Fix wrong prefix in py-breakpoint.exp
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50
51 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
52
53 static void default_terminal_info (struct target_ops *, const char *, int);
54
55 static int default_watchpoint_addr_within_range (struct target_ops *,
56 CORE_ADDR, CORE_ADDR, int);
57
58 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
59 CORE_ADDR, int);
60
61 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
62
63 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
64 long lwp, long tid);
65
66 static int default_follow_fork (struct target_ops *self, int follow_child,
67 int detach_fork);
68
69 static void default_mourn_inferior (struct target_ops *self);
70
71 static int default_search_memory (struct target_ops *ops,
72 CORE_ADDR start_addr,
73 ULONGEST search_space_len,
74 const gdb_byte *pattern,
75 ULONGEST pattern_len,
76 CORE_ADDR *found_addrp);
77
78 static int default_verify_memory (struct target_ops *self,
79 const gdb_byte *data,
80 CORE_ADDR memaddr, ULONGEST size);
81
82 static struct address_space *default_thread_address_space
83 (struct target_ops *self, ptid_t ptid);
84
85 static void tcomplain (void) ATTRIBUTE_NORETURN;
86
87 static int return_zero (struct target_ops *);
88
89 static int return_zero_has_execution (struct target_ops *, ptid_t);
90
91 static struct target_ops *find_default_run_target (const char *);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
100 static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
103 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
105 static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
108 static struct target_ops debug_target;
109
110 #include "target-delegates.c"
111
112 static void init_dummy_target (void);
113
114 static void update_current_target (void);
115
116 /* Vector of existing target structures. */
117 typedef struct target_ops *target_ops_p;
118 DEF_VEC_P (target_ops_p);
119 static VEC (target_ops_p) *target_structs;
120
121 /* The initial current target, so that there is always a semi-valid
122 current target. */
123
124 static struct target_ops dummy_target;
125
126 /* Top of target stack. */
127
128 static struct target_ops *target_stack;
129
130 /* The target structure we are currently using to talk to a process
131 or file or whatever "inferior" we have. */
132
133 struct target_ops current_target;
134
135 /* Command list for target. */
136
137 static struct cmd_list_element *targetlist = NULL;
138
139 /* Nonzero if we should trust readonly sections from the
140 executable when reading memory. */
141
142 static int trust_readonly = 0;
143
144 /* Nonzero if we should show true memory content including
145 memory breakpoint inserted by gdb. */
146
147 static int show_memory_breakpoints = 0;
148
149 /* These globals control whether GDB attempts to perform these
150 operations; they are useful for targets that need to prevent
151 inadvertant disruption, such as in non-stop mode. */
152
153 int may_write_registers = 1;
154
155 int may_write_memory = 1;
156
157 int may_insert_breakpoints = 1;
158
159 int may_insert_tracepoints = 1;
160
161 int may_insert_fast_tracepoints = 1;
162
163 int may_stop = 1;
164
165 /* Non-zero if we want to see trace of target level stuff. */
166
167 static unsigned int targetdebug = 0;
168
169 static void
170 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
171 {
172 update_current_target ();
173 }
174
175 static void
176 show_targetdebug (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
180 }
181
182 static void setup_target_debug (void);
183
184 /* The user just typed 'target' without the name of a target. */
185
186 static void
187 target_command (const char *arg, int from_tty)
188 {
189 fputs_filtered ("Argument required (target name). Try `help target'\n",
190 gdb_stdout);
191 }
192
193 /* Default target_has_* methods for process_stratum targets. */
194
195 int
196 default_child_has_all_memory (struct target_ops *ops)
197 {
198 /* If no inferior selected, then we can't read memory here. */
199 if (ptid_equal (inferior_ptid, null_ptid))
200 return 0;
201
202 return 1;
203 }
204
205 int
206 default_child_has_memory (struct target_ops *ops)
207 {
208 /* If no inferior selected, then we can't read memory here. */
209 if (ptid_equal (inferior_ptid, null_ptid))
210 return 0;
211
212 return 1;
213 }
214
215 int
216 default_child_has_stack (struct target_ops *ops)
217 {
218 /* If no inferior selected, there's no stack. */
219 if (ptid_equal (inferior_ptid, null_ptid))
220 return 0;
221
222 return 1;
223 }
224
225 int
226 default_child_has_registers (struct target_ops *ops)
227 {
228 /* Can't read registers from no inferior. */
229 if (ptid_equal (inferior_ptid, null_ptid))
230 return 0;
231
232 return 1;
233 }
234
235 int
236 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
237 {
238 /* If there's no thread selected, then we can't make it run through
239 hoops. */
240 if (ptid_equal (the_ptid, null_ptid))
241 return 0;
242
243 return 1;
244 }
245
246
247 int
248 target_has_all_memory_1 (void)
249 {
250 struct target_ops *t;
251
252 for (t = current_target.beneath; t != NULL; t = t->beneath)
253 if (t->to_has_all_memory (t))
254 return 1;
255
256 return 0;
257 }
258
259 int
260 target_has_memory_1 (void)
261 {
262 struct target_ops *t;
263
264 for (t = current_target.beneath; t != NULL; t = t->beneath)
265 if (t->to_has_memory (t))
266 return 1;
267
268 return 0;
269 }
270
271 int
272 target_has_stack_1 (void)
273 {
274 struct target_ops *t;
275
276 for (t = current_target.beneath; t != NULL; t = t->beneath)
277 if (t->to_has_stack (t))
278 return 1;
279
280 return 0;
281 }
282
283 int
284 target_has_registers_1 (void)
285 {
286 struct target_ops *t;
287
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 if (t->to_has_registers (t))
290 return 1;
291
292 return 0;
293 }
294
295 int
296 target_has_execution_1 (ptid_t the_ptid)
297 {
298 struct target_ops *t;
299
300 for (t = current_target.beneath; t != NULL; t = t->beneath)
301 if (t->to_has_execution (t, the_ptid))
302 return 1;
303
304 return 0;
305 }
306
307 int
308 target_has_execution_current (void)
309 {
310 return target_has_execution_1 (inferior_ptid);
311 }
312
313 /* Complete initialization of T. This ensures that various fields in
314 T are set, if needed by the target implementation. */
315
316 void
317 complete_target_initialization (struct target_ops *t)
318 {
319 /* Provide default values for all "must have" methods. */
320
321 if (t->to_has_all_memory == NULL)
322 t->to_has_all_memory = return_zero;
323
324 if (t->to_has_memory == NULL)
325 t->to_has_memory = return_zero;
326
327 if (t->to_has_stack == NULL)
328 t->to_has_stack = return_zero;
329
330 if (t->to_has_registers == NULL)
331 t->to_has_registers = return_zero;
332
333 if (t->to_has_execution == NULL)
334 t->to_has_execution = return_zero_has_execution;
335
336 /* These methods can be called on an unpushed target and so require
337 a default implementation if the target might plausibly be the
338 default run target. */
339 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
340 && t->to_supports_non_stop != NULL));
341
342 install_delegators (t);
343 }
344
345 /* This is used to implement the various target commands. */
346
347 static void
348 open_target (const char *args, int from_tty, struct cmd_list_element *command)
349 {
350 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
351
352 if (targetdebug)
353 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
354 ops->to_shortname);
355
356 ops->to_open (args, from_tty);
357
358 if (targetdebug)
359 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
360 ops->to_shortname, args, from_tty);
361 }
362
363 /* Add possible target architecture T to the list and add a new
364 command 'target T->to_shortname'. Set COMPLETER as the command's
365 completer if not NULL. */
366
367 void
368 add_target_with_completer (struct target_ops *t,
369 completer_ftype *completer)
370 {
371 struct cmd_list_element *c;
372
373 complete_target_initialization (t);
374
375 VEC_safe_push (target_ops_p, target_structs, t);
376
377 if (targetlist == NULL)
378 add_prefix_cmd ("target", class_run, target_command, _("\
379 Connect to a target machine or process.\n\
380 The first argument is the type or protocol of the target machine.\n\
381 Remaining arguments are interpreted by the target protocol. For more\n\
382 information on the arguments for a particular protocol, type\n\
383 `help target ' followed by the protocol name."),
384 &targetlist, "target ", 0, &cmdlist);
385 c = add_cmd (t->to_shortname, no_class, t->to_doc, &targetlist);
386 set_cmd_sfunc (c, open_target);
387 set_cmd_context (c, t);
388 if (completer != NULL)
389 set_cmd_completer (c, completer);
390 }
391
392 /* Add a possible target architecture to the list. */
393
394 void
395 add_target (struct target_ops *t)
396 {
397 add_target_with_completer (t, NULL);
398 }
399
400 /* See target.h. */
401
402 void
403 add_deprecated_target_alias (struct target_ops *t, const char *alias)
404 {
405 struct cmd_list_element *c;
406 char *alt;
407
408 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
409 see PR cli/15104. */
410 c = add_cmd (alias, no_class, t->to_doc, &targetlist);
411 set_cmd_sfunc (c, open_target);
412 set_cmd_context (c, t);
413 alt = xstrprintf ("target %s", t->to_shortname);
414 deprecate_cmd (c, alt);
415 }
416
417 /* Stub functions */
418
419 void
420 target_kill (void)
421 {
422 current_target.to_kill (&current_target);
423 }
424
425 void
426 target_load (const char *arg, int from_tty)
427 {
428 target_dcache_invalidate ();
429 (*current_target.to_load) (&current_target, arg, from_tty);
430 }
431
432 /* Define it. */
433
434 enum target_terminal::terminal_state target_terminal::terminal_state
435 = target_terminal::terminal_is_ours;
436
437 /* See target/target.h. */
438
439 void
440 target_terminal::init (void)
441 {
442 (*current_target.to_terminal_init) (&current_target);
443
444 terminal_state = terminal_is_ours;
445 }
446
447 /* See target/target.h. */
448
449 void
450 target_terminal::inferior (void)
451 {
452 struct ui *ui = current_ui;
453
454 /* A background resume (``run&'') should leave GDB in control of the
455 terminal. */
456 if (ui->prompt_state != PROMPT_BLOCKED)
457 return;
458
459 /* Since we always run the inferior in the main console (unless "set
460 inferior-tty" is in effect), when some UI other than the main one
461 calls target_terminal::inferior, then we leave the main UI's
462 terminal settings as is. */
463 if (ui != main_ui)
464 return;
465
466 if (terminal_state == terminal_is_inferior)
467 return;
468
469 /* If GDB is resuming the inferior in the foreground, install
470 inferior's terminal modes. */
471 (*current_target.to_terminal_inferior) (&current_target);
472 terminal_state = terminal_is_inferior;
473
474 /* If the user hit C-c before, pretend that it was hit right
475 here. */
476 if (check_quit_flag ())
477 target_pass_ctrlc ();
478 }
479
480 /* See target/target.h. */
481
482 void
483 target_terminal::ours ()
484 {
485 struct ui *ui = current_ui;
486
487 /* See target_terminal::inferior. */
488 if (ui != main_ui)
489 return;
490
491 if (terminal_state == terminal_is_ours)
492 return;
493
494 (*current_target.to_terminal_ours) (&current_target);
495 terminal_state = terminal_is_ours;
496 }
497
498 /* See target/target.h. */
499
500 void
501 target_terminal::ours_for_output ()
502 {
503 struct ui *ui = current_ui;
504
505 /* See target_terminal::inferior. */
506 if (ui != main_ui)
507 return;
508
509 if (terminal_state != terminal_is_inferior)
510 return;
511 (*current_target.to_terminal_ours_for_output) (&current_target);
512 terminal_state = terminal_is_ours_for_output;
513 }
514
515 /* See target/target.h. */
516
517 void
518 target_terminal::info (const char *arg, int from_tty)
519 {
520 (*current_target.to_terminal_info) (&current_target, arg, from_tty);
521 }
522
523 /* See target.h. */
524
525 int
526 target_supports_terminal_ours (void)
527 {
528 struct target_ops *t;
529
530 for (t = current_target.beneath; t != NULL; t = t->beneath)
531 {
532 if (t->to_terminal_ours != delegate_terminal_ours
533 && t->to_terminal_ours != tdefault_terminal_ours)
534 return 1;
535 }
536
537 return 0;
538 }
539
540 static void
541 tcomplain (void)
542 {
543 error (_("You can't do that when your target is `%s'"),
544 current_target.to_shortname);
545 }
546
547 void
548 noprocess (void)
549 {
550 error (_("You can't do that without a process to debug."));
551 }
552
553 static void
554 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
555 {
556 printf_unfiltered (_("No saved terminal information.\n"));
557 }
558
559 /* A default implementation for the to_get_ada_task_ptid target method.
560
561 This function builds the PTID by using both LWP and TID as part of
562 the PTID lwp and tid elements. The pid used is the pid of the
563 inferior_ptid. */
564
565 static ptid_t
566 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
567 {
568 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
569 }
570
571 static enum exec_direction_kind
572 default_execution_direction (struct target_ops *self)
573 {
574 if (!target_can_execute_reverse)
575 return EXEC_FORWARD;
576 else if (!target_can_async_p ())
577 return EXEC_FORWARD;
578 else
579 gdb_assert_not_reached ("\
580 to_execution_direction must be implemented for reverse async");
581 }
582
583 /* Go through the target stack from top to bottom, copying over zero
584 entries in current_target, then filling in still empty entries. In
585 effect, we are doing class inheritance through the pushed target
586 vectors.
587
588 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
589 is currently implemented, is that it discards any knowledge of
590 which target an inherited method originally belonged to.
591 Consequently, new new target methods should instead explicitly and
592 locally search the target stack for the target that can handle the
593 request. */
594
595 static void
596 update_current_target (void)
597 {
598 struct target_ops *t;
599
600 /* First, reset current's contents. */
601 memset (&current_target, 0, sizeof (current_target));
602
603 /* Install the delegators. */
604 install_delegators (&current_target);
605
606 current_target.to_stratum = target_stack->to_stratum;
607
608 #define INHERIT(FIELD, TARGET) \
609 if (!current_target.FIELD) \
610 current_target.FIELD = (TARGET)->FIELD
611
612 /* Do not add any new INHERITs here. Instead, use the delegation
613 mechanism provided by make-target-delegates. */
614 for (t = target_stack; t; t = t->beneath)
615 {
616 INHERIT (to_shortname, t);
617 INHERIT (to_longname, t);
618 INHERIT (to_attach_no_wait, t);
619 INHERIT (to_have_steppable_watchpoint, t);
620 INHERIT (to_have_continuable_watchpoint, t);
621 INHERIT (to_has_thread_control, t);
622 }
623 #undef INHERIT
624
625 /* Finally, position the target-stack beneath the squashed
626 "current_target". That way code looking for a non-inherited
627 target method can quickly and simply find it. */
628 current_target.beneath = target_stack;
629
630 if (targetdebug)
631 setup_target_debug ();
632 }
633
634 /* Push a new target type into the stack of the existing target accessors,
635 possibly superseding some of the existing accessors.
