Use KF_PATH to verify the size of a struct kinfo_file.
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50 #include "terminal.h"
51 #include <algorithm>
52 #include <unordered_map>
53
54 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
55
56 static void default_terminal_info (struct target_ops *, const char *, int);
57
58 static int default_watchpoint_addr_within_range (struct target_ops *,
59 CORE_ADDR, CORE_ADDR, int);
60
61 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
62 CORE_ADDR, int);
63
64 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
65
66 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
67 long lwp, long tid);
68
69 static int default_follow_fork (struct target_ops *self, int follow_child,
70 int detach_fork);
71
72 static void default_mourn_inferior (struct target_ops *self);
73
74 static int default_search_memory (struct target_ops *ops,
75 CORE_ADDR start_addr,
76 ULONGEST search_space_len,
77 const gdb_byte *pattern,
78 ULONGEST pattern_len,
79 CORE_ADDR *found_addrp);
80
81 static int default_verify_memory (struct target_ops *self,
82 const gdb_byte *data,
83 CORE_ADDR memaddr, ULONGEST size);
84
85 static struct address_space *default_thread_address_space
86 (struct target_ops *self, ptid_t ptid);
87
88 static void tcomplain (void) ATTRIBUTE_NORETURN;
89
90 static struct target_ops *find_default_run_target (const char *);
91
92 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
93 ptid_t ptid);
94
95 static int dummy_find_memory_regions (struct target_ops *self,
96 find_memory_region_ftype ignore1,
97 void *ignore2);
98
99 static char *dummy_make_corefile_notes (struct target_ops *self,
100 bfd *ignore1, int *ignore2);
101
102 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
103
104 static enum exec_direction_kind default_execution_direction
105 (struct target_ops *self);
106
107 /* Mapping between target_info objects (which have address identity)
108 and corresponding open/factory function/callback. Each add_target
109 call adds one entry to this map, and registers a "target
110 TARGET_NAME" command that when invoked calls the factory registered
111 here. The target_info object is associated with the command via
112 the command's context. */
113 static std::unordered_map<const target_info *, target_open_ftype *>
114 target_factories;
115
116 /* The initial current target, so that there is always a semi-valid
117 current target. */
118
119 static struct target_ops *the_dummy_target;
120 static struct target_ops *the_debug_target;
121
122 /* The target stack. */
123
124 static target_stack g_target_stack;
125
126 /* Top of target stack. */
127 /* The target structure we are currently using to talk to a process
128 or file or whatever "inferior" we have. */
129
130 target_ops *
131 current_top_target ()
132 {
133 return g_target_stack.top ();
134 }
135
136 /* Command list for target. */
137
138 static struct cmd_list_element *targetlist = NULL;
139
140 /* Nonzero if we should trust readonly sections from the
141 executable when reading memory. */
142
143 static int trust_readonly = 0;
144
145 /* Nonzero if we should show true memory content including
146 memory breakpoint inserted by gdb. */
147
148 static int show_memory_breakpoints = 0;
149
150 /* These globals control whether GDB attempts to perform these
151 operations; they are useful for targets that need to prevent
152 inadvertant disruption, such as in non-stop mode. */
153
154 int may_write_registers = 1;
155
156 int may_write_memory = 1;
157
158 int may_insert_breakpoints = 1;
159
160 int may_insert_tracepoints = 1;
161
162 int may_insert_fast_tracepoints = 1;
163
164 int may_stop = 1;
165
166 /* Non-zero if we want to see trace of target level stuff. */
167
168 static unsigned int targetdebug = 0;
169
170 static void
171 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
172 {
173 if (targetdebug)
174 push_target (the_debug_target);
175 else
176 unpush_target (the_debug_target);
177 }
178
179 static void
180 show_targetdebug (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
184 }
185
186 /* The user just typed 'target' without the name of a target. */
187
188 static void
189 target_command (const char *arg, int from_tty)
190 {
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193 }
194
195 #if GDB_SELF_TEST
196 namespace selftests {
197
198 /* A mock process_stratum target_ops that doesn't read/write registers
199 anywhere. */
200
201 static const target_info test_target_info = {
202 "test",
203 N_("unit tests target"),
204 N_("You should never see this"),
205 };
206
207 const target_info &
208 test_target_ops::info () const
209 {
210 return test_target_info;
211 }
212
213 } /* namespace selftests */
214 #endif /* GDB_SELF_TEST */
215
216 /* Default target_has_* methods for process_stratum targets. */
217
218 int
219 default_child_has_all_memory ()
220 {
221 /* If no inferior selected, then we can't read memory here. */
222 if (inferior_ptid == null_ptid)
223 return 0;
224
225 return 1;
226 }
227
228 int
229 default_child_has_memory ()
230 {
231 /* If no inferior selected, then we can't read memory here. */
232 if (inferior_ptid == null_ptid)
233 return 0;
234
235 return 1;
236 }
237
238 int
239 default_child_has_stack ()
240 {
241 /* If no inferior selected, there's no stack. */
242 if (inferior_ptid == null_ptid)
243 return 0;
244
245 return 1;
246 }
247
248 int
249 default_child_has_registers ()
250 {
251 /* Can't read registers from no inferior. */
252 if (inferior_ptid == null_ptid)
253 return 0;
254
255 return 1;
256 }
257
258 int
259 default_child_has_execution (ptid_t the_ptid)
260 {
261 /* If there's no thread selected, then we can't make it run through
262 hoops. */
263 if (the_ptid == null_ptid)
264 return 0;
265
266 return 1;
267 }
268
269
270 int
271 target_has_all_memory_1 (void)
272 {
273 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
274 if (t->has_all_memory ())
275 return 1;
276
277 return 0;
278 }
279
280 int
281 target_has_memory_1 (void)
282 {
283 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
284 if (t->has_memory ())
285 return 1;
286
287 return 0;
288 }
289
290 int
291 target_has_stack_1 (void)
292 {
293 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
294 if (t->has_stack ())
295 return 1;
296
297 return 0;
298 }
299
300 int
301 target_has_registers_1 (void)
302 {
303 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
304 if (t->has_registers ())
305 return 1;
306
307 return 0;
308 }
309
310 int
311 target_has_execution_1 (ptid_t the_ptid)
312 {
313 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
314 if (t->has_execution (the_ptid))
315 return 1;
316
317 return 0;
318 }
319
320 int
321 target_has_execution_current (void)
322 {
323 return target_has_execution_1 (inferior_ptid);
324 }
325
326 /* This is used to implement the various target commands. */
327
328 static void
329 open_target (const char *args, int from_tty, struct cmd_list_element *command)
330 {
331 auto *ti = static_cast<target_info *> (get_cmd_context (command));
332 target_open_ftype *func = target_factories[ti];
333
334 if (targetdebug)
335 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
336 ti->shortname);
337
338 func (args, from_tty);
339
340 if (targetdebug)
341 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
342 ti->shortname, args, from_tty);
343 }
344
345 /* See target.h. */
346
347 void
348 add_target (const target_info &t, target_open_ftype *func,
349 completer_ftype *completer)
350 {
351 struct cmd_list_element *c;
352
353 auto &func_slot = target_factories[&t];
354 if (func_slot != nullptr)
355 internal_error (__FILE__, __LINE__,
356 _("target already added (\"%s\")."), t.shortname);
357 func_slot = func;
358
359 if (targetlist == NULL)
360 add_prefix_cmd ("target", class_run, target_command, _("\
361 Connect to a target machine or process.\n\
362 The first argument is the type or protocol of the target machine.\n\
363 Remaining arguments are interpreted by the target protocol. For more\n\
364 information on the arguments for a particular protocol, type\n\
365 `help target ' followed by the protocol name."),
366 &targetlist, "target ", 0, &cmdlist);
367 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
368 set_cmd_context (c, (void *) &t);
369 set_cmd_sfunc (c, open_target);
370 if (completer != NULL)
371 set_cmd_completer (c, completer);
372 }
373
374 /* See target.h. */
375
376 void
377 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
378 {
379 struct cmd_list_element *c;
380 char *alt;
381
382 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
383 see PR cli/15104. */
384 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
385 set_cmd_sfunc (c, open_target);
386 set_cmd_context (c, (void *) &tinfo);
387 alt = xstrprintf ("target %s", tinfo.shortname);
388 deprecate_cmd (c, alt);
389 }
390
391 /* Stub functions */
392
393 void
394 target_kill (void)
395 {
396 current_top_target ()->kill ();
397 }
398
399 void
400 target_load (const char *arg, int from_tty)
401 {
402 target_dcache_invalidate ();
403 current_top_target ()->load (arg, from_tty);
404 }
405
406 /* Define it. */
407
408 target_terminal_state target_terminal::m_terminal_state
409 = target_terminal_state::is_ours;
410
411 /* See target/target.h. */
412
413 void
414 target_terminal::init (void)
415 {
416 current_top_target ()->terminal_init ();
417
418 m_terminal_state = target_terminal_state::is_ours;
419 }
420
421 /* See target/target.h. */
422
423 void
424 target_terminal::inferior (void)
425 {
426 struct ui *ui = current_ui;
427
428 /* A background resume (``run&'') should leave GDB in control of the
429 terminal. */
430 if (ui->prompt_state != PROMPT_BLOCKED)
431 return;
432
433 /* Since we always run the inferior in the main console (unless "set
434 inferior-tty" is in effect), when some UI other than the main one
435 calls target_terminal::inferior, then we leave the main UI's
436 terminal settings as is. */
437 if (ui != main_ui)
438 return;
439
440 /* If GDB is resuming the inferior in the foreground, install
441 inferior's terminal modes. */
442
443 struct inferior *inf = current_inferior ();
444
445 if (inf->terminal_state != target_terminal_state::is_inferior)
446 {
447 current_top_target ()->terminal_inferior ();
448 inf->terminal_state = target_terminal_state::is_inferior;
449 }
450
451 m_terminal_state = target_terminal_state::is_inferior;
452
453 /* If the user hit C-c before, pretend that it was hit right
454 here. */
455 if (check_quit_flag ())
456 target_pass_ctrlc ();
457 }
458
459 /* See target/target.h. */
460
461 void
462 target_terminal::restore_inferior (void)
463 {
464 struct ui *ui = current_ui;
465
466 /* See target_terminal::inferior(). */
467 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
468 return;
469
470 /* Restore the terminal settings of inferiors that were in the
471 foreground but are now ours_for_output due to a temporary
472 target_target::ours_for_output() call. */
473
474 {
475 scoped_restore_current_inferior restore_inferior;
476 struct inferior *inf;
477
478 ALL_INFERIORS (inf)
479 {
480 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
481 {
482 set_current_inferior (inf);
483 current_top_target ()->terminal_inferior ();
484 inf->terminal_state = target_terminal_state::is_inferior;
485 }
486 }
487 }
488
489 m_terminal_state = target_terminal_state::is_inferior;
490
491 /* If the user hit C-c before, pretend that it was hit right
492 here. */
493 if (check_quit_flag ())
494 target_pass_ctrlc ();
495 }
496
497 /* Switch terminal state to DESIRED_STATE, either is_ours, or
498 is_ours_for_output. */
499
500 static void
501 target_terminal_is_ours_kind (target_terminal_state desired_state)
502 {
503 scoped_restore_current_inferior restore_inferior;
504 struct inferior *inf;
505
506 /* Must do this in two passes. First, have all inferiors save the
507 current terminal settings. Then, after all inferiors have add a
508 chance to safely save the terminal settings, restore GDB's
509 terminal settings. */
510
511 ALL_INFERIORS (inf)
512 {
513 if (inf->terminal_state == target_terminal_state::is_inferior)
514 {
515 set_current_inferior (inf);
516 current_top_target ()->terminal_save_inferior ();
517 }
518 }
519
520 ALL_INFERIORS (inf)
521 {
522 /* Note we don't check is_inferior here like above because we
523 need to handle 'is_ours_for_output -> is_ours' too. Careful
524 to never transition from 'is_ours' to 'is_ours_for_output',
525 though. */
526 if (inf->terminal_state != target_terminal_state::is_ours
527 && inf->terminal_state != desired_state)
528 {
529 set_current_inferior (inf);
530 if (desired_state == target_terminal_state::is_ours)
531 current_top_target ()->terminal_ours ();
532 else if (desired_state == target_terminal_state::is_ours_for_output)
533 current_top_target ()->terminal_ours_for_output ();
534 else
535 gdb_assert_not_reached ("unhandled desired state");
536 inf->terminal_state = desired_state;
537 }
538 }
539 }
540
541 /* See target/target.h. */
542
543 void
544 target_terminal::ours ()
545 {
546 struct ui *ui = current_ui;
547
548 /* See target_terminal::inferior. */
549 if (ui != main_ui)
550 return;
551
552 if (m_terminal_state == target_terminal_state::is_ours)
553 return;
554
555 target_terminal_is_ours_kind (target_terminal_state::is_ours);
556 m_terminal_state = target_terminal_state::is_ours;
557 }
558
559 /* See target/target.h. */
560
561 void
562 target_terminal::ours_for_output ()
563 {
564 struct ui *ui = current_ui;
565
566 /* See target_terminal::inferior. */
567 if (ui != main_ui)
568 return;
569
570 if (!target_terminal::is_inferior ())
571 return;
572
573 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
574 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
575 }
576
577 /* See target/target.h. */
578
579 void
580 target_terminal::info (const char *arg, int from_tty)
581 {
582 current_top_target ()->terminal_info (arg, from_tty);
583 }
584
585 /* See target.h. */
586
587 int
588 target_supports_terminal_ours (void)
589 {
590 return current_top_target ()->supports_terminal_ours ();
591 }
592
593 static void
594 tcomplain (void)
595 {
596 error (_("You can't do that when your target is `%s'"),
597 current_top_target ()->shortname ());
598 }
599
600 void
601 noprocess (void)
602 {
603 error (_("You can't do that without a process to debug."));
604 }
605
606 static void
607 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
608 {
609 printf_unfiltered (_("No saved terminal information.\n"));
610 }
611
612 /* A default implementation for the to_get_ada_task_ptid target method.
