2007-06-09 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include <errno.h>
28 #include "gdb_string.h"
29 #include "target.h"
30 #include "gdbcmd.h"
31 #include "symtab.h"
32 #include "inferior.h"
33 #include "bfd.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "gdb_wait.h"
37 #include "dcache.h"
38 #include <signal.h>
39 #include "regcache.h"
40 #include "gdb_assert.h"
41 #include "gdbcore.h"
42 #include "exceptions.h"
43 #include "target-descriptions.h"
44
45 static void target_info (char *, int);
46
47 static void maybe_kill_then_attach (char *, int);
48
49 static void kill_or_be_killed (int);
50
51 static void default_terminal_info (char *, int);
52
53 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
54
55 static int nosymbol (char *, CORE_ADDR *);
56
57 static void tcomplain (void) ATTR_NORETURN;
58
59 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
60
61 static int return_zero (void);
62
63 static int return_one (void);
64
65 static int return_minus_one (void);
66
67 void target_ignore (void);
68
69 static void target_command (char *, int);
70
71 static struct target_ops *find_default_run_target (char *);
72
73 static void nosupport_runtime (void);
74
75 static LONGEST default_xfer_partial (struct target_ops *ops,
76 enum target_object object,
77 const char *annex, gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, LONGEST len);
80
81 static LONGEST current_xfer_partial (struct target_ops *ops,
82 enum target_object object,
83 const char *annex, gdb_byte *readbuf,
84 const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 static LONGEST target_xfer_partial (struct target_ops *ops,
88 enum target_object object,
89 const char *annex,
90 void *readbuf, const void *writebuf,
91 ULONGEST offset, LONGEST len);
92
93 static void init_dummy_target (void);
94
95 static struct target_ops debug_target;
96
97 static void debug_to_open (char *, int);
98
99 static void debug_to_close (int);
100
101 static void debug_to_attach (char *, int);
102
103 static void debug_to_detach (char *, int);
104
105 static void debug_to_resume (ptid_t, int, enum target_signal);
106
107 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
108
109 static void debug_to_fetch_registers (struct regcache *, int);
110
111 static void debug_to_store_registers (struct regcache *, int);
112
113 static void debug_to_prepare_to_store (struct regcache *);
114
115 static void debug_to_files_info (struct target_ops *);
116
117 static int debug_to_insert_breakpoint (struct bp_target_info *);
118
119 static int debug_to_remove_breakpoint (struct bp_target_info *);
120
121 static int debug_to_can_use_hw_breakpoint (int, int, int);
122
123 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
124
125 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
126
127 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
128
129 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
130
131 static int debug_to_stopped_by_watchpoint (void);
132
133 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
134
135 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
136
137 static void debug_to_terminal_init (void);
138
139 static void debug_to_terminal_inferior (void);
140
141 static void debug_to_terminal_ours_for_output (void);
142
143 static void debug_to_terminal_save_ours (void);
144
145 static void debug_to_terminal_ours (void);
146
147 static void debug_to_terminal_info (char *, int);
148
149 static void debug_to_kill (void);
150
151 static void debug_to_load (char *, int);
152
153 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
154
155 static void debug_to_mourn_inferior (void);
156
157 static int debug_to_can_run (void);
158
159 static void debug_to_notice_signals (ptid_t);
160
161 static int debug_to_thread_alive (ptid_t);
162
163 static void debug_to_stop (void);
164
165 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
166 wierd and mysterious ways. Putting the variable here lets those
167 wierd and mysterious ways keep building while they are being
168 converted to the inferior inheritance structure. */
169 struct target_ops deprecated_child_ops;
170
171 /* Pointer to array of target architecture structures; the size of the
172 array; the current index into the array; the allocated size of the
173 array. */
174 struct target_ops **target_structs;
175 unsigned target_struct_size;
176 unsigned target_struct_index;
177 unsigned target_struct_allocsize;
178 #define DEFAULT_ALLOCSIZE 10
179
180 /* The initial current target, so that there is always a semi-valid
181 current target. */
182
183 static struct target_ops dummy_target;
184
185 /* Top of target stack. */
186
187 static struct target_ops *target_stack;
188
189 /* The target structure we are currently using to talk to a process
190 or file or whatever "inferior" we have. */
191
192 struct target_ops current_target;
193
194 /* Command list for target. */
195
196 static struct cmd_list_element *targetlist = NULL;
197
198 /* Nonzero if we are debugging an attached outside process
199 rather than an inferior. */
200
201 int attach_flag;
202
203 /* Nonzero if we should trust readonly sections from the
204 executable when reading memory. */
205
206 static int trust_readonly = 0;
207
208 /* Non-zero if we want to see trace of target level stuff. */
209
210 static int targetdebug = 0;
211 static void
212 show_targetdebug (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214 {
215 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
216 }
217
218 static void setup_target_debug (void);
219
220 DCACHE *target_dcache;
221
222 /* The user just typed 'target' without the name of a target. */
223
224 static void
225 target_command (char *arg, int from_tty)
226 {
227 fputs_filtered ("Argument required (target name). Try `help target'\n",
228 gdb_stdout);
229 }
230
231 /* Add a possible target architecture to the list. */
232
233 void
234 add_target (struct target_ops *t)
235 {
236 /* Provide default values for all "must have" methods. */
237 if (t->to_xfer_partial == NULL)
238 t->to_xfer_partial = default_xfer_partial;
239
240 if (!target_structs)
241 {
242 target_struct_allocsize = DEFAULT_ALLOCSIZE;
243 target_structs = (struct target_ops **) xmalloc
244 (target_struct_allocsize * sizeof (*target_structs));
245 }
246 if (target_struct_size >= target_struct_allocsize)
247 {
248 target_struct_allocsize *= 2;
249 target_structs = (struct target_ops **)
250 xrealloc ((char *) target_structs,
251 target_struct_allocsize * sizeof (*target_structs));
252 }
253 target_structs[target_struct_size++] = t;
254
255 if (targetlist == NULL)
256 add_prefix_cmd ("target", class_run, target_command, _("\
257 Connect to a target machine or process.\n\
258 The first argument is the type or protocol of the target machine.\n\
259 Remaining arguments are interpreted by the target protocol. For more\n\
260 information on the arguments for a particular protocol, type\n\
261 `help target ' followed by the protocol name."),
262 &targetlist, "target ", 0, &cmdlist);
263 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
264 }
265
266 /* Stub functions */
267
268 void
269 target_ignore (void)
270 {
271 }
272
273 void
274 target_load (char *arg, int from_tty)
275 {
276 dcache_invalidate (target_dcache);
277 (*current_target.to_load) (arg, from_tty);
278 }
279
280 static int
281 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
282 struct target_ops *t)
283 {
284 errno = EIO; /* Can't read/write this location */
285 return 0; /* No bytes handled */
286 }
287
288 static void
289 tcomplain (void)
290 {
291 error (_("You can't do that when your target is `%s'"),
292 current_target.to_shortname);
293 }
294
295 void
296 noprocess (void)
297 {
298 error (_("You can't do that without a process to debug."));
299 }
300
301 static int
302 nosymbol (char *name, CORE_ADDR *addrp)
303 {
304 return 1; /* Symbol does not exist in target env */
305 }
306
307 static void
308 nosupport_runtime (void)
309 {
310 if (ptid_equal (inferior_ptid, null_ptid))
311 noprocess ();
312 else
313 error (_("No run-time support for this"));
314 }
315
316
317 static void
318 default_terminal_info (char *args, int from_tty)
319 {
320 printf_unfiltered (_("No saved terminal information.\n"));
321 }
322
323 /* This is the default target_create_inferior and target_attach function.
324 If the current target is executing, it asks whether to kill it off.
325 If this function returns without calling error(), it has killed off
326 the target, and the operation should be attempted. */
327
328 static void
329 kill_or_be_killed (int from_tty)
330 {
331 if (target_has_execution)
332 {
333 printf_unfiltered (_("You are already running a program:\n"));
334 target_files_info ();
335 if (query ("Kill it? "))
336 {
337 target_kill ();
338 if (target_has_execution)
339 error (_("Killing the program did not help."));
340 return;
341 }
342 else
343 {
344 error (_("Program not killed."));
345 }
346 }
347 tcomplain ();
348 }
349
350 static void
351 maybe_kill_then_attach (char *args, int from_tty)
352 {
353 kill_or_be_killed (from_tty);
354 target_attach (args, from_tty);
355 }
356
357 static void
358 maybe_kill_then_create_inferior (char *exec, char *args, char **env,
359 int from_tty)
360 {
361 kill_or_be_killed (0);
362 target_create_inferior (exec, args, env, from_tty);
363 }
364
365 /* Go through the target stack from top to bottom, copying over zero
366 entries in current_target, then filling in still empty entries. In
367 effect, we are doing class inheritance through the pushed target
368 vectors.
369
370 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
371 is currently implemented, is that it discards any knowledge of
372 which target an inherited method originally belonged to.
