Remove make_show_memory_breakpoints_cleanup
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50
51 static void info_target_command (char *, int);
52
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
55 static void default_terminal_info (struct target_ops *, const char *, int);
56
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
62
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static struct address_space *default_thread_address_space
85 (struct target_ops *self, ptid_t ptid);
86
87 static void tcomplain (void) ATTRIBUTE_NORETURN;
88
89 static int return_zero (struct target_ops *);
90
91 static int return_zero_has_execution (struct target_ops *, ptid_t);
92
93 static void target_command (char *, int);
94
95 static struct target_ops *find_default_run_target (const char *);
96
97 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
98 ptid_t ptid);
99
100 static int dummy_find_memory_regions (struct target_ops *self,
101 find_memory_region_ftype ignore1,
102 void *ignore2);
103
104 static char *dummy_make_corefile_notes (struct target_ops *self,
105 bfd *ignore1, int *ignore2);
106
107 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
108
109 static enum exec_direction_kind default_execution_direction
110 (struct target_ops *self);
111
112 static struct target_ops debug_target;
113
114 #include "target-delegates.c"
115
116 static void init_dummy_target (void);
117
118 static void update_current_target (void);
119
120 /* Vector of existing target structures. */
121 typedef struct target_ops *target_ops_p;
122 DEF_VEC_P (target_ops_p);
123 static VEC (target_ops_p) *target_structs;
124
125 /* The initial current target, so that there is always a semi-valid
126 current target. */
127
128 static struct target_ops dummy_target;
129
130 /* Top of target stack. */
131
132 static struct target_ops *target_stack;
133
134 /* The target structure we are currently using to talk to a process
135 or file or whatever "inferior" we have. */
136
137 struct target_ops current_target;
138
139 /* Command list for target. */
140
141 static struct cmd_list_element *targetlist = NULL;
142
143 /* Nonzero if we should trust readonly sections from the
144 executable when reading memory. */
145
146 static int trust_readonly = 0;
147
148 /* Nonzero if we should show true memory content including
149 memory breakpoint inserted by gdb. */
150
151 static int show_memory_breakpoints = 0;
152
153 /* These globals control whether GDB attempts to perform these
154 operations; they are useful for targets that need to prevent
155 inadvertant disruption, such as in non-stop mode. */
156
157 int may_write_registers = 1;
158
159 int may_write_memory = 1;
160
161 int may_insert_breakpoints = 1;
162
163 int may_insert_tracepoints = 1;
164
165 int may_insert_fast_tracepoints = 1;
166
167 int may_stop = 1;
168
169 /* Non-zero if we want to see trace of target level stuff. */
170
171 static unsigned int targetdebug = 0;
172
173 static void
174 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
175 {
176 update_current_target ();
177 }
178
179 static void
180 show_targetdebug (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
184 }
185
186 static void setup_target_debug (void);
187
188 /* The user just typed 'target' without the name of a target. */
189
190 static void
191 target_command (char *arg, int from_tty)
192 {
193 fputs_filtered ("Argument required (target name). Try `help target'\n",
194 gdb_stdout);
195 }
196
197 /* Default target_has_* methods for process_stratum targets. */
198
199 int
200 default_child_has_all_memory (struct target_ops *ops)
201 {
202 /* If no inferior selected, then we can't read memory here. */
203 if (ptid_equal (inferior_ptid, null_ptid))
204 return 0;
205
206 return 1;
207 }
208
209 int
210 default_child_has_memory (struct target_ops *ops)
211 {
212 /* If no inferior selected, then we can't read memory here. */
213 if (ptid_equal (inferior_ptid, null_ptid))
214 return 0;
215
216 return 1;
217 }
218
219 int
220 default_child_has_stack (struct target_ops *ops)
221 {
222 /* If no inferior selected, there's no stack. */
223 if (ptid_equal (inferior_ptid, null_ptid))
224 return 0;
225
226 return 1;
227 }
228
229 int
230 default_child_has_registers (struct target_ops *ops)
231 {
232 /* Can't read registers from no inferior. */
233 if (ptid_equal (inferior_ptid, null_ptid))
234 return 0;
235
236 return 1;
237 }
238
239 int
240 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
241 {
242 /* If there's no thread selected, then we can't make it run through
243 hoops. */
244 if (ptid_equal (the_ptid, null_ptid))
245 return 0;
246
247 return 1;
248 }
249
250
251 int
252 target_has_all_memory_1 (void)
253 {
254 struct target_ops *t;
255
256 for (t = current_target.beneath; t != NULL; t = t->beneath)
257 if (t->to_has_all_memory (t))
258 return 1;
259
260 return 0;
261 }
262
263 int
264 target_has_memory_1 (void)
265 {
266 struct target_ops *t;
267
268 for (t = current_target.beneath; t != NULL; t = t->beneath)
269 if (t->to_has_memory (t))
270 return 1;
271
272 return 0;
273 }
274
275 int
276 target_has_stack_1 (void)
277 {
278 struct target_ops *t;
279
280 for (t = current_target.beneath; t != NULL; t = t->beneath)
281 if (t->to_has_stack (t))
282 return 1;
283
284 return 0;
285 }
286
287 int
288 target_has_registers_1 (void)
289 {
290 struct target_ops *t;
291
292 for (t = current_target.beneath; t != NULL; t = t->beneath)
293 if (t->to_has_registers (t))
294 return 1;
295
296 return 0;
297 }
298
299 int
300 target_has_execution_1 (ptid_t the_ptid)
301 {
302 struct target_ops *t;
303
304 for (t = current_target.beneath; t != NULL; t = t->beneath)
305 if (t->to_has_execution (t, the_ptid))
306 return 1;
307
308 return 0;
309 }
310
311 int
312 target_has_execution_current (void)
313 {
314 return target_has_execution_1 (inferior_ptid);
315 }
316
317 /* Complete initialization of T. This ensures that various fields in
318 T are set, if needed by the target implementation. */
319
320 void
321 complete_target_initialization (struct target_ops *t)
322 {
323 /* Provide default values for all "must have" methods. */
324
325 if (t->to_has_all_memory == NULL)
326 t->to_has_all_memory = return_zero;
327
328 if (t->to_has_memory == NULL)
329 t->to_has_memory = return_zero;
330
331 if (t->to_has_stack == NULL)
332 t->to_has_stack = return_zero;
333
334 if (t->to_has_registers == NULL)
335 t->to_has_registers = return_zero;
336
337 if (t->to_has_execution == NULL)
338 t->to_has_execution = return_zero_has_execution;
339
340 /* These methods can be called on an unpushed target and so require
341 a default implementation if the target might plausibly be the
342 default run target. */
343 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
344 && t->to_supports_non_stop != NULL));
345
346 install_delegators (t);
347 }
348
349 /* This is used to implement the various target commands. */
350
351 static void
352 open_target (char *args, int from_tty, struct cmd_list_element *command)
353 {
354 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
355
356 if (targetdebug)
357 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
358 ops->to_shortname);
359
360 ops->to_open (args, from_tty);
361
362 if (targetdebug)
363 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
364 ops->to_shortname, args, from_tty);
365 }
366
367 /* Add possible target architecture T to the list and add a new
368 command 'target T->to_shortname'. Set COMPLETER as the command's
369 completer if not NULL. */
370
371 void
372 add_target_with_completer (struct target_ops *t,
373 completer_ftype *completer)
374 {
375 struct cmd_list_element *c;
376
377 complete_target_initialization (t);
378
379 VEC_safe_push (target_ops_p, target_structs, t);
380
381 if (targetlist == NULL)
382 add_prefix_cmd ("target", class_run, target_command, _("\
383 Connect to a target machine or process.\n\
384 The first argument is the type or protocol of the target machine.\n\
385 Remaining arguments are interpreted by the target protocol. For more\n\
386 information on the arguments for a particular protocol, type\n\
387 `help target ' followed by the protocol name."),
388 &targetlist, "target ", 0, &cmdlist);
389 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
390 set_cmd_sfunc (c, open_target);
391 set_cmd_context (c, t);
392 if (completer != NULL)
393 set_cmd_completer (c, completer);
394 }
395
396 /* Add a possible target architecture to the list. */
397
398 void
399 add_target (struct target_ops *t)
400 {
401 add_target_with_completer (t, NULL);
402 }
403
404 /* See target.h. */
405
406 void
407 add_deprecated_target_alias (struct target_ops *t, const char *alias)
408 {
409 struct cmd_list_element *c;
410 char *alt;
411
412 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
413 see PR cli/15104. */
414 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
415 set_cmd_sfunc (c, open_target);
416 set_cmd_context (c, t);
417 alt = xstrprintf ("target %s", t->to_shortname);
418 deprecate_cmd (c, alt);
419 }
420
421 /* Stub functions */
422
423 void
424 target_kill (void)
425 {
426 current_target.to_kill (&current_target);
427 }
428
429 void
430 target_load (const char *arg, int from_tty)
431 {
432 target_dcache_invalidate ();
433 (*current_target.to_load) (&current_target, arg, from_tty);
434 }
435
436 /* Possible terminal states. */
437
438 enum terminal_state
439 {
440 /* The inferior's terminal settings are in effect. */
441 terminal_is_inferior = 0,
442
443 /* Some of our terminal settings are in effect, enough to get
444 proper output. */
445 terminal_is_ours_for_output = 1,
446
447 /* Our terminal settings are in effect, for output and input. */
448 terminal_is_ours = 2
449 };
450
451 static enum terminal_state terminal_state = terminal_is_ours;
452
453 /* See target.h. */
454
455 void
456 target_terminal_init (void)
457 {
458 (*current_target.to_terminal_init) (&current_target);
459
460 terminal_state = terminal_is_ours;
461 }
462
463 /* See target.h. */
464
465 int
466 target_terminal_is_inferior (void)
467 {
468 return (terminal_state == terminal_is_inferior);
469 }
470
471 /* See target.h. */
472
473 int
474 target_terminal_is_ours (void)
475 {
476 return (terminal_state == terminal_is_ours);
477 }
478
479 /* See target.h. */
480
481 void
482 target_terminal_inferior (void)
483 {
484 struct ui *ui = current_ui;
485
486 /* A background resume (``run&'') should leave GDB in control of the
487 terminal. */
488 if (ui->prompt_state != PROMPT_BLOCKED)
489 return;
490
491 /* Since we always run the inferior in the main console (unless "set
492 inferior-tty" is in effect), when some UI other than the main one
493 calls target_terminal_inferior/target_terminal_inferior, then we
494 leave the main UI's terminal settings as is. */
495 if (ui != main_ui)
496 return;
497
498 if (terminal_state == terminal_is_inferior)
499 return;
500
501 /* If GDB is resuming the inferior in the foreground, install
502 inferior's terminal modes. */
503 (*current_target.to_terminal_inferior) (&current_target);
504 terminal_state = terminal_is_inferior;
505
506 /* If the user hit C-c before, pretend that it was hit right
507 here. */
508 if (check_quit_flag ())
509 target_pass_ctrlc ();
510 }
511
512 /* See target.h. */
513
514 void
515 target_terminal_ours (void)
516 {
517 struct ui *ui = current_ui;
518
519 /* See target_terminal_inferior. */
520 if (ui != main_ui)
521 return;
522
523 if (terminal_state == terminal_is_ours)
524 return;
525
526 (*current_target.to_terminal_ours) (&current_target);
527 terminal_state = terminal_is_ours;
528 }
529
530 /* See target.h. */
531
532 void
533 target_terminal_ours_for_output (void)
534 {
535 struct ui *ui = current_ui;
536
537 /* See target_terminal_inferior. */
538 if (ui != main_ui)
539 return;
540
541 if (terminal_state != terminal_is_inferior)
542 return;
543 (*current_target.to_terminal_ours_for_output) (&current_target);
544 terminal_state = terminal_is_ours_for_output;
545 }
546
547 /* See target.h. */
548
549 int
550 target_supports_terminal_ours (void)
551 {
552 struct target_ops *t;
553
554 for (t = current_target.beneath; t != NULL; t = t->beneath)
555 {
556 if (t->to_terminal_ours != delegate_terminal_ours
557 && t->to_terminal_ours != tdefault_terminal_ours)
558 return 1;
559 }
560
561 return 0;
562 }
563
564 /* Restore the terminal to its previous state (helper for
565 make_cleanup_restore_target_terminal). */
566
567 static void
568 cleanup_restore_target_terminal (void *arg)
569 {
570 enum terminal_state *previous_state = (enum terminal_state *) arg;
571
572 switch (*previous_state)
573 {
574 case terminal_is_ours:
575 target_terminal_ours ();
576 break;
577 case terminal_is_ours_for_output:
578 target_terminal_ours_for_output ();
579 break;
580 case terminal_is_inferior:
581 target_terminal_inferior ();
582 break;
583 }
584 }
585
586 /* See target.h. */
587
588 struct cleanup *
589 make_cleanup_restore_target_terminal (void)
590 {
591 enum terminal_state *ts = XNEW (enum terminal_state);
592
593 *ts = terminal_state;
594
595 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
596 }
597
598 static void
599 tcomplain (void)
600 {
601 error (_("You can't do that when your target is `%s'"),
602 current_target.to_shortname);
603 }
604
605 void
606 noprocess (void)
607 {
608 error (_("You can't do that without a process to debug."));
609 }
610
611 static void
612 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
613 {
614 printf_unfiltered (_("No saved terminal information.\n"));
615 }
616
617 /* A default implementation for the to_get_ada_task_ptid target method.
618
619 This function builds the PTID by using both LWP and TID as part of
620 the PTID lwp and tid elements. The pid used is the pid of the
621 inferior_ptid. */
622
623 static ptid_t
624 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
625 {
626 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
627 }
628
629 static enum exec_direction_kind
630 default_execution_direction (struct target_ops *self)
631 {
632 if (!target_can_execute_reverse)
633 return EXEC_FORWARD;
634 else if (!target_can_async_p ())
635 return EXEC_FORWARD;
636 else
637 gdb_assert_not_reached ("\
638 to_execution_direction must be implemented for reverse async");
639 }
640
641 /* Go through the target stack from top to bottom, copying over zero
642 entries in current_target, then filling in still empty entries. In
643 effect, we are doing class inheritance through the pushed target
644 vectors.
645
646 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
647 is currently implemented, is that it discards any knowledge of
648 which target an inherited method originally belonged to.
