid_to_str (ptid_t ptid)
2862 {
2863 static char buf[32];
2864
2865 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2866 return buf;
2867 }
2868
2869 static char *
2870 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
2871 {
2872 return normal_pid_to_str (ptid);
2873 }
2874
2875 /* Error-catcher for target_find_memory_regions. */
2876 static int
2877 dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2878 {
2879 error (_("Command not implemented for this target."));
2880 return 0;
2881 }
2882
2883 /* Error-catcher for target_make_corefile_notes. */
2884 static char *
2885 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2886 {
2887 error (_("Command not implemented for this target."));
2888 return NULL;
2889 }
2890
2891 /* Error-catcher for target_get_bookmark. */
2892 static gdb_byte *
2893 dummy_get_bookmark (char *ignore1, int ignore2)
2894 {
2895 tcomplain ();
2896 return NULL;
2897 }
2898
2899 /* Error-catcher for target_goto_bookmark. */
2900 static void
2901 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
2902 {
2903 tcomplain ();
2904 }
2905
2906 /* Set up the handful of non-empty slots needed by the dummy target
2907 vector. */
2908
2909 static void
2910 init_dummy_target (void)
2911 {
2912 dummy_target.to_shortname = "None";
2913 dummy_target.to_longname = "None";
2914 dummy_target.to_doc = "";
2915 dummy_target.to_attach = find_default_attach;
2916 dummy_target.to_detach =
2917 (void (*)(struct target_ops *, char *, int))target_ignore;
2918 dummy_target.to_create_inferior = find_default_create_inferior;
2919 dummy_target.to_can_async_p = find_default_can_async_p;
2920 dummy_target.to_is_async_p = find_default_is_async_p;
2921 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
2922 dummy_target.to_pid_to_str = dummy_pid_to_str;
2923 dummy_target.to_stratum = dummy_stratum;
2924 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2925 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2926 dummy_target.to_get_bookmark = dummy_get_bookmark;
2927 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
2928 dummy_target.to_xfer_partial = default_xfer_partial;
2929 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
2930 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
2931 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
2932 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
2933 dummy_target.to_has_execution = (int (*) (struct target_ops *)) return_zero;
2934 dummy_target.to_stopped_by_watchpoint = return_zero;
2935 dummy_target.to_stopped_data_address =
2936 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
2937 dummy_target.to_magic = OPS_MAGIC;
2938 }
2939 \f
2940 static void
2941 debug_to_open (char *args, int from_tty)
2942 {
2943 debug_target.to_open (args, from_tty);
2944
2945 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2946 }
2947
2948 void
2949 target_close (struct target_ops *targ, int quitting)
2950 {
2951 if (targ->to_xclose != NULL)
2952 targ->to_xclose (targ, quitting);
2953 else if (targ->to_close != NULL)
2954 targ->to_close (quitting);
2955
2956 if (targetdebug)
2957 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2958 }
2959
2960 void
2961 target_attach (char *args, int from_tty)
2962 {
2963 struct target_ops *t;
2964
2965 for (t = current_target.beneath; t != NULL; t = t->beneath)
2966 {
2967 if (t->to_attach != NULL)
2968 {
2969 t->to_attach (t, args, from_tty);
2970 if (targetdebug)
2971 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
2972 args, from_tty);
2973 return;
2974 }
2975 }
2976
2977 internal_error (__FILE__, __LINE__,
2978 "could not find a target to attach");
2979 }
2980
2981 int
2982 target_thread_alive (ptid_t ptid)
2983 {
2984 struct target_ops *t;
2985
2986 for (t = current_target.beneath; t != NULL; t = t->beneath)
2987 {
2988 if (t->to_thread_alive != NULL)
2989 {
2990 int retval;
2991
2992 retval = t->to_thread_alive (t, ptid);
2993 if (targetdebug)
2994 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2995 PIDGET (ptid), retval);
2996
2997 return retval;
2998 }
2999 }
3000
3001 return 0;
3002 }
3003
3004 void
3005 target_find_new_threads (void)
3006 {
3007 struct target_ops *t;
3008
3009 for (t = current_target.beneath; t != NULL; t = t->beneath)
3010 {
3011 if (t->to_find_new_threads != NULL)
3012 {
3013 t->to_find_new_threads (t);
3014 if (targetdebug)
3015 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3016
3017 return;
3018 }
3019 }
3020 }
3021
3022 void
3023 target_stop (ptid_t ptid)
3024 {
3025 if (!may_stop)
3026 {
3027 warning (_("May not interrupt or stop the target, ignoring attempt"));
3028 return;
3029 }
3030
3031 (*current_target.to_stop) (ptid);
3032 }
3033
3034 static void
3035 debug_to_post_attach (int pid)
3036 {
3037 debug_target.to_post_attach (pid);
3038
3039 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3040 }
3041
3042 /* Return a pretty printed form of target_waitstatus.
