4a7589d445ec4a52d6321ee21dd6dd8f740e6bc5
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50
51 static void info_target_command (char *, int);
52
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
55 static void default_terminal_info (struct target_ops *, const char *, int);
56
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
62
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static struct address_space *default_thread_address_space
85 (struct target_ops *self, ptid_t ptid);
86
87 static void tcomplain (void) ATTRIBUTE_NORETURN;
88
89 static int return_zero (struct target_ops *);
90
91 static int return_zero_has_execution (struct target_ops *, ptid_t);
92
93 static struct target_ops *find_default_run_target (const char *);
94
95 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
96 ptid_t ptid);
97
98 static int dummy_find_memory_regions (struct target_ops *self,
99 find_memory_region_ftype ignore1,
100 void *ignore2);
101
102 static char *dummy_make_corefile_notes (struct target_ops *self,
103 bfd *ignore1, int *ignore2);
104
105 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
106
107 static enum exec_direction_kind default_execution_direction
108 (struct target_ops *self);
109
110 static struct target_ops debug_target;
111
112 #include "target-delegates.c"
113
114 static void init_dummy_target (void);
115
116 static void update_current_target (void);
117
118 /* Vector of existing target structures. */
119 typedef struct target_ops *target_ops_p;
120 DEF_VEC_P (target_ops_p);
121 static VEC (target_ops_p) *target_structs;
122
123 /* The initial current target, so that there is always a semi-valid
124 current target. */
125
126 static struct target_ops dummy_target;
127
128 /* Top of target stack. */
129
130 static struct target_ops *target_stack;
131
132 /* The target structure we are currently using to talk to a process
133 or file or whatever "inferior" we have. */
134
135 struct target_ops current_target;
136
137 /* Command list for target. */
138
139 static struct cmd_list_element *targetlist = NULL;
140
141 /* Nonzero if we should trust readonly sections from the
142 executable when reading memory. */
143
144 static int trust_readonly = 0;
145
146 /* Nonzero if we should show true memory content including
147 memory breakpoint inserted by gdb. */
148
149 static int show_memory_breakpoints = 0;
150
151 /* These globals control whether GDB attempts to perform these
152 operations; they are useful for targets that need to prevent
153 inadvertant disruption, such as in non-stop mode. */
154
155 int may_write_registers = 1;
156
157 int may_write_memory = 1;
158
159 int may_insert_breakpoints = 1;
160
161 int may_insert_tracepoints = 1;
162
163 int may_insert_fast_tracepoints = 1;
164
165 int may_stop = 1;
166
167 /* Non-zero if we want to see trace of target level stuff. */
168
169 static unsigned int targetdebug = 0;
170
171 static void
172 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
173 {
174 update_current_target ();
175 }
176
177 static void
178 show_targetdebug (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
182 }
183
184 static void setup_target_debug (void);
185
186 /* The user just typed 'target' without the name of a target. */
187
188 static void
189 target_command (const char *arg, int from_tty)
190 {
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193 }
194
195 /* Default target_has_* methods for process_stratum targets. */
196
197 int
198 default_child_has_all_memory (struct target_ops *ops)
199 {
200 /* If no inferior selected, then we can't read memory here. */
201 if (ptid_equal (inferior_ptid, null_ptid))
202 return 0;
203
204 return 1;
205 }
206
207 int
208 default_child_has_memory (struct target_ops *ops)
209 {
210 /* If no inferior selected, then we can't read memory here. */
211 if (ptid_equal (inferior_ptid, null_ptid))
212 return 0;
213
214 return 1;
215 }
216
217 int
218 default_child_has_stack (struct target_ops *ops)
219 {
220 /* If no inferior selected, there's no stack. */
221 if (ptid_equal (inferior_ptid, null_ptid))
222 return 0;
223
224 return 1;
225 }
226
227 int
228 default_child_has_registers (struct target_ops *ops)
229 {
230 /* Can't read registers from no inferior. */
231 if (ptid_equal (inferior_ptid, null_ptid))
232 return 0;
233
234 return 1;
235 }
236
237 int
238 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
239 {
240 /* If there's no thread selected, then we can't make it run through
241 hoops. */
242 if (ptid_equal (the_ptid, null_ptid))
243 return 0;
244
245 return 1;
246 }
247
248
249 int
250 target_has_all_memory_1 (void)
251 {
252 struct target_ops *t;
253
254 for (t = current_target.beneath; t != NULL; t = t->beneath)
255 if (t->to_has_all_memory (t))
256 return 1;
257
258 return 0;
259 }
260
261 int
262 target_has_memory_1 (void)
263 {
264 struct target_ops *t;
265
266 for (t = current_target.beneath; t != NULL; t = t->beneath)
267 if (t->to_has_memory (t))
268 return 1;
269
270 return 0;
271 }
272
273 int
274 target_has_stack_1 (void)
275 {
276 struct target_ops *t;
277
278 for (t = current_target.beneath; t != NULL; t = t->beneath)
279 if (t->to_has_stack (t))
280 return 1;
281
282 return 0;
283 }
284
285 int
286 target_has_registers_1 (void)
287 {
288 struct target_ops *t;
289
290 for (t = current_target.beneath; t != NULL; t = t->beneath)
291 if (t->to_has_registers (t))
292 return 1;
293
294 return 0;
295 }
296
297 int
298 target_has_execution_1 (ptid_t the_ptid)
299 {
300 struct target_ops *t;
301
302 for (t = current_target.beneath; t != NULL; t = t->beneath)
303 if (t->to_has_execution (t, the_ptid))
304 return 1;
305
306 return 0;
307 }
308
309 int
310 target_has_execution_current (void)
311 {
312 return target_has_execution_1 (inferior_ptid);
313 }
314
315 /* Complete initialization of T. This ensures that various fields in
316 T are set, if needed by the target implementation. */
317
318 void
319 complete_target_initialization (struct target_ops *t)
320 {
321 /* Provide default values for all "must have" methods. */
322
323 if (t->to_has_all_memory == NULL)
324 t->to_has_all_memory = return_zero;
325
326 if (t->to_has_memory == NULL)
327 t->to_has_memory = return_zero;
328
329 if (t->to_has_stack == NULL)
330 t->to_has_stack = return_zero;
331
332 if (t->to_has_registers == NULL)
333 t->to_has_registers = return_zero;
334
335 if (t->to_has_execution == NULL)
336 t->to_has_execution = return_zero_has_execution;
337
338 /* These methods can be called on an unpushed target and so require
339 a default implementation if the target might plausibly be the
340 default run target. */
341 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
342 && t->to_supports_non_stop != NULL));
343
344 install_delegators (t);
345 }
346
347 /* This is used to implement the various target commands. */
348
349 static void
350 open_target (char *args, int from_tty, struct cmd_list_element *command)
351 {
352 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
353
354 if (targetdebug)
355 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
356 ops->to_shortname);
357
358 ops->to_open (args, from_tty);
359
360 if (targetdebug)
361 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
362 ops->to_shortname, args, from_tty);
363 }
364
365 /* Add possible target architecture T to the list and add a new
366 command 'target T->to_shortname'. Set COMPLETER as the command's
367 completer if not NULL. */
368
369 void
370 add_target_with_completer (struct target_ops *t,
371 completer_ftype *completer)
372 {
373 struct cmd_list_element *c;
374
375 complete_target_initialization (t);
376
377 VEC_safe_push (target_ops_p, target_structs, t);
378
379 if (targetlist == NULL)
380 add_prefix_cmd ("target", class_run, target_command, _("\
381 Connect to a target machine or process.\n\
382 The first argument is the type or protocol of the target machine.\n\
383 Remaining arguments are interpreted by the target protocol. For more\n\
384 information on the arguments for a particular protocol, type\n\
385 `help target ' followed by the protocol name."),
386 &targetlist, "target ", 0, &cmdlist);
387 c = add_cmd (t->to_shortname, no_class, t->to_doc, &targetlist);
388 set_cmd_sfunc (c, open_target);
389 set_cmd_context (c, t);
390 if (completer != NULL)
391 set_cmd_completer (c, completer);
392 }
393
394 /* Add a possible target architecture to the list. */
395
396 void
397 add_target (struct target_ops *t)
398 {
399 add_target_with_completer (t, NULL);
400 }
401
402 /* See target.h. */
403
404 void
405 add_deprecated_target_alias (struct target_ops *t, const char *alias)
406 {
407 struct cmd_list_element *c;
408 char *alt;
409
410 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
411 see PR cli/15104. */
412 c = add_cmd (alias, no_class, t->to_doc, &targetlist);
413 set_cmd_sfunc (c, open_target);
414 set_cmd_context (c, t);
415 alt = xstrprintf ("target %s", t->to_shortname);
416 deprecate_cmd (c, alt);
417 }
418
419 /* Stub functions */
420
421 void
422 target_kill (void)
423 {
424 current_target.to_kill (&current_target);
425 }
426
427 void
428 target_load (const char *arg, int from_tty)
429 {
430 target_dcache_invalidate ();
431 (*current_target.to_load) (&current_target, arg, from_tty);
432 }
433
434 /* Define it. */
435
436 enum target_terminal::terminal_state target_terminal::terminal_state
437 = target_terminal::terminal_is_ours;
438
439 /* See target/target.h. */
440
441 void
442 target_terminal::init (void)
443 {
444 (*current_target.to_terminal_init) (&current_target);
445
446 terminal_state = terminal_is_ours;
447 }
448
449 /* See target/target.h. */
450
451 void
452 target_terminal::inferior (void)
453 {
454 struct ui *ui = current_ui;
455
456 /* A background resume (``run&'') should leave GDB in control of the
457 terminal. */
458 if (ui->prompt_state != PROMPT_BLOCKED)
459 return;
460
461 /* Since we always run the inferior in the main console (unless "set
462 inferior-tty" is in effect), when some UI other than the main one
463 calls target_terminal::inferior, then we leave the main UI's
464 terminal settings as is. */
465 if (ui != main_ui)
466 return;
467
468 if (terminal_state == terminal_is_inferior)
469 return;
470
471 /* If GDB is resuming the inferior in the foreground, install
472 inferior's terminal modes. */
473 (*current_target.to_terminal_inferior) (&current_target);
474 terminal_state = terminal_is_inferior;
475
476 /* If the user hit C-c before, pretend that it was hit right
477 here. */
478 if (check_quit_flag ())
479 target_pass_ctrlc ();
480 }
481
482 /* See target/target.h. */
483
484 void
485 target_terminal::ours ()
486 {
487 struct ui *ui = current_ui;
488
489 /* See target_terminal::inferior. */
490 if (ui != main_ui)
491 return;
492
493 if (terminal_state == terminal_is_ours)
494 return;
495
496 (*current_target.to_terminal_ours) (&current_target);
497 terminal_state = terminal_is_ours;
498 }
499
500 /* See target/target.h. */
501
502 void
503 target_terminal::ours_for_output ()
504 {
505 struct ui *ui = current_ui;
506
507 /* See target_terminal::inferior. */
508 if (ui != main_ui)
509 return;
510
511 if (terminal_state != terminal_is_inferior)
512 return;
513 (*current_target.to_terminal_ours_for_output) (&current_target);
514 terminal_state = terminal_is_ours_for_output;
515 }
516
517 /* See target/target.h. */
518
519 void
520 target_terminal::info (const char *arg, int from_tty)
521 {
522 (*current_target.to_terminal_info) (&current_target, arg, from_tty);
523 }
524
525 /* See target.h. */
526
527 int
528 target_supports_terminal_ours (void)
529 {
530 struct target_ops *t;
531
532 for (t = current_target.beneath; t != NULL; t = t->beneath)
533 {
534 if (t->to_terminal_ours != delegate_terminal_ours
535 && t->to_terminal_ours != tdefault_terminal_ours)
536 return 1;
537 }
538
539 return 0;
540 }
541
542 static void
543 tcomplain (void)
544 {
545 error (_("You can't do that when your target is `%s'"),
546 current_target.to_shortname);
547 }
548
549 void
550 noprocess (void)
551 {
552 error (_("You can't do that without a process to debug."));
553 }
554
555 static void
556 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
557 {
558 printf_unfiltered (_("No saved terminal information.\n"));
559 }
560
561 /* A default implementation for the to_get_ada_task_ptid target method.