373 Consequently, new new target methods should instead explicitly and
374 locally search the target stack for the target that can handle the
375 request. */
376
377 static void
378 update_current_target (void)
379 {
380 struct target_ops *t;
381
382 /* First, reset current's contents. */
383 memset (&current_target, 0, sizeof (current_target));
384
385 #define INHERIT(FIELD, TARGET) \
386 if (!current_target.FIELD) \
387 current_target.FIELD = (TARGET)->FIELD
388
389 for (t = target_stack; t; t = t->beneath)
390 {
391 INHERIT (to_shortname, t);
392 INHERIT (to_longname, t);
393 INHERIT (to_doc, t);
394 INHERIT (to_open, t);
395 INHERIT (to_close, t);
396 INHERIT (to_attach, t);
397 INHERIT (to_post_attach, t);
398 INHERIT (to_detach, t);
399 /* Do not inherit to_disconnect. */
400 INHERIT (to_resume, t);
401 INHERIT (to_wait, t);
402 INHERIT (to_fetch_registers, t);
403 INHERIT (to_store_registers, t);
404 INHERIT (to_prepare_to_store, t);
405 INHERIT (deprecated_xfer_memory, t);
406 INHERIT (to_files_info, t);
407 INHERIT (to_insert_breakpoint, t);
408 INHERIT (to_remove_breakpoint, t);
409 INHERIT (to_can_use_hw_breakpoint, t);
410 INHERIT (to_insert_hw_breakpoint, t);
411 INHERIT (to_remove_hw_breakpoint, t);
412 INHERIT (to_insert_watchpoint, t);
413 INHERIT (to_remove_watchpoint, t);
414 INHERIT (to_stopped_data_address, t);
415 INHERIT (to_stopped_by_watchpoint, t);
416 INHERIT (to_have_steppable_watchpoint, t);
417 INHERIT (to_have_continuable_watchpoint, t);
418 INHERIT (to_region_ok_for_hw_watchpoint, t);
419 INHERIT (to_terminal_init, t);
420 INHERIT (to_terminal_inferior, t);
421 INHERIT (to_terminal_ours_for_output, t);
422 INHERIT (to_terminal_ours, t);
423 INHERIT (to_terminal_save_ours, t);
424 INHERIT (to_terminal_info, t);
425 INHERIT (to_kill, t);
426 INHERIT (to_load, t);
427 INHERIT (to_lookup_symbol, t);
428 INHERIT (to_create_inferior, t);
429 INHERIT (to_post_startup_inferior, t);
430 INHERIT (to_acknowledge_created_inferior, t);
431 INHERIT (to_insert_fork_catchpoint, t);
432 INHERIT (to_remove_fork_catchpoint, t);
433 INHERIT (to_insert_vfork_catchpoint, t);
434 INHERIT (to_remove_vfork_catchpoint, t);
435 /* Do not inherit to_follow_fork. */
436 INHERIT (to_insert_exec_catchpoint, t);
437 INHERIT (to_remove_exec_catchpoint, t);
438 INHERIT (to_reported_exec_events_per_exec_call, t);
439 INHERIT (to_has_exited, t);
440 INHERIT (to_mourn_inferior, t);
441 INHERIT (to_can_run, t);
442 INHERIT (to_notice_signals, t);
443 INHERIT (to_thread_alive, t);
444 INHERIT (to_find_new_threads, t);
445 INHERIT (to_pid_to_str, t);
446 INHERIT (to_extra_thread_info, t);
447 INHERIT (to_stop, t);
448 /* Do not inherit to_xfer_partial. */
449 INHERIT (to_rcmd, t);
450 INHERIT (to_enable_exception_callback, t);
451 INHERIT (to_get_current_exception_event, t);
452 INHERIT (to_pid_to_exec_file, t);
453 INHERIT (to_stratum, t);
454 INHERIT (to_has_all_memory, t);
455 INHERIT (to_has_memory, t);
456 INHERIT (to_has_stack, t);
457 INHERIT (to_has_registers, t);
458 INHERIT (to_has_execution, t);
459 INHERIT (to_has_thread_control, t);
460 INHERIT (to_sections, t);
461 INHERIT (to_sections_end, t);
462 INHERIT (to_can_async_p, t);
463 INHERIT (to_is_async_p, t);
464 INHERIT (to_async, t);
465 INHERIT (to_async_mask_value, t);
466 INHERIT (to_find_memory_regions, t);
467 INHERIT (to_make_corefile_notes, t);
468 INHERIT (to_get_thread_local_address, t);
469 /* Do not inherit to_read_description. */
470 INHERIT (to_magic, t);
471 /* Do not inherit to_memory_map. */
472 /* Do not inherit to_flash_erase. */
473 /* Do not inherit to_flash_done. */
474 }
475 #undef INHERIT
476
477 /* Clean up a target struct so it no longer has any zero pointers in
478 it. Some entries are defaulted to a method that print an error,
479 others are hard-wired to a standard recursive default. */
480
481 #define de_fault(field, value) \
482 if (!current_target.field) \
483 current_target.field = value
484
485 de_fault (to_open,
486 (void (*) (char *, int))
487 tcomplain);
488 de_fault (to_close,
489 (void (*) (int))
490 target_ignore);
491 de_fault (to_attach,
492 maybe_kill_then_attach);
493 de_fault (to_post_attach,
494 (void (*) (int))
495 target_ignore);
496 de_fault (to_detach,
497 (void (*) (char *, int))
498 target_ignore);
499 de_fault (to_resume,
500 (void (*) (ptid_t, int, enum target_signal))
501 noprocess);
502 de_fault (to_wait,
503 (ptid_t (*) (ptid_t, struct target_waitstatus *))
504 noprocess);
505 de_fault (to_fetch_registers,
506 (void (*) (struct regcache *, int))
507 target_ignore);
508 de_fault (to_store_registers,
509 (void (*) (struct regcache *, int))
510 noprocess);
511 de_fault (to_prepare_to_store,
512 (void (*) (struct regcache *))
513 noprocess);
514 de_fault (deprecated_xfer_memory,
515 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
516 nomemory);
517 de_fault (to_files_info,
518 (void (*) (struct target_ops *))
519 target_ignore);
520 de_fault (to_insert_breakpoint,
521 memory_insert_breakpoint);
522 de_fault (to_remove_breakpoint,
523 memory_remove_breakpoint);
524 de_fault (to_can_use_hw_breakpoint,
525 (int (*) (int, int, int))
526 return_zero);
527 de_fault (to_insert_hw_breakpoint,
528 (int (*) (struct bp_target_info *))
529 return_minus_one);
530 de_fault (to_remove_hw_breakpoint,
531 (int (*) (struct bp_target_info *))
532 return_minus_one);
533 de_fault (to_insert_watchpoint,
534 (int (*) (CORE_ADDR, int, int))
535 return_minus_one);
536 de_fault (to_remove_watchpoint,
537 (int (*) (CORE_ADDR, int, int))
538 return_minus_one);
539 de_fault (to_stopped_by_watchpoint,
540 (int (*) (void))
541 return_zero);
542 de_fault (to_stopped_data_address,
543 (int (*) (struct target_ops *, CORE_ADDR *))
544 return_zero);
545 de_fault (to_region_ok_for_hw_watchpoint,
546 default_region_ok_for_hw_watchpoint);
547 de_fault (to_terminal_init,
548 (void (*) (void))
549 target_ignore);
550 de_fault (to_terminal_inferior,
551 (void (*) (void))
552 target_ignore);
553 de_fault (to_terminal_ours_for_output,
554 (void (*) (void))
555 target_ignore);
556 de_fault (to_terminal_ours,
557 (void (*) (void))
558 target_ignore);
559 de_fault (to_terminal_save_ours,
560 (void (*) (void))
561 target_ignore);
562 de_fault (to_terminal_info,
563 default_terminal_info);
564 de_fault (to_kill,
565 (void (*) (void))
566 noprocess);
567 de_fault (to_load,
568 (void (*) (char *, int))
569 tcomplain);
570 de_fault (to_lookup_symbol,
571 (int (*) (char *, CORE_ADDR *))
572 nosymbol);
573 de_fault (to_create_inferior,
574 maybe_kill_then_create_inferior);
575 de_fault (to_post_startup_inferior,
576 (void (*) (ptid_t))
577 target_ignore);
578 de_fault (to_acknowledge_created_inferior,
579 (void (*) (int))
580 target_ignore);
581 de_fault (to_insert_fork_catchpoint,
582 (void (*) (int))
583 tcomplain);
584 de_fault (to_remove_fork_catchpoint,
585 (int (*) (int))
586 tcomplain);
587 de_fault (to_insert_vfork_catchpoint,
588 (void (*) (int))
589 tcomplain);
590 de_fault (to_remove_vfork_catchpoint,
591 (int (*) (int))
592 tcomplain);
593 de_fault (to_insert_exec_catchpoint,
594 (void (*) (int))
595 tcomplain);
596 de_fault (to_remove_exec_catchpoint,
597 (int (*) (int))
598 tcomplain);
599 de_fault (to_reported_exec_events_per_exec_call,
600 (int (*) (void))
601 return_one);
602 de_fault (to_has_exited,
603 (int (*) (int, int, int *))
604 return_zero);
605 de_fault (to_mourn_inferior,
606 (void (*) (void))
607 noprocess);
608 de_fault (to_can_run,
609 return_zero);
610 de_fault (to_notice_signals,
611 (void (*) (ptid_t))
612 target_ignore);
613 de_fault (to_thread_alive,
614 (int (*) (ptid_t))
615 return_zero);
616 de_fault (to_find_new_threads,
617 (void (*) (void))
618 target_ignore);
619 de_fault (to_extra_thread_info,
620 (char *(*) (struct thread_info *))
621 return_zero);
622 de_fault (to_stop,
623 (void (*) (void))
624 target_ignore);
625 current_target.to_xfer_partial = current_xfer_partial;
626 de_fault (to_rcmd,
627 (void (*) (char *, struct ui_file *))
628 tcomplain);
629 de_fault (to_enable_exception_callback,
630 (struct symtab_and_line * (*) (enum exception_event_kind, int))
631 nosupport_runtime);
632 de_fault (to_get_current_exception_event,
633 (struct exception_event_record * (*) (void))
634 nosupport_runtime);
635 de_fault (to_pid_to_exec_file,
636 (char *(*) (int))
637 return_zero);
638 de_fault (to_can_async_p,
639 (int (*) (void))
640 return_zero);
641 de_fault (to_is_async_p,
642 (int (*) (void))
643 return_zero);
644 de_fault (to_async,
645 (void (*) (void (*) (enum inferior_event_type, void*), void*))
646 tcomplain);
647 current_target.to_read_description = NULL;
648 #undef de_fault
649
650 /* Finally, position the target-stack beneath the squashed
651 "current_target". That way code looking for a non-inherited
652 target method can quickly and simply find it. */
653 current_target.beneath = target_stack;
654 }
655
656 /* Mark OPS as a running target. This reverses the effect
657 of target_mark_exited. */
658
659 void
660 target_mark_running (struct target_ops *ops)
661 {
662 struct target_ops *t;
663
664 for (t = target_stack; t != NULL; t = t->beneath)
665 if (t == ops)
666 break;
667 if (t == NULL)
668 internal_error (__FILE__, __LINE__,
669 "Attempted to mark unpushed target \"%s\" as running",
670 ops->to_shortname);
671
672 ops->to_has_execution = 1;
673 ops->to_has_all_memory = 1;
674 ops->to_has_memory = 1;
675 ops->to_has_stack = 1;
676 ops->to_has_registers = 1;
677
678 update_current_target ();
679 }
680
681 /* Mark OPS as a non-running target. This reverses the effect
682 of target_mark_running. */
683
684 void
685 target_mark_exited (struct target_ops *ops)
686 {
687 struct target_ops *t;
688
689 for (t = target_stack; t != NULL; t = t->beneath)
690 if (t == ops)
691 break;
692 if (t == NULL)
693 internal_error (__FILE__, __LINE__,
694 "Attempted to mark unpushed target \"%s\" as running",
695 ops->to_shortname);
696
697 ops->to_has_execution = 0;
698 ops->to_has_all_memory = 0;
699 ops->to_has_memory = 0;
700 ops->to_has_stack = 0;
701 ops->to_has_registers = 0;
702
703 update_current_target ();
704 }
705
706 /* Push a new target type into the stack of the existing target accessors,
707 possibly superseding some of the existing accessors.