3043 Space for the result is malloc'd, caller must free. */
3044
3045 char *
3046 target_waitstatus_to_string (const struct target_waitstatus *ws)
3047 {
3048 const char *kind_str = "status->kind = ";
3049
3050 switch (ws->kind)
3051 {
3052 case TARGET_WAITKIND_EXITED:
3053 return xstrprintf ("%sexited, status = %d",
3054 kind_str, ws->value.integer);
3055 case TARGET_WAITKIND_STOPPED:
3056 return xstrprintf ("%sstopped, signal = %s",
3057 kind_str, target_signal_to_name (ws->value.sig));
3058 case TARGET_WAITKIND_SIGNALLED:
3059 return xstrprintf ("%ssignalled, signal = %s",
3060 kind_str, target_signal_to_name (ws->value.sig));
3061 case TARGET_WAITKIND_LOADED:
3062 return xstrprintf ("%sloaded", kind_str);
3063 case TARGET_WAITKIND_FORKED:
3064 return xstrprintf ("%sforked", kind_str);
3065 case TARGET_WAITKIND_VFORKED:
3066 return xstrprintf ("%svforked", kind_str);
3067 case TARGET_WAITKIND_EXECD:
3068 return xstrprintf ("%sexecd", kind_str);
3069 case TARGET_WAITKIND_SYSCALL_ENTRY:
3070 return xstrprintf ("%sentered syscall", kind_str);
3071 case TARGET_WAITKIND_SYSCALL_RETURN:
3072 return xstrprintf ("%sexited syscall", kind_str);
3073 case TARGET_WAITKIND_SPURIOUS:
3074 return xstrprintf ("%sspurious", kind_str);
3075 case TARGET_WAITKIND_IGNORE:
3076 return xstrprintf ("%signore", kind_str);
3077 case TARGET_WAITKIND_NO_HISTORY:
3078 return xstrprintf ("%sno-history", kind_str);
3079 default:
3080 return xstrprintf ("%sunknown???", kind_str);
3081 }
3082 }
3083
3084 static void
3085 debug_print_register (const char * func,
3086 struct regcache *regcache, int regno)
3087 {
3088 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3089
3090 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3091 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3092 && gdbarch_register_name (gdbarch, regno) != NULL
3093 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3094 fprintf_unfiltered (gdb_stdlog, "(%s)",
3095 gdbarch_register_name (gdbarch, regno));
3096 else
3097 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3098 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3099 {
3100 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3101 int i, size = register_size (gdbarch, regno);
3102 unsigned char buf[MAX_REGISTER_SIZE];
3103
3104 regcache_raw_collect (regcache, regno, buf);
3105 fprintf_unfiltered (gdb_stdlog, " = ");
3106 for (i = 0; i < size; i++)
3107 {
3108 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3109 }
3110 if (size <= sizeof (LONGEST))
3111 {
3112 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3113
3114 fprintf_unfiltered (gdb_stdlog, " %s %s",
3115 core_addr_to_string_nz (val), plongest (val));
3116 }
3117 }
3118 fprintf_unfiltered (gdb_stdlog, "\n");
3119 }
3120
3121 void
3122 target_fetch_registers (struct regcache *regcache, int regno)
3123 {
3124 struct target_ops *t;
3125
3126 for (t = current_target.beneath; t != NULL; t = t->beneath)
3127 {
3128 if (t->to_fetch_registers != NULL)
3129 {
3130 t->to_fetch_registers (t, regcache, regno);
3131 if (targetdebug)
3132 debug_print_register ("target_fetch_registers", regcache, regno);
3133 return;
3134 }
3135 }
3136 }
3137
3138 void
3139 target_store_registers (struct regcache *regcache, int regno)
3140 {
3141 struct target_ops *t;
3142
3143 if (!may_write_registers)
3144 error (_("Writing to registers is not allowed (regno %d)"), regno);
3145
3146 for (t = current_target.beneath; t != NULL; t = t->beneath)
3147 {
3148 if (t->to_store_registers != NULL)
3149 {
3150 t->to_store_registers (t, regcache, regno);
3151 if (targetdebug)
3152 {
3153 debug_print_register ("target_store_registers", regcache, regno);
3154 }
3155 return;
3156 }
3157 }
3158
3159 noprocess ();
3160 }
3161
3162 int
3163 target_core_of_thread (ptid_t ptid)
3164 {
3165 struct target_ops *t;
3166
3167 for (t = current_target.beneath; t != NULL; t = t->beneath)
3168 {
3169 if (t->to_core_of_thread != NULL)
3170 {