649 Consequently, new new target methods should instead explicitly and
650 locally search the target stack for the target that can handle the
651 request. */
652
653 static void
654 update_current_target (void)
655 {
656 struct target_ops *t;
657
658 /* First, reset current's contents. */
659 memset (&current_target, 0, sizeof (current_target));
660
661 /* Install the delegators. */
662 install_delegators (&current_target);
663
664 current_target.to_stratum = target_stack->to_stratum;
665
666 #define INHERIT(FIELD, TARGET) \
667 if (!current_target.FIELD) \
668 current_target.FIELD = (TARGET)->FIELD
669
670 /* Do not add any new INHERITs here. Instead, use the delegation
671 mechanism provided by make-target-delegates. */
672 for (t = target_stack; t; t = t->beneath)
673 {
674 INHERIT (to_shortname, t);
675 INHERIT (to_longname, t);
676 INHERIT (to_attach_no_wait, t);
677 INHERIT (to_have_steppable_watchpoint, t);
678 INHERIT (to_have_continuable_watchpoint, t);
679 INHERIT (to_has_thread_control, t);
680 }
681 #undef INHERIT
682
683 /* Finally, position the target-stack beneath the squashed
684 "current_target". That way code looking for a non-inherited
685 target method can quickly and simply find it. */
686 current_target.beneath = target_stack;
687
688 if (targetdebug)
689 setup_target_debug ();
690 }
691
692 /* Push a new target type into the stack of the existing target accessors,
693 possibly superseding some of the existing accessors.
694
695 Rather than allow an empty stack, we always have the dummy target at
696 the bottom stratum, so we can call the function vectors without
697 checking them. */
698
699 void
700 push_target (struct target_ops *t)
701 {
702 struct target_ops **cur;
703
704 /* Check magic number. If wrong, it probably means someone changed
705 the struct definition, but not all the places that initialize one. */
706 if (t->to_magic != OPS_MAGIC)
707 {
708 fprintf_unfiltered (gdb_stderr,
709 "Magic number of %s target struct wrong\n",
710 t->to_shortname);
711 internal_error (__FILE__, __LINE__,
712 _("failed internal consistency check"));
713 }
714
715 /* Find the proper stratum to install this target in. */
716 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
717 {
718 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
719 break;
720 }
721
722 /* If there's already targets at this stratum, remove them. */
723 /* FIXME: cagney/2003-10-15: I think this should be popping all
724 targets to CUR, and not just those at this stratum level. */
725 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
726 {
727 /* There's already something at this stratum level. Close it,
728 and un-hook it from the stack. */
729 struct target_ops *tmp = (*cur);
730
731 (*cur) = (*cur)->beneath;
732 tmp->beneath = NULL;
733 target_close (tmp);
734 }
735
736 /* We have removed all targets in our stratum, now add the new one. */
737 t->beneath = (*cur);
738 (*cur) = t;
739
740 update_current_target ();
741 }
742
743 /* Remove a target_ops vector from the stack, wherever it may be.
744 Return how many times it was removed (0 or 1). */
745
746 int
747 unpush_target (struct target_ops *t)
748 {
749 struct target_ops **cur;
750 struct target_ops *tmp;
751
752 if (t->to_stratum == dummy_stratum)
753 internal_error (__FILE__, __LINE__,
754 _("Attempt to unpush the dummy target"));
755
756 /* Look for the specified target. Note that we assume that a target
757 can only occur once in the target stack. */
758
759 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
760 {
761 if ((*cur) == t)
762 break;
763 }
764
765 /* If we don't find target_ops, quit. Only open targets should be
766 closed. */
767 if ((*cur) == NULL)
768 return 0;
769
770 /* Unchain the target. */
771 tmp = (*cur);
772 (*cur) = (*cur)->beneath;
773 tmp->beneath = NULL;
774
775 update_current_target ();
776
777 /* Finally close the target. Note we do this after unchaining, so
778 any target method calls from within the target_close
779 implementation don't end up in T anymore. */
780 target_close (t);
781
782 return 1;
783 }
784
785 /* Unpush TARGET and assert that it worked. */
786
787 static void
788 unpush_target_and_assert (struct target_ops *target)
789 {
790 if (!unpush_target (target))
791 {
792 fprintf_unfiltered (gdb_stderr,
793 "pop_all_targets couldn't find target %s\n",
794 target->to_shortname);
795 internal_error (__FILE__, __LINE__,
796 _("failed internal consistency check"));
797 }
798 }
799
800 void
801 pop_all_targets_above (enum strata above_stratum)
802 {
803 while ((int) (current_target.to_stratum) > (int) above_stratum)
804 unpush_target_and_assert (target_stack);
805 }
806
807 /* See target.h. */
808
809 void
810 pop_all_targets_at_and_above (enum strata stratum)
811 {
812 while ((int) (current_target.to_stratum) >= (int) stratum)
813 unpush_target_and_assert (target_stack);
814 }
815
816 void
817 pop_all_targets (void)
818 {
819 pop_all_targets_above (dummy_stratum);
820 }
821
822 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
823
824 int
825 target_is_pushed (struct target_ops *t)
826 {
827 struct target_ops *cur;
828
829 /* Check magic number. If wrong, it probably means someone changed
830 the struct definition, but not all the places that initialize one. */
831 if (t->to_magic != OPS_MAGIC)
832 {
833 fprintf_unfiltered (gdb_stderr,
834 "Magic number of %s target struct wrong\n",
835 t->to_shortname);
836 internal_error (__FILE__, __LINE__,
837 _("failed internal consistency check"));
838 }
839
840 for (cur = target_stack; cur != NULL; cur = cur->beneath)
841 if (cur == t)
842 return 1;
843
844 return 0;
845 }
846
847 /* Default implementation of to_get_thread_local_address. */
848
849 static void
850 generic_tls_error (void)
851 {
852 throw_error (TLS_GENERIC_ERROR,
853 _("Cannot find thread-local variables on this target"));
854 }
855
856 /* Using the objfile specified in OBJFILE, find the address for the
857 current thread's thread-local storage with offset OFFSET. */
858 CORE_ADDR
859 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
860 {
861 volatile CORE_ADDR addr = 0;
862 struct target_ops *target = &current_target;
863
864 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
865 {
866 ptid_t ptid = inferior_ptid;
867
868 TRY
869 {
870 CORE_ADDR lm_addr;
871
872 /* Fetch the load module address for this objfile. */
873 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
874 objfile);
875
876 addr = target->to_get_thread_local_address (target, ptid,
877 lm_addr, offset);
878 }
879 /* If an error occurred, print TLS related messages here. Otherwise,
880 throw the error to some higher catcher. */
881 CATCH (ex, RETURN_MASK_ALL)
882 {
883 int objfile_is_library = (objfile->flags & OBJF_SHARED);
884
885 switch (ex.error)
886 {
887 case TLS_NO_LIBRARY_SUPPORT_ERROR:
888 error (_("Cannot find thread-local variables "
889 "in this thread library."));
890 break;
891 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
892 if (objfile_is_library)
893 error (_("Cannot find shared library `%s' in dynamic"
894 " linker's load module list"), objfile_name (objfile));
895 else
896 error (_("Cannot find executable file `%s' in dynamic"
897 " linker's load module list"), objfile_name (objfile));
898 break;
899 case TLS_NOT_ALLOCATED_YET_ERROR:
900 if (objfile_is_library)
901 error (_("The inferior has not yet allocated storage for"
902 " thread-local variables in\n"
903 "the shared library `%s'\n"
904 "for %s"),
905 objfile_name (objfile), target_pid_to_str (ptid));
906 else
907 error (_("The inferior has not yet allocated storage for"
908 " thread-local variables in\n"
909 "the executable `%s'\n"
910 "for %s"),
911 objfile_name (objfile), target_pid_to_str (ptid));
912 break;
913 case TLS_GENERIC_ERROR:
914 if (objfile_is_library)
915 error (_("Cannot find thread-local storage for %s, "
916 "shared library %s:\n%s"),
917 target_pid_to_str (ptid),
918 objfile_name (objfile), ex.message);
919 else
920 error (_("Cannot find thread-local storage for %s, "
921 "executable file %s:\n%s"),
922 target_pid_to_str (ptid),
923 objfile_name (objfile), ex.message);
924 break;
925 default:
926 throw_exception (ex);
927 break;
928 }
929 }
930 END_CATCH
931 }
932 /* It wouldn't be wrong here to try a gdbarch method, too; finding
933 TLS is an ABI-specific thing. But we don't do that yet. */
934 else
935 error (_("Cannot find thread-local variables on this target"));
936
937 return addr;
938 }
939
940 const char *
941 target_xfer_status_to_string (enum target_xfer_status status)
942 {
943 #define CASE(X) case X: return #X
944 switch (status)
945 {
946 CASE(TARGET_XFER_E_IO);
947 CASE(TARGET_XFER_UNAVAILABLE);
948 default:
949 return "<unknown>";
950 }
951 #undef CASE
952 };
953
954
955 #undef MIN
956 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
957
958 /* target_read_string -- read a null terminated string, up to LEN bytes,
959 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
960 Set *STRING to a pointer to malloc'd memory containing the data; the caller
961 is responsible for freeing it. Return the number of bytes successfully
962 read. */
963
964 int
965 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
966 {
967 int tlen, offset, i;
968 gdb_byte buf[4];
969 int errcode = 0;
970 char *buffer;
971 int buffer_allocated;
972 char *bufptr;
973 unsigned int nbytes_read = 0;
974
975 gdb_assert (string);
976
977 /* Small for testing. */
978 buffer_allocated = 4;
979 buffer = (char *) xmalloc (buffer_allocated);
980 bufptr = buffer;
981
982 while (len > 0)
983 {
984 tlen = MIN (len, 4 - (memaddr & 3));
985 offset = memaddr & 3;
986
987 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
988 if (errcode != 0)
989 {
990 /* The transfer request might have crossed the boundary to an
991 unallocated region of memory. Retry the transfer, requesting
992 a single byte. */
993 tlen = 1;
994 offset = 0;
995 errcode = target_read_memory (memaddr, buf, 1);
996 if (errcode != 0)
997 goto done;
998 }
999
1000 if (bufptr - buffer + tlen > buffer_allocated)
1001 {
1002 unsigned int bytes;
1003
1004 bytes = bufptr - buffer;
1005 buffer_allocated *= 2;
1006 buffer = (char *) xrealloc (buffer, buffer_allocated);
1007 bufptr = buffer + bytes;
1008 }
1009
1010 for (i = 0; i < tlen; i++)
1011 {
1012 *bufptr++ = buf[i + offset];
1013 if (buf[i + offset] == '\000')
1014 {
1015 nbytes_read += i + 1;
1016 goto done;
1017 }
1018 }
1019
1020 memaddr += tlen;
1021 len -= tlen;
1022 nbytes_read += tlen;
1023 }
1024 done:
1025 *string = buffer;
1026 if (errnop != NULL)
1027 *errnop = errcode;
1028 return nbytes_read;
1029 }
1030
1031 struct target_section_table *
1032 target_get_section_table (struct target_ops *target)
1033 {
1034 return (*target->to_get_section_table) (target);
1035 }
1036
1037 /* Find a section containing ADDR. */
1038
1039 struct target_section *
1040 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1041 {
1042 struct target_section_table *table = target_get_section_table (target);
1043 struct target_section *secp;
1044
1045 if (table == NULL)
1046 return NULL;
1047
1048 for (secp = table->sections; secp < table->sections_end; secp++)
1049 {
1050 if (addr >= secp->addr && addr < secp->endaddr)
1051 return secp;
1052 }
1053 return NULL;
1054 }
1055
1056
1057 /* Helper for the memory xfer routines. Checks the attributes of the
1058 memory region of MEMADDR against the read or write being attempted.
1059 If the access is permitted returns true, otherwise returns false.
1060 REGION_P is an optional output parameter. If not-NULL, it is
1061 filled with a pointer to the memory region of MEMADDR. REG_LEN
1062 returns LEN trimmed to the end of the region. This is how much the
1063 caller can continue requesting, if the access is permitted. A
1064 single xfer request must not straddle memory region boundaries. */
1065
1066 static int
1067 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1068 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1069 struct mem_region **region_p)
1070 {
1071 struct mem_region *region;
1072
1073 region = lookup_mem_region (memaddr);
1074
1075 if (region_p != NULL)
1076 *region_p = region;
1077
1078 switch (region->attrib.mode)
1079 {
1080 case MEM_RO:
1081 if (writebuf != NULL)
1082 return 0;
1083 break;
1084
1085 case MEM_WO:
1086 if (readbuf != NULL)
1087 return 0;
1088 break;
1089
1090 case MEM_FLASH:
1091 /* We only support writing to flash during "load" for now. */
1092 if (writebuf != NULL)
1093 error (_("Writing to flash memory forbidden in this context"));
1094 break;
1095
1096 case MEM_NONE:
1097 return 0;
1098 }
1099
1100 /* region->hi == 0 means there's no upper bound. */
1101 if (memaddr + len < region->hi || region->hi == 0)
1102 *reg_len = len;
1103 else
1104 *reg_len = region->hi - memaddr;
1105
1106 return 1;
1107 }
1108
1109 /* Read memory from more than one valid target. A core file, for
1110 instance, could have some of memory but delegate other bits to
1111 the target below it. So, we must manually try all targets. */
1112
1113 enum target_xfer_status
1114 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1115 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1116 ULONGEST *xfered_len)
1117 {
1118 enum target_xfer_status res;
1119
1120 do
1121 {
1122 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1123 readbuf, writebuf, memaddr, len,
1124 xfered_len);
1125 if (res == TARGET_XFER_OK)
1126 break;
1127
1128 /* Stop if the target reports that the memory is not available. */
1129 if (res == TARGET_XFER_UNAVAILABLE)
1130 break;
1131
1132 /* We want to continue past core files to executables, but not
1133 past a running target's memory. */
1134 if (ops->to_has_all_memory (ops))
1135 break;
1136
1137 ops = ops->beneath;
1138 }
1139 while (ops != NULL);
1140
1141 /* The cache works at the raw memory level. Make sure the cache
1142 gets updated with raw contents no matter what kind of memory
1143 object was originally being written. Note we do write-through
1144 first, so that if it fails, we don't write to the cache contents
1145 that never made it to the target. */
1146 if (writebuf != NULL
1147 && !ptid_equal (inferior_ptid, null_ptid)
1148 && target_dcache_init_p ()
1149 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1150 {
1151 DCACHE *dcache = target_dcache_get ();
1152
1153 /* Note that writing to an area of memory which wasn't present
1154 in the cache doesn't cause it to be loaded in. */
1155 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1156 }
1157
1158 return res;
1159 }
1160
1161 /* Perform a partial memory transfer.