636
637 Rather than allow an empty stack, we always have the dummy target at
638 the bottom stratum, so we can call the function vectors without
639 checking them. */
640
641 void
642 push_target (struct target_ops *t)
643 {
644 struct target_ops **cur;
645
646 /* Check magic number. If wrong, it probably means someone changed
647 the struct definition, but not all the places that initialize one. */
648 if (t->to_magic != OPS_MAGIC)
649 {
650 fprintf_unfiltered (gdb_stderr,
651 "Magic number of %s target struct wrong\n",
652 t->to_shortname);
653 internal_error (__FILE__, __LINE__,
654 _("failed internal consistency check"));
655 }
656
657 /* Find the proper stratum to install this target in. */
658 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
659 {
660 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
661 break;
662 }
663
664 /* If there's already targets at this stratum, remove them. */
665 /* FIXME: cagney/2003-10-15: I think this should be popping all
666 targets to CUR, and not just those at this stratum level. */
667 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
668 {
669 /* There's already something at this stratum level. Close it,
670 and un-hook it from the stack. */
671 struct target_ops *tmp = (*cur);
672
673 (*cur) = (*cur)->beneath;
674 tmp->beneath = NULL;
675 target_close (tmp);
676 }
677
678 /* We have removed all targets in our stratum, now add the new one. */
679 t->beneath = (*cur);
680 (*cur) = t;
681
682 update_current_target ();
683 }
684
685 /* Remove a target_ops vector from the stack, wherever it may be.
686 Return how many times it was removed (0 or 1). */
687
688 int
689 unpush_target (struct target_ops *t)
690 {
691 struct target_ops **cur;
692 struct target_ops *tmp;
693
694 if (t->to_stratum == dummy_stratum)
695 internal_error (__FILE__, __LINE__,
696 _("Attempt to unpush the dummy target"));
697
698 /* Look for the specified target. Note that we assume that a target
699 can only occur once in the target stack. */
700
701 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
702 {
703 if ((*cur) == t)
704 break;
705 }
706
707 /* If we don't find target_ops, quit. Only open targets should be
708 closed. */
709 if ((*cur) == NULL)
710 return 0;
711
712 /* Unchain the target. */
713 tmp = (*cur);
714 (*cur) = (*cur)->beneath;
715 tmp->beneath = NULL;
716
717 update_current_target ();
718
719 /* Finally close the target. Note we do this after unchaining, so
720 any target method calls from within the target_close
721 implementation don't end up in T anymore. */
722 target_close (t);
723
724 return 1;
725 }
726
727 /* Unpush TARGET and assert that it worked. */
728
729 static void
730 unpush_target_and_assert (struct target_ops *target)
731 {
732 if (!unpush_target (target))
733 {
734 fprintf_unfiltered (gdb_stderr,
735 "pop_all_targets couldn't find target %s\n",
736 target->to_shortname);
737 internal_error (__FILE__, __LINE__,
738 _("failed internal consistency check"));
739 }
740 }
741
742 void
743 pop_all_targets_above (enum strata above_stratum)
744 {
745 while ((int) (current_target.to_stratum) > (int) above_stratum)
746 unpush_target_and_assert (target_stack);
747 }
748
749 /* See target.h. */
750
751 void
752 pop_all_targets_at_and_above (enum strata stratum)
753 {
754 while ((int) (current_target.to_stratum) >= (int) stratum)
755 unpush_target_and_assert (target_stack);
756 }
757
758 void
759 pop_all_targets (void)
760 {
761 pop_all_targets_above (dummy_stratum);
762 }
763
764 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
765
766 int
767 target_is_pushed (struct target_ops *t)
768 {
769 struct target_ops *cur;
770
771 /* Check magic number. If wrong, it probably means someone changed
772 the struct definition, but not all the places that initialize one. */
773 if (t->to_magic != OPS_MAGIC)
774 {
775 fprintf_unfiltered (gdb_stderr,
776 "Magic number of %s target struct wrong\n",
777 t->to_shortname);
778 internal_error (__FILE__, __LINE__,
779 _("failed internal consistency check"));
780 }
781
782 for (cur = target_stack; cur != NULL; cur = cur->beneath)
783 if (cur == t)
784 return 1;
785
786 return 0;
787 }
788
789 /* Default implementation of to_get_thread_local_address. */
790
791 static void
792 generic_tls_error (void)
793 {
794 throw_error (TLS_GENERIC_ERROR,
795 _("Cannot find thread-local variables on this target"));
796 }
797
798 /* Using the objfile specified in OBJFILE, find the address for the
799 current thread's thread-local storage with offset OFFSET. */
800 CORE_ADDR
801 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
802 {
803 volatile CORE_ADDR addr = 0;
804 struct target_ops *target = &current_target;
805
806 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
807 {
808 ptid_t ptid = inferior_ptid;
809
810 TRY
811 {
812 CORE_ADDR lm_addr;
813
814 /* Fetch the load module address for this objfile. */
815 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
816 objfile);
817
818 addr = target->to_get_thread_local_address (target, ptid,
819 lm_addr, offset);
820 }
821 /* If an error occurred, print TLS related messages here. Otherwise,
822 throw the error to some higher catcher. */
823 CATCH (ex, RETURN_MASK_ALL)
824 {
825 int objfile_is_library = (objfile->flags & OBJF_SHARED);
826
827 switch (ex.error)
828 {
829 case TLS_NO_LIBRARY_SUPPORT_ERROR:
830 error (_("Cannot find thread-local variables "
831 "in this thread library."));
832 break;
833 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
834 if (objfile_is_library)
835 error (_("Cannot find shared library `%s' in dynamic"
836 " linker's load module list"), objfile_name (objfile));
837 else
838 error (_("Cannot find executable file `%s' in dynamic"
839 " linker's load module list"), objfile_name (objfile));
840 break;
841 case TLS_NOT_ALLOCATED_YET_ERROR:
842 if (objfile_is_library)
843 error (_("The inferior has not yet allocated storage for"
844 " thread-local variables in\n"
845 "the shared library `%s'\n"
846 "for %s"),
847 objfile_name (objfile), target_pid_to_str (ptid));
848 else
849 error (_("The inferior has not yet allocated storage for"
850 " thread-local variables in\n"
851 "the executable `%s'\n"
852 "for %s"),
853 objfile_name (objfile), target_pid_to_str (ptid));
854 break;
855 case TLS_GENERIC_ERROR:
856 if (objfile_is_library)
857 error (_("Cannot find thread-local storage for %s, "
858 "shared library %s:\n%s"),
859 target_pid_to_str (ptid),
860 objfile_name (objfile), ex.message);
861 else
862 error (_("Cannot find thread-local storage for %s, "
863 "executable file %s:\n%s"),
864 target_pid_to_str (ptid),
865 objfile_name (objfile), ex.message);
866 break;
867 default:
868 throw_exception (ex);
869 break;
870 }
871 }
872 END_CATCH
873 }
874 /* It wouldn't be wrong here to try a gdbarch method, too; finding
875 TLS is an ABI-specific thing. But we don't do that yet. */
876 else
877 error (_("Cannot find thread-local variables on this target"));
878
879 return addr;
880 }
881
882 const char *
883 target_xfer_status_to_string (enum target_xfer_status status)
884 {
885 #define CASE(X) case X: return #X
886 switch (status)
887 {
888 CASE(TARGET_XFER_E_IO);
889 CASE(TARGET_XFER_UNAVAILABLE);
890 default:
891 return "<unknown>";
892 }
893 #undef CASE
894 };
895
896
897 #undef MIN
898 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
899
900 /* target_read_string -- read a null terminated string, up to LEN bytes,
901 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
902 Set *STRING to a pointer to malloc'd memory containing the data; the caller
903 is responsible for freeing it. Return the number of bytes successfully
904 read. */
905
906 int
907 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
908 {
909 int tlen, offset, i;
910 gdb_byte buf[4];
911 int errcode = 0;
912 char *buffer;
913 int buffer_allocated;
914 char *bufptr;
915 unsigned int nbytes_read = 0;
916
917 gdb_assert (string);
918
919 /* Small for testing. */
920 buffer_allocated = 4;
921 buffer = (char *) xmalloc (buffer_allocated);
922 bufptr = buffer;
923
924 while (len > 0)
925 {
926 tlen = MIN (len, 4 - (memaddr & 3));
927 offset = memaddr & 3;
928
929 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
930 if (errcode != 0)
931 {
932 /* The transfer request might have crossed the boundary to an
933 unallocated region of memory. Retry the transfer, requesting
934 a single byte. */
935 tlen = 1;
936 offset = 0;
937 errcode = target_read_memory (memaddr, buf, 1);
938 if (errcode != 0)
939 goto done;
940 }
941
942 if (bufptr - buffer + tlen > buffer_allocated)
943 {
944 unsigned int bytes;
945
946 bytes = bufptr - buffer;
947 buffer_allocated *= 2;
948 buffer = (char *) xrealloc (buffer, buffer_allocated);
949 bufptr = buffer + bytes;
950 }
951
952 for (i = 0; i < tlen; i++)
953 {
954 *bufptr++ = buf[i + offset];
955 if (buf[i + offset] == '\000')
956 {
957 nbytes_read += i + 1;
958 goto done;
959 }
960 }
961
962 memaddr += tlen;
963 len -= tlen;
964 nbytes_read += tlen;
965 }
966 done:
967 *string = buffer;
968 if (errnop != NULL)
969 *errnop = errcode;
970 return nbytes_read;
971 }
972
973 struct target_section_table *
974 target_get_section_table (struct target_ops *target)
975 {
976 return (*target->to_get_section_table) (target);
977 }
978
979 /* Find a section containing ADDR. */
980
981 struct target_section *
982 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
983 {
984 struct target_section_table *table = target_get_section_table (target);
985 struct target_section *secp;
986
987 if (table == NULL)
988 return NULL;
989
990 for (secp = table->sections; secp < table->sections_end; secp++)
991 {
992 if (addr >= secp->addr && addr < secp->endaddr)
993 return secp;
994 }
995 return NULL;
996 }
997
998
999 /* Helper for the memory xfer routines. Checks the attributes of the
1000 memory region of MEMADDR against the read or write being attempted.
1001 If the access is permitted returns true, otherwise returns false.
1002 REGION_P is an optional output parameter. If not-NULL, it is
1003 filled with a pointer to the memory region of MEMADDR. REG_LEN
1004 returns LEN trimmed to the end of the region. This is how much the
1005 caller can continue requesting, if the access is permitted. A
1006 single xfer request must not straddle memory region boundaries. */
1007
1008 static int
1009 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1010 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1011 struct mem_region **region_p)
1012 {
1013 struct mem_region *region;
1014
1015 region = lookup_mem_region (memaddr);
1016
1017 if (region_p != NULL)
1018 *region_p = region;
1019
1020 switch (region->attrib.mode)
1021 {
1022 case MEM_RO:
1023 if (writebuf != NULL)
1024 return 0;
1025 break;
1026
1027 case MEM_WO:
1028 if (readbuf != NULL)
1029 return 0;
1030 break;
1031
1032 case MEM_FLASH:
1033 /* We only support writing to flash during "load" for now. */
1034 if (writebuf != NULL)
1035 error (_("Writing to flash memory forbidden in this context"));
1036 break;
1037
1038 case MEM_NONE:
1039 return 0;
1040 }
1041
1042 /* region->hi == 0 means there's no upper bound. */
1043 if (memaddr + len < region->hi || region->hi == 0)
1044 *reg_len = len;
1045 else
1046 *reg_len = region->hi - memaddr;
1047
1048 return 1;
1049 }
1050
1051 /* Read memory from more than one valid target. A core file, for
1052 instance, could have some of memory but delegate other bits to
1053 the target below it. So, we must manually try all targets. */
1054
1055 enum target_xfer_status
1056 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1057 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1058 ULONGEST *xfered_len)
1059 {
1060 enum target_xfer_status res;
1061
1062 do
1063 {
1064 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1065 readbuf, writebuf, memaddr, len,
1066 xfered_len);
1067 if (res == TARGET_XFER_OK)
1068 break;
1069
1070 /* Stop if the target reports that the memory is not available. */
1071 if (res == TARGET_XFER_UNAVAILABLE)
1072 break;
1073
1074 /* We want to continue past core files to executables, but not
1075 past a running target's memory. */
1076 if (ops->to_has_all_memory (ops))
1077 break;
1078
1079 ops = ops->beneath;
1080 }
1081 while (ops != NULL);
1082
1083 /* The cache works at the raw memory level. Make sure the cache
1084 gets updated with raw contents no matter what kind of memory
1085 object was originally being written. Note we do write-through
1086 first, so that if it fails, we don't write to the cache contents
1087 that never made it to the target. */
1088 if (writebuf != NULL
1089 && !ptid_equal (inferior_ptid, null_ptid)
1090 && target_dcache_init_p ()
1091 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1092 {
1093 DCACHE *dcache = target_dcache_get ();
1094
1095 /* Note that writing to an area of memory which wasn't present
1096 in the cache doesn't cause it to be loaded in. */
1097 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1098 }
1099
1100 return res;
1101 }
1102
1103 /* Perform a partial memory transfer.
1104 For docs see target.h, to_xfer_partial. */
1105
1106 static enum target_xfer_status
1107 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1108 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1109 ULONGEST len, ULONGEST *xfered_len)
1110 {
1111 enum target_xfer_status res;
1112 ULONGEST reg_len;
1113 struct mem_region *region;
1114 struct inferior *inf;
1115
1116 /* For accesses to unmapped overlay sections, read directly from
1117 files. Must do this first, as MEMADDR may need adjustment. */
1118 if (readbuf != NULL && overlay_debugging)
1119 {
1120 struct obj_section *section = find_pc_overlay (memaddr);
1121
1122 if (pc_in_unmapped_range (memaddr, section))
1123 {
1124 struct target_section_table *table
1125 = target_get_section_table (ops);
1126 const char *section_name = section->the_bfd_section->name;
1127
1128 memaddr = overlay_mapped_address (memaddr, section);
1129 return section_table_xfer_memory_partial (readbuf, writebuf,
1130 memaddr, len, xfered_len,
1131 table->sections,
1132 table->sections_end,
1133 section_name);
1134 }
1135 }
1136
1137 /* Try the executable files, if "trust-readonly-sections" is set. */
1138 if (readbuf != NULL && trust_readonly)
1139 {
1140 struct target_section *secp;
1141 struct target_section_table *table;
1142
1143 secp = target_section_by_addr (ops, memaddr);
1144 if (secp != NULL
1145 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1146 secp->the_bfd_section)
1147 & SEC_READONLY))
1148 {
1149 table = target_get_section_table (ops);
1150 return section_table_xfer_memory_partial (readbuf, writebuf,
1151 memaddr, len, xfered_len,
1152 table->sections,
1153 table->sections_end,
1154 NULL);
1155 }
1156 }
1157
1158 /* Try GDB's internal data cache. */
1159
1160 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1161 &region))
1162 return TARGET_XFER_E_IO;
1163
1164 if (!ptid_equal (inferior_ptid, null_ptid))
1165 inf = find_inferior_ptid (inferior_ptid);
1166 else
1167 inf = NULL;
1168
1169 if (inf != NULL
1170 && readbuf != NULL
1171 /* The dcache reads whole cache lines; that doesn't play well
1172 with reading from a trace buffer, because reading outside of
1173 the collected memory range fails. */
1174 && get_traceframe_number () == -1
1175 && (region->attrib.cache
1176 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1177 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1178 {
1179 DCACHE *dcache = target_dcache_get_or_init ();
1180
1181 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1182 reg_len, xfered_len);
1183 }
1184
1185 /* If none of those methods found the memory we wanted, fall back
1186 to a target partial transfer. Normally a single call to
1187 to_xfer_partial is enough; if it doesn't recognize an object
1188 it will call the to_xfer_partial of the next target down.