3171 int retval = t->to_core_of_thread (t, ptid);
3172
3173 if (targetdebug)
3174 fprintf_unfiltered (gdb_stdlog, "target_core_of_thread (%d) = %d\n",
3175 PIDGET (ptid), retval);
3176 return retval;
3177 }
3178 }
3179
3180 return -1;
3181 }
3182
3183 int
3184 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3185 {
3186 struct target_ops *t;
3187
3188 for (t = current_target.beneath; t != NULL; t = t->beneath)
3189 {
3190 if (t->to_verify_memory != NULL)
3191 {
3192 int retval = t->to_verify_memory (t, data, memaddr, size);
3193
3194 if (targetdebug)
3195 fprintf_unfiltered (gdb_stdlog, "target_verify_memory (%s, %s) = %d\n",
3196 paddress (target_gdbarch, memaddr),
3197 pulongest (size),
3198 retval);
3199 return retval;
3200 }
3201 }
3202
3203 tcomplain ();
3204 }
3205
3206 static void
3207 debug_to_prepare_to_store (struct regcache *regcache)
3208 {
3209 debug_target.to_prepare_to_store (regcache);
3210
3211 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3212 }
3213
3214 static int
3215 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
3216 int write, struct mem_attrib *attrib,
3217 struct target_ops *target)
3218 {
3219 int retval;
3220
3221 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
3222 attrib, target);
3223
3224 fprintf_unfiltered (gdb_stdlog,
3225 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
3226 paddress (target_gdbarch, memaddr), len,
3227 write ? "write" : "read", retval);
3228
3229 if (retval > 0)
3230 {
3231 int i;
3232
3233 fputs_unfiltered (", bytes =", gdb_stdlog);
3234 for (i = 0; i < retval; i++)
3235 {
3236 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
3237 {
3238 if (targetdebug < 2 && i > 0)
3239 {
3240 fprintf_unfiltered (gdb_stdlog, " ...");
3241 break;
3242 }
3243 fprintf_unfiltered (gdb_stdlog, "\n");
3244 }
3245
3246 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
3247 }
3248 }
3249
3250 fputc_unfiltered ('\n', gdb_stdlog);
3251
3252 return retval;
3253 }
3254
3255 static void
3256 debug_to_files_info (struct target_ops *target)
3257 {
3258 debug_target.to_files_info (target);
3259
3260 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3261 }
3262
3263 static int
3264 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
3265 struct bp_target_info *bp_tgt)
3266 {
3267 int retval;
3268
3269 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
3270
3271 fprintf_unfiltered (gdb_stdlog,
3272 "target_insert_breakpoint (%s, xxx) = %ld\n",
3273 core_addr_to_string (bp_tgt->placed_address),
3274 (unsigned long) retval);
3275 return retval;
3276 }
3277
3278 static int
3279 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
3280 struct bp_target_info *bp_tgt)
3281 {
3282 int retval;
3283
3284 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
3285
3286 fprintf_unfiltered (gdb_stdlog,
3287 "target_remove_breakpoint (%s, xxx) = %ld\n",
3288 core_addr_to_string (bp_tgt->placed_address),
3289 (unsigned long) retval);
3290 return retval;
3291 }
3292
3293 static int
3294 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
3295 {
3296 int retval;
3297
3298 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
3299
3300 fprintf_unfiltered (gdb_stdlog,
3301 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3302 (unsigned long) type,
3303 (unsigned long) cnt,
3304 (unsigned long) from_tty,
3305 (unsigned long) retval);
3306 return retval;
3307 }
3308
3309 static int
3310 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3311 {
3312 CORE_ADDR retval;
3313
3314 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
3315
3316 fprintf_unfiltered (gdb_stdlog,
3317 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
3318 core_addr_to_string (addr), (unsigned long) len,
3319 core_addr_to_string (retval));
3320 return retval;
3321 }
3322
3323 static int
3324 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
3325 struct expression *cond)
3326 {
3327 int retval;
3328