613
614 This function builds the PTID by using both LWP and TID as part of
615 the PTID lwp and tid elements. The pid used is the pid of the
616 inferior_ptid. */
617
618 static ptid_t
619 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
620 {
621 return ptid_t (inferior_ptid.pid (), lwp, tid);
622 }
623
624 static enum exec_direction_kind
625 default_execution_direction (struct target_ops *self)
626 {
627 if (!target_can_execute_reverse)
628 return EXEC_FORWARD;
629 else if (!target_can_async_p ())
630 return EXEC_FORWARD;
631 else
632 gdb_assert_not_reached ("\
633 to_execution_direction must be implemented for reverse async");
634 }
635
636 /* See target.h. */
637
638 void
639 target_stack::push (target_ops *t)
640 {
641 /* If there's already a target at this stratum, remove it. */
642 if (m_stack[t->to_stratum] != NULL)
643 {
644 target_ops *prev = m_stack[t->to_stratum];
645 m_stack[t->to_stratum] = NULL;
646 target_close (prev);
647 }
648
649 /* Now add the new one. */
650 m_stack[t->to_stratum] = t;
651
652 if (m_top < t->to_stratum)
653 m_top = t->to_stratum;
654 }
655
656 /* See target.h. */
657
658 void
659 push_target (struct target_ops *t)
660 {
661 g_target_stack.push (t);
662 }
663
664 /* See target.h. */
665
666 int
667 unpush_target (struct target_ops *t)
668 {
669 return g_target_stack.unpush (t);
670 }
671
672 /* See target.h. */
673
674 bool
675 target_stack::unpush (target_ops *t)
676 {
677 if (t->to_stratum == dummy_stratum)
678 internal_error (__FILE__, __LINE__,
679 _("Attempt to unpush the dummy target"));
680
681 gdb_assert (t != NULL);
682
683 /* Look for the specified target. Note that a target can only occur
684 once in the target stack. */
685
686 if (m_stack[t->to_stratum] != t)
687 {
688 /* If T wasn't pushed, quit. Only open targets should be
689 closed. */
690 return false;
691 }
692
693 /* Unchain the target. */
694 m_stack[t->to_stratum] = NULL;
695
696 if (m_top == t->to_stratum)
697 m_top = t->beneath ()->to_stratum;
698
699 /* Finally close the target. Note we do this after unchaining, so
700 any target method calls from within the target_close
701 implementation don't end up in T anymore. */
702 target_close (t);
703
704 return true;
705 }
706
707 /* Unpush TARGET and assert that it worked. */
708
709 static void
710 unpush_target_and_assert (struct target_ops *target)
711 {
712 if (!unpush_target (target))
713 {
714 fprintf_unfiltered (gdb_stderr,
715 "pop_all_targets couldn't find target %s\n",
716 target->shortname ());
717 internal_error (__FILE__, __LINE__,
718 _("failed internal consistency check"));
719 }
720 }
721
722 void
723 pop_all_targets_above (enum strata above_stratum)
724 {
725 while ((int) (current_top_target ()->to_stratum) > (int) above_stratum)
726 unpush_target_and_assert (current_top_target ());
727 }
728
729 /* See target.h. */
730
731 void
732 pop_all_targets_at_and_above (enum strata stratum)
733 {
734 while ((int) (current_top_target ()->to_stratum) >= (int) stratum)
735 unpush_target_and_assert (current_top_target ());
736 }
737
738 void
739 pop_all_targets (void)
740 {
741 pop_all_targets_above (dummy_stratum);
742 }
743
744 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
745
746 int
747 target_is_pushed (struct target_ops *t)
748 {
749 return g_target_stack.is_pushed (t);
750 }
751
752 /* Default implementation of to_get_thread_local_address. */
753
754 static void
755 generic_tls_error (void)
756 {
757 throw_error (TLS_GENERIC_ERROR,
758 _("Cannot find thread-local variables on this target"));
759 }
760
761 /* Using the objfile specified in OBJFILE, find the address for the
762 current thread's thread-local storage with offset OFFSET. */
763 CORE_ADDR
764 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
765 {
766 volatile CORE_ADDR addr = 0;
767 struct target_ops *target = current_top_target ();
768
769 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
770 {
771 ptid_t ptid = inferior_ptid;
772
773 TRY
774 {
775 CORE_ADDR lm_addr;
776
777 /* Fetch the load module address for this objfile. */
778 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
779 objfile);
780
781 addr = target->get_thread_local_address (ptid, lm_addr, offset);
782 }
783 /* If an error occurred, print TLS related messages here. Otherwise,
784 throw the error to some higher catcher. */
785 CATCH (ex, RETURN_MASK_ALL)
786 {
787 int objfile_is_library = (objfile->flags & OBJF_SHARED);
788
789 switch (ex.error)
790 {
791 case TLS_NO_LIBRARY_SUPPORT_ERROR:
792 error (_("Cannot find thread-local variables "
793 "in this thread library."));
794 break;
795 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
796 if (objfile_is_library)
797 error (_("Cannot find shared library `%s' in dynamic"
798 " linker's load module list"), objfile_name (objfile));
799 else
800 error (_("Cannot find executable file `%s' in dynamic"
801 " linker's load module list"), objfile_name (objfile));
802 break;
803 case TLS_NOT_ALLOCATED_YET_ERROR:
804 if (objfile_is_library)
805 error (_("The inferior has not yet allocated storage for"
806 " thread-local variables in\n"
807 "the shared library `%s'\n"
808 "for %s"),
809 objfile_name (objfile), target_pid_to_str (ptid));
810 else
811 error (_("The inferior has not yet allocated storage for"
812 " thread-local variables in\n"
813 "the executable `%s'\n"
814 "for %s"),
815 objfile_name (objfile), target_pid_to_str (ptid));
816 break;
817 case TLS_GENERIC_ERROR:
818 if (objfile_is_library)
819 error (_("Cannot find thread-local storage for %s, "
820 "shared library %s:\n%s"),
821 target_pid_to_str (ptid),
822 objfile_name (objfile), ex.message);
823 else
824 error (_("Cannot find thread-local storage for %s, "
825 "executable file %s:\n%s"),
826 target_pid_to_str (ptid),
827 objfile_name (objfile), ex.message);
828 break;
829 default:
830 throw_exception (ex);
831 break;
832 }
833 }
834 END_CATCH
835 }
836 /* It wouldn't be wrong here to try a gdbarch method, too; finding
837 TLS is an ABI-specific thing. But we don't do that yet. */
838 else
839 error (_("Cannot find thread-local variables on this target"));
840
841 return addr;
842 }
843
844 const char *
845 target_xfer_status_to_string (enum target_xfer_status status)
846 {
847 #define CASE(X) case X: return #X
848 switch (status)
849 {
850 CASE(TARGET_XFER_E_IO);
851 CASE(TARGET_XFER_UNAVAILABLE);
852 default:
853 return "<unknown>";
854 }
855 #undef CASE
856 };
857
858
859 #undef MIN
860 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
861
862 /* target_read_string -- read a null terminated string, up to LEN bytes,
863 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
864 Set *STRING to a pointer to malloc'd memory containing the data; the caller
865 is responsible for freeing it. Return the number of bytes successfully
866 read. */
867
868 int
869 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
870 int len, int *errnop)
871 {
872 int tlen, offset, i;
873 gdb_byte buf[4];
874 int errcode = 0;
875 char *buffer;
876 int buffer_allocated;
877 char *bufptr;
878 unsigned int nbytes_read = 0;
879
880 gdb_assert (string);
881
882 /* Small for testing. */
883 buffer_allocated = 4;
884 buffer = (char *) xmalloc (buffer_allocated);
885 bufptr = buffer;
886
887 while (len > 0)
888 {
889 tlen = MIN (len, 4 - (memaddr & 3));
890 offset = memaddr & 3;
891
892 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
893 if (errcode != 0)
894 {
895 /* The transfer request might have crossed the boundary to an
896 unallocated region of memory. Retry the transfer, requesting
897 a single byte. */
898 tlen = 1;
899 offset = 0;
900 errcode = target_read_memory (memaddr, buf, 1);
901 if (errcode != 0)
902 goto done;
903 }
904
905 if (bufptr - buffer + tlen > buffer_allocated)
906 {
907 unsigned int bytes;
908
909 bytes = bufptr - buffer;
910 buffer_allocated *= 2;
911 buffer = (char *) xrealloc (buffer, buffer_allocated);
912 bufptr = buffer + bytes;
913 }
914
915 for (i = 0; i < tlen; i++)
916 {
917 *bufptr++ = buf[i + offset];
918 if (buf[i + offset] == '\000')
919 {
920 nbytes_read += i + 1;
921 goto done;
922 }
923 }
924
925 memaddr += tlen;
926 len -= tlen;
927 nbytes_read += tlen;
928 }
929 done:
930 string->reset (buffer);
931 if (errnop != NULL)
932 *errnop = errcode;
933 return nbytes_read;
934 }
935
936 struct target_section_table *
937 target_get_section_table (struct target_ops *target)
938 {
939 return target->get_section_table ();
940 }
941
942 /* Find a section containing ADDR. */
943
944 struct target_section *
945 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
946 {
947 struct target_section_table *table = target_get_section_table (target);
948 struct target_section *secp;
949
950 if (table == NULL)
951 return NULL;
952
953 for (secp = table->sections; secp < table->sections_end; secp++)
954 {
955 if (addr >= secp->addr && addr < secp->endaddr)
956 return secp;
957 }
958 return NULL;
959 }
960
961
962 /* Helper for the memory xfer routines. Checks the attributes of the
963 memory region of MEMADDR against the read or write being attempted.
964 If the access is permitted returns true, otherwise returns false.
965 REGION_P is an optional output parameter. If not-NULL, it is
966 filled with a pointer to the memory region of MEMADDR. REG_LEN
967 returns LEN trimmed to the end of the region. This is how much the
968 caller can continue requesting, if the access is permitted. A
969 single xfer request must not straddle memory region boundaries. */
970
971 static int
972 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
973 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
974 struct mem_region **region_p)
975 {
976 struct mem_region *region;
977
978 region = lookup_mem_region (memaddr);
979
980 if (region_p != NULL)
981 *region_p = region;
982
983 switch (region->attrib.mode)
984 {
985 case MEM_RO:
986 if (writebuf != NULL)
987 return 0;
988 break;
989
990 case MEM_WO:
991 if (readbuf != NULL)
992 return 0;
993 break;
994
995 case MEM_FLASH:
996 /* We only support writing to flash during "load" for now. */
997 if (writebuf != NULL)
998 error (_("Writing to flash memory forbidden in this context"));
999 break;
1000
1001 case MEM_NONE:
1002 return 0;
1003 }
1004
1005 /* region->hi == 0 means there's no upper bound. */
1006 if (memaddr + len < region->hi || region->hi == 0)
1007 *reg_len = len;
1008 else
1009 *reg_len = region->hi - memaddr;
1010
1011 return 1;
1012 }
1013
1014 /* Read memory from more than one valid target. A core file, for
1015 instance, could have some of memory but delegate other bits to
1016 the target below it. So, we must manually try all targets. */
1017
1018 enum target_xfer_status
1019 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1020 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1021 ULONGEST *xfered_len)
1022 {
1023 enum target_xfer_status res;
1024
1025 do
1026 {
1027 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
1028 readbuf, writebuf, memaddr, len,
1029 xfered_len);
1030 if (res == TARGET_XFER_OK)
1031 break;
1032
1033 /* Stop if the target reports that the memory is not available. */
1034 if (res == TARGET_XFER_UNAVAILABLE)
1035 break;
1036
1037 /* We want to continue past core files to executables, but not
1038 past a running target's memory. */
1039 if (ops->has_all_memory ())
1040 break;
1041
1042 ops = ops->beneath ();
1043 }
1044 while (ops != NULL);
1045
1046 /* The cache works at the raw memory level. Make sure the cache
1047 gets updated with raw contents no matter what kind of memory
1048 object was originally being written. Note we do write-through
1049 first, so that if it fails, we don't write to the cache contents
1050 that never made it to the target. */
1051 if (writebuf != NULL
1052 && inferior_ptid != null_ptid
1053 && target_dcache_init_p ()
1054 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1055 {
1056 DCACHE *dcache = target_dcache_get ();
1057
1058 /* Note that writing to an area of memory which wasn't present
1059 in the cache doesn't cause it to be loaded in. */
1060 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1061 }
1062
1063 return res;
1064 }
1065
1066 /* Perform a partial memory transfer.
1067 For docs see target.h, to_xfer_partial. */
1068
1069 static enum target_xfer_status
1070 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1071 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1072 ULONGEST len, ULONGEST *xfered_len)
1073 {
1074 enum target_xfer_status res;
1075 ULONGEST reg_len;
1076 struct mem_region *region;
1077 struct inferior *inf;
1078
1079 /* For accesses to unmapped overlay sections, read directly from
1080 files. Must do this first, as MEMADDR may need adjustment. */
1081 if (readbuf != NULL && overlay_debugging)
1082 {
1083 struct obj_section *section = find_pc_overlay (memaddr);
1084
1085 if (pc_in_unmapped_range (memaddr, section))
1086 {
1087 struct target_section_table *table
1088 = target_get_section_table (ops);
1089 const char *section_name = section->the_bfd_section->name;
1090
1091 memaddr = overlay_mapped_address (memaddr, section);
1092 return section_table_xfer_memory_partial (readbuf, writebuf,
1093 memaddr, len, xfered_len,
1094 table->sections,
1095 table->sections_end,
1096 section_name);
1097 }
1098 }
1099
1100 /* Try the executable files, if "trust-readonly-sections" is set. */
1101 if (readbuf != NULL && trust_readonly)
1102 {
1103 struct target_section *secp;
1104 struct target_section_table *table;
1105
1106 secp = target_section_by_addr (ops, memaddr);
1107 if (secp != NULL
1108 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1109 secp->the_bfd_section)
1110 & SEC_READONLY))
1111 {
1112 table = target_get_section_table (ops);
1113 return section_table_xfer_memory_partial (readbuf, writebuf,
1114 memaddr, len, xfered_len,
1115 table->sections,
1116 table->sections_end,
1117 NULL);
1118 }
1119 }
1120
1121 /* Try GDB's internal data cache. */
1122
1123 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1124 &region))
1125 return TARGET_XFER_E_IO;
1126
1127 if (inferior_ptid != null_ptid)
1128 inf = current_inferior ();
1129 else
1130 inf = NULL;
1131
1132 if (inf != NULL
1133 && readbuf != NULL
1134 /* The dcache reads whole cache lines; that doesn't play well
1135 with reading from a trace buffer, because reading outside of
1136 the collected memory range fails. */
1137 && get_traceframe_number () == -1
1138 && (region->attrib.cache
1139 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1140 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1141 {
1142 DCACHE *dcache = target_dcache_get_or_init ();
1143
1144 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1145 reg_len, xfered_len);
1146 }
1147
1148 /* If none of those methods found the memory we wanted, fall back
1149 to a target partial transfer. Normally a single call to
1150 to_xfer_partial is enough; if it doesn't recognize an object
1151 it will call the to_xfer_partial of the next target down.