708
709 Result is zero if the pushed target ended up on top of the stack,
710 nonzero if at least one target is on top of it.
711
712 Rather than allow an empty stack, we always have the dummy target at
713 the bottom stratum, so we can call the function vectors without
714 checking them. */
715
716 int
717 push_target (struct target_ops *t)
718 {
719 struct target_ops **cur;
720
721 /* Check magic number. If wrong, it probably means someone changed
722 the struct definition, but not all the places that initialize one. */
723 if (t->to_magic != OPS_MAGIC)
724 {
725 fprintf_unfiltered (gdb_stderr,
726 "Magic number of %s target struct wrong\n",
727 t->to_shortname);
728 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
729 }
730
731 /* Find the proper stratum to install this target in. */
732 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
733 {
734 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
735 break;
736 }
737
738 /* If there's already targets at this stratum, remove them. */
739 /* FIXME: cagney/2003-10-15: I think this should be popping all
740 targets to CUR, and not just those at this stratum level. */
741 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
742 {
743 /* There's already something at this stratum level. Close it,
744 and un-hook it from the stack. */
745 struct target_ops *tmp = (*cur);
746 (*cur) = (*cur)->beneath;
747 tmp->beneath = NULL;
748 target_close (tmp, 0);
749 }
750
751 /* We have removed all targets in our stratum, now add the new one. */
752 t->beneath = (*cur);
753 (*cur) = t;
754
755 update_current_target ();
756
757 if (targetdebug)
758 setup_target_debug ();
759
760 /* Not on top? */
761 return (t != target_stack);
762 }
763
764 /* Remove a target_ops vector from the stack, wherever it may be.
765 Return how many times it was removed (0 or 1). */
766
767 int
768 unpush_target (struct target_ops *t)
769 {
770 struct target_ops **cur;
771 struct target_ops *tmp;
772
773 /* Look for the specified target. Note that we assume that a target
774 can only occur once in the target stack. */
775
776 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
777 {
778 if ((*cur) == t)
779 break;
780 }
781
782 if ((*cur) == NULL)
783 return 0; /* Didn't find target_ops, quit now */
784
785 /* NOTE: cagney/2003-12-06: In '94 the close call was made
786 unconditional by moving it to before the above check that the
787 target was in the target stack (something about "Change the way
788 pushing and popping of targets work to support target overlays
789 and inheritance"). This doesn't make much sense - only open
790 targets should be closed. */
791 target_close (t, 0);
792
793 /* Unchain the target */
794 tmp = (*cur);
795 (*cur) = (*cur)->beneath;
796 tmp->beneath = NULL;
797
798 update_current_target ();
799
800 return 1;
801 }
802
803 void
804 pop_target (void)
805 {
806 target_close (&current_target, 0); /* Let it clean up */
807 if (unpush_target (target_stack) == 1)
808 return;
809
810 fprintf_unfiltered (gdb_stderr,
811 "pop_target couldn't find target %s\n",
812 current_target.to_shortname);
813 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
814 }
815
816 /* Using the objfile specified in BATON, find the address for the
817 current thread's thread-local storage with offset OFFSET. */
818 CORE_ADDR
819 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
820 {
821 volatile CORE_ADDR addr = 0;
822
823 if (target_get_thread_local_address_p ()
824 && gdbarch_fetch_tls_load_module_address_p (current_gdbarch))
825 {
826 ptid_t ptid = inferior_ptid;
827 volatile struct gdb_exception ex;
828
829 TRY_CATCH (ex, RETURN_MASK_ALL)
830 {
831 CORE_ADDR lm_addr;
832
833 /* Fetch the load module address for this objfile. */
834 lm_addr = gdbarch_fetch_tls_load_module_address (current_gdbarch,
835 objfile);
836 /* If it's 0, throw the appropriate exception. */
837 if (lm_addr == 0)
838 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
839 _("TLS load module not found"));
840
841 addr = target_get_thread_local_address (ptid, lm_addr, offset);
842 }
843 /* If an error occurred, print TLS related messages here. Otherwise,
844 throw the error to some higher catcher. */
845 if (ex.reason < 0)
846 {
847 int objfile_is_library = (objfile->flags & OBJF_SHARED);
848
849 switch (ex.error)
850 {
851 case TLS_NO_LIBRARY_SUPPORT_ERROR:
852 error (_("Cannot find thread-local variables in this thread library."));
853 break;
854 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
855 if (objfile_is_library)
856 error (_("Cannot find shared library `%s' in dynamic"
857 " linker's load module list"), objfile->name);
858 else
859 error (_("Cannot find executable file `%s' in dynamic"
860 " linker's load module list"), objfile->name);
861 break;
862 case TLS_NOT_ALLOCATED_YET_ERROR:
863 if (objfile_is_library)
864 error (_("The inferior has not yet allocated storage for"
865 " thread-local variables in\n"
866 "the shared library `%s'\n"
867 "for %s"),
868 objfile->name, target_pid_to_str (ptid));
869 else
870 error (_("The inferior has not yet allocated storage for"
871 " thread-local variables in\n"
872 "the executable `%s'\n"
873 "for %s"),
874 objfile->name, target_pid_to_str (ptid));
875 break;
876 case TLS_GENERIC_ERROR:
877 if (objfile_is_library)
878 error (_("Cannot find thread-local storage for %s, "
879 "shared library %s:\n%s"),
880 target_pid_to_str (ptid),
881 objfile->name, ex.message);
882 else
883 error (_("Cannot find thread-local storage for %s, "
884 "executable file %s:\n%s"),
885 target_pid_to_str (ptid),
886 objfile->name, ex.message);
887 break;
888 default:
889 throw_exception (ex);
890 break;
891 }
892 }
893 }
894 /* It wouldn't be wrong here to try a gdbarch method, too; finding
895 TLS is an ABI-specific thing. But we don't do that yet. */
896 else
897 error (_("Cannot find thread-local variables on this target"));
898
899 return addr;
900 }
901
902 #undef MIN
903 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
904
905 /* target_read_string -- read a null terminated string, up to LEN bytes,
906 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
907 Set *STRING to a pointer to malloc'd memory containing the data; the caller
908 is responsible for freeing it. Return the number of bytes successfully
909 read. */
910
911 int
912 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
913 {
914 int tlen, origlen, offset, i;
915 gdb_byte buf[4];
916 int errcode = 0;
917 char *buffer;
918 int buffer_allocated;
919 char *bufptr;
920 unsigned int nbytes_read = 0;
921
922 /* Small for testing. */
923 buffer_allocated = 4;
924 buffer = xmalloc (buffer_allocated);
925 bufptr = buffer;
926
927 origlen = len;
928
929 while (len > 0)
930 {
931 tlen = MIN (len, 4 - (memaddr & 3));
932 offset = memaddr & 3;
933
934 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
935 if (errcode != 0)
936 {
937 /* The transfer request might have crossed the boundary to an
938 unallocated region of memory. Retry the transfer, requesting
939 a single byte. */
940 tlen = 1;
941 offset = 0;
942 errcode = target_read_memory (memaddr, buf, 1);
943 if (errcode != 0)
944 goto done;
945 }
946
947 if (bufptr - buffer + tlen > buffer_allocated)
948 {
949 unsigned int bytes;
950 bytes = bufptr - buffer;
951 buffer_allocated *= 2;
952 buffer = xrealloc (buffer, buffer_allocated);
953 bufptr = buffer + bytes;
954 }
955
956 for (i = 0; i < tlen; i++)
957 {
958 *bufptr++ = buf[i + offset];
959 if (buf[i + offset] == '\000')
960 {
961 nbytes_read += i + 1;
962 goto done;
963 }
964 }
965
966 memaddr += tlen;
967 len -= tlen;
968 nbytes_read += tlen;
969 }
970 done:
971 if (errnop != NULL)
972 *errnop = errcode;
973 if (string != NULL)
974 *string = buffer;
975 return nbytes_read;
976 }
977
978 /* Find a section containing ADDR. */
979 struct section_table *
980 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
981 {
982 struct section_table *secp;
983 for (secp = target->to_sections;
984 secp < target->to_sections_end;
985 secp++)
986 {
987 if (addr >= secp->addr && addr < secp->endaddr)
988 return secp;
989 }
990 return NULL;
991 }
992
993 /* Perform a partial memory transfer. The arguments and return
994 value are just as for target_xfer_partial. */
995
996 static LONGEST
997 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
998 ULONGEST memaddr, LONGEST len)
999 {
1000 LONGEST res;
1001 int reg_len;
1002 struct mem_region *region;
1003
1004 /* Zero length requests are ok and require no work. */
1005 if (len == 0)
1006 return 0;
1007
1008 /* Try the executable file, if "trust-readonly-sections" is set. */
1009 if (readbuf != NULL && trust_readonly)
1010 {
1011 struct section_table *secp;
1012
1013 secp = target_section_by_addr (ops, memaddr);
1014 if (secp != NULL
1015 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1016 & SEC_READONLY))
1017 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1018 }
1019
1020 /* Try GDB's internal data cache. */
1021 region = lookup_mem_region (memaddr);
1022 /* region->hi == 0 means there's no upper bound. */
1023 if (memaddr + len < region->hi || region->hi == 0)
1024 reg_len = len;
1025 else
1026 reg_len = region->hi - memaddr;
1027
1028 switch (region->attrib.mode)
1029 {
1030 case MEM_RO:
1031 if (writebuf != NULL)
1032 return -1;
1033 break;
1034
1035 case MEM_WO:
1036 if (readbuf != NULL)
1037 return -1;
1038 break;
1039
1040 case MEM_FLASH:
1041 /* We only support writing to flash during "load" for now. */
1042 if (writebuf != NULL)
1043 error (_("Writing to flash memory forbidden in this context"));
1044 break;
1045
1046 case MEM_NONE:
1047 return -1;
1048 }
1049
1050 if (region->attrib.cache)
1051 {
1052 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1053 memory request will start back at current_target. */
1054 if (readbuf != NULL)
1055 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1056 reg_len, 0);
1057 else
1058 /* FIXME drow/2006-08-09: If we're going to preserve const
1059 correctness dcache_xfer_memory should take readbuf and
1060 writebuf. */
1061 res = dcache_xfer_memory (target_dcache, memaddr,
1062 (void *) writebuf,
1063 reg_len, 1);
1064 if (res <= 0)
1065 return -1;
1066 else
1067 return res;
1068 }
1069
1070 /* If none of those methods found the memory we wanted, fall back
1071 to a target partial transfer. Normally a single call to
1072 to_xfer_partial is enough; if it doesn't recognize an object
1073 it will call the to_xfer_partial of the next target down.