1162 For docs see target.h, to_xfer_partial. */
1163
1164 static enum target_xfer_status
1165 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1166 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1167 ULONGEST len, ULONGEST *xfered_len)
1168 {
1169 enum target_xfer_status res;
1170 ULONGEST reg_len;
1171 struct mem_region *region;
1172 struct inferior *inf;
1173
1174 /* For accesses to unmapped overlay sections, read directly from
1175 files. Must do this first, as MEMADDR may need adjustment. */
1176 if (readbuf != NULL && overlay_debugging)
1177 {
1178 struct obj_section *section = find_pc_overlay (memaddr);
1179
1180 if (pc_in_unmapped_range (memaddr, section))
1181 {
1182 struct target_section_table *table
1183 = target_get_section_table (ops);
1184 const char *section_name = section->the_bfd_section->name;
1185
1186 memaddr = overlay_mapped_address (memaddr, section);
1187 return section_table_xfer_memory_partial (readbuf, writebuf,
1188 memaddr, len, xfered_len,
1189 table->sections,
1190 table->sections_end,
1191 section_name);
1192 }
1193 }
1194
1195 /* Try the executable files, if "trust-readonly-sections" is set. */
1196 if (readbuf != NULL && trust_readonly)
1197 {
1198 struct target_section *secp;
1199 struct target_section_table *table;
1200
1201 secp = target_section_by_addr (ops, memaddr);
1202 if (secp != NULL
1203 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1204 secp->the_bfd_section)
1205 & SEC_READONLY))
1206 {
1207 table = target_get_section_table (ops);
1208 return section_table_xfer_memory_partial (readbuf, writebuf,
1209 memaddr, len, xfered_len,
1210 table->sections,
1211 table->sections_end,
1212 NULL);
1213 }
1214 }
1215
1216 /* Try GDB's internal data cache. */
1217
1218 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1219 &region))
1220 return TARGET_XFER_E_IO;
1221
1222 if (!ptid_equal (inferior_ptid, null_ptid))
1223 inf = find_inferior_ptid (inferior_ptid);
1224 else
1225 inf = NULL;
1226
1227 if (inf != NULL
1228 && readbuf != NULL
1229 /* The dcache reads whole cache lines; that doesn't play well
1230 with reading from a trace buffer, because reading outside of
1231 the collected memory range fails. */
1232 && get_traceframe_number () == -1
1233 && (region->attrib.cache
1234 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1235 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1236 {
1237 DCACHE *dcache = target_dcache_get_or_init ();
1238
1239 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1240 reg_len, xfered_len);
1241 }
1242
1243 /* If none of those methods found the memory we wanted, fall back
1244 to a target partial transfer. Normally a single call to
1245 to_xfer_partial is enough; if it doesn't recognize an object
1246 it will call the to_xfer_partial of the next target down.
1247 But for memory this won't do. Memory is the only target
1248 object which can be read from more than one valid target.
1249 A core file, for instance, could have some of memory but
1250 delegate other bits to the target below it. So, we must
1251 manually try all targets. */
1252
1253 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1254 xfered_len);
1255
1256 /* If we still haven't got anything, return the last error. We
1257 give up. */
1258 return res;
1259 }
1260
1261 /* Perform a partial memory transfer. For docs see target.h,
1262 to_xfer_partial. */
1263
1264 static enum target_xfer_status
1265 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1266 gdb_byte *readbuf, const gdb_byte *writebuf,
1267 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1268 {
1269 enum target_xfer_status res;
1270
1271 /* Zero length requests are ok and require no work. */
1272 if (len == 0)
1273 return TARGET_XFER_EOF;
1274
1275 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1276 breakpoint insns, thus hiding out from higher layers whether
1277 there are software breakpoints inserted in the code stream. */
1278 if (readbuf != NULL)
1279 {
1280 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1281 xfered_len);
1282
1283 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1284 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1285 }
1286 else
1287 {
1288 /* A large write request is likely to be partially satisfied
1289 by memory_xfer_partial_1. We will continually malloc
1290 and free a copy of the entire write request for breakpoint
1291 shadow handling even though we only end up writing a small
1292 subset of it. Cap writes to a limit specified by the target
1293 to mitigate this. */
1294 len = std::min (ops->to_get_memory_xfer_limit (ops), len);
1295
1296 gdb::byte_vector buf (writebuf, writebuf + len);
1297 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1298 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1299 xfered_len);
1300 }
1301
1302 return res;
1303 }
1304
1305 scoped_restore_tmpl<int>
1306 make_scoped_restore_show_memory_breakpoints (int show)
1307 {
1308 return make_scoped_restore (&show_memory_breakpoints, show);
1309 }
1310
1311 /* For docs see target.h, to_xfer_partial. */
1312
1313 enum target_xfer_status
1314 target_xfer_partial (struct target_ops *ops,
1315 enum target_object object, const char *annex,
1316 gdb_byte *readbuf, const gdb_byte *writebuf,
1317 ULONGEST offset, ULONGEST len,
1318 ULONGEST *xfered_len)
1319 {
1320 enum target_xfer_status retval;
1321
1322 gdb_assert (ops->to_xfer_partial != NULL);
1323
1324 /* Transfer is done when LEN is zero. */
1325 if (len == 0)
1326 return TARGET_XFER_EOF;
1327
1328 if (writebuf && !may_write_memory)
1329 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1330 core_addr_to_string_nz (offset), plongest (len));
1331
1332 *xfered_len = 0;
1333
1334 /* If this is a memory transfer, let the memory-specific code
1335 have a look at it instead. Memory transfers are more
1336 complicated. */
1337 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1338 || object == TARGET_OBJECT_CODE_MEMORY)
1339 retval = memory_xfer_partial (ops, object, readbuf,
1340 writebuf, offset, len, xfered_len);
1341 else if (object == TARGET_OBJECT_RAW_MEMORY)
1342 {
1343 /* Skip/avoid accessing the target if the memory region
1344 attributes block the access. Check this here instead of in
1345 raw_memory_xfer_partial as otherwise we'd end up checking
1346 this twice in the case of the memory_xfer_partial path is
1347 taken; once before checking the dcache, and another in the
1348 tail call to raw_memory_xfer_partial. */
1349 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1350 NULL))
1351 return TARGET_XFER_E_IO;
1352
1353 /* Request the normal memory object from other layers. */
1354 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1355 xfered_len);
1356 }
1357 else
1358 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1359 writebuf, offset, len, xfered_len);
1360
1361 if (targetdebug)
1362 {
1363 const unsigned char *myaddr = NULL;
1364
1365 fprintf_unfiltered (gdb_stdlog,
1366 "%s:target_xfer_partial "
1367 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1368 ops->to_shortname,
1369 (int) object,
1370 (annex ? annex : "(null)"),
1371 host_address_to_string (readbuf),
1372 host_address_to_string (writebuf),
1373 core_addr_to_string_nz (offset),
1374 pulongest (len), retval,
1375 pulongest (*xfered_len));
1376
1377 if (readbuf)
1378 myaddr = readbuf;
1379 if (writebuf)
1380 myaddr = writebuf;
1381 if (retval == TARGET_XFER_OK && myaddr != NULL)
1382 {
1383 int i;
1384
1385 fputs_unfiltered (", bytes =", gdb_stdlog);
1386 for (i = 0; i < *xfered_len; i++)
1387 {
1388 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1389 {
1390 if (targetdebug < 2 && i > 0)
1391 {
1392 fprintf_unfiltered (gdb_stdlog, " ...");
1393 break;
1394 }
1395 fprintf_unfiltered (gdb_stdlog, "\n");
1396 }
1397
1398 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1399 }
1400 }
1401
1402 fputc_unfiltered ('\n', gdb_stdlog);
1403 }
1404
1405 /* Check implementations of to_xfer_partial update *XFERED_LEN
1406 properly. Do assertion after printing debug messages, so that we
1407 can find more clues on assertion failure from debugging messages. */
1408 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1409 gdb_assert (*xfered_len > 0);
1410
1411 return retval;
1412 }
1413
1414 /* Read LEN bytes of target memory at address MEMADDR, placing the
1415 results in GDB's memory at MYADDR. Returns either 0 for success or
1416 -1 if any error occurs.
1417
1418 If an error occurs, no guarantee is made about the contents of the data at
1419 MYADDR. In particular, the caller should not depend upon partial reads
1420 filling the buffer with good data. There is no way for the caller to know
1421 how much good data might have been transfered anyway. Callers that can
1422 deal with partial reads should call target_read (which will retry until
1423 it makes no progress, and then return how much was transferred). */
1424
1425 int
1426 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1427 {
1428 /* Dispatch to the topmost target, not the flattened current_target.
1429 Memory accesses check target->to_has_(all_)memory, and the
1430 flattened target doesn't inherit those. */
1431 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1432 myaddr, memaddr, len) == len)
1433 return 0;
1434 else
1435 return -1;
1436 }
1437
1438 /* See target/target.h. */
1439
1440 int
1441 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1442 {
1443 gdb_byte buf[4];
1444 int r;
1445
1446 r = target_read_memory (memaddr, buf, sizeof buf);
1447 if (r != 0)
1448 return r;
1449 *result = extract_unsigned_integer (buf, sizeof buf,
1450 gdbarch_byte_order (target_gdbarch ()));
1451 return 0;
1452 }
1453
1454 /* Like target_read_memory, but specify explicitly that this is a read
1455 from the target's raw memory. That is, this read bypasses the
1456 dcache, breakpoint shadowing, etc. */
1457
1458 int
1459 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1460 {
1461 /* See comment in target_read_memory about why the request starts at
1462 current_target.beneath. */
1463 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1464 myaddr, memaddr, len) == len)
1465 return 0;
1466 else
1467 return -1;
1468 }
1469
1470 /* Like target_read_memory, but specify explicitly that this is a read from
1471 the target's stack. This may trigger different cache behavior. */
1472
1473 int
1474 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1475 {
1476 /* See comment in target_read_memory about why the request starts at
1477 current_target.beneath. */
1478 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1479 myaddr, memaddr, len) == len)
1480 return 0;
1481 else
1482 return -1;
1483 }
1484
1485 /* Like target_read_memory, but specify explicitly that this is a read from
1486 the target's code. This may trigger different cache behavior. */
1487
1488 int
1489 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1490 {
1491 /* See comment in target_read_memory about why the request starts at
1492 current_target.beneath. */
1493 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1494 myaddr, memaddr, len) == len)
1495 return 0;
1496 else
1497 return -1;
1498 }
1499
1500 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1501 Returns either 0 for success or -1 if any error occurs. If an
1502 error occurs, no guarantee is made about how much data got written.
1503 Callers that can deal with partial writes should call
1504 target_write. */
1505
1506 int
1507 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1508 {
1509 /* See comment in target_read_memory about why the request starts at
1510 current_target.beneath. */
1511 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1512 myaddr, memaddr, len) == len)
1513 return 0;
1514 else
1515 return -1;
1516 }
1517
1518 /* Write LEN bytes from MYADDR to target raw memory at address
1519 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1520 If an error occurs, no guarantee is made about how much data got
1521 written. Callers that can deal with partial writes should call
1522 target_write. */
1523
1524 int
1525 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1526 {
1527 /* See comment in target_read_memory about why the request starts at
1528 current_target.beneath. */
1529 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1530 myaddr, memaddr, len) == len)
1531 return 0;
1532 else
1533 return -1;
1534 }
1535
1536 /* Fetch the target's memory map. */
1537
1538 VEC(mem_region_s) *
1539 target_memory_map (void)
1540 {
1541 VEC(mem_region_s) *result;
1542 struct mem_region *last_one, *this_one;
1543 int ix;
1544 result = current_target.to_memory_map (&current_target);
1545 if (result == NULL)
1546 return NULL;
1547
1548 qsort (VEC_address (mem_region_s, result),
1549 VEC_length (mem_region_s, result),
1550 sizeof (struct mem_region), mem_region_cmp);
1551
1552 /* Check that regions do not overlap. Simultaneously assign
1553 a numbering for the "mem" commands to use to refer to
1554 each region. */
1555 last_one = NULL;
1556 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1557 {
1558 this_one->number = ix;
1559
1560 if (last_one && last_one->hi > this_one->lo)
1561 {
1562 warning (_("Overlapping regions in memory map: ignoring"));
1563 VEC_free (mem_region_s, result);
1564 return NULL;
1565 }
1566 last_one = this_one;
1567 }
1568
1569 return result;
1570 }
1571
1572 void
1573 target_flash_erase (ULONGEST address, LONGEST length)
1574 {
1575 current_target.to_flash_erase (&current_target, address, length);
1576 }
1577
1578 void
1579 target_flash_done (void)
1580 {
1581 current_target.to_flash_done (&current_target);
1582 }
1583
1584 static void
1585 show_trust_readonly (struct ui_file *file, int from_tty,
1586 struct cmd_list_element *c, const char *value)
1587 {
1588 fprintf_filtered (file,
1589 _("Mode for reading from readonly sections is %s.\n"),
1590 value);
1591 }
1592
1593 /* Target vector read/write partial wrapper functions. */
1594
1595 static enum target_xfer_status
1596 target_read_partial (struct target_ops *ops,
1597 enum target_object object,
1598 const char *annex, gdb_byte *buf,
1599 ULONGEST offset, ULONGEST len,
1600 ULONGEST *xfered_len)
1601 {
1602 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1603 xfered_len);
1604 }
1605
1606 static enum target_xfer_status
1607 target_write_partial (struct target_ops *ops,
1608 enum target_object object,
1609 const char *annex, const gdb_byte *buf,
1610 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1611 {
1612 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1613 xfered_len);
1614 }
1615
1616 /* Wrappers to perform the full transfer. */
1617
1618 /* For docs on target_read see target.h. */
1619
1620 LONGEST
1621 target_read (struct target_ops *ops,
1622 enum target_object object,
1623 const char *annex, gdb_byte *buf,
1624 ULONGEST offset, LONGEST len)
1625 {
1626 LONGEST xfered_total = 0;
1627 int unit_size = 1;
1628
1629 /* If we are reading from a memory object, find the length of an addressable
1630 unit for that architecture. */
1631 if (object == TARGET_OBJECT_MEMORY
1632 || object == TARGET_OBJECT_STACK_MEMORY
1633 || object == TARGET_OBJECT_CODE_MEMORY
1634 || object == TARGET_OBJECT_RAW_MEMORY)
1635 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1636
1637 while (xfered_total < len)
1638 {
1639 ULONGEST xfered_partial;
1640 enum target_xfer_status status;
1641
1642 status = target_read_partial (ops, object, annex,
1643 buf + xfered_total * unit_size,
1644 offset + xfered_total, len - xfered_total,
1645 &xfered_partial);
1646
1647 /* Call an observer, notifying them of the xfer progress? */
1648 if (status == TARGET_XFER_EOF)
1649 return xfered_total;
1650 else if (status == TARGET_XFER_OK)
1651 {
1652 xfered_total += xfered_partial;
1653 QUIT;
1654 }
1655 else
1656 return TARGET_XFER_E_IO;
1657
1658 }
1659 return len;
1660 }
1661
1662 /* Assuming that the entire [begin, end) range of memory cannot be
1663 read, try to read whatever subrange is possible to read.
1664
1665 The function returns, in RESULT, either zero or one memory block.
1666 If there's a readable subrange at the beginning, it is completely
1667 read and returned. Any further readable subrange will not be read.
1668 Otherwise, if there's a readable subrange at the end, it will be
1669 completely read and returned. Any readable subranges before it
1670 (obviously, not starting at the beginning), will be ignored. In
1671 other cases -- either no readable subrange, or readable subrange(s)
1672 that is neither at the beginning, or end, nothing is returned.