1152 But for memory this won't do. Memory is the only target
1153 object which can be read from more than one valid target.
1154 A core file, for instance, could have some of memory but
1155 delegate other bits to the target below it. So, we must
1156 manually try all targets. */
1157
1158 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1159 xfered_len);
1160
1161 /* If we still haven't got anything, return the last error. We
1162 give up. */
1163 return res;
1164 }
1165
1166 /* Perform a partial memory transfer. For docs see target.h,
1167 to_xfer_partial. */
1168
1169 static enum target_xfer_status
1170 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1171 gdb_byte *readbuf, const gdb_byte *writebuf,
1172 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1173 {
1174 enum target_xfer_status res;
1175
1176 /* Zero length requests are ok and require no work. */
1177 if (len == 0)
1178 return TARGET_XFER_EOF;
1179
1180 memaddr = address_significant (target_gdbarch (), memaddr);
1181
1182 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1183 breakpoint insns, thus hiding out from higher layers whether
1184 there are software breakpoints inserted in the code stream. */
1185 if (readbuf != NULL)
1186 {
1187 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1188 xfered_len);
1189
1190 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1191 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1192 }
1193 else
1194 {
1195 /* A large write request is likely to be partially satisfied
1196 by memory_xfer_partial_1. We will continually malloc
1197 and free a copy of the entire write request for breakpoint
1198 shadow handling even though we only end up writing a small
1199 subset of it. Cap writes to a limit specified by the target
1200 to mitigate this. */
1201 len = std::min (ops->get_memory_xfer_limit (), len);
1202
1203 gdb::byte_vector buf (writebuf, writebuf + len);
1204 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1205 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1206 xfered_len);
1207 }
1208
1209 return res;
1210 }
1211
1212 scoped_restore_tmpl<int>
1213 make_scoped_restore_show_memory_breakpoints (int show)
1214 {
1215 return make_scoped_restore (&show_memory_breakpoints, show);
1216 }
1217
1218 /* For docs see target.h, to_xfer_partial. */
1219
1220 enum target_xfer_status
1221 target_xfer_partial (struct target_ops *ops,
1222 enum target_object object, const char *annex,
1223 gdb_byte *readbuf, const gdb_byte *writebuf,
1224 ULONGEST offset, ULONGEST len,
1225 ULONGEST *xfered_len)
1226 {
1227 enum target_xfer_status retval;
1228
1229 /* Transfer is done when LEN is zero. */
1230 if (len == 0)
1231 return TARGET_XFER_EOF;
1232
1233 if (writebuf && !may_write_memory)
1234 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1235 core_addr_to_string_nz (offset), plongest (len));
1236
1237 *xfered_len = 0;
1238
1239 /* If this is a memory transfer, let the memory-specific code
1240 have a look at it instead. Memory transfers are more
1241 complicated. */
1242 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1243 || object == TARGET_OBJECT_CODE_MEMORY)
1244 retval = memory_xfer_partial (ops, object, readbuf,
1245 writebuf, offset, len, xfered_len);
1246 else if (object == TARGET_OBJECT_RAW_MEMORY)
1247 {
1248 /* Skip/avoid accessing the target if the memory region
1249 attributes block the access. Check this here instead of in
1250 raw_memory_xfer_partial as otherwise we'd end up checking
1251 this twice in the case of the memory_xfer_partial path is
1252 taken; once before checking the dcache, and another in the
1253 tail call to raw_memory_xfer_partial. */
1254 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1255 NULL))
1256 return TARGET_XFER_E_IO;
1257
1258 /* Request the normal memory object from other layers. */
1259 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1260 xfered_len);
1261 }
1262 else
1263 retval = ops->xfer_partial (object, annex, readbuf,
1264 writebuf, offset, len, xfered_len);
1265
1266 if (targetdebug)
1267 {
1268 const unsigned char *myaddr = NULL;
1269
1270 fprintf_unfiltered (gdb_stdlog,
1271 "%s:target_xfer_partial "
1272 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1273 ops->shortname (),
1274 (int) object,
1275 (annex ? annex : "(null)"),
1276 host_address_to_string (readbuf),
1277 host_address_to_string (writebuf),
1278 core_addr_to_string_nz (offset),
1279 pulongest (len), retval,
1280 pulongest (*xfered_len));
1281
1282 if (readbuf)
1283 myaddr = readbuf;
1284 if (writebuf)
1285 myaddr = writebuf;
1286 if (retval == TARGET_XFER_OK && myaddr != NULL)
1287 {
1288 int i;
1289
1290 fputs_unfiltered (", bytes =", gdb_stdlog);
1291 for (i = 0; i < *xfered_len; i++)
1292 {
1293 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1294 {
1295 if (targetdebug < 2 && i > 0)
1296 {
1297 fprintf_unfiltered (gdb_stdlog, " ...");
1298 break;
1299 }
1300 fprintf_unfiltered (gdb_stdlog, "\n");
1301 }
1302
1303 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1304 }
1305 }
1306
1307 fputc_unfiltered ('\n', gdb_stdlog);
1308 }
1309
1310 /* Check implementations of to_xfer_partial update *XFERED_LEN
1311 properly. Do assertion after printing debug messages, so that we
1312 can find more clues on assertion failure from debugging messages. */
1313 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1314 gdb_assert (*xfered_len > 0);
1315
1316 return retval;
1317 }
1318
1319 /* Read LEN bytes of target memory at address MEMADDR, placing the
1320 results in GDB's memory at MYADDR. Returns either 0 for success or
1321 -1 if any error occurs.
1322
1323 If an error occurs, no guarantee is made about the contents of the data at
1324 MYADDR. In particular, the caller should not depend upon partial reads
1325 filling the buffer with good data. There is no way for the caller to know
1326 how much good data might have been transfered anyway. Callers that can
1327 deal with partial reads should call target_read (which will retry until
1328 it makes no progress, and then return how much was transferred). */
1329
1330 int
1331 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1332 {
1333 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1334 myaddr, memaddr, len) == len)
1335 return 0;
1336 else
1337 return -1;
1338 }
1339
1340 /* See target/target.h. */
1341
1342 int
1343 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1344 {
1345 gdb_byte buf[4];
1346 int r;
1347
1348 r = target_read_memory (memaddr, buf, sizeof buf);
1349 if (r != 0)
1350 return r;
1351 *result = extract_unsigned_integer (buf, sizeof buf,
1352 gdbarch_byte_order (target_gdbarch ()));
1353 return 0;
1354 }
1355
1356 /* Like target_read_memory, but specify explicitly that this is a read
1357 from the target's raw memory. That is, this read bypasses the
1358 dcache, breakpoint shadowing, etc. */
1359
1360 int
1361 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1362 {
1363 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1364 myaddr, memaddr, len) == len)
1365 return 0;
1366 else
1367 return -1;
1368 }
1369
1370 /* Like target_read_memory, but specify explicitly that this is a read from
1371 the target's stack. This may trigger different cache behavior. */
1372
1373 int
1374 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1375 {
1376 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1377 myaddr, memaddr, len) == len)
1378 return 0;
1379 else
1380 return -1;
1381 }
1382
1383 /* Like target_read_memory, but specify explicitly that this is a read from
1384 the target's code. This may trigger different cache behavior. */
1385
1386 int
1387 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1388 {
1389 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1390 myaddr, memaddr, len) == len)
1391 return 0;
1392 else
1393 return -1;
1394 }
1395
1396 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1397 Returns either 0 for success or -1 if any error occurs. If an
1398 error occurs, no guarantee is made about how much data got written.
1399 Callers that can deal with partial writes should call
1400 target_write. */
1401
1402 int
1403 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1404 {
1405 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1406 myaddr, memaddr, len) == len)
1407 return 0;
1408 else
1409 return -1;
1410 }
1411
1412 /* Write LEN bytes from MYADDR to target raw memory at address
1413 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1414 If an error occurs, no guarantee is made about how much data got
1415 written. Callers that can deal with partial writes should call
1416 target_write. */
1417
1418 int
1419 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1420 {
1421 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1422 myaddr, memaddr, len) == len)
1423 return 0;
1424 else
1425 return -1;
1426 }
1427
1428 /* Fetch the target's memory map. */
1429
1430 std::vector<mem_region>
1431 target_memory_map (void)
1432 {
1433 std::vector<mem_region> result = current_top_target ()->memory_map ();
1434 if (result.empty ())
1435 return result;
1436
1437 std::sort (result.begin (), result.end ());
1438
1439 /* Check that regions do not overlap. Simultaneously assign
1440 a numbering for the "mem" commands to use to refer to
1441 each region. */
1442 mem_region *last_one = NULL;
1443 for (size_t ix = 0; ix < result.size (); ix++)
1444 {
1445 mem_region *this_one = &result[ix];
1446 this_one->number = ix;
1447
1448 if (last_one != NULL && last_one->hi > this_one->lo)
1449 {
1450 warning (_("Overlapping regions in memory map: ignoring"));
1451 return std::vector<mem_region> ();
1452 }
1453
1454 last_one = this_one;
1455 }
1456
1457 return result;
1458 }
1459
1460 void
1461 target_flash_erase (ULONGEST address, LONGEST length)
1462 {
1463 current_top_target ()->flash_erase (address, length);
1464 }
1465
1466 void
1467 target_flash_done (void)
1468 {
1469 current_top_target ()->flash_done ();
1470 }
1471
1472 static void
1473 show_trust_readonly (struct ui_file *file, int from_tty,
1474 struct cmd_list_element *c, const char *value)
1475 {
1476 fprintf_filtered (file,
1477 _("Mode for reading from readonly sections is %s.\n"),
1478 value);
1479 }
1480
1481 /* Target vector read/write partial wrapper functions. */
1482
1483 static enum target_xfer_status
1484 target_read_partial (struct target_ops *ops,
1485 enum target_object object,
1486 const char *annex, gdb_byte *buf,
1487 ULONGEST offset, ULONGEST len,
1488 ULONGEST *xfered_len)
1489 {
1490 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1491 xfered_len);
1492 }
1493
1494 static enum target_xfer_status
1495 target_write_partial (struct target_ops *ops,
1496 enum target_object object,
1497 const char *annex, const gdb_byte *buf,
1498 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1499 {
1500 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1501 xfered_len);
1502 }
1503
1504 /* Wrappers to perform the full transfer. */
1505
1506 /* For docs on target_read see target.h. */
1507
1508 LONGEST
1509 target_read (struct target_ops *ops,
1510 enum target_object object,
1511 const char *annex, gdb_byte *buf,
1512 ULONGEST offset, LONGEST len)
1513 {
1514 LONGEST xfered_total = 0;
1515 int unit_size = 1;
1516
1517 /* If we are reading from a memory object, find the length of an addressable
1518 unit for that architecture. */
1519 if (object == TARGET_OBJECT_MEMORY
1520 || object == TARGET_OBJECT_STACK_MEMORY
1521 || object == TARGET_OBJECT_CODE_MEMORY
1522 || object == TARGET_OBJECT_RAW_MEMORY)
1523 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1524
1525 while (xfered_total < len)
1526 {
1527 ULONGEST xfered_partial;
1528 enum target_xfer_status status;
1529
1530 status = target_read_partial (ops, object, annex,
1531 buf + xfered_total * unit_size,
1532 offset + xfered_total, len - xfered_total,
1533 &xfered_partial);
1534
1535 /* Call an observer, notifying them of the xfer progress? */
1536 if (status == TARGET_XFER_EOF)
1537 return xfered_total;
1538 else if (status == TARGET_XFER_OK)
1539 {
1540 xfered_total += xfered_partial;
1541 QUIT;
1542 }
1543 else
1544 return TARGET_XFER_E_IO;
1545
1546 }
1547 return len;
1548 }
1549
1550 /* Assuming that the entire [begin, end) range of memory cannot be
1551 read, try to read whatever subrange is possible to read.
1552
1553 The function returns, in RESULT, either zero or one memory block.
1554 If there's a readable subrange at the beginning, it is completely
1555 read and returned. Any further readable subrange will not be read.
1556 Otherwise, if there's a readable subrange at the end, it will be
1557 completely read and returned. Any readable subranges before it
1558 (obviously, not starting at the beginning), will be ignored. In
1559 other cases -- either no readable subrange, or readable subrange(s)
1560 that is neither at the beginning, or end, nothing is returned.
1561
1562 The purpose of this function is to handle a read across a boundary
1563 of accessible memory in a case when memory map is not available.
1564 The above restrictions are fine for this case, but will give
1565 incorrect results if the memory is 'patchy'. However, supporting
1566 'patchy' memory would require trying to read every single byte,
1567 and it seems unacceptable solution. Explicit memory map is
1568 recommended for this case -- and target_read_memory_robust will
1569 take care of reading multiple ranges then. */
1570
1571 static void
1572 read_whatever_is_readable (struct target_ops *ops,
1573 const ULONGEST begin, const ULONGEST end,
1574 int unit_size,
1575 std::vector<memory_read_result> *result)
1576 {
1577 ULONGEST current_begin = begin;
1578 ULONGEST current_end = end;
1579 int forward;
1580 ULONGEST xfered_len;
1581
1582 /* If we previously failed to read 1 byte, nothing can be done here. */
1583 if (end - begin <= 1)
1584 return;
1585
1586 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1587
1588 /* Check that either first or the last byte is readable, and give up
1589 if not. This heuristic is meant to permit reading accessible memory
1590 at the boundary of accessible region. */
1591 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1592 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1593 {
1594 forward = 1;
1595 ++current_begin;
1596 }
1597 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1598 buf.get () + (end - begin) - 1, end - 1, 1,
1599 &xfered_len) == TARGET_XFER_OK)
1600 {
1601 forward = 0;
1602 --current_end;
1603 }
1604 else
1605 return;
1606
1607 /* Loop invariant is that the [current_begin, current_end) was previously
1608 found to be not readable as a whole.