1074 But for memory this won't do. Memory is the only target
1075 object which can be read from more than one valid target.
1076 A core file, for instance, could have some of memory but
1077 delegate other bits to the target below it. So, we must
1078 manually try all targets. */
1079
1080 do
1081 {
1082 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1083 readbuf, writebuf, memaddr, reg_len);
1084 if (res > 0)
1085 return res;
1086
1087 ops = ops->beneath;
1088 }
1089 while (ops != NULL);
1090
1091 /* If we still haven't got anything, return the last error. We
1092 give up. */
1093 return res;
1094 }
1095
1096 static LONGEST
1097 target_xfer_partial (struct target_ops *ops,
1098 enum target_object object, const char *annex,
1099 void *readbuf, const void *writebuf,
1100 ULONGEST offset, LONGEST len)
1101 {
1102 LONGEST retval;
1103
1104 gdb_assert (ops->to_xfer_partial != NULL);
1105
1106 /* If this is a memory transfer, let the memory-specific code
1107 have a look at it instead. Memory transfers are more
1108 complicated. */
1109 if (object == TARGET_OBJECT_MEMORY)
1110 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1111 else
1112 {
1113 enum target_object raw_object = object;
1114
1115 /* If this is a raw memory transfer, request the normal
1116 memory object from other layers. */
1117 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1118 raw_object = TARGET_OBJECT_MEMORY;
1119
1120 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1121 writebuf, offset, len);
1122 }
1123
1124 if (targetdebug)
1125 {
1126 const unsigned char *myaddr = NULL;
1127
1128 fprintf_unfiltered (gdb_stdlog,
1129 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
1130 ops->to_shortname,
1131 (int) object,
1132 (annex ? annex : "(null)"),
1133 (long) readbuf, (long) writebuf,
1134 paddr_nz (offset), paddr_d (len), paddr_d (retval));
1135
1136 if (readbuf)
1137 myaddr = readbuf;
1138 if (writebuf)
1139 myaddr = writebuf;
1140 if (retval > 0 && myaddr != NULL)
1141 {
1142 int i;
1143
1144 fputs_unfiltered (", bytes =", gdb_stdlog);
1145 for (i = 0; i < retval; i++)
1146 {
1147 if ((((long) &(myaddr[i])) & 0xf) == 0)
1148 {
1149 if (targetdebug < 2 && i > 0)
1150 {
1151 fprintf_unfiltered (gdb_stdlog, " ...");
1152 break;
1153 }
1154 fprintf_unfiltered (gdb_stdlog, "\n");
1155 }
1156
1157 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1158 }
1159 }
1160
1161 fputc_unfiltered ('\n', gdb_stdlog);
1162 }
1163 return retval;
1164 }
1165
1166 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1167 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1168 if any error occurs.
1169
1170 If an error occurs, no guarantee is made about the contents of the data at
1171 MYADDR. In particular, the caller should not depend upon partial reads
1172 filling the buffer with good data. There is no way for the caller to know
1173 how much good data might have been transfered anyway. Callers that can
1174 deal with partial reads should call target_read (which will retry until
1175 it makes no progress, and then return how much was transferred). */
1176
1177 int
1178 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1179 {
1180 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1181 myaddr, memaddr, len) == len)
1182 return 0;
1183 else
1184 return EIO;
1185 }
1186
1187 int
1188 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1189 {
1190 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1191 myaddr, memaddr, len) == len)
1192 return 0;
1193 else
1194 return EIO;
1195 }
1196
1197 /* Fetch the target's memory map. */
1198
1199 VEC(mem_region_s) *
1200 target_memory_map (void)
1201 {
1202 VEC(mem_region_s) *result;
1203 struct mem_region *last_one, *this_one;
1204 int ix;
1205 struct target_ops *t;
1206
1207 if (targetdebug)
1208 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1209
1210 for (t = current_target.beneath; t != NULL; t = t->beneath)
1211 if (t->to_memory_map != NULL)
1212 break;
1213
1214 if (t == NULL)
1215 return NULL;
1216
1217 result = t->to_memory_map (t);
1218 if (result == NULL)
1219 return NULL;
1220
1221 qsort (VEC_address (mem_region_s, result),
1222 VEC_length (mem_region_s, result),
1223 sizeof (struct mem_region), mem_region_cmp);
1224
1225 /* Check that regions do not overlap. Simultaneously assign
1226 a numbering for the "mem" commands to use to refer to
1227 each region. */
1228 last_one = NULL;
1229 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1230 {
1231 this_one->number = ix;
1232
1233 if (last_one && last_one->hi > this_one->lo)
1234 {
1235 warning (_("Overlapping regions in memory map: ignoring"));
1236 VEC_free (mem_region_s, result);
1237 return NULL;
1238 }
1239 last_one = this_one;
1240 }
1241
1242 return result;
1243 }
1244
1245 void
1246 target_flash_erase (ULONGEST address, LONGEST length)
1247 {
1248 struct target_ops *t;
1249
1250 for (t = current_target.beneath; t != NULL; t = t->beneath)
1251 if (t->to_flash_erase != NULL)
1252 {
1253 if (targetdebug)
1254 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1255 paddr (address), phex (length, 0));
1256 t->to_flash_erase (t, address, length);
1257 return;
1258 }
1259
1260 tcomplain ();
1261 }
1262
1263 void
1264 target_flash_done (void)
1265 {
1266 struct target_ops *t;
1267
1268 for (t = current_target.beneath; t != NULL; t = t->beneath)
1269 if (t->to_flash_done != NULL)
1270 {
1271 if (targetdebug)
1272 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1273 t->to_flash_done (t);
1274 return;
1275 }
1276
1277 tcomplain ();
1278 }
1279
1280 #ifndef target_stopped_data_address_p
1281 int
1282 target_stopped_data_address_p (struct target_ops *target)
1283 {
1284 if (target->to_stopped_data_address
1285 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1286 return 0;
1287 if (target->to_stopped_data_address == debug_to_stopped_data_address
1288 && (debug_target.to_stopped_data_address
1289 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1290 return 0;
1291 return 1;
1292 }
1293 #endif
1294
1295 static void
1296 show_trust_readonly (struct ui_file *file, int from_tty,
1297 struct cmd_list_element *c, const char *value)
1298 {
1299 fprintf_filtered (file, _("\
1300 Mode for reading from readonly sections is %s.\n"),
1301 value);
1302 }
1303
1304 /* More generic transfers. */
1305
1306 static LONGEST
1307 default_xfer_partial (struct target_ops *ops, enum target_object object,
1308 const char *annex, gdb_byte *readbuf,
1309 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1310 {
1311 if (object == TARGET_OBJECT_MEMORY
1312 && ops->deprecated_xfer_memory != NULL)
1313 /* If available, fall back to the target's
1314 "deprecated_xfer_memory" method. */
1315 {
1316 int xfered = -1;
1317 errno = 0;
1318 if (writebuf != NULL)
1319 {
1320 void *buffer = xmalloc (len);
1321 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1322 memcpy (buffer, writebuf, len);
1323 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1324 1/*write*/, NULL, ops);
1325 do_cleanups (cleanup);
1326 }
1327 if (readbuf != NULL)
1328 xfered = ops->deprecated_xfer_memory (offset, readbuf, len, 0/*read*/,
1329 NULL, ops);
1330 if (xfered > 0)
1331 return xfered;
1332 else if (xfered == 0 && errno == 0)
1333 /* "deprecated_xfer_memory" uses 0, cross checked against
1334 ERRNO as one indication of an error. */
1335 return 0;
1336 else
1337 return -1;
1338 }
1339 else if (ops->beneath != NULL)
1340 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1341 readbuf, writebuf, offset, len);
1342 else
1343 return -1;
1344 }
1345
1346 /* The xfer_partial handler for the topmost target. Unlike the default,
1347 it does not need to handle memory specially; it just passes all
1348 requests down the stack. */
1349
1350 static LONGEST
1351 current_xfer_partial (struct target_ops *ops, enum target_object object,
1352 const char *annex, gdb_byte *readbuf,
1353 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1354 {
1355 if (ops->beneath != NULL)
1356 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1357 readbuf, writebuf, offset, len);
1358 else
1359 return -1;
1360 }
1361
1362 /* Target vector read/write partial wrapper functions.