1189 But for memory this won't do. Memory is the only target
1190 object which can be read from more than one valid target.
1191 A core file, for instance, could have some of memory but
1192 delegate other bits to the target below it. So, we must
1193 manually try all targets. */
1194
1195 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1196 xfered_len);
1197
1198 /* If we still haven't got anything, return the last error. We
1199 give up. */
1200 return res;
1201 }
1202
1203 /* Perform a partial memory transfer. For docs see target.h,
1204 to_xfer_partial. */
1205
1206 static enum target_xfer_status
1207 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1208 gdb_byte *readbuf, const gdb_byte *writebuf,
1209 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1210 {
1211 enum target_xfer_status res;
1212
1213 /* Zero length requests are ok and require no work. */
1214 if (len == 0)
1215 return TARGET_XFER_EOF;
1216
1217 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1218 breakpoint insns, thus hiding out from higher layers whether
1219 there are software breakpoints inserted in the code stream. */
1220 if (readbuf != NULL)
1221 {
1222 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1223 xfered_len);
1224
1225 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1226 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1227 }
1228 else
1229 {
1230 /* A large write request is likely to be partially satisfied
1231 by memory_xfer_partial_1. We will continually malloc
1232 and free a copy of the entire write request for breakpoint
1233 shadow handling even though we only end up writing a small
1234 subset of it. Cap writes to a limit specified by the target
1235 to mitigate this. */
1236 len = std::min (ops->to_get_memory_xfer_limit (ops), len);
1237
1238 gdb::byte_vector buf (writebuf, writebuf + len);
1239 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1240 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1241 xfered_len);
1242 }
1243
1244 return res;
1245 }
1246
1247 scoped_restore_tmpl<int>
1248 make_scoped_restore_show_memory_breakpoints (int show)
1249 {
1250 return make_scoped_restore (&show_memory_breakpoints, show);
1251 }
1252
1253 /* For docs see target.h, to_xfer_partial. */
1254
1255 enum target_xfer_status
1256 target_xfer_partial (struct target_ops *ops,
1257 enum target_object object, const char *annex,
1258 gdb_byte *readbuf, const gdb_byte *writebuf,
1259 ULONGEST offset, ULONGEST len,
1260 ULONGEST *xfered_len)
1261 {
1262 enum target_xfer_status retval;
1263
1264 gdb_assert (ops->to_xfer_partial != NULL);
1265
1266 /* Transfer is done when LEN is zero. */
1267 if (len == 0)
1268 return TARGET_XFER_EOF;
1269
1270 if (writebuf && !may_write_memory)
1271 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1272 core_addr_to_string_nz (offset), plongest (len));
1273
1274 *xfered_len = 0;
1275
1276 /* If this is a memory transfer, let the memory-specific code
1277 have a look at it instead. Memory transfers are more
1278 complicated. */
1279 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1280 || object == TARGET_OBJECT_CODE_MEMORY)
1281 retval = memory_xfer_partial (ops, object, readbuf,
1282 writebuf, offset, len, xfered_len);
1283 else if (object == TARGET_OBJECT_RAW_MEMORY)
1284 {
1285 /* Skip/avoid accessing the target if the memory region
1286 attributes block the access. Check this here instead of in
1287 raw_memory_xfer_partial as otherwise we'd end up checking
1288 this twice in the case of the memory_xfer_partial path is
1289 taken; once before checking the dcache, and another in the
1290 tail call to raw_memory_xfer_partial. */
1291 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1292 NULL))
1293 return TARGET_XFER_E_IO;
1294
1295 /* Request the normal memory object from other layers. */
1296 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1297 xfered_len);
1298 }
1299 else
1300 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1301 writebuf, offset, len, xfered_len);
1302
1303 if (targetdebug)
1304 {
1305 const unsigned char *myaddr = NULL;
1306
1307 fprintf_unfiltered (gdb_stdlog,
1308 "%s:target_xfer_partial "
1309 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1310 ops->to_shortname,
1311 (int) object,
1312 (annex ? annex : "(null)"),
1313 host_address_to_string (readbuf),
1314 host_address_to_string (writebuf),
1315 core_addr_to_string_nz (offset),
1316 pulongest (len), retval,
1317 pulongest (*xfered_len));
1318
1319 if (readbuf)
1320 myaddr = readbuf;
1321 if (writebuf)
1322 myaddr = writebuf;
1323 if (retval == TARGET_XFER_OK && myaddr != NULL)
1324 {
1325 int i;
1326
1327 fputs_unfiltered (", bytes =", gdb_stdlog);
1328 for (i = 0; i < *xfered_len; i++)
1329 {
1330 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1331 {
1332 if (targetdebug < 2 && i > 0)
1333 {
1334 fprintf_unfiltered (gdb_stdlog, " ...");
1335 break;
1336 }
1337 fprintf_unfiltered (gdb_stdlog, "\n");
1338 }
1339
1340 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1341 }
1342 }
1343
1344 fputc_unfiltered ('\n', gdb_stdlog);
1345 }
1346
1347 /* Check implementations of to_xfer_partial update *XFERED_LEN
1348 properly. Do assertion after printing debug messages, so that we
1349 can find more clues on assertion failure from debugging messages. */
1350 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1351 gdb_assert (*xfered_len > 0);
1352
1353 return retval;
1354 }
1355
1356 /* Read LEN bytes of target memory at address MEMADDR, placing the
1357 results in GDB's memory at MYADDR. Returns either 0 for success or
1358 -1 if any error occurs.
1359
1360 If an error occurs, no guarantee is made about the contents of the data at
1361 MYADDR. In particular, the caller should not depend upon partial reads
1362 filling the buffer with good data. There is no way for the caller to know
1363 how much good data might have been transfered anyway. Callers that can
1364 deal with partial reads should call target_read (which will retry until
1365 it makes no progress, and then return how much was transferred). */
1366
1367 int
1368 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1369 {
1370 /* Dispatch to the topmost target, not the flattened current_target.
1371 Memory accesses check target->to_has_(all_)memory, and the
1372 flattened target doesn't inherit those. */
1373 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1374 myaddr, memaddr, len) == len)
1375 return 0;
1376 else
1377 return -1;
1378 }
1379
1380 /* See target/target.h. */
1381
1382 int
1383 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1384 {
1385 gdb_byte buf[4];
1386 int r;
1387
1388 r = target_read_memory (memaddr, buf, sizeof buf);
1389 if (r != 0)
1390 return r;
1391 *result = extract_unsigned_integer (buf, sizeof buf,
1392 gdbarch_byte_order (target_gdbarch ()));
1393 return 0;
1394 }
1395
1396 /* Like target_read_memory, but specify explicitly that this is a read
1397 from the target's raw memory. That is, this read bypasses the
1398 dcache, breakpoint shadowing, etc. */
1399
1400 int
1401 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1402 {
1403 /* See comment in target_read_memory about why the request starts at
1404 current_target.beneath. */
1405 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1406 myaddr, memaddr, len) == len)
1407 return 0;
1408 else
1409 return -1;
1410 }
1411
1412 /* Like target_read_memory, but specify explicitly that this is a read from
1413 the target's stack. This may trigger different cache behavior. */
1414
1415 int
1416 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1417 {
1418 /* See comment in target_read_memory about why the request starts at
1419 current_target.beneath. */
1420 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1421 myaddr, memaddr, len) == len)
1422 return 0;
1423 else
1424 return -1;
1425 }
1426
1427 /* Like target_read_memory, but specify explicitly that this is a read from
1428 the target's code. This may trigger different cache behavior. */
1429
1430 int
1431 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1432 {
1433 /* See comment in target_read_memory about why the request starts at
1434 current_target.beneath. */
1435 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1436 myaddr, memaddr, len) == len)
1437 return 0;
1438 else
1439 return -1;
1440 }
1441
1442 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1443 Returns either 0 for success or -1 if any error occurs. If an
1444 error occurs, no guarantee is made about how much data got written.
1445 Callers that can deal with partial writes should call
1446 target_write. */
1447
1448 int
1449 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1450 {
1451 /* See comment in target_read_memory about why the request starts at
1452 current_target.beneath. */
1453 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1454 myaddr, memaddr, len) == len)
1455 return 0;
1456 else
1457 return -1;
1458 }
1459
1460 /* Write LEN bytes from MYADDR to target raw memory at address
1461 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1462 If an error occurs, no guarantee is made about how much data got
1463 written. Callers that can deal with partial writes should call
1464 target_write. */
1465
1466 int
1467 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1468 {
1469 /* See comment in target_read_memory about why the request starts at
1470 current_target.beneath. */
1471 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1472 myaddr, memaddr, len) == len)
1473 return 0;
1474 else
1475 return -1;
1476 }
1477
1478 /* Fetch the target's memory map. */
1479
1480 std::vector<mem_region>
1481 target_memory_map (void)
1482 {
1483 std::vector<mem_region> result
1484 = current_target.to_memory_map (&current_target);
1485 if (result.empty ())
1486 return result;
1487
1488 std::sort (result.begin (), result.end ());
1489
1490 /* Check that regions do not overlap. Simultaneously assign
1491 a numbering for the "mem" commands to use to refer to
1492 each region. */
1493 mem_region *last_one = NULL;
1494 for (size_t ix = 0; ix < result.size (); ix++)
1495 {
1496 mem_region *this_one = &result[ix];
1497 this_one->number = ix;
1498
1499 if (last_one != NULL && last_one->hi > this_one->lo)
1500 {
1501 warning (_("Overlapping regions in memory map: ignoring"));
1502 return std::vector<mem_region> ();
1503 }
1504
1505 last_one = this_one;
1506 }
1507
1508 return result;
1509 }
1510
1511 void
1512 target_flash_erase (ULONGEST address, LONGEST length)
1513 {
1514 current_target.to_flash_erase (&current_target, address, length);
1515 }
1516
1517 void
1518 target_flash_done (void)
1519 {
1520 current_target.to_flash_done (&current_target);
1521 }
1522
1523 static void
1524 show_trust_readonly (struct ui_file *file, int from_tty,
1525 struct cmd_list_element *c, const char *value)
1526 {
1527 fprintf_filtered (file,
1528 _("Mode for reading from readonly sections is %s.\n"),
1529 value);
1530 }
1531
1532 /* Target vector read/write partial wrapper functions. */
1533
1534 static enum target_xfer_status
1535 target_read_partial (struct target_ops *ops,
1536 enum target_object object,
1537 const char *annex, gdb_byte *buf,
1538 ULONGEST offset, ULONGEST len,
1539 ULONGEST *xfered_len)
1540 {
1541 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1542 xfered_len);
1543 }
1544
1545 static enum target_xfer_status
1546 target_write_partial (struct target_ops *ops,
1547 enum target_object object,
1548 const char *annex, const gdb_byte *buf,
1549 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1550 {
1551 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1552 xfered_len);
1553 }
1554
1555 /* Wrappers to perform the full transfer. */
1556
1557 /* For docs on target_read see target.h. */
1558
1559 LONGEST
1560 target_read (struct target_ops *ops,
1561 enum target_object object,
1562 const char *annex, gdb_byte *buf,
1563 ULONGEST offset, LONGEST len)
1564 {
1565 LONGEST xfered_total = 0;
1566 int unit_size = 1;
1567
1568 /* If we are reading from a memory object, find the length of an addressable
1569 unit for that architecture. */
1570 if (object == TARGET_OBJECT_MEMORY
1571 || object == TARGET_OBJECT_STACK_MEMORY
1572 || object == TARGET_OBJECT_CODE_MEMORY
1573 || object == TARGET_OBJECT_RAW_MEMORY)
1574 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1575
1576 while (xfered_total < len)
1577 {
1578 ULONGEST xfered_partial;
1579 enum target_xfer_status status;
1580
1581 status = target_read_partial (ops, object, annex,
1582 buf + xfered_total * unit_size,
1583 offset + xfered_total, len - xfered_total,
1584 &xfered_partial);
1585
1586 /* Call an observer, notifying them of the xfer progress? */
1587 if (status == TARGET_XFER_EOF)
1588 return xfered_total;
1589 else if (status == TARGET_XFER_OK)
1590 {
1591 xfered_total += xfered_partial;
1592 QUIT;
1593 }
1594 else
1595 return TARGET_XFER_E_IO;
1596
1597 }
1598 return len;
1599 }
1600
1601 /* Assuming that the entire [begin, end) range of memory cannot be
1602 read, try to read whatever subrange is possible to read.
1603
1604 The function returns, in RESULT, either zero or one memory block.
1605 If there's a readable subrange at the beginning, it is completely
1606 read and returned. Any further readable subrange will not be read.
1607 Otherwise, if there's a readable subrange at the end, it will be
1608 completely read and returned. Any readable subranges before it
1609 (obviously, not starting at the beginning), will be ignored. In
1610 other cases -- either no readable subrange, or readable subrange(s)
1611 that is neither at the beginning, or end, nothing is returned.
1612
1613 The purpose of this function is to handle a read across a boundary
1614 of accessible memory in a case when memory map is not available.
