Make the stop_soon global be per-inferior instead.
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44
45 static void target_info (char *, int);
46
47 static void kill_or_be_killed (int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static int nosymbol (char *, CORE_ADDR *);
57
58 static void tcomplain (void) ATTR_NORETURN;
59
60 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
61
62 static int return_zero (void);
63
64 static int return_one (void);
65
66 static int return_minus_one (void);
67
68 void target_ignore (void);
69
70 static void target_command (char *, int);
71
72 static struct target_ops *find_default_run_target (char *);
73
74 static void nosupport_runtime (void);
75
76 static LONGEST default_xfer_partial (struct target_ops *ops,
77 enum target_object object,
78 const char *annex, gdb_byte *readbuf,
79 const gdb_byte *writebuf,
80 ULONGEST offset, LONGEST len);
81
82 static LONGEST current_xfer_partial (struct target_ops *ops,
83 enum target_object object,
84 const char *annex, gdb_byte *readbuf,
85 const gdb_byte *writebuf,
86 ULONGEST offset, LONGEST len);
87
88 static LONGEST target_xfer_partial (struct target_ops *ops,
89 enum target_object object,
90 const char *annex,
91 void *readbuf, const void *writebuf,
92 ULONGEST offset, LONGEST len);
93
94 static void init_dummy_target (void);
95
96 static struct target_ops debug_target;
97
98 static void debug_to_open (char *, int);
99
100 static void debug_to_close (int);
101
102 static void debug_to_attach (char *, int);
103
104 static void debug_to_detach (char *, int);
105
106 static void debug_to_resume (ptid_t, int, enum target_signal);
107
108 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
109
110 static void debug_to_fetch_registers (struct regcache *, int);
111
112 static void debug_to_store_registers (struct regcache *, int);
113
114 static void debug_to_prepare_to_store (struct regcache *);
115
116 static void debug_to_files_info (struct target_ops *);
117
118 static int debug_to_insert_breakpoint (struct bp_target_info *);
119
120 static int debug_to_remove_breakpoint (struct bp_target_info *);
121
122 static int debug_to_can_use_hw_breakpoint (int, int, int);
123
124 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
125
126 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
127
128 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
129
130 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
131
132 static int debug_to_stopped_by_watchpoint (void);
133
134 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
135
136 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
137 CORE_ADDR, CORE_ADDR, int);
138
139 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
140
141 static void debug_to_terminal_init (void);
142
143 static void debug_to_terminal_inferior (void);
144
145 static void debug_to_terminal_ours_for_output (void);
146
147 static void debug_to_terminal_save_ours (void);
148
149 static void debug_to_terminal_ours (void);
150
151 static void debug_to_terminal_info (char *, int);
152
153 static void debug_to_kill (void);
154
155 static void debug_to_load (char *, int);
156
157 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
158
159 static void debug_to_mourn_inferior (void);
160
161 static int debug_to_can_run (void);
162
163 static void debug_to_notice_signals (ptid_t);
164
165 static int debug_to_thread_alive (ptid_t);
166
167 static void debug_to_stop (ptid_t);
168
169 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
170 wierd and mysterious ways. Putting the variable here lets those
171 wierd and mysterious ways keep building while they are being
172 converted to the inferior inheritance structure. */
173 struct target_ops deprecated_child_ops;
174
175 /* Pointer to array of target architecture structures; the size of the
176 array; the current index into the array; the allocated size of the
177 array. */
178 struct target_ops **target_structs;
179 unsigned target_struct_size;
180 unsigned target_struct_index;
181 unsigned target_struct_allocsize;
182 #define DEFAULT_ALLOCSIZE 10
183
184 /* The initial current target, so that there is always a semi-valid
185 current target. */
186
187 static struct target_ops dummy_target;
188
189 /* Top of target stack. */
190
191 static struct target_ops *target_stack;
192
193 /* The target structure we are currently using to talk to a process
194 or file or whatever "inferior" we have. */
195
196 struct target_ops current_target;
197
198 /* Command list for target. */
199
200 static struct cmd_list_element *targetlist = NULL;
201
202 /* Nonzero if we are debugging an attached outside process
203 rather than an inferior. */
204
205 int attach_flag;
206
207 /* Nonzero if we should trust readonly sections from the
208 executable when reading memory. */
209
210 static int trust_readonly = 0;
211
212 /* Nonzero if we should show true memory content including
213 memory breakpoint inserted by gdb. */
214
215 static int show_memory_breakpoints = 0;
216
217 /* Non-zero if we want to see trace of target level stuff. */
218
219 static int targetdebug = 0;
220 static void
221 show_targetdebug (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223 {
224 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
225 }
226
227 static void setup_target_debug (void);
228
229 DCACHE *target_dcache;
230
231 /* The user just typed 'target' without the name of a target. */
232
233 static void
234 target_command (char *arg, int from_tty)
235 {
236 fputs_filtered ("Argument required (target name). Try `help target'\n",
237 gdb_stdout);
238 }
239
240 /* Add a possible target architecture to the list. */
241
242 void
243 add_target (struct target_ops *t)
244 {
245 /* Provide default values for all "must have" methods. */
246 if (t->to_xfer_partial == NULL)
247 t->to_xfer_partial = default_xfer_partial;
248
249 if (!target_structs)
250 {
251 target_struct_allocsize = DEFAULT_ALLOCSIZE;
252 target_structs = (struct target_ops **) xmalloc
253 (target_struct_allocsize * sizeof (*target_structs));
254 }
255 if (target_struct_size >= target_struct_allocsize)
256 {
257 target_struct_allocsize *= 2;
258 target_structs = (struct target_ops **)
259 xrealloc ((char *) target_structs,
260 target_struct_allocsize * sizeof (*target_structs));
261 }
262 target_structs[target_struct_size++] = t;
263
264 if (targetlist == NULL)
265 add_prefix_cmd ("target", class_run, target_command, _("\
266 Connect to a target machine or process.\n\
267 The first argument is the type or protocol of the target machine.\n\
268 Remaining arguments are interpreted by the target protocol. For more\n\
269 information on the arguments for a particular protocol, type\n\
270 `help target ' followed by the protocol name."),
271 &targetlist, "target ", 0, &cmdlist);
272 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
273 }
274
275 /* Stub functions */
276
277 void
278 target_ignore (void)
279 {
280 }
281
282 void
283 target_load (char *arg, int from_tty)
284 {
285 dcache_invalidate (target_dcache);
286 (*current_target.to_load) (arg, from_tty);
287 }
288
289 static int
290 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
291 struct target_ops *t)
292 {
293 errno = EIO; /* Can't read/write this location */
294 return 0; /* No bytes handled */
295 }
296
297 static void
298 tcomplain (void)
299 {
300 error (_("You can't do that when your target is `%s'"),
301 current_target.to_shortname);
302 }
303
304 void
305 noprocess (void)
306 {
307 error (_("You can't do that without a process to debug."));
308 }
309
310 static int
311 nosymbol (char *name, CORE_ADDR *addrp)
312 {
313 return 1; /* Symbol does not exist in target env */
314 }
315
316 static void
317 nosupport_runtime (void)
318 {
319 if (ptid_equal (inferior_ptid, null_ptid))
320 noprocess ();
321 else
322 error (_("No run-time support for this"));
323 }
324
325
326 static void
327 default_terminal_info (char *args, int from_tty)
328 {
329 printf_unfiltered (_("No saved terminal information.\n"));
330 }
331
332 /* This is the default target_create_inferior and target_attach function.
333 If the current target is executing, it asks whether to kill it off.
334 If this function returns without calling error(), it has killed off
335 the target, and the operation should be attempted. */
336
337 static void
338 kill_or_be_killed (int from_tty)
339 {
340 if (target_has_execution)
341 {
342 printf_unfiltered (_("You are already running a program:\n"));
343 target_files_info ();
344 if (query ("Kill it? "))
345 {
346 target_kill ();
347 if (target_has_execution)
348 error (_("Killing the program did not help."));
349 return;
350 }
351 else
352 {
353 error (_("Program not killed."));
354 }
355 }
356 tcomplain ();
357 }
358
359 /* Go through the target stack from top to bottom, copying over zero
360 entries in current_target, then filling in still empty entries. In
361 effect, we are doing class inheritance through the pushed target
362 vectors.
363
364 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
365 is currently implemented, is that it discards any knowledge of
366 which target an inherited method originally belonged to.