562
563 This function builds the PTID by using both LWP and TID as part of
564 the PTID lwp and tid elements. The pid used is the pid of the
565 inferior_ptid. */
566
567 static ptid_t
568 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
569 {
570 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
571 }
572
573 static enum exec_direction_kind
574 default_execution_direction (struct target_ops *self)
575 {
576 if (!target_can_execute_reverse)
577 return EXEC_FORWARD;
578 else if (!target_can_async_p ())
579 return EXEC_FORWARD;
580 else
581 gdb_assert_not_reached ("\
582 to_execution_direction must be implemented for reverse async");
583 }
584
585 /* Go through the target stack from top to bottom, copying over zero
586 entries in current_target, then filling in still empty entries. In
587 effect, we are doing class inheritance through the pushed target
588 vectors.
589
590 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
591 is currently implemented, is that it discards any knowledge of
592 which target an inherited method originally belonged to.
593 Consequently, new new target methods should instead explicitly and
594 locally search the target stack for the target that can handle the
595 request. */
596
597 static void
598 update_current_target (void)
599 {
600 struct target_ops *t;
601
602 /* First, reset current's contents. */
603 memset (&current_target, 0, sizeof (current_target));
604
605 /* Install the delegators. */
606 install_delegators (&current_target);
607
608 current_target.to_stratum = target_stack->to_stratum;
609
610 #define INHERIT(FIELD, TARGET) \
611 if (!current_target.FIELD) \
612 current_target.FIELD = (TARGET)->FIELD
613
614 /* Do not add any new INHERITs here. Instead, use the delegation
615 mechanism provided by make-target-delegates. */
616 for (t = target_stack; t; t = t->beneath)
617 {
618 INHERIT (to_shortname, t);
619 INHERIT (to_longname, t);
620 INHERIT (to_attach_no_wait, t);
621 INHERIT (to_have_steppable_watchpoint, t);
622 INHERIT (to_have_continuable_watchpoint, t);
623 INHERIT (to_has_thread_control, t);
624 }
625 #undef INHERIT
626
627 /* Finally, position the target-stack beneath the squashed
628 "current_target". That way code looking for a non-inherited
629 target method can quickly and simply find it. */
630 current_target.beneath = target_stack;
631
632 if (targetdebug)
633 setup_target_debug ();
634 }
635
636 /* Push a new target type into the stack of the existing target accessors,
637 possibly superseding some of the existing accessors.
638
639 Rather than allow an empty stack, we always have the dummy target at
640 the bottom stratum, so we can call the function vectors without
641 checking them. */
642
643 void
644 push_target (struct target_ops *t)
645 {
646 struct target_ops **cur;
647
648 /* Check magic number. If wrong, it probably means someone changed
649 the struct definition, but not all the places that initialize one. */
650 if (t->to_magic != OPS_MAGIC)
651 {
652 fprintf_unfiltered (gdb_stderr,
653 "Magic number of %s target struct wrong\n",
654 t->to_shortname);
655 internal_error (__FILE__, __LINE__,
656 _("failed internal consistency check"));
657 }
658
659 /* Find the proper stratum to install this target in. */
660 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
661 {
662 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
663 break;
664 }
665
666 /* If there's already targets at this stratum, remove them. */
667 /* FIXME: cagney/2003-10-15: I think this should be popping all
668 targets to CUR, and not just those at this stratum level. */
669 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
670 {
671 /* There's already something at this stratum level. Close it,
672 and un-hook it from the stack. */
673 struct target_ops *tmp = (*cur);
674
675 (*cur) = (*cur)->beneath;
676 tmp->beneath = NULL;
677 target_close (tmp);
678 }
679
680 /* We have removed all targets in our stratum, now add the new one. */
681 t->beneath = (*cur);
682 (*cur) = t;
683
684 update_current_target ();
685 }
686
687 /* Remove a target_ops vector from the stack, wherever it may be.
688 Return how many times it was removed (0 or 1). */
689
690 int
691 unpush_target (struct target_ops *t)
692 {
693 struct target_ops **cur;
694 struct target_ops *tmp;
695
696 if (t->to_stratum == dummy_stratum)
697 internal_error (__FILE__, __LINE__,
698 _("Attempt to unpush the dummy target"));
699
700 /* Look for the specified target. Note that we assume that a target
701 can only occur once in the target stack. */
702
703 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
704 {
705 if ((*cur) == t)
706 break;
707 }
708
709 /* If we don't find target_ops, quit. Only open targets should be
710 closed. */
711 if ((*cur) == NULL)
712 return 0;
713
714 /* Unchain the target. */
715 tmp = (*cur);
716 (*cur) = (*cur)->beneath;
717 tmp->beneath = NULL;
718
719 update_current_target ();
720
721 /* Finally close the target. Note we do this after unchaining, so
722 any target method calls from within the target_close
723 implementation don't end up in T anymore. */
724 target_close (t);
725
726 return 1;
727 }
728
729 /* Unpush TARGET and assert that it worked. */
730
731 static void
732 unpush_target_and_assert (struct target_ops *target)
733 {
734 if (!unpush_target (target))
735 {
736 fprintf_unfiltered (gdb_stderr,
737 "pop_all_targets couldn't find target %s\n",
738 target->to_shortname);
739 internal_error (__FILE__, __LINE__,
740 _("failed internal consistency check"));
741 }
742 }
743
744 void
745 pop_all_targets_above (enum strata above_stratum)
746 {
747 while ((int) (current_target.to_stratum) > (int) above_stratum)
748 unpush_target_and_assert (target_stack);
749 }
750
751 /* See target.h. */
752
753 void
754 pop_all_targets_at_and_above (enum strata stratum)
755 {
756 while ((int) (current_target.to_stratum) >= (int) stratum)
757 unpush_target_and_assert (target_stack);
758 }
759
760 void
761 pop_all_targets (void)
762 {
763 pop_all_targets_above (dummy_stratum);
764 }
765
766 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
767
768 int
769 target_is_pushed (struct target_ops *t)
770 {
771 struct target_ops *cur;
772
773 /* Check magic number. If wrong, it probably means someone changed
774 the struct definition, but not all the places that initialize one. */
775 if (t->to_magic != OPS_MAGIC)
776 {
777 fprintf_unfiltered (gdb_stderr,
778 "Magic number of %s target struct wrong\n",
779 t->to_shortname);
780 internal_error (__FILE__, __LINE__,
781 _("failed internal consistency check"));
782 }
783
784 for (cur = target_stack; cur != NULL; cur = cur->beneath)
785 if (cur == t)
786 return 1;
787
788 return 0;
789 }
790
791 /* Default implementation of to_get_thread_local_address. */
792
793 static void
794 generic_tls_error (void)
795 {
796 throw_error (TLS_GENERIC_ERROR,
797 _("Cannot find thread-local variables on this target"));
798 }
799
800 /* Using the objfile specified in OBJFILE, find the address for the
801 current thread's thread-local storage with offset OFFSET. */
802 CORE_ADDR
803 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
804 {
805 volatile CORE_ADDR addr = 0;
806 struct target_ops *target = &current_target;
807
808 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
809 {
810 ptid_t ptid = inferior_ptid;
811
812 TRY
813 {
814 CORE_ADDR lm_addr;
815
816 /* Fetch the load module address for this objfile. */
817 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
818 objfile);
819
820 addr = target->to_get_thread_local_address (target, ptid,
821 lm_addr, offset);
822 }
823 /* If an error occurred, print TLS related messages here. Otherwise,
824 throw the error to some higher catcher. */
825 CATCH (ex, RETURN_MASK_ALL)
826 {
827 int objfile_is_library = (objfile->flags & OBJF_SHARED);
828
829 switch (ex.error)
830 {
831 case TLS_NO_LIBRARY_SUPPORT_ERROR:
832 error (_("Cannot find thread-local variables "
833 "in this thread library."));
834 break;
835 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
836 if (objfile_is_library)
837 error (_("Cannot find shared library `%s' in dynamic"
838 " linker's load module list"), objfile_name (objfile));
839 else
840 error (_("Cannot find executable file `%s' in dynamic"
841 " linker's load module list"), objfile_name (objfile));
842 break;
843 case TLS_NOT_ALLOCATED_YET_ERROR:
844 if (objfile_is_library)
845 error (_("The inferior has not yet allocated storage for"
846 " thread-local variables in\n"
847 "the shared library `%s'\n"
848 "for %s"),
849 objfile_name (objfile), target_pid_to_str (ptid));
850 else
851 error (_("The inferior has not yet allocated storage for"
852 " thread-local variables in\n"
853 "the executable `%s'\n"
854 "for %s"),
855 objfile_name (objfile), target_pid_to_str (ptid));
856 break;
857 case TLS_GENERIC_ERROR:
858 if (objfile_is_library)
859 error (_("Cannot find thread-local storage for %s, "
860 "shared library %s:\n%s"),
861 target_pid_to_str (ptid),
862 objfile_name (objfile), ex.message);
863 else
864 error (_("Cannot find thread-local storage for %s, "
865 "executable file %s:\n%s"),
866 target_pid_to_str (ptid),
867 objfile_name (objfile), ex.message);
868 break;
869 default:
870 throw_exception (ex);
871 break;
872 }
873 }
874 END_CATCH
875 }
876 /* It wouldn't be wrong here to try a gdbarch method, too; finding
877 TLS is an ABI-specific thing. But we don't do that yet. */
878 else
879 error (_("Cannot find thread-local variables on this target"));
880
881 return addr;
882 }
883
884 const char *
885 target_xfer_status_to_string (enum target_xfer_status status)
886 {
887 #define CASE(X) case X: return #X
888 switch (status)
889 {
890 CASE(TARGET_XFER_E_IO);
891 CASE(TARGET_XFER_UNAVAILABLE);
892 default:
893 return "<unknown>";
894 }
895 #undef CASE
896 };
897
898
899 #undef MIN
900 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
901
902 /* target_read_string -- read a null terminated string, up to LEN bytes,
903 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
904 Set *STRING to a pointer to malloc'd memory containing the data; the caller
905 is responsible for freeing it. Return the number of bytes successfully
906 read. */
907
908 int
909 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
910 {
911 int tlen, offset, i;
912 gdb_byte buf[4];
913 int errcode = 0;
914 char *buffer;
915 int buffer_allocated;
916 char *bufptr;
917 unsigned int nbytes_read = 0;
918
919 gdb_assert (string);
920
921 /* Small for testing. */
922 buffer_allocated = 4;
923 buffer = (char *) xmalloc (buffer_allocated);
924 bufptr = buffer;
925
926 while (len > 0)
927 {
928 tlen = MIN (len, 4 - (memaddr & 3));
929 offset = memaddr & 3;
930
931 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
932 if (errcode != 0)
933 {
934 /* The transfer request might have crossed the boundary to an
935 unallocated region of memory. Retry the transfer, requesting
936 a single byte. */
937 tlen = 1;
938 offset = 0;
939 errcode = target_read_memory (memaddr, buf, 1);
940 if (errcode != 0)
941 goto done;
942 }
943
944 if (bufptr - buffer + tlen > buffer_allocated)
945 {
946 unsigned int bytes;
947
948 bytes = bufptr - buffer;
949 buffer_allocated *= 2;
950 buffer = (char *) xrealloc (buffer, buffer_allocated);
951 bufptr = buffer + bytes;
952 }
953
954 for (i = 0; i < tlen; i++)
955 {
956 *bufptr++ = buf[i + offset];
957 if (buf[i + offset] == '\000')
958 {
959 nbytes_read += i + 1;
960 goto done;
961 }
962 }
963
964 memaddr += tlen;
965 len -= tlen;
966 nbytes_read += tlen;
967 }
968 done:
969 *string = buffer;
970 if (errnop != NULL)
971 *errnop = errcode;
972 return nbytes_read;
973 }
974
975 struct target_section_table *
976 target_get_section_table (struct target_ops *target)
977 {
978 return (*target->to_get_section_table) (target);
979 }
980
981 /* Find a section containing ADDR. */
982
983 struct target_section *
984 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
985 {
986 struct target_section_table *table = target_get_section_table (target);
987 struct target_section *secp;
988
989 if (table == NULL)
990 return NULL;
991
992 for (secp = table->sections; secp < table->sections_end; secp++)
993 {
994 if (addr >= secp->addr && addr < secp->endaddr)
995 return secp;
996 }
997 return NULL;
998 }
999
1000
1001 /* Helper for the memory xfer routines. Checks the attributes of the
1002 memory region of MEMADDR against the read or write being attempted.