1615 The above restrictions are fine for this case, but will give
1616 incorrect results if the memory is 'patchy'. However, supporting
1617 'patchy' memory would require trying to read every single byte,
1618 and it seems unacceptable solution. Explicit memory map is
1619 recommended for this case -- and target_read_memory_robust will
1620 take care of reading multiple ranges then. */
1621
1622 static void
1623 read_whatever_is_readable (struct target_ops *ops,
1624 const ULONGEST begin, const ULONGEST end,
1625 int unit_size,
1626 std::vector<memory_read_result> *result)
1627 {
1628 ULONGEST current_begin = begin;
1629 ULONGEST current_end = end;
1630 int forward;
1631 ULONGEST xfered_len;
1632
1633 /* If we previously failed to read 1 byte, nothing can be done here. */
1634 if (end - begin <= 1)
1635 return;
1636
1637 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1638
1639 /* Check that either first or the last byte is readable, and give up
1640 if not. This heuristic is meant to permit reading accessible memory
1641 at the boundary of accessible region. */
1642 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1643 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1644 {
1645 forward = 1;
1646 ++current_begin;
1647 }
1648 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1649 buf.get () + (end - begin) - 1, end - 1, 1,
1650 &xfered_len) == TARGET_XFER_OK)
1651 {
1652 forward = 0;
1653 --current_end;
1654 }
1655 else
1656 return;
1657
1658 /* Loop invariant is that the [current_begin, current_end) was previously
1659 found to be not readable as a whole.
1660
1661 Note loop condition -- if the range has 1 byte, we can't divide the range
1662 so there's no point trying further. */
1663 while (current_end - current_begin > 1)
1664 {
1665 ULONGEST first_half_begin, first_half_end;
1666 ULONGEST second_half_begin, second_half_end;
1667 LONGEST xfer;
1668 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1669
1670 if (forward)
1671 {
1672 first_half_begin = current_begin;
1673 first_half_end = middle;
1674 second_half_begin = middle;
1675 second_half_end = current_end;
1676 }
1677 else
1678 {
1679 first_half_begin = middle;
1680 first_half_end = current_end;
1681 second_half_begin = current_begin;
1682 second_half_end = middle;
1683 }
1684
1685 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1686 buf.get () + (first_half_begin - begin) * unit_size,
1687 first_half_begin,
1688 first_half_end - first_half_begin);
1689
1690 if (xfer == first_half_end - first_half_begin)
1691 {
1692 /* This half reads up fine. So, the error must be in the
1693 other half. */
1694 current_begin = second_half_begin;
1695 current_end = second_half_end;
1696 }
1697 else
1698 {
1699 /* This half is not readable. Because we've tried one byte, we
1700 know some part of this half if actually readable. Go to the next
1701 iteration to divide again and try to read.
1702
1703 We don't handle the other half, because this function only tries
1704 to read a single readable subrange. */
1705 current_begin = first_half_begin;
1706 current_end = first_half_end;
1707 }
1708 }
1709
1710 if (forward)
1711 {
1712 /* The [begin, current_begin) range has been read. */
1713 result->emplace_back (begin, current_end, std::move (buf));
1714 }
1715 else
1716 {
1717 /* The [current_end, end) range has been read. */
1718 LONGEST region_len = end - current_end;
1719
1720 gdb::unique_xmalloc_ptr<gdb_byte> data
1721 ((gdb_byte *) xmalloc (region_len * unit_size));
1722 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1723 region_len * unit_size);
1724 result->emplace_back (current_end, end, std::move (data));
1725 }
1726 }
1727
1728 std::vector<memory_read_result>
1729 read_memory_robust (struct target_ops *ops,
1730 const ULONGEST offset, const LONGEST len)
1731 {
1732 std::vector<memory_read_result> result;
1733 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1734
1735 LONGEST xfered_total = 0;
1736 while (xfered_total < len)
1737 {
1738 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1739 LONGEST region_len;
1740
1741 /* If there is no explicit region, a fake one should be created. */
1742 gdb_assert (region);
1743
1744 if (region->hi == 0)
1745 region_len = len - xfered_total;
1746 else
1747 region_len = region->hi - offset;
1748
1749 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1750 {
1751 /* Cannot read this region. Note that we can end up here only
1752 if the region is explicitly marked inaccessible, or
1753 'inaccessible-by-default' is in effect. */
1754 xfered_total += region_len;
1755 }
1756 else
1757 {
1758 LONGEST to_read = std::min (len - xfered_total, region_len);
1759 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1760 ((gdb_byte *) xmalloc (to_read * unit_size));
1761
1762 LONGEST xfered_partial =
1763 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1764 offset + xfered_total, to_read);
1765 /* Call an observer, notifying them of the xfer progress? */
1766 if (xfered_partial <= 0)
1767 {
1768 /* Got an error reading full chunk. See if maybe we can read
1769 some subrange. */
1770 read_whatever_is_readable (ops, offset + xfered_total,
1771 offset + xfered_total + to_read,
1772 unit_size, &result);
1773 xfered_total += to_read;
1774 }
1775 else
1776 {
1777 result.emplace_back (offset + xfered_total,
1778 offset + xfered_total + xfered_partial,
1779 std::move (buffer));
1780 xfered_total += xfered_partial;
1781 }
1782 QUIT;
1783 }
1784 }
1785
1786 return result;
1787 }
1788
1789
1790 /* An alternative to target_write with progress callbacks. */
1791
1792 LONGEST
1793 target_write_with_progress (struct target_ops *ops,
1794 enum target_object object,
1795 const char *annex, const gdb_byte *buf,
1796 ULONGEST offset, LONGEST len,
1797 void (*progress) (ULONGEST, void *), void *baton)
1798 {
1799 LONGEST xfered_total = 0;
1800 int unit_size = 1;
1801
1802 /* If we are writing to a memory object, find the length of an addressable
1803 unit for that architecture. */
1804 if (object == TARGET_OBJECT_MEMORY
1805 || object == TARGET_OBJECT_STACK_MEMORY
1806 || object == TARGET_OBJECT_CODE_MEMORY
1807 || object == TARGET_OBJECT_RAW_MEMORY)
1808 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1809
1810 /* Give the progress callback a chance to set up. */
1811 if (progress)
1812 (*progress) (0, baton);
1813
1814 while (xfered_total < len)
1815 {
1816 ULONGEST xfered_partial;
1817 enum target_xfer_status status;
1818
1819 status = target_write_partial (ops, object, annex,
1820 buf + xfered_total * unit_size,
1821 offset + xfered_total, len - xfered_total,
1822 &xfered_partial);
1823
1824 if (status != TARGET_XFER_OK)
1825 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1826
1827 if (progress)
1828 (*progress) (xfered_partial, baton);
1829
1830 xfered_total += xfered_partial;
1831 QUIT;
1832 }
1833 return len;
1834 }
1835
1836 /* For docs on target_write see target.h. */
1837
1838 LONGEST
1839 target_write (struct target_ops *ops,
1840 enum target_object object,
1841 const char *annex, const gdb_byte *buf,
1842 ULONGEST offset, LONGEST len)
1843 {
1844 return target_write_with_progress (ops, object, annex, buf, offset, len,
1845 NULL, NULL);
1846 }
1847
1848 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1849 the size of the transferred data. PADDING additional bytes are
1850 available in *BUF_P. This is a helper function for
1851 target_read_alloc; see the declaration of that function for more
1852 information. */
1853
1854 static LONGEST
1855 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1856 const char *annex, gdb_byte **buf_p, int padding)
1857 {
1858 size_t buf_alloc, buf_pos;
1859 gdb_byte *buf;
1860
1861 /* This function does not have a length parameter; it reads the
1862 entire OBJECT). Also, it doesn't support objects fetched partly
1863 from one target and partly from another (in a different stratum,
1864 e.g. a core file and an executable). Both reasons make it
1865 unsuitable for reading memory. */
1866 gdb_assert (object != TARGET_OBJECT_MEMORY);
1867
1868 /* Start by reading up to 4K at a time. The target will throttle
1869 this number down if necessary. */
1870 buf_alloc = 4096;
1871 buf = (gdb_byte *) xmalloc (buf_alloc);
1872 buf_pos = 0;
1873 while (1)
1874 {
1875 ULONGEST xfered_len;
1876 enum target_xfer_status status;
1877
1878 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1879 buf_pos, buf_alloc - buf_pos - padding,
1880 &xfered_len);
1881
1882 if (status == TARGET_XFER_EOF)
1883 {
1884 /* Read all there was. */
1885 if (buf_pos == 0)
1886 xfree (buf);
1887 else
1888 *buf_p = buf;
1889 return buf_pos;
1890 }
1891 else if (status != TARGET_XFER_OK)
1892 {
1893 /* An error occurred. */
1894 xfree (buf);
1895 return TARGET_XFER_E_IO;
1896 }
1897
1898 buf_pos += xfered_len;
1899
1900 /* If the buffer is filling up, expand it. */
1901 if (buf_alloc < buf_pos * 2)
1902 {
1903 buf_alloc *= 2;
1904 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
1905 }
1906
1907 QUIT;
1908 }
1909 }
1910
1911 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1912 the size of the transferred data. See the declaration in "target.h"
1913 function for more information about the return value. */
1914
1915 LONGEST
1916 target_read_alloc (struct target_ops *ops, enum target_object object,
1917 const char *annex, gdb_byte **buf_p)
1918 {
1919 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1920 }
1921
1922 /* See target.h. */
1923
1924 gdb::unique_xmalloc_ptr<char>
1925 target_read_stralloc (struct target_ops *ops, enum target_object object,
1926 const char *annex)
1927 {
1928 gdb_byte *buffer;
1929 char *bufstr;
1930 LONGEST i, transferred;
1931
1932 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1933 bufstr = (char *) buffer;
1934
1935 if (transferred < 0)
1936 return NULL;
1937
1938 if (transferred == 0)
1939 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
1940
1941 bufstr[transferred] = 0;
1942
1943 /* Check for embedded NUL bytes; but allow trailing NULs. */
1944 for (i = strlen (bufstr); i < transferred; i++)
1945 if (bufstr[i] != 0)
1946 {
1947 warning (_("target object %d, annex %s, "
1948 "contained unexpected null characters"),
1949 (int) object, annex ? annex : "(none)");
1950 break;
1951 }
1952
1953 return gdb::unique_xmalloc_ptr<char> (bufstr);
1954 }
1955
1956 /* Memory transfer methods. */
1957
1958 void
1959 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1960 LONGEST len)
1961 {
1962 /* This method is used to read from an alternate, non-current
1963 target. This read must bypass the overlay support (as symbols
1964 don't match this target), and GDB's internal cache (wrong cache
1965 for this target). */
1966 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1967 != len)
1968 memory_error (TARGET_XFER_E_IO, addr);
1969 }
1970
1971 ULONGEST
1972 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1973 int len, enum bfd_endian byte_order)
1974 {
1975 gdb_byte buf[sizeof (ULONGEST)];
1976
1977 gdb_assert (len <= sizeof (buf));
1978 get_target_memory (ops, addr, buf, len);
1979 return extract_unsigned_integer (buf, len, byte_order);
1980 }
1981
1982 /* See target.h. */
1983
1984 int
1985 target_insert_breakpoint (struct gdbarch *gdbarch,
1986 struct bp_target_info *bp_tgt)
1987 {
1988 if (!may_insert_breakpoints)
1989 {
1990 warning (_("May not insert breakpoints"));
1991 return 1;
1992 }
1993
1994 return current_target.to_insert_breakpoint (&current_target,
1995 gdbarch, bp_tgt);
1996 }
1997
1998 /* See target.h. */
1999
2000 int
2001 target_remove_breakpoint (struct gdbarch *gdbarch,
2002 struct bp_target_info *bp_tgt,
2003 enum remove_bp_reason reason)
2004 {
2005 /* This is kind of a weird case to handle, but the permission might
2006 have been changed after breakpoints were inserted - in which case
2007 we should just take the user literally and assume that any
2008 breakpoints should be left in place. */
2009 if (!may_insert_breakpoints)
2010 {
2011 warning (_("May not remove breakpoints"));
2012 return 1;
2013 }
2014
2015 return current_target.to_remove_breakpoint (&current_target,
2016 gdbarch, bp_tgt, reason);
2017 }
2018
2019 static void
2020 info_target_command (const char *args, int from_tty)
2021 {
2022 struct target_ops *t;
2023 int has_all_mem = 0;
2024
2025 if (symfile_objfile != NULL)
2026 printf_unfiltered (_("Symbols from \"%s\".\n"),
2027 objfile_name (symfile_objfile));
2028
2029 for (t = target_stack; t != NULL; t = t->beneath)
2030 {
2031 if (!(*t->to_has_memory) (t))
2032 continue;
2033
2034 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2035 continue;
2036 if (has_all_mem)
2037 printf_unfiltered (_("\tWhile running this, "
2038 "GDB does not access memory from...\n"));
2039 printf_unfiltered ("%s:\n", t->to_longname);
2040 (t->to_files_info) (t);
2041 has_all_mem = (*t->to_has_all_memory) (t);
2042 }
2043 }
2044
2045 /* This function is called before any new inferior is created, e.g.
2046 by running a program, attaching, or connecting to a target.
2047 It cleans up any state from previous invocations which might
2048 change between runs. This is a subset of what target_preopen
2049 resets (things which might change between targets). */
2050
2051 void
2052 target_pre_inferior (int from_tty)
2053 {
2054 /* Clear out solib state. Otherwise the solib state of the previous
2055 inferior might have survived and is entirely wrong for the new
2056 target. This has been observed on GNU/Linux using glibc 2.3. How
2057 to reproduce:
2058
2059 bash$ ./foo&
2060 [1] 4711
2061 bash$ ./foo&
2062 [1] 4712
2063 bash$ gdb ./foo
2064 [...]