1673
1674 The purpose of this function is to handle a read across a boundary
1675 of accessible memory in a case when memory map is not available.
1676 The above restrictions are fine for this case, but will give
1677 incorrect results if the memory is 'patchy'. However, supporting
1678 'patchy' memory would require trying to read every single byte,
1679 and it seems unacceptable solution. Explicit memory map is
1680 recommended for this case -- and target_read_memory_robust will
1681 take care of reading multiple ranges then. */
1682
1683 static void
1684 read_whatever_is_readable (struct target_ops *ops,
1685 const ULONGEST begin, const ULONGEST end,
1686 int unit_size,
1687 VEC(memory_read_result_s) **result)
1688 {
1689 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1690 ULONGEST current_begin = begin;
1691 ULONGEST current_end = end;
1692 int forward;
1693 memory_read_result_s r;
1694 ULONGEST xfered_len;
1695
1696 /* If we previously failed to read 1 byte, nothing can be done here. */
1697 if (end - begin <= 1)
1698 {
1699 xfree (buf);
1700 return;
1701 }
1702
1703 /* Check that either first or the last byte is readable, and give up
1704 if not. This heuristic is meant to permit reading accessible memory
1705 at the boundary of accessible region. */
1706 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1707 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1708 {
1709 forward = 1;
1710 ++current_begin;
1711 }
1712 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1713 buf + (end - begin) - 1, end - 1, 1,
1714 &xfered_len) == TARGET_XFER_OK)
1715 {
1716 forward = 0;
1717 --current_end;
1718 }
1719 else
1720 {
1721 xfree (buf);
1722 return;
1723 }
1724
1725 /* Loop invariant is that the [current_begin, current_end) was previously
1726 found to be not readable as a whole.
1727
1728 Note loop condition -- if the range has 1 byte, we can't divide the range
1729 so there's no point trying further. */
1730 while (current_end - current_begin > 1)
1731 {
1732 ULONGEST first_half_begin, first_half_end;
1733 ULONGEST second_half_begin, second_half_end;
1734 LONGEST xfer;
1735 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1736
1737 if (forward)
1738 {
1739 first_half_begin = current_begin;
1740 first_half_end = middle;
1741 second_half_begin = middle;
1742 second_half_end = current_end;
1743 }
1744 else
1745 {
1746 first_half_begin = middle;
1747 first_half_end = current_end;
1748 second_half_begin = current_begin;
1749 second_half_end = middle;
1750 }
1751
1752 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1753 buf + (first_half_begin - begin) * unit_size,
1754 first_half_begin,
1755 first_half_end - first_half_begin);
1756
1757 if (xfer == first_half_end - first_half_begin)
1758 {
1759 /* This half reads up fine. So, the error must be in the
1760 other half. */
1761 current_begin = second_half_begin;
1762 current_end = second_half_end;
1763 }
1764 else
1765 {
1766 /* This half is not readable. Because we've tried one byte, we
1767 know some part of this half if actually readable. Go to the next
1768 iteration to divide again and try to read.
1769
1770 We don't handle the other half, because this function only tries
1771 to read a single readable subrange. */
1772 current_begin = first_half_begin;
1773 current_end = first_half_end;
1774 }
1775 }
1776
1777 if (forward)
1778 {
1779 /* The [begin, current_begin) range has been read. */
1780 r.begin = begin;
1781 r.end = current_begin;
1782 r.data = buf;
1783 }
1784 else
1785 {
1786 /* The [current_end, end) range has been read. */
1787 LONGEST region_len = end - current_end;
1788
1789 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1790 memcpy (r.data, buf + (current_end - begin) * unit_size,
1791 region_len * unit_size);
1792 r.begin = current_end;
1793 r.end = end;
1794 xfree (buf);
1795 }
1796 VEC_safe_push(memory_read_result_s, (*result), &r);
1797 }
1798
1799 void
1800 free_memory_read_result_vector (void *x)
1801 {
1802 VEC(memory_read_result_s) **v = (VEC(memory_read_result_s) **) x;
1803 memory_read_result_s *current;
1804 int ix;
1805
1806 for (ix = 0; VEC_iterate (memory_read_result_s, *v, ix, current); ++ix)
1807 {
1808 xfree (current->data);
1809 }
1810 VEC_free (memory_read_result_s, *v);
1811 }
1812
1813 VEC(memory_read_result_s) *
1814 read_memory_robust (struct target_ops *ops,
1815 const ULONGEST offset, const LONGEST len)
1816 {
1817 VEC(memory_read_result_s) *result = 0;
1818 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1819 struct cleanup *cleanup = make_cleanup (free_memory_read_result_vector,
1820 &result);
1821
1822 LONGEST xfered_total = 0;
1823 while (xfered_total < len)
1824 {
1825 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1826 LONGEST region_len;
1827
1828 /* If there is no explicit region, a fake one should be created. */
1829 gdb_assert (region);
1830
1831 if (region->hi == 0)
1832 region_len = len - xfered_total;
1833 else
1834 region_len = region->hi - offset;
1835
1836 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1837 {
1838 /* Cannot read this region. Note that we can end up here only
1839 if the region is explicitly marked inaccessible, or
1840 'inaccessible-by-default' is in effect. */
1841 xfered_total += region_len;
1842 }
1843 else
1844 {
1845 LONGEST to_read = std::min (len - xfered_total, region_len);
1846 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1847 struct cleanup *inner_cleanup = make_cleanup (xfree, buffer);
1848
1849 LONGEST xfered_partial =
1850 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1851 (gdb_byte *) buffer,
1852 offset + xfered_total, to_read);
1853 /* Call an observer, notifying them of the xfer progress? */
1854 if (xfered_partial <= 0)
1855 {
1856 /* Got an error reading full chunk. See if maybe we can read
1857 some subrange. */
1858 do_cleanups (inner_cleanup);
1859 read_whatever_is_readable (ops, offset + xfered_total,
1860 offset + xfered_total + to_read,
1861 unit_size, &result);
1862 xfered_total += to_read;
1863 }
1864 else
1865 {
1866 struct memory_read_result r;
1867
1868 discard_cleanups (inner_cleanup);
1869 r.data = buffer;
1870 r.begin = offset + xfered_total;
1871 r.end = r.begin + xfered_partial;
1872 VEC_safe_push (memory_read_result_s, result, &r);
1873 xfered_total += xfered_partial;
1874 }
1875 QUIT;
1876 }
1877 }
1878
1879 discard_cleanups (cleanup);
1880 return result;
1881 }
1882
1883
1884 /* An alternative to target_write with progress callbacks. */
1885
1886 LONGEST
1887 target_write_with_progress (struct target_ops *ops,
1888 enum target_object object,
1889 const char *annex, const gdb_byte *buf,
1890 ULONGEST offset, LONGEST len,
1891 void (*progress) (ULONGEST, void *), void *baton)
1892 {
1893 LONGEST xfered_total = 0;
1894 int unit_size = 1;
1895
1896 /* If we are writing to a memory object, find the length of an addressable
1897 unit for that architecture. */
1898 if (object == TARGET_OBJECT_MEMORY
1899 || object == TARGET_OBJECT_STACK_MEMORY
1900 || object == TARGET_OBJECT_CODE_MEMORY
1901 || object == TARGET_OBJECT_RAW_MEMORY)
1902 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1903
1904 /* Give the progress callback a chance to set up. */
1905 if (progress)
1906 (*progress) (0, baton);
1907
1908 while (xfered_total < len)
1909 {
1910 ULONGEST xfered_partial;
1911 enum target_xfer_status status;
1912
1913 status = target_write_partial (ops, object, annex,
1914 buf + xfered_total * unit_size,
1915 offset + xfered_total, len - xfered_total,
1916 &xfered_partial);
1917
1918 if (status != TARGET_XFER_OK)
1919 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1920
1921 if (progress)
1922 (*progress) (xfered_partial, baton);
1923
1924 xfered_total += xfered_partial;
1925 QUIT;
1926 }
1927 return len;
1928 }
1929
1930 /* For docs on target_write see target.h. */
1931
1932 LONGEST
1933 target_write (struct target_ops *ops,
1934 enum target_object object,
1935 const char *annex, const gdb_byte *buf,
1936 ULONGEST offset, LONGEST len)
1937 {
1938 return target_write_with_progress (ops, object, annex, buf, offset, len,
1939 NULL, NULL);
1940 }
1941
1942 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1943 the size of the transferred data. PADDING additional bytes are
1944 available in *BUF_P. This is a helper function for
1945 target_read_alloc; see the declaration of that function for more
1946 information. */
1947
1948 static LONGEST
1949 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1950 const char *annex, gdb_byte **buf_p, int padding)
1951 {
1952 size_t buf_alloc, buf_pos;
1953 gdb_byte *buf;
1954
1955 /* This function does not have a length parameter; it reads the
1956 entire OBJECT). Also, it doesn't support objects fetched partly
1957 from one target and partly from another (in a different stratum,
1958 e.g. a core file and an executable). Both reasons make it
1959 unsuitable for reading memory. */
1960 gdb_assert (object != TARGET_OBJECT_MEMORY);
1961
1962 /* Start by reading up to 4K at a time. The target will throttle
1963 this number down if necessary. */
1964 buf_alloc = 4096;
1965 buf = (gdb_byte *) xmalloc (buf_alloc);
1966 buf_pos = 0;
1967 while (1)
1968 {
1969 ULONGEST xfered_len;
1970 enum target_xfer_status status;
1971
1972 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1973 buf_pos, buf_alloc - buf_pos - padding,
1974 &xfered_len);
1975
1976 if (status == TARGET_XFER_EOF)
1977 {
1978 /* Read all there was. */
1979 if (buf_pos == 0)
1980 xfree (buf);
1981 else
1982 *buf_p = buf;
1983 return buf_pos;
1984 }
1985 else if (status != TARGET_XFER_OK)
1986 {
1987 /* An error occurred. */
1988 xfree (buf);
1989 return TARGET_XFER_E_IO;
1990 }
1991
1992 buf_pos += xfered_len;
1993
1994 /* If the buffer is filling up, expand it. */
1995 if (buf_alloc < buf_pos * 2)
1996 {
1997 buf_alloc *= 2;
1998 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
1999 }
2000
2001 QUIT;
2002 }
2003 }
2004
2005 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2006 the size of the transferred data. See the declaration in "target.h"
2007 function for more information about the return value. */
2008
2009 LONGEST
2010 target_read_alloc (struct target_ops *ops, enum target_object object,
2011 const char *annex, gdb_byte **buf_p)
2012 {
2013 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2014 }
2015
2016 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2017 returned as a string, allocated using xmalloc. If an error occurs
2018 or the transfer is unsupported, NULL is returned. Empty objects
2019 are returned as allocated but empty strings. A warning is issued
2020 if the result contains any embedded NUL bytes. */
2021
2022 char *
2023 target_read_stralloc (struct target_ops *ops, enum target_object object,
2024 const char *annex)
2025 {
2026 gdb_byte *buffer;
2027 char *bufstr;
2028 LONGEST i, transferred;
2029
2030 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2031 bufstr = (char *) buffer;
2032
2033 if (transferred < 0)
2034 return NULL;
2035
2036 if (transferred == 0)
2037 return xstrdup ("");
2038
2039 bufstr[transferred] = 0;
2040
2041 /* Check for embedded NUL bytes; but allow trailing NULs. */
2042 for (i = strlen (bufstr); i < transferred; i++)
2043 if (bufstr[i] != 0)
2044 {
2045 warning (_("target object %d, annex %s, "
2046 "contained unexpected null characters"),
2047 (int) object, annex ? annex : "(none)");
2048 break;
2049 }
2050
2051 return bufstr;
2052 }
2053
2054 /* Memory transfer methods. */
2055
2056 void
2057 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2058 LONGEST len)
2059 {
2060 /* This method is used to read from an alternate, non-current
2061 target. This read must bypass the overlay support (as symbols
2062 don't match this target), and GDB's internal cache (wrong cache
2063 for this target). */
2064 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2065 != len)
2066 memory_error (TARGET_XFER_E_IO, addr);
2067 }
2068
2069 ULONGEST
2070 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2071 int len, enum bfd_endian byte_order)
2072 {
2073 gdb_byte buf[sizeof (ULONGEST)];
2074
2075 gdb_assert (len <= sizeof (buf));
2076 get_target_memory (ops, addr, buf, len);
2077 return extract_unsigned_integer (buf, len, byte_order);
2078 }
2079
2080 /* See target.h. */
2081
2082 int
2083 target_insert_breakpoint (struct gdbarch *gdbarch,
2084 struct bp_target_info *bp_tgt)
2085 {
2086 if (!may_insert_breakpoints)
2087 {
2088 warning (_("May not insert breakpoints"));
2089 return 1;
2090 }
2091
2092 return current_target.to_insert_breakpoint (&current_target,
2093 gdbarch, bp_tgt);
2094 }
2095
2096 /* See target.h. */
2097
2098 int
2099 target_remove_breakpoint (struct gdbarch *gdbarch,
2100 struct bp_target_info *bp_tgt,
2101 enum remove_bp_reason reason)
2102 {
2103 /* This is kind of a weird case to handle, but the permission might
2104 have been changed after breakpoints were inserted - in which case
2105 we should just take the user literally and assume that any
2106 breakpoints should be left in place. */
2107 if (!may_insert_breakpoints)
2108 {
2109 warning (_("May not remove breakpoints"));
2110 return 1;
2111 }
2112
2113 return current_target.to_remove_breakpoint (&current_target,
2114 gdbarch, bp_tgt, reason);
2115 }
2116
2117 static void
2118 info_target_command (char *args, int from_tty)
2119 {
2120 struct target_ops *t;
2121 int has_all_mem = 0;
2122
2123 if (symfile_objfile != NULL)
2124 printf_unfiltered (_("Symbols from \"%s\".\n"),
2125 objfile_name (symfile_objfile));
2126
2127 for (t = target_stack; t != NULL; t = t->beneath)
2128 {
2129 if (!(*t->to_has_memory) (t))
2130 continue;
2131
2132 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2133 continue;
2134 if (has_all_mem)
2135 printf_unfiltered (_("\tWhile running this, "
2136 "GDB does not access memory from...\n"));
2137 printf_unfiltered ("%s:\n", t->to_longname);
2138 (t->to_files_info) (t);
2139 has_all_mem = (*t->to_has_all_memory) (t);
2140 }
2141 }
2142
2143 /* This function is called before any new inferior is created, e.g.
2144 by running a program, attaching, or connecting to a target.
2145 It cleans up any state from previous invocations which might
2146 change between runs. This is a subset of what target_preopen
2147 resets (things which might change between targets). */
2148
2149 void
2150 target_pre_inferior (int from_tty)
2151 {
2152 /* Clear out solib state. Otherwise the solib state of the previous
2153 inferior might have survived and is entirely wrong for the new
2154 target. This has been observed on GNU/Linux using glibc 2.3. How
2155 to reproduce:
2156
2157 bash$ ./foo&
2158 [1] 4711
2159 bash$ ./foo&
2160 [1] 4712
2161 bash$ gdb ./foo
2162 [...]