367 Consequently, new new target methods should instead explicitly and
368 locally search the target stack for the target that can handle the
369 request. */
370
371 static void
372 update_current_target (void)
373 {
374 struct target_ops *t;
375
376 /* First, reset current's contents. */
377 memset (&current_target, 0, sizeof (current_target));
378
379 #define INHERIT(FIELD, TARGET) \
380 if (!current_target.FIELD) \
381 current_target.FIELD = (TARGET)->FIELD
382
383 for (t = target_stack; t; t = t->beneath)
384 {
385 INHERIT (to_shortname, t);
386 INHERIT (to_longname, t);
387 INHERIT (to_doc, t);
388 /* Do not inherit to_open. */
389 /* Do not inherit to_close. */
390 INHERIT (to_attach, t);
391 INHERIT (to_post_attach, t);
392 INHERIT (to_attach_no_wait, t);
393 INHERIT (to_detach, t);
394 /* Do not inherit to_disconnect. */
395 INHERIT (to_resume, t);
396 INHERIT (to_wait, t);
397 INHERIT (to_fetch_registers, t);
398 INHERIT (to_store_registers, t);
399 INHERIT (to_prepare_to_store, t);
400 INHERIT (deprecated_xfer_memory, t);
401 INHERIT (to_files_info, t);
402 INHERIT (to_insert_breakpoint, t);
403 INHERIT (to_remove_breakpoint, t);
404 INHERIT (to_can_use_hw_breakpoint, t);
405 INHERIT (to_insert_hw_breakpoint, t);
406 INHERIT (to_remove_hw_breakpoint, t);
407 INHERIT (to_insert_watchpoint, t);
408 INHERIT (to_remove_watchpoint, t);
409 INHERIT (to_stopped_data_address, t);
410 INHERIT (to_have_steppable_watchpoint, t);
411 INHERIT (to_have_continuable_watchpoint, t);
412 INHERIT (to_stopped_by_watchpoint, t);
413 INHERIT (to_watchpoint_addr_within_range, t);
414 INHERIT (to_region_ok_for_hw_watchpoint, t);
415 INHERIT (to_terminal_init, t);
416 INHERIT (to_terminal_inferior, t);
417 INHERIT (to_terminal_ours_for_output, t);
418 INHERIT (to_terminal_ours, t);
419 INHERIT (to_terminal_save_ours, t);
420 INHERIT (to_terminal_info, t);
421 INHERIT (to_kill, t);
422 INHERIT (to_load, t);
423 INHERIT (to_lookup_symbol, t);
424 INHERIT (to_create_inferior, t);
425 INHERIT (to_post_startup_inferior, t);
426 INHERIT (to_acknowledge_created_inferior, t);
427 INHERIT (to_insert_fork_catchpoint, t);
428 INHERIT (to_remove_fork_catchpoint, t);
429 INHERIT (to_insert_vfork_catchpoint, t);
430 INHERIT (to_remove_vfork_catchpoint, t);
431 /* Do not inherit to_follow_fork. */
432 INHERIT (to_insert_exec_catchpoint, t);
433 INHERIT (to_remove_exec_catchpoint, t);
434 INHERIT (to_has_exited, t);
435 INHERIT (to_mourn_inferior, t);
436 INHERIT (to_can_run, t);
437 INHERIT (to_notice_signals, t);
438 INHERIT (to_thread_alive, t);
439 INHERIT (to_find_new_threads, t);
440 INHERIT (to_pid_to_str, t);
441 INHERIT (to_extra_thread_info, t);
442 INHERIT (to_stop, t);
443 /* Do not inherit to_xfer_partial. */
444 INHERIT (to_rcmd, t);
445 INHERIT (to_pid_to_exec_file, t);
446 INHERIT (to_log_command, t);
447 INHERIT (to_stratum, t);
448 INHERIT (to_has_all_memory, t);
449 INHERIT (to_has_memory, t);
450 INHERIT (to_has_stack, t);
451 INHERIT (to_has_registers, t);
452 INHERIT (to_has_execution, t);
453 INHERIT (to_has_thread_control, t);
454 INHERIT (to_sections, t);
455 INHERIT (to_sections_end, t);
456 INHERIT (to_can_async_p, t);
457 INHERIT (to_is_async_p, t);
458 INHERIT (to_async, t);
459 INHERIT (to_async_mask, t);
460 INHERIT (to_find_memory_regions, t);
461 INHERIT (to_make_corefile_notes, t);
462 INHERIT (to_get_thread_local_address, t);
463 /* Do not inherit to_read_description. */
464 /* Do not inherit to_search_memory. */
465 INHERIT (to_magic, t);
466 /* Do not inherit to_memory_map. */
467 /* Do not inherit to_flash_erase. */
468 /* Do not inherit to_flash_done. */
469 }
470 #undef INHERIT
471
472 /* Clean up a target struct so it no longer has any zero pointers in
473 it. Some entries are defaulted to a method that print an error,
474 others are hard-wired to a standard recursive default. */
475
476 #define de_fault(field, value) \
477 if (!current_target.field) \
478 current_target.field = value
479
480 de_fault (to_open,
481 (void (*) (char *, int))
482 tcomplain);
483 de_fault (to_close,
484 (void (*) (int))
485 target_ignore);
486 de_fault (to_post_attach,
487 (void (*) (int))
488 target_ignore);
489 de_fault (to_detach,
490 (void (*) (char *, int))
491 target_ignore);
492 de_fault (to_resume,
493 (void (*) (ptid_t, int, enum target_signal))
494 noprocess);
495 de_fault (to_wait,
496 (ptid_t (*) (ptid_t, struct target_waitstatus *))
497 noprocess);
498 de_fault (to_fetch_registers,
499 (void (*) (struct regcache *, int))
500 target_ignore);
501 de_fault (to_store_registers,
502 (void (*) (struct regcache *, int))
503 noprocess);
504 de_fault (to_prepare_to_store,
505 (void (*) (struct regcache *))
506 noprocess);
507 de_fault (deprecated_xfer_memory,
508 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
509 nomemory);
510 de_fault (to_files_info,
511 (void (*) (struct target_ops *))
512 target_ignore);
513 de_fault (to_insert_breakpoint,
514 memory_insert_breakpoint);
515 de_fault (to_remove_breakpoint,
516 memory_remove_breakpoint);
517 de_fault (to_can_use_hw_breakpoint,
518 (int (*) (int, int, int))
519 return_zero);
520 de_fault (to_insert_hw_breakpoint,
521 (int (*) (struct bp_target_info *))
522 return_minus_one);
523 de_fault (to_remove_hw_breakpoint,
524 (int (*) (struct bp_target_info *))
525 return_minus_one);
526 de_fault (to_insert_watchpoint,
527 (int (*) (CORE_ADDR, int, int))
528 return_minus_one);
529 de_fault (to_remove_watchpoint,
530 (int (*) (CORE_ADDR, int, int))
531 return_minus_one);
532 de_fault (to_stopped_by_watchpoint,
533 (int (*) (void))
534 return_zero);
535 de_fault (to_stopped_data_address,
536 (int (*) (struct target_ops *, CORE_ADDR *))
537 return_zero);
538 de_fault (to_watchpoint_addr_within_range,
539 default_watchpoint_addr_within_range);
540 de_fault (to_region_ok_for_hw_watchpoint,
541 default_region_ok_for_hw_watchpoint);
542 de_fault (to_terminal_init,
543 (void (*) (void))
544 target_ignore);
545 de_fault (to_terminal_inferior,
546 (void (*) (void))
547 target_ignore);
548 de_fault (to_terminal_ours_for_output,
549 (void (*) (void))
550 target_ignore);
551 de_fault (to_terminal_ours,
552 (void (*) (void))
553 target_ignore);
554 de_fault (to_terminal_save_ours,
555 (void (*) (void))
556 target_ignore);
557 de_fault (to_terminal_info,
558 default_terminal_info);
559 de_fault (to_kill,
560 (void (*) (void))
561 noprocess);
562 de_fault (to_load,
563 (void (*) (char *, int))
564 tcomplain);
565 de_fault (to_lookup_symbol,
566 (int (*) (char *, CORE_ADDR *))
567 nosymbol);
568 de_fault (to_post_startup_inferior,
569 (void (*) (ptid_t))
570 target_ignore);
571 de_fault (to_acknowledge_created_inferior,
572 (void (*) (int))
573 target_ignore);
574 de_fault (to_insert_fork_catchpoint,
575 (void (*) (int))
576 tcomplain);
577 de_fault (to_remove_fork_catchpoint,
578 (int (*) (int))
579 tcomplain);
580 de_fault (to_insert_vfork_catchpoint,
581 (void (*) (int))
582 tcomplain);
583 de_fault (to_remove_vfork_catchpoint,
584 (int (*) (int))
585 tcomplain);
586 de_fault (to_insert_exec_catchpoint,
587 (void (*) (int))
588 tcomplain);
589 de_fault (to_remove_exec_catchpoint,
590 (int (*) (int))
591 tcomplain);
592 de_fault (to_has_exited,
593 (int (*) (int, int, int *))
594 return_zero);
595 de_fault (to_mourn_inferior,
596 (void (*) (void))
597 noprocess);
598 de_fault (to_can_run,
599 return_zero);
600 de_fault (to_notice_signals,
601 (void (*) (ptid_t))
602 target_ignore);
603 de_fault (to_thread_alive,
604 (int (*) (ptid_t))
605 return_zero);
606 de_fault (to_find_new_threads,
607 (void (*) (void))
608 target_ignore);
609 de_fault (to_extra_thread_info,
610 (char *(*) (struct thread_info *))
611 return_zero);
612 de_fault (to_stop,
613 (void (*) (ptid_t))
614 target_ignore);
615 current_target.to_xfer_partial = current_xfer_partial;
616 de_fault (to_rcmd,
617 (void (*) (char *, struct ui_file *))
618 tcomplain);
619 de_fault (to_pid_to_exec_file,
620 (char *(*) (int))
621 return_zero);
622 de_fault (to_async,
623 (void (*) (void (*) (enum inferior_event_type, void*), void*))
624 tcomplain);
625 de_fault (to_async_mask,
626 (int (*) (int))
627 return_one);
628 current_target.to_read_description = NULL;
629 #undef de_fault
630
631 /* Finally, position the target-stack beneath the squashed
632 "current_target". That way code looking for a non-inherited
633 target method can quickly and simply find it. */
634 current_target.beneath = target_stack;
635
636 if (targetdebug)
637 setup_target_debug ();
638 }
639
640 /* Mark OPS as a running target. This reverses the effect
641 of target_mark_exited. */
642
643 void
644 target_mark_running (struct target_ops *ops)
645 {
646 struct target_ops *t;
647
648 for (t = target_stack; t != NULL; t = t->beneath)
649 if (t == ops)
650 break;
651 if (t == NULL)
652 internal_error (__FILE__, __LINE__,
653 "Attempted to mark unpushed target \"%s\" as running",
654 ops->to_shortname);
655
656 ops->to_has_execution = 1;
657 ops->to_has_all_memory = 1;
658 ops->to_has_memory = 1;
659 ops->to_has_stack = 1;
660 ops->to_has_registers = 1;
661
662 update_current_target ();
663 }
664
665 /* Mark OPS as a non-running target. This reverses the effect
666 of target_mark_running. */
667
668 void
669 target_mark_exited (struct target_ops *ops)
670 {
671 struct target_ops *t;
672
673 for (t = target_stack; t != NULL; t = t->beneath)
674 if (t == ops)
675 break;
676 if (t == NULL)
677 internal_error (__FILE__, __LINE__,
678 "Attempted to mark unpushed target \"%s\" as running",
679 ops->to_shortname);
680
681 ops->to_has_execution = 0;
682 ops->to_has_all_memory = 0;
683 ops->to_has_memory = 0;
684 ops->to_has_stack = 0;
685 ops->to_has_registers = 0;
686
687 update_current_target ();
688 }
689
690 /* Push a new target type into the stack of the existing target accessors,
691 possibly superseding some of the existing accessors.
692
693 Result is zero if the pushed target ended up on top of the stack,
694 nonzero if at least one target is on top of it.
695
696 Rather than allow an empty stack, we always have the dummy target at
697 the bottom stratum, so we can call the function vectors without
698 checking them. */
699
700 int
701 push_target (struct target_ops *t)
702 {
703 struct target_ops **cur;
704
705 /* Check magic number. If wrong, it probably means someone changed
706 the struct definition, but not all the places that initialize one. */
707 if (t->to_magic != OPS_MAGIC)
708 {
709 fprintf_unfiltered (gdb_stderr,
710 "Magic number of %s target struct wrong\n",
711 t->to_shortname);
712 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
713 }
714
715 /* Find the proper stratum to install this target in. */
716 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
717 {
718 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
719 break;
720 }
721
722 /* If there's already targets at this stratum, remove them. */
723 /* FIXME: cagney/2003-10-15: I think this should be popping all
724 targets to CUR, and not just those at this stratum level. */
725 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
726 {
727 /* There's already something at this stratum level. Close it,
728 and un-hook it from the stack. */
729 struct target_ops *tmp = (*cur);
730 (*cur) = (*cur)->beneath;
731 tmp->beneath = NULL;
732 target_close (tmp, 0);
733 }
734
735 /* We have removed all targets in our stratum, now add the new one. */
736 t->beneath = (*cur);
737 (*cur) = t;
738
739 update_current_target ();
740
741 /* Not on top? */
742 return (t != target_stack);
743 }
744
745 /* Remove a target_ops vector from the stack, wherever it may be.