1363
1364 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1365 (inbuf, outbuf)", instead of separate read/write methods, make life
1366 easier. */
1367
1368 static LONGEST
1369 target_read_partial (struct target_ops *ops,
1370 enum target_object object,
1371 const char *annex, gdb_byte *buf,
1372 ULONGEST offset, LONGEST len)
1373 {
1374 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1375 }
1376
1377 static LONGEST
1378 target_write_partial (struct target_ops *ops,
1379 enum target_object object,
1380 const char *annex, const gdb_byte *buf,
1381 ULONGEST offset, LONGEST len)
1382 {
1383 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1384 }
1385
1386 /* Wrappers to perform the full transfer. */
1387 LONGEST
1388 target_read (struct target_ops *ops,
1389 enum target_object object,
1390 const char *annex, gdb_byte *buf,
1391 ULONGEST offset, LONGEST len)
1392 {
1393 LONGEST xfered = 0;
1394 while (xfered < len)
1395 {
1396 LONGEST xfer = target_read_partial (ops, object, annex,
1397 (gdb_byte *) buf + xfered,
1398 offset + xfered, len - xfered);
1399 /* Call an observer, notifying them of the xfer progress? */
1400 if (xfer == 0)
1401 return xfered;
1402 if (xfer < 0)
1403 return -1;
1404 xfered += xfer;
1405 QUIT;
1406 }
1407 return len;
1408 }
1409
1410 /* An alternative to target_write with progress callbacks. */
1411
1412 LONGEST
1413 target_write_with_progress (struct target_ops *ops,
1414 enum target_object object,
1415 const char *annex, const gdb_byte *buf,
1416 ULONGEST offset, LONGEST len,
1417 void (*progress) (ULONGEST, void *), void *baton)
1418 {
1419 LONGEST xfered = 0;
1420
1421 /* Give the progress callback a chance to set up. */
1422 if (progress)
1423 (*progress) (0, baton);
1424
1425 while (xfered < len)
1426 {
1427 LONGEST xfer = target_write_partial (ops, object, annex,
1428 (gdb_byte *) buf + xfered,
1429 offset + xfered, len - xfered);
1430
1431 if (xfer == 0)
1432 return xfered;
1433 if (xfer < 0)
1434 return -1;
1435
1436 if (progress)
1437 (*progress) (xfer, baton);
1438
1439 xfered += xfer;
1440 QUIT;
1441 }
1442 return len;
1443 }
1444
1445 LONGEST
1446 target_write (struct target_ops *ops,
1447 enum target_object object,
1448 const char *annex, const gdb_byte *buf,
1449 ULONGEST offset, LONGEST len)
1450 {
1451 return target_write_with_progress (ops, object, annex, buf, offset, len,
1452 NULL, NULL);
1453 }
1454
1455 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1456 the size of the transferred data. PADDING additional bytes are
1457 available in *BUF_P. This is a helper function for
1458 target_read_alloc; see the declaration of that function for more
1459 information. */
1460
1461 static LONGEST
1462 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1463 const char *annex, gdb_byte **buf_p, int padding)
1464 {
1465 size_t buf_alloc, buf_pos;
1466 gdb_byte *buf;
1467 LONGEST n;
1468
1469 /* This function does not have a length parameter; it reads the
1470 entire OBJECT). Also, it doesn't support objects fetched partly
1471 from one target and partly from another (in a different stratum,
1472 e.g. a core file and an executable). Both reasons make it
1473 unsuitable for reading memory. */
1474 gdb_assert (object != TARGET_OBJECT_MEMORY);
1475
1476 /* Start by reading up to 4K at a time. The target will throttle
1477 this number down if necessary. */
1478 buf_alloc = 4096;
1479 buf = xmalloc (buf_alloc);
1480 buf_pos = 0;
1481 while (1)
1482 {
1483 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1484 buf_pos, buf_alloc - buf_pos - padding);
1485 if (n < 0)
1486 {
1487 /* An error occurred. */
1488 xfree (buf);
1489 return -1;
1490 }
1491 else if (n == 0)
1492 {
1493 /* Read all there was. */
1494 if (buf_pos == 0)
1495 xfree (buf);
1496 else
1497 *buf_p = buf;
1498 return buf_pos;
1499 }
1500
1501 buf_pos += n;
1502
1503 /* If the buffer is filling up, expand it. */
1504 if (buf_alloc < buf_pos * 2)
1505 {
1506 buf_alloc *= 2;
1507 buf = xrealloc (buf, buf_alloc);
1508 }
1509
1510 QUIT;
1511 }
1512 }
1513
1514 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1515 the size of the transferred data. See the declaration in "target.h"
1516 function for more information about the return value. */
1517
1518 LONGEST
1519 target_read_alloc (struct target_ops *ops, enum target_object object,
1520 const char *annex, gdb_byte **buf_p)
1521 {
1522 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1523 }
1524
1525 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1526 returned as a string, allocated using xmalloc. If an error occurs
1527 or the transfer is unsupported, NULL is returned. Empty objects
1528 are returned as allocated but empty strings. A warning is issued
1529 if the result contains any embedded NUL bytes. */
1530
1531 char *
1532 target_read_stralloc (struct target_ops *ops, enum target_object object,
1533 const char *annex)
1534 {
1535 gdb_byte *buffer;
1536 LONGEST transferred;
1537
1538 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1539
1540 if (transferred < 0)
1541 return NULL;
1542
1543 if (transferred == 0)
1544 return xstrdup ("");
1545
1546 buffer[transferred] = 0;
1547 if (strlen (buffer) < transferred)
1548 warning (_("target object %d, annex %s, "
1549 "contained unexpected null characters"),
1550 (int) object, annex ? annex : "(none)");
1551
1552 return (char *) buffer;
1553 }
1554
1555 /* Memory transfer methods. */
1556
1557 void
1558 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1559 LONGEST len)
1560 {
1561 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1562 != len)
1563 memory_error (EIO, addr);
1564 }
1565
1566 ULONGEST
1567 get_target_memory_unsigned (struct target_ops *ops,
1568 CORE_ADDR addr, int len)
1569 {
1570 gdb_byte buf[sizeof (ULONGEST)];
1571
1572 gdb_assert (len <= sizeof (buf));
1573 get_target_memory (ops, addr, buf, len);
1574 return extract_unsigned_integer (buf, len);
1575 }
1576
1577 static void
1578 target_info (char *args, int from_tty)
1579 {
1580 struct target_ops *t;
1581 int has_all_mem = 0;
1582
1583 if (symfile_objfile != NULL)
1584 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1585
1586 for (t = target_stack; t != NULL; t = t->beneath)
1587 {
1588 if (!t->to_has_memory)
1589 continue;
1590
1591 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1592 continue;
1593 if (has_all_mem)
1594 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1595 printf_unfiltered ("%s:\n", t->to_longname);
1596 (t->to_files_info) (t);
1597 has_all_mem = t->to_has_all_memory;
1598 }
1599 }
1600
1601 /* This function is called before any new inferior is created, e.g.
1602 by running a program, attaching, or connecting to a target.
1603 It cleans up any state from previous invocations which might
1604 change between runs. This is a subset of what target_preopen
1605 resets (things which might change between targets). */
1606
1607 void
1608 target_pre_inferior (int from_tty)
1609 {
1610 invalidate_target_mem_regions ();
1611
1612 target_clear_description ();
1613 }
1614
1615 /* This is to be called by the open routine before it does
1616 anything. */
1617
1618 void
1619 target_preopen (int from_tty)
1620 {
1621 dont_repeat ();
1622
1623 if (target_has_execution)
1624 {
1625 if (!from_tty
1626 || query (_("A program is being debugged already. Kill it? ")))
1627 target_kill ();
1628 else
1629 error (_("Program not killed."));
1630 }
1631
1632 /* Calling target_kill may remove the target from the stack. But if
1633 it doesn't (which seems like a win for UDI), remove it now. */
1634
1635 if (target_has_execution)
1636 pop_target ();
1637
1638 target_pre_inferior (from_tty);
1639 }
1640
1641 /* Detach a target after doing deferred register stores. */
1642
1643 void
1644 target_detach (char *args, int from_tty)
1645 {
1646 (current_target.to_detach) (args, from_tty);
1647 }
1648
1649 void
1650 target_disconnect (char *args, int from_tty)
1651 {
1652 struct target_ops *t;
1653
1654 for (t = current_target.beneath; t != NULL; t = t->beneath)
1655 if (t->to_disconnect != NULL)
1656 {
1657 if (targetdebug)
1658 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1659 args, from_tty);
1660 t->to_disconnect (t, args, from_tty);
1661 return;
1662 }
1663
1664 tcomplain ();
1665 }
1666
1667 int
1668 target_async_mask (int mask)
1669 {
1670 int saved_async_masked_status = target_async_mask_value;
1671 target_async_mask_value = mask;
1672 return saved_async_masked_status;
1673 }
1674
1675 /* Look through the list of possible targets for a target that can
1676 follow forks. */
1677
1678 int
1679 target_follow_fork (int follow_child)
1680 {
1681 struct target_ops *t;
1682
1683 for (t = current_target.beneath; t != NULL; t = t->beneath)
1684 {
1685 if (t->to_follow_fork != NULL)
1686 {
1687 int retval = t->to_follow_fork (t, follow_child);
1688 if (targetdebug)
1689 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1690 follow_child, retval);
1691 return retval;
1692 }
1693 }
1694
1695 /* Some target returned a fork event, but did not know how to follow it. */
1696 internal_error (__FILE__, __LINE__,
1697 "could not find a target to follow fork");
1698 }
1699
1700 /* Look for a target which can describe architectural features, starting
1701 from TARGET. If we find one, return its description. */
1702
1703 const struct target_desc *
1704 target_read_description (struct target_ops *target)
1705 {
1706 struct target_ops *t;
1707
1708 for (t = target; t != NULL; t = t->beneath)
1709 if (t->to_read_description != NULL)
1710 {
1711 const struct target_desc *tdesc;
1712
1713 tdesc = t->to_read_description (t);
1714 if (tdesc)
1715 return tdesc;
1716 }
1717
1718 return NULL;
1719 }
1720
1721 /* Look through the list of possible targets for a target that can
1722 execute a run or attach command without any other data. This is
1723 used to locate the default process stratum.