1609
1610 Note loop condition -- if the range has 1 byte, we can't divide the range
1611 so there's no point trying further. */
1612 while (current_end - current_begin > 1)
1613 {
1614 ULONGEST first_half_begin, first_half_end;
1615 ULONGEST second_half_begin, second_half_end;
1616 LONGEST xfer;
1617 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1618
1619 if (forward)
1620 {
1621 first_half_begin = current_begin;
1622 first_half_end = middle;
1623 second_half_begin = middle;
1624 second_half_end = current_end;
1625 }
1626 else
1627 {
1628 first_half_begin = middle;
1629 first_half_end = current_end;
1630 second_half_begin = current_begin;
1631 second_half_end = middle;
1632 }
1633
1634 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1635 buf.get () + (first_half_begin - begin) * unit_size,
1636 first_half_begin,
1637 first_half_end - first_half_begin);
1638
1639 if (xfer == first_half_end - first_half_begin)
1640 {
1641 /* This half reads up fine. So, the error must be in the
1642 other half. */
1643 current_begin = second_half_begin;
1644 current_end = second_half_end;
1645 }
1646 else
1647 {
1648 /* This half is not readable. Because we've tried one byte, we
1649 know some part of this half if actually readable. Go to the next
1650 iteration to divide again and try to read.
1651
1652 We don't handle the other half, because this function only tries
1653 to read a single readable subrange. */
1654 current_begin = first_half_begin;
1655 current_end = first_half_end;
1656 }
1657 }
1658
1659 if (forward)
1660 {
1661 /* The [begin, current_begin) range has been read. */
1662 result->emplace_back (begin, current_end, std::move (buf));
1663 }
1664 else
1665 {
1666 /* The [current_end, end) range has been read. */
1667 LONGEST region_len = end - current_end;
1668
1669 gdb::unique_xmalloc_ptr<gdb_byte> data
1670 ((gdb_byte *) xmalloc (region_len * unit_size));
1671 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1672 region_len * unit_size);
1673 result->emplace_back (current_end, end, std::move (data));
1674 }
1675 }
1676
1677 std::vector<memory_read_result>
1678 read_memory_robust (struct target_ops *ops,
1679 const ULONGEST offset, const LONGEST len)
1680 {
1681 std::vector<memory_read_result> result;
1682 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1683
1684 LONGEST xfered_total = 0;
1685 while (xfered_total < len)
1686 {
1687 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1688 LONGEST region_len;
1689
1690 /* If there is no explicit region, a fake one should be created. */
1691 gdb_assert (region);
1692
1693 if (region->hi == 0)
1694 region_len = len - xfered_total;
1695 else
1696 region_len = region->hi - offset;
1697
1698 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1699 {
1700 /* Cannot read this region. Note that we can end up here only
1701 if the region is explicitly marked inaccessible, or
1702 'inaccessible-by-default' is in effect. */
1703 xfered_total += region_len;
1704 }
1705 else
1706 {
1707 LONGEST to_read = std::min (len - xfered_total, region_len);
1708 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1709 ((gdb_byte *) xmalloc (to_read * unit_size));
1710
1711 LONGEST xfered_partial =
1712 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1713 offset + xfered_total, to_read);
1714 /* Call an observer, notifying them of the xfer progress? */
1715 if (xfered_partial <= 0)
1716 {
1717 /* Got an error reading full chunk. See if maybe we can read
1718 some subrange. */
1719 read_whatever_is_readable (ops, offset + xfered_total,
1720 offset + xfered_total + to_read,
1721 unit_size, &result);
1722 xfered_total += to_read;
1723 }
1724 else
1725 {
1726 result.emplace_back (offset + xfered_total,
1727 offset + xfered_total + xfered_partial,
1728 std::move (buffer));
1729 xfered_total += xfered_partial;
1730 }
1731 QUIT;
1732 }
1733 }
1734
1735 return result;
1736 }
1737
1738
1739 /* An alternative to target_write with progress callbacks. */
1740
1741 LONGEST
1742 target_write_with_progress (struct target_ops *ops,
1743 enum target_object object,
1744 const char *annex, const gdb_byte *buf,
1745 ULONGEST offset, LONGEST len,
1746 void (*progress) (ULONGEST, void *), void *baton)
1747 {
1748 LONGEST xfered_total = 0;
1749 int unit_size = 1;
1750
1751 /* If we are writing to a memory object, find the length of an addressable
1752 unit for that architecture. */
1753 if (object == TARGET_OBJECT_MEMORY
1754 || object == TARGET_OBJECT_STACK_MEMORY
1755 || object == TARGET_OBJECT_CODE_MEMORY
1756 || object == TARGET_OBJECT_RAW_MEMORY)
1757 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1758
1759 /* Give the progress callback a chance to set up. */
1760 if (progress)
1761 (*progress) (0, baton);
1762
1763 while (xfered_total < len)
1764 {
1765 ULONGEST xfered_partial;
1766 enum target_xfer_status status;
1767
1768 status = target_write_partial (ops, object, annex,
1769 buf + xfered_total * unit_size,
1770 offset + xfered_total, len - xfered_total,
1771 &xfered_partial);
1772
1773 if (status != TARGET_XFER_OK)
1774 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1775
1776 if (progress)
1777 (*progress) (xfered_partial, baton);
1778
1779 xfered_total += xfered_partial;
1780 QUIT;
1781 }
1782 return len;
1783 }
1784
1785 /* For docs on target_write see target.h. */
1786
1787 LONGEST
1788 target_write (struct target_ops *ops,
1789 enum target_object object,
1790 const char *annex, const gdb_byte *buf,
1791 ULONGEST offset, LONGEST len)
1792 {
1793 return target_write_with_progress (ops, object, annex, buf, offset, len,
1794 NULL, NULL);
1795 }
1796
1797 /* Help for target_read_alloc and target_read_stralloc. See their comments
1798 for details. */
1799
1800 template <typename T>
1801 gdb::optional<gdb::def_vector<T>>
1802 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1803 const char *annex)
1804 {
1805 gdb::def_vector<T> buf;
1806 size_t buf_pos = 0;
1807 const int chunk = 4096;
1808
1809 /* This function does not have a length parameter; it reads the
1810 entire OBJECT). Also, it doesn't support objects fetched partly
1811 from one target and partly from another (in a different stratum,
1812 e.g. a core file and an executable). Both reasons make it
1813 unsuitable for reading memory. */
1814 gdb_assert (object != TARGET_OBJECT_MEMORY);
1815
1816 /* Start by reading up to 4K at a time. The target will throttle
1817 this number down if necessary. */
1818 while (1)
1819 {
1820 ULONGEST xfered_len;
1821 enum target_xfer_status status;
1822
1823 buf.resize (buf_pos + chunk);
1824
1825 status = target_read_partial (ops, object, annex,
1826 (gdb_byte *) &buf[buf_pos],
1827 buf_pos, chunk,
1828 &xfered_len);
1829
1830 if (status == TARGET_XFER_EOF)
1831 {
1832 /* Read all there was. */
1833 buf.resize (buf_pos);
1834 return buf;
1835 }
1836 else if (status != TARGET_XFER_OK)
1837 {
1838 /* An error occurred. */
1839 return {};
1840 }
1841
1842 buf_pos += xfered_len;
1843
1844 QUIT;
1845 }
1846 }
1847
1848 /* See target.h */
1849
1850 gdb::optional<gdb::byte_vector>
1851 target_read_alloc (struct target_ops *ops, enum target_object object,
1852 const char *annex)
1853 {
1854 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1855 }
1856
1857 /* See target.h. */
1858
1859 gdb::optional<gdb::char_vector>
1860 target_read_stralloc (struct target_ops *ops, enum target_object object,
1861 const char *annex)
1862 {
1863 gdb::optional<gdb::char_vector> buf
1864 = target_read_alloc_1<char> (ops, object, annex);
1865
1866 if (!buf)
1867 return {};
1868
1869 if (buf->back () != '\0')
1870 buf->push_back ('\0');
1871
1872 /* Check for embedded NUL bytes; but allow trailing NULs. */
1873 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1874 it != buf->end (); it++)
1875 if (*it != '\0')
1876 {
1877 warning (_("target object %d, annex %s, "
1878 "contained unexpected null characters"),
1879 (int) object, annex ? annex : "(none)");
1880 break;
1881 }
1882
1883 return buf;
1884 }
1885
1886 /* Memory transfer methods. */
1887
1888 void
1889 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1890 LONGEST len)
1891 {
1892 /* This method is used to read from an alternate, non-current
1893 target. This read must bypass the overlay support (as symbols
1894 don't match this target), and GDB's internal cache (wrong cache
1895 for this target). */
1896 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1897 != len)
1898 memory_error (TARGET_XFER_E_IO, addr);
1899 }
1900
1901 ULONGEST
1902 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1903 int len, enum bfd_endian byte_order)
1904 {
1905 gdb_byte buf[sizeof (ULONGEST)];
1906
1907 gdb_assert (len <= sizeof (buf));
1908 get_target_memory (ops, addr, buf, len);
1909 return extract_unsigned_integer (buf, len, byte_order);
1910 }
1911
1912 /* See target.h. */
1913
1914 int
1915 target_insert_breakpoint (struct gdbarch *gdbarch,
1916 struct bp_target_info *bp_tgt)
1917 {
1918 if (!may_insert_breakpoints)
1919 {
1920 warning (_("May not insert breakpoints"));
1921 return 1;
1922 }
1923
1924 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1925 }
1926
1927 /* See target.h. */
1928
1929 int
1930 target_remove_breakpoint (struct gdbarch *gdbarch,
1931 struct bp_target_info *bp_tgt,
1932 enum remove_bp_reason reason)
1933 {
1934 /* This is kind of a weird case to handle, but the permission might
1935 have been changed after breakpoints were inserted - in which case
1936 we should just take the user literally and assume that any
1937 breakpoints should be left in place. */
1938 if (!may_insert_breakpoints)
1939 {
1940 warning (_("May not remove breakpoints"));
1941 return 1;
1942 }
1943
1944 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1945 }
1946
1947 static void
1948 info_target_command (const char *args, int from_tty)
1949 {
1950 int has_all_mem = 0;
1951
1952 if (symfile_objfile != NULL)
1953 printf_unfiltered (_("Symbols from \"%s\".\n"),
1954 objfile_name (symfile_objfile));
1955
1956 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1957 {
1958 if (!t->has_memory ())
1959 continue;
1960
1961 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1962 continue;
1963 if (has_all_mem)
1964 printf_unfiltered (_("\tWhile running this, "
1965 "GDB does not access memory from...\n"));
1966 printf_unfiltered ("%s:\n", t->longname ());
1967 t->files_info ();
1968 has_all_mem = t->has_all_memory ();
1969 }
1970 }
1971
1972 /* This function is called before any new inferior is created, e.g.
1973 by running a program, attaching, or connecting to a target.
1974 It cleans up any state from previous invocations which might
1975 change between runs. This is a subset of what target_preopen
1976 resets (things which might change between targets). */
1977
1978 void
1979 target_pre_inferior (int from_tty)
1980 {
1981 /* Clear out solib state. Otherwise the solib state of the previous
1982 inferior might have survived and is entirely wrong for the new
1983 target. This has been observed on GNU/Linux using glibc 2.3. How
1984 to reproduce:
1985
1986 bash$ ./foo&
1987 [1] 4711
1988 bash$ ./foo&
1989 [1] 4712
1990 bash$ gdb ./foo
1991 [...]