746 Return how many times it was removed (0 or 1). */
747
748 int
749 unpush_target (struct target_ops *t)
750 {
751 struct target_ops **cur;
752 struct target_ops *tmp;
753
754 /* Look for the specified target. Note that we assume that a target
755 can only occur once in the target stack. */
756
757 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
758 {
759 if ((*cur) == t)
760 break;
761 }
762
763 if ((*cur) == NULL)
764 return 0; /* Didn't find target_ops, quit now */
765
766 /* NOTE: cagney/2003-12-06: In '94 the close call was made
767 unconditional by moving it to before the above check that the
768 target was in the target stack (something about "Change the way
769 pushing and popping of targets work to support target overlays
770 and inheritance"). This doesn't make much sense - only open
771 targets should be closed. */
772 target_close (t, 0);
773
774 /* Unchain the target */
775 tmp = (*cur);
776 (*cur) = (*cur)->beneath;
777 tmp->beneath = NULL;
778
779 update_current_target ();
780
781 return 1;
782 }
783
784 void
785 pop_target (void)
786 {
787 target_close (target_stack, 0); /* Let it clean up */
788 if (unpush_target (target_stack) == 1)
789 return;
790
791 fprintf_unfiltered (gdb_stderr,
792 "pop_target couldn't find target %s\n",
793 current_target.to_shortname);
794 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
795 }
796
797 void
798 pop_all_targets_above (enum strata above_stratum, int quitting)
799 {
800 while ((int) (current_target.to_stratum) > (int) above_stratum)
801 {
802 target_close (target_stack, quitting);
803 if (!unpush_target (target_stack))
804 {
805 fprintf_unfiltered (gdb_stderr,
806 "pop_all_targets couldn't find target %s\n",
807 target_stack->to_shortname);
808 internal_error (__FILE__, __LINE__,
809 _("failed internal consistency check"));
810 break;
811 }
812 }
813 }
814
815 void
816 pop_all_targets (int quitting)
817 {
818 pop_all_targets_above (dummy_stratum, quitting);
819 }
820
821 /* Using the objfile specified in OBJFILE, find the address for the
822 current thread's thread-local storage with offset OFFSET. */
823 CORE_ADDR
824 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
825 {
826 volatile CORE_ADDR addr = 0;
827
828 if (target_get_thread_local_address_p ()
829 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
830 {
831 ptid_t ptid = inferior_ptid;
832 volatile struct gdb_exception ex;
833
834 TRY_CATCH (ex, RETURN_MASK_ALL)
835 {
836 CORE_ADDR lm_addr;
837
838 /* Fetch the load module address for this objfile. */
839 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
840 objfile);
841 /* If it's 0, throw the appropriate exception. */
842 if (lm_addr == 0)
843 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
844 _("TLS load module not found"));
845
846 addr = target_get_thread_local_address (ptid, lm_addr, offset);
847 }
848 /* If an error occurred, print TLS related messages here. Otherwise,
849 throw the error to some higher catcher. */
850 if (ex.reason < 0)
851 {
852 int objfile_is_library = (objfile->flags & OBJF_SHARED);
853
854 switch (ex.error)
855 {
856 case TLS_NO_LIBRARY_SUPPORT_ERROR:
857 error (_("Cannot find thread-local variables in this thread library."));
858 break;
859 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
860 if (objfile_is_library)
861 error (_("Cannot find shared library `%s' in dynamic"
862 " linker's load module list"), objfile->name);
863 else
864 error (_("Cannot find executable file `%s' in dynamic"
865 " linker's load module list"), objfile->name);
866 break;
867 case TLS_NOT_ALLOCATED_YET_ERROR:
868 if (objfile_is_library)
869 error (_("The inferior has not yet allocated storage for"
870 " thread-local variables in\n"
871 "the shared library `%s'\n"
872 "for %s"),
873 objfile->name, target_pid_to_str (ptid));
874 else
875 error (_("The inferior has not yet allocated storage for"
876 " thread-local variables in\n"
877 "the executable `%s'\n"
878 "for %s"),
879 objfile->name, target_pid_to_str (ptid));
880 break;
881 case TLS_GENERIC_ERROR:
882 if (objfile_is_library)
883 error (_("Cannot find thread-local storage for %s, "
884 "shared library %s:\n%s"),
885 target_pid_to_str (ptid),
886 objfile->name, ex.message);
887 else
888 error (_("Cannot find thread-local storage for %s, "
889 "executable file %s:\n%s"),
890 target_pid_to_str (ptid),
891 objfile->name, ex.message);
892 break;
893 default:
894 throw_exception (ex);
895 break;
896 }
897 }
898 }
899 /* It wouldn't be wrong here to try a gdbarch method, too; finding
900 TLS is an ABI-specific thing. But we don't do that yet. */
901 else
902 error (_("Cannot find thread-local variables on this target"));
903
904 return addr;
905 }
906
907 #undef MIN
908 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
909
910 /* target_read_string -- read a null terminated string, up to LEN bytes,
911 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
912 Set *STRING to a pointer to malloc'd memory containing the data; the caller
913 is responsible for freeing it. Return the number of bytes successfully
914 read. */
915
916 int
917 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
918 {
919 int tlen, origlen, offset, i;
920 gdb_byte buf[4];
921 int errcode = 0;
922 char *buffer;
923 int buffer_allocated;
924 char *bufptr;
925 unsigned int nbytes_read = 0;
926
927 gdb_assert (string);
928
929 /* Small for testing. */
930 buffer_allocated = 4;
931 buffer = xmalloc (buffer_allocated);
932 bufptr = buffer;
933
934 origlen = len;
935
936 while (len > 0)
937 {
938 tlen = MIN (len, 4 - (memaddr & 3));
939 offset = memaddr & 3;
940
941 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
942 if (errcode != 0)
943 {
944 /* The transfer request might have crossed the boundary to an
945 unallocated region of memory. Retry the transfer, requesting
946 a single byte. */
947 tlen = 1;
948 offset = 0;
949 errcode = target_read_memory (memaddr, buf, 1);
950 if (errcode != 0)
951 goto done;
952 }
953
954 if (bufptr - buffer + tlen > buffer_allocated)
955 {
956 unsigned int bytes;
957 bytes = bufptr - buffer;
958 buffer_allocated *= 2;
959 buffer = xrealloc (buffer, buffer_allocated);
960 bufptr = buffer + bytes;
961 }
962
963 for (i = 0; i < tlen; i++)
964 {
965 *bufptr++ = buf[i + offset];
966 if (buf[i + offset] == '\000')
967 {
968 nbytes_read += i + 1;
969 goto done;
970 }
971 }
972
973 memaddr += tlen;
974 len -= tlen;
975 nbytes_read += tlen;
976 }
977 done:
978 *string = buffer;
979 if (errnop != NULL)
980 *errnop = errcode;
981 return nbytes_read;
982 }
983
984 /* Find a section containing ADDR. */
985 struct section_table *
986 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
987 {
988 struct section_table *secp;
989 for (secp = target->to_sections;
990 secp < target->to_sections_end;
991 secp++)
992 {
993 if (addr >= secp->addr && addr < secp->endaddr)
994 return secp;
995 }
996 return NULL;
997 }
998
999 /* Perform a partial memory transfer. The arguments and return
1000 value are just as for target_xfer_partial. */
1001
1002 static LONGEST
1003 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
1004 ULONGEST memaddr, LONGEST len)
1005 {
1006 LONGEST res;
1007 int reg_len;
1008 struct mem_region *region;
1009
1010 /* Zero length requests are ok and require no work. */
1011 if (len == 0)
1012 return 0;
1013
1014 /* Try the executable file, if "trust-readonly-sections" is set. */
1015 if (readbuf != NULL && trust_readonly)
1016 {
1017 struct section_table *secp;
1018
1019 secp = target_section_by_addr (ops, memaddr);
1020 if (secp != NULL
1021 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1022 & SEC_READONLY))
1023 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1024 }
1025
1026 /* Likewise for accesses to unmapped overlay sections. */
1027 if (readbuf != NULL && overlay_debugging)
1028 {
1029 struct obj_section *section = find_pc_overlay (memaddr);
1030 if (pc_in_unmapped_range (memaddr, section))
1031 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1032 }
1033
1034 /* Try GDB's internal data cache. */
1035 region = lookup_mem_region (memaddr);
1036 /* region->hi == 0 means there's no upper bound. */
1037 if (memaddr + len < region->hi || region->hi == 0)
1038 reg_len = len;
1039 else
1040 reg_len = region->hi - memaddr;
1041
1042 switch (region->attrib.mode)
1043 {
1044 case MEM_RO:
1045 if (writebuf != NULL)
1046 return -1;
1047 break;
1048
1049 case MEM_WO:
1050 if (readbuf != NULL)
1051 return -1;
1052 break;
1053
1054 case MEM_FLASH:
1055 /* We only support writing to flash during "load" for now. */
1056 if (writebuf != NULL)
1057 error (_("Writing to flash memory forbidden in this context"));
1058 break;
1059
1060 case MEM_NONE:
1061 return -1;
1062 }
1063
1064 if (region->attrib.cache)
1065 {
1066 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1067 memory request will start back at current_target. */
1068 if (readbuf != NULL)
1069 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1070 reg_len, 0);
1071 else
1072 /* FIXME drow/2006-08-09: If we're going to preserve const
1073 correctness dcache_xfer_memory should take readbuf and
1074 writebuf. */
1075 res = dcache_xfer_memory (target_dcache, memaddr,
1076 (void *) writebuf,
1077 reg_len, 1);
1078 if (res <= 0)
1079 return -1;
1080 else
1081 {
1082 if (readbuf && !show_memory_breakpoints)
1083 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1084 return res;
1085 }
1086 }
1087
1088 /* If none of those methods found the memory we wanted, fall back
1089 to a target partial transfer. Normally a single call to
1090 to_xfer_partial is enough; if it doesn't recognize an object
1091 it will call the to_xfer_partial of the next target down.
1092 But for memory this won't do. Memory is the only target
1093 object which can be read from more than one valid target.
1094 A core file, for instance, could have some of memory but
1095 delegate other bits to the target below it. So, we must
1096 manually try all targets. */
1097
1098 do
1099 {
1100 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1101 readbuf, writebuf, memaddr, reg_len);
1102 if (res > 0)
1103 break;
1104
1105 /* We want to continue past core files to executables, but not
1106 past a running target's memory. */
1107 if (ops->to_has_all_memory)
1108 break;
1109
1110 ops = ops->beneath;
1111 }
1112 while (ops != NULL);
1113
1114 if (readbuf && !show_memory_breakpoints)
1115 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1116
1117 /* If we still haven't got anything, return the last error. We
1118 give up. */
1119 return res;
1120 }
1121
1122 static void
1123 restore_show_memory_breakpoints (void *arg)
1124 {
1125 show_memory_breakpoints = (uintptr_t) arg;
1126 }
1127
1128 struct cleanup *
1129 make_show_memory_breakpoints_cleanup (int show)
1130 {
1131 int current = show_memory_breakpoints;
1132 show_memory_breakpoints = show;
1133
1134 return make_cleanup (restore_show_memory_breakpoints,
1135 (void *) (uintptr_t) current);
1136 }
1137
1138 static LONGEST
1139 target_xfer_partial (struct target_ops *ops,
1140 enum target_object object, const char *annex,
1141 void *readbuf, const void *writebuf,
1142 ULONGEST offset, LONGEST len)
1143 {
1144 LONGEST retval;
1145
1146 gdb_assert (ops->to_xfer_partial != NULL);
1147
1148 /* If this is a memory transfer, let the memory-specific code
1149 have a look at it instead. Memory transfers are more
1150 complicated. */
1151 if (object == TARGET_OBJECT_MEMORY)
1152 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1153 else
1154 {
1155 enum target_object raw_object = object;
1156
1157 /* If this is a raw memory transfer, request the normal
1158 memory object from other layers. */
1159 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1160 raw_object = TARGET_OBJECT_MEMORY;
1161
1162 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1163 writebuf, offset, len);
1164 }
1165
1166 if (targetdebug)
1167 {
1168 const unsigned char *myaddr = NULL;
1169
1170 fprintf_unfiltered (gdb_stdlog,
1171 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, %s, %s) = %s",
1172 ops->to_shortname,
1173 (int) object,
1174 (annex ? annex : "(null)"),
1175 (long) readbuf, (long) writebuf,
1176 core_addr_to_string_nz (offset),
1177 plongest (len), plongest (retval));
1178
1179 if (readbuf)
1180 myaddr = readbuf;
1181 if (writebuf)
1182 myaddr = writebuf;
1183 if (retval > 0 && myaddr != NULL)
1184 {
1185 int i;
1186
1187 fputs_unfiltered (", bytes =", gdb_stdlog);
1188 for (i = 0; i < retval; i++)
1189 {
1190 if ((((long) &(myaddr[i])) & 0xf) == 0)
1191 {
1192 if (targetdebug < 2 && i > 0)
1193 {
1194 fprintf_unfiltered (gdb_stdlog, " ...");
1195 break;
1196 }
1197 fprintf_unfiltered (gdb_stdlog, "\n");
1198 }
1199
1200 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1201 }
1202 }
1203
1204 fputc_unfiltered ('\n', gdb_stdlog);
1205 }
1206 return retval;
1207 }
1208
1209 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1210 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1211 if any error occurs.