3329 retval = debug_target.to_can_accel_watchpoint_condition (addr, len, rw, cond);
3330
3331 fprintf_unfiltered (gdb_stdlog,
3332 "target_can_accel_watchpoint_condition (%s, %d, %d, %s) = %ld\n",
3333 core_addr_to_string (addr), len, rw,
3334 host_address_to_string (cond), (unsigned long) retval);
3335 return retval;
3336 }
3337
3338 static int
3339 debug_to_stopped_by_watchpoint (void)
3340 {
3341 int retval;
3342
3343 retval = debug_target.to_stopped_by_watchpoint ();
3344
3345 fprintf_unfiltered (gdb_stdlog,
3346 "target_stopped_by_watchpoint () = %ld\n",
3347 (unsigned long) retval);
3348 return retval;
3349 }
3350
3351 static int
3352 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3353 {
3354 int retval;
3355
3356 retval = debug_target.to_stopped_data_address (target, addr);
3357
3358 fprintf_unfiltered (gdb_stdlog,
3359 "target_stopped_data_address ([%s]) = %ld\n",
3360 core_addr_to_string (*addr),
3361 (unsigned long)retval);
3362 return retval;
3363 }
3364
3365 static int
3366 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3367 CORE_ADDR addr,
3368 CORE_ADDR start, int length)
3369 {
3370 int retval;
3371
3372 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3373 start, length);
3374
3375 fprintf_filtered (gdb_stdlog,
3376 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
3377 core_addr_to_string (addr), core_addr_to_string (start),
3378 length, retval);
3379 return retval;
3380 }
3381
3382 static int
3383 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
3384 struct bp_target_info *bp_tgt)
3385 {
3386 int retval;
3387
3388 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
3389
3390 fprintf_unfiltered (gdb_stdlog,
3391 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
3392 core_addr_to_string (bp_tgt->placed_address),
3393 (unsigned long) retval);
3394 return retval;
3395 }
3396
3397 static int
3398 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
3399 struct bp_target_info *bp_tgt)
3400 {
3401 int retval;
3402
3403 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
3404
3405 fprintf_unfiltered (gdb_stdlog,
3406 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
3407 core_addr_to_string (bp_tgt->placed_address),
3408 (unsigned long) retval);
3409 return retval;
3410 }
3411
3412 static int
3413 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
3414 struct expression *cond)
3415 {
3416 int retval;
3417
3418 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
3419
3420 fprintf_unfiltered (gdb_stdlog,
3421 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
3422 core_addr_to_string (addr), len, type,
3423 host_address_to_string (cond), (unsigned long) retval);
3424 return retval;
3425 }
3426
3427 static int
3428 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
3429 struct expression *cond)
3430 {
3431 int retval;
3432
3433 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
3434
3435 fprintf_unfiltered (gdb_stdlog,
3436 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
3437 core_addr_to_string (addr), len, type,
3438 host_address_to_string (cond), (unsigned long) retval);
3439 return retval;
3440 }
3441
3442 static void
3443 debug_to_terminal_init (void)
3444 {
3445 debug_target.to_terminal_init ();
3446
3447 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3448 }
3449
3450 static void
3451 debug_to_terminal_inferior (void)
3452 {
3453 debug_target.to_terminal_inferior ();
3454
3455 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3456 }
3457
3458 static void
3459 debug_to_terminal_ours_for_output (void)
3460 {
3461 debug_target.to_terminal_ours_for_output ();
3462
3463 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3464 }
3465
3466 static void
3467 debug_to_terminal_ours (void)
3468 {
3469 debug_target.to_terminal_ours ();
3470
3471 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3472 }
3473
3474 static void
3475 debug_to_terminal_save_ours (void)
3476 {
3477 debug_target.to_terminal_save_ours ();
3478