2163 (gdb) attach 4711
2164 (gdb) detach
2165 (gdb) attach 4712
2166 Cannot access memory at address 0xdeadbeef
2167 */
2168
2169 /* In some OSs, the shared library list is the same/global/shared
2170 across inferiors. If code is shared between processes, so are
2171 memory regions and features. */
2172 if (!gdbarch_has_global_solist (target_gdbarch ()))
2173 {
2174 no_shared_libraries (NULL, from_tty);
2175
2176 invalidate_target_mem_regions ();
2177
2178 target_clear_description ();
2179 }
2180
2181 /* attach_flag may be set if the previous process associated with
2182 the inferior was attached to. */
2183 current_inferior ()->attach_flag = 0;
2184
2185 current_inferior ()->highest_thread_num = 0;
2186
2187 agent_capability_invalidate ();
2188 }
2189
2190 /* Callback for iterate_over_inferiors. Gets rid of the given
2191 inferior. */
2192
2193 static int
2194 dispose_inferior (struct inferior *inf, void *args)
2195 {
2196 struct thread_info *thread;
2197
2198 thread = any_thread_of_process (inf->pid);
2199 if (thread)
2200 {
2201 switch_to_thread (thread->ptid);
2202
2203 /* Core inferiors actually should be detached, not killed. */
2204 if (target_has_execution)
2205 target_kill ();
2206 else
2207 target_detach (NULL, 0);
2208 }
2209
2210 return 0;
2211 }
2212
2213 /* This is to be called by the open routine before it does
2214 anything. */
2215
2216 void
2217 target_preopen (int from_tty)
2218 {
2219 dont_repeat ();
2220
2221 if (have_inferiors ())
2222 {
2223 if (!from_tty
2224 || !have_live_inferiors ()
2225 || query (_("A program is being debugged already. Kill it? ")))
2226 iterate_over_inferiors (dispose_inferior, NULL);
2227 else
2228 error (_("Program not killed."));
2229 }
2230
2231 /* Calling target_kill may remove the target from the stack. But if
2232 it doesn't (which seems like a win for UDI), remove it now. */
2233 /* Leave the exec target, though. The user may be switching from a
2234 live process to a core of the same program. */
2235 pop_all_targets_above (file_stratum);
2236
2237 target_pre_inferior (from_tty);
2238 }
2239
2240 /* Detach a target after doing deferred register stores. */
2241
2242 void
2243 target_detach (const char *args, int from_tty)
2244 {
2245 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2246 /* Don't remove global breakpoints here. They're removed on
2247 disconnection from the target. */
2248 ;
2249 else
2250 /* If we're in breakpoints-always-inserted mode, have to remove
2251 them before detaching. */
2252 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2253
2254 prepare_for_detach ();
2255
2256 current_target.to_detach (&current_target, args, from_tty);
2257 }
2258
2259 void
2260 target_disconnect (const char *args, int from_tty)
2261 {
2262 /* If we're in breakpoints-always-inserted mode or if breakpoints
2263 are global across processes, we have to remove them before
2264 disconnecting. */
2265 remove_breakpoints ();
2266
2267 current_target.to_disconnect (&current_target, args, from_tty);
2268 }
2269
2270 /* See target/target.h. */
2271
2272 ptid_t
2273 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2274 {
2275 return (current_target.to_wait) (&current_target, ptid, status, options);
2276 }
2277
2278 /* See target.h. */
2279
2280 ptid_t
2281 default_target_wait (struct target_ops *ops,
2282 ptid_t ptid, struct target_waitstatus *status,
2283 int options)
2284 {
2285 status->kind = TARGET_WAITKIND_IGNORE;
2286 return minus_one_ptid;
2287 }
2288
2289 const char *
2290 target_pid_to_str (ptid_t ptid)
2291 {
2292 return (*current_target.to_pid_to_str) (&current_target, ptid);
2293 }
2294
2295 const char *
2296 target_thread_name (struct thread_info *info)
2297 {
2298 return current_target.to_thread_name (&current_target, info);
2299 }
2300
2301 void
2302 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2303 {
2304 target_dcache_invalidate ();
2305
2306 current_target.to_resume (&current_target, ptid, step, signal);
2307
2308 registers_changed_ptid (ptid);
2309 /* We only set the internal executing state here. The user/frontend
2310 running state is set at a higher level. */
2311 set_executing (ptid, 1);
2312 clear_inline_frame_state (ptid);
2313 }
2314
2315 /* If true, target_commit_resume is a nop. */
2316 static int defer_target_commit_resume;
2317
2318 /* See target.h. */
2319
2320 void
2321 target_commit_resume (void)
2322 {
2323 struct target_ops *t;
2324
2325 if (defer_target_commit_resume)
2326 return;
2327
2328 current_target.to_commit_resume (&current_target);
2329 }
2330
2331 /* See target.h. */
2332
2333 struct cleanup *
2334 make_cleanup_defer_target_commit_resume (void)
2335 {
2336 struct cleanup *old_chain;
2337
2338 old_chain = make_cleanup_restore_integer (&defer_target_commit_resume);
2339 defer_target_commit_resume = 1;
2340 return old_chain;
2341 }
2342
2343 void
2344 target_pass_signals (int numsigs, unsigned char *pass_signals)
2345 {
2346 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2347 }
2348
2349 void
2350 target_program_signals (int numsigs, unsigned char *program_signals)
2351 {
2352 (*current_target.to_program_signals) (&current_target,
2353 numsigs, program_signals);
2354 }
2355
2356 static int
2357 default_follow_fork (struct target_ops *self, int follow_child,
2358 int detach_fork)
2359 {
2360 /* Some target returned a fork event, but did not know how to follow it. */
2361 internal_error (__FILE__, __LINE__,
2362 _("could not find a target to follow fork"));
2363 }
2364
2365 /* Look through the list of possible targets for a target that can
2366 follow forks. */
2367
2368 int
2369 target_follow_fork (int follow_child, int detach_fork)
2370 {
2371 return current_target.to_follow_fork (&current_target,
2372 follow_child, detach_fork);
2373 }
2374
2375 /* Target wrapper for follow exec hook. */
2376
2377 void
2378 target_follow_exec (struct inferior *inf, char *execd_pathname)
2379 {
2380 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2381 }
2382
2383 static void
2384 default_mourn_inferior (struct target_ops *self)
2385 {
2386 internal_error (__FILE__, __LINE__,
2387 _("could not find a target to follow mourn inferior"));
2388 }
2389
2390 void
2391 target_mourn_inferior (ptid_t ptid)
2392 {
2393 gdb_assert (ptid_equal (ptid, inferior_ptid));
2394 current_target.to_mourn_inferior (&current_target);
2395
2396 /* We no longer need to keep handles on any of the object files.
2397 Make sure to release them to avoid unnecessarily locking any
2398 of them while we're not actually debugging. */
2399 bfd_cache_close_all ();
2400 }
2401
2402 /* Look for a target which can describe architectural features, starting
2403 from TARGET. If we find one, return its description. */
2404
2405 const struct target_desc *
2406 target_read_description (struct target_ops *target)
2407 {
2408 return target->to_read_description (target);
2409 }
2410
2411 /* This implements a basic search of memory, reading target memory and
2412 performing the search here (as opposed to performing the search in on the
2413 target side with, for example, gdbserver). */
2414
2415 int
2416 simple_search_memory (struct target_ops *ops,
2417 CORE_ADDR start_addr, ULONGEST search_space_len,
2418 const gdb_byte *pattern, ULONGEST pattern_len,
2419 CORE_ADDR *found_addrp)
2420 {
2421 /* NOTE: also defined in find.c testcase. */
2422 #define SEARCH_CHUNK_SIZE 16000
2423 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2424 /* Buffer to hold memory contents for searching. */
2425 unsigned search_buf_size;
2426
2427 search_buf_size = chunk_size + pattern_len - 1;
2428
2429 /* No point in trying to allocate a buffer larger than the search space. */
2430 if (search_space_len < search_buf_size)
2431 search_buf_size = search_space_len;
2432
2433 gdb::byte_vector search_buf (search_buf_size);
2434
2435 /* Prime the search buffer. */
2436
2437 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2438 search_buf.data (), start_addr, search_buf_size)
2439 != search_buf_size)
2440 {
2441 warning (_("Unable to access %s bytes of target "
2442 "memory at %s, halting search."),
2443 pulongest (search_buf_size), hex_string (start_addr));
2444 return -1;
2445 }
2446
2447 /* Perform the search.
2448
2449 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2450 When we've scanned N bytes we copy the trailing bytes to the start and
2451 read in another N bytes. */
2452
2453 while (search_space_len >= pattern_len)
2454 {
2455 gdb_byte *found_ptr;
2456 unsigned nr_search_bytes
2457 = std::min (search_space_len, (ULONGEST) search_buf_size);
2458
2459 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2460 pattern, pattern_len);
2461
2462 if (found_ptr != NULL)
2463 {
2464 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2465
2466 *found_addrp = found_addr;
2467 return 1;
2468 }
2469
2470 /* Not found in this chunk, skip to next chunk. */
2471
2472 /* Don't let search_space_len wrap here, it's unsigned. */
2473 if (search_space_len >= chunk_size)
2474 search_space_len -= chunk_size;
2475 else
2476 search_space_len = 0;
2477
2478 if (search_space_len >= pattern_len)
2479 {
2480 unsigned keep_len = search_buf_size - chunk_size;
2481 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2482 int nr_to_read;
2483
2484 /* Copy the trailing part of the previous iteration to the front
2485 of the buffer for the next iteration. */
2486 gdb_assert (keep_len == pattern_len - 1);
2487 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2488
2489 nr_to_read = std::min (search_space_len - keep_len,
2490 (ULONGEST) chunk_size);
2491
2492 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2493 &search_buf[keep_len], read_addr,
2494 nr_to_read) != nr_to_read)
2495 {
2496 warning (_("Unable to access %s bytes of target "
2497 "memory at %s, halting search."),
2498 plongest (nr_to_read),
2499 hex_string (read_addr));
2500 return -1;
2501 }
2502
2503 start_addr += chunk_size;
2504 }
2505 }
2506
2507 /* Not found. */
2508
2509 return 0;
2510 }
2511
2512 /* Default implementation of memory-searching. */
2513
2514 static int
2515 default_search_memory (struct target_ops *self,
2516 CORE_ADDR start_addr, ULONGEST search_space_len,
2517 const gdb_byte *pattern, ULONGEST pattern_len,
2518 CORE_ADDR *found_addrp)
2519 {
2520 /* Start over from the top of the target stack. */
2521 return simple_search_memory (current_target.beneath,
2522 start_addr, search_space_len,
2523 pattern, pattern_len, found_addrp);
2524 }
2525
2526 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2527 sequence of bytes in PATTERN with length PATTERN_LEN.
2528
2529 The result is 1 if found, 0 if not found, and -1 if there was an error
2530 requiring halting of the search (e.g. memory read error).
2531 If the pattern is found the address is recorded in FOUND_ADDRP. */
2532
2533 int
2534 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2535 const gdb_byte *pattern, ULONGEST pattern_len,
2536 CORE_ADDR *found_addrp)
2537 {
2538 return current_target.to_search_memory (&current_target, start_addr,
2539 search_space_len,
2540 pattern, pattern_len, found_addrp);
2541 }
2542
2543 /* Look through the currently pushed targets. If none of them will
2544 be able to restart the currently running process, issue an error
2545 message. */
2546
2547 void
2548 target_require_runnable (void)
2549 {
2550 struct target_ops *t;
2551
2552 for (t = target_stack; t != NULL; t = t->beneath)
2553 {
2554 /* If this target knows how to create a new program, then
2555 assume we will still be able to after killing the current
2556 one. Either killing and mourning will not pop T, or else
2557 find_default_run_target will find it again. */
2558 if (t->to_create_inferior != NULL)
2559 return;
2560
2561 /* Do not worry about targets at certain strata that can not
2562 create inferiors. Assume they will be pushed again if
2563 necessary, and continue to the process_stratum. */
2564 if (t->to_stratum == thread_stratum
2565 || t->to_stratum == record_stratum
2566 || t->to_stratum == arch_stratum)
2567 continue;
2568
2569 error (_("The \"%s\" target does not support \"run\". "
2570 "Try \"help target\" or \"continue\"."),
2571 t->to_shortname);
2572 }
2573
2574 /* This function is only called if the target is running. In that
2575 case there should have been a process_stratum target and it
2576 should either know how to create inferiors, or not... */
2577 internal_error (__FILE__, __LINE__, _("No targets found"));
2578 }
2579
2580 /* Whether GDB is allowed to fall back to the default run target for
2581 "run", "attach", etc. when no target is connected yet. */
2582 static int auto_connect_native_target = 1;
2583
2584 static void
2585 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2586 struct cmd_list_element *c, const char *value)
2587 {
2588 fprintf_filtered (file,
2589 _("Whether GDB may automatically connect to the "
2590 "native target is %s.\n"),
2591 value);
2592 }
2593
2594 /* Look through the list of possible targets for a target that can
2595 execute a run or attach command without any other data. This is
2596 used to locate the default process stratum.