1212
1213 If an error occurs, no guarantee is made about the contents of the data at
1214 MYADDR. In particular, the caller should not depend upon partial reads
1215 filling the buffer with good data. There is no way for the caller to know
1216 how much good data might have been transfered anyway. Callers that can
1217 deal with partial reads should call target_read (which will retry until
1218 it makes no progress, and then return how much was transferred). */
1219
1220 int
1221 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1222 {
1223 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1224 myaddr, memaddr, len) == len)
1225 return 0;
1226 else
1227 return EIO;
1228 }
1229
1230 int
1231 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1232 {
1233 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1234 myaddr, memaddr, len) == len)
1235 return 0;
1236 else
1237 return EIO;
1238 }
1239
1240 /* Fetch the target's memory map. */
1241
1242 VEC(mem_region_s) *
1243 target_memory_map (void)
1244 {
1245 VEC(mem_region_s) *result;
1246 struct mem_region *last_one, *this_one;
1247 int ix;
1248 struct target_ops *t;
1249
1250 if (targetdebug)
1251 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1252
1253 for (t = current_target.beneath; t != NULL; t = t->beneath)
1254 if (t->to_memory_map != NULL)
1255 break;
1256
1257 if (t == NULL)
1258 return NULL;
1259
1260 result = t->to_memory_map (t);
1261 if (result == NULL)
1262 return NULL;
1263
1264 qsort (VEC_address (mem_region_s, result),
1265 VEC_length (mem_region_s, result),
1266 sizeof (struct mem_region), mem_region_cmp);
1267
1268 /* Check that regions do not overlap. Simultaneously assign
1269 a numbering for the "mem" commands to use to refer to
1270 each region. */
1271 last_one = NULL;
1272 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1273 {
1274 this_one->number = ix;
1275
1276 if (last_one && last_one->hi > this_one->lo)
1277 {
1278 warning (_("Overlapping regions in memory map: ignoring"));
1279 VEC_free (mem_region_s, result);
1280 return NULL;
1281 }
1282 last_one = this_one;
1283 }
1284
1285 return result;
1286 }
1287
1288 void
1289 target_flash_erase (ULONGEST address, LONGEST length)
1290 {
1291 struct target_ops *t;
1292
1293 for (t = current_target.beneath; t != NULL; t = t->beneath)
1294 if (t->to_flash_erase != NULL)
1295 {
1296 if (targetdebug)
1297 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1298 paddr (address), phex (length, 0));
1299 t->to_flash_erase (t, address, length);
1300 return;
1301 }
1302
1303 tcomplain ();
1304 }
1305
1306 void
1307 target_flash_done (void)
1308 {
1309 struct target_ops *t;
1310
1311 for (t = current_target.beneath; t != NULL; t = t->beneath)
1312 if (t->to_flash_done != NULL)
1313 {
1314 if (targetdebug)
1315 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1316 t->to_flash_done (t);
1317 return;
1318 }
1319
1320 tcomplain ();
1321 }
1322
1323 #ifndef target_stopped_data_address_p
1324 int
1325 target_stopped_data_address_p (struct target_ops *target)
1326 {
1327 if (target->to_stopped_data_address
1328 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1329 return 0;
1330 if (target->to_stopped_data_address == debug_to_stopped_data_address
1331 && (debug_target.to_stopped_data_address
1332 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1333 return 0;
1334 return 1;
1335 }
1336 #endif
1337
1338 static void
1339 show_trust_readonly (struct ui_file *file, int from_tty,
1340 struct cmd_list_element *c, const char *value)
1341 {
1342 fprintf_filtered (file, _("\
1343 Mode for reading from readonly sections is %s.\n"),
1344 value);
1345 }
1346
1347 /* More generic transfers. */
1348
1349 static LONGEST
1350 default_xfer_partial (struct target_ops *ops, enum target_object object,
1351 const char *annex, gdb_byte *readbuf,
1352 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1353 {
1354 if (object == TARGET_OBJECT_MEMORY
1355 && ops->deprecated_xfer_memory != NULL)
1356 /* If available, fall back to the target's
1357 "deprecated_xfer_memory" method. */
1358 {
1359 int xfered = -1;
1360 errno = 0;
1361 if (writebuf != NULL)
1362 {
1363 void *buffer = xmalloc (len);
1364 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1365 memcpy (buffer, writebuf, len);
1366 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1367 1/*write*/, NULL, ops);
1368 do_cleanups (cleanup);
1369 }
1370 if (readbuf != NULL)
1371 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1372 0/*read*/, NULL, ops);
1373 if (xfered > 0)
1374 return xfered;
1375 else if (xfered == 0 && errno == 0)
1376 /* "deprecated_xfer_memory" uses 0, cross checked against
1377 ERRNO as one indication of an error. */
1378 return 0;
1379 else
1380 return -1;
1381 }
1382 else if (ops->beneath != NULL)
1383 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1384 readbuf, writebuf, offset, len);
1385 else
1386 return -1;
1387 }
1388
1389 /* The xfer_partial handler for the topmost target. Unlike the default,
1390 it does not need to handle memory specially; it just passes all
1391 requests down the stack. */
1392
1393 static LONGEST
1394 current_xfer_partial (struct target_ops *ops, enum target_object object,
1395 const char *annex, gdb_byte *readbuf,
1396 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1397 {
1398 if (ops->beneath != NULL)
1399 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1400 readbuf, writebuf, offset, len);
1401 else
1402 return -1;
1403 }
1404
1405 /* Target vector read/write partial wrapper functions.
1406
1407 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1408 (inbuf, outbuf)", instead of separate read/write methods, make life
1409 easier. */
1410
1411 static LONGEST
1412 target_read_partial (struct target_ops *ops,
1413 enum target_object object,
1414 const char *annex, gdb_byte *buf,
1415 ULONGEST offset, LONGEST len)
1416 {
1417 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1418 }
1419
1420 static LONGEST
1421 target_write_partial (struct target_ops *ops,
1422 enum target_object object,
1423 const char *annex, const gdb_byte *buf,
1424 ULONGEST offset, LONGEST len)
1425 {
1426 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1427 }
1428
1429 /* Wrappers to perform the full transfer. */
1430 LONGEST
1431 target_read (struct target_ops *ops,
1432 enum target_object object,
1433 const char *annex, gdb_byte *buf,
1434 ULONGEST offset, LONGEST len)
1435 {
1436 LONGEST xfered = 0;
1437 while (xfered < len)
1438 {
1439 LONGEST xfer = target_read_partial (ops, object, annex,
1440 (gdb_byte *) buf + xfered,
1441 offset + xfered, len - xfered);
1442 /* Call an observer, notifying them of the xfer progress? */
1443 if (xfer == 0)
1444 return xfered;
1445 if (xfer < 0)
1446 return -1;
1447 xfered += xfer;
1448 QUIT;
1449 }
1450 return len;
1451 }
1452
1453 LONGEST
1454 target_read_until_error (struct target_ops *ops,
1455 enum target_object object,
1456 const char *annex, gdb_byte *buf,
1457 ULONGEST offset, LONGEST len)
1458 {
1459 LONGEST xfered = 0;
1460 while (xfered < len)
1461 {
1462 LONGEST xfer = target_read_partial (ops, object, annex,
1463 (gdb_byte *) buf + xfered,
1464 offset + xfered, len - xfered);
1465 /* Call an observer, notifying them of the xfer progress? */
1466 if (xfer == 0)
1467 return xfered;
1468 if (xfer < 0)
1469 {
1470 /* We've got an error. Try to read in smaller blocks. */
1471 ULONGEST start = offset + xfered;
1472 ULONGEST remaining = len - xfered;
1473 ULONGEST half;
1474
1475 /* If an attempt was made to read a random memory address,
1476 it's likely that the very first byte is not accessible.