1003 If the access is permitted returns true, otherwise returns false.
1004 REGION_P is an optional output parameter. If not-NULL, it is
1005 filled with a pointer to the memory region of MEMADDR. REG_LEN
1006 returns LEN trimmed to the end of the region. This is how much the
1007 caller can continue requesting, if the access is permitted. A
1008 single xfer request must not straddle memory region boundaries. */
1009
1010 static int
1011 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1012 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1013 struct mem_region **region_p)
1014 {
1015 struct mem_region *region;
1016
1017 region = lookup_mem_region (memaddr);
1018
1019 if (region_p != NULL)
1020 *region_p = region;
1021
1022 switch (region->attrib.mode)
1023 {
1024 case MEM_RO:
1025 if (writebuf != NULL)
1026 return 0;
1027 break;
1028
1029 case MEM_WO:
1030 if (readbuf != NULL)
1031 return 0;
1032 break;
1033
1034 case MEM_FLASH:
1035 /* We only support writing to flash during "load" for now. */
1036 if (writebuf != NULL)
1037 error (_("Writing to flash memory forbidden in this context"));
1038 break;
1039
1040 case MEM_NONE:
1041 return 0;
1042 }
1043
1044 /* region->hi == 0 means there's no upper bound. */
1045 if (memaddr + len < region->hi || region->hi == 0)
1046 *reg_len = len;
1047 else
1048 *reg_len = region->hi - memaddr;
1049
1050 return 1;
1051 }
1052
1053 /* Read memory from more than one valid target. A core file, for
1054 instance, could have some of memory but delegate other bits to
1055 the target below it. So, we must manually try all targets. */
1056
1057 enum target_xfer_status
1058 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1059 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1060 ULONGEST *xfered_len)
1061 {
1062 enum target_xfer_status res;
1063
1064 do
1065 {
1066 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1067 readbuf, writebuf, memaddr, len,
1068 xfered_len);
1069 if (res == TARGET_XFER_OK)
1070 break;
1071
1072 /* Stop if the target reports that the memory is not available. */
1073 if (res == TARGET_XFER_UNAVAILABLE)
1074 break;
1075
1076 /* We want to continue past core files to executables, but not
1077 past a running target's memory. */
1078 if (ops->to_has_all_memory (ops))
1079 break;
1080
1081 ops = ops->beneath;
1082 }
1083 while (ops != NULL);
1084
1085 /* The cache works at the raw memory level. Make sure the cache
1086 gets updated with raw contents no matter what kind of memory
1087 object was originally being written. Note we do write-through
1088 first, so that if it fails, we don't write to the cache contents
1089 that never made it to the target. */
1090 if (writebuf != NULL
1091 && !ptid_equal (inferior_ptid, null_ptid)
1092 && target_dcache_init_p ()
1093 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1094 {
1095 DCACHE *dcache = target_dcache_get ();
1096
1097 /* Note that writing to an area of memory which wasn't present
1098 in the cache doesn't cause it to be loaded in. */
1099 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1100 }
1101
1102 return res;
1103 }
1104
1105 /* Perform a partial memory transfer.
1106 For docs see target.h, to_xfer_partial. */
1107
1108 static enum target_xfer_status
1109 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1110 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1111 ULONGEST len, ULONGEST *xfered_len)
1112 {
1113 enum target_xfer_status res;
1114 ULONGEST reg_len;
1115 struct mem_region *region;
1116 struct inferior *inf;
1117
1118 /* For accesses to unmapped overlay sections, read directly from
1119 files. Must do this first, as MEMADDR may need adjustment. */
1120 if (readbuf != NULL && overlay_debugging)
1121 {
1122 struct obj_section *section = find_pc_overlay (memaddr);
1123
1124 if (pc_in_unmapped_range (memaddr, section))
1125 {
1126 struct target_section_table *table
1127 = target_get_section_table (ops);
1128 const char *section_name = section->the_bfd_section->name;
1129
1130 memaddr = overlay_mapped_address (memaddr, section);
1131 return section_table_xfer_memory_partial (readbuf, writebuf,
1132 memaddr, len, xfered_len,
1133 table->sections,
1134 table->sections_end,
1135 section_name);
1136 }
1137 }
1138
1139 /* Try the executable files, if "trust-readonly-sections" is set. */
1140 if (readbuf != NULL && trust_readonly)
1141 {
1142 struct target_section *secp;
1143 struct target_section_table *table;
1144
1145 secp = target_section_by_addr (ops, memaddr);
1146 if (secp != NULL
1147 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1148 secp->the_bfd_section)
1149 & SEC_READONLY))
1150 {
1151 table = target_get_section_table (ops);
1152 return section_table_xfer_memory_partial (readbuf, writebuf,
1153 memaddr, len, xfered_len,
1154 table->sections,
1155 table->sections_end,
1156 NULL);
1157 }
1158 }
1159
1160 /* Try GDB's internal data cache. */
1161
1162 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1163 &region))
1164 return TARGET_XFER_E_IO;
1165
1166 if (!ptid_equal (inferior_ptid, null_ptid))
1167 inf = find_inferior_ptid (inferior_ptid);
1168 else
1169 inf = NULL;
1170
1171 if (inf != NULL
1172 && readbuf != NULL
1173 /* The dcache reads whole cache lines; that doesn't play well
1174 with reading from a trace buffer, because reading outside of
1175 the collected memory range fails. */
1176 && get_traceframe_number () == -1
1177 && (region->attrib.cache
1178 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1179 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1180 {
1181 DCACHE *dcache = target_dcache_get_or_init ();
1182
1183 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1184 reg_len, xfered_len);
1185 }
1186
1187 /* If none of those methods found the memory we wanted, fall back
1188 to a target partial transfer. Normally a single call to
1189 to_xfer_partial is enough; if it doesn't recognize an object
1190 it will call the to_xfer_partial of the next target down.
1191 But for memory this won't do. Memory is the only target
1192 object which can be read from more than one valid target.
1193 A core file, for instance, could have some of memory but
1194 delegate other bits to the target below it. So, we must
1195 manually try all targets. */
1196
1197 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1198 xfered_len);
1199
1200 /* If we still haven't got anything, return the last error. We
1201 give up. */
1202 return res;
1203 }
1204
1205 /* Perform a partial memory transfer. For docs see target.h,
1206 to_xfer_partial. */
1207
1208 static enum target_xfer_status
1209 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1210 gdb_byte *readbuf, const gdb_byte *writebuf,
1211 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1212 {
1213 enum target_xfer_status res;
1214
1215 /* Zero length requests are ok and require no work. */
1216 if (len == 0)
1217 return TARGET_XFER_EOF;
1218
1219 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1220 breakpoint insns, thus hiding out from higher layers whether
1221 there are software breakpoints inserted in the code stream. */
1222 if (readbuf != NULL)
1223 {
1224 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1225 xfered_len);
1226
1227 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1228 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1229 }
1230 else
1231 {
1232 /* A large write request is likely to be partially satisfied
1233 by memory_xfer_partial_1. We will continually malloc
1234 and free a copy of the entire write request for breakpoint
1235 shadow handling even though we only end up writing a small
1236 subset of it. Cap writes to a limit specified by the target
1237 to mitigate this. */
1238 len = std::min (ops->to_get_memory_xfer_limit (ops), len);
1239
1240 gdb::byte_vector buf (writebuf, writebuf + len);
1241 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1242 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1243 xfered_len);
1244 }
1245
1246 return res;
1247 }
1248
1249 scoped_restore_tmpl<int>
1250 make_scoped_restore_show_memory_breakpoints (int show)
1251 {
1252 return make_scoped_restore (&show_memory_breakpoints, show);
1253 }
1254
1255 /* For docs see target.h, to_xfer_partial. */
1256
1257 enum target_xfer_status
1258 target_xfer_partial (struct target_ops *ops,
1259 enum target_object object, const char *annex,
1260 gdb_byte *readbuf, const gdb_byte *writebuf,
1261 ULONGEST offset, ULONGEST len,
1262 ULONGEST *xfered_len)
1263 {
1264 enum target_xfer_status retval;
1265
1266 gdb_assert (ops->to_xfer_partial != NULL);
1267
1268 /* Transfer is done when LEN is zero. */
1269 if (len == 0)
1270 return TARGET_XFER_EOF;
1271
1272 if (writebuf && !may_write_memory)
1273 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1274 core_addr_to_string_nz (offset), plongest (len));
1275
1276 *xfered_len = 0;
1277
1278 /* If this is a memory transfer, let the memory-specific code
1279 have a look at it instead. Memory transfers are more
1280 complicated. */
1281 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1282 || object == TARGET_OBJECT_CODE_MEMORY)
1283 retval = memory_xfer_partial (ops, object, readbuf,
1284 writebuf, offset, len, xfered_len);
1285 else if (object == TARGET_OBJECT_RAW_MEMORY)
1286 {
1287 /* Skip/avoid accessing the target if the memory region
1288 attributes block the access. Check this here instead of in
1289 raw_memory_xfer_partial as otherwise we'd end up checking
1290 this twice in the case of the memory_xfer_partial path is
1291 taken; once before checking the dcache, and another in the
1292 tail call to raw_memory_xfer_partial. */
1293 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1294 NULL))
1295 return TARGET_XFER_E_IO;
1296
1297 /* Request the normal memory object from other layers. */
1298 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1299 xfered_len);
1300 }
1301 else
1302 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1303 writebuf, offset, len, xfered_len);
1304
1305 if (targetdebug)
1306 {
1307 const unsigned char *myaddr = NULL;
1308
1309 fprintf_unfiltered (gdb_stdlog,
1310 "%s:target_xfer_partial "
1311 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1312 ops->to_shortname,
1313 (int) object,
1314 (annex ? annex : "(null)"),
1315 host_address_to_string (readbuf),
1316 host_address_to_string (writebuf),
1317 core_addr_to_string_nz (offset),
1318 pulongest (len), retval,
1319 pulongest (*xfered_len));
1320
1321 if (readbuf)
1322 myaddr = readbuf;
1323 if (writebuf)
1324 myaddr = writebuf;
1325 if (retval == TARGET_XFER_OK && myaddr != NULL)
1326 {
1327 int i;
1328
1329 fputs_unfiltered (", bytes =", gdb_stdlog);
1330 for (i = 0; i < *xfered_len; i++)
1331 {
1332 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1333 {
1334 if (targetdebug < 2 && i > 0)
1335 {
1336 fprintf_unfiltered (gdb_stdlog, " ...");
1337 break;
1338 }
1339 fprintf_unfiltered (gdb_stdlog, "\n");
1340 }
1341
1342 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1343 }
1344 }
1345
1346 fputc_unfiltered ('\n', gdb_stdlog);
1347 }
1348
1349 /* Check implementations of to_xfer_partial update *XFERED_LEN
1350 properly. Do assertion after printing debug messages, so that we
1351 can find more clues on assertion failure from debugging messages. */
1352 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1353 gdb_assert (*xfered_len > 0);
1354
1355 return retval;
1356 }
1357
1358 /* Read LEN bytes of target memory at address MEMADDR, placing the
1359 results in GDB's memory at MYADDR. Returns either 0 for success or
1360 -1 if any error occurs.