2597
2598 If DO_MESG is not NULL, the result is always valid (error() is
2599 called for errors); else, return NULL on error. */
2600
2601 static struct target_ops *
2602 find_default_run_target (const char *do_mesg)
2603 {
2604 struct target_ops *runable = NULL;
2605
2606 if (auto_connect_native_target)
2607 {
2608 struct target_ops *t;
2609 int count = 0;
2610 int i;
2611
2612 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2613 {
2614 if (t->to_can_run != delegate_can_run && target_can_run (t))
2615 {
2616 runable = t;
2617 ++count;
2618 }
2619 }
2620
2621 if (count != 1)
2622 runable = NULL;
2623 }
2624
2625 if (runable == NULL)
2626 {
2627 if (do_mesg)
2628 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2629 else
2630 return NULL;
2631 }
2632
2633 return runable;
2634 }
2635
2636 /* See target.h. */
2637
2638 struct target_ops *
2639 find_attach_target (void)
2640 {
2641 struct target_ops *t;
2642
2643 /* If a target on the current stack can attach, use it. */
2644 for (t = current_target.beneath; t != NULL; t = t->beneath)
2645 {
2646 if (t->to_attach != NULL)
2647 break;
2648 }
2649
2650 /* Otherwise, use the default run target for attaching. */
2651 if (t == NULL)
2652 t = find_default_run_target ("attach");
2653
2654 return t;
2655 }
2656
2657 /* See target.h. */
2658
2659 struct target_ops *
2660 find_run_target (void)
2661 {
2662 struct target_ops *t;
2663
2664 /* If a target on the current stack can attach, use it. */
2665 for (t = current_target.beneath; t != NULL; t = t->beneath)
2666 {
2667 if (t->to_create_inferior != NULL)
2668 break;
2669 }
2670
2671 /* Otherwise, use the default run target. */
2672 if (t == NULL)
2673 t = find_default_run_target ("run");
2674
2675 return t;
2676 }
2677
2678 /* Implement the "info proc" command. */
2679
2680 int
2681 target_info_proc (const char *args, enum info_proc_what what)
2682 {
2683 struct target_ops *t;
2684
2685 /* If we're already connected to something that can get us OS
2686 related data, use it. Otherwise, try using the native
2687 target. */
2688 if (current_target.to_stratum >= process_stratum)
2689 t = current_target.beneath;
2690 else
2691 t = find_default_run_target (NULL);
2692
2693 for (; t != NULL; t = t->beneath)
2694 {
2695 if (t->to_info_proc != NULL)
2696 {
2697 t->to_info_proc (t, args, what);
2698
2699 if (targetdebug)
2700 fprintf_unfiltered (gdb_stdlog,
2701 "target_info_proc (\"%s\", %d)\n", args, what);
2702
2703 return 1;
2704 }
2705 }
2706
2707 return 0;
2708 }
2709
2710 static int
2711 find_default_supports_disable_randomization (struct target_ops *self)
2712 {
2713 struct target_ops *t;
2714
2715 t = find_default_run_target (NULL);
2716 if (t && t->to_supports_disable_randomization)
2717 return (t->to_supports_disable_randomization) (t);
2718 return 0;
2719 }
2720
2721 int
2722 target_supports_disable_randomization (void)
2723 {
2724 struct target_ops *t;
2725
2726 for (t = &current_target; t != NULL; t = t->beneath)
2727 if (t->to_supports_disable_randomization)
2728 return t->to_supports_disable_randomization (t);
2729
2730 return 0;
2731 }
2732
2733 /* See target/target.h. */
2734
2735 int
2736 target_supports_multi_process (void)
2737 {
2738 return (*current_target.to_supports_multi_process) (&current_target);
2739 }
2740
2741 char *
2742 target_get_osdata (const char *type)
2743 {
2744 struct target_ops *t;
2745
2746 /* If we're already connected to something that can get us OS
2747 related data, use it. Otherwise, try using the native
2748 target. */
2749 if (current_target.to_stratum >= process_stratum)
2750 t = current_target.beneath;
2751 else
2752 t = find_default_run_target ("get OS data");
2753
2754 if (!t)
2755 return NULL;
2756
2757 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2758 }
2759
2760 static struct address_space *
2761 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2762 {
2763 struct inferior *inf;
2764
2765 /* Fall-back to the "main" address space of the inferior. */
2766 inf = find_inferior_ptid (ptid);
2767
2768 if (inf == NULL || inf->aspace == NULL)
2769 internal_error (__FILE__, __LINE__,
2770 _("Can't determine the current "
2771 "address space of thread %s\n"),
2772 target_pid_to_str (ptid));
2773
2774 return inf->aspace;
2775 }
2776
2777 /* Determine the current address space of thread PTID. */
2778
2779 struct address_space *
2780 target_thread_address_space (ptid_t ptid)
2781 {
2782 struct address_space *aspace;
2783
2784 aspace = current_target.to_thread_address_space (&current_target, ptid);
2785 gdb_assert (aspace != NULL);
2786
2787 return aspace;
2788 }
2789
2790
2791 /* Target file operations. */
2792
2793 static struct target_ops *
2794 default_fileio_target (void)
2795 {
2796 /* If we're already connected to something that can perform
2797 file I/O, use it. Otherwise, try using the native target. */
2798 if (current_target.to_stratum >= process_stratum)
2799 return current_target.beneath;
2800 else
2801 return find_default_run_target ("file I/O");
2802 }
2803
2804 /* File handle for target file operations. */
2805
2806 typedef struct
2807 {
2808 /* The target on which this file is open. */
2809 struct target_ops *t;
2810
2811 /* The file descriptor on the target. */
2812 int fd;
2813 } fileio_fh_t;
2814
2815 DEF_VEC_O (fileio_fh_t);
2816
2817 /* Vector of currently open file handles. The value returned by
2818 target_fileio_open and passed as the FD argument to other
2819 target_fileio_* functions is an index into this vector. This
2820 vector's entries are never freed; instead, files are marked as
2821 closed, and the handle becomes available for reuse. */
2822 static VEC (fileio_fh_t) *fileio_fhandles;
2823
2824 /* Macro to check whether a fileio_fh_t represents a closed file. */
2825 #define is_closed_fileio_fh(fd) ((fd) < 0)
2826
2827 /* Index into fileio_fhandles of the lowest handle that might be
2828 closed. This permits handle reuse without searching the whole
2829 list each time a new file is opened. */
2830 static int lowest_closed_fd;
2831
2832 /* Acquire a target fileio file descriptor. */
2833
2834 static int
2835 acquire_fileio_fd (struct target_ops *t, int fd)
2836 {
2837 fileio_fh_t *fh;
2838
2839 gdb_assert (!is_closed_fileio_fh (fd));
2840
2841 /* Search for closed handles to reuse. */
2842 for (;
2843 VEC_iterate (fileio_fh_t, fileio_fhandles,
2844 lowest_closed_fd, fh);
2845 lowest_closed_fd++)
2846 if (is_closed_fileio_fh (fh->fd))
2847 break;
2848
2849 /* Push a new handle if no closed handles were found. */
2850 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2851 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2852
2853 /* Fill in the handle. */
2854 fh->t = t;
2855 fh->fd = fd;
2856
2857 /* Return its index, and start the next lookup at
2858 the next index. */
2859 return lowest_closed_fd++;
2860 }
2861
2862 /* Release a target fileio file descriptor. */
2863
2864 static void
2865 release_fileio_fd (int fd, fileio_fh_t *fh)
2866 {
2867 fh->fd = -1;
2868 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2869 }
2870
2871 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2872
2873 #define fileio_fd_to_fh(fd) \
2874 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2875
2876 /* Helper for target_fileio_open and
2877 target_fileio_open_warn_if_slow. */
2878
2879 static int
2880 target_fileio_open_1 (struct inferior *inf, const char *filename,
2881 int flags, int mode, int warn_if_slow,
2882 int *target_errno)
2883 {
2884 struct target_ops *t;
2885
2886 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2887 {
2888 if (t->to_fileio_open != NULL)
2889 {
2890 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2891 warn_if_slow, target_errno);
2892
2893 if (fd < 0)
2894 fd = -1;
2895 else
2896 fd = acquire_fileio_fd (t, fd);
2897
2898 if (targetdebug)
2899 fprintf_unfiltered (gdb_stdlog,
2900 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2901 " = %d (%d)\n",
2902 inf == NULL ? 0 : inf->num,
2903 filename, flags, mode,
2904 warn_if_slow, fd,
2905 fd != -1 ? 0 : *target_errno);
2906 return fd;
2907 }
2908 }
2909
2910 *target_errno = FILEIO_ENOSYS;
2911 return -1;
2912 }
2913
2914 /* See target.h. */
2915
2916 int
2917 target_fileio_open (struct inferior *inf, const char *filename,
2918 int flags, int mode, int *target_errno)
2919 {
2920 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2921 target_errno);
2922 }
2923
2924 /* See target.h. */
2925
2926 int
2927 target_fileio_open_warn_if_slow (struct inferior *inf,
2928 const char *filename,
2929 int flags, int mode, int *target_errno)
2930 {
2931 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2932 target_errno);
2933 }
2934
2935 /* See target.h. */
2936
2937 int
2938 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2939 ULONGEST offset, int *target_errno)
2940 {
2941 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2942 int ret = -1;
2943
2944 if (is_closed_fileio_fh (fh->fd))
2945 *target_errno = EBADF;
2946 else
2947 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2948 len, offset, target_errno);
2949
2950 if (targetdebug)
2951 fprintf_unfiltered (gdb_stdlog,
2952 "target_fileio_pwrite (%d,...,%d,%s) "
2953 "= %d (%d)\n",
2954 fd, len, pulongest (offset),
2955 ret, ret != -1 ? 0 : *target_errno);
2956 return ret;
2957 }
2958
2959 /* See target.h. */
2960
2961 int
2962 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2963 ULONGEST offset, int *target_errno)
2964 {
2965 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2966 int ret = -1;
2967
2968 if (is_closed_fileio_fh (fh->fd))
2969 *target_errno = EBADF;
2970 else
2971 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2972 len, offset, target_errno);
2973
2974 if (targetdebug)
2975 fprintf_unfiltered (gdb_stdlog,
2976 "target_fileio_pread (%d,...,%d,%s) "
2977 "= %d (%d)\n",
2978 fd, len, pulongest (offset),
2979 ret, ret != -1 ? 0 : *target_errno);
2980 return ret;
2981 }
2982
2983 /* See target.h. */
2984
2985 int
2986 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2987 {
2988 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2989 int ret = -1;
2990
2991 if (is_closed_fileio_fh (fh->fd))
2992 *target_errno = EBADF;
2993 else
2994 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2995
2996 if (targetdebug)
2997 fprintf_unfiltered (gdb_stdlog,
2998 "target_fileio_fstat (%d) = %d (%d)\n",
2999 fd, ret, ret != -1 ? 0 : *target_errno);
3000 return ret;
3001 }
3002
3003 /* See target.h. */
3004
3005 int
3006 target_fileio_close (int fd, int *target_errno)
3007 {
3008 fileio_fh_t *fh = fileio_fd_to_fh (fd);
3009 int ret = -1;
3010
3011 if (is_closed_fileio_fh (fh->fd))
3012 *target_errno = EBADF;
3013 else
3014 {
3015 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
3016 release_fileio_fd (fd, fh);
3017 }
3018
3019 if (targetdebug)
3020 fprintf_unfiltered (gdb_stdlog,
3021 "target_fileio_close (%d) = %d (%d)\n",
3022 fd, ret, ret != -1 ? 0 : *target_errno);
3023 return ret;
3024 }
3025
3026 /* See target.h. */
3027
3028 int
3029 target_fileio_unlink (struct inferior *inf, const char *filename,
3030 int *target_errno)
3031 {
3032 struct target_ops *t;
3033
3034 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3035 {
3036 if (t->to_fileio_unlink != NULL)
3037 {
3038 int ret = t->to_fileio_unlink (t, inf, filename,
3039 target_errno);
3040
3041 if (targetdebug)
3042 fprintf_unfiltered (gdb_stdlog,
3043 "target_fileio_unlink (%d,%s)"
3044 " = %d (%d)\n",
3045 inf == NULL ? 0 : inf->num, filename,
3046 ret, ret != -1 ? 0 : *target_errno);
3047 return ret;
3048 }
3049 }
3050
3051 *target_errno = FILEIO_ENOSYS;
3052 return -1;
3053 }
3054
3055 /* See target.h. */
3056
3057 char *
3058 target_fileio_readlink (struct inferior *inf, const char *filename,
3059 int *target_errno)
3060 {
3061 struct target_ops *t;
3062
3063 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3064 {
3065 if (t->to_fileio_readlink != NULL)
3066 {
3067 char *ret = t->to_fileio_readlink (t, inf, filename,
3068 target_errno);
3069
3070 if (targetdebug)
3071 fprintf_unfiltered (gdb_stdlog,
3072 "target_fileio_readlink (%d,%s)"
3073 " = %s (%d)\n",
3074 inf == NULL ? 0 : inf->num,
3075 filename, ret? ret : "(nil)",
3076 ret? 0 : *target_errno);
3077 return ret;
3078 }
3079 }
3080
3081 *target_errno = FILEIO_ENOSYS;
3082 return NULL;
3083 }
3084
3085 static void
3086 target_fileio_close_cleanup (void *opaque)
3087 {
3088 int fd = *(int *) opaque;
3089 int target_errno;
3090
3091 target_fileio_close (fd, &target_errno);
3092 }
3093
3094 /* Read target file FILENAME, in the filesystem as seen by INF. If
3095 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3096 remote targets, the remote stub). Store the result in *BUF_P and
3097 return the size of the transferred data. PADDING additional bytes
3098 are available in *BUF_P. This is a helper function for
3099 target_fileio_read_alloc; see the declaration of that function for
3100 more information. */
3101
3102 static LONGEST
3103 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3104 gdb_byte **buf_p, int padding)
3105 {
3106 struct cleanup *close_cleanup;
3107 size_t buf_alloc, buf_pos;
3108 gdb_byte *buf;
3109 LONGEST n;
3110 int fd;
3111 int target_errno;
3112
3113 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3114 &target_errno);
3115 if (fd == -1)
3116 return -1;
3117
3118 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3119
3120 /* Start by reading up to 4K at a time. The target will throttle
3121 this number down if necessary. */
3122 buf_alloc = 4096;
3123 buf = (gdb_byte *) xmalloc (buf_alloc);
3124 buf_pos = 0;
3125 while (1)
3126 {
3127 n = target_fileio_pread (fd, &buf[buf_pos],
3128 buf_alloc - buf_pos - padding, buf_pos,
3129 &target_errno);
3130 if (n < 0)
3131 {
3132 /* An error occurred. */
3133 do_cleanups (close_cleanup);
3134 xfree (buf);
3135 return -1;
3136 }
3137 else if (n == 0)
3138 {
3139 /* Read all there was. */
3140 do_cleanups (close_cleanup);
3141 if (buf_pos == 0)
3142 xfree (buf);
3143 else
3144 *buf_p = buf;
3145 return buf_pos;
3146 }
3147
3148 buf_pos += n;
3149
3150 /* If the buffer is filling up, expand it. */
3151 if (buf_alloc < buf_pos * 2)
3152 {
3153 buf_alloc *= 2;
3154 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3155 }
3156
3157 QUIT;
3158 }
3159 }
3160
3161 /* See target.h. */
3162
3163 LONGEST
3164 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3165 gdb_byte **buf_p)
3166 {
3167 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3168 }
3169
3170 /* See target.h. */
3171
3172 char *
3173 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3174 {
3175 gdb_byte *buffer;
3176 char *bufstr;
3177 LONGEST i, transferred;
3178
3179 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3180 bufstr = (char *) buffer;
3181
3182 if (transferred < 0)
3183 return NULL;
3184
3185 if (transferred == 0)
3186 return xstrdup ("");
3187
3188 bufstr[transferred] = 0;
3189
3190 /* Check for embedded NUL bytes; but allow trailing NULs. */
3191 for (i = strlen (bufstr); i < transferred; i++)
3192 if (bufstr[i] != 0)
3193 {
3194 warning (_("target file %s "
3195 "contained unexpected null characters"),
3196 filename);
3197 break;
3198 }
3199
3200 return bufstr;
3201 }
3202
3203
3204 static int
3205 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3206 CORE_ADDR addr, int len)
3207 {
3208 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3209 }
3210
3211 static int
3212 default_watchpoint_addr_within_range (struct target_ops *target,
3213 CORE_ADDR addr,
3214 CORE_ADDR start, int length)
3215 {
3216 return addr >= start && addr < start + length;
3217 }
3218
3219 static struct gdbarch *
3220 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3221 {
3222 return target_gdbarch ();
3223 }
3224
3225 static int
3226 return_zero (struct target_ops *ignore)
3227 {
3228 return 0;
3229 }
3230
3231 static int
3232 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3233 {
3234 return 0;
3235 }
3236
3237 /*
3238 * Find the next target down the stack from the specified target.