2065 (gdb) attach 4711
2066 (gdb) detach
2067 (gdb) attach 4712
2068 Cannot access memory at address 0xdeadbeef
2069 */
2070
2071 /* In some OSs, the shared library list is the same/global/shared
2072 across inferiors. If code is shared between processes, so are
2073 memory regions and features. */
2074 if (!gdbarch_has_global_solist (target_gdbarch ()))
2075 {
2076 no_shared_libraries (NULL, from_tty);
2077
2078 invalidate_target_mem_regions ();
2079
2080 target_clear_description ();
2081 }
2082
2083 /* attach_flag may be set if the previous process associated with
2084 the inferior was attached to. */
2085 current_inferior ()->attach_flag = 0;
2086
2087 current_inferior ()->highest_thread_num = 0;
2088
2089 agent_capability_invalidate ();
2090 }
2091
2092 /* Callback for iterate_over_inferiors. Gets rid of the given
2093 inferior. */
2094
2095 static int
2096 dispose_inferior (struct inferior *inf, void *args)
2097 {
2098 struct thread_info *thread;
2099
2100 thread = any_thread_of_process (inf->pid);
2101 if (thread)
2102 {
2103 switch_to_thread (thread->ptid);
2104
2105 /* Core inferiors actually should be detached, not killed. */
2106 if (target_has_execution)
2107 target_kill ();
2108 else
2109 target_detach (NULL, 0);
2110 }
2111
2112 return 0;
2113 }
2114
2115 /* This is to be called by the open routine before it does
2116 anything. */
2117
2118 void
2119 target_preopen (int from_tty)
2120 {
2121 dont_repeat ();
2122
2123 if (have_inferiors ())
2124 {
2125 if (!from_tty
2126 || !have_live_inferiors ()
2127 || query (_("A program is being debugged already. Kill it? ")))
2128 iterate_over_inferiors (dispose_inferior, NULL);
2129 else
2130 error (_("Program not killed."));
2131 }
2132
2133 /* Calling target_kill may remove the target from the stack. But if
2134 it doesn't (which seems like a win for UDI), remove it now. */
2135 /* Leave the exec target, though. The user may be switching from a
2136 live process to a core of the same program. */
2137 pop_all_targets_above (file_stratum);
2138
2139 target_pre_inferior (from_tty);
2140 }
2141
2142 /* Detach a target after doing deferred register stores. */
2143
2144 void
2145 target_detach (const char *args, int from_tty)
2146 {
2147 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2148 /* Don't remove global breakpoints here. They're removed on
2149 disconnection from the target. */
2150 ;
2151 else
2152 /* If we're in breakpoints-always-inserted mode, have to remove
2153 them before detaching. */
2154 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2155
2156 prepare_for_detach ();
2157
2158 current_target.to_detach (&current_target, args, from_tty);
2159 }
2160
2161 void
2162 target_disconnect (const char *args, int from_tty)
2163 {
2164 /* If we're in breakpoints-always-inserted mode or if breakpoints
2165 are global across processes, we have to remove them before
2166 disconnecting. */
2167 remove_breakpoints ();
2168
2169 current_target.to_disconnect (&current_target, args, from_tty);
2170 }
2171
2172 /* See target/target.h. */
2173
2174 ptid_t
2175 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2176 {
2177 return (current_target.to_wait) (&current_target, ptid, status, options);
2178 }
2179
2180 /* See target.h. */
2181
2182 ptid_t
2183 default_target_wait (struct target_ops *ops,
2184 ptid_t ptid, struct target_waitstatus *status,
2185 int options)
2186 {
2187 status->kind = TARGET_WAITKIND_IGNORE;
2188 return minus_one_ptid;
2189 }
2190
2191 const char *
2192 target_pid_to_str (ptid_t ptid)
2193 {
2194 return (*current_target.to_pid_to_str) (&current_target, ptid);
2195 }
2196
2197 const char *
2198 target_thread_name (struct thread_info *info)
2199 {
2200 return current_target.to_thread_name (&current_target, info);
2201 }
2202
2203 struct thread_info *
2204 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2205 int handle_len,
2206 struct inferior *inf)
2207 {
2208 return current_target.to_thread_handle_to_thread_info
2209 (&current_target, thread_handle, handle_len, inf);
2210 }
2211
2212 void
2213 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2214 {
2215 target_dcache_invalidate ();
2216
2217 current_target.to_resume (&current_target, ptid, step, signal);
2218
2219 registers_changed_ptid (ptid);
2220 /* We only set the internal executing state here. The user/frontend
2221 running state is set at a higher level. */
2222 set_executing (ptid, 1);
2223 clear_inline_frame_state (ptid);
2224 }
2225
2226 /* If true, target_commit_resume is a nop. */
2227 static int defer_target_commit_resume;
2228
2229 /* See target.h. */
2230
2231 void
2232 target_commit_resume (void)
2233 {
2234 if (defer_target_commit_resume)
2235 return;
2236
2237 current_target.to_commit_resume (&current_target);
2238 }
2239
2240 /* See target.h. */
2241
2242 scoped_restore_tmpl<int>
2243 make_scoped_defer_target_commit_resume ()
2244 {
2245 return make_scoped_restore (&defer_target_commit_resume, 1);
2246 }
2247
2248 void
2249 target_pass_signals (int numsigs, unsigned char *pass_signals)
2250 {
2251 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2252 }
2253
2254 void
2255 target_program_signals (int numsigs, unsigned char *program_signals)
2256 {
2257 (*current_target.to_program_signals) (&current_target,
2258 numsigs, program_signals);
2259 }
2260
2261 static int
2262 default_follow_fork (struct target_ops *self, int follow_child,
2263 int detach_fork)
2264 {
2265 /* Some target returned a fork event, but did not know how to follow it. */
2266 internal_error (__FILE__, __LINE__,
2267 _("could not find a target to follow fork"));
2268 }
2269
2270 /* Look through the list of possible targets for a target that can
2271 follow forks. */
2272
2273 int
2274 target_follow_fork (int follow_child, int detach_fork)
2275 {
2276 return current_target.to_follow_fork (&current_target,
2277 follow_child, detach_fork);
2278 }
2279
2280 /* Target wrapper for follow exec hook. */
2281
2282 void
2283 target_follow_exec (struct inferior *inf, char *execd_pathname)
2284 {
2285 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2286 }
2287
2288 static void
2289 default_mourn_inferior (struct target_ops *self)
2290 {
2291 internal_error (__FILE__, __LINE__,
2292 _("could not find a target to follow mourn inferior"));
2293 }
2294
2295 void
2296 target_mourn_inferior (ptid_t ptid)
2297 {
2298 gdb_assert (ptid_equal (ptid, inferior_ptid));
2299 current_target.to_mourn_inferior (&current_target);
2300
2301 /* We no longer need to keep handles on any of the object files.
2302 Make sure to release them to avoid unnecessarily locking any
2303 of them while we're not actually debugging. */
2304 bfd_cache_close_all ();
2305 }
2306
2307 /* Look for a target which can describe architectural features, starting
2308 from TARGET. If we find one, return its description. */
2309
2310 const struct target_desc *
2311 target_read_description (struct target_ops *target)
2312 {
2313 return target->to_read_description (target);
2314 }
2315
2316 /* This implements a basic search of memory, reading target memory and
2317 performing the search here (as opposed to performing the search in on the
2318 target side with, for example, gdbserver). */
2319
2320 int
2321 simple_search_memory (struct target_ops *ops,
2322 CORE_ADDR start_addr, ULONGEST search_space_len,
2323 const gdb_byte *pattern, ULONGEST pattern_len,
2324 CORE_ADDR *found_addrp)
2325 {
2326 /* NOTE: also defined in find.c testcase. */
2327 #define SEARCH_CHUNK_SIZE 16000
2328 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2329 /* Buffer to hold memory contents for searching. */
2330 unsigned search_buf_size;
2331
2332 search_buf_size = chunk_size + pattern_len - 1;
2333
2334 /* No point in trying to allocate a buffer larger than the search space. */
2335 if (search_space_len < search_buf_size)
2336 search_buf_size = search_space_len;
2337
2338 gdb::byte_vector search_buf (search_buf_size);
2339
2340 /* Prime the search buffer. */
2341
2342 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2343 search_buf.data (), start_addr, search_buf_size)
2344 != search_buf_size)
2345 {
2346 warning (_("Unable to access %s bytes of target "
2347 "memory at %s, halting search."),
2348 pulongest (search_buf_size), hex_string (start_addr));
2349 return -1;
2350 }
2351
2352 /* Perform the search.
2353
2354 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2355 When we've scanned N bytes we copy the trailing bytes to the start and
2356 read in another N bytes. */
2357
2358 while (search_space_len >= pattern_len)
2359 {
2360 gdb_byte *found_ptr;
2361 unsigned nr_search_bytes
2362 = std::min (search_space_len, (ULONGEST) search_buf_size);
2363
2364 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2365 pattern, pattern_len);
2366
2367 if (found_ptr != NULL)
2368 {
2369 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2370
2371 *found_addrp = found_addr;
2372 return 1;
2373 }
2374
2375 /* Not found in this chunk, skip to next chunk. */
2376
2377 /* Don't let search_space_len wrap here, it's unsigned. */
2378 if (search_space_len >= chunk_size)
2379 search_space_len -= chunk_size;
2380 else
2381 search_space_len = 0;
2382
2383 if (search_space_len >= pattern_len)
2384 {
2385 unsigned keep_len = search_buf_size - chunk_size;
2386 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2387 int nr_to_read;
2388
2389 /* Copy the trailing part of the previous iteration to the front
2390 of the buffer for the next iteration. */
2391 gdb_assert (keep_len == pattern_len - 1);
2392 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2393
2394 nr_to_read = std::min (search_space_len - keep_len,
2395 (ULONGEST) chunk_size);
2396
2397 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2398 &search_buf[keep_len], read_addr,
2399 nr_to_read) != nr_to_read)
2400 {
2401 warning (_("Unable to access %s bytes of target "
2402 "memory at %s, halting search."),
2403 plongest (nr_to_read),
2404 hex_string (read_addr));
2405 return -1;
2406 }
2407
2408 start_addr += chunk_size;
2409 }
2410 }
2411
2412 /* Not found. */
2413
2414 return 0;
2415 }
2416
2417 /* Default implementation of memory-searching. */
2418
2419 static int
2420 default_search_memory (struct target_ops *self,
2421 CORE_ADDR start_addr, ULONGEST search_space_len,
2422 const gdb_byte *pattern, ULONGEST pattern_len,
2423 CORE_ADDR *found_addrp)
2424 {
2425 /* Start over from the top of the target stack. */
2426 return simple_search_memory (current_target.beneath,
2427 start_addr, search_space_len,
2428 pattern, pattern_len, found_addrp);
2429 }
2430
2431 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2432 sequence of bytes in PATTERN with length PATTERN_LEN.
2433
2434 The result is 1 if found, 0 if not found, and -1 if there was an error
2435 requiring halting of the search (e.g. memory read error).
2436 If the pattern is found the address is recorded in FOUND_ADDRP. */
2437
2438 int
2439 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2440 const gdb_byte *pattern, ULONGEST pattern_len,
2441 CORE_ADDR *found_addrp)
2442 {
2443 return current_target.to_search_memory (&current_target, start_addr,
2444 search_space_len,
2445 pattern, pattern_len, found_addrp);
2446 }
2447
2448 /* Look through the currently pushed targets. If none of them will
2449 be able to restart the currently running process, issue an error
2450 message. */
2451
2452 void
2453 target_require_runnable (void)
2454 {
2455 struct target_ops *t;
2456
2457 for (t = target_stack; t != NULL; t = t->beneath)
2458 {
2459 /* If this target knows how to create a new program, then
2460 assume we will still be able to after killing the current
2461 one. Either killing and mourning will not pop T, or else
2462 find_default_run_target will find it again. */
2463 if (t->to_create_inferior != NULL)
2464 return;
2465
2466 /* Do not worry about targets at certain strata that can not
2467 create inferiors. Assume they will be pushed again if
2468 necessary, and continue to the process_stratum. */
2469 if (t->to_stratum == thread_stratum
2470 || t->to_stratum == record_stratum
2471 || t->to_stratum == arch_stratum)
2472 continue;
2473
2474 error (_("The \"%s\" target does not support \"run\". "
2475 "Try \"help target\" or \"continue\"."),
2476 t->to_shortname);
2477 }
2478
2479 /* This function is only called if the target is running. In that
2480 case there should have been a process_stratum target and it
2481 should either know how to create inferiors, or not... */
2482 internal_error (__FILE__, __LINE__, _("No targets found"));
2483 }
2484
2485 /* Whether GDB is allowed to fall back to the default run target for
2486 "run", "attach", etc. when no target is connected yet. */
2487 static int auto_connect_native_target = 1;
2488
2489 static void
2490 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2491 struct cmd_list_element *c, const char *value)
2492 {
2493 fprintf_filtered (file,
2494 _("Whether GDB may automatically connect to the "
2495 "native target is %s.\n"),
2496 value);
2497 }
2498
2499 /* Look through the list of possible targets for a target that can
2500 execute a run or attach command without any other data. This is
2501 used to locate the default process stratum.