1477 Try reading the first byte, to avoid doing log N tries
1478 below. */
1479 xfer = target_read_partial (ops, object, annex,
1480 (gdb_byte *) buf + xfered, start, 1);
1481 if (xfer <= 0)
1482 return xfered;
1483 start += 1;
1484 remaining -= 1;
1485 half = remaining/2;
1486
1487 while (half > 0)
1488 {
1489 xfer = target_read_partial (ops, object, annex,
1490 (gdb_byte *) buf + xfered,
1491 start, half);
1492 if (xfer == 0)
1493 return xfered;
1494 if (xfer < 0)
1495 {
1496 remaining = half;
1497 }
1498 else
1499 {
1500 /* We have successfully read the first half. So, the
1501 error must be in the second half. Adjust start and
1502 remaining to point at the second half. */
1503 xfered += xfer;
1504 start += xfer;
1505 remaining -= xfer;
1506 }
1507 half = remaining/2;
1508 }
1509
1510 return xfered;
1511 }
1512 xfered += xfer;
1513 QUIT;
1514 }
1515 return len;
1516 }
1517
1518
1519 /* An alternative to target_write with progress callbacks. */
1520
1521 LONGEST
1522 target_write_with_progress (struct target_ops *ops,
1523 enum target_object object,
1524 const char *annex, const gdb_byte *buf,
1525 ULONGEST offset, LONGEST len,
1526 void (*progress) (ULONGEST, void *), void *baton)
1527 {
1528 LONGEST xfered = 0;
1529
1530 /* Give the progress callback a chance to set up. */
1531 if (progress)
1532 (*progress) (0, baton);
1533
1534 while (xfered < len)
1535 {
1536 LONGEST xfer = target_write_partial (ops, object, annex,
1537 (gdb_byte *) buf + xfered,
1538 offset + xfered, len - xfered);
1539
1540 if (xfer == 0)
1541 return xfered;
1542 if (xfer < 0)
1543 return -1;
1544
1545 if (progress)
1546 (*progress) (xfer, baton);
1547
1548 xfered += xfer;
1549 QUIT;
1550 }
1551 return len;
1552 }
1553
1554 LONGEST
1555 target_write (struct target_ops *ops,
1556 enum target_object object,
1557 const char *annex, const gdb_byte *buf,
1558 ULONGEST offset, LONGEST len)
1559 {
1560 return target_write_with_progress (ops, object, annex, buf, offset, len,
1561 NULL, NULL);
1562 }
1563
1564 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1565 the size of the transferred data. PADDING additional bytes are
1566 available in *BUF_P. This is a helper function for
1567 target_read_alloc; see the declaration of that function for more
1568 information. */
1569
1570 static LONGEST
1571 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1572 const char *annex, gdb_byte **buf_p, int padding)
1573 {
1574 size_t buf_alloc, buf_pos;
1575 gdb_byte *buf;
1576 LONGEST n;
1577
1578 /* This function does not have a length parameter; it reads the
1579 entire OBJECT). Also, it doesn't support objects fetched partly
1580 from one target and partly from another (in a different stratum,
1581 e.g. a core file and an executable). Both reasons make it
1582 unsuitable for reading memory. */
1583 gdb_assert (object != TARGET_OBJECT_MEMORY);
1584
1585 /* Start by reading up to 4K at a time. The target will throttle
1586 this number down if necessary. */
1587 buf_alloc = 4096;
1588 buf = xmalloc (buf_alloc);
1589 buf_pos = 0;
1590 while (1)
1591 {
1592 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1593 buf_pos, buf_alloc - buf_pos - padding);
1594 if (n < 0)
1595 {
1596 /* An error occurred. */
1597 xfree (buf);
1598 return -1;
1599 }
1600 else if (n == 0)
1601 {
1602 /* Read all there was. */
1603 if (buf_pos == 0)
1604 xfree (buf);
1605 else
1606 *buf_p = buf;
1607 return buf_pos;
1608 }
1609
1610 buf_pos += n;
1611
1612 /* If the buffer is filling up, expand it. */
1613 if (buf_alloc < buf_pos * 2)
1614 {
1615 buf_alloc *= 2;
1616 buf = xrealloc (buf, buf_alloc);
1617 }
1618
1619 QUIT;
1620 }
1621 }
1622
1623 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1624 the size of the transferred data. See the declaration in "target.h"
1625 function for more information about the return value. */
1626
1627 LONGEST
1628 target_read_alloc (struct target_ops *ops, enum target_object object,
1629 const char *annex, gdb_byte **buf_p)
1630 {
1631 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1632 }
1633
1634 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1635 returned as a string, allocated using xmalloc. If an error occurs
1636 or the transfer is unsupported, NULL is returned. Empty objects
1637 are returned as allocated but empty strings. A warning is issued
1638 if the result contains any embedded NUL bytes. */
1639
1640 char *
1641 target_read_stralloc (struct target_ops *ops, enum target_object object,
1642 const char *annex)
1643 {
1644 gdb_byte *buffer;
1645 LONGEST transferred;
1646
1647 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1648
1649 if (transferred < 0)
1650 return NULL;
1651
1652 if (transferred == 0)
1653 return xstrdup ("");
1654
1655 buffer[transferred] = 0;
1656 if (strlen (buffer) < transferred)
1657 warning (_("target object %d, annex %s, "
1658 "contained unexpected null characters"),
1659 (int) object, annex ? annex : "(none)");
1660
1661 return (char *) buffer;
1662 }
1663
1664 /* Memory transfer methods. */
1665
1666 void
1667 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1668 LONGEST len)
1669 {
1670 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1671 != len)
1672 memory_error (EIO, addr);
1673 }
1674
1675 ULONGEST
1676 get_target_memory_unsigned (struct target_ops *ops,
1677 CORE_ADDR addr, int len)
1678 {
1679 gdb_byte buf[sizeof (ULONGEST)];
1680
1681 gdb_assert (len <= sizeof (buf));
1682 get_target_memory (ops, addr, buf, len);
1683 return extract_unsigned_integer (buf, len);
1684 }
1685
1686 static void
1687 target_info (char *args, int from_tty)
1688 {
1689 struct target_ops *t;
1690 int has_all_mem = 0;
1691
1692 if (symfile_objfile != NULL)
1693 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1694
1695 for (t = target_stack; t != NULL; t = t->beneath)
1696 {
1697 if (!t->to_has_memory)
1698 continue;
1699
1700 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1701 continue;
1702 if (has_all_mem)
1703 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1704 printf_unfiltered ("%s:\n", t->to_longname);
1705 (t->to_files_info) (t);
1706 has_all_mem = t->to_has_all_memory;
1707 }
1708 }
1709
1710 /* This function is called before any new inferior is created, e.g.
1711 by running a program, attaching, or connecting to a target.
1712 It cleans up any state from previous invocations which might
1713 change between runs. This is a subset of what target_preopen
1714 resets (things which might change between targets). */
1715
1716 void
1717 target_pre_inferior (int from_tty)
1718 {
1719 /* Clear out solib state. Otherwise the solib state of the previous
1720 inferior might have survived and is entirely wrong for the new
1721 target. This has been observed on GNU/Linux using glibc 2.3. How
1722 to reproduce:
1723
1724 bash$ ./foo&
1725 [1] 4711
1726 bash$ ./foo&
1727 [1] 4712
1728 bash$ gdb ./foo
1729 [...]
1730 (gdb) attach 4711
1731 (gdb) detach
1732 (gdb) attach 4712
1733 Cannot access memory at address 0xdeadbeef
1734 */
1735 no_shared_libraries (NULL, from_tty);
1736
1737 invalidate_target_mem_regions ();
1738
1739 target_clear_description ();
1740 }
1741
1742 /* This is to be called by the open routine before it does
1743 anything. */
1744
1745 void
1746 target_preopen (int from_tty)
1747 {
1748 dont_repeat ();
1749
1750 if (target_has_execution)
1751 {
1752 if (!from_tty
1753 || query (_("A program is being debugged already. Kill it? ")))
1754 target_kill ();
1755 else
1756 error (_("Program not killed."));
1757 }
1758
1759 /* Calling target_kill may remove the target from the stack. But if
1760 it doesn't (which seems like a win for UDI), remove it now. */
1761 /* Leave the exec target, though. The user may be switching from a
1762 live process to a core of the same program. */
1763 pop_all_targets_above (file_stratum, 0);
1764
1765 target_pre_inferior (from_tty);
1766 }
1767
1768 /* Detach a target after doing deferred register stores. */
1769
1770 void
1771 target_detach (char *args, int from_tty)
1772 {
1773 /* If we're in breakpoints-always-inserted mode, have to
1774 remove them before detaching. */
1775 remove_breakpoints ();
1776
1777 (current_target.to_detach) (args, from_tty);
1778 }
1779
1780 void
1781 target_disconnect (char *args, int from_tty)
1782 {
1783 struct target_ops *t;
1784
1785 /* If we're in breakpoints-always-inserted mode, have to
1786 remove them before disconnecting. */
1787 remove_breakpoints ();
1788
1789 for (t = current_target.beneath; t != NULL; t = t->beneath)
1790 if (t->to_disconnect != NULL)
1791 {
1792 if (targetdebug)
1793 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1794 args, from_tty);
1795 t->to_disconnect (t, args, from_tty);
1796 return;
1797 }
1798
1799 tcomplain ();
1800 }
1801
1802 void
1803 target_resume (ptid_t ptid, int step, enum target_signal signal)
1804 {
1805 dcache_invalidate (target_dcache);
1806 (*current_target.to_resume) (ptid, step, signal);
1807 set_executing (ptid, 1);
1808 set_running (ptid, 1);
1809 }
1810 /* Look through the list of possible targets for a target that can
1811 follow forks. */
1812
1813 int
1814 target_follow_fork (int follow_child)
1815 {
1816 struct target_ops *t;
1817
1818 for (t = current_target.beneath; t != NULL; t = t->beneath)
1819 {
1820 if (t->to_follow_fork != NULL)
1821 {
1822 int retval = t->to_follow_fork (t, follow_child);
1823 if (targetdebug)
1824 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1825 follow_child, retval);
1826 return retval;
1827 }
1828 }
1829
1830 /* Some target returned a fork event, but did not know how to follow it. */
1831 internal_error (__FILE__, __LINE__,
1832 "could not find a target to follow fork");
1833 }
1834
1835 /* Look for a target which can describe architectural features, starting
1836 from TARGET. If we find one, return its description. */
1837
1838 const struct target_desc *
1839 target_read_description (struct target_ops *target)
1840 {
1841 struct target_ops *t;
1842
1843 for (t = target; t != NULL; t = t->beneath)
1844 if (t->to_read_description != NULL)
1845 {
1846 const struct target_desc *tdesc;
1847
1848 tdesc = t->to_read_description (t);
1849 if (tdesc)
1850 return tdesc;
1851 }
1852
1853 return NULL;
1854 }
1855
1856 /* The default implementation of to_search_memory.
1857 This implements a basic search of memory, reading target memory and
1858 performing the search here (as opposed to performing the search in on the
1859 target side with, for example, gdbserver). */
1860
1861 int
1862 simple_search_memory (struct target_ops *ops,
1863 CORE_ADDR start_addr, ULONGEST search_space_len,
1864 const gdb_byte *pattern, ULONGEST pattern_len,
1865 CORE_ADDR *found_addrp)
1866 {
1867 /* NOTE: also defined in find.c testcase. */
1868 #define SEARCH_CHUNK_SIZE 16000
1869 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
1870 /* Buffer to hold memory contents for searching. */
1871 gdb_byte *search_buf;
1872 unsigned search_buf_size;
1873 struct cleanup *old_cleanups;
1874
1875 search_buf_size = chunk_size + pattern_len - 1;
1876
1877 /* No point in trying to allocate a buffer larger than the search space. */
1878 if (search_space_len < search_buf_size)
1879 search_buf_size = search_space_len;
1880
1881 search_buf = malloc (search_buf_size);
1882 if (search_buf == NULL)
1883 error (_("Unable to allocate memory to perform the search."));
1884 old_cleanups = make_cleanup (free_current_contents, &search_buf);
1885
1886 /* Prime the search buffer. */
1887
1888 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1889 search_buf, start_addr, search_buf_size) != search_buf_size)
1890 {
1891 warning (_("Unable to access target memory at %s, halting search."),
1892 hex_string (start_addr));
1893 do_cleanups (old_cleanups);
1894 return -1;
1895 }
1896
1897 /* Perform the search.
1898
1899 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
1900 When we've scanned N bytes we copy the trailing bytes to the start and
1901 read in another N bytes. */
1902
1903 while (search_space_len >= pattern_len)
1904 {
1905 gdb_byte *found_ptr;
1906 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
1907
1908 found_ptr = memmem (search_buf, nr_search_bytes,
1909 pattern, pattern_len);
1910
1911 if (found_ptr != NULL)
1912 {
1913 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
1914 *found_addrp = found_addr;
1915 do_cleanups (old_cleanups);
1916 return 1;
1917 }
1918
1919 /* Not found in this chunk, skip to next chunk. */
1920
1921 /* Don't let search_space_len wrap here, it's unsigned. */
1922 if (search_space_len >= chunk_size)
1923 search_space_len -= chunk_size;
1924 else
1925 search_space_len = 0;
1926
1927 if (search_space_len >= pattern_len)
1928 {
1929 unsigned keep_len = search_buf_size - chunk_size;
1930 CORE_ADDR read_addr = start_addr + keep_len;
1931 int nr_to_read;
1932
1933 /* Copy the trailing part of the previous iteration to the front
1934 of the buffer for the next iteration. */
1935 gdb_assert (keep_len == pattern_len - 1);
1936 memcpy (search_buf, search_buf + chunk_size, keep_len);
1937
1938 nr_to_read = min (search_space_len - keep_len, chunk_size);
1939
1940 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1941 search_buf + keep_len, read_addr,
1942 nr_to_read) != nr_to_read)
1943 {
1944 warning (_("Unable to access target memory at %s, halting search."),
1945 hex_string (read_addr));
1946 do_cleanups (old_cleanups);
1947 return -1;
1948 }
1949
1950 start_addr += chunk_size;
1951 }
1952 }
1953
1954 /* Not found. */
1955
1956 do_cleanups (old_cleanups);
1957 return 0;
1958 }
1959
1960 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
1961 sequence of bytes in PATTERN with length PATTERN_LEN.