3239 */
3240
3241 struct target_ops *
3242 find_target_beneath (struct target_ops *t)
3243 {
3244 return t->beneath;
3245 }
3246
3247 /* See target.h. */
3248
3249 struct target_ops *
3250 find_target_at (enum strata stratum)
3251 {
3252 struct target_ops *t;
3253
3254 for (t = current_target.beneath; t != NULL; t = t->beneath)
3255 if (t->to_stratum == stratum)
3256 return t;
3257
3258 return NULL;
3259 }
3260
3261 \f
3262
3263 /* See target.h */
3264
3265 void
3266 target_announce_detach (int from_tty)
3267 {
3268 pid_t pid;
3269 const char *exec_file;
3270
3271 if (!from_tty)
3272 return;
3273
3274 exec_file = get_exec_file (0);
3275 if (exec_file == NULL)
3276 exec_file = "";
3277
3278 pid = ptid_get_pid (inferior_ptid);
3279 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3280 target_pid_to_str (pid_to_ptid (pid)));
3281 gdb_flush (gdb_stdout);
3282 }
3283
3284 /* The inferior process has died. Long live the inferior! */
3285
3286 void
3287 generic_mourn_inferior (void)
3288 {
3289 ptid_t ptid;
3290
3291 ptid = inferior_ptid;
3292 inferior_ptid = null_ptid;
3293
3294 /* Mark breakpoints uninserted in case something tries to delete a
3295 breakpoint while we delete the inferior's threads (which would
3296 fail, since the inferior is long gone). */
3297 mark_breakpoints_out ();
3298
3299 if (!ptid_equal (ptid, null_ptid))
3300 {
3301 int pid = ptid_get_pid (ptid);
3302 exit_inferior (pid);
3303 }
3304
3305 /* Note this wipes step-resume breakpoints, so needs to be done
3306 after exit_inferior, which ends up referencing the step-resume
3307 breakpoints through clear_thread_inferior_resources. */
3308 breakpoint_init_inferior (inf_exited);
3309
3310 registers_changed ();
3311
3312 reopen_exec_file ();
3313 reinit_frame_cache ();
3314
3315 if (deprecated_detach_hook)
3316 deprecated_detach_hook ();
3317 }
3318 \f
3319 /* Convert a normal process ID to a string. Returns the string in a
3320 static buffer. */
3321
3322 const char *
3323 normal_pid_to_str (ptid_t ptid)
3324 {
3325 static char buf[32];
3326
3327 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3328 return buf;
3329 }
3330
3331 static const char *
3332 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3333 {
3334 return normal_pid_to_str (ptid);
3335 }
3336
3337 /* Error-catcher for target_find_memory_regions. */
3338 static int
3339 dummy_find_memory_regions (struct target_ops *self,
3340 find_memory_region_ftype ignore1, void *ignore2)
3341 {
3342 error (_("Command not implemented for this target."));
3343 return 0;
3344 }
3345
3346 /* Error-catcher for target_make_corefile_notes. */
3347 static char *
3348 dummy_make_corefile_notes (struct target_ops *self,
3349 bfd *ignore1, int *ignore2)
3350 {
3351 error (_("Command not implemented for this target."));
3352 return NULL;
3353 }
3354
3355 /* Set up the handful of non-empty slots needed by the dummy target
3356 vector. */
3357
3358 static void
3359 init_dummy_target (void)
3360 {
3361 dummy_target.to_shortname = "None";
3362 dummy_target.to_longname = "None";
3363 dummy_target.to_doc = "";
3364 dummy_target.to_supports_disable_randomization
3365 = find_default_supports_disable_randomization;
3366 dummy_target.to_stratum = dummy_stratum;
3367 dummy_target.to_has_all_memory = return_zero;
3368 dummy_target.to_has_memory = return_zero;
3369 dummy_target.to_has_stack = return_zero;
3370 dummy_target.to_has_registers = return_zero;
3371 dummy_target.to_has_execution = return_zero_has_execution;
3372 dummy_target.to_magic = OPS_MAGIC;
3373
3374 install_dummy_methods (&dummy_target);
3375 }
3376 \f
3377
3378 void
3379 target_close (struct target_ops *targ)
3380 {
3381 gdb_assert (!target_is_pushed (targ));
3382
3383 if (targ->to_xclose != NULL)
3384 targ->to_xclose (targ);
3385 else if (targ->to_close != NULL)
3386 targ->to_close (targ);
3387
3388 if (targetdebug)
3389 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3390 }
3391
3392 int
3393 target_thread_alive (ptid_t ptid)
3394 {
3395 return current_target.to_thread_alive (&current_target, ptid);
3396 }
3397
3398 void
3399 target_update_thread_list (void)
3400 {
3401 current_target.to_update_thread_list (&current_target);
3402 }
3403
3404 void
3405 target_stop (ptid_t ptid)
3406 {
3407 if (!may_stop)
3408 {
3409 warning (_("May not interrupt or stop the target, ignoring attempt"));
3410 return;
3411 }
3412
3413 (*current_target.to_stop) (&current_target, ptid);
3414 }
3415
3416 void
3417 target_interrupt (ptid_t ptid)
3418 {
3419 if (!may_stop)
3420 {
3421 warning (_("May not interrupt or stop the target, ignoring attempt"));
3422 return;
3423 }
3424
3425 (*current_target.to_interrupt) (&current_target, ptid);
3426 }
3427
3428 /* See target.h. */
3429
3430 void
3431 target_pass_ctrlc (void)
3432 {
3433 (*current_target.to_pass_ctrlc) (&current_target);
3434 }
3435
3436 /* See target.h. */
3437
3438 void
3439 default_target_pass_ctrlc (struct target_ops *ops)
3440 {
3441 target_interrupt (inferior_ptid);
3442 }
3443
3444 /* See target/target.h. */
3445
3446 void
3447 target_stop_and_wait (ptid_t ptid)
3448 {
3449 struct target_waitstatus status;
3450 int was_non_stop = non_stop;
3451
3452 non_stop = 1;
3453 target_stop (ptid);
3454
3455 memset (&status, 0, sizeof (status));
3456 target_wait (ptid, &status, 0);
3457
3458 non_stop = was_non_stop;
3459 }
3460
3461 /* See target/target.h. */
3462
3463 void
3464 target_continue_no_signal (ptid_t ptid)
3465 {
3466 target_resume (ptid, 0, GDB_SIGNAL_0);
3467 }
3468
3469 /* See target/target.h. */
3470
3471 void
3472 target_continue (ptid_t ptid, enum gdb_signal signal)
3473 {
3474 target_resume (ptid, 0, signal);
3475 }
3476
3477 /* Concatenate ELEM to LIST, a comma separate list, and return the
3478 result. The LIST incoming argument is released. */
3479
3480 static char *
3481 str_comma_list_concat_elem (char *list, const char *elem)
3482 {
3483 if (list == NULL)
3484 return xstrdup (elem);
3485 else
3486 return reconcat (list, list, ", ", elem, (char *) NULL);
3487 }
3488
3489 /* Helper for target_options_to_string. If OPT is present in
3490 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3491 Returns the new resulting string. OPT is removed from
3492 TARGET_OPTIONS. */
3493
3494 static char *
3495 do_option (int *target_options, char *ret,
3496 int opt, const char *opt_str)
3497 {
3498 if ((*target_options & opt) != 0)
3499 {
3500 ret = str_comma_list_concat_elem (ret, opt_str);
3501 *target_options &= ~opt;
3502 }
3503
3504 return ret;
3505 }
3506
3507 char *
3508 target_options_to_string (int target_options)
3509 {
3510 char *ret = NULL;
3511
3512 #define DO_TARG_OPTION(OPT) \
3513 ret = do_option (&target_options, ret, OPT, #OPT)
3514
3515 DO_TARG_OPTION (TARGET_WNOHANG);
3516
3517 if (target_options != 0)
3518 ret = str_comma_list_concat_elem (ret, "unknown???");
3519
3520 if (ret == NULL)
3521 ret = xstrdup ("");
3522 return ret;
3523 }
3524
3525 void
3526 target_fetch_registers (struct regcache *regcache, int regno)
3527 {
3528 current_target.to_fetch_registers (&current_target, regcache, regno);
3529 if (targetdebug)
3530 regcache->debug_print_register ("target_fetch_registers", regno);
3531 }
3532
3533 void
3534 target_store_registers (struct regcache *regcache, int regno)
3535 {
3536 if (!may_write_registers)
3537 error (_("Writing to registers is not allowed (regno %d)"), regno);
3538
3539 current_target.to_store_registers (&current_target, regcache, regno);
3540 if (targetdebug)
3541 {
3542 regcache->debug_print_register ("target_store_registers", regno);
3543 }
3544 }
3545
3546 int
3547 target_core_of_thread (ptid_t ptid)
3548 {
3549 return current_target.to_core_of_thread (&current_target, ptid);
3550 }
3551
3552 int
3553 simple_verify_memory (struct target_ops *ops,
3554 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3555 {
3556 LONGEST total_xfered = 0;
3557
3558 while (total_xfered < size)
3559 {
3560 ULONGEST xfered_len;
3561 enum target_xfer_status status;
3562 gdb_byte buf[1024];
3563 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3564
3565 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3566 buf, NULL, lma + total_xfered, howmuch,
3567 &xfered_len);
3568 if (status == TARGET_XFER_OK
3569 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3570 {
3571 total_xfered += xfered_len;
3572 QUIT;
3573 }
3574 else
3575 return 0;
3576 }
3577 return 1;
3578 }
3579
3580 /* Default implementation of memory verification. */
3581
3582 static int
3583 default_verify_memory (struct target_ops *self,
3584 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3585 {
3586 /* Start over from the top of the target stack. */
3587 return simple_verify_memory (current_target.beneath,
3588 data, memaddr, size);
3589 }
3590
3591 int
3592 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3593 {
3594 return current_target.to_verify_memory (&current_target,
3595 data, memaddr, size);
3596 }
3597
3598 /* The documentation for this function is in its prototype declaration in
3599 target.h. */
3600
3601 int
3602 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3603 enum target_hw_bp_type rw)
3604 {
3605 return current_target.to_insert_mask_watchpoint (&current_target,
3606 addr, mask, rw);
3607 }
3608
3609 /* The documentation for this function is in its prototype declaration in
3610 target.h. */
3611
3612 int
3613 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3614 enum target_hw_bp_type rw)
3615 {
3616 return current_target.to_remove_mask_watchpoint (&current_target,
3617 addr, mask, rw);
3618 }
3619
3620 /* The documentation for this function is in its prototype declaration
3621 in target.h. */
3622
3623 int
3624 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3625 {
3626 return current_target.to_masked_watch_num_registers (&current_target,
3627 addr, mask);
3628 }
3629
3630 /* The documentation for this function is in its prototype declaration
3631 in target.h. */
3632
3633 int
3634 target_ranged_break_num_registers (void)
3635 {
3636 return current_target.to_ranged_break_num_registers (&current_target);
3637 }
3638
3639 /* See target.h. */
3640
3641 int
3642 target_supports_btrace (enum btrace_format format)
3643 {
3644 return current_target.to_supports_btrace (&current_target, format);
3645 }
3646
3647 /* See target.h. */
3648
3649 struct btrace_target_info *
3650 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3651 {
3652 return current_target.to_enable_btrace (&current_target, ptid, conf);
3653 }
3654
3655 /* See target.h. */
3656
3657 void
3658 target_disable_btrace (struct btrace_target_info *btinfo)
3659 {
3660 current_target.to_disable_btrace (&current_target, btinfo);
3661 }
3662
3663 /* See target.h. */
3664
3665 void
3666 target_teardown_btrace (struct btrace_target_info *btinfo)
3667 {
3668 current_target.to_teardown_btrace (&current_target, btinfo);
3669 }
3670
3671 /* See target.h. */
3672
3673 enum btrace_error
3674 target_read_btrace (struct btrace_data *btrace,
3675 struct btrace_target_info *btinfo,
3676 enum btrace_read_type type)
3677 {
3678 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3679 }
3680
3681 /* See target.h. */
3682
3683 const struct btrace_config *
3684 target_btrace_conf (const struct btrace_target_info *btinfo)
3685 {
3686 return current_target.to_btrace_conf (&current_target, btinfo);
3687 }
3688
3689 /* See target.h. */
3690
3691 void
3692 target_stop_recording (void)
3693 {
3694 current_target.to_stop_recording (&current_target);
3695 }
3696
3697 /* See target.h. */
3698
3699 void
3700 target_save_record (const char *filename)
3701 {
3702 current_target.to_save_record (&current_target, filename);
3703 }
3704
3705 /* See target.h. */
3706
3707 int
3708 target_supports_delete_record (void)
3709 {
3710 struct target_ops *t;
3711
3712 for (t = current_target.beneath; t != NULL; t = t->beneath)
3713 if (t->to_delete_record != delegate_delete_record
3714 && t->to_delete_record != tdefault_delete_record)
3715 return 1;
3716
3717 return 0;
3718 }
3719
3720 /* See target.h. */
3721
3722 void
3723 target_delete_record (void)
3724 {
3725 current_target.to_delete_record (&current_target);
3726 }
3727
3728 /* See target.h. */
3729
3730 enum record_method
3731 target_record_method (ptid_t ptid)
3732 {
3733 return current_target.to_record_method (&current_target, ptid);
3734 }
3735
3736 /* See target.h. */
3737
3738 int
3739 target_record_is_replaying (ptid_t ptid)
3740 {
3741 return current_target.to_record_is_replaying (&current_target, ptid);
3742 }
3743
3744 /* See target.h. */
3745
3746 int
3747 target_record_will_replay (ptid_t ptid, int dir)
3748 {
3749 return current_target.to_record_will_replay (&current_target, ptid, dir);
3750 }
3751
3752 /* See target.h. */
3753
3754 void
3755 target_record_stop_replaying (void)
3756 {
3757 current_target.to_record_stop_replaying (&current_target);
3758 }
3759
3760 /* See target.h. */
3761
3762 void
3763 target_goto_record_begin (void)
3764 {
3765 current_target.to_goto_record_begin (&current_target);
3766 }
3767
3768 /* See target.h. */
3769
3770 void
3771 target_goto_record_end (void)
3772 {
3773 current_target.to_goto_record_end (&current_target);
3774 }
3775
3776 /* See target.h. */
3777
3778 void
3779 target_goto_record (ULONGEST insn)
3780 {
3781 current_target.to_goto_record (&current_target, insn);
3782 }
3783
3784 /* See target.h. */
3785
3786 void
3787 target_insn_history (int size, gdb_disassembly_flags flags)
3788 {
3789 current_target.to_insn_history (&current_target, size, flags);
3790 }
3791
3792 /* See target.h. */
3793
3794 void
3795 target_insn_history_from (ULONGEST from, int size,
3796 gdb_disassembly_flags flags)
3797 {
3798 current_target.to_insn_history_from (&current_target, from, size, flags);
3799 }
3800
3801 /* See target.h. */
3802
3803 void
3804 target_insn_history_range (ULONGEST begin, ULONGEST end,
3805 gdb_disassembly_flags flags)
3806 {
3807 current_target.to_insn_history_range (&current_target, begin, end, flags);
3808 }
3809
3810 /* See target.h. */
3811
3812 void
3813 target_call_history (int size, int flags)
3814 {
3815 current_target.to_call_history (&current_target, size, flags);
3816 }
3817
3818 /* See target.h. */
3819
3820 void