1724
1725 Result is always valid (error() is called for errors). */
1726
1727 static struct target_ops *
1728 find_default_run_target (char *do_mesg)
1729 {
1730 struct target_ops **t;
1731 struct target_ops *runable = NULL;
1732 int count;
1733
1734 count = 0;
1735
1736 for (t = target_structs; t < target_structs + target_struct_size;
1737 ++t)
1738 {
1739 if ((*t)->to_can_run && target_can_run (*t))
1740 {
1741 runable = *t;
1742 ++count;
1743 }
1744 }
1745
1746 if (count != 1)
1747 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
1748
1749 return runable;
1750 }
1751
1752 void
1753 find_default_attach (char *args, int from_tty)
1754 {
1755 struct target_ops *t;
1756
1757 t = find_default_run_target ("attach");
1758 (t->to_attach) (args, from_tty);
1759 return;
1760 }
1761
1762 void
1763 find_default_create_inferior (char *exec_file, char *allargs, char **env,
1764 int from_tty)
1765 {
1766 struct target_ops *t;
1767
1768 t = find_default_run_target ("run");
1769 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
1770 return;
1771 }
1772
1773 static int
1774 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1775 {
1776 return (len <= TYPE_LENGTH (builtin_type_void_data_ptr));
1777 }
1778
1779 static int
1780 return_zero (void)
1781 {
1782 return 0;
1783 }
1784
1785 static int
1786 return_one (void)
1787 {
1788 return 1;
1789 }
1790
1791 static int
1792 return_minus_one (void)
1793 {
1794 return -1;
1795 }
1796
1797 /*
1798 * Resize the to_sections pointer. Also make sure that anyone that
1799 * was holding on to an old value of it gets updated.
1800 * Returns the old size.
1801 */
1802
1803 int
1804 target_resize_to_sections (struct target_ops *target, int num_added)
1805 {
1806 struct target_ops **t;
1807 struct section_table *old_value;
1808 int old_count;
1809
1810 old_value = target->to_sections;
1811
1812 if (target->to_sections)
1813 {
1814 old_count = target->to_sections_end - target->to_sections;
1815 target->to_sections = (struct section_table *)
1816 xrealloc ((char *) target->to_sections,
1817 (sizeof (struct section_table)) * (num_added + old_count));
1818 }
1819 else
1820 {
1821 old_count = 0;
1822 target->to_sections = (struct section_table *)
1823 xmalloc ((sizeof (struct section_table)) * num_added);
1824 }
1825 target->to_sections_end = target->to_sections + (num_added + old_count);
1826
1827 /* Check to see if anyone else was pointing to this structure.
1828 If old_value was null, then no one was. */
1829
1830 if (old_value)
1831 {
1832 for (t = target_structs; t < target_structs + target_struct_size;
1833 ++t)
1834 {
1835 if ((*t)->to_sections == old_value)
1836 {
1837 (*t)->to_sections = target->to_sections;
1838 (*t)->to_sections_end = target->to_sections_end;
1839 }
1840 }
1841 /* There is a flattened view of the target stack in current_target,
1842 so its to_sections pointer might also need updating. */
1843 if (current_target.to_sections == old_value)
1844 {
1845 current_target.to_sections = target->to_sections;
1846 current_target.to_sections_end = target->to_sections_end;
1847 }
1848 }
1849
1850 return old_count;
1851
1852 }
1853
1854 /* Remove all target sections taken from ABFD.
1855
1856 Scan the current target stack for targets whose section tables
1857 refer to sections from BFD, and remove those sections. We use this
1858 when we notice that the inferior has unloaded a shared object, for
1859 example. */
1860 void
1861 remove_target_sections (bfd *abfd)
1862 {
1863 struct target_ops **t;
1864
1865 for (t = target_structs; t < target_structs + target_struct_size; t++)
1866 {
1867 struct section_table *src, *dest;
1868
1869 dest = (*t)->to_sections;
1870 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
1871 if (src->bfd != abfd)
1872 {
1873 /* Keep this section. */
1874 if (dest < src) *dest = *src;
1875 dest++;
1876 }
1877
1878 /* If we've dropped any sections, resize the section table. */
1879 if (dest < src)
1880 target_resize_to_sections (*t, dest - src);
1881 }
1882 }
1883
1884
1885
1886
1887 /* Find a single runnable target in the stack and return it. If for
1888 some reason there is more than one, return NULL. */
1889
1890 struct target_ops *
1891 find_run_target (void)
1892 {
1893 struct target_ops **t;
1894 struct target_ops *runable = NULL;
1895 int count;
1896
1897 count = 0;
1898
1899 for (t = target_structs; t < target_structs + target_struct_size; ++t)
1900 {
1901 if ((*t)->to_can_run && target_can_run (*t))
1902 {
1903 runable = *t;
1904 ++count;
1905 }
1906 }
1907
1908 return (count == 1 ? runable : NULL);
1909 }
1910
1911 /* Find a single core_stratum target in the list of targets and return it.
1912 If for some reason there is more than one, return NULL. */
1913
1914 struct target_ops *
1915 find_core_target (void)
1916 {
1917 struct target_ops **t;
1918 struct target_ops *runable = NULL;
1919 int count;
1920
1921 count = 0;
1922
1923 for (t = target_structs; t < target_structs + target_struct_size;
1924 ++t)
1925 {
1926 if ((*t)->to_stratum == core_stratum)
1927 {
1928 runable = *t;
1929 ++count;
1930 }
1931 }
1932
1933 return (count == 1 ? runable : NULL);
1934 }
1935
1936 /*
1937 * Find the next target down the stack from the specified target.
1938 */
1939
1940 struct target_ops *
1941 find_target_beneath (struct target_ops *t)
1942 {
1943 return t->beneath;
1944 }
1945
1946 \f
1947 /* The inferior process has died. Long live the inferior! */
1948
1949 void
1950 generic_mourn_inferior (void)
1951 {
1952 extern int show_breakpoint_hit_counts;
1953
1954 inferior_ptid = null_ptid;
1955 attach_flag = 0;
1956 breakpoint_init_inferior (inf_exited);
1957 registers_changed ();
1958
1959 reopen_exec_file ();
1960 reinit_frame_cache ();
1961
1962 /* It is confusing to the user for ignore counts to stick around
1963 from previous runs of the inferior. So clear them. */
1964 /* However, it is more confusing for the ignore counts to disappear when
1965 using hit counts. So don't clear them if we're counting hits. */
1966 if (!show_breakpoint_hit_counts)
1967 breakpoint_clear_ignore_counts ();
1968
1969 if (deprecated_detach_hook)
1970 deprecated_detach_hook ();
1971 }
1972 \f
1973 /* Helper function for child_wait and the derivatives of child_wait.