1361
1362 If an error occurs, no guarantee is made about the contents of the data at
1363 MYADDR. In particular, the caller should not depend upon partial reads
1364 filling the buffer with good data. There is no way for the caller to know
1365 how much good data might have been transfered anyway. Callers that can
1366 deal with partial reads should call target_read (which will retry until
1367 it makes no progress, and then return how much was transferred). */
1368
1369 int
1370 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1371 {
1372 /* Dispatch to the topmost target, not the flattened current_target.
1373 Memory accesses check target->to_has_(all_)memory, and the
1374 flattened target doesn't inherit those. */
1375 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1376 myaddr, memaddr, len) == len)
1377 return 0;
1378 else
1379 return -1;
1380 }
1381
1382 /* See target/target.h. */
1383
1384 int
1385 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1386 {
1387 gdb_byte buf[4];
1388 int r;
1389
1390 r = target_read_memory (memaddr, buf, sizeof buf);
1391 if (r != 0)
1392 return r;
1393 *result = extract_unsigned_integer (buf, sizeof buf,
1394 gdbarch_byte_order (target_gdbarch ()));
1395 return 0;
1396 }
1397
1398 /* Like target_read_memory, but specify explicitly that this is a read
1399 from the target's raw memory. That is, this read bypasses the
1400 dcache, breakpoint shadowing, etc. */
1401
1402 int
1403 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1404 {
1405 /* See comment in target_read_memory about why the request starts at
1406 current_target.beneath. */
1407 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1408 myaddr, memaddr, len) == len)
1409 return 0;
1410 else
1411 return -1;
1412 }
1413
1414 /* Like target_read_memory, but specify explicitly that this is a read from
1415 the target's stack. This may trigger different cache behavior. */
1416
1417 int
1418 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1419 {
1420 /* See comment in target_read_memory about why the request starts at
1421 current_target.beneath. */
1422 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1423 myaddr, memaddr, len) == len)
1424 return 0;
1425 else
1426 return -1;
1427 }
1428
1429 /* Like target_read_memory, but specify explicitly that this is a read from
1430 the target's code. This may trigger different cache behavior. */
1431
1432 int
1433 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1434 {
1435 /* See comment in target_read_memory about why the request starts at
1436 current_target.beneath. */
1437 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1438 myaddr, memaddr, len) == len)
1439 return 0;
1440 else
1441 return -1;
1442 }
1443
1444 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1445 Returns either 0 for success or -1 if any error occurs. If an
1446 error occurs, no guarantee is made about how much data got written.
1447 Callers that can deal with partial writes should call
1448 target_write. */
1449
1450 int
1451 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1452 {
1453 /* See comment in target_read_memory about why the request starts at
1454 current_target.beneath. */
1455 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1456 myaddr, memaddr, len) == len)
1457 return 0;
1458 else
1459 return -1;
1460 }
1461
1462 /* Write LEN bytes from MYADDR to target raw memory at address
1463 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1464 If an error occurs, no guarantee is made about how much data got
1465 written. Callers that can deal with partial writes should call
1466 target_write. */
1467
1468 int
1469 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1470 {
1471 /* See comment in target_read_memory about why the request starts at
1472 current_target.beneath. */
1473 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1474 myaddr, memaddr, len) == len)
1475 return 0;
1476 else
1477 return -1;
1478 }
1479
1480 /* Fetch the target's memory map. */
1481
1482 VEC(mem_region_s) *
1483 target_memory_map (void)
1484 {
1485 VEC(mem_region_s) *result;
1486 struct mem_region *last_one, *this_one;
1487 int ix;
1488 result = current_target.to_memory_map (&current_target);
1489 if (result == NULL)
1490 return NULL;
1491
1492 qsort (VEC_address (mem_region_s, result),
1493 VEC_length (mem_region_s, result),
1494 sizeof (struct mem_region), mem_region_cmp);
1495
1496 /* Check that regions do not overlap. Simultaneously assign
1497 a numbering for the "mem" commands to use to refer to
1498 each region. */
1499 last_one = NULL;
1500 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1501 {
1502 this_one->number = ix;
1503
1504 if (last_one && last_one->hi > this_one->lo)
1505 {
1506 warning (_("Overlapping regions in memory map: ignoring"));
1507 VEC_free (mem_region_s, result);
1508 return NULL;
1509 }
1510 last_one = this_one;
1511 }
1512
1513 return result;
1514 }
1515
1516 void
1517 target_flash_erase (ULONGEST address, LONGEST length)
1518 {
1519 current_target.to_flash_erase (&current_target, address, length);
1520 }
1521
1522 void
1523 target_flash_done (void)
1524 {
1525 current_target.to_flash_done (&current_target);
1526 }
1527
1528 static void
1529 show_trust_readonly (struct ui_file *file, int from_tty,
1530 struct cmd_list_element *c, const char *value)
1531 {
1532 fprintf_filtered (file,
1533 _("Mode for reading from readonly sections is %s.\n"),
1534 value);
1535 }
1536
1537 /* Target vector read/write partial wrapper functions. */
1538
1539 static enum target_xfer_status
1540 target_read_partial (struct target_ops *ops,
1541 enum target_object object,
1542 const char *annex, gdb_byte *buf,
1543 ULONGEST offset, ULONGEST len,
1544 ULONGEST *xfered_len)
1545 {
1546 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1547 xfered_len);
1548 }
1549
1550 static enum target_xfer_status
1551 target_write_partial (struct target_ops *ops,
1552 enum target_object object,
1553 const char *annex, const gdb_byte *buf,
1554 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1555 {
1556 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1557 xfered_len);
1558 }
1559
1560 /* Wrappers to perform the full transfer. */
1561
1562 /* For docs on target_read see target.h. */
1563
1564 LONGEST
1565 target_read (struct target_ops *ops,
1566 enum target_object object,
1567 const char *annex, gdb_byte *buf,
1568 ULONGEST offset, LONGEST len)
1569 {
1570 LONGEST xfered_total = 0;
1571 int unit_size = 1;
1572
1573 /* If we are reading from a memory object, find the length of an addressable
1574 unit for that architecture. */
1575 if (object == TARGET_OBJECT_MEMORY
1576 || object == TARGET_OBJECT_STACK_MEMORY
1577 || object == TARGET_OBJECT_CODE_MEMORY
1578 || object == TARGET_OBJECT_RAW_MEMORY)
1579 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1580
1581 while (xfered_total < len)
1582 {
1583 ULONGEST xfered_partial;
1584 enum target_xfer_status status;
1585
1586 status = target_read_partial (ops, object, annex,
1587 buf + xfered_total * unit_size,
1588 offset + xfered_total, len - xfered_total,
1589 &xfered_partial);
1590
1591 /* Call an observer, notifying them of the xfer progress? */
1592 if (status == TARGET_XFER_EOF)
1593 return xfered_total;
1594 else if (status == TARGET_XFER_OK)
1595 {
1596 xfered_total += xfered_partial;
1597 QUIT;
1598 }
1599 else
1600 return TARGET_XFER_E_IO;
1601
1602 }
1603 return len;
1604 }
1605
1606 /* Assuming that the entire [begin, end) range of memory cannot be
1607 read, try to read whatever subrange is possible to read.
1608
1609 The function returns, in RESULT, either zero or one memory block.
1610 If there's a readable subrange at the beginning, it is completely
1611 read and returned. Any further readable subrange will not be read.
1612 Otherwise, if there's a readable subrange at the end, it will be
1613 completely read and returned. Any readable subranges before it
1614 (obviously, not starting at the beginning), will be ignored. In
1615 other cases -- either no readable subrange, or readable subrange(s)
1616 that is neither at the beginning, or end, nothing is returned.
1617
1618 The purpose of this function is to handle a read across a boundary
1619 of accessible memory in a case when memory map is not available.
1620 The above restrictions are fine for this case, but will give
1621 incorrect results if the memory is 'patchy'. However, supporting
1622 'patchy' memory would require trying to read every single byte,
1623 and it seems unacceptable solution. Explicit memory map is
1624 recommended for this case -- and target_read_memory_robust will
1625 take care of reading multiple ranges then. */
1626
1627 static void
1628 read_whatever_is_readable (struct target_ops *ops,
1629 const ULONGEST begin, const ULONGEST end,
1630 int unit_size,
1631 std::vector<memory_read_result> *result)
1632 {
1633 ULONGEST current_begin = begin;
1634 ULONGEST current_end = end;
1635 int forward;
1636 ULONGEST xfered_len;
1637
1638 /* If we previously failed to read 1 byte, nothing can be done here. */
1639 if (end - begin <= 1)
1640 return;
1641
1642 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1643
1644 /* Check that either first or the last byte is readable, and give up
1645 if not. This heuristic is meant to permit reading accessible memory
1646 at the boundary of accessible region. */
1647 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1648 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1649 {
1650 forward = 1;
1651 ++current_begin;
1652 }
1653 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1654 buf.get () + (end - begin) - 1, end - 1, 1,
1655 &xfered_len) == TARGET_XFER_OK)
1656 {
1657 forward = 0;
1658 --current_end;
1659 }
1660 else
1661 return;
1662
1663 /* Loop invariant is that the [current_begin, current_end) was previously
1664 found to be not readable as a whole.