3479 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3480 }
3481
3482 static void
3483 debug_to_terminal_info (char *arg, int from_tty)
3484 {
3485 debug_target.to_terminal_info (arg, from_tty);
3486
3487 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3488 from_tty);
3489 }
3490
3491 static void
3492 debug_to_load (char *args, int from_tty)
3493 {
3494 debug_target.to_load (args, from_tty);
3495
3496 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3497 }
3498
3499 static int
3500 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
3501 {
3502 int retval;
3503
3504 retval = debug_target.to_lookup_symbol (name, addrp);
3505
3506 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
3507
3508 return retval;
3509 }
3510
3511 static void
3512 debug_to_post_startup_inferior (ptid_t ptid)
3513 {
3514 debug_target.to_post_startup_inferior (ptid);
3515
3516 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3517 PIDGET (ptid));
3518 }
3519
3520 static void
3521 debug_to_acknowledge_created_inferior (int pid)
3522 {
3523 debug_target.to_acknowledge_created_inferior (pid);
3524
3525 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
3526 pid);
3527 }
3528
3529 static void
3530 debug_to_insert_fork_catchpoint (int pid)
3531 {
3532 debug_target.to_insert_fork_catchpoint (pid);
3533
3534 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
3535 pid);
3536 }
3537
3538 static int
3539 debug_to_remove_fork_catchpoint (int pid)
3540 {
3541 int retval;
3542
3543 retval = debug_target.to_remove_fork_catchpoint (pid);
3544
3545 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3546 pid, retval);
3547
3548 return retval;
3549 }
3550
3551 static void
3552 debug_to_insert_vfork_catchpoint (int pid)
3553 {
3554 debug_target.to_insert_vfork_catchpoint (pid);
3555
3556 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
3557 pid);
3558 }
3559
3560 static int
3561 debug_to_remove_vfork_catchpoint (int pid)
3562 {
3563 int retval;
3564
3565 retval = debug_target.to_remove_vfork_catchpoint (pid);
3566
3567 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3568 pid, retval);
3569
3570 return retval;
3571 }
3572
3573 static void
3574 debug_to_insert_exec_catchpoint (int pid)
3575 {
3576 debug_target.to_insert_exec_catchpoint (pid);
3577
3578 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
3579 pid);
3580 }
3581
3582 static int
3583 debug_to_remove_exec_catchpoint (int pid)
3584 {
3585 int retval;
3586
3587 retval = debug_target.to_remove_exec_catchpoint (pid);
3588
3589 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3590 pid, retval);
3591
3592 return retval;
3593 }
3594
3595 static int
3596 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3597 {
3598 int has_exited;
3599
3600 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3601
3602 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3603 pid, wait_status, *exit_status, has_exited);
3604
3605 return has_exited;
3606 }
3607
3608 static int
3609 debug_to_can_run (void)
3610 {
3611 int retval;
3612
3613 retval = debug_target.to_can_run ();
3614
3615 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3616
3617 return retval;
3618 }
3619
3620 static void
3621 debug_to_notice_signals (ptid_t ptid)
3622 {
3623 debug_target.to_notice_signals (ptid);
3624
3625 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3626 PIDGET (ptid));
3627 }
3628
3629 static struct gdbarch *
3630 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
3631 {
3632 struct gdbarch *retval;
3633
3634 retval = debug_target.to_thread_architecture (ops, ptid);
3635
3636 fprintf_unfiltered (gdb_stdlog, "target_thread_architecture (%s) = %s [%s]\n",
3637 target_pid_to_str (ptid), host_address_to_string (retval),
3638 gdbarch_bfd_arch_info (retval)->printable_name);
3639 return retval;
3640 }
3641
3642 static void
3643 debug_to_stop (ptid_t ptid)
3644 {
3645 debug_target.to_stop (ptid);
3646
3647 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3648 target_pid_to_str (ptid));