1992 (gdb) attach 4711
1993 (gdb) detach
1994 (gdb) attach 4712
1995 Cannot access memory at address 0xdeadbeef
1996 */
1997
1998 /* In some OSs, the shared library list is the same/global/shared
1999 across inferiors. If code is shared between processes, so are
2000 memory regions and features. */
2001 if (!gdbarch_has_global_solist (target_gdbarch ()))
2002 {
2003 no_shared_libraries (NULL, from_tty);
2004
2005 invalidate_target_mem_regions ();
2006
2007 target_clear_description ();
2008 }
2009
2010 /* attach_flag may be set if the previous process associated with
2011 the inferior was attached to. */
2012 current_inferior ()->attach_flag = 0;
2013
2014 current_inferior ()->highest_thread_num = 0;
2015
2016 agent_capability_invalidate ();
2017 }
2018
2019 /* Callback for iterate_over_inferiors. Gets rid of the given
2020 inferior. */
2021
2022 static int
2023 dispose_inferior (struct inferior *inf, void *args)
2024 {
2025 /* Not all killed inferiors can, or will ever be, removed from the
2026 inferior list. Killed inferiors clearly don't need to be killed
2027 again, so, we're done. */
2028 if (inf->pid == 0)
2029 return 0;
2030
2031 thread_info *thread = any_thread_of_inferior (inf);
2032 if (thread != NULL)
2033 {
2034 switch_to_thread (thread);
2035
2036 /* Core inferiors actually should be detached, not killed. */
2037 if (target_has_execution)
2038 target_kill ();
2039 else
2040 target_detach (inf, 0);
2041 }
2042
2043 return 0;
2044 }
2045
2046 /* This is to be called by the open routine before it does
2047 anything. */
2048
2049 void
2050 target_preopen (int from_tty)
2051 {
2052 dont_repeat ();
2053
2054 if (have_inferiors ())
2055 {
2056 if (!from_tty
2057 || !have_live_inferiors ()
2058 || query (_("A program is being debugged already. Kill it? ")))
2059 iterate_over_inferiors (dispose_inferior, NULL);
2060 else
2061 error (_("Program not killed."));
2062 }
2063
2064 /* Calling target_kill may remove the target from the stack. But if
2065 it doesn't (which seems like a win for UDI), remove it now. */
2066 /* Leave the exec target, though. The user may be switching from a
2067 live process to a core of the same program. */
2068 pop_all_targets_above (file_stratum);
2069
2070 target_pre_inferior (from_tty);
2071 }
2072
2073 /* See target.h. */
2074
2075 void
2076 target_detach (inferior *inf, int from_tty)
2077 {
2078 /* As long as some to_detach implementations rely on the current_inferior
2079 (either directly, or indirectly, like through target_gdbarch or by
2080 reading memory), INF needs to be the current inferior. When that
2081 requirement will become no longer true, then we can remove this
2082 assertion. */
2083 gdb_assert (inf == current_inferior ());
2084
2085 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2086 /* Don't remove global breakpoints here. They're removed on
2087 disconnection from the target. */
2088 ;
2089 else
2090 /* If we're in breakpoints-always-inserted mode, have to remove
2091 breakpoints before detaching. */
2092 remove_breakpoints_inf (current_inferior ());
2093
2094 prepare_for_detach ();
2095
2096 current_top_target ()->detach (inf, from_tty);
2097 }
2098
2099 void
2100 target_disconnect (const char *args, int from_tty)
2101 {
2102 /* If we're in breakpoints-always-inserted mode or if breakpoints
2103 are global across processes, we have to remove them before
2104 disconnecting. */
2105 remove_breakpoints ();
2106
2107 current_top_target ()->disconnect (args, from_tty);
2108 }
2109
2110 /* See target/target.h. */
2111
2112 ptid_t
2113 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2114 {
2115 return current_top_target ()->wait (ptid, status, options);
2116 }
2117
2118 /* See target.h. */
2119
2120 ptid_t
2121 default_target_wait (struct target_ops *ops,
2122 ptid_t ptid, struct target_waitstatus *status,
2123 int options)
2124 {
2125 status->kind = TARGET_WAITKIND_IGNORE;
2126 return minus_one_ptid;
2127 }
2128
2129 const char *
2130 target_pid_to_str (ptid_t ptid)
2131 {
2132 return current_top_target ()->pid_to_str (ptid);
2133 }
2134
2135 const char *
2136 target_thread_name (struct thread_info *info)
2137 {
2138 return current_top_target ()->thread_name (info);
2139 }
2140
2141 struct thread_info *
2142 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2143 int handle_len,
2144 struct inferior *inf)
2145 {
2146 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2147 handle_len, inf);
2148 }
2149
2150 void
2151 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2152 {
2153 target_dcache_invalidate ();
2154
2155 current_top_target ()->resume (ptid, step, signal);
2156
2157 registers_changed_ptid (ptid);
2158 /* We only set the internal executing state here. The user/frontend
2159 running state is set at a higher level. This also clears the
2160 thread's stop_pc as side effect. */
2161 set_executing (ptid, 1);
2162 clear_inline_frame_state (ptid);
2163 }
2164
2165 /* If true, target_commit_resume is a nop. */
2166 static int defer_target_commit_resume;
2167
2168 /* See target.h. */
2169
2170 void
2171 target_commit_resume (void)
2172 {
2173 if (defer_target_commit_resume)
2174 return;
2175
2176 current_top_target ()->commit_resume ();
2177 }
2178
2179 /* See target.h. */
2180
2181 scoped_restore_tmpl<int>
2182 make_scoped_defer_target_commit_resume ()
2183 {
2184 return make_scoped_restore (&defer_target_commit_resume, 1);
2185 }
2186
2187 void
2188 target_pass_signals (int numsigs, unsigned char *pass_signals)
2189 {
2190 current_top_target ()->pass_signals (numsigs, pass_signals);
2191 }
2192
2193 void
2194 target_program_signals (int numsigs, unsigned char *program_signals)
2195 {
2196 current_top_target ()->program_signals (numsigs, program_signals);
2197 }
2198
2199 static int
2200 default_follow_fork (struct target_ops *self, int follow_child,
2201 int detach_fork)
2202 {
2203 /* Some target returned a fork event, but did not know how to follow it. */
2204 internal_error (__FILE__, __LINE__,
2205 _("could not find a target to follow fork"));
2206 }
2207
2208 /* Look through the list of possible targets for a target that can
2209 follow forks. */
2210
2211 int
2212 target_follow_fork (int follow_child, int detach_fork)
2213 {
2214 return current_top_target ()->follow_fork (follow_child, detach_fork);
2215 }
2216
2217 /* Target wrapper for follow exec hook. */
2218
2219 void
2220 target_follow_exec (struct inferior *inf, char *execd_pathname)
2221 {
2222 current_top_target ()->follow_exec (inf, execd_pathname);
2223 }
2224
2225 static void
2226 default_mourn_inferior (struct target_ops *self)
2227 {
2228 internal_error (__FILE__, __LINE__,
2229 _("could not find a target to follow mourn inferior"));
2230 }
2231
2232 void
2233 target_mourn_inferior (ptid_t ptid)
2234 {
2235 gdb_assert (ptid == inferior_ptid);
2236 current_top_target ()->mourn_inferior ();
2237
2238 /* We no longer need to keep handles on any of the object files.
2239 Make sure to release them to avoid unnecessarily locking any
2240 of them while we're not actually debugging. */
2241 bfd_cache_close_all ();
2242 }
2243
2244 /* Look for a target which can describe architectural features, starting
2245 from TARGET. If we find one, return its description. */
2246
2247 const struct target_desc *
2248 target_read_description (struct target_ops *target)
2249 {
2250 return target->read_description ();
2251 }
2252
2253 /* This implements a basic search of memory, reading target memory and
2254 performing the search here (as opposed to performing the search in on the
2255 target side with, for example, gdbserver). */
2256
2257 int
2258 simple_search_memory (struct target_ops *ops,
2259 CORE_ADDR start_addr, ULONGEST search_space_len,
2260 const gdb_byte *pattern, ULONGEST pattern_len,
2261 CORE_ADDR *found_addrp)
2262 {
2263 /* NOTE: also defined in find.c testcase. */
2264 #define SEARCH_CHUNK_SIZE 16000
2265 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2266 /* Buffer to hold memory contents for searching. */
2267 unsigned search_buf_size;
2268
2269 search_buf_size = chunk_size + pattern_len - 1;
2270
2271 /* No point in trying to allocate a buffer larger than the search space. */
2272 if (search_space_len < search_buf_size)
2273 search_buf_size = search_space_len;
2274
2275 gdb::byte_vector search_buf (search_buf_size);
2276
2277 /* Prime the search buffer. */
2278
2279 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2280 search_buf.data (), start_addr, search_buf_size)
2281 != search_buf_size)
2282 {
2283 warning (_("Unable to access %s bytes of target "
2284 "memory at %s, halting search."),
2285 pulongest (search_buf_size), hex_string (start_addr));
2286 return -1;
2287 }
2288
2289 /* Perform the search.
2290
2291 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2292 When we've scanned N bytes we copy the trailing bytes to the start and
2293 read in another N bytes. */
2294
2295 while (search_space_len >= pattern_len)
2296 {
2297 gdb_byte *found_ptr;
2298 unsigned nr_search_bytes
2299 = std::min (search_space_len, (ULONGEST) search_buf_size);
2300
2301 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2302 pattern, pattern_len);
2303
2304 if (found_ptr != NULL)
2305 {
2306 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2307
2308 *found_addrp = found_addr;
2309 return 1;
2310 }
2311
2312 /* Not found in this chunk, skip to next chunk. */
2313
2314 /* Don't let search_space_len wrap here, it's unsigned. */
2315 if (search_space_len >= chunk_size)
2316 search_space_len -= chunk_size;
2317 else
2318 search_space_len = 0;
2319
2320 if (search_space_len >= pattern_len)
2321 {
2322 unsigned keep_len = search_buf_size - chunk_size;
2323 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2324 int nr_to_read;
2325
2326 /* Copy the trailing part of the previous iteration to the front
2327 of the buffer for the next iteration. */
2328 gdb_assert (keep_len == pattern_len - 1);
2329 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2330
2331 nr_to_read = std::min (search_space_len - keep_len,
2332 (ULONGEST) chunk_size);
2333
2334 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2335 &search_buf[keep_len], read_addr,
2336 nr_to_read) != nr_to_read)
2337 {
2338 warning (_("Unable to access %s bytes of target "
2339 "memory at %s, halting search."),
2340 plongest (nr_to_read),
2341 hex_string (read_addr));
2342 return -1;
2343 }
2344
2345 start_addr += chunk_size;
2346 }
2347 }
2348
2349 /* Not found. */
2350
2351 return 0;
2352 }
2353
2354 /* Default implementation of memory-searching. */
2355
2356 static int
2357 default_search_memory (struct target_ops *self,
2358 CORE_ADDR start_addr, ULONGEST search_space_len,
2359 const gdb_byte *pattern, ULONGEST pattern_len,
2360 CORE_ADDR *found_addrp)
2361 {
2362 /* Start over from the top of the target stack. */
2363 return simple_search_memory (current_top_target (),
2364 start_addr, search_space_len,
2365 pattern, pattern_len, found_addrp);
2366 }
2367
2368 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2369 sequence of bytes in PATTERN with length PATTERN_LEN.
2370
2371 The result is 1 if found, 0 if not found, and -1 if there was an error
2372 requiring halting of the search (e.g. memory read error).
2373 If the pattern is found the address is recorded in FOUND_ADDRP. */
2374
2375 int
2376 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2377 const gdb_byte *pattern, ULONGEST pattern_len,
2378 CORE_ADDR *found_addrp)
2379 {
2380 return current_top_target ()->search_memory (start_addr, search_space_len,
2381 pattern, pattern_len, found_addrp);
2382 }
2383
2384 /* Look through the currently pushed targets. If none of them will
2385 be able to restart the currently running process, issue an error
2386 message. */
2387
2388 void
2389 target_require_runnable (void)
2390 {
2391 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2392 {
2393 /* If this target knows how to create a new program, then
2394 assume we will still be able to after killing the current
2395 one. Either killing and mourning will not pop T, or else
2396 find_default_run_target will find it again. */
2397 if (t->can_create_inferior ())
2398 return;
2399
2400 /* Do not worry about targets at certain strata that can not
2401 create inferiors. Assume they will be pushed again if
2402 necessary, and continue to the process_stratum. */
2403 if (t->to_stratum > process_stratum)
2404 continue;
2405
2406 error (_("The \"%s\" target does not support \"run\". "
2407 "Try \"help target\" or \"continue\"."),
2408 t->shortname ());
2409 }
2410
2411 /* This function is only called if the target is running. In that
2412 case there should have been a process_stratum target and it
2413 should either know how to create inferiors, or not... */
2414 internal_error (__FILE__, __LINE__, _("No targets found"));
2415 }
2416
2417 /* Whether GDB is allowed to fall back to the default run target for
2418 "run", "attach", etc. when no target is connected yet. */
2419 static int auto_connect_native_target = 1;
2420
2421 static void
2422 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2423 struct cmd_list_element *c, const char *value)
2424 {
2425 fprintf_filtered (file,
2426 _("Whether GDB may automatically connect to the "
2427 "native target is %s.\n"),
2428 value);
2429 }
2430
2431 /* A pointer to the target that can respond to "run" or "attach".
2432 Native targets are always singletons and instantiated early at GDB
2433 startup. */
2434 static target_ops *the_native_target;
2435
2436 /* See target.h. */
2437
2438 void
2439 set_native_target (target_ops *target)
2440 {
2441 if (the_native_target != NULL)
2442 internal_error (__FILE__, __LINE__,
2443 _("native target already set (\"%s\")."),
2444 the_native_target->longname ());
2445
2446 the_native_target = target;
2447 }
2448
2449 /* See target.h. */
2450
2451 target_ops *
2452 get_native_target ()
2453 {
2454 return the_native_target;
2455 }
2456
2457 /* Look through the list of possible targets for a target that can
2458 execute a run or attach command without any other data. This is
2459 used to locate the default process stratum.