1962
1963 The result is 1 if found, 0 if not found, and -1 if there was an error
1964 requiring halting of the search (e.g. memory read error).
1965 If the pattern is found the address is recorded in FOUND_ADDRP. */
1966
1967 int
1968 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
1969 const gdb_byte *pattern, ULONGEST pattern_len,
1970 CORE_ADDR *found_addrp)
1971 {
1972 struct target_ops *t;
1973 int found;
1974
1975 /* We don't use INHERIT to set current_target.to_search_memory,
1976 so we have to scan the target stack and handle targetdebug
1977 ourselves. */
1978
1979 if (targetdebug)
1980 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
1981 hex_string (start_addr));
1982
1983 for (t = current_target.beneath; t != NULL; t = t->beneath)
1984 if (t->to_search_memory != NULL)
1985 break;
1986
1987 if (t != NULL)
1988 {
1989 found = t->to_search_memory (t, start_addr, search_space_len,
1990 pattern, pattern_len, found_addrp);
1991 }
1992 else
1993 {
1994 /* If a special version of to_search_memory isn't available, use the
1995 simple version. */
1996 found = simple_search_memory (&current_target,
1997 start_addr, search_space_len,
1998 pattern, pattern_len, found_addrp);
1999 }
2000
2001 if (targetdebug)
2002 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2003
2004 return found;
2005 }
2006
2007 /* Look through the currently pushed targets. If none of them will
2008 be able to restart the currently running process, issue an error
2009 message. */
2010
2011 void
2012 target_require_runnable (void)
2013 {
2014 struct target_ops *t;
2015
2016 for (t = target_stack; t != NULL; t = t->beneath)
2017 {
2018 /* If this target knows how to create a new program, then
2019 assume we will still be able to after killing the current
2020 one. Either killing and mourning will not pop T, or else
2021 find_default_run_target will find it again. */
2022 if (t->to_create_inferior != NULL)
2023 return;
2024
2025 /* Do not worry about thread_stratum targets that can not
2026 create inferiors. Assume they will be pushed again if
2027 necessary, and continue to the process_stratum. */
2028 if (t->to_stratum == thread_stratum)
2029 continue;
2030
2031 error (_("\
2032 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2033 t->to_shortname);
2034 }
2035
2036 /* This function is only called if the target is running. In that
2037 case there should have been a process_stratum target and it
2038 should either know how to create inferiors, or not... */
2039 internal_error (__FILE__, __LINE__, "No targets found");
2040 }
2041
2042 /* Look through the list of possible targets for a target that can
2043 execute a run or attach command without any other data. This is
2044 used to locate the default process stratum.
2045
2046 If DO_MESG is not NULL, the result is always valid (error() is
2047 called for errors); else, return NULL on error. */
2048
2049 static struct target_ops *
2050 find_default_run_target (char *do_mesg)
2051 {
2052 struct target_ops **t;
2053 struct target_ops *runable = NULL;
2054 int count;
2055
2056 count = 0;
2057
2058 for (t = target_structs; t < target_structs + target_struct_size;
2059 ++t)
2060 {
2061 if ((*t)->to_can_run && target_can_run (*t))
2062 {
2063 runable = *t;
2064 ++count;
2065 }
2066 }
2067
2068 if (count != 1)
2069 {
2070 if (do_mesg)
2071 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2072 else
2073 return NULL;
2074 }
2075
2076 return runable;
2077 }
2078
2079 void
2080 find_default_attach (char *args, int from_tty)
2081 {
2082 struct target_ops *t;
2083
2084 t = find_default_run_target ("attach");
2085 (t->to_attach) (args, from_tty);
2086 return;
2087 }
2088
2089 void
2090 find_default_create_inferior (char *exec_file, char *allargs, char **env,
2091 int from_tty)
2092 {
2093 struct target_ops *t;
2094
2095 t = find_default_run_target ("run");
2096 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
2097 return;
2098 }
2099
2100 int
2101 find_default_can_async_p (void)
2102 {
2103 struct target_ops *t;
2104
2105 /* This may be called before the target is pushed on the stack;
2106 look for the default process stratum. If there's none, gdb isn't
2107 configured with a native debugger, and target remote isn't
2108 connected yet. */
2109 t = find_default_run_target (NULL);
2110 if (t && t->to_can_async_p)
2111 return (t->to_can_async_p) ();
2112 return 0;
2113 }
2114
2115 int
2116 find_default_is_async_p (void)
2117 {
2118 struct target_ops *t;
2119
2120 /* This may be called before the target is pushed on the stack;
2121 look for the default process stratum. If there's none, gdb isn't
2122 configured with a native debugger, and target remote isn't
2123 connected yet. */
2124 t = find_default_run_target (NULL);
2125 if (t && t->to_is_async_p)
2126 return (t->to_is_async_p) ();
2127 return 0;
2128 }
2129
2130 int
2131 find_default_supports_non_stop (void)
2132 {
2133 struct target_ops *t;
2134
2135 t = find_default_run_target (NULL);
2136 if (t && t->to_supports_non_stop)
2137 return (t->to_supports_non_stop) ();
2138 return 0;
2139 }
2140
2141 int
2142 target_supports_non_stop ()
2143 {
2144 struct target_ops *t;
2145 for (t = &current_target; t != NULL; t = t->beneath)
2146 if (t->to_supports_non_stop)
2147 return t->to_supports_non_stop ();
2148
2149 return 0;
2150 }
2151
2152
2153 static int
2154 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2155 {
2156 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2157 }
2158
2159 static int
2160 default_watchpoint_addr_within_range (struct target_ops *target,
2161 CORE_ADDR addr,
2162 CORE_ADDR start, int length)
2163 {
2164 return addr >= start && addr < start + length;
2165 }
2166
2167 static int
2168 return_zero (void)
2169 {
2170 return 0;
2171 }
2172
2173 static int
2174 return_one (void)
2175 {
2176 return 1;
2177 }
2178
2179 static int
2180 return_minus_one (void)
2181 {
2182 return -1;
2183 }
2184
2185 /*
2186 * Resize the to_sections pointer. Also make sure that anyone that
2187 * was holding on to an old value of it gets updated.
2188 * Returns the old size.
2189 */
2190
2191 int
2192 target_resize_to_sections (struct target_ops *target, int num_added)
2193 {
2194 struct target_ops **t;
2195 struct section_table *old_value;
2196 int old_count;
2197
2198 old_value = target->to_sections;
2199
2200 if (target->to_sections)
2201 {
2202 old_count = target->to_sections_end - target->to_sections;
2203 target->to_sections = (struct section_table *)
2204 xrealloc ((char *) target->to_sections,
2205 (sizeof (struct section_table)) * (num_added + old_count));
2206 }
2207 else
2208 {
2209 old_count = 0;
2210 target->to_sections = (struct section_table *)
2211 xmalloc ((sizeof (struct section_table)) * num_added);
2212 }
2213 target->to_sections_end = target->to_sections + (num_added + old_count);
2214
2215 /* Check to see if anyone else was pointing to this structure.
2216 If old_value was null, then no one was. */
2217
2218 if (old_value)
2219 {
2220 for (t = target_structs; t < target_structs + target_struct_size;
2221 ++t)
2222 {
2223 if ((*t)->to_sections == old_value)
2224 {
2225 (*t)->to_sections = target->to_sections;
2226 (*t)->to_sections_end = target->to_sections_end;
2227 }
2228 }
2229 /* There is a flattened view of the target stack in current_target,
2230 so its to_sections pointer might also need updating. */
2231 if (current_target.to_sections == old_value)
2232 {
2233 current_target.to_sections = target->to_sections;
2234 current_target.to_sections_end = target->to_sections_end;
2235 }
2236 }
2237
2238 return old_count;
2239
2240 }
2241
2242 /* Remove all target sections taken from ABFD.
2243
2244 Scan the current target stack for targets whose section tables
2245 refer to sections from BFD, and remove those sections. We use this
2246 when we notice that the inferior has unloaded a shared object, for
2247 example. */
2248 void
2249 remove_target_sections (bfd *abfd)
2250 {
2251 struct target_ops **t;
2252
2253 for (t = target_structs; t < target_structs + target_struct_size; t++)
2254 {
2255 struct section_table *src, *dest;
2256
2257 dest = (*t)->to_sections;
2258 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
2259 if (src->bfd != abfd)
2260 {
2261 /* Keep this section. */
2262 if (dest < src) *dest = *src;
2263 dest++;
2264 }
2265
2266 /* If we've dropped any sections, resize the section table. */
2267 if (dest < src)
2268 target_resize_to_sections (*t, dest - src);
2269 }
2270 }
2271
2272
2273
2274
2275 /* Find a single runnable target in the stack and return it. If for
2276 some reason there is more than one, return NULL. */
2277
2278 struct target_ops *
2279 find_run_target (void)
2280 {
2281 struct target_ops **t;
2282 struct target_ops *runable = NULL;
2283 int count;
2284
2285 count = 0;
2286
2287 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2288 {
2289 if ((*t)->to_can_run && target_can_run (*t))
2290 {
2291 runable = *t;
2292 ++count;
2293 }
2294 }
2295
2296 return (count == 1 ? runable : NULL);
2297 }
2298
2299 /* Find a single core_stratum target in the list of targets and return it.
2300 If for some reason there is more than one, return NULL. */
2301
2302 struct target_ops *
2303 find_core_target (void)
2304 {
2305 struct target_ops **t;
2306 struct target_ops *runable = NULL;
2307 int count;
2308
2309 count = 0;
2310
2311 for (t = target_structs; t < target_structs + target_struct_size;
2312 ++t)
2313 {
2314 if ((*t)->to_stratum == core_stratum)
2315 {
2316 runable = *t;
2317 ++count;
2318 }
2319 }
2320
2321 return (count == 1 ? runable : NULL);
2322 }
2323
2324 /*
2325 * Find the next target down the stack from the specified target.
2326 */
2327
2328 struct target_ops *
2329 find_target_beneath (struct target_ops *t)
2330 {
2331 return t->beneath;
2332 }
2333
2334 \f
2335 /* The inferior process has died. Long live the inferior! */
2336
2337 void
2338 generic_mourn_inferior (void)
2339 {
2340 extern int show_breakpoint_hit_counts;
2341 ptid_t ptid;
2342
2343 ptid = inferior_ptid;
2344 inferior_ptid = null_ptid;
2345
2346 if (!ptid_equal (ptid, null_ptid))
2347 {
2348 int pid = ptid_get_pid (ptid);
2349 delete_inferior (pid);
2350 }
2351
2352 attach_flag = 0;
2353 breakpoint_init_inferior (inf_exited);
2354 registers_changed ();
2355
2356 reopen_exec_file ();
2357 reinit_frame_cache ();
2358
2359 /* It is confusing to the user for ignore counts to stick around
2360 from previous runs of the inferior. So clear them. */
2361 /* However, it is more confusing for the ignore counts to disappear when
2362 using hit counts. So don't clear them if we're counting hits. */
2363 if (!show_breakpoint_hit_counts)
2364 breakpoint_clear_ignore_counts ();
2365
2366 if (deprecated_detach_hook)
2367 deprecated_detach_hook ();
2368 }
2369 \f
2370 /* Helper function for child_wait and the derivatives of child_wait.