1665
1666 Note loop condition -- if the range has 1 byte, we can't divide the range
1667 so there's no point trying further. */
1668 while (current_end - current_begin > 1)
1669 {
1670 ULONGEST first_half_begin, first_half_end;
1671 ULONGEST second_half_begin, second_half_end;
1672 LONGEST xfer;
1673 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1674
1675 if (forward)
1676 {
1677 first_half_begin = current_begin;
1678 first_half_end = middle;
1679 second_half_begin = middle;
1680 second_half_end = current_end;
1681 }
1682 else
1683 {
1684 first_half_begin = middle;
1685 first_half_end = current_end;
1686 second_half_begin = current_begin;
1687 second_half_end = middle;
1688 }
1689
1690 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1691 buf.get () + (first_half_begin - begin) * unit_size,
1692 first_half_begin,
1693 first_half_end - first_half_begin);
1694
1695 if (xfer == first_half_end - first_half_begin)
1696 {
1697 /* This half reads up fine. So, the error must be in the
1698 other half. */
1699 current_begin = second_half_begin;
1700 current_end = second_half_end;
1701 }
1702 else
1703 {
1704 /* This half is not readable. Because we've tried one byte, we
1705 know some part of this half if actually readable. Go to the next
1706 iteration to divide again and try to read.
1707
1708 We don't handle the other half, because this function only tries
1709 to read a single readable subrange. */
1710 current_begin = first_half_begin;
1711 current_end = first_half_end;
1712 }
1713 }
1714
1715 if (forward)
1716 {
1717 /* The [begin, current_begin) range has been read. */
1718 result->emplace_back (begin, current_end, std::move (buf));
1719 }
1720 else
1721 {
1722 /* The [current_end, end) range has been read. */
1723 LONGEST region_len = end - current_end;
1724
1725 gdb::unique_xmalloc_ptr<gdb_byte> data
1726 ((gdb_byte *) xmalloc (region_len * unit_size));
1727 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1728 region_len * unit_size);
1729 result->emplace_back (current_end, end, std::move (data));
1730 }
1731 }
1732
1733 std::vector<memory_read_result>
1734 read_memory_robust (struct target_ops *ops,
1735 const ULONGEST offset, const LONGEST len)
1736 {
1737 std::vector<memory_read_result> result;
1738 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1739
1740 LONGEST xfered_total = 0;
1741 while (xfered_total < len)
1742 {
1743 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1744 LONGEST region_len;
1745
1746 /* If there is no explicit region, a fake one should be created. */
1747 gdb_assert (region);
1748
1749 if (region->hi == 0)
1750 region_len = len - xfered_total;
1751 else
1752 region_len = region->hi - offset;
1753
1754 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1755 {
1756 /* Cannot read this region. Note that we can end up here only
1757 if the region is explicitly marked inaccessible, or
1758 'inaccessible-by-default' is in effect. */
1759 xfered_total += region_len;
1760 }
1761 else
1762 {
1763 LONGEST to_read = std::min (len - xfered_total, region_len);
1764 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1765 ((gdb_byte *) xmalloc (to_read * unit_size));
1766
1767 LONGEST xfered_partial =
1768 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1769 offset + xfered_total, to_read);
1770 /* Call an observer, notifying them of the xfer progress? */
1771 if (xfered_partial <= 0)
1772 {
1773 /* Got an error reading full chunk. See if maybe we can read
1774 some subrange. */
1775 read_whatever_is_readable (ops, offset + xfered_total,
1776 offset + xfered_total + to_read,
1777 unit_size, &result);
1778 xfered_total += to_read;
1779 }
1780 else
1781 {
1782 result.emplace_back (offset + xfered_total,
1783 offset + xfered_total + xfered_partial,
1784 std::move (buffer));
1785 xfered_total += xfered_partial;
1786 }
1787 QUIT;
1788 }
1789 }
1790
1791 return result;
1792 }
1793
1794
1795 /* An alternative to target_write with progress callbacks. */
1796
1797 LONGEST
1798 target_write_with_progress (struct target_ops *ops,
1799 enum target_object object,
1800 const char *annex, const gdb_byte *buf,
1801 ULONGEST offset, LONGEST len,
1802 void (*progress) (ULONGEST, void *), void *baton)
1803 {
1804 LONGEST xfered_total = 0;
1805 int unit_size = 1;
1806
1807 /* If we are writing to a memory object, find the length of an addressable
1808 unit for that architecture. */
1809 if (object == TARGET_OBJECT_MEMORY
1810 || object == TARGET_OBJECT_STACK_MEMORY
1811 || object == TARGET_OBJECT_CODE_MEMORY
1812 || object == TARGET_OBJECT_RAW_MEMORY)
1813 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1814
1815 /* Give the progress callback a chance to set up. */
1816 if (progress)
1817 (*progress) (0, baton);
1818
1819 while (xfered_total < len)
1820 {
1821 ULONGEST xfered_partial;
1822 enum target_xfer_status status;
1823
1824 status = target_write_partial (ops, object, annex,
1825 buf + xfered_total * unit_size,
1826 offset + xfered_total, len - xfered_total,
1827 &xfered_partial);
1828
1829 if (status != TARGET_XFER_OK)
1830 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1831
1832 if (progress)
1833 (*progress) (xfered_partial, baton);
1834
1835 xfered_total += xfered_partial;
1836 QUIT;
1837 }
1838 return len;
1839 }
1840
1841 /* For docs on target_write see target.h. */
1842
1843 LONGEST
1844 target_write (struct target_ops *ops,
1845 enum target_object object,
1846 const char *annex, const gdb_byte *buf,
1847 ULONGEST offset, LONGEST len)
1848 {
1849 return target_write_with_progress (ops, object, annex, buf, offset, len,
1850 NULL, NULL);
1851 }
1852
1853 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1854 the size of the transferred data. PADDING additional bytes are
1855 available in *BUF_P. This is a helper function for
1856 target_read_alloc; see the declaration of that function for more
1857 information. */
1858
1859 static LONGEST
1860 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1861 const char *annex, gdb_byte **buf_p, int padding)
1862 {
1863 size_t buf_alloc, buf_pos;
1864 gdb_byte *buf;
1865
1866 /* This function does not have a length parameter; it reads the
1867 entire OBJECT). Also, it doesn't support objects fetched partly
1868 from one target and partly from another (in a different stratum,
1869 e.g. a core file and an executable). Both reasons make it
1870 unsuitable for reading memory. */
1871 gdb_assert (object != TARGET_OBJECT_MEMORY);
1872
1873 /* Start by reading up to 4K at a time. The target will throttle
1874 this number down if necessary. */
1875 buf_alloc = 4096;
1876 buf = (gdb_byte *) xmalloc (buf_alloc);
1877 buf_pos = 0;
1878 while (1)
1879 {
1880 ULONGEST xfered_len;
1881 enum target_xfer_status status;
1882
1883 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1884 buf_pos, buf_alloc - buf_pos - padding,
1885 &xfered_len);
1886
1887 if (status == TARGET_XFER_EOF)
1888 {
1889 /* Read all there was. */
1890 if (buf_pos == 0)
1891 xfree (buf);
1892 else
1893 *buf_p = buf;
1894 return buf_pos;
1895 }
1896 else if (status != TARGET_XFER_OK)
1897 {
1898 /* An error occurred. */
1899 xfree (buf);
1900 return TARGET_XFER_E_IO;
1901 }
1902
1903 buf_pos += xfered_len;
1904
1905 /* If the buffer is filling up, expand it. */
1906 if (buf_alloc < buf_pos * 2)
1907 {
1908 buf_alloc *= 2;
1909 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
1910 }
1911
1912 QUIT;
1913 }
1914 }
1915
1916 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1917 the size of the transferred data. See the declaration in "target.h"
1918 function for more information about the return value. */
1919
1920 LONGEST
1921 target_read_alloc (struct target_ops *ops, enum target_object object,
1922 const char *annex, gdb_byte **buf_p)
1923 {
1924 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1925 }
1926
1927 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1928 returned as a string, allocated using xmalloc. If an error occurs
1929 or the transfer is unsupported, NULL is returned. Empty objects
1930 are returned as allocated but empty strings. A warning is issued
1931 if the result contains any embedded NUL bytes. */
1932
1933 char *
1934 target_read_stralloc (struct target_ops *ops, enum target_object object,
1935 const char *annex)
1936 {
1937 gdb_byte *buffer;
1938 char *bufstr;
1939 LONGEST i, transferred;
1940
1941 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1942 bufstr = (char *) buffer;
1943
1944 if (transferred < 0)
1945 return NULL;
1946
1947 if (transferred == 0)
1948 return xstrdup ("");
1949
1950 bufstr[transferred] = 0;
1951
1952 /* Check for embedded NUL bytes; but allow trailing NULs. */
1953 for (i = strlen (bufstr); i < transferred; i++)
1954 if (bufstr[i] != 0)
1955 {
1956 warning (_("target object %d, annex %s, "
1957 "contained unexpected null characters"),
1958 (int) object, annex ? annex : "(none)");
1959 break;
1960 }
1961
1962 return bufstr;
1963 }
1964
1965 /* Memory transfer methods. */
1966
1967 void
1968 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1969 LONGEST len)
1970 {
1971 /* This method is used to read from an alternate, non-current
1972 target. This read must bypass the overlay support (as symbols
1973 don't match this target), and GDB's internal cache (wrong cache
1974 for this target). */
1975 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1976 != len)
1977 memory_error (TARGET_XFER_E_IO, addr);
1978 }
1979
1980 ULONGEST
1981 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1982 int len, enum bfd_endian byte_order)
1983 {
1984 gdb_byte buf[sizeof (ULONGEST)];
1985
1986 gdb_assert (len <= sizeof (buf));
1987 get_target_memory (ops, addr, buf, len);
1988 return extract_unsigned_integer (buf, len, byte_order);
1989 }
1990
1991 /* See target.h. */
1992
1993 int
1994 target_insert_breakpoint (struct gdbarch *gdbarch,
1995 struct bp_target_info *bp_tgt)
1996 {
1997 if (!may_insert_breakpoints)
1998 {
1999 warning (_("May not insert breakpoints"));
2000 return 1;
2001 }
2002
2003 return current_target.to_insert_breakpoint (&current_target,
2004 gdbarch, bp_tgt);
2005 }
2006
2007 /* See target.h. */
2008
2009 int
2010 target_remove_breakpoint (struct gdbarch *gdbarch,
2011 struct bp_target_info *bp_tgt,
2012 enum remove_bp_reason reason)
2013 {
2014 /* This is kind of a weird case to handle, but the permission might
2015 have been changed after breakpoints were inserted - in which case
2016 we should just take the user literally and assume that any
2017 breakpoints should be left in place. */
2018 if (!may_insert_breakpoints)
2019 {
2020 warning (_("May not remove breakpoints"));
2021 return 1;
2022 }
2023
2024 return current_target.to_remove_breakpoint (&current_target,
2025 gdbarch, bp_tgt, reason);
2026 }
2027
2028 static void
2029 info_target_command (char *args, int from_tty)
2030 {
2031 struct target_ops *t;
2032 int has_all_mem = 0;
2033
2034 if (symfile_objfile != NULL)
2035 printf_unfiltered (_("Symbols from \"%s\".\n"),
2036 objfile_name (symfile_objfile));
2037
2038 for (t = target_stack; t != NULL; t = t->beneath)
2039 {
2040 if (!(*t->to_has_memory) (t))
2041 continue;
2042
2043 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2044 continue;
2045 if (has_all_mem)
2046 printf_unfiltered (_("\tWhile running this, "
2047 "GDB does not access memory from...\n"));
2048 printf_unfiltered ("%s:\n", t->to_longname);
2049 (t->to_files_info) (t);
2050 has_all_mem = (*t->to_has_all_memory) (t);
2051 }
2052 }
2053
2054 /* This function is called before any new inferior is created, e.g.