2460
2461 If DO_MESG is not NULL, the result is always valid (error() is
2462 called for errors); else, return NULL on error. */
2463
2464 static struct target_ops *
2465 find_default_run_target (const char *do_mesg)
2466 {
2467 if (auto_connect_native_target && the_native_target != NULL)
2468 return the_native_target;
2469
2470 if (do_mesg != NULL)
2471 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2472 return NULL;
2473 }
2474
2475 /* See target.h. */
2476
2477 struct target_ops *
2478 find_attach_target (void)
2479 {
2480 /* If a target on the current stack can attach, use it. */
2481 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2482 {
2483 if (t->can_attach ())
2484 return t;
2485 }
2486
2487 /* Otherwise, use the default run target for attaching. */
2488 return find_default_run_target ("attach");
2489 }
2490
2491 /* See target.h. */
2492
2493 struct target_ops *
2494 find_run_target (void)
2495 {
2496 /* If a target on the current stack can run, use it. */
2497 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2498 {
2499 if (t->can_create_inferior ())
2500 return t;
2501 }
2502
2503 /* Otherwise, use the default run target. */
2504 return find_default_run_target ("run");
2505 }
2506
2507 bool
2508 target_ops::info_proc (const char *args, enum info_proc_what what)
2509 {
2510 return false;
2511 }
2512
2513 /* Implement the "info proc" command. */
2514
2515 int
2516 target_info_proc (const char *args, enum info_proc_what what)
2517 {
2518 struct target_ops *t;
2519
2520 /* If we're already connected to something that can get us OS
2521 related data, use it. Otherwise, try using the native
2522 target. */
2523 t = find_target_at (process_stratum);
2524 if (t == NULL)
2525 t = find_default_run_target (NULL);
2526
2527 for (; t != NULL; t = t->beneath ())
2528 {
2529 if (t->info_proc (args, what))
2530 {
2531 if (targetdebug)
2532 fprintf_unfiltered (gdb_stdlog,
2533 "target_info_proc (\"%s\", %d)\n", args, what);
2534
2535 return 1;
2536 }
2537 }
2538
2539 return 0;
2540 }
2541
2542 static int
2543 find_default_supports_disable_randomization (struct target_ops *self)
2544 {
2545 struct target_ops *t;
2546
2547 t = find_default_run_target (NULL);
2548 if (t != NULL)
2549 return t->supports_disable_randomization ();
2550 return 0;
2551 }
2552
2553 int
2554 target_supports_disable_randomization (void)
2555 {
2556 return current_top_target ()->supports_disable_randomization ();
2557 }
2558
2559 /* See target/target.h. */
2560
2561 int
2562 target_supports_multi_process (void)
2563 {
2564 return current_top_target ()->supports_multi_process ();
2565 }
2566
2567 /* See target.h. */
2568
2569 gdb::optional<gdb::char_vector>
2570 target_get_osdata (const char *type)
2571 {
2572 struct target_ops *t;
2573
2574 /* If we're already connected to something that can get us OS
2575 related data, use it. Otherwise, try using the native
2576 target. */
2577 t = find_target_at (process_stratum);
2578 if (t == NULL)
2579 t = find_default_run_target ("get OS data");
2580
2581 if (!t)
2582 return {};
2583
2584 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2585 }
2586
2587 static struct address_space *
2588 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2589 {
2590 struct inferior *inf;
2591
2592 /* Fall-back to the "main" address space of the inferior. */
2593 inf = find_inferior_ptid (ptid);
2594
2595 if (inf == NULL || inf->aspace == NULL)
2596 internal_error (__FILE__, __LINE__,
2597 _("Can't determine the current "
2598 "address space of thread %s\n"),
2599 target_pid_to_str (ptid));
2600
2601 return inf->aspace;
2602 }
2603
2604 /* Determine the current address space of thread PTID. */
2605
2606 struct address_space *
2607 target_thread_address_space (ptid_t ptid)
2608 {
2609 struct address_space *aspace;
2610
2611 aspace = current_top_target ()->thread_address_space (ptid);
2612 gdb_assert (aspace != NULL);
2613
2614 return aspace;
2615 }
2616
2617 /* See target.h. */
2618
2619 target_ops *
2620 target_ops::beneath () const
2621 {
2622 return g_target_stack.find_beneath (this);
2623 }
2624
2625 void
2626 target_ops::close ()
2627 {
2628 }
2629
2630 bool
2631 target_ops::can_attach ()
2632 {
2633 return 0;
2634 }
2635
2636 void
2637 target_ops::attach (const char *, int)
2638 {
2639 gdb_assert_not_reached ("target_ops::attach called");
2640 }
2641
2642 bool
2643 target_ops::can_create_inferior ()
2644 {
2645 return 0;
2646 }
2647
2648 void
2649 target_ops::create_inferior (const char *, const std::string &,
2650 char **, int)
2651 {
2652 gdb_assert_not_reached ("target_ops::create_inferior called");
2653 }
2654
2655 bool
2656 target_ops::can_run ()
2657 {
2658 return false;
2659 }
2660
2661 int
2662 target_can_run ()
2663 {
2664 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2665 {
2666 if (t->can_run ())
2667 return 1;
2668 }
2669
2670 return 0;
2671 }
2672
2673 /* Target file operations. */
2674
2675 static struct target_ops *
2676 default_fileio_target (void)
2677 {
2678 struct target_ops *t;
2679
2680 /* If we're already connected to something that can perform
2681 file I/O, use it. Otherwise, try using the native target. */
2682 t = find_target_at (process_stratum);
2683 if (t != NULL)
2684 return t;
2685 return find_default_run_target ("file I/O");
2686 }
2687
2688 /* File handle for target file operations. */
2689
2690 struct fileio_fh_t
2691 {
2692 /* The target on which this file is open. NULL if the target is
2693 meanwhile closed while the handle is open. */
2694 target_ops *target;
2695
2696 /* The file descriptor on the target. */
2697 int target_fd;
2698
2699 /* Check whether this fileio_fh_t represents a closed file. */
2700 bool is_closed ()
2701 {
2702 return target_fd < 0;
2703 }
2704 };
2705
2706 /* Vector of currently open file handles. The value returned by
2707 target_fileio_open and passed as the FD argument to other
2708 target_fileio_* functions is an index into this vector. This
2709 vector's entries are never freed; instead, files are marked as
2710 closed, and the handle becomes available for reuse. */
2711 static std::vector<fileio_fh_t> fileio_fhandles;
2712
2713 /* Index into fileio_fhandles of the lowest handle that might be
2714 closed. This permits handle reuse without searching the whole
2715 list each time a new file is opened. */
2716 static int lowest_closed_fd;
2717
2718 /* Invalidate the target associated with open handles that were open
2719 on target TARG, since we're about to close (and maybe destroy) the
2720 target. The handles remain open from the client's perspective, but
2721 trying to do anything with them other than closing them will fail
2722 with EIO. */
2723
2724 static void
2725 fileio_handles_invalidate_target (target_ops *targ)
2726 {
2727 for (fileio_fh_t &fh : fileio_fhandles)
2728 if (fh.target == targ)
2729 fh.target = NULL;
2730 }
2731
2732 /* Acquire a target fileio file descriptor. */
2733
2734 static int
2735 acquire_fileio_fd (target_ops *target, int target_fd)
2736 {
2737 /* Search for closed handles to reuse. */
2738 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2739 {
2740 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2741
2742 if (fh.is_closed ())
2743 break;
2744 }
2745
2746 /* Push a new handle if no closed handles were found. */
2747 if (lowest_closed_fd == fileio_fhandles.size ())
2748 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2749 else
2750 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2751
2752 /* Should no longer be marked closed. */
2753 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2754
2755 /* Return its index, and start the next lookup at
2756 the next index. */
2757 return lowest_closed_fd++;
2758 }
2759
2760 /* Release a target fileio file descriptor. */
2761
2762 static void
2763 release_fileio_fd (int fd, fileio_fh_t *fh)
2764 {
2765 fh->target_fd = -1;
2766 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2767 }
2768
2769 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2770
2771 static fileio_fh_t *
2772 fileio_fd_to_fh (int fd)
2773 {
2774 return &fileio_fhandles[fd];
2775 }
2776
2777
2778 /* Default implementations of file i/o methods. We don't want these
2779 to delegate automatically, because we need to know which target
2780 supported the method, in order to call it directly from within
2781 pread/pwrite, etc. */
2782
2783 int
2784 target_ops::fileio_open (struct inferior *inf, const char *filename,
2785 int flags, int mode, int warn_if_slow,
2786 int *target_errno)
2787 {
2788 *target_errno = FILEIO_ENOSYS;
2789 return -1;
2790 }
2791
2792 int
2793 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2794 ULONGEST offset, int *target_errno)
2795 {
2796 *target_errno = FILEIO_ENOSYS;
2797 return -1;
2798 }
2799
2800 int
2801 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2802 ULONGEST offset, int *target_errno)
2803 {
2804 *target_errno = FILEIO_ENOSYS;
2805 return -1;
2806 }
2807
2808 int
2809 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2810 {
2811 *target_errno = FILEIO_ENOSYS;
2812 return -1;
2813 }
2814
2815 int
2816 target_ops::fileio_close (int fd, int *target_errno)
2817 {
2818 *target_errno = FILEIO_ENOSYS;
2819 return -1;
2820 }
2821
2822 int
2823 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2824 int *target_errno)
2825 {
2826 *target_errno = FILEIO_ENOSYS;
2827 return -1;
2828 }
2829
2830 gdb::optional<std::string>
2831 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2832 int *target_errno)
2833 {
2834 *target_errno = FILEIO_ENOSYS;
2835 return {};
2836 }
2837
2838 /* Helper for target_fileio_open and
2839 target_fileio_open_warn_if_slow. */
2840
2841 static int
2842 target_fileio_open_1 (struct inferior *inf, const char *filename,
2843 int flags, int mode, int warn_if_slow,
2844 int *target_errno)
2845 {
2846 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2847 {
2848 int fd = t->fileio_open (inf, filename, flags, mode,
2849 warn_if_slow, target_errno);
2850
2851 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2852 continue;
2853
2854 if (fd < 0)
2855 fd = -1;
2856 else
2857 fd = acquire_fileio_fd (t, fd);
2858
2859 if (targetdebug)
2860 fprintf_unfiltered (gdb_stdlog,
2861 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2862 " = %d (%d)\n",
2863 inf == NULL ? 0 : inf->num,
2864 filename, flags, mode,
2865 warn_if_slow, fd,
2866 fd != -1 ? 0 : *target_errno);
2867 return fd;
2868 }
2869
2870 *target_errno = FILEIO_ENOSYS;
2871 return -1;
2872 }
2873
2874 /* See target.h. */
2875
2876 int
2877 target_fileio_open (struct inferior *inf, const char *filename,
2878 int flags, int mode, int *target_errno)
2879 {
2880 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2881 target_errno);
2882 }
2883
2884 /* See target.h. */
2885
2886 int
2887 target_fileio_open_warn_if_slow (struct inferior *inf,
2888 const char *filename,
2889 int flags, int mode, int *target_errno)
2890 {
2891 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2892 target_errno);
2893 }
2894
2895 /* See target.h. */
2896
2897 int
2898 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2899 ULONGEST offset, int *target_errno)
2900 {
2901 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2902 int ret = -1;
2903
2904 if (fh->is_closed ())
2905 *target_errno = EBADF;
2906 else if (fh->target == NULL)
2907 *target_errno = EIO;
2908 else
2909 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2910 len, offset, target_errno);
2911
2912 if (targetdebug)
2913 fprintf_unfiltered (gdb_stdlog,
2914 "target_fileio_pwrite (%d,...,%d,%s) "
2915 "= %d (%d)\n",
2916 fd, len, pulongest (offset),
2917 ret, ret != -1 ? 0 : *target_errno);
2918 return ret;
2919 }
2920
2921 /* See target.h. */
2922
2923 int
2924 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2925 ULONGEST offset, int *target_errno)
2926 {
2927 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2928 int ret = -1;
2929
2930 if (fh->is_closed ())
2931 *target_errno = EBADF;
2932 else if (fh->target == NULL)
2933 *target_errno = EIO;
2934 else
2935 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2936 len, offset, target_errno);
2937
2938 if (targetdebug)
2939 fprintf_unfiltered (gdb_stdlog,
2940 "target_fileio_pread (%d,...,%d,%s) "
2941 "= %d (%d)\n",
2942 fd, len, pulongest (offset),
2943 ret, ret != -1 ? 0 : *target_errno);
2944 return ret;
2945 }
2946
2947 /* See target.h. */
2948
2949 int
2950 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2951 {
2952 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2953 int ret = -1;
2954
2955 if (fh->is_closed ())
2956 *target_errno = EBADF;
2957 else if (fh->target == NULL)
2958 *target_errno = EIO;
2959 else
2960 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2961
2962 if (targetdebug)
2963 fprintf_unfiltered (gdb_stdlog,
2964 "target_fileio_fstat (%d) = %d (%d)\n",
2965 fd, ret, ret != -1 ? 0 : *target_errno);
2966 return ret;
2967 }
2968
2969 /* See target.h. */
2970
2971 int
2972 target_fileio_close (int fd, int *target_errno)
2973 {
2974 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2975 int ret = -1;
2976
2977 if (fh->is_closed ())
2978 *target_errno = EBADF;
2979 else
2980 {
2981 if (fh->target != NULL)
2982 ret = fh->target->fileio_close (fh->target_fd,
2983 target_errno);
2984 else
2985 ret = 0;
2986 release_fileio_fd (fd, fh);
2987 }
2988
2989 if (targetdebug)
2990 fprintf_unfiltered (gdb_stdlog,
2991 "target_fileio_close (%d) = %d (%d)\n",
2992 fd, ret, ret != -1 ? 0 : *target_errno);
2993 return ret;
2994 }
2995
2996 /* See target.h. */
2997
2998 int
2999 target_fileio_unlink (struct inferior *inf, const char *filename,
3000 int *target_errno)
3001 {
3002 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3003 {
3004 int ret = t->fileio_unlink (inf, filename, target_errno);
3005
3006 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
3007 continue;
3008
3009 if (targetdebug)
3010 fprintf_unfiltered (gdb_stdlog,
3011 "target_fileio_unlink (%d,%s)"
3012 " = %d (%d)\n",
3013 inf == NULL ? 0 : inf->num, filename,
3014 ret, ret != -1 ? 0 : *target_errno);
3015 return ret;
3016 }
3017
3018 *target_errno = FILEIO_ENOSYS;
3019 return -1;
3020 }
3021
3022 /* See target.h. */
3023
3024 gdb::optional<std::string>
3025 target_fileio_readlink (struct inferior *inf, const char *filename,
3026 int *target_errno)
3027 {
3028 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3029 {
3030 gdb::optional<std::string> ret
3031 = t->fileio_readlink (inf, filename, target_errno);
3032
3033 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
3034 continue;
3035
3036 if (targetdebug)
3037 fprintf_unfiltered (gdb_stdlog,
3038 "target_fileio_readlink (%d,%s)"
3039 " = %s (%d)\n",
3040 inf == NULL ? 0 : inf->num,
3041 filename, ret ? ret->c_str () : "(nil)",
3042 ret ? 0 : *target_errno);
3043 return ret;
3044 }
3045
3046 *target_errno = FILEIO_ENOSYS;
3047 return {};
3048 }
3049
3050 /* Like scoped_fd, but specific to target fileio. */
3051
3052 class scoped_target_fd
3053 {
3054 public:
3055 explicit scoped_target_fd (int fd) noexcept
3056 : m_fd (fd)
3057 {
3058 }
3059
3060 ~scoped_target_fd ()
3061 {
3062 if (m_fd >= 0)
3063 {
3064 int target_errno;
3065