3821 target_call_history_from (ULONGEST begin, int size, int flags)
3822 {
3823 current_target.to_call_history_from (&current_target, begin, size, flags);
3824 }
3825
3826 /* See target.h. */
3827
3828 void
3829 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3830 {
3831 current_target.to_call_history_range (&current_target, begin, end, flags);
3832 }
3833
3834 /* See target.h. */
3835
3836 const struct frame_unwind *
3837 target_get_unwinder (void)
3838 {
3839 return current_target.to_get_unwinder (&current_target);
3840 }
3841
3842 /* See target.h. */
3843
3844 const struct frame_unwind *
3845 target_get_tailcall_unwinder (void)
3846 {
3847 return current_target.to_get_tailcall_unwinder (&current_target);
3848 }
3849
3850 /* See target.h. */
3851
3852 void
3853 target_prepare_to_generate_core (void)
3854 {
3855 current_target.to_prepare_to_generate_core (&current_target);
3856 }
3857
3858 /* See target.h. */
3859
3860 void
3861 target_done_generating_core (void)
3862 {
3863 current_target.to_done_generating_core (&current_target);
3864 }
3865
3866 static void
3867 setup_target_debug (void)
3868 {
3869 memcpy (&debug_target, &current_target, sizeof debug_target);
3870
3871 init_debug_target (&current_target);
3872 }
3873 \f
3874
3875 static char targ_desc[] =
3876 "Names of targets and files being debugged.\nShows the entire \
3877 stack of targets currently in use (including the exec-file,\n\
3878 core-file, and process, if any), as well as the symbol file name.";
3879
3880 static void
3881 default_rcmd (struct target_ops *self, const char *command,
3882 struct ui_file *output)
3883 {
3884 error (_("\"monitor\" command not supported by this target."));
3885 }
3886
3887 static void
3888 do_monitor_command (char *cmd,
3889 int from_tty)
3890 {
3891 target_rcmd (cmd, gdb_stdtarg);
3892 }
3893
3894 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3895 ignored. */
3896
3897 void
3898 flash_erase_command (char *cmd, int from_tty)
3899 {
3900 /* Used to communicate termination of flash operations to the target. */
3901 bool found_flash_region = false;
3902 struct mem_region *m;
3903 struct gdbarch *gdbarch = target_gdbarch ();
3904
3905 VEC(mem_region_s) *mem_regions = target_memory_map ();
3906
3907 /* Iterate over all memory regions. */
3908 for (int i = 0; VEC_iterate (mem_region_s, mem_regions, i, m); i++)
3909 {
3910 /* Fetch the memory attribute. */
3911 struct mem_attrib *attrib = &m->attrib;
3912
3913 /* Is this a flash memory region? */
3914 if (attrib->mode == MEM_FLASH)
3915 {
3916 found_flash_region = true;
3917 target_flash_erase (m->lo, m->hi - m->lo);
3918
3919 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3920
3921 current_uiout->message (_("Erasing flash memory region at address "));
3922 current_uiout->field_fmt ("address", "%s", paddress (gdbarch,
3923 m->lo));
3924 current_uiout->message (", size = ");
3925 current_uiout->field_fmt ("size", "%s", hex_string (m->hi - m->lo));
3926 current_uiout->message ("\n");
3927 }
3928 }
3929
3930 /* Did we do any flash operations? If so, we need to finalize them. */
3931 if (found_flash_region)
3932 target_flash_done ();
3933 else
3934 current_uiout->message (_("No flash memory regions found.\n"));
3935 }
3936
3937 /* Print the name of each layers of our target stack. */
3938
3939 static void
3940 maintenance_print_target_stack (char *cmd, int from_tty)
3941 {
3942 struct target_ops *t;
3943
3944 printf_filtered (_("The current target stack is:\n"));
3945
3946 for (t = target_stack; t != NULL; t = t->beneath)
3947 {
3948 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3949 }
3950 }
3951
3952 /* See target.h. */
3953
3954 void
3955 target_async (int enable)
3956 {
3957 infrun_async (enable);
3958 current_target.to_async (&current_target, enable);
3959 }
3960
3961 /* See target.h. */
3962
3963 void
3964 target_thread_events (int enable)
3965 {
3966 current_target.to_thread_events (&current_target, enable);
3967 }
3968
3969 /* Controls if targets can report that they can/are async. This is
3970 just for maintainers to use when debugging gdb. */
3971 int target_async_permitted = 1;
3972
3973 /* The set command writes to this variable. If the inferior is
3974 executing, target_async_permitted is *not* updated. */
3975 static int target_async_permitted_1 = 1;
3976
3977 static void
3978 maint_set_target_async_command (char *args, int from_tty,
3979 struct cmd_list_element *c)
3980 {
3981 if (have_live_inferiors ())
3982 {
3983 target_async_permitted_1 = target_async_permitted;
3984 error (_("Cannot change this setting while the inferior is running."));
3985 }
3986
3987 target_async_permitted = target_async_permitted_1;
3988 }
3989
3990 static void
3991 maint_show_target_async_command (struct ui_file *file, int from_tty,
3992 struct cmd_list_element *c,
3993 const char *value)
3994 {
3995 fprintf_filtered (file,
3996 _("Controlling the inferior in "
3997 "asynchronous mode is %s.\n"), value);
3998 }
3999
4000 /* Return true if the target operates in non-stop mode even with "set
4001 non-stop off". */
4002
4003 static int
4004 target_always_non_stop_p (void)
4005 {
4006 return current_target.to_always_non_stop_p (&current_target);
4007 }
4008
4009 /* See target.h. */
4010
4011 int
4012 target_is_non_stop_p (void)
4013 {
4014 return (non_stop
4015 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
4016 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
4017 && target_always_non_stop_p ()));
4018 }
4019
4020 /* Controls if targets can report that they always run in non-stop
4021 mode. This is just for maintainers to use when debugging gdb. */
4022 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
4023
4024 /* The set command writes to this variable. If the inferior is
4025 executing, target_non_stop_enabled is *not* updated. */
4026 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
4027
4028 /* Implementation of "maint set target-non-stop". */
4029
4030 static void
4031 maint_set_target_non_stop_command (char *args, int from_tty,
4032 struct cmd_list_element *c)
4033 {
4034 if (have_live_inferiors ())
4035 {
4036 target_non_stop_enabled_1 = target_non_stop_enabled;
4037 error (_("Cannot change this setting while the inferior is running."));
4038 }
4039
4040 target_non_stop_enabled = target_non_stop_enabled_1;
4041 }
4042
4043 /* Implementation of "maint show target-non-stop". */
4044
4045 static void
4046 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
4047 struct cmd_list_element *c,
4048 const char *value)
4049 {
4050 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4051 fprintf_filtered (file,
4052 _("Whether the target is always in non-stop mode "
4053 "is %s (currently %s).\n"), value,
4054 target_always_non_stop_p () ? "on" : "off");
4055 else
4056 fprintf_filtered (file,
4057 _("Whether the target is always in non-stop mode "
4058 "is %s.\n"), value);
4059 }
4060
4061 /* Temporary copies of permission settings. */
4062
4063 static int may_write_registers_1 = 1;
4064 static int may_write_memory_1 = 1;
4065 static int may_insert_breakpoints_1 = 1;
4066 static int may_insert_tracepoints_1 = 1;
4067 static int may_insert_fast_tracepoints_1 = 1;
4068 static int may_stop_1 = 1;
4069
4070 /* Make the user-set values match the real values again. */
4071
4072 void
4073 update_target_permissions (void)
4074 {
4075 may_write_registers_1 = may_write_registers;
4076 may_write_memory_1 = may_write_memory;
4077 may_insert_breakpoints_1 = may_insert_breakpoints;
4078 may_insert_tracepoints_1 = may_insert_tracepoints;
4079 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4080 may_stop_1 = may_stop;
4081 }
4082
4083 /* The one function handles (most of) the permission flags in the same
4084 way. */
4085
4086 static void
4087 set_target_permissions (char *args, int from_tty,
4088 struct cmd_list_element *c)
4089 {
4090 if (target_has_execution)
4091 {
4092 update_target_permissions ();
4093 error (_("Cannot change this setting while the inferior is running."));
4094 }
4095
4096 /* Make the real values match the user-changed values. */
4097 may_write_registers = may_write_registers_1;
4098 may_insert_breakpoints = may_insert_breakpoints_1;
4099 may_insert_tracepoints = may_insert_tracepoints_1;
4100 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4101 may_stop = may_stop_1;
4102 update_observer_mode ();
4103 }
4104
4105 /* Set memory write permission independently of observer mode. */
4106
4107 static void
4108 set_write_memory_permission (char *args, int from_tty,
4109 struct cmd_list_element *c)
4110 {
4111 /* Make the real values match the user-changed values. */
4112 may_write_memory = may_write_memory_1;
4113 update_observer_mode ();
4114 }
4115
4116
4117 void
4118 initialize_targets (void)
4119 {
4120 init_dummy_target ();
4121 push_target (&dummy_target);
4122
4123 add_info ("target", info_target_command, targ_desc);
4124 add_info ("files", info_target_command, targ_desc);
4125
4126 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4127 Set target debugging."), _("\
4128 Show target debugging."), _("\
4129 When non-zero, target debugging is enabled. Higher numbers are more\n\
4130 verbose."),
4131 set_targetdebug,
4132 show_targetdebug,
4133 &setdebuglist, &showdebuglist);
4134
4135 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4136 &trust_readonly, _("\
4137 Set mode for reading from readonly sections."), _("\
4138 Show mode for reading from readonly sections."), _("\
4139 When this mode is on, memory reads from readonly sections (such as .text)\n\
4140 will be read from the object file instead of from the target. This will\n\
4141 result in significant performance improvement for remote targets."),
4142 NULL,
4143 show_trust_readonly,
4144 &setlist, &showlist);
4145
4146 add_com ("monitor", class_obscure, do_monitor_command,
4147 _("Send a command to the remote monitor (remote targets only)."));
4148
4149 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4150 _("Print the name of each layer of the internal target stack."),
4151 &maintenanceprintlist);
4152
4153 add_setshow_boolean_cmd ("target-async", no_class,
4154 &target_async_permitted_1, _("\
4155 Set whether gdb controls the inferior in asynchronous mode."), _("\
4156 Show whether gdb controls the inferior in asynchronous mode."), _("\
4157 Tells gdb whether to control the inferior in asynchronous mode."),
4158 maint_set_target_async_command,
4159 maint_show_target_async_command,
4160 &maintenance_set_cmdlist,
4161 &maintenance_show_cmdlist);
4162
4163 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4164 &target_non_stop_enabled_1, _("\
4165 Set whether gdb always controls the inferior in non-stop mode."), _("\
4166 Show whether gdb always controls the inferior in non-stop mode."), _("\
4167 Tells gdb whether to control the inferior in non-stop mode."),
4168 maint_set_target_non_stop_command,
4169 maint_show_target_non_stop_command,
4170 &maintenance_set_cmdlist,
4171 &maintenance_show_cmdlist);
4172
4173 add_setshow_boolean_cmd ("may-write-registers", class_support,
4174 &may_write_registers_1, _("\
4175 Set permission to write into registers."), _("\
4176 Show permission to write into registers."), _("\
4177 When this permission is on, GDB may write into the target's registers.\n\
4178 Otherwise, any sort of write attempt will result in an error."),
4179 set_target_permissions, NULL,
4180 &setlist, &showlist);
4181
4182 add_setshow_boolean_cmd ("may-write-memory", class_support,
4183 &may_write_memory_1, _("\
4184 Set permission to write into target memory."), _("\
4185 Show permission to write into target memory."), _("\
4186 When this permission is on, GDB may write into the target's memory.\n\
4187 Otherwise, any sort of write attempt will result in an error."),
4188 set_write_memory_permission, NULL,
4189 &setlist, &showlist);
4190
4191 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4192 &may_insert_breakpoints_1, _("\
4193 Set permission to insert breakpoints in the target."), _("\
4194 Show permission to insert breakpoints in the target."), _("\
4195 When this permission is on, GDB may insert breakpoints in the program.\n\
4196 Otherwise, any sort of insertion attempt will result in an error."),
4197 set_target_permissions, NULL,
4198 &setlist, &showlist);
4199
4200 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4201 &may_insert_tracepoints_1, _("\
4202 Set permission to insert tracepoints in the target."), _("\
4203 Show permission to insert tracepoints in the target."), _("\
4204 When this permission is on, GDB may insert tracepoints in the program.\n\
4205 Otherwise, any sort of insertion attempt will result in an error."),
4206 set_target_permissions, NULL,
4207 &setlist, &showlist);
4208
4209 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4210 &may_insert_fast_tracepoints_1, _("\
4211 Set permission to insert fast tracepoints in the target."), _("\
4212 Show permission to insert fast tracepoints in the target."), _("\
4213 When this permission is on, GDB may insert fast tracepoints.\n\
4214 Otherwise, any sort of insertion attempt will result in an error."),
4215 set_target_permissions, NULL,
4216 &setlist, &showlist);
4217
4218 add_setshow_boolean_cmd ("may-interrupt", class_support,
4219 &may_stop_1, _("\
4220 Set permission to interrupt or signal the target."), _("\
4221 Show permission to interrupt or signal the target."), _("\
4222 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4223 Otherwise, any attempt to interrupt or stop will be ignored."),
4224 set_target_permissions, NULL,
4225 &setlist, &showlist);
4226
4227 add_com ("flash-erase", no_class, flash_erase_command,
4228 _("Erase all flash memory regions."));
4229
4230 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4231 &auto_connect_native_target, _("\
4232 Set whether GDB may automatically connect to the native target."), _("\
4233 Show whether GDB may automatically connect to the native target."), _("\
4234 When on, and GDB is not connected to a target yet, GDB\n\
4235 attempts \"run\" and other commands with the native target."),
4236 NULL, show_auto_connect_native_target,
4237 &setlist, &showlist);
4238 }
This page took 0.116753 seconds and 4 git commands to generate.