2502
2503 If DO_MESG is not NULL, the result is always valid (error() is
2504 called for errors); else, return NULL on error. */
2505
2506 static struct target_ops *
2507 find_default_run_target (const char *do_mesg)
2508 {
2509 struct target_ops *runable = NULL;
2510
2511 if (auto_connect_native_target)
2512 {
2513 struct target_ops *t;
2514 int count = 0;
2515 int i;
2516
2517 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2518 {
2519 if (t->to_can_run != delegate_can_run && target_can_run (t))
2520 {
2521 runable = t;
2522 ++count;
2523 }
2524 }
2525
2526 if (count != 1)
2527 runable = NULL;
2528 }
2529
2530 if (runable == NULL)
2531 {
2532 if (do_mesg)
2533 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2534 else
2535 return NULL;
2536 }
2537
2538 return runable;
2539 }
2540
2541 /* See target.h. */
2542
2543 struct target_ops *
2544 find_attach_target (void)
2545 {
2546 struct target_ops *t;
2547
2548 /* If a target on the current stack can attach, use it. */
2549 for (t = current_target.beneath; t != NULL; t = t->beneath)
2550 {
2551 if (t->to_attach != NULL)
2552 break;
2553 }
2554
2555 /* Otherwise, use the default run target for attaching. */
2556 if (t == NULL)
2557 t = find_default_run_target ("attach");
2558
2559 return t;
2560 }
2561
2562 /* See target.h. */
2563
2564 struct target_ops *
2565 find_run_target (void)
2566 {
2567 struct target_ops *t;
2568
2569 /* If a target on the current stack can attach, use it. */
2570 for (t = current_target.beneath; t != NULL; t = t->beneath)
2571 {
2572 if (t->to_create_inferior != NULL)
2573 break;
2574 }
2575
2576 /* Otherwise, use the default run target. */
2577 if (t == NULL)
2578 t = find_default_run_target ("run");
2579
2580 return t;
2581 }
2582
2583 /* Implement the "info proc" command. */
2584
2585 int
2586 target_info_proc (const char *args, enum info_proc_what what)
2587 {
2588 struct target_ops *t;
2589
2590 /* If we're already connected to something that can get us OS
2591 related data, use it. Otherwise, try using the native
2592 target. */
2593 if (current_target.to_stratum >= process_stratum)
2594 t = current_target.beneath;
2595 else
2596 t = find_default_run_target (NULL);
2597
2598 for (; t != NULL; t = t->beneath)
2599 {
2600 if (t->to_info_proc != NULL)
2601 {
2602 t->to_info_proc (t, args, what);
2603
2604 if (targetdebug)
2605 fprintf_unfiltered (gdb_stdlog,
2606 "target_info_proc (\"%s\", %d)\n", args, what);
2607
2608 return 1;
2609 }
2610 }
2611
2612 return 0;
2613 }
2614
2615 static int
2616 find_default_supports_disable_randomization (struct target_ops *self)
2617 {
2618 struct target_ops *t;
2619
2620 t = find_default_run_target (NULL);
2621 if (t && t->to_supports_disable_randomization)
2622 return (t->to_supports_disable_randomization) (t);
2623 return 0;
2624 }
2625
2626 int
2627 target_supports_disable_randomization (void)
2628 {
2629 struct target_ops *t;
2630
2631 for (t = &current_target; t != NULL; t = t->beneath)
2632 if (t->to_supports_disable_randomization)
2633 return t->to_supports_disable_randomization (t);
2634
2635 return 0;
2636 }
2637
2638 /* See target/target.h. */
2639
2640 int
2641 target_supports_multi_process (void)
2642 {
2643 return (*current_target.to_supports_multi_process) (&current_target);
2644 }
2645
2646 /* See target.h. */
2647
2648 gdb::unique_xmalloc_ptr<char>
2649 target_get_osdata (const char *type)
2650 {
2651 struct target_ops *t;
2652
2653 /* If we're already connected to something that can get us OS
2654 related data, use it. Otherwise, try using the native
2655 target. */
2656 if (current_target.to_stratum >= process_stratum)
2657 t = current_target.beneath;
2658 else
2659 t = find_default_run_target ("get OS data");
2660
2661 if (!t)
2662 return NULL;
2663
2664 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2665 }
2666
2667 static struct address_space *
2668 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2669 {
2670 struct inferior *inf;
2671
2672 /* Fall-back to the "main" address space of the inferior. */
2673 inf = find_inferior_ptid (ptid);
2674
2675 if (inf == NULL || inf->aspace == NULL)
2676 internal_error (__FILE__, __LINE__,
2677 _("Can't determine the current "
2678 "address space of thread %s\n"),
2679 target_pid_to_str (ptid));
2680
2681 return inf->aspace;
2682 }
2683
2684 /* Determine the current address space of thread PTID. */
2685
2686 struct address_space *
2687 target_thread_address_space (ptid_t ptid)
2688 {
2689 struct address_space *aspace;
2690
2691 aspace = current_target.to_thread_address_space (&current_target, ptid);
2692 gdb_assert (aspace != NULL);
2693
2694 return aspace;
2695 }
2696
2697
2698 /* Target file operations. */
2699
2700 static struct target_ops *
2701 default_fileio_target (void)
2702 {
2703 /* If we're already connected to something that can perform
2704 file I/O, use it. Otherwise, try using the native target. */
2705 if (current_target.to_stratum >= process_stratum)
2706 return current_target.beneath;
2707 else
2708 return find_default_run_target ("file I/O");
2709 }
2710
2711 /* File handle for target file operations. */
2712
2713 typedef struct
2714 {
2715 /* The target on which this file is open. */
2716 struct target_ops *t;
2717
2718 /* The file descriptor on the target. */
2719 int fd;
2720 } fileio_fh_t;
2721
2722 DEF_VEC_O (fileio_fh_t);
2723
2724 /* Vector of currently open file handles. The value returned by
2725 target_fileio_open and passed as the FD argument to other
2726 target_fileio_* functions is an index into this vector. This
2727 vector's entries are never freed; instead, files are marked as
2728 closed, and the handle becomes available for reuse. */
2729 static VEC (fileio_fh_t) *fileio_fhandles;
2730
2731 /* Macro to check whether a fileio_fh_t represents a closed file. */
2732 #define is_closed_fileio_fh(fd) ((fd) < 0)
2733
2734 /* Index into fileio_fhandles of the lowest handle that might be
2735 closed. This permits handle reuse without searching the whole
2736 list each time a new file is opened. */
2737 static int lowest_closed_fd;
2738
2739 /* Acquire a target fileio file descriptor. */
2740
2741 static int
2742 acquire_fileio_fd (struct target_ops *t, int fd)
2743 {
2744 fileio_fh_t *fh;
2745
2746 gdb_assert (!is_closed_fileio_fh (fd));
2747
2748 /* Search for closed handles to reuse. */
2749 for (;
2750 VEC_iterate (fileio_fh_t, fileio_fhandles,
2751 lowest_closed_fd, fh);
2752 lowest_closed_fd++)
2753 if (is_closed_fileio_fh (fh->fd))
2754 break;
2755
2756 /* Push a new handle if no closed handles were found. */
2757 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2758 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2759
2760 /* Fill in the handle. */
2761 fh->t = t;
2762 fh->fd = fd;
2763
2764 /* Return its index, and start the next lookup at
2765 the next index. */
2766 return lowest_closed_fd++;
2767 }
2768
2769 /* Release a target fileio file descriptor. */
2770
2771 static void
2772 release_fileio_fd (int fd, fileio_fh_t *fh)
2773 {
2774 fh->fd = -1;
2775 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2776 }
2777
2778 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2779
2780 #define fileio_fd_to_fh(fd) \
2781 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2782
2783 /* Helper for target_fileio_open and
2784 target_fileio_open_warn_if_slow. */
2785
2786 static int
2787 target_fileio_open_1 (struct inferior *inf, const char *filename,
2788 int flags, int mode, int warn_if_slow,
2789 int *target_errno)
2790 {
2791 struct target_ops *t;
2792
2793 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2794 {
2795 if (t->to_fileio_open != NULL)
2796 {
2797 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2798 warn_if_slow, target_errno);
2799
2800 if (fd < 0)
2801 fd = -1;
2802 else
2803 fd = acquire_fileio_fd (t, fd);
2804
2805 if (targetdebug)
2806 fprintf_unfiltered (gdb_stdlog,
2807 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2808 " = %d (%d)\n",
2809 inf == NULL ? 0 : inf->num,
2810 filename, flags, mode,
2811 warn_if_slow, fd,
2812 fd != -1 ? 0 : *target_errno);
2813 return fd;
2814 }
2815 }
2816
2817 *target_errno = FILEIO_ENOSYS;
2818 return -1;
2819 }
2820
2821 /* See target.h. */
2822
2823 int
2824 target_fileio_open (struct inferior *inf, const char *filename,
2825 int flags, int mode, int *target_errno)
2826 {
2827 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2828 target_errno);
2829 }
2830
2831 /* See target.h. */
2832
2833 int
2834 target_fileio_open_warn_if_slow (struct inferior *inf,
2835 const char *filename,
2836 int flags, int mode, int *target_errno)
2837 {
2838 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2839 target_errno);
2840 }
2841
2842 /* See target.h. */
2843
2844 int
2845 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2846 ULONGEST offset, int *target_errno)
2847 {
2848 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2849 int ret = -1;
2850
2851 if (is_closed_fileio_fh (fh->fd))
2852 *target_errno = EBADF;
2853 else
2854 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2855 len, offset, target_errno);
2856
2857 if (targetdebug)
2858 fprintf_unfiltered (gdb_stdlog,
2859 "target_fileio_pwrite (%d,...,%d,%s) "
2860 "= %d (%d)\n",
2861 fd, len, pulongest (offset),
2862 ret, ret != -1 ? 0 : *target_errno);
2863 return ret;
2864 }
2865
2866 /* See target.h. */
2867
2868 int
2869 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2870 ULONGEST offset, int *target_errno)
2871 {
2872 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2873 int ret = -1;
2874
2875 if (is_closed_fileio_fh (fh->fd))
2876 *target_errno = EBADF;
2877 else
2878 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2879 len, offset, target_errno);
2880
2881 if (targetdebug)
2882 fprintf_unfiltered (gdb_stdlog,
2883 "target_fileio_pread (%d,...,%d,%s) "
2884 "= %d (%d)\n",
2885 fd, len, pulongest (offset),
2886 ret, ret != -1 ? 0 : *target_errno);
2887 return ret;
2888 }
2889
2890 /* See target.h. */
2891
2892 int
2893 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2894 {
2895 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2896 int ret = -1;
2897
2898 if (is_closed_fileio_fh (fh->fd))
2899 *target_errno = EBADF;
2900 else
2901 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2902
2903 if (targetdebug)
2904 fprintf_unfiltered (gdb_stdlog,
2905 "target_fileio_fstat (%d) = %d (%d)\n",
2906 fd, ret, ret != -1 ? 0 : *target_errno);
2907 return ret;
2908 }
2909
2910 /* See target.h. */
2911
2912 int
2913 target_fileio_close (int fd, int *target_errno)
2914 {
2915 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2916 int ret = -1;
2917
2918 if (is_closed_fileio_fh (fh->fd))
2919 *target_errno = EBADF;
2920 else
2921 {
2922 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2923 release_fileio_fd (fd, fh);
2924 }
2925
2926 if (targetdebug)
2927 fprintf_unfiltered (gdb_stdlog,
2928 "target_fileio_close (%d) = %d (%d)\n",
2929 fd, ret, ret != -1 ? 0 : *target_errno);
2930 return ret;
2931 }
2932
2933 /* See target.h. */
2934
2935 int
2936 target_fileio_unlink (struct inferior *inf, const char *filename,
2937 int *target_errno)
2938 {
2939 struct target_ops *t;
2940
2941 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2942 {
2943 if (t->to_fileio_unlink != NULL)
2944 {
2945 int ret = t->to_fileio_unlink (t, inf, filename,
2946 target_errno);
2947
2948 if (targetdebug)
2949 fprintf_unfiltered (gdb_stdlog,
2950 "target_fileio_unlink (%d,%s)"
2951 " = %d (%d)\n",
2952 inf == NULL ? 0 : inf->num, filename,
2953 ret, ret != -1 ? 0 : *target_errno);
2954 return ret;
2955 }
2956 }
2957
2958 *target_errno = FILEIO_ENOSYS;
2959 return -1;
2960 }
2961
2962 /* See target.h. */
2963
2964 char *
2965 target_fileio_readlink (struct inferior *inf, const char *filename,
2966 int *target_errno)
2967 {
2968 struct target_ops *t;
2969
2970 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2971 {
2972 if (t->to_fileio_readlink != NULL)
2973 {
2974 char *ret = t->to_fileio_readlink (t, inf, filename,
2975 target_errno);
2976
2977 if (targetdebug)
2978 fprintf_unfiltered (gdb_stdlog,
2979 "target_fileio_readlink (%d,%s)"
2980 " = %s (%d)\n",
2981 inf == NULL ? 0 : inf->num,
2982 filename, ret? ret : "(nil)",
2983 ret? 0 : *target_errno);
2984 return ret;
2985 }
2986 }
2987
2988 *target_errno = FILEIO_ENOSYS;
2989 return NULL;
2990 }
2991
2992 static void
2993 target_fileio_close_cleanup (void *opaque)
2994 {
2995 int fd = *(int *) opaque;
2996 int target_errno;
2997
2998 target_fileio_close (fd, &target_errno);
2999 }
3000
3001 /* Read target file FILENAME, in the filesystem as seen by INF. If
3002 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3003 remote targets, the remote stub). Store the result in *BUF_P and
3004 return the size of the transferred data. PADDING additional bytes
3005 are available in *BUF_P. This is a helper function for
3006 target_fileio_read_alloc; see the declaration of that function for
3007 more information. */
3008
3009 static LONGEST
3010 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3011 gdb_byte **buf_p, int padding)
3012 {
3013 struct cleanup *close_cleanup;
3014 size_t buf_alloc, buf_pos;
3015 gdb_byte *buf;
3016 LONGEST n;
3017 int fd;
3018 int target_errno;
3019
3020 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3021 &target_errno);
3022 if (fd == -1)
3023 return -1;
3024
3025 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3026
3027 /* Start by reading up to 4K at a time. The target will throttle
3028 this number down if necessary. */
3029 buf_alloc = 4096;
3030 buf = (gdb_byte *) xmalloc (buf_alloc);
3031 buf_pos = 0;
3032 while (1)
3033 {
3034 n = target_fileio_pread (fd, &buf[buf_pos],
3035 buf_alloc - buf_pos - padding, buf_pos,
3036 &target_errno);
3037 if (n < 0)
3038 {
3039 /* An error occurred. */
3040 do_cleanups (close_cleanup);
3041 xfree (buf);
3042 return -1;
3043 }
3044 else if (n == 0)
3045 {
3046 /* Read all there was. */
3047 do_cleanups (close_cleanup);
3048 if (buf_pos == 0)
3049 xfree (buf);
3050 else
3051 *buf_p = buf;
3052 return buf_pos;
3053 }
3054
3055 buf_pos += n;
3056
3057 /* If the buffer is filling up, expand it. */
3058 if (buf_alloc < buf_pos * 2)
3059 {
3060 buf_alloc *= 2;
3061 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3062 }
3063
3064 QUIT;
3065 }
3066 }
3067
3068 /* See target.h. */
3069
3070 LONGEST
3071 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3072 gdb_byte **buf_p)
3073 {
3074 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3075 }
3076
3077 /* See target.h. */
3078
3079 gdb::unique_xmalloc_ptr<char>
3080 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3081 {
3082 gdb_byte *buffer;
3083 char *bufstr;
3084 LONGEST i, transferred;
3085
3086 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3087 bufstr = (char *) buffer;
3088
3089 if (transferred < 0)
3090 return gdb::unique_xmalloc_ptr<char> (nullptr);
3091
3092 if (transferred == 0)
3093 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3094
3095 bufstr[transferred] = 0;
3096
3097 /* Check for embedded NUL bytes; but allow trailing NULs. */
3098 for (i = strlen (bufstr); i < transferred; i++)
3099 if (bufstr[i] != 0)
3100 {
3101 warning (_("target file %s "
3102 "contained unexpected null characters"),
3103 filename);
3104 break;
3105 }
3106
3107 return gdb::unique_xmalloc_ptr<char> (bufstr);
3108 }
3109
3110
3111 static int
3112 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3113 CORE_ADDR addr, int len)
3114 {
3115 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3116 }
3117
3118 static int
3119 default_watchpoint_addr_within_range (struct target_ops *target,
3120 CORE_ADDR addr,
3121 CORE_ADDR start, int length)
3122 {
3123 return addr >= start && addr < start + length;
3124 }
3125
3126 static struct gdbarch *
3127 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3128 {
3129 inferior *inf = find_inferior_ptid (ptid);
3130 gdb_assert (inf != NULL);
3131 return inf->gdbarch;
3132 }
3133
3134 static int
3135 return_zero (struct target_ops *ignore)
3136 {
3137 return 0;
3138 }
3139
3140 static int
3141 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3142 {
3143 return 0;
3144 }
3145
3146 /*
3147 * Find the next target down the stack from the specified target.