3649 }
3650
3651 static void
3652 debug_to_rcmd (char *command,
3653 struct ui_file *outbuf)
3654 {
3655 debug_target.to_rcmd (command, outbuf);
3656 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3657 }
3658
3659 static char *
3660 debug_to_pid_to_exec_file (int pid)
3661 {
3662 char *exec_file;
3663
3664 exec_file = debug_target.to_pid_to_exec_file (pid);
3665
3666 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3667 pid, exec_file);
3668
3669 return exec_file;
3670 }
3671
3672 static void
3673 setup_target_debug (void)
3674 {
3675 memcpy (&debug_target, &current_target, sizeof debug_target);
3676
3677 current_target.to_open = debug_to_open;
3678 current_target.to_post_attach = debug_to_post_attach;
3679 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3680 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3681 current_target.to_files_info = debug_to_files_info;
3682 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3683 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3684 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3685 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3686 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3687 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3688 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3689 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3690 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3691 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3692 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3693 current_target.to_can_accel_watchpoint_condition = debug_to_can_accel_watchpoint_condition;
3694 current_target.to_terminal_init = debug_to_terminal_init;
3695 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3696 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3697 current_target.to_terminal_ours = debug_to_terminal_ours;
3698 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3699 current_target.to_terminal_info = debug_to_terminal_info;
3700 current_target.to_load = debug_to_load;
3701 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3702 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3703 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3704 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3705 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3706 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3707 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3708 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3709 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3710 current_target.to_has_exited = debug_to_has_exited;
3711 current_target.to_can_run = debug_to_can_run;
3712 current_target.to_notice_signals = debug_to_notice_signals;
3713 current_target.to_stop = debug_to_stop;
3714 current_target.to_rcmd = debug_to_rcmd;
3715 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3716 current_target.to_thread_architecture = debug_to_thread_architecture;
3717 }
3718 \f
3719
3720 static char targ_desc[] =
3721 "Names of targets and files being debugged.\n\
3722 Shows the entire stack of targets currently in use (including the exec-file,\n\
3723 core-file, and process, if any), as well as the symbol file name.";
3724
3725 static void
3726 do_monitor_command (char *cmd,
3727 int from_tty)
3728 {
3729 if ((current_target.to_rcmd
3730 == (void (*) (char *, struct ui_file *)) tcomplain)
3731 || (current_target.to_rcmd == debug_to_rcmd
3732 && (debug_target.to_rcmd
3733 == (void (*) (char *, struct ui_file *)) tcomplain)))
3734 error (_("\"monitor\" command not supported by this target."));
3735 target_rcmd (cmd, gdb_stdtarg);
3736 }
3737
3738 /* Print the name of each layers of our target stack. */
3739
3740 static void
3741 maintenance_print_target_stack (char *cmd, int from_tty)
3742 {
3743 struct target_ops *t;
3744
3745 printf_filtered (_("The current target stack is:\n"));
3746