2371 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2372 translation of that in OURSTATUS. */
2373 void
2374 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2375 {
2376 if (WIFEXITED (hoststatus))
2377 {
2378 ourstatus->kind = TARGET_WAITKIND_EXITED;
2379 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2380 }
2381 else if (!WIFSTOPPED (hoststatus))
2382 {
2383 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2384 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2385 }
2386 else
2387 {
2388 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2389 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2390 }
2391 }
2392 \f
2393 /* Returns zero to leave the inferior alone, one to interrupt it. */
2394 int (*target_activity_function) (void);
2395 int target_activity_fd;
2396 \f
2397 /* Convert a normal process ID to a string. Returns the string in a
2398 static buffer. */
2399
2400 char *
2401 normal_pid_to_str (ptid_t ptid)
2402 {
2403 static char buf[32];
2404
2405 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2406 return buf;
2407 }
2408
2409 /* Error-catcher for target_find_memory_regions */
2410 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2411 {
2412 error (_("No target."));
2413 return 0;
2414 }
2415
2416 /* Error-catcher for target_make_corefile_notes */
2417 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2418 {
2419 error (_("No target."));
2420 return NULL;
2421 }
2422
2423 /* Set up the handful of non-empty slots needed by the dummy target
2424 vector. */
2425
2426 static void
2427 init_dummy_target (void)
2428 {
2429 dummy_target.to_shortname = "None";
2430 dummy_target.to_longname = "None";
2431 dummy_target.to_doc = "";
2432 dummy_target.to_attach = find_default_attach;
2433 dummy_target.to_create_inferior = find_default_create_inferior;
2434 dummy_target.to_can_async_p = find_default_can_async_p;
2435 dummy_target.to_is_async_p = find_default_is_async_p;
2436 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
2437 dummy_target.to_pid_to_str = normal_pid_to_str;
2438 dummy_target.to_stratum = dummy_stratum;
2439 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2440 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2441 dummy_target.to_xfer_partial = default_xfer_partial;
2442 dummy_target.to_magic = OPS_MAGIC;
2443 }
2444 \f
2445 static void
2446 debug_to_open (char *args, int from_tty)
2447 {
2448 debug_target.to_open (args, from_tty);
2449
2450 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2451 }
2452
2453 static void
2454 debug_to_close (int quitting)
2455 {
2456 target_close (&debug_target, quitting);
2457 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2458 }
2459
2460 void
2461 target_close (struct target_ops *targ, int quitting)
2462 {
2463 if (targ->to_xclose != NULL)
2464 targ->to_xclose (targ, quitting);
2465 else if (targ->to_close != NULL)
2466 targ->to_close (quitting);
2467 }
2468
2469 static void
2470 debug_to_attach (char *args, int from_tty)
2471 {
2472 debug_target.to_attach (args, from_tty);
2473
2474 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2475 }
2476
2477
2478 static void
2479 debug_to_post_attach (int pid)
2480 {
2481 debug_target.to_post_attach (pid);
2482
2483 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2484 }
2485
2486 static void
2487 debug_to_detach (char *args, int from_tty)
2488 {
2489 debug_target.to_detach (args, from_tty);
2490
2491 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2492 }
2493
2494 static void
2495 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2496 {
2497 debug_target.to_resume (ptid, step, siggnal);
2498
2499 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2500 step ? "step" : "continue",
2501 target_signal_to_name (siggnal));
2502 }
2503
2504 static ptid_t
2505 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2506 {
2507 ptid_t retval;
2508
2509 retval = debug_target.to_wait (ptid, status);
2510
2511 fprintf_unfiltered (gdb_stdlog,
2512 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2513 PIDGET (retval));
2514 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2515 switch (status->kind)
2516 {
2517 case TARGET_WAITKIND_EXITED:
2518 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2519 status->value.integer);
2520 break;
2521 case TARGET_WAITKIND_STOPPED:
2522 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2523 target_signal_to_name (status->value.sig));
2524 break;
2525 case TARGET_WAITKIND_SIGNALLED:
2526 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2527 target_signal_to_name (status->value.sig));
2528 break;
2529 case TARGET_WAITKIND_LOADED:
2530 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2531 break;
2532 case TARGET_WAITKIND_FORKED:
2533 fprintf_unfiltered (gdb_stdlog, "forked\n");
2534 break;
2535 case TARGET_WAITKIND_VFORKED:
2536 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2537 break;
2538 case TARGET_WAITKIND_EXECD:
2539 fprintf_unfiltered (gdb_stdlog, "execd\n");
2540 break;
2541 case TARGET_WAITKIND_SPURIOUS:
2542 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2543 break;
2544 default:
2545 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2546 break;
2547 }
2548
2549 return retval;
2550 }
2551
2552 static void
2553 debug_print_register (const char * func,
2554 struct regcache *regcache, int regno)
2555 {
2556 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2557 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2558 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2559 && gdbarch_register_name (gdbarch, regno) != NULL
2560 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2561 fprintf_unfiltered (gdb_stdlog, "(%s)",
2562 gdbarch_register_name (gdbarch, regno));
2563 else
2564 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2565 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
2566 {
2567 int i, size = register_size (gdbarch, regno);
2568 unsigned char buf[MAX_REGISTER_SIZE];
2569 regcache_raw_collect (regcache, regno, buf);
2570 fprintf_unfiltered (gdb_stdlog, " = ");
2571 for (i = 0; i < size; i++)
2572 {
2573 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2574 }
2575 if (size <= sizeof (LONGEST))
2576 {
2577 ULONGEST val = extract_unsigned_integer (buf, size);
2578 fprintf_unfiltered (gdb_stdlog, " %s %s",
2579 core_addr_to_string_nz (val), plongest (val));
2580 }
2581 }
2582 fprintf_unfiltered (gdb_stdlog, "\n");
2583 }
2584
2585 static void
2586 debug_to_fetch_registers (struct regcache *regcache, int regno)
2587 {
2588 debug_target.to_fetch_registers (regcache, regno);
2589 debug_print_register ("target_fetch_registers", regcache, regno);
2590 }
2591
2592 static void
2593 debug_to_store_registers (struct regcache *regcache, int regno)
2594 {
2595 debug_target.to_store_registers (regcache, regno);
2596 debug_print_register ("target_store_registers", regcache, regno);
2597 fprintf_unfiltered (gdb_stdlog, "\n");
2598 }
2599
2600 static void
2601 debug_to_prepare_to_store (struct regcache *regcache)
2602 {
2603 debug_target.to_prepare_to_store (regcache);
2604
2605 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2606 }
2607
2608 static int
2609 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2610 int write, struct mem_attrib *attrib,
2611 struct target_ops *target)
2612 {
2613 int retval;
2614
2615 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2616 attrib, target);
2617
2618 fprintf_unfiltered (gdb_stdlog,
2619 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2620 (unsigned int) memaddr, /* possable truncate long long */
2621 len, write ? "write" : "read", retval);
2622
2623 if (retval > 0)
2624 {
2625 int i;
2626
2627 fputs_unfiltered (", bytes =", gdb_stdlog);
2628 for (i = 0; i < retval; i++)
2629 {
2630 if ((((long) &(myaddr[i])) & 0xf) == 0)
2631 {
2632 if (targetdebug < 2 && i > 0)
2633 {
2634 fprintf_unfiltered (gdb_stdlog, " ...");
2635 break;
2636 }
2637 fprintf_unfiltered (gdb_stdlog, "\n");
2638 }
2639
2640 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2641 }
2642 }
2643
2644 fputc_unfiltered ('\n', gdb_stdlog);
2645
2646 return retval;
2647 }
2648
2649 static void
2650 debug_to_files_info (struct target_ops *target)
2651 {
2652 debug_target.to_files_info (target);
2653
2654 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2655 }
2656
2657 static int
2658 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2659 {
2660 int retval;
2661
2662 retval = debug_target.to_insert_breakpoint (bp_tgt);
2663
2664 fprintf_unfiltered (gdb_stdlog,
2665 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2666 (unsigned long) bp_tgt->placed_address,
2667 (unsigned long) retval);
2668 return retval;
2669 }
2670
2671 static int
2672 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2673 {
2674 int retval;
2675
2676 retval = debug_target.to_remove_breakpoint (bp_tgt);
2677
2678 fprintf_unfiltered (gdb_stdlog,
2679 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2680 (unsigned long) bp_tgt->placed_address,
2681 (unsigned long) retval);
2682 return retval;
2683 }
2684
2685 static int
2686 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2687 {
2688 int retval;
2689
2690 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2691
2692 fprintf_unfiltered (gdb_stdlog,
2693 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2694 (unsigned long) type,
2695 (unsigned long) cnt,
2696 (unsigned long) from_tty,
2697 (unsigned long) retval);
2698 return retval;
2699 }
2700
2701 static int
2702 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2703 {
2704 CORE_ADDR retval;
2705
2706 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2707
2708 fprintf_unfiltered (gdb_stdlog,
2709 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2710 (unsigned long) addr,
2711 (unsigned long) len,
2712 (unsigned long) retval);
2713 return retval;
2714 }
2715
2716 static int
2717 debug_to_stopped_by_watchpoint (void)
2718 {
2719 int retval;
2720
2721 retval = debug_target.to_stopped_by_watchpoint ();
2722
2723 fprintf_unfiltered (gdb_stdlog,
2724 "STOPPED_BY_WATCHPOINT () = %ld\n",
2725 (unsigned long) retval);
2726 return retval;
2727 }
2728
2729 static int
2730 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2731 {
2732 int retval;
2733
2734 retval = debug_target.to_stopped_data_address (target, addr);
2735
2736 fprintf_unfiltered (gdb_stdlog,
2737 "target_stopped_data_address ([0x%lx]) = %ld\n",
2738 (unsigned long)*addr,
2739 (unsigned long)retval);
2740 return retval;
2741 }
2742
2743 static int
2744 debug_to_watchpoint_addr_within_range (struct target_ops *target,
2745 CORE_ADDR addr,
2746 CORE_ADDR start, int length)
2747 {
2748 int retval;
2749
2750 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
2751 start, length);
2752
2753 fprintf_filtered (gdb_stdlog,
2754 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
2755 (unsigned long) addr, (unsigned long) start, length,
2756 retval);
2757 return retval;
2758 }
2759
2760 static int
2761 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2762 {
2763 int retval;
2764
2765 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2766
2767 fprintf_unfiltered (gdb_stdlog,
2768 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2769 (unsigned long) bp_tgt->placed_address,
2770 (unsigned long) retval);
2771 return retval;
2772 }
2773
2774 static int
2775 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2776 {
2777 int retval;
2778
2779 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2780
2781 fprintf_unfiltered (gdb_stdlog,
2782 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2783 (unsigned long) bp_tgt->placed_address,
2784 (unsigned long) retval);
2785 return retval;
2786 }
2787
2788 static int
2789 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2790 {
2791 int retval;
2792
2793 retval = debug_target.to_insert_watchpoint (addr, len, type);
2794
2795 fprintf_unfiltered (gdb_stdlog,
2796 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2797 (unsigned long) addr, len, type, (unsigned long) retval);
2798 return retval;
2799 }
2800
2801 static int
2802 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2803 {
2804 int retval;
2805
2806 retval = debug_target.to_remove_watchpoint (addr, len, type);
2807
2808 fprintf_unfiltered (gdb_stdlog,
2809 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2810 (unsigned long) addr, len, type, (unsigned long) retval);
2811 return retval;
2812 }
2813
2814 static void
2815 debug_to_terminal_init (void)
2816 {
2817 debug_target.to_terminal_init ();
2818
2819 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2820 }
2821
2822 static void
2823 debug_to_terminal_inferior (void)