1974 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
1975 translation of that in OURSTATUS. */
1976 void
1977 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
1978 {
1979 if (WIFEXITED (hoststatus))
1980 {
1981 ourstatus->kind = TARGET_WAITKIND_EXITED;
1982 ourstatus->value.integer = WEXITSTATUS (hoststatus);
1983 }
1984 else if (!WIFSTOPPED (hoststatus))
1985 {
1986 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
1987 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
1988 }
1989 else
1990 {
1991 ourstatus->kind = TARGET_WAITKIND_STOPPED;
1992 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
1993 }
1994 }
1995 \f
1996 /* Returns zero to leave the inferior alone, one to interrupt it. */
1997 int (*target_activity_function) (void);
1998 int target_activity_fd;
1999 \f
2000 /* Convert a normal process ID to a string. Returns the string in a
2001 static buffer. */
2002
2003 char *
2004 normal_pid_to_str (ptid_t ptid)
2005 {
2006 static char buf[32];
2007
2008 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2009 return buf;
2010 }
2011
2012 /* Error-catcher for target_find_memory_regions */
2013 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2014 {
2015 error (_("No target."));
2016 return 0;
2017 }
2018
2019 /* Error-catcher for target_make_corefile_notes */
2020 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2021 {
2022 error (_("No target."));
2023 return NULL;
2024 }
2025
2026 /* Set up the handful of non-empty slots needed by the dummy target
2027 vector. */
2028
2029 static void
2030 init_dummy_target (void)
2031 {
2032 dummy_target.to_shortname = "None";
2033 dummy_target.to_longname = "None";
2034 dummy_target.to_doc = "";
2035 dummy_target.to_attach = find_default_attach;
2036 dummy_target.to_create_inferior = find_default_create_inferior;
2037 dummy_target.to_pid_to_str = normal_pid_to_str;
2038 dummy_target.to_stratum = dummy_stratum;
2039 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2040 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2041 dummy_target.to_xfer_partial = default_xfer_partial;
2042 dummy_target.to_magic = OPS_MAGIC;
2043 }
2044 \f
2045 static void
2046 debug_to_open (char *args, int from_tty)
2047 {
2048 debug_target.to_open (args, from_tty);
2049
2050 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2051 }
2052
2053 static void
2054 debug_to_close (int quitting)
2055 {
2056 target_close (&debug_target, quitting);
2057 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2058 }
2059
2060 void
2061 target_close (struct target_ops *targ, int quitting)
2062 {
2063 if (targ->to_xclose != NULL)
2064 targ->to_xclose (targ, quitting);
2065 else if (targ->to_close != NULL)
2066 targ->to_close (quitting);
2067 }
2068
2069 static void
2070 debug_to_attach (char *args, int from_tty)
2071 {
2072 debug_target.to_attach (args, from_tty);
2073
2074 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2075 }
2076
2077
2078 static void
2079 debug_to_post_attach (int pid)
2080 {
2081 debug_target.to_post_attach (pid);
2082
2083 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2084 }
2085
2086 static void
2087 debug_to_detach (char *args, int from_tty)
2088 {
2089 debug_target.to_detach (args, from_tty);
2090
2091 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2092 }
2093
2094 static void
2095 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2096 {
2097 debug_target.to_resume (ptid, step, siggnal);
2098
2099 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2100 step ? "step" : "continue",
2101 target_signal_to_name (siggnal));
2102 }
2103
2104 static ptid_t
2105 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2106 {
2107 ptid_t retval;
2108
2109 retval = debug_target.to_wait (ptid, status);
2110
2111 fprintf_unfiltered (gdb_stdlog,
2112 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2113 PIDGET (retval));
2114 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2115 switch (status->kind)
2116 {
2117 case TARGET_WAITKIND_EXITED:
2118 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2119 status->value.integer);
2120 break;
2121 case TARGET_WAITKIND_STOPPED:
2122 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2123 target_signal_to_name (status->value.sig));
2124 break;
2125 case TARGET_WAITKIND_SIGNALLED:
2126 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2127 target_signal_to_name (status->value.sig));
2128 break;
2129 case TARGET_WAITKIND_LOADED:
2130 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2131 break;
2132 case TARGET_WAITKIND_FORKED:
2133 fprintf_unfiltered (gdb_stdlog, "forked\n");
2134 break;
2135 case TARGET_WAITKIND_VFORKED:
2136 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2137 break;
2138 case TARGET_WAITKIND_EXECD:
2139 fprintf_unfiltered (gdb_stdlog, "execd\n");
2140 break;
2141 case TARGET_WAITKIND_SPURIOUS:
2142 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2143 break;
2144 default:
2145 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2146 break;
2147 }
2148
2149 return retval;
2150 }
2151
2152 static void
2153 debug_print_register (const char * func,
2154 struct regcache *regcache, int regno)
2155 {
2156 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2157 if (regno >= 0 && regno < gdbarch_num_regs (current_gdbarch)
2158 + gdbarch_num_pseudo_regs (current_gdbarch)
2159 && gdbarch_register_name (current_gdbarch, regno) != NULL
2160 && gdbarch_register_name (current_gdbarch, regno)[0] != '\0')
2161 fprintf_unfiltered (gdb_stdlog, "(%s)", gdbarch_register_name
2162 (current_gdbarch, regno));
2163 else
2164 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2165 if (regno >= 0)
2166 {
2167 int i, size = register_size (current_gdbarch, regno);
2168 unsigned char buf[MAX_REGISTER_SIZE];
2169 regcache_cooked_read (regcache, regno, buf);
2170 fprintf_unfiltered (gdb_stdlog, " = ");
2171 for (i = 0; i < size; i++)
2172 {
2173 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2174 }
2175 if (size <= sizeof (LONGEST))
2176 {
2177 ULONGEST val = extract_unsigned_integer (buf, size);
2178 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
2179 paddr_nz (val), paddr_d (val));
2180 }
2181 }
2182 fprintf_unfiltered (gdb_stdlog, "\n");
2183 }
2184
2185 static void
2186 debug_to_fetch_registers (struct regcache *regcache, int regno)
2187 {
2188 debug_target.to_fetch_registers (regcache, regno);
2189 debug_print_register ("target_fetch_registers", regcache, regno);
2190 }
2191
2192 static void
2193 debug_to_store_registers (struct regcache *regcache, int regno)
2194 {
2195 debug_target.to_store_registers (regcache, regno);
2196 debug_print_register ("target_store_registers", regcache, regno);
2197 fprintf_unfiltered (gdb_stdlog, "\n");
2198 }
2199
2200 static void
2201 debug_to_prepare_to_store (struct regcache *regcache)
2202 {
2203 debug_target.to_prepare_to_store (regcache);
2204
2205 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2206 }
2207
2208 static int
2209 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2210 int write, struct mem_attrib *attrib,
2211 struct target_ops *target)
2212 {
2213 int retval;
2214
2215 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2216 attrib, target);
2217
2218 fprintf_unfiltered (gdb_stdlog,
2219 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2220 (unsigned int) memaddr, /* possable truncate long long */
2221 len, write ? "write" : "read", retval);
2222
2223 if (retval > 0)
2224 {
2225 int i;
2226
2227 fputs_unfiltered (", bytes =", gdb_stdlog);
2228 for (i = 0; i < retval; i++)
2229 {
2230 if ((((long) &(myaddr[i])) & 0xf) == 0)
2231 {
2232 if (targetdebug < 2 && i > 0)
2233 {
2234 fprintf_unfiltered (gdb_stdlog, " ...");
2235 break;
2236 }
2237 fprintf_unfiltered (gdb_stdlog, "\n");
2238 }
2239
2240 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2241 }
2242 }
2243
2244 fputc_unfiltered ('\n', gdb_stdlog);
2245
2246 return retval;
2247 }
2248
2249 static void
2250 debug_to_files_info (struct target_ops *target)
2251 {
2252 debug_target.to_files_info (target);
2253
2254 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2255 }
2256
2257 static int
2258 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2259 {
2260 int retval;
2261
2262 retval = debug_target.to_insert_breakpoint (bp_tgt);
2263
2264 fprintf_unfiltered (gdb_stdlog,
2265 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2266 (unsigned long) bp_tgt->placed_address,
2267 (unsigned long) retval);
2268 return retval;
2269 }
2270
2271 static int
2272 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2273 {
2274 int retval;
2275
2276 retval = debug_target.to_remove_breakpoint (bp_tgt);
2277
2278 fprintf_unfiltered (gdb_stdlog,
2279 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2280 (unsigned long) bp_tgt->placed_address,
2281 (unsigned long) retval);
2282 return retval;
2283 }
2284
2285 static int
2286 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2287 {
2288 int retval;
2289
2290 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2291
2292 fprintf_unfiltered (gdb_stdlog,
2293 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2294 (unsigned long) type,
2295 (unsigned long) cnt,
2296 (unsigned long) from_tty,
2297 (unsigned long) retval);
2298 return retval;
2299 }
2300
2301 static int
2302 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2303 {
2304 CORE_ADDR retval;
2305
2306 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2307
2308 fprintf_unfiltered (gdb_stdlog,
2309 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2310 (unsigned long) addr,
2311 (unsigned long) len,
2312 (unsigned long) retval);
2313 return retval;
2314 }
2315
2316 static int
2317 debug_to_stopped_by_watchpoint (void)
2318 {
2319 int retval;
2320
2321 retval = debug_target.to_stopped_by_watchpoint ();
2322
2323 fprintf_unfiltered (gdb_stdlog,
2324 "STOPPED_BY_WATCHPOINT () = %ld\n",
2325 (unsigned long) retval);
2326 return retval;
2327 }
2328
2329 static int
2330 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2331 {
2332 int retval;
2333
2334 retval = debug_target.to_stopped_data_address (target, addr);
2335
2336 fprintf_unfiltered (gdb_stdlog,
2337 "target_stopped_data_address ([0x%lx]) = %ld\n",
2338 (unsigned long)*addr,
2339 (unsigned long)retval);
2340 return retval;
2341 }
2342
2343 static int
2344 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2345 {
2346 int retval;
2347
2348 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2349
2350 fprintf_unfiltered (gdb_stdlog,
2351 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2352 (unsigned long) bp_tgt->placed_address,
2353 (unsigned long) retval);
2354 return retval;
2355 }
2356
2357 static int
2358 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2359 {
2360 int retval;
2361
2362 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2363
2364 fprintf_unfiltered (gdb_stdlog,
2365 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2366 (unsigned long) bp_tgt->placed_address,
2367 (unsigned long) retval);
2368 return retval;
2369 }
2370
2371 static int
2372 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2373 {
2374 int retval;
2375
2376 retval = debug_target.to_insert_watchpoint (addr, len, type);
2377
2378 fprintf_unfiltered (gdb_stdlog,
2379 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2380 (unsigned long) addr, len, type, (unsigned long) retval);
2381 return retval;
2382 }
2383
2384 static int
2385 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2386 {
2387 int retval;
2388
2389 retval = debug_target.to_remove_watchpoint (addr, len, type);
2390
2391 fprintf_unfiltered (gdb_stdlog,
2392 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2393 (unsigned long) addr, len, type, (unsigned long) retval);
2394 return retval;
2395 }
2396
2397 static void
2398 debug_to_terminal_init (void)
2399 {
2400 debug_target.to_terminal_init ();
2401
2402 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2403 }
2404
2405 static void
2406 debug_to_terminal_inferior (void)
2407 {
2408 debug_target.to_terminal_inferior ();
2409
2410 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2411 }
2412
2413 static void
2414 debug_to_terminal_ours_for_output (void)
2415 {
2416 debug_target.to_terminal_ours_for_output ();
2417
2418 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2419 }