2055 by running a program, attaching, or connecting to a target.
2056 It cleans up any state from previous invocations which might
2057 change between runs. This is a subset of what target_preopen
2058 resets (things which might change between targets). */
2059
2060 void
2061 target_pre_inferior (int from_tty)
2062 {
2063 /* Clear out solib state. Otherwise the solib state of the previous
2064 inferior might have survived and is entirely wrong for the new
2065 target. This has been observed on GNU/Linux using glibc 2.3. How
2066 to reproduce:
2067
2068 bash$ ./foo&
2069 [1] 4711
2070 bash$ ./foo&
2071 [1] 4712
2072 bash$ gdb ./foo
2073 [...]
2074 (gdb) attach 4711
2075 (gdb) detach
2076 (gdb) attach 4712
2077 Cannot access memory at address 0xdeadbeef
2078 */
2079
2080 /* In some OSs, the shared library list is the same/global/shared
2081 across inferiors. If code is shared between processes, so are
2082 memory regions and features. */
2083 if (!gdbarch_has_global_solist (target_gdbarch ()))
2084 {
2085 no_shared_libraries (NULL, from_tty);
2086
2087 invalidate_target_mem_regions ();
2088
2089 target_clear_description ();
2090 }
2091
2092 /* attach_flag may be set if the previous process associated with
2093 the inferior was attached to. */
2094 current_inferior ()->attach_flag = 0;
2095
2096 current_inferior ()->highest_thread_num = 0;
2097
2098 agent_capability_invalidate ();
2099 }
2100
2101 /* Callback for iterate_over_inferiors. Gets rid of the given
2102 inferior. */
2103
2104 static int
2105 dispose_inferior (struct inferior *inf, void *args)
2106 {
2107 struct thread_info *thread;
2108
2109 thread = any_thread_of_process (inf->pid);
2110 if (thread)
2111 {
2112 switch_to_thread (thread->ptid);
2113
2114 /* Core inferiors actually should be detached, not killed. */
2115 if (target_has_execution)
2116 target_kill ();
2117 else
2118 target_detach (NULL, 0);
2119 }
2120
2121 return 0;
2122 }
2123
2124 /* This is to be called by the open routine before it does
2125 anything. */
2126
2127 void
2128 target_preopen (int from_tty)
2129 {
2130 dont_repeat ();
2131
2132 if (have_inferiors ())
2133 {
2134 if (!from_tty
2135 || !have_live_inferiors ()
2136 || query (_("A program is being debugged already. Kill it? ")))
2137 iterate_over_inferiors (dispose_inferior, NULL);
2138 else
2139 error (_("Program not killed."));
2140 }
2141
2142 /* Calling target_kill may remove the target from the stack. But if
2143 it doesn't (which seems like a win for UDI), remove it now. */
2144 /* Leave the exec target, though. The user may be switching from a
2145 live process to a core of the same program. */
2146 pop_all_targets_above (file_stratum);
2147
2148 target_pre_inferior (from_tty);
2149 }
2150
2151 /* Detach a target after doing deferred register stores. */
2152
2153 void
2154 target_detach (const char *args, int from_tty)
2155 {
2156 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2157 /* Don't remove global breakpoints here. They're removed on
2158 disconnection from the target. */
2159 ;
2160 else
2161 /* If we're in breakpoints-always-inserted mode, have to remove
2162 them before detaching. */
2163 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2164
2165 prepare_for_detach ();
2166
2167 current_target.to_detach (&current_target, args, from_tty);
2168 }
2169
2170 void
2171 target_disconnect (const char *args, int from_tty)
2172 {
2173 /* If we're in breakpoints-always-inserted mode or if breakpoints
2174 are global across processes, we have to remove them before
2175 disconnecting. */
2176 remove_breakpoints ();
2177
2178 current_target.to_disconnect (&current_target, args, from_tty);
2179 }
2180
2181 /* See target/target.h. */
2182
2183 ptid_t
2184 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2185 {
2186 return (current_target.to_wait) (&current_target, ptid, status, options);
2187 }
2188
2189 /* See target.h. */
2190
2191 ptid_t
2192 default_target_wait (struct target_ops *ops,
2193 ptid_t ptid, struct target_waitstatus *status,
2194 int options)
2195 {
2196 status->kind = TARGET_WAITKIND_IGNORE;
2197 return minus_one_ptid;
2198 }
2199
2200 const char *
2201 target_pid_to_str (ptid_t ptid)
2202 {
2203 return (*current_target.to_pid_to_str) (&current_target, ptid);
2204 }
2205
2206 const char *
2207 target_thread_name (struct thread_info *info)
2208 {
2209 return current_target.to_thread_name (&current_target, info);
2210 }
2211
2212 struct thread_info *
2213 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2214 int handle_len,
2215 struct inferior *inf)
2216 {
2217 return current_target.to_thread_handle_to_thread_info
2218 (&current_target, thread_handle, handle_len, inf);
2219 }
2220
2221 void
2222 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2223 {
2224 target_dcache_invalidate ();
2225
2226 current_target.to_resume (&current_target, ptid, step, signal);
2227
2228 registers_changed_ptid (ptid);
2229 /* We only set the internal executing state here. The user/frontend
2230 running state is set at a higher level. */
2231 set_executing (ptid, 1);
2232 clear_inline_frame_state (ptid);
2233 }
2234
2235 /* If true, target_commit_resume is a nop. */
2236 static int defer_target_commit_resume;
2237
2238 /* See target.h. */
2239
2240 void
2241 target_commit_resume (void)
2242 {
2243 struct target_ops *t;
2244
2245 if (defer_target_commit_resume)
2246 return;
2247
2248 current_target.to_commit_resume (&current_target);
2249 }
2250
2251 /* See target.h. */
2252
2253 scoped_restore_tmpl<int>
2254 make_scoped_defer_target_commit_resume ()
2255 {
2256 return make_scoped_restore (&defer_target_commit_resume, 1);
2257 }
2258
2259 void
2260 target_pass_signals (int numsigs, unsigned char *pass_signals)
2261 {
2262 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2263 }
2264
2265 void
2266 target_program_signals (int numsigs, unsigned char *program_signals)
2267 {
2268 (*current_target.to_program_signals) (&current_target,
2269 numsigs, program_signals);
2270 }
2271
2272 static int
2273 default_follow_fork (struct target_ops *self, int follow_child,
2274 int detach_fork)
2275 {
2276 /* Some target returned a fork event, but did not know how to follow it. */
2277 internal_error (__FILE__, __LINE__,
2278 _("could not find a target to follow fork"));
2279 }
2280
2281 /* Look through the list of possible targets for a target that can
2282 follow forks. */
2283
2284 int
2285 target_follow_fork (int follow_child, int detach_fork)
2286 {
2287 return current_target.to_follow_fork (&current_target,
2288 follow_child, detach_fork);
2289 }
2290
2291 /* Target wrapper for follow exec hook. */
2292
2293 void
2294 target_follow_exec (struct inferior *inf, char *execd_pathname)
2295 {
2296 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2297 }
2298
2299 static void
2300 default_mourn_inferior (struct target_ops *self)
2301 {
2302 internal_error (__FILE__, __LINE__,
2303 _("could not find a target to follow mourn inferior"));
2304 }
2305
2306 void
2307 target_mourn_inferior (ptid_t ptid)
2308 {
2309 gdb_assert (ptid_equal (ptid, inferior_ptid));
2310 current_target.to_mourn_inferior (&current_target);
2311
2312 /* We no longer need to keep handles on any of the object files.
2313 Make sure to release them to avoid unnecessarily locking any
2314 of them while we're not actually debugging. */
2315 bfd_cache_close_all ();
2316 }
2317
2318 /* Look for a target which can describe architectural features, starting
2319 from TARGET. If we find one, return its description. */
2320
2321 const struct target_desc *
2322 target_read_description (struct target_ops *target)
2323 {
2324 return target->to_read_description (target);
2325 }
2326
2327 /* This implements a basic search of memory, reading target memory and
2328 performing the search here (as opposed to performing the search in on the
2329 target side with, for example, gdbserver). */
2330
2331 int
2332 simple_search_memory (struct target_ops *ops,
2333 CORE_ADDR start_addr, ULONGEST search_space_len,
2334 const gdb_byte *pattern, ULONGEST pattern_len,
2335 CORE_ADDR *found_addrp)
2336 {
2337 /* NOTE: also defined in find.c testcase. */
2338 #define SEARCH_CHUNK_SIZE 16000
2339 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2340 /* Buffer to hold memory contents for searching. */
2341 unsigned search_buf_size;
2342
2343 search_buf_size = chunk_size + pattern_len - 1;
2344
2345 /* No point in trying to allocate a buffer larger than the search space. */
2346 if (search_space_len < search_buf_size)
2347 search_buf_size = search_space_len;
2348
2349 gdb::byte_vector search_buf (search_buf_size);
2350
2351 /* Prime the search buffer. */
2352
2353 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2354 search_buf.data (), start_addr, search_buf_size)
2355 != search_buf_size)
2356 {
2357 warning (_("Unable to access %s bytes of target "
2358 "memory at %s, halting search."),
2359 pulongest (search_buf_size), hex_string (start_addr));
2360 return -1;
2361 }
2362
2363 /* Perform the search.