3066 target_fileio_close (m_fd, &target_errno);
3067 }
3068 }
3069
3070 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3071
3072 int get () const noexcept
3073 {
3074 return m_fd;
3075 }
3076
3077 private:
3078 int m_fd;
3079 };
3080
3081 /* Read target file FILENAME, in the filesystem as seen by INF. If
3082 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3083 remote targets, the remote stub). Store the result in *BUF_P and
3084 return the size of the transferred data. PADDING additional bytes
3085 are available in *BUF_P. This is a helper function for
3086 target_fileio_read_alloc; see the declaration of that function for
3087 more information. */
3088
3089 static LONGEST
3090 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3091 gdb_byte **buf_p, int padding)
3092 {
3093 size_t buf_alloc, buf_pos;
3094 gdb_byte *buf;
3095 LONGEST n;
3096 int target_errno;
3097
3098 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3099 0700, &target_errno));
3100 if (fd.get () == -1)
3101 return -1;
3102
3103 /* Start by reading up to 4K at a time. The target will throttle
3104 this number down if necessary. */
3105 buf_alloc = 4096;
3106 buf = (gdb_byte *) xmalloc (buf_alloc);
3107 buf_pos = 0;
3108 while (1)
3109 {
3110 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3111 buf_alloc - buf_pos - padding, buf_pos,
3112 &target_errno);
3113 if (n < 0)
3114 {
3115 /* An error occurred. */
3116 xfree (buf);
3117 return -1;
3118 }
3119 else if (n == 0)
3120 {
3121 /* Read all there was. */
3122 if (buf_pos == 0)
3123 xfree (buf);
3124 else
3125 *buf_p = buf;
3126 return buf_pos;
3127 }
3128
3129 buf_pos += n;
3130
3131 /* If the buffer is filling up, expand it. */
3132 if (buf_alloc < buf_pos * 2)
3133 {
3134 buf_alloc *= 2;
3135 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3136 }
3137
3138 QUIT;
3139 }
3140 }
3141
3142 /* See target.h. */
3143
3144 LONGEST
3145 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3146 gdb_byte **buf_p)
3147 {
3148 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3149 }
3150
3151 /* See target.h. */
3152
3153 gdb::unique_xmalloc_ptr<char>
3154 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3155 {
3156 gdb_byte *buffer;
3157 char *bufstr;
3158 LONGEST i, transferred;
3159
3160 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3161 bufstr = (char *) buffer;
3162
3163 if (transferred < 0)
3164 return gdb::unique_xmalloc_ptr<char> (nullptr);
3165
3166 if (transferred == 0)
3167 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3168
3169 bufstr[transferred] = 0;
3170
3171 /* Check for embedded NUL bytes; but allow trailing NULs. */
3172 for (i = strlen (bufstr); i < transferred; i++)
3173 if (bufstr[i] != 0)
3174 {
3175 warning (_("target file %s "
3176 "contained unexpected null characters"),
3177 filename);
3178 break;
3179 }
3180
3181 return gdb::unique_xmalloc_ptr<char> (bufstr);
3182 }
3183
3184
3185 static int
3186 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3187 CORE_ADDR addr, int len)
3188 {
3189 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3190 }
3191
3192 static int
3193 default_watchpoint_addr_within_range (struct target_ops *target,
3194 CORE_ADDR addr,
3195 CORE_ADDR start, int length)
3196 {
3197 return addr >= start && addr < start + length;
3198 }
3199
3200 static struct gdbarch *
3201 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3202 {
3203 inferior *inf = find_inferior_ptid (ptid);
3204 gdb_assert (inf != NULL);
3205 return inf->gdbarch;
3206 }
3207
3208 /* See target.h. */
3209
3210 target_ops *
3211 target_stack::find_beneath (const target_ops *t) const
3212 {
3213 /* Look for a non-empty slot at stratum levels beneath T's. */
3214 for (int stratum = t->to_stratum - 1; stratum >= 0; --stratum)
3215 if (m_stack[stratum] != NULL)
3216 return m_stack[stratum];
3217
3218 return NULL;
3219 }
3220
3221 /* See target.h. */
3222
3223 struct target_ops *
3224 find_target_at (enum strata stratum)
3225 {
3226 return g_target_stack.at (stratum);
3227 }
3228
3229 \f
3230
3231 /* See target.h */
3232
3233 void
3234 target_announce_detach (int from_tty)
3235 {
3236 pid_t pid;
3237 const char *exec_file;
3238
3239 if (!from_tty)
3240 return;
3241
3242 exec_file = get_exec_file (0);
3243 if (exec_file == NULL)
3244 exec_file = "";
3245
3246 pid = inferior_ptid.pid ();
3247 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3248 target_pid_to_str (ptid_t (pid)));
3249 gdb_flush (gdb_stdout);
3250 }
3251
3252 /* The inferior process has died. Long live the inferior! */
3253
3254 void
3255 generic_mourn_inferior (void)
3256 {
3257 inferior *inf = current_inferior ();
3258
3259 inferior_ptid = null_ptid;
3260
3261 /* Mark breakpoints uninserted in case something tries to delete a
3262 breakpoint while we delete the inferior's threads (which would
3263 fail, since the inferior is long gone). */
3264 mark_breakpoints_out ();
3265
3266 if (inf->pid != 0)
3267 exit_inferior (inf);
3268
3269 /* Note this wipes step-resume breakpoints, so needs to be done
3270 after exit_inferior, which ends up referencing the step-resume
3271 breakpoints through clear_thread_inferior_resources. */
3272 breakpoint_init_inferior (inf_exited);
3273
3274 registers_changed ();
3275
3276 reopen_exec_file ();
3277 reinit_frame_cache ();
3278
3279 if (deprecated_detach_hook)
3280 deprecated_detach_hook ();
3281 }
3282 \f
3283 /* Convert a normal process ID to a string. Returns the string in a
3284 static buffer. */
3285
3286 const char *
3287 normal_pid_to_str (ptid_t ptid)
3288 {
3289 static char buf[32];
3290
3291 xsnprintf (buf, sizeof buf, "process %d", ptid.pid ());
3292 return buf;
3293 }
3294
3295 static const char *
3296 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3297 {
3298 return normal_pid_to_str (ptid);
3299 }
3300
3301 /* Error-catcher for target_find_memory_regions. */
3302 static int
3303 dummy_find_memory_regions (struct target_ops *self,
3304 find_memory_region_ftype ignore1, void *ignore2)
3305 {
3306 error (_("Command not implemented for this target."));
3307 return 0;
3308 }
3309
3310 /* Error-catcher for target_make_corefile_notes. */
3311 static char *
3312 dummy_make_corefile_notes (struct target_ops *self,
3313 bfd *ignore1, int *ignore2)
3314 {
3315 error (_("Command not implemented for this target."));
3316 return NULL;
3317 }
3318
3319 #include "target-delegates.c"
3320
3321
3322 static const target_info dummy_target_info = {
3323 "None",
3324 N_("None"),
3325 ""
3326 };
3327
3328 dummy_target::dummy_target ()
3329 {
3330 to_stratum = dummy_stratum;
3331 }
3332
3333 debug_target::debug_target ()
3334 {
3335 to_stratum = debug_stratum;
3336 }
3337
3338 const target_info &
3339 dummy_target::info () const
3340 {
3341 return dummy_target_info;
3342 }
3343
3344 const target_info &
3345 debug_target::info () const
3346 {
3347 return beneath ()->info ();
3348 }
3349
3350 \f
3351
3352 void
3353 target_close (struct target_ops *targ)
3354 {
3355 gdb_assert (!target_is_pushed (targ));
3356
3357 fileio_handles_invalidate_target (targ);
3358
3359 targ->close ();
3360
3361 if (targetdebug)
3362 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3363 }
3364
3365 int
3366 target_thread_alive (ptid_t ptid)
3367 {
3368 return current_top_target ()->thread_alive (ptid);
3369 }
3370
3371 void
3372 target_update_thread_list (void)
3373 {
3374 current_top_target ()->update_thread_list ();
3375 }
3376
3377 void
3378 target_stop (ptid_t ptid)
3379 {
3380 if (!may_stop)
3381 {
3382 warning (_("May not interrupt or stop the target, ignoring attempt"));
3383 return;
3384 }
3385
3386 current_top_target ()->stop (ptid);
3387 }
3388
3389 void
3390 target_interrupt ()
3391 {
3392 if (!may_stop)
3393 {
3394 warning (_("May not interrupt or stop the target, ignoring attempt"));
3395 return;
3396 }
3397
3398 current_top_target ()->interrupt ();
3399 }
3400
3401 /* See target.h. */
3402
3403 void
3404 target_pass_ctrlc (void)
3405 {
3406 current_top_target ()->pass_ctrlc ();
3407 }
3408
3409 /* See target.h. */
3410
3411 void
3412 default_target_pass_ctrlc (struct target_ops *ops)
3413 {
3414 target_interrupt ();
3415 }
3416
3417 /* See target/target.h. */
3418
3419 void
3420 target_stop_and_wait (ptid_t ptid)
3421 {
3422 struct target_waitstatus status;
3423 int was_non_stop = non_stop;
3424
3425 non_stop = 1;
3426 target_stop (ptid);
3427
3428 memset (&status, 0, sizeof (status));
3429 target_wait (ptid, &status, 0);
3430
3431 non_stop = was_non_stop;
3432 }
3433
3434 /* See target/target.h. */
3435
3436 void
3437 target_continue_no_signal (ptid_t ptid)
3438 {
3439 target_resume (ptid, 0, GDB_SIGNAL_0);
3440 }
3441
3442 /* See target/target.h. */
3443
3444 void
3445 target_continue (ptid_t ptid, enum gdb_signal signal)
3446 {
3447 target_resume (ptid, 0, signal);
3448 }
3449
3450 /* Concatenate ELEM to LIST, a comma-separated list. */
3451
3452 static void
3453 str_comma_list_concat_elem (std::string *list, const char *elem)
3454 {
3455 if (!list->empty ())
3456 list->append (", ");
3457
3458 list->append (elem);
3459 }
3460
3461 /* Helper for target_options_to_string. If OPT is present in
3462 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3463 OPT is removed from TARGET_OPTIONS. */
3464
3465 static void
3466 do_option (int *target_options, std::string *ret,
3467 int opt, const char *opt_str)
3468 {
3469 if ((*target_options & opt) != 0)
3470 {
3471 str_comma_list_concat_elem (ret, opt_str);
3472 *target_options &= ~opt;
3473 }
3474 }
3475
3476 /* See target.h. */
3477
3478 std::string
3479 target_options_to_string (int target_options)
3480 {
3481 std::string ret;
3482
3483 #define DO_TARG_OPTION(OPT) \
3484 do_option (&target_options, &ret, OPT, #OPT)
3485
3486 DO_TARG_OPTION (TARGET_WNOHANG);
3487
3488 if (target_options != 0)
3489 str_comma_list_concat_elem (&ret, "unknown???");
3490
3491 return ret;
3492 }
3493
3494 void
3495 target_fetch_registers (struct regcache *regcache, int regno)
3496 {
3497 current_top_target ()->fetch_registers (regcache, regno);
3498 if (targetdebug)
3499 regcache->debug_print_register ("target_fetch_registers", regno);
3500 }
3501
3502 void
3503 target_store_registers (struct regcache *regcache, int regno)
3504 {
3505 if (!may_write_registers)
3506 error (_("Writing to registers is not allowed (regno %d)"), regno);
3507
3508 current_top_target ()->store_registers (regcache, regno);
3509 if (targetdebug)
3510 {
3511 regcache->debug_print_register ("target_store_registers", regno);
3512 }
3513 }
3514
3515 int
3516 target_core_of_thread (ptid_t ptid)
3517 {
3518 return current_top_target ()->core_of_thread (ptid);
3519 }
3520
3521 int
3522 simple_verify_memory (struct target_ops *ops,
3523 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3524 {
3525 LONGEST total_xfered = 0;
3526
3527 while (total_xfered < size)
3528 {
3529 ULONGEST xfered_len;
3530 enum target_xfer_status status;
3531 gdb_byte buf[1024];
3532 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3533
3534 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3535 buf, NULL, lma + total_xfered, howmuch,
3536 &xfered_len);
3537 if (status == TARGET_XFER_OK
3538 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3539 {
3540 total_xfered += xfered_len;
3541 QUIT;
3542 }
3543 else
3544 return 0;
3545 }
3546 return 1;
3547 }
3548
3549 /* Default implementation of memory verification. */
3550
3551 static int
3552 default_verify_memory (struct target_ops *self,
3553 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3554 {
3555 /* Start over from the top of the target stack. */
3556 return simple_verify_memory (current_top_target (),
3557 data, memaddr, size);
3558 }
3559
3560 int
3561 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3562 {
3563 return current_top_target ()->verify_memory (data, memaddr, size);
3564 }
3565
3566 /* The documentation for this function is in its prototype declaration in
3567 target.h. */
3568
3569 int
3570 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3571 enum target_hw_bp_type rw)
3572 {
3573 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3574 }
3575
3576 /* The documentation for this function is in its prototype declaration in
3577 target.h. */
3578
3579 int
3580 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3581 enum target_hw_bp_type rw)
3582 {
3583 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3584 }
3585
3586 /* The documentation for this function is in its prototype declaration
3587 in target.h. */
3588
3589 int
3590 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3591 {
3592 return current_top_target ()->masked_watch_num_registers (addr, mask);
3593 }
3594
3595 /* The documentation for this function is in its prototype declaration
3596 in target.h. */
3597
3598 int
3599 target_ranged_break_num_registers (void)
3600 {
3601 return current_top_target ()->ranged_break_num_registers ();
3602 }
3603
3604 /* See target.h. */
3605
3606 struct btrace_target_info *
3607 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3608 {
3609 return current_top_target ()->enable_btrace (ptid, conf);
3610 }
3611
3612 /* See target.h. */
3613
3614 void
3615 target_disable_btrace (struct btrace_target_info *btinfo)
3616 {
3617 current_top_target ()->disable_btrace (btinfo);
3618 }
3619
3620 /* See target.h. */
3621
3622 void
3623 target_teardown_btrace (struct btrace_target_info *btinfo)
3624 {
3625 current_top_target ()->teardown_btrace (btinfo);
3626 }
3627
3628 /* See target.h. */
3629
3630 enum btrace_error
3631 target_read_btrace (struct btrace_data *btrace,
3632 struct btrace_target_info *btinfo,
3633 enum btrace_read_type type)
3634 {
3635 return current_top_target ()->read_btrace (btrace, btinfo, type);
3636 }
3637
3638 /* See target.h. */
3639
3640 const struct btrace_config *
3641 target_btrace_conf (const struct btrace_target_info *btinfo)
3642 {
3643 return current_top_target ()->btrace_conf (btinfo);
3644 }
3645
3646 /* See target.h. */
3647
3648 void
3649 target_stop_recording (void)
3650 {
3651 current_top_target ()->stop_recording ();
3652 }
3653
3654 /* See target.h. */
3655
3656 void
3657 target_save_record (const char *filename)
3658 {
3659 current_top_target ()->save_record (filename);
3660 }
3661
3662 /* See target.h. */
3663
3664 int
3665 target_supports_delete_record ()
3666 {
3667 return current_top_target ()->supports_delete_record ();
3668 }
3669
3670 /* See target.h. */
3671
3672 void
3673 target_delete_record (void)
3674 {
3675 current_top_target ()->delete_record ();
3676 }
3677
3678 /* See target.h. */
3679
3680 enum record_method
3681 target_record_method (ptid_t ptid)
3682 {
3683 return current_top_target ()->record_method (ptid);
3684 }
3685
3686 /* See target.h. */
3687
3688 int
3689 target_record_is_replaying (ptid_t ptid)
3690 {
3691 return current_top_target ()->record_is_replaying (ptid);
3692 }
3693
3694 /* See target.h. */
3695
3696 int
3697 target_record_will_replay (ptid_t ptid, int dir)
3698 {
3699 return current_top_target ()->record_will_replay (ptid, dir);
3700 }
3701
3702 /* See target.h. */
3703
3704 void
3705 target_record_stop_replaying (void)
3706 {
3707 current_top_target ()->record_stop_replaying ();