2420
2421 static void
2422 debug_to_terminal_ours (void)
2423 {
2424 debug_target.to_terminal_ours ();
2425
2426 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2427 }
2428
2429 static void
2430 debug_to_terminal_save_ours (void)
2431 {
2432 debug_target.to_terminal_save_ours ();
2433
2434 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2435 }
2436
2437 static void
2438 debug_to_terminal_info (char *arg, int from_tty)
2439 {
2440 debug_target.to_terminal_info (arg, from_tty);
2441
2442 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2443 from_tty);
2444 }
2445
2446 static void
2447 debug_to_kill (void)
2448 {
2449 debug_target.to_kill ();
2450
2451 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2452 }
2453
2454 static void
2455 debug_to_load (char *args, int from_tty)
2456 {
2457 debug_target.to_load (args, from_tty);
2458
2459 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2460 }
2461
2462 static int
2463 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2464 {
2465 int retval;
2466
2467 retval = debug_target.to_lookup_symbol (name, addrp);
2468
2469 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2470
2471 return retval;
2472 }
2473
2474 static void
2475 debug_to_create_inferior (char *exec_file, char *args, char **env,
2476 int from_tty)
2477 {
2478 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2479
2480 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2481 exec_file, args, from_tty);
2482 }
2483
2484 static void
2485 debug_to_post_startup_inferior (ptid_t ptid)
2486 {
2487 debug_target.to_post_startup_inferior (ptid);
2488
2489 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2490 PIDGET (ptid));
2491 }
2492
2493 static void
2494 debug_to_acknowledge_created_inferior (int pid)
2495 {
2496 debug_target.to_acknowledge_created_inferior (pid);
2497
2498 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2499 pid);
2500 }
2501
2502 static void
2503 debug_to_insert_fork_catchpoint (int pid)
2504 {
2505 debug_target.to_insert_fork_catchpoint (pid);
2506
2507 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2508 pid);
2509 }
2510
2511 static int
2512 debug_to_remove_fork_catchpoint (int pid)
2513 {
2514 int retval;
2515
2516 retval = debug_target.to_remove_fork_catchpoint (pid);
2517
2518 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2519 pid, retval);
2520
2521 return retval;
2522 }
2523
2524 static void
2525 debug_to_insert_vfork_catchpoint (int pid)
2526 {
2527 debug_target.to_insert_vfork_catchpoint (pid);
2528
2529 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2530 pid);
2531 }
2532
2533 static int
2534 debug_to_remove_vfork_catchpoint (int pid)
2535 {
2536 int retval;
2537
2538 retval = debug_target.to_remove_vfork_catchpoint (pid);
2539
2540 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2541 pid, retval);
2542
2543 return retval;
2544 }
2545
2546 static void
2547 debug_to_insert_exec_catchpoint (int pid)
2548 {
2549 debug_target.to_insert_exec_catchpoint (pid);
2550
2551 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2552 pid);
2553 }
2554
2555 static int
2556 debug_to_remove_exec_catchpoint (int pid)
2557 {
2558 int retval;
2559
2560 retval = debug_target.to_remove_exec_catchpoint (pid);
2561
2562 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2563 pid, retval);
2564
2565 return retval;
2566 }
2567
2568 static int
2569 debug_to_reported_exec_events_per_exec_call (void)
2570 {
2571 int reported_exec_events;
2572
2573 reported_exec_events = debug_target.to_reported_exec_events_per_exec_call ();
2574
2575 fprintf_unfiltered (gdb_stdlog,
2576 "target_reported_exec_events_per_exec_call () = %d\n",
2577 reported_exec_events);
2578
2579 return reported_exec_events;
2580 }
2581
2582 static int
2583 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2584 {
2585 int has_exited;
2586
2587 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2588
2589 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2590 pid, wait_status, *exit_status, has_exited);
2591
2592 return has_exited;
2593 }
2594
2595 static void
2596 debug_to_mourn_inferior (void)
2597 {
2598 debug_target.to_mourn_inferior ();
2599
2600 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2601 }
2602
2603 static int
2604 debug_to_can_run (void)
2605 {
2606 int retval;
2607
2608 retval = debug_target.to_can_run ();
2609
2610 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2611
2612 return retval;
2613 }
2614
2615 static void
2616 debug_to_notice_signals (ptid_t ptid)
2617 {
2618 debug_target.to_notice_signals (ptid);
2619
2620 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2621 PIDGET (ptid));
2622 }
2623
2624 static int
2625 debug_to_thread_alive (ptid_t ptid)
2626 {
2627 int retval;
2628
2629 retval = debug_target.to_thread_alive (ptid);
2630
2631 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2632 PIDGET (ptid), retval);
2633
2634 return retval;
2635 }
2636
2637 static void
2638 debug_to_find_new_threads (void)
2639 {
2640 debug_target.to_find_new_threads ();
2641
2642 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2643 }
2644
2645 static void
2646 debug_to_stop (void)
2647 {
2648 debug_target.to_stop ();
2649
2650 fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
2651 }
2652
2653 static void
2654 debug_to_rcmd (char *command,
2655 struct ui_file *outbuf)
2656 {
2657 debug_target.to_rcmd (command, outbuf);
2658 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
2659 }
2660
2661 static struct symtab_and_line *
2662 debug_to_enable_exception_callback (enum exception_event_kind kind, int enable)
2663 {
2664 struct symtab_and_line *result;
2665 result = debug_target.to_enable_exception_callback (kind, enable);
2666 fprintf_unfiltered (gdb_stdlog,
2667 "target get_exception_callback_sal (%d, %d)\n",
2668 kind, enable);
2669 return result;
2670 }
2671
2672 static struct exception_event_record *
2673 debug_to_get_current_exception_event (void)
2674 {
2675 struct exception_event_record *result;
2676 result = debug_target.to_get_current_exception_event ();
2677 fprintf_unfiltered (gdb_stdlog, "target get_current_exception_event ()\n");
2678 return result;
2679 }
2680
2681 static char *
2682 debug_to_pid_to_exec_file (int pid)
2683 {
2684 char *exec_file;
2685
2686 exec_file = debug_target.to_pid_to_exec_file (pid);
2687
2688 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
2689 pid, exec_file);
2690
2691 return exec_file;
2692 }
2693
2694 static void
2695 setup_target_debug (void)
2696 {
2697 memcpy (&debug_target, &current_target, sizeof debug_target);
2698
2699 current_target.to_open = debug_to_open;
2700 current_target.to_close = debug_to_close;
2701 current_target.to_attach = debug_to_attach;
2702 current_target.to_post_attach = debug_to_post_attach;
2703 current_target.to_detach = debug_to_detach;
2704 current_target.to_resume = debug_to_resume;
2705 current_target.to_wait = debug_to_wait;
2706 current_target.to_fetch_registers = debug_to_fetch_registers;
2707 current_target.to_store_registers = debug_to_store_registers;
2708 current_target.to_prepare_to_store = debug_to_prepare_to_store;
2709 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
2710 current_target.to_files_info = debug_to_files_info;
2711 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
2712 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
2713 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
2714 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
2715 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
2716 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
2717 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
2718 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
2719 current_target.to_stopped_data_address = debug_to_stopped_data_address;
2720 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
2721 current_target.to_terminal_init = debug_to_terminal_init;
2722 current_target.to_terminal_inferior = debug_to_terminal_inferior;
2723 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
2724 current_target.to_terminal_ours = debug_to_terminal_ours;
2725 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
2726 current_target.to_terminal_info = debug_to_terminal_info;
2727 current_target.to_kill = debug_to_kill;
2728 current_target.to_load = debug_to_load;
2729 current_target.to_lookup_symbol = debug_to_lookup_symbol;
2730 current_target.to_create_inferior = debug_to_create_inferior;
2731 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
2732 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
2733 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
2734 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
2735 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
2736 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
2737 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
2738 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
2739 current_target.to_reported_exec_events_per_exec_call = debug_to_reported_exec_events_per_exec_call;
2740 current_target.to_has_exited = debug_to_has_exited;
2741 current_target.to_mourn_inferior = debug_to_mourn_inferior;
2742 current_target.to_can_run = debug_to_can_run;
2743 current_target.to_notice_signals = debug_to_notice_signals;
2744 current_target.to_thread_alive = debug_to_thread_alive;
2745 current_target.to_find_new_threads = debug_to_find_new_threads;
2746 current_target.to_stop = debug_to_stop;
2747 current_target.to_rcmd = debug_to_rcmd;
2748 current_target.to_enable_exception_callback = debug_to_enable_exception_callback;
2749 current_target.to_get_current_exception_event = debug_to_get_current_exception_event;
2750 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
2751 }
2752 \f
2753
2754 static char targ_desc[] =
2755 "Names of targets and files being debugged.\n\
2756 Shows the entire stack of targets currently in use (including the exec-file,\n\
2757 core-file, and process, if any), as well as the symbol file name.";
2758
2759 static void
2760 do_monitor_command (char *cmd,
2761 int from_tty)
2762 {
2763 if ((current_target.to_rcmd
2764 == (void (*) (char *, struct ui_file *)) tcomplain)
2765 || (current_target.to_rcmd == debug_to_rcmd
2766 && (debug_target.to_rcmd
2767 == (void (*) (char *, struct ui_file *)) tcomplain)))
2768 error (_("\"monitor\" command not supported by this target."));
2769 target_rcmd (cmd, gdb_stdtarg);
2770 }
2771
2772 /* Print the name of each layers of our target stack. */
2773
2774 static void
2775 maintenance_print_target_stack (char *cmd, int from_tty)
2776 {
2777 struct target_ops *t;
2778
2779 printf_filtered (_("The current target stack is:\n"));
2780
2781 for (t = target_stack; t != NULL; t = t->beneath)
2782 {
2783 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
2784 }
2785 }
2786
2787 void
2788 initialize_targets (void)
2789 {
2790 init_dummy_target ();
2791 push_target (&dummy_target);
2792
2793 add_info ("target", target_info, targ_desc);
2794 add_info ("files", target_info, targ_desc);
2795
2796 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
2797 Set target debugging."), _("\
2798 Show target debugging."), _("\
2799 When non-zero, target debugging is enabled. Higher numbers are more\n\
2800 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
2801 command."),
2802 NULL,
2803 show_targetdebug,
2804 &setdebuglist, &showdebuglist);
2805
2806 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
2807 &trust_readonly, _("\
2808 Set mode for reading from readonly sections."), _("\
2809 Show mode for reading from readonly sections."), _("\
2810 When this mode is on, memory reads from readonly sections (such as .text)\n\
2811 will be read from the object file instead of from the target. This will\n\
2812 result in significant performance improvement for remote targets."),
2813 NULL,
2814 show_trust_readonly,
2815 &setlist, &showlist);
2816
2817 add_com ("monitor", class_obscure, do_monitor_command,
2818 _("Send a command to the remote monitor (remote targets only)."));
2819
2820 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
2821 _("Print the name of each layer of the internal target stack."),
2822 &maintenanceprintlist);
2823
2824 target_dcache = dcache_init ();
2825 }
This page took 0.086671 seconds and 4 git commands to generate.