2824 {
2825 debug_target.to_terminal_inferior ();
2826
2827 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2828 }
2829
2830 static void
2831 debug_to_terminal_ours_for_output (void)
2832 {
2833 debug_target.to_terminal_ours_for_output ();
2834
2835 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2836 }
2837
2838 static void
2839 debug_to_terminal_ours (void)
2840 {
2841 debug_target.to_terminal_ours ();
2842
2843 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2844 }
2845
2846 static void
2847 debug_to_terminal_save_ours (void)
2848 {
2849 debug_target.to_terminal_save_ours ();
2850
2851 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2852 }
2853
2854 static void
2855 debug_to_terminal_info (char *arg, int from_tty)
2856 {
2857 debug_target.to_terminal_info (arg, from_tty);
2858
2859 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2860 from_tty);
2861 }
2862
2863 static void
2864 debug_to_kill (void)
2865 {
2866 debug_target.to_kill ();
2867
2868 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2869 }
2870
2871 static void
2872 debug_to_load (char *args, int from_tty)
2873 {
2874 debug_target.to_load (args, from_tty);
2875
2876 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2877 }
2878
2879 static int
2880 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2881 {
2882 int retval;
2883
2884 retval = debug_target.to_lookup_symbol (name, addrp);
2885
2886 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2887
2888 return retval;
2889 }
2890
2891 static void
2892 debug_to_create_inferior (char *exec_file, char *args, char **env,
2893 int from_tty)
2894 {
2895 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2896
2897 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2898 exec_file, args, from_tty);
2899 }
2900
2901 static void
2902 debug_to_post_startup_inferior (ptid_t ptid)
2903 {
2904 debug_target.to_post_startup_inferior (ptid);
2905
2906 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2907 PIDGET (ptid));
2908 }
2909
2910 static void
2911 debug_to_acknowledge_created_inferior (int pid)
2912 {
2913 debug_target.to_acknowledge_created_inferior (pid);
2914
2915 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2916 pid);
2917 }
2918
2919 static void
2920 debug_to_insert_fork_catchpoint (int pid)
2921 {
2922 debug_target.to_insert_fork_catchpoint (pid);
2923
2924 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2925 pid);
2926 }
2927
2928 static int
2929 debug_to_remove_fork_catchpoint (int pid)
2930 {
2931 int retval;
2932
2933 retval = debug_target.to_remove_fork_catchpoint (pid);
2934
2935 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2936 pid, retval);
2937
2938 return retval;
2939 }
2940
2941 static void
2942 debug_to_insert_vfork_catchpoint (int pid)
2943 {
2944 debug_target.to_insert_vfork_catchpoint (pid);
2945
2946 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2947 pid);
2948 }
2949
2950 static int
2951 debug_to_remove_vfork_catchpoint (int pid)
2952 {
2953 int retval;
2954
2955 retval = debug_target.to_remove_vfork_catchpoint (pid);
2956
2957 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2958 pid, retval);
2959
2960 return retval;
2961 }
2962
2963 static void
2964 debug_to_insert_exec_catchpoint (int pid)
2965 {
2966 debug_target.to_insert_exec_catchpoint (pid);
2967
2968 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2969 pid);
2970 }
2971
2972 static int
2973 debug_to_remove_exec_catchpoint (int pid)
2974 {
2975 int retval;
2976
2977 retval = debug_target.to_remove_exec_catchpoint (pid);
2978
2979 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2980 pid, retval);
2981
2982 return retval;
2983 }
2984
2985 static int
2986 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2987 {
2988 int has_exited;
2989
2990 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2991
2992 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2993 pid, wait_status, *exit_status, has_exited);
2994
2995 return has_exited;
2996 }
2997
2998 static void
2999 debug_to_mourn_inferior (void)
3000 {
3001 debug_target.to_mourn_inferior ();
3002
3003 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
3004 }
3005
3006 static int
3007 debug_to_can_run (void)
3008 {
3009 int retval;
3010
3011 retval = debug_target.to_can_run ();
3012
3013 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3014
3015 return retval;
3016 }
3017
3018 static void
3019 debug_to_notice_signals (ptid_t ptid)
3020 {
3021 debug_target.to_notice_signals (ptid);
3022
3023 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3024 PIDGET (ptid));
3025 }
3026
3027 static int
3028 debug_to_thread_alive (ptid_t ptid)
3029 {
3030 int retval;
3031
3032 retval = debug_target.to_thread_alive (ptid);
3033
3034 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3035 PIDGET (ptid), retval);
3036
3037 return retval;
3038 }
3039
3040 static void
3041 debug_to_find_new_threads (void)
3042 {
3043 debug_target.to_find_new_threads ();
3044
3045 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
3046 }
3047
3048 static void
3049 debug_to_stop (ptid_t ptid)
3050 {
3051 debug_target.to_stop (ptid);
3052
3053 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3054 target_pid_to_str (ptid));
3055 }
3056
3057 static void
3058 debug_to_rcmd (char *command,
3059 struct ui_file *outbuf)
3060 {
3061 debug_target.to_rcmd (command, outbuf);
3062 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3063 }
3064
3065 static char *
3066 debug_to_pid_to_exec_file (int pid)
3067 {
3068 char *exec_file;
3069
3070 exec_file = debug_target.to_pid_to_exec_file (pid);
3071
3072 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3073 pid, exec_file);
3074
3075 return exec_file;
3076 }
3077
3078 static void
3079 setup_target_debug (void)
3080 {
3081 memcpy (&debug_target, &current_target, sizeof debug_target);
3082
3083 current_target.to_open = debug_to_open;
3084 current_target.to_close = debug_to_close;
3085 current_target.to_attach = debug_to_attach;
3086 current_target.to_post_attach = debug_to_post_attach;
3087 current_target.to_detach = debug_to_detach;
3088 current_target.to_resume = debug_to_resume;
3089 current_target.to_wait = debug_to_wait;
3090 current_target.to_fetch_registers = debug_to_fetch_registers;
3091 current_target.to_store_registers = debug_to_store_registers;
3092 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3093 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3094 current_target.to_files_info = debug_to_files_info;
3095 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3096 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3097 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3098 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3099 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3100 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3101 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3102 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3103 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3104 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3105 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3106 current_target.to_terminal_init = debug_to_terminal_init;
3107 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3108 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3109 current_target.to_terminal_ours = debug_to_terminal_ours;
3110 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3111 current_target.to_terminal_info = debug_to_terminal_info;
3112 current_target.to_kill = debug_to_kill;
3113 current_target.to_load = debug_to_load;
3114 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3115 current_target.to_create_inferior = debug_to_create_inferior;
3116 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3117 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3118 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3119 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3120 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3121 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3122 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3123 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3124 current_target.to_has_exited = debug_to_has_exited;
3125 current_target.to_mourn_inferior = debug_to_mourn_inferior;
3126 current_target.to_can_run = debug_to_can_run;
3127 current_target.to_notice_signals = debug_to_notice_signals;
3128 current_target.to_thread_alive = debug_to_thread_alive;
3129 current_target.to_find_new_threads = debug_to_find_new_threads;
3130 current_target.to_stop = debug_to_stop;
3131 current_target.to_rcmd = debug_to_rcmd;
3132 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3133 }
3134 \f
3135
3136 static char targ_desc[] =
3137 "Names of targets and files being debugged.\n\
3138 Shows the entire stack of targets currently in use (including the exec-file,\n\
3139 core-file, and process, if any), as well as the symbol file name.";
3140
3141 static void
3142 do_monitor_command (char *cmd,
3143 int from_tty)
3144 {
3145 if ((current_target.to_rcmd
3146 == (void (*) (char *, struct ui_file *)) tcomplain)
3147 || (current_target.to_rcmd == debug_to_rcmd
3148 && (debug_target.to_rcmd
3149 == (void (*) (char *, struct ui_file *)) tcomplain)))
3150 error (_("\"monitor\" command not supported by this target."));
3151 target_rcmd (cmd, gdb_stdtarg);
3152 }
3153
3154 /* Print the name of each layers of our target stack. */
3155
3156 static void
3157 maintenance_print_target_stack (char *cmd, int from_tty)
3158 {
3159 struct target_ops *t;
3160
3161 printf_filtered (_("The current target stack is:\n"));
3162
3163 for (t = target_stack; t != NULL; t = t->beneath)
3164 {
3165 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3166 }
3167 }
3168
3169 /* Controls if async mode is permitted. */
3170 int target_async_permitted = 0;
3171
3172 /* The set command writes to this variable. If the inferior is
3173 executing, linux_nat_async_permitted is *not* updated. */
3174 static int target_async_permitted_1 = 0;
3175
3176 static void
3177 set_maintenance_target_async_permitted (char *args, int from_tty,
3178 struct cmd_list_element *c)
3179 {
3180 if (target_has_execution)
3181 {
3182 target_async_permitted_1 = target_async_permitted;
3183 error (_("Cannot change this setting while the inferior is running."));
3184 }
3185
3186 target_async_permitted = target_async_permitted_1;
3187 }
3188
3189 static void
3190 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3191 struct cmd_list_element *c,
3192 const char *value)
3193 {
3194 fprintf_filtered (file, _("\
3195 Controlling the inferior in asynchronous mode is %s.\n"), value);
3196 }
3197
3198 void
3199 initialize_targets (void)
3200 {
3201 init_dummy_target ();
3202 push_target (&dummy_target);
3203
3204 add_info ("target", target_info, targ_desc);
3205 add_info ("files", target_info, targ_desc);
3206
3207 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3208 Set target debugging."), _("\
3209 Show target debugging."), _("\
3210 When non-zero, target debugging is enabled. Higher numbers are more\n\
3211 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3212 command."),
3213 NULL,
3214 show_targetdebug,
3215 &setdebuglist, &showdebuglist);
3216
3217 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3218 &trust_readonly, _("\
3219 Set mode for reading from readonly sections."), _("\
3220 Show mode for reading from readonly sections."), _("\
3221 When this mode is on, memory reads from readonly sections (such as .text)\n\
3222 will be read from the object file instead of from the target. This will\n\
3223 result in significant performance improvement for remote targets."),
3224 NULL,
3225 show_trust_readonly,
3226 &setlist, &showlist);
3227
3228 add_com ("monitor", class_obscure, do_monitor_command,
3229 _("Send a command to the remote monitor (remote targets only)."));
3230
3231 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3232 _("Print the name of each layer of the internal target stack."),
3233 &maintenanceprintlist);
3234
3235 add_setshow_boolean_cmd ("target-async", no_class,
3236 &target_async_permitted_1, _("\
3237 Set whether gdb controls the inferior in asynchronous mode."), _("\
3238 Show whether gdb controls the inferior in asynchronous mode."), _("\
3239 Tells gdb whether to control the inferior in asynchronous mode."),
3240 set_maintenance_target_async_permitted,
3241 show_maintenance_target_async_permitted,
3242 &setlist,
3243 &showlist);
3244
3245 target_dcache = dcache_init ();
3246 }
This page took 0.095444 seconds and 4 git commands to generate.