3148 */
3149
3150 struct target_ops *
3151 find_target_beneath (struct target_ops *t)
3152 {
3153 return t->beneath;
3154 }
3155
3156 /* See target.h. */
3157
3158 struct target_ops *
3159 find_target_at (enum strata stratum)
3160 {
3161 struct target_ops *t;
3162
3163 for (t = current_target.beneath; t != NULL; t = t->beneath)
3164 if (t->to_stratum == stratum)
3165 return t;
3166
3167 return NULL;
3168 }
3169
3170 \f
3171
3172 /* See target.h */
3173
3174 void
3175 target_announce_detach (int from_tty)
3176 {
3177 pid_t pid;
3178 const char *exec_file;
3179
3180 if (!from_tty)
3181 return;
3182
3183 exec_file = get_exec_file (0);
3184 if (exec_file == NULL)
3185 exec_file = "";
3186
3187 pid = ptid_get_pid (inferior_ptid);
3188 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3189 target_pid_to_str (pid_to_ptid (pid)));
3190 gdb_flush (gdb_stdout);
3191 }
3192
3193 /* The inferior process has died. Long live the inferior! */
3194
3195 void
3196 generic_mourn_inferior (void)
3197 {
3198 ptid_t ptid;
3199
3200 ptid = inferior_ptid;
3201 inferior_ptid = null_ptid;
3202
3203 /* Mark breakpoints uninserted in case something tries to delete a
3204 breakpoint while we delete the inferior's threads (which would
3205 fail, since the inferior is long gone). */
3206 mark_breakpoints_out ();
3207
3208 if (!ptid_equal (ptid, null_ptid))
3209 {
3210 int pid = ptid_get_pid (ptid);
3211 exit_inferior (pid);
3212 }
3213
3214 /* Note this wipes step-resume breakpoints, so needs to be done
3215 after exit_inferior, which ends up referencing the step-resume
3216 breakpoints through clear_thread_inferior_resources. */
3217 breakpoint_init_inferior (inf_exited);
3218
3219 registers_changed ();
3220
3221 reopen_exec_file ();
3222 reinit_frame_cache ();
3223
3224 if (deprecated_detach_hook)
3225 deprecated_detach_hook ();
3226 }
3227 \f
3228 /* Convert a normal process ID to a string. Returns the string in a
3229 static buffer. */
3230
3231 const char *
3232 normal_pid_to_str (ptid_t ptid)
3233 {
3234 static char buf[32];
3235
3236 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3237 return buf;
3238 }
3239
3240 static const char *
3241 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3242 {
3243 return normal_pid_to_str (ptid);
3244 }
3245
3246 /* Error-catcher for target_find_memory_regions. */
3247 static int
3248 dummy_find_memory_regions (struct target_ops *self,
3249 find_memory_region_ftype ignore1, void *ignore2)
3250 {
3251 error (_("Command not implemented for this target."));
3252 return 0;
3253 }
3254
3255 /* Error-catcher for target_make_corefile_notes. */
3256 static char *
3257 dummy_make_corefile_notes (struct target_ops *self,
3258 bfd *ignore1, int *ignore2)
3259 {
3260 error (_("Command not implemented for this target."));
3261 return NULL;
3262 }
3263
3264 /* Set up the handful of non-empty slots needed by the dummy target
3265 vector. */
3266
3267 static void
3268 init_dummy_target (void)
3269 {
3270 dummy_target.to_shortname = "None";
3271 dummy_target.to_longname = "None";
3272 dummy_target.to_doc = "";
3273 dummy_target.to_supports_disable_randomization
3274 = find_default_supports_disable_randomization;
3275 dummy_target.to_stratum = dummy_stratum;
3276 dummy_target.to_has_all_memory = return_zero;
3277 dummy_target.to_has_memory = return_zero;
3278 dummy_target.to_has_stack = return_zero;
3279 dummy_target.to_has_registers = return_zero;
3280 dummy_target.to_has_execution = return_zero_has_execution;
3281 dummy_target.to_magic = OPS_MAGIC;
3282
3283 install_dummy_methods (&dummy_target);
3284 }
3285 \f
3286
3287 void
3288 target_close (struct target_ops *targ)
3289 {
3290 gdb_assert (!target_is_pushed (targ));
3291
3292 if (targ->to_xclose != NULL)
3293 targ->to_xclose (targ);
3294 else if (targ->to_close != NULL)
3295 targ->to_close (targ);
3296
3297 if (targetdebug)
3298 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3299 }
3300
3301 int
3302 target_thread_alive (ptid_t ptid)
3303 {
3304 return current_target.to_thread_alive (&current_target, ptid);
3305 }
3306
3307 void
3308 target_update_thread_list (void)
3309 {
3310 current_target.to_update_thread_list (&current_target);
3311 }
3312
3313 void
3314 target_stop (ptid_t ptid)
3315 {
3316 if (!may_stop)
3317 {
3318 warning (_("May not interrupt or stop the target, ignoring attempt"));
3319 return;
3320 }
3321
3322 (*current_target.to_stop) (&current_target, ptid);
3323 }
3324
3325 void
3326 target_interrupt (ptid_t ptid)
3327 {
3328 if (!may_stop)
3329 {
3330 warning (_("May not interrupt or stop the target, ignoring attempt"));
3331 return;
3332 }
3333
3334 (*current_target.to_interrupt) (&current_target, ptid);
3335 }
3336
3337 /* See target.h. */
3338
3339 void
3340 target_pass_ctrlc (void)
3341 {
3342 (*current_target.to_pass_ctrlc) (&current_target);
3343 }
3344
3345 /* See target.h. */
3346
3347 void
3348 default_target_pass_ctrlc (struct target_ops *ops)
3349 {
3350 target_interrupt (inferior_ptid);
3351 }
3352
3353 /* See target/target.h. */
3354
3355 void
3356 target_stop_and_wait (ptid_t ptid)
3357 {
3358 struct target_waitstatus status;
3359 int was_non_stop = non_stop;
3360
3361 non_stop = 1;
3362 target_stop (ptid);
3363
3364 memset (&status, 0, sizeof (status));
3365 target_wait (ptid, &status, 0);
3366
3367 non_stop = was_non_stop;
3368 }
3369
3370 /* See target/target.h. */
3371
3372 void
3373 target_continue_no_signal (ptid_t ptid)
3374 {
3375 target_resume (ptid, 0, GDB_SIGNAL_0);
3376 }
3377
3378 /* See target/target.h. */
3379
3380 void
3381 target_continue (ptid_t ptid, enum gdb_signal signal)
3382 {
3383 target_resume (ptid, 0, signal);
3384 }
3385
3386 /* Concatenate ELEM to LIST, a comma separate list, and return the
3387 result. The LIST incoming argument is released. */
3388
3389 static char *
3390 str_comma_list_concat_elem (char *list, const char *elem)
3391 {
3392 if (list == NULL)
3393 return xstrdup (elem);
3394 else
3395 return reconcat (list, list, ", ", elem, (char *) NULL);
3396 }
3397
3398 /* Helper for target_options_to_string. If OPT is present in
3399 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3400 Returns the new resulting string. OPT is removed from
3401 TARGET_OPTIONS. */
3402
3403 static char *
3404 do_option (int *target_options, char *ret,
3405 int opt, const char *opt_str)
3406 {
3407 if ((*target_options & opt) != 0)
3408 {
3409 ret = str_comma_list_concat_elem (ret, opt_str);
3410 *target_options &= ~opt;
3411 }
3412
3413 return ret;
3414 }
3415
3416 char *
3417 target_options_to_string (int target_options)
3418 {
3419 char *ret = NULL;
3420
3421 #define DO_TARG_OPTION(OPT) \
3422 ret = do_option (&target_options, ret, OPT, #OPT)
3423
3424 DO_TARG_OPTION (TARGET_WNOHANG);
3425
3426 if (target_options != 0)
3427 ret = str_comma_list_concat_elem (ret, "unknown???");
3428
3429 if (ret == NULL)
3430 ret = xstrdup ("");
3431 return ret;
3432 }
3433
3434 void
3435 target_fetch_registers (struct regcache *regcache, int regno)
3436 {
3437 current_target.to_fetch_registers (&current_target, regcache, regno);
3438 if (targetdebug)
3439 regcache->debug_print_register ("target_fetch_registers", regno);
3440 }
3441
3442 void
3443 target_store_registers (struct regcache *regcache, int regno)
3444 {
3445 if (!may_write_registers)
3446 error (_("Writing to registers is not allowed (regno %d)"), regno);
3447
3448 current_target.to_store_registers (&current_target, regcache, regno);
3449 if (targetdebug)
3450 {
3451 regcache->debug_print_register ("target_store_registers", regno);
3452 }
3453 }
3454
3455 int
3456 target_core_of_thread (ptid_t ptid)
3457 {
3458 return current_target.to_core_of_thread (&current_target, ptid);
3459 }
3460
3461 int
3462 simple_verify_memory (struct target_ops *ops,
3463 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3464 {
3465 LONGEST total_xfered = 0;
3466
3467 while (total_xfered < size)
3468 {
3469 ULONGEST xfered_len;
3470 enum target_xfer_status status;
3471 gdb_byte buf[1024];
3472 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3473
3474 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3475 buf, NULL, lma + total_xfered, howmuch,
3476 &xfered_len);
3477 if (status == TARGET_XFER_OK
3478 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3479 {
3480 total_xfered += xfered_len;
3481 QUIT;
3482 }
3483 else
3484 return 0;
3485 }
3486 return 1;
3487 }
3488
3489 /* Default implementation of memory verification. */
3490
3491 static int
3492 default_verify_memory (struct target_ops *self,
3493 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3494 {
3495 /* Start over from the top of the target stack. */
3496 return simple_verify_memory (current_target.beneath,
3497 data, memaddr, size);
3498 }
3499
3500 int
3501 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3502 {
3503 return current_target.to_verify_memory (&current_target,
3504 data, memaddr, size);
3505 }
3506
3507 /* The documentation for this function is in its prototype declaration in
3508 target.h. */
3509
3510 int
3511 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3512 enum target_hw_bp_type rw)
3513 {
3514 return current_target.to_insert_mask_watchpoint (&current_target,
3515 addr, mask, rw);
3516 }
3517
3518 /* The documentation for this function is in its prototype declaration in
3519 target.h. */
3520
3521 int
3522 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3523 enum target_hw_bp_type rw)
3524 {
3525 return current_target.to_remove_mask_watchpoint (&current_target,
3526 addr, mask, rw);
3527 }
3528
3529 /* The documentation for this function is in its prototype declaration
3530 in target.h. */
3531
3532 int
3533 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3534 {
3535 return current_target.to_masked_watch_num_registers (&current_target,
3536 addr, mask);
3537 }
3538
3539 /* The documentation for this function is in its prototype declaration
3540 in target.h. */
3541
3542 int
3543 target_ranged_break_num_registers (void)
3544 {
3545 return current_target.to_ranged_break_num_registers (&current_target);
3546 }
3547
3548 /* See target.h. */
3549
3550 int
3551 target_supports_btrace (enum btrace_format format)
3552 {
3553 return current_target.to_supports_btrace (&current_target, format);
3554 }
3555
3556 /* See target.h. */
3557
3558 struct btrace_target_info *
3559 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3560 {
3561 return current_target.to_enable_btrace (&current_target, ptid, conf);
3562 }
3563
3564 /* See target.h. */
3565
3566 void
3567 target_disable_btrace (struct btrace_target_info *btinfo)
3568 {
3569 current_target.to_disable_btrace (&current_target, btinfo);
3570 }
3571
3572 /* See target.h. */
3573
3574 void
3575 target_teardown_btrace (struct btrace_target_info *btinfo)
3576 {
3577 current_target.to_teardown_btrace (&current_target, btinfo);
3578 }
3579
3580 /* See target.h. */
3581
3582 enum btrace_error
3583 target_read_btrace (struct btrace_data *btrace,
3584 struct btrace_target_info *btinfo,
3585 enum btrace_read_type type)
3586 {
3587 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3588 }
3589
3590 /* See target.h. */
3591
3592 const struct btrace_config *
3593 target_btrace_conf (const struct btrace_target_info *btinfo)
3594 {
3595 return current_target.to_btrace_conf (&current_target, btinfo);
3596 }
3597
3598 /* See target.h. */
3599
3600 void
3601 target_stop_recording (void)
3602 {
3603 current_target.to_stop_recording (&current_target);
3604 }
3605
3606 /* See target.h. */
3607
3608 void
3609 target_save_record (const char *filename)
3610 {
3611 current_target.to_save_record (&current_target, filename);
3612 }
3613
3614 /* See target.h. */
3615
3616 int
3617 target_supports_delete_record (void)
3618 {
3619 struct target_ops *t;
3620
3621 for (t = current_target.beneath; t != NULL; t = t->beneath)
3622 if (t->to_delete_record != delegate_delete_record
3623 && t->to_delete_record != tdefault_delete_record)
3624 return 1;
3625
3626 return 0;
3627 }
3628
3629 /* See target.h. */
3630
3631 void
3632 target_delete_record (void)
3633 {
3634 current_target.to_delete_record (&current_target);
3635 }
3636
3637 /* See target.h. */
3638
3639 enum record_method
3640 target_record_method (ptid_t ptid)
3641 {
3642 return current_target.to_record_method (&current_target, ptid);
3643 }
3644
3645 /* See target.h. */
3646
3647 int
3648 target_record_is_replaying (ptid_t ptid)
3649 {
3650 return current_target.to_record_is_replaying (&current_target, ptid);
3651 }
3652
3653 /* See target.h. */
3654
3655 int
3656 target_record_will_replay (ptid_t ptid, int dir)
3657 {
3658 return current_target.to_record_will_replay (&current_target, ptid, dir);
3659 }
3660
3661 /* See target.h. */
3662
3663 void
3664 target_record_stop_replaying (void)
3665 {
3666 current_target.to_record_stop_replaying (&current_target);
3667 }
3668
3669 /* See target.h. */
3670
3671 void
3672 target_goto_record_begin (void)
3673 {
3674 current_target.to_goto_record_begin (&current_target);
3675 }
3676
3677 /* See target.h. */
3678
3679 void
3680 target_goto_record_end (void)
3681 {
3682 current_target.to_goto_record_end (&current_target);
3683 }
3684
3685 /* See target.h. */
3686
3687 void
3688 target_goto_record (ULONGEST insn)
3689 {
3690 current_target.to_goto_record (&current_target, insn);
3691 }
3692
3693 /* See target.h. */
3694
3695 void
3696 target_insn_history (int size, gdb_disassembly_flags flags)
3697 {
3698 current_target.to_insn_history (&current_target, size, flags);
3699 }
3700
3701 /* See target.h. */
3702
3703 void
3704 target_insn_history_from (ULONGEST from, int size,
3705 gdb_disassembly_flags flags)
3706 {
3707 current_target.to_insn_history_from (&current_target, from, size, flags);
3708 }
3709
3710 /* See target.h. */
3711
3712 void
3713 target_insn_history_range (ULONGEST begin, ULONGEST end,
3714 gdb_disassembly_flags flags)
3715 {
3716 current_target.to_insn_history_range (&current_target, begin, end, flags);
3717 }
3718
3719 /* See target.h. */
3720
3721 void
3722 target_call_history (int size, int flags)
3723 {
3724 current_target.to_call_history (&current_target, size, flags);
3725 }
3726
3727 /* See target.h. */
3728
3729 void
3730 target_call_history_from (ULONGEST begin, int size, int flags)
3731 {
3732 current_target.to_call_history_from (&current_target, begin, size, flags);
3733 }
3734
3735 /* See target.h. */
3736
3737 void
3738 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3739 {
3740 current_target.to_call_history_range (&current_target, begin, end, flags);
3741 }
3742
3743 /* See target.h. */
3744
3745 const struct frame_unwind *
3746 target_get_unwinder (void)
3747 {