3747 for (t = target_stack; t != NULL; t = t->beneath)
3748 {
3749 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3750 }
3751 }
3752
3753 /* Controls if async mode is permitted. */
3754 int target_async_permitted = 0;
3755
3756 /* The set command writes to this variable. If the inferior is
3757 executing, linux_nat_async_permitted is *not* updated. */
3758 static int target_async_permitted_1 = 0;
3759
3760 static void
3761 set_maintenance_target_async_permitted (char *args, int from_tty,
3762 struct cmd_list_element *c)
3763 {
3764 if (have_live_inferiors ())
3765 {
3766 target_async_permitted_1 = target_async_permitted;
3767 error (_("Cannot change this setting while the inferior is running."));
3768 }
3769
3770 target_async_permitted = target_async_permitted_1;
3771 }
3772
3773 static void
3774 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3775 struct cmd_list_element *c,
3776 const char *value)
3777 {
3778 fprintf_filtered (file, _("\
3779 Controlling the inferior in asynchronous mode is %s.\n"), value);
3780 }
3781
3782 /* Temporary copies of permission settings. */
3783
3784 static int may_write_registers_1 = 1;
3785 static int may_write_memory_1 = 1;
3786 static int may_insert_breakpoints_1 = 1;
3787 static int may_insert_tracepoints_1 = 1;
3788 static int may_insert_fast_tracepoints_1 = 1;
3789 static int may_stop_1 = 1;
3790
3791 /* Make the user-set values match the real values again. */
3792
3793 void
3794 update_target_permissions (void)
3795 {
3796 may_write_registers_1 = may_write_registers;
3797 may_write_memory_1 = may_write_memory;
3798 may_insert_breakpoints_1 = may_insert_breakpoints;
3799 may_insert_tracepoints_1 = may_insert_tracepoints;
3800 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3801 may_stop_1 = may_stop;
3802 }
3803
3804 /* The one function handles (most of) the permission flags in the same
3805 way. */
3806
3807 static void
3808 set_target_permissions (char *args, int from_tty,
3809 struct cmd_list_element *c)
3810 {
3811 if (target_has_execution)
3812 {
3813 update_target_permissions ();
3814 error (_("Cannot change this setting while the inferior is running."));
3815 }
3816
3817 /* Make the real values match the user-changed values. */
3818 may_write_registers = may_write_registers_1;
3819 may_insert_breakpoints = may_insert_breakpoints_1;
3820 may_insert_tracepoints = may_insert_tracepoints_1;
3821 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3822 may_stop = may_stop_1;
3823 update_observer_mode ();
3824 }
3825
3826 /* Set memory write permission independently of observer mode. */
3827
3828 static void
3829 set_write_memory_permission (char *args, int from_tty,
3830 struct cmd_list_element *c)
3831 {
3832 /* Make the real values match the user-changed values. */
3833 may_write_memory = may_write_memory_1;
3834 update_observer_mode ();
3835 }
3836
3837
3838 void
3839 initialize_targets (void)
3840 {
3841 init_dummy_target ();
3842 push_target (&dummy_target);
3843
3844 add_info ("target", target_info, targ_desc);
3845 add_info ("files", target_info, targ_desc);
3846
3847 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3848 Set target debugging."), _("\
3849 Show target debugging."), _("\
3850 When non-zero, target debugging is enabled. Higher numbers are more\n\
3851 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3852 command."),
3853 NULL,
3854 show_targetdebug,
3855 &setdebuglist, &showdebuglist);
3856
3857 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3858 &trust_readonly, _("\
3859 Set mode for reading from readonly sections."), _("\
3860 Show mode for reading from readonly sections."), _("\
3861 When this mode is on, memory reads from readonly sections (such as .text)\n\
3862 will be read from the object file instead of from the target. This will\n\
3863 result in significant performance improvement for remote targets."),
3864 NULL,
3865 show_trust_readonly,
3866 &setlist, &showlist);
3867