2364
2365 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2366 When we've scanned N bytes we copy the trailing bytes to the start and
2367 read in another N bytes. */
2368
2369 while (search_space_len >= pattern_len)
2370 {
2371 gdb_byte *found_ptr;
2372 unsigned nr_search_bytes
2373 = std::min (search_space_len, (ULONGEST) search_buf_size);
2374
2375 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2376 pattern, pattern_len);
2377
2378 if (found_ptr != NULL)
2379 {
2380 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2381
2382 *found_addrp = found_addr;
2383 return 1;
2384 }
2385
2386 /* Not found in this chunk, skip to next chunk. */
2387
2388 /* Don't let search_space_len wrap here, it's unsigned. */
2389 if (search_space_len >= chunk_size)
2390 search_space_len -= chunk_size;
2391 else
2392 search_space_len = 0;
2393
2394 if (search_space_len >= pattern_len)
2395 {
2396 unsigned keep_len = search_buf_size - chunk_size;
2397 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2398 int nr_to_read;
2399
2400 /* Copy the trailing part of the previous iteration to the front
2401 of the buffer for the next iteration. */
2402 gdb_assert (keep_len == pattern_len - 1);
2403 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2404
2405 nr_to_read = std::min (search_space_len - keep_len,
2406 (ULONGEST) chunk_size);
2407
2408 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2409 &search_buf[keep_len], read_addr,
2410 nr_to_read) != nr_to_read)
2411 {
2412 warning (_("Unable to access %s bytes of target "
2413 "memory at %s, halting search."),
2414 plongest (nr_to_read),
2415 hex_string (read_addr));
2416 return -1;
2417 }
2418
2419 start_addr += chunk_size;
2420 }
2421 }
2422
2423 /* Not found. */
2424
2425 return 0;
2426 }
2427
2428 /* Default implementation of memory-searching. */
2429
2430 static int
2431 default_search_memory (struct target_ops *self,
2432 CORE_ADDR start_addr, ULONGEST search_space_len,
2433 const gdb_byte *pattern, ULONGEST pattern_len,
2434 CORE_ADDR *found_addrp)
2435 {
2436 /* Start over from the top of the target stack. */
2437 return simple_search_memory (current_target.beneath,
2438 start_addr, search_space_len,
2439 pattern, pattern_len, found_addrp);
2440 }
2441
2442 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2443 sequence of bytes in PATTERN with length PATTERN_LEN.
2444
2445 The result is 1 if found, 0 if not found, and -1 if there was an error
2446 requiring halting of the search (e.g. memory read error).
2447 If the pattern is found the address is recorded in FOUND_ADDRP. */
2448
2449 int
2450 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2451 const gdb_byte *pattern, ULONGEST pattern_len,
2452 CORE_ADDR *found_addrp)
2453 {
2454 return current_target.to_search_memory (&current_target, start_addr,
2455 search_space_len,
2456 pattern, pattern_len, found_addrp);
2457 }
2458
2459 /* Look through the currently pushed targets. If none of them will
2460 be able to restart the currently running process, issue an error
2461 message. */
2462
2463 void
2464 target_require_runnable (void)
2465 {
2466 struct target_ops *t;
2467
2468 for (t = target_stack; t != NULL; t = t->beneath)
2469 {
2470 /* If this target knows how to create a new program, then
2471 assume we will still be able to after killing the current
2472 one. Either killing and mourning will not pop T, or else
2473 find_default_run_target will find it again. */
2474 if (t->to_create_inferior != NULL)
2475 return;
2476
2477 /* Do not worry about targets at certain strata that can not
2478 create inferiors. Assume they will be pushed again if
2479 necessary, and continue to the process_stratum. */
2480 if (t->to_stratum == thread_stratum
2481 || t->to_stratum == record_stratum
2482 || t->to_stratum == arch_stratum)
2483 continue;
2484
2485 error (_("The \"%s\" target does not support \"run\". "
2486 "Try \"help target\" or \"continue\"."),
2487 t->to_shortname);
2488 }
2489
2490 /* This function is only called if the target is running. In that
2491 case there should have been a process_stratum target and it
2492 should either know how to create inferiors, or not... */
2493 internal_error (__FILE__, __LINE__, _("No targets found"));
2494 }
2495
2496 /* Whether GDB is allowed to fall back to the default run target for
2497 "run", "attach", etc. when no target is connected yet. */
2498 static int auto_connect_native_target = 1;
2499
2500 static void
2501 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2502 struct cmd_list_element *c, const char *value)
2503 {
2504 fprintf_filtered (file,
2505 _("Whether GDB may automatically connect to the "
2506 "native target is %s.\n"),
2507 value);
2508 }
2509
2510 /* Look through the list of possible targets for a target that can
2511 execute a run or attach command without any other data. This is
2512 used to locate the default process stratum.
2513
2514 If DO_MESG is not NULL, the result is always valid (error() is
2515 called for errors); else, return NULL on error. */
2516
2517 static struct target_ops *
2518 find_default_run_target (const char *do_mesg)
2519 {
2520 struct target_ops *runable = NULL;
2521
2522 if (auto_connect_native_target)
2523 {
2524 struct target_ops *t;
2525 int count = 0;
2526 int i;
2527
2528 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2529 {
2530 if (t->to_can_run != delegate_can_run && target_can_run (t))
2531 {
2532 runable = t;
2533 ++count;
2534 }
2535 }
2536
2537 if (count != 1)
2538 runable = NULL;
2539 }
2540
2541 if (runable == NULL)
2542 {
2543 if (do_mesg)
2544 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2545 else
2546 return NULL;
2547 }
2548
2549 return runable;
2550 }
2551
2552 /* See target.h. */
2553
2554 struct target_ops *
2555 find_attach_target (void)
2556 {
2557 struct target_ops *t;
2558
2559 /* If a target on the current stack can attach, use it. */
2560 for (t = current_target.beneath; t != NULL; t = t->beneath)
2561 {
2562 if (t->to_attach != NULL)
2563 break;
2564 }
2565
2566 /* Otherwise, use the default run target for attaching. */
2567 if (t == NULL)
2568 t = find_default_run_target ("attach");
2569
2570 return t;
2571 }
2572
2573 /* See target.h. */
2574
2575 struct target_ops *
2576 find_run_target (void)
2577 {
2578 struct target_ops *t;
2579
2580 /* If a target on the current stack can attach, use it. */
2581 for (t = current_target.beneath; t != NULL; t = t->beneath)
2582 {
2583 if (t->to_create_inferior != NULL)
2584 break;
2585 }
2586
2587 /* Otherwise, use the default run target. */
2588 if (t == NULL)
2589 t = find_default_run_target ("run");
2590
2591 return t;
2592 }
2593
2594 /* Implement the "info proc" command. */
2595
2596 int
2597 target_info_proc (const char *args, enum info_proc_what what)
2598 {
2599 struct target_ops *t;
2600
2601 /* If we're already connected to something that can get us OS
2602 related data, use it. Otherwise, try using the native
2603 target. */
2604 if (current_target.to_stratum >= process_stratum)
2605 t = current_target.beneath;
2606 else
2607 t = find_default_run_target (NULL);
2608
2609 for (; t != NULL; t = t->beneath)
2610 {
2611 if (t->to_info_proc != NULL)
2612 {
2613 t->to_info_proc (t, args, what);
2614
2615 if (targetdebug)
2616 fprintf_unfiltered (gdb_stdlog,
2617 "target_info_proc (\"%s\", %d)\n", args, what);
2618
2619 return 1;
2620 }
2621 }
2622
2623 return 0;
2624 }
2625
2626 static int
2627 find_default_supports_disable_randomization (struct target_ops *self)
2628 {
2629 struct target_ops *t;
2630
2631 t = find_default_run_target (NULL);
2632 if (t && t->to_supports_disable_randomization)
2633 return (t->to_supports_disable_randomization) (t);
2634 return 0;
2635 }
2636
2637 int
2638 target_supports_disable_randomization (void)
2639 {
2640 struct target_ops *t;
2641
2642 for (t = &current_target; t != NULL; t = t->beneath)
2643 if (t->to_supports_disable_randomization)
2644 return t->to_supports_disable_randomization (t);
2645
2646 return 0;
2647 }
2648
2649 /* See target/target.h. */
2650
2651 int
2652 target_supports_multi_process (void)
2653 {
2654 return (*current_target.to_supports_multi_process) (&current_target);
2655 }
2656
2657 char *
2658 target_get_osdata (const char *type)
2659 {
2660 struct target_ops *t;
2661
2662 /* If we're already connected to something that can get us OS
2663 related data, use it. Otherwise, try using the native
2664 target. */
2665 if (current_target.to_stratum >= process_stratum)
2666 t = current_target.beneath;
2667 else
2668 t = find_default_run_target ("get OS data");
2669
2670 if (!t)
2671 return NULL;
2672
2673 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2674 }
2675
2676 static struct address_space *
2677 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2678 {
2679 struct inferior *inf;
2680
2681 /* Fall-back to the "main" address space of the inferior. */
2682 inf = find_inferior_ptid (ptid);
2683
2684 if (inf == NULL || inf->aspace == NULL)
2685 internal_error (__FILE__, __LINE__,
2686 _("Can't determine the current "
2687 "address space of thread %s\n"),
2688 target_pid_to_str (ptid));
2689
2690 return inf->aspace;
2691 }
2692
2693 /* Determine the current address space of thread PTID. */
2694
2695 struct address_space *
2696 target_thread_address_space (ptid_t ptid)
2697 {
2698 struct address_space *aspace;
2699
2700 aspace = current_target.to_thread_address_space (&current_target, ptid);
2701 gdb_assert (aspace != NULL);
2702
2703 return aspace;
2704 }
2705
2706
2707 /* Target file operations. */
2708
2709 static struct target_ops *
2710 default_fileio_target (void)
2711 {
2712 /* If we're already connected to something that can perform
2713 file I/O, use it. Otherwise, try using the native target. */
2714 if (current_target.to_stratum >= process_stratum)
2715 return current_target.beneath;
2716 else
2717 return find_default_run_target ("file I/O");
2718 }
2719
2720 /* File handle for target file operations. */
2721
2722 typedef struct
2723 {
2724 /* The target on which this file is open. */
2725 struct target_ops *t;
2726
2727 /* The file descriptor on the target. */
2728 int fd;
2729 } fileio_fh_t;
2730
2731 DEF_VEC_O (fileio_fh_t);
2732
2733 /* Vector of currently open file handles. The value returned by
2734 target_fileio_open and passed as the FD argument to other
2735 target_fileio_* functions is an index into this vector. This
2736 vector's entries are never freed; instead, files are marked as
2737 closed, and the handle becomes available for reuse. */
2738 static VEC (fileio_fh_t) *fileio_fhandles;
2739
2740 /* Macro to check whether a fileio_fh_t represents a closed file. */
2741 #define is_closed_fileio_fh(fd) ((fd) < 0)
2742
2743 /* Index into fileio_fhandles of the lowest handle that might be
2744 closed. This permits handle reuse without searching the whole
2745 list each time a new file is opened. */