3748 return current_target.to_get_unwinder (&current_target);
3749 }
3750
3751 /* See target.h. */
3752
3753 const struct frame_unwind *
3754 target_get_tailcall_unwinder (void)
3755 {
3756 return current_target.to_get_tailcall_unwinder (&current_target);
3757 }
3758
3759 /* See target.h. */
3760
3761 void
3762 target_prepare_to_generate_core (void)
3763 {
3764 current_target.to_prepare_to_generate_core (&current_target);
3765 }
3766
3767 /* See target.h. */
3768
3769 void
3770 target_done_generating_core (void)
3771 {
3772 current_target.to_done_generating_core (&current_target);
3773 }
3774
3775 static void
3776 setup_target_debug (void)
3777 {
3778 memcpy (&debug_target, &current_target, sizeof debug_target);
3779
3780 init_debug_target (&current_target);
3781 }
3782 \f
3783
3784 static char targ_desc[] =
3785 "Names of targets and files being debugged.\nShows the entire \
3786 stack of targets currently in use (including the exec-file,\n\
3787 core-file, and process, if any), as well as the symbol file name.";
3788
3789 static void
3790 default_rcmd (struct target_ops *self, const char *command,
3791 struct ui_file *output)
3792 {
3793 error (_("\"monitor\" command not supported by this target."));
3794 }
3795
3796 static void
3797 do_monitor_command (const char *cmd, int from_tty)
3798 {
3799 target_rcmd (cmd, gdb_stdtarg);
3800 }
3801
3802 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3803 ignored. */
3804
3805 void
3806 flash_erase_command (const char *cmd, int from_tty)
3807 {
3808 /* Used to communicate termination of flash operations to the target. */
3809 bool found_flash_region = false;
3810 struct gdbarch *gdbarch = target_gdbarch ();
3811
3812 std::vector<mem_region> mem_regions = target_memory_map ();
3813
3814 /* Iterate over all memory regions. */
3815 for (const mem_region &m : mem_regions)
3816 {
3817 /* Is this a flash memory region? */
3818 if (m.attrib.mode == MEM_FLASH)
3819 {
3820 found_flash_region = true;
3821 target_flash_erase (m.lo, m.hi - m.lo);
3822
3823 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3824
3825 current_uiout->message (_("Erasing flash memory region at address "));
3826 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3827 current_uiout->message (", size = ");
3828 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3829 current_uiout->message ("\n");
3830 }
3831 }
3832
3833 /* Did we do any flash operations? If so, we need to finalize them. */
3834 if (found_flash_region)
3835 target_flash_done ();
3836 else
3837 current_uiout->message (_("No flash memory regions found.\n"));
3838 }
3839
3840 /* Print the name of each layers of our target stack. */
3841
3842 static void
3843 maintenance_print_target_stack (const char *cmd, int from_tty)
3844 {
3845 struct target_ops *t;
3846
3847 printf_filtered (_("The current target stack is:\n"));
3848
3849 for (t = target_stack; t != NULL; t = t->beneath)
3850 {
3851 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3852 }
3853 }
3854
3855 /* See target.h. */
3856
3857 void
3858 target_async (int enable)
3859 {
3860 infrun_async (enable);
3861 current_target.to_async (&current_target, enable);
3862 }
3863
3864 /* See target.h. */
3865
3866 void
3867 target_thread_events (int enable)
3868 {
3869 current_target.to_thread_events (&current_target, enable);
3870 }
3871
3872 /* Controls if targets can report that they can/are async. This is
3873 just for maintainers to use when debugging gdb. */
3874 int target_async_permitted = 1;
3875
3876 /* The set command writes to this variable. If the inferior is
3877 executing, target_async_permitted is *not* updated. */
3878 static int target_async_permitted_1 = 1;
3879
3880 static void
3881 maint_set_target_async_command (const char *args, int from_tty,
3882 struct cmd_list_element *c)
3883 {
3884 if (have_live_inferiors ())
3885 {
3886 target_async_permitted_1 = target_async_permitted;
3887 error (_("Cannot change this setting while the inferior is running."));
3888 }
3889
3890 target_async_permitted = target_async_permitted_1;
3891 }
3892
3893 static void
3894 maint_show_target_async_command (struct ui_file *file, int from_tty,
3895 struct cmd_list_element *c,
3896 const char *value)
3897 {
3898 fprintf_filtered (file,
3899 _("Controlling the inferior in "
3900 "asynchronous mode is %s.\n"), value);
3901 }
3902
3903 /* Return true if the target operates in non-stop mode even with "set
3904 non-stop off". */
3905
3906 static int
3907 target_always_non_stop_p (void)
3908 {
3909 return current_target.to_always_non_stop_p (&current_target);
3910 }
3911
3912 /* See target.h. */
3913
3914 int
3915 target_is_non_stop_p (void)
3916 {
3917 return (non_stop
3918 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3919 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3920 && target_always_non_stop_p ()));
3921 }
3922
3923 /* Controls if targets can report that they always run in non-stop
3924 mode. This is just for maintainers to use when debugging gdb. */
3925 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3926
3927 /* The set command writes to this variable. If the inferior is
3928 executing, target_non_stop_enabled is *not* updated. */
3929 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3930
3931 /* Implementation of "maint set target-non-stop". */
3932
3933 static void
3934 maint_set_target_non_stop_command (const char *args, int from_tty,
3935 struct cmd_list_element *c)
3936 {
3937 if (have_live_inferiors ())
3938 {
3939 target_non_stop_enabled_1 = target_non_stop_enabled;
3940 error (_("Cannot change this setting while the inferior is running."));
3941 }
3942
3943 target_non_stop_enabled = target_non_stop_enabled_1;
3944 }
3945
3946 /* Implementation of "maint show target-non-stop". */
3947
3948 static void
3949 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3950 struct cmd_list_element *c,
3951 const char *value)
3952 {
3953 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3954 fprintf_filtered (file,
3955 _("Whether the target is always in non-stop mode "
3956 "is %s (currently %s).\n"), value,
3957 target_always_non_stop_p () ? "on" : "off");
3958 else
3959 fprintf_filtered (file,
3960 _("Whether the target is always in non-stop mode "
3961 "is %s.\n"), value);
3962 }
3963
3964 /* Temporary copies of permission settings. */
3965
3966 static int may_write_registers_1 = 1;
3967 static int may_write_memory_1 = 1;
3968 static int may_insert_breakpoints_1 = 1;
3969 static int may_insert_tracepoints_1 = 1;
3970 static int may_insert_fast_tracepoints_1 = 1;
3971 static int may_stop_1 = 1;
3972
3973 /* Make the user-set values match the real values again. */
3974
3975 void
3976 update_target_permissions (void)
3977 {
3978 may_write_registers_1 = may_write_registers;
3979 may_write_memory_1 = may_write_memory;
3980 may_insert_breakpoints_1 = may_insert_breakpoints;
3981 may_insert_tracepoints_1 = may_insert_tracepoints;
3982 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3983 may_stop_1 = may_stop;
3984 }
3985
3986 /* The one function handles (most of) the permission flags in the same
3987 way. */
3988
3989 static void
3990 set_target_permissions (const char *args, int from_tty,
3991 struct cmd_list_element *c)
3992 {
3993 if (target_has_execution)
3994 {
3995 update_target_permissions ();
3996 error (_("Cannot change this setting while the inferior is running."));
3997 }
3998
3999 /* Make the real values match the user-changed values. */
4000 may_write_registers = may_write_registers_1;
4001 may_insert_breakpoints = may_insert_breakpoints_1;
4002 may_insert_tracepoints = may_insert_tracepoints_1;
4003 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4004 may_stop = may_stop_1;
4005 update_observer_mode ();
4006 }
4007
4008 /* Set memory write permission independently of observer mode. */
4009
4010 static void
4011 set_write_memory_permission (const char *args, int from_tty,
4012 struct cmd_list_element *c)
4013 {
4014 /* Make the real values match the user-changed values. */
4015 may_write_memory = may_write_memory_1;
4016 update_observer_mode ();
4017 }
4018
4019 #if GDB_SELF_TEST
4020 namespace selftests {
4021
4022 static int
4023 test_target_has_registers (target_ops *self)
4024 {
4025 return 1;
4026 }
4027
4028 static int
4029 test_target_has_stack (target_ops *self)
4030 {
4031 return 1;
4032 }
4033
4034 static int
4035 test_target_has_memory (target_ops *self)
4036 {
4037 return 1;
4038 }
4039
4040 static void
4041 test_target_prepare_to_store (target_ops *self, regcache *regs)
4042 {
4043 }
4044
4045 static void
4046 test_target_store_registers (target_ops *self, regcache *regs, int regno)
4047 {
4048 }
4049
4050 test_target_ops::test_target_ops ()
4051 : target_ops {}
4052 {
4053 to_magic = OPS_MAGIC;
4054 to_stratum = process_stratum;
4055 to_has_memory = test_target_has_memory;
4056 to_has_stack = test_target_has_stack;
4057 to_has_registers = test_target_has_registers;
4058 to_prepare_to_store = test_target_prepare_to_store;
4059 to_store_registers = test_target_store_registers;
4060
4061 complete_target_initialization (this);
4062 }
4063
4064 } // namespace selftests
4065 #endif /* GDB_SELF_TEST */
4066
4067 void
4068 initialize_targets (void)
4069 {
4070 init_dummy_target ();
4071 push_target (&dummy_target);
4072
4073 add_info ("target", info_target_command, targ_desc);
4074 add_info ("files", info_target_command, targ_desc);
4075
4076 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4077 Set target debugging."), _("\
4078 Show target debugging."), _("\
4079 When non-zero, target debugging is enabled. Higher numbers are more\n\
4080 verbose."),
4081 set_targetdebug,
4082 show_targetdebug,
4083 &setdebuglist, &showdebuglist);
4084
4085 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4086 &trust_readonly, _("\
4087 Set mode for reading from readonly sections."), _("\
4088 Show mode for reading from readonly sections."), _("\
4089 When this mode is on, memory reads from readonly sections (such as .text)\n\
4090 will be read from the object file instead of from the target. This will\n\
4091 result in significant performance improvement for remote targets."),
4092 NULL,
4093 show_trust_readonly,
4094 &setlist, &showlist);
4095
4096 add_com ("monitor", class_obscure, do_monitor_command,
4097 _("Send a command to the remote monitor (remote targets only)."));
4098
4099 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4100 _("Print the name of each layer of the internal target stack."),
4101 &maintenanceprintlist);
4102
4103 add_setshow_boolean_cmd ("target-async", no_class,
4104 &target_async_permitted_1, _("\
4105 Set whether gdb controls the inferior in asynchronous mode."), _("\
4106 Show whether gdb controls the inferior in asynchronous mode."), _("\
4107 Tells gdb whether to control the inferior in asynchronous mode."),
4108 maint_set_target_async_command,
4109 maint_show_target_async_command,
4110 &maintenance_set_cmdlist,
4111 &maintenance_show_cmdlist);
4112
4113 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4114 &target_non_stop_enabled_1, _("\
4115 Set whether gdb always controls the inferior in non-stop mode."), _("\
4116 Show whether gdb always controls the inferior in non-stop mode."), _("\
4117 Tells gdb whether to control the inferior in non-stop mode."),
4118 maint_set_target_non_stop_command,
4119 maint_show_target_non_stop_command,
4120 &maintenance_set_cmdlist,
4121 &maintenance_show_cmdlist);
4122
4123 add_setshow_boolean_cmd ("may-write-registers", class_support,
4124 &may_write_registers_1, _("\
4125 Set permission to write into registers."), _("\
4126 Show permission to write into registers."), _("\
4127 When this permission is on, GDB may write into the target's registers.\n\
4128 Otherwise, any sort of write attempt will result in an error."),
4129 set_target_permissions, NULL,
4130 &setlist, &showlist);
4131
4132 add_setshow_boolean_cmd ("may-write-memory", class_support,
4133 &may_write_memory_1, _("\
4134 Set permission to write into target memory."), _("\
4135 Show permission to write into target memory."), _("\
4136 When this permission is on, GDB may write into the target's memory.\n\
4137 Otherwise, any sort of write attempt will result in an error."),
4138 set_write_memory_permission, NULL,
4139 &setlist, &showlist);
4140
4141 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4142 &may_insert_breakpoints_1, _("\
4143 Set permission to insert breakpoints in the target."), _("\
4144 Show permission to insert breakpoints in the target."), _("\
4145 When this permission is on, GDB may insert breakpoints in the program.\n\
4146 Otherwise, any sort of insertion attempt will result in an error."),
4147 set_target_permissions, NULL,
4148 &setlist, &showlist);
4149
4150 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4151 &may_insert_tracepoints_1, _("\
4152 Set permission to insert tracepoints in the target."), _("\
4153 Show permission to insert tracepoints in the target."), _("\
4154 When this permission is on, GDB may insert tracepoints in the program.\n\
4155 Otherwise, any sort of insertion attempt will result in an error."),
4156 set_target_permissions, NULL,
4157 &setlist, &showlist);
4158
4159 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4160 &may_insert_fast_tracepoints_1, _("\
4161 Set permission to insert fast tracepoints in the target."), _("\
4162 Show permission to insert fast tracepoints in the target."), _("\
4163 When this permission is on, GDB may insert fast tracepoints.\n\
4164 Otherwise, any sort of insertion attempt will result in an error."),
4165 set_target_permissions, NULL,
4166 &setlist, &showlist);
4167
4168 add_setshow_boolean_cmd ("may-interrupt", class_support,
4169 &may_stop_1, _("\
4170 Set permission to interrupt or signal the target."), _("\
4171 Show permission to interrupt or signal the target."), _("\
4172 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4173 Otherwise, any attempt to interrupt or stop will be ignored."),
4174 set_target_permissions, NULL,
4175 &setlist, &showlist);
4176
4177 add_com ("flash-erase", no_class, flash_erase_command,
4178 _("Erase all flash memory regions."));
4179
4180 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4181 &auto_connect_native_target, _("\
4182 Set whether GDB may automatically connect to the native target."), _("\
4183 Show whether GDB may automatically connect to the native target."), _("\
4184 When on, and GDB is not connected to a target yet, GDB\n\
4185 attempts \"run\" and other commands with the native target."),
4186 NULL, show_auto_connect_native_target,
4187 &setlist, &showlist);
4188 }
This page took 0.146028 seconds and 4 git commands to generate.