3868 add_com ("monitor", class_obscure, do_monitor_command,
3869 _("Send a command to the remote monitor (remote targets only)."));
3870
3871 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3872 _("Print the name of each layer of the internal target stack."),
3873 &maintenanceprintlist);
3874
3875 add_setshow_boolean_cmd ("target-async", no_class,
3876 &target_async_permitted_1, _("\
3877 Set whether gdb controls the inferior in asynchronous mode."), _("\
3878 Show whether gdb controls the inferior in asynchronous mode."), _("\
3879 Tells gdb whether to control the inferior in asynchronous mode."),
3880 set_maintenance_target_async_permitted,
3881 show_maintenance_target_async_permitted,
3882 &setlist,
3883 &showlist);
3884
3885 add_setshow_boolean_cmd ("stack-cache", class_support,
3886 &stack_cache_enabled_p_1, _("\
3887 Set cache use for stack access."), _("\
3888 Show cache use for stack access."), _("\
3889 When on, use the data cache for all stack access, regardless of any\n\
3890 configured memory regions. This improves remote performance significantly.\n\
3891 By default, caching for stack access is on."),
3892 set_stack_cache_enabled_p,
3893 show_stack_cache_enabled_p,
3894 &setlist, &showlist);
3895
3896 add_setshow_boolean_cmd ("may-write-registers", class_support,
3897 &may_write_registers_1, _("\
3898 Set permission to write into registers."), _("\
3899 Show permission to write into registers."), _("\
3900 When this permission is on, GDB may write into the target's registers.\n\
3901 Otherwise, any sort of write attempt will result in an error."),
3902 set_target_permissions, NULL,
3903 &setlist, &showlist);
3904
3905 add_setshow_boolean_cmd ("may-write-memory", class_support,
3906 &may_write_memory_1, _("\
3907 Set permission to write into target memory."), _("\
3908 Show permission to write into target memory."), _("\
3909 When this permission is on, GDB may write into the target's memory.\n\
3910 Otherwise, any sort of write attempt will result in an error."),
3911 set_write_memory_permission, NULL,
3912 &setlist, &showlist);
3913
3914 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3915 &may_insert_breakpoints_1, _("\
3916 Set permission to insert breakpoints in the target."), _("\
3917 Show permission to insert breakpoints in the target."), _("\
3918 When this permission is on, GDB may insert breakpoints in the program.\n\
3919 Otherwise, any sort of insertion attempt will result in an error."),
3920 set_target_permissions, NULL,
3921 &setlist, &showlist);
3922
3923 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3924 &may_insert_tracepoints_1, _("\
3925 Set permission to insert tracepoints in the target."), _("\
3926 Show permission to insert tracepoints in the target."), _("\
3927 When this permission is on, GDB may insert tracepoints in the program.\n\
3928 Otherwise, any sort of insertion attempt will result in an error."),
3929 set_target_permissions, NULL,
3930 &setlist, &showlist);
3931
3932 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3933 &may_insert_fast_tracepoints_1, _("\
3934 Set permission to insert fast tracepoints in the target."), _("\
3935 Show permission to insert fast tracepoints in the target."), _("\
3936 When this permission is on, GDB may insert fast tracepoints.\n\
3937 Otherwise, any sort of insertion attempt will result in an error."),
3938 set_target_permissions, NULL,
3939 &setlist, &showlist);
3940
3941 add_setshow_boolean_cmd ("may-interrupt", class_support,
3942 &may_stop_1, _("\
3943 Set permission to interrupt or signal the target."), _("\
3944 Show permission to interrupt or signal the target."), _("\
3945 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3946 Otherwise, any attempt to interrupt or stop will be ignored."),
3947 set_target_permissions, NULL,
3948 &setlist, &showlist);
3949
3950
3951 target_dcache = dcache_init ();
3952 }
This page took 0.110724 seconds and 4 git commands to generate.