3708 }
3709
3710 /* See target.h. */
3711
3712 void
3713 target_goto_record_begin (void)
3714 {
3715 current_top_target ()->goto_record_begin ();
3716 }
3717
3718 /* See target.h. */
3719
3720 void
3721 target_goto_record_end (void)
3722 {
3723 current_top_target ()->goto_record_end ();
3724 }
3725
3726 /* See target.h. */
3727
3728 void
3729 target_goto_record (ULONGEST insn)
3730 {
3731 current_top_target ()->goto_record (insn);
3732 }
3733
3734 /* See target.h. */
3735
3736 void
3737 target_insn_history (int size, gdb_disassembly_flags flags)
3738 {
3739 current_top_target ()->insn_history (size, flags);
3740 }
3741
3742 /* See target.h. */
3743
3744 void
3745 target_insn_history_from (ULONGEST from, int size,
3746 gdb_disassembly_flags flags)
3747 {
3748 current_top_target ()->insn_history_from (from, size, flags);
3749 }
3750
3751 /* See target.h. */
3752
3753 void
3754 target_insn_history_range (ULONGEST begin, ULONGEST end,
3755 gdb_disassembly_flags flags)
3756 {
3757 current_top_target ()->insn_history_range (begin, end, flags);
3758 }
3759
3760 /* See target.h. */
3761
3762 void
3763 target_call_history (int size, record_print_flags flags)
3764 {
3765 current_top_target ()->call_history (size, flags);
3766 }
3767
3768 /* See target.h. */
3769
3770 void
3771 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3772 {
3773 current_top_target ()->call_history_from (begin, size, flags);
3774 }
3775
3776 /* See target.h. */
3777
3778 void
3779 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3780 {
3781 current_top_target ()->call_history_range (begin, end, flags);
3782 }
3783
3784 /* See target.h. */
3785
3786 const struct frame_unwind *
3787 target_get_unwinder (void)
3788 {
3789 return current_top_target ()->get_unwinder ();
3790 }
3791
3792 /* See target.h. */
3793
3794 const struct frame_unwind *
3795 target_get_tailcall_unwinder (void)
3796 {
3797 return current_top_target ()->get_tailcall_unwinder ();
3798 }
3799
3800 /* See target.h. */
3801
3802 void
3803 target_prepare_to_generate_core (void)
3804 {
3805 current_top_target ()->prepare_to_generate_core ();
3806 }
3807
3808 /* See target.h. */
3809
3810 void
3811 target_done_generating_core (void)
3812 {
3813 current_top_target ()->done_generating_core ();
3814 }
3815
3816 \f
3817
3818 static char targ_desc[] =
3819 "Names of targets and files being debugged.\nShows the entire \
3820 stack of targets currently in use (including the exec-file,\n\
3821 core-file, and process, if any), as well as the symbol file name.";
3822
3823 static void
3824 default_rcmd (struct target_ops *self, const char *command,
3825 struct ui_file *output)
3826 {
3827 error (_("\"monitor\" command not supported by this target."));
3828 }
3829
3830 static void
3831 do_monitor_command (const char *cmd, int from_tty)
3832 {
3833 target_rcmd (cmd, gdb_stdtarg);
3834 }
3835
3836 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3837 ignored. */
3838
3839 void
3840 flash_erase_command (const char *cmd, int from_tty)
3841 {
3842 /* Used to communicate termination of flash operations to the target. */
3843 bool found_flash_region = false;
3844 struct gdbarch *gdbarch = target_gdbarch ();
3845
3846 std::vector<mem_region> mem_regions = target_memory_map ();
3847
3848 /* Iterate over all memory regions. */
3849 for (const mem_region &m : mem_regions)
3850 {
3851 /* Is this a flash memory region? */
3852 if (m.attrib.mode == MEM_FLASH)
3853 {
3854 found_flash_region = true;
3855 target_flash_erase (m.lo, m.hi - m.lo);
3856
3857 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3858
3859 current_uiout->message (_("Erasing flash memory region at address "));
3860 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3861 current_uiout->message (", size = ");
3862 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3863 current_uiout->message ("\n");
3864 }
3865 }
3866
3867 /* Did we do any flash operations? If so, we need to finalize them. */
3868 if (found_flash_region)
3869 target_flash_done ();
3870 else
3871 current_uiout->message (_("No flash memory regions found.\n"));
3872 }
3873
3874 /* Print the name of each layers of our target stack. */
3875
3876 static void
3877 maintenance_print_target_stack (const char *cmd, int from_tty)
3878 {
3879 printf_filtered (_("The current target stack is:\n"));
3880
3881 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3882 {
3883 if (t->to_stratum == debug_stratum)
3884 continue;
3885 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3886 }
3887 }
3888
3889 /* See target.h. */
3890
3891 void
3892 target_async (int enable)
3893 {
3894 infrun_async (enable);
3895 current_top_target ()->async (enable);
3896 }
3897
3898 /* See target.h. */
3899
3900 void
3901 target_thread_events (int enable)
3902 {
3903 current_top_target ()->thread_events (enable);
3904 }
3905
3906 /* Controls if targets can report that they can/are async. This is
3907 just for maintainers to use when debugging gdb. */
3908 int target_async_permitted = 1;
3909
3910 /* The set command writes to this variable. If the inferior is
3911 executing, target_async_permitted is *not* updated. */
3912 static int target_async_permitted_1 = 1;
3913
3914 static void
3915 maint_set_target_async_command (const char *args, int from_tty,
3916 struct cmd_list_element *c)
3917 {
3918 if (have_live_inferiors ())
3919 {
3920 target_async_permitted_1 = target_async_permitted;
3921 error (_("Cannot change this setting while the inferior is running."));
3922 }
3923
3924 target_async_permitted = target_async_permitted_1;
3925 }
3926
3927 static void
3928 maint_show_target_async_command (struct ui_file *file, int from_tty,
3929 struct cmd_list_element *c,
3930 const char *value)
3931 {
3932 fprintf_filtered (file,
3933 _("Controlling the inferior in "
3934 "asynchronous mode is %s.\n"), value);
3935 }
3936
3937 /* Return true if the target operates in non-stop mode even with "set
3938 non-stop off". */
3939
3940 static int
3941 target_always_non_stop_p (void)
3942 {
3943 return current_top_target ()->always_non_stop_p ();
3944 }
3945
3946 /* See target.h. */
3947
3948 int
3949 target_is_non_stop_p (void)
3950 {
3951 return (non_stop
3952 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3953 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3954 && target_always_non_stop_p ()));
3955 }
3956
3957 /* Controls if targets can report that they always run in non-stop
3958 mode. This is just for maintainers to use when debugging gdb. */
3959 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3960
3961 /* The set command writes to this variable. If the inferior is
3962 executing, target_non_stop_enabled is *not* updated. */
3963 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3964
3965 /* Implementation of "maint set target-non-stop". */
3966
3967 static void
3968 maint_set_target_non_stop_command (const char *args, int from_tty,
3969 struct cmd_list_element *c)
3970 {
3971 if (have_live_inferiors ())
3972 {
3973 target_non_stop_enabled_1 = target_non_stop_enabled;
3974 error (_("Cannot change this setting while the inferior is running."));
3975 }
3976
3977 target_non_stop_enabled = target_non_stop_enabled_1;
3978 }
3979
3980 /* Implementation of "maint show target-non-stop". */
3981
3982 static void
3983 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3984 struct cmd_list_element *c,
3985 const char *value)
3986 {
3987 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3988 fprintf_filtered (file,
3989 _("Whether the target is always in non-stop mode "
3990 "is %s (currently %s).\n"), value,
3991 target_always_non_stop_p () ? "on" : "off");
3992 else
3993 fprintf_filtered (file,
3994 _("Whether the target is always in non-stop mode "
3995 "is %s.\n"), value);
3996 }
3997
3998 /* Temporary copies of permission settings. */
3999
4000 static int may_write_registers_1 = 1;
4001 static int may_write_memory_1 = 1;
4002 static int may_insert_breakpoints_1 = 1;
4003 static int may_insert_tracepoints_1 = 1;
4004 static int may_insert_fast_tracepoints_1 = 1;
4005 static int may_stop_1 = 1;
4006
4007 /* Make the user-set values match the real values again. */
4008
4009 void
4010 update_target_permissions (void)
4011 {
4012 may_write_registers_1 = may_write_registers;
4013 may_write_memory_1 = may_write_memory;
4014 may_insert_breakpoints_1 = may_insert_breakpoints;
4015 may_insert_tracepoints_1 = may_insert_tracepoints;
4016 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4017 may_stop_1 = may_stop;
4018 }
4019
4020 /* The one function handles (most of) the permission flags in the same
4021 way. */
4022
4023 static void
4024 set_target_permissions (const char *args, int from_tty,
4025 struct cmd_list_element *c)
4026 {
4027 if (target_has_execution)
4028 {
4029 update_target_permissions ();
4030 error (_("Cannot change this setting while the inferior is running."));
4031 }
4032
4033 /* Make the real values match the user-changed values. */
4034 may_write_registers = may_write_registers_1;
4035 may_insert_breakpoints = may_insert_breakpoints_1;
4036 may_insert_tracepoints = may_insert_tracepoints_1;
4037 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4038 may_stop = may_stop_1;
4039 update_observer_mode ();
4040 }
4041
4042 /* Set memory write permission independently of observer mode. */
4043
4044 static void
4045 set_write_memory_permission (const char *args, int from_tty,
4046 struct cmd_list_element *c)
4047 {
4048 /* Make the real values match the user-changed values. */
4049 may_write_memory = may_write_memory_1;
4050 update_observer_mode ();
4051 }
4052
4053 void
4054 initialize_targets (void)
4055 {
4056 the_dummy_target = new dummy_target ();
4057 push_target (the_dummy_target);
4058
4059 the_debug_target = new debug_target ();
4060
4061 add_info ("target", info_target_command, targ_desc);
4062 add_info ("files", info_target_command, targ_desc);
4063
4064 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4065 Set target debugging."), _("\
4066 Show target debugging."), _("\
4067 When non-zero, target debugging is enabled. Higher numbers are more\n\
4068 verbose."),
4069 set_targetdebug,
4070 show_targetdebug,
4071 &setdebuglist, &showdebuglist);
4072
4073 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4074 &trust_readonly, _("\
4075 Set mode for reading from readonly sections."), _("\
4076 Show mode for reading from readonly sections."), _("\
4077 When this mode is on, memory reads from readonly sections (such as .text)\n\
4078 will be read from the object file instead of from the target. This will\n\
4079 result in significant performance improvement for remote targets."),
4080 NULL,
4081 show_trust_readonly,
4082 &setlist, &showlist);
4083
4084 add_com ("monitor", class_obscure, do_monitor_command,
4085 _("Send a command to the remote monitor (remote targets only)."));
4086
4087 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4088 _("Print the name of each layer of the internal target stack."),
4089 &maintenanceprintlist);
4090
4091 add_setshow_boolean_cmd ("target-async", no_class,
4092 &target_async_permitted_1, _("\
4093 Set whether gdb controls the inferior in asynchronous mode."), _("\
4094 Show whether gdb controls the inferior in asynchronous mode."), _("\
4095 Tells gdb whether to control the inferior in asynchronous mode."),
4096 maint_set_target_async_command,
4097 maint_show_target_async_command,
4098 &maintenance_set_cmdlist,
4099 &maintenance_show_cmdlist);
4100
4101 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4102 &target_non_stop_enabled_1, _("\
4103 Set whether gdb always controls the inferior in non-stop mode."), _("\
4104 Show whether gdb always controls the inferior in non-stop mode."), _("\
4105 Tells gdb whether to control the inferior in non-stop mode."),
4106 maint_set_target_non_stop_command,
4107 maint_show_target_non_stop_command,
4108 &maintenance_set_cmdlist,
4109 &maintenance_show_cmdlist);
4110
4111 add_setshow_boolean_cmd ("may-write-registers", class_support,
4112 &may_write_registers_1, _("\
4113 Set permission to write into registers."), _("\
4114 Show permission to write into registers."), _("\
4115 When this permission is on, GDB may write into the target's registers.\n\
4116 Otherwise, any sort of write attempt will result in an error."),
4117 set_target_permissions, NULL,
4118 &setlist, &showlist);
4119
4120 add_setshow_boolean_cmd ("may-write-memory", class_support,
4121 &may_write_memory_1, _("\
4122 Set permission to write into target memory."), _("\
4123 Show permission to write into target memory."), _("\
4124 When this permission is on, GDB may write into the target's memory.\n\
4125 Otherwise, any sort of write attempt will result in an error."),
4126 set_write_memory_permission, NULL,
4127 &setlist, &showlist);
4128
4129 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4130 &may_insert_breakpoints_1, _("\
4131 Set permission to insert breakpoints in the target."), _("\
4132 Show permission to insert breakpoints in the target."), _("\
4133 When this permission is on, GDB may insert breakpoints in the program.\n\
4134 Otherwise, any sort of insertion attempt will result in an error."),
4135 set_target_permissions, NULL,
4136 &setlist, &showlist);
4137
4138 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4139 &may_insert_tracepoints_1, _("\
4140 Set permission to insert tracepoints in the target."), _("\
4141 Show permission to insert tracepoints in the target."), _("\
4142 When this permission is on, GDB may insert tracepoints in the program.\n\
4143 Otherwise, any sort of insertion attempt will result in an error."),
4144 set_target_permissions, NULL,
4145 &setlist, &showlist);
4146
4147 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4148 &may_insert_fast_tracepoints_1, _("\
4149 Set permission to insert fast tracepoints in the target."), _("\
4150 Show permission to insert fast tracepoints in the target."), _("\
4151 When this permission is on, GDB may insert fast tracepoints.\n\
4152 Otherwise, any sort of insertion attempt will result in an error."),
4153 set_target_permissions, NULL,
4154 &setlist, &showlist);
4155
4156 add_setshow_boolean_cmd ("may-interrupt", class_support,
4157 &may_stop_1, _("\
4158 Set permission to interrupt or signal the target."), _("\
4159 Show permission to interrupt or signal the target."), _("\
4160 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4161 Otherwise, any attempt to interrupt or stop will be ignored."),
4162 set_target_permissions, NULL,
4163 &setlist, &showlist);
4164
4165 add_com ("flash-erase", no_class, flash_erase_command,
4166 _("Erase all flash memory regions."));
4167
4168 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4169 &auto_connect_native_target, _("\
4170 Set whether GDB may automatically connect to the native target."), _("\
4171 Show whether GDB may automatically connect to the native target."), _("\
4172 When on, and GDB is not connected to a target yet, GDB\n\
4173 attempts \"run\" and other commands with the native target."),
4174 NULL, show_auto_connect_native_target,
4175 &setlist, &showlist);
4176 }
This page took 0.417163 seconds and 4 git commands to generate.