2746 static int lowest_closed_fd;
2747
2748 /* Acquire a target fileio file descriptor. */
2749
2750 static int
2751 acquire_fileio_fd (struct target_ops *t, int fd)
2752 {
2753 fileio_fh_t *fh;
2754
2755 gdb_assert (!is_closed_fileio_fh (fd));
2756
2757 /* Search for closed handles to reuse. */
2758 for (;
2759 VEC_iterate (fileio_fh_t, fileio_fhandles,
2760 lowest_closed_fd, fh);
2761 lowest_closed_fd++)
2762 if (is_closed_fileio_fh (fh->fd))
2763 break;
2764
2765 /* Push a new handle if no closed handles were found. */
2766 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2767 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2768
2769 /* Fill in the handle. */
2770 fh->t = t;
2771 fh->fd = fd;
2772
2773 /* Return its index, and start the next lookup at
2774 the next index. */
2775 return lowest_closed_fd++;
2776 }
2777
2778 /* Release a target fileio file descriptor. */
2779
2780 static void
2781 release_fileio_fd (int fd, fileio_fh_t *fh)
2782 {
2783 fh->fd = -1;
2784 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2785 }
2786
2787 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2788
2789 #define fileio_fd_to_fh(fd) \
2790 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2791
2792 /* Helper for target_fileio_open and
2793 target_fileio_open_warn_if_slow. */
2794
2795 static int
2796 target_fileio_open_1 (struct inferior *inf, const char *filename,
2797 int flags, int mode, int warn_if_slow,
2798 int *target_errno)
2799 {
2800 struct target_ops *t;
2801
2802 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2803 {
2804 if (t->to_fileio_open != NULL)
2805 {
2806 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2807 warn_if_slow, target_errno);
2808
2809 if (fd < 0)
2810 fd = -1;
2811 else
2812 fd = acquire_fileio_fd (t, fd);
2813
2814 if (targetdebug)
2815 fprintf_unfiltered (gdb_stdlog,
2816 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2817 " = %d (%d)\n",
2818 inf == NULL ? 0 : inf->num,
2819 filename, flags, mode,
2820 warn_if_slow, fd,
2821 fd != -1 ? 0 : *target_errno);
2822 return fd;
2823 }
2824 }
2825
2826 *target_errno = FILEIO_ENOSYS;
2827 return -1;
2828 }
2829
2830 /* See target.h. */
2831
2832 int
2833 target_fileio_open (struct inferior *inf, const char *filename,
2834 int flags, int mode, int *target_errno)
2835 {
2836 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2837 target_errno);
2838 }
2839
2840 /* See target.h. */
2841
2842 int
2843 target_fileio_open_warn_if_slow (struct inferior *inf,
2844 const char *filename,
2845 int flags, int mode, int *target_errno)
2846 {
2847 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2848 target_errno);
2849 }
2850
2851 /* See target.h. */
2852
2853 int
2854 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2855 ULONGEST offset, int *target_errno)
2856 {
2857 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2858 int ret = -1;
2859
2860 if (is_closed_fileio_fh (fh->fd))
2861 *target_errno = EBADF;
2862 else
2863 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2864 len, offset, target_errno);
2865
2866 if (targetdebug)
2867 fprintf_unfiltered (gdb_stdlog,
2868 "target_fileio_pwrite (%d,...,%d,%s) "
2869 "= %d (%d)\n",
2870 fd, len, pulongest (offset),
2871 ret, ret != -1 ? 0 : *target_errno);
2872 return ret;
2873 }
2874
2875 /* See target.h. */
2876
2877 int
2878 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2879 ULONGEST offset, int *target_errno)
2880 {
2881 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2882 int ret = -1;
2883
2884 if (is_closed_fileio_fh (fh->fd))
2885 *target_errno = EBADF;
2886 else
2887 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2888 len, offset, target_errno);
2889
2890 if (targetdebug)
2891 fprintf_unfiltered (gdb_stdlog,
2892 "target_fileio_pread (%d,...,%d,%s) "
2893 "= %d (%d)\n",
2894 fd, len, pulongest (offset),
2895 ret, ret != -1 ? 0 : *target_errno);
2896 return ret;
2897 }
2898
2899 /* See target.h. */
2900
2901 int
2902 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2903 {
2904 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2905 int ret = -1;
2906
2907 if (is_closed_fileio_fh (fh->fd))
2908 *target_errno = EBADF;
2909 else
2910 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2911
2912 if (targetdebug)
2913 fprintf_unfiltered (gdb_stdlog,
2914 "target_fileio_fstat (%d) = %d (%d)\n",
2915 fd, ret, ret != -1 ? 0 : *target_errno);
2916 return ret;
2917 }
2918
2919 /* See target.h. */
2920
2921 int
2922 target_fileio_close (int fd, int *target_errno)
2923 {
2924 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2925 int ret = -1;
2926
2927 if (is_closed_fileio_fh (fh->fd))
2928 *target_errno = EBADF;
2929 else
2930 {
2931 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2932 release_fileio_fd (fd, fh);
2933 }
2934
2935 if (targetdebug)
2936 fprintf_unfiltered (gdb_stdlog,
2937 "target_fileio_close (%d) = %d (%d)\n",
2938 fd, ret, ret != -1 ? 0 : *target_errno);
2939 return ret;
2940 }
2941
2942 /* See target.h. */
2943
2944 int
2945 target_fileio_unlink (struct inferior *inf, const char *filename,
2946 int *target_errno)
2947 {
2948 struct target_ops *t;
2949
2950 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2951 {
2952 if (t->to_fileio_unlink != NULL)
2953 {
2954 int ret = t->to_fileio_unlink (t, inf, filename,
2955 target_errno);
2956
2957 if (targetdebug)
2958 fprintf_unfiltered (gdb_stdlog,
2959 "target_fileio_unlink (%d,%s)"
2960 " = %d (%d)\n",
2961 inf == NULL ? 0 : inf->num, filename,
2962 ret, ret != -1 ? 0 : *target_errno);
2963 return ret;
2964 }
2965 }
2966
2967 *target_errno = FILEIO_ENOSYS;
2968 return -1;
2969 }
2970
2971 /* See target.h. */
2972
2973 char *
2974 target_fileio_readlink (struct inferior *inf, const char *filename,
2975 int *target_errno)
2976 {
2977 struct target_ops *t;
2978
2979 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2980 {
2981 if (t->to_fileio_readlink != NULL)
2982 {
2983 char *ret = t->to_fileio_readlink (t, inf, filename,
2984 target_errno);
2985
2986 if (targetdebug)
2987 fprintf_unfiltered (gdb_stdlog,
2988 "target_fileio_readlink (%d,%s)"
2989 " = %s (%d)\n",
2990 inf == NULL ? 0 : inf->num,
2991 filename, ret? ret : "(nil)",
2992 ret? 0 : *target_errno);
2993 return ret;
2994 }
2995 }
2996
2997 *target_errno = FILEIO_ENOSYS;
2998 return NULL;
2999 }
3000
3001 static void
3002 target_fileio_close_cleanup (void *opaque)
3003 {
3004 int fd = *(int *) opaque;
3005 int target_errno;
3006
3007 target_fileio_close (fd, &target_errno);
3008 }
3009
3010 /* Read target file FILENAME, in the filesystem as seen by INF. If
3011 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3012 remote targets, the remote stub). Store the result in *BUF_P and
3013 return the size of the transferred data. PADDING additional bytes
3014 are available in *BUF_P. This is a helper function for
3015 target_fileio_read_alloc; see the declaration of that function for
3016 more information. */
3017
3018 static LONGEST
3019 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3020 gdb_byte **buf_p, int padding)
3021 {
3022 struct cleanup *close_cleanup;
3023 size_t buf_alloc, buf_pos;
3024 gdb_byte *buf;
3025 LONGEST n;
3026 int fd;
3027 int target_errno;
3028
3029 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3030 &target_errno);
3031 if (fd == -1)
3032 return -1;
3033
3034 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3035
3036 /* Start by reading up to 4K at a time. The target will throttle
3037 this number down if necessary. */
3038 buf_alloc = 4096;
3039 buf = (gdb_byte *) xmalloc (buf_alloc);
3040 buf_pos = 0;
3041 while (1)
3042 {
3043 n = target_fileio_pread (fd, &buf[buf_pos],
3044 buf_alloc - buf_pos - padding, buf_pos,
3045 &target_errno);
3046 if (n < 0)
3047 {
3048 /* An error occurred. */
3049 do_cleanups (close_cleanup);
3050 xfree (buf);
3051 return -1;
3052 }
3053 else if (n == 0)
3054 {
3055 /* Read all there was. */
3056 do_cleanups (close_cleanup);
3057 if (buf_pos == 0)
3058 xfree (buf);
3059 else
3060 *buf_p = buf;
3061 return buf_pos;
3062 }
3063
3064 buf_pos += n;
3065
3066 /* If the buffer is filling up, expand it. */
3067 if (buf_alloc < buf_pos * 2)
3068 {
3069 buf_alloc *= 2;
3070 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3071 }
3072
3073 QUIT;
3074 }
3075 }
3076
3077 /* See target.h. */
3078
3079 LONGEST
3080 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3081 gdb_byte **buf_p)
3082 {
3083 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3084 }
3085
3086 /* See target.h. */
3087
3088 char *
3089 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3090 {
3091 gdb_byte *buffer;
3092 char *bufstr;
3093 LONGEST i, transferred;
3094
3095 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3096 bufstr = (char *) buffer;
3097
3098 if (transferred < 0)
3099 return NULL;
3100
3101 if (transferred == 0)
3102 return xstrdup ("");
3103
3104 bufstr[transferred] = 0;
3105
3106 /* Check for embedded NUL bytes; but allow trailing NULs. */
3107 for (i = strlen (bufstr); i < transferred; i++)
3108 if (bufstr[i] != 0)
3109 {
3110 warning (_("target file %s "
3111 "contained unexpected null characters"),
3112 filename);
3113 break;
3114 }
3115
3116 return bufstr;
3117 }
3118
3119
3120 static int
3121 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3122 CORE_ADDR addr, int len)
3123 {
3124 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3125 }
3126
3127 static int
3128 default_watchpoint_addr_within_range (struct target_ops *target,
3129 CORE_ADDR addr,
3130 CORE_ADDR start, int length)
3131 {
3132 return addr >= start && addr < start + length;
3133 }
3134
3135 static struct gdbarch *
3136 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3137 {
3138 inferior *inf = find_inferior_ptid (ptid);
3139 gdb_assert (inf != NULL);
3140 return inf->gdbarch;
3141 }
3142
3143 static int
3144 return_zero (struct target_ops *ignore)
3145 {
3146 return 0;
3147 }
3148
3149 static int
3150 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3151 {
3152 return 0;
3153 }
3154
3155 /*
3156 * Find the next target down the stack from the specified target.
3157 */
3158
3159 struct target_ops *
3160 find_target_beneath (struct target_ops *t)
3161 {
3162 return t->beneath;
3163 }
3164
3165 /* See target.h. */
3166
3167 struct target_ops *
3168 find_target_at (enum strata stratum)
3169 {
3170 struct target_ops *t;
3171
3172 for (t = current_target.beneath; t != NULL; t = t->beneath)
3173 if (t->to_stratum == stratum)
3174 return t;
3175
3176 return NULL;
3177 }
3178
3179 \f
3180
3181 /* See target.h */
3182
3183 void
3184 target_announce_detach (int from_tty)
3185 {
3186 pid_t pid;
3187 const char *exec_file;
3188
3189 if (!from_tty)
3190 return;
3191
3192 exec_file = get_exec_file (0);
3193 if (exec_file == NULL)
3194 exec_file = "";
3195
3196 pid = ptid_get_pid (inferior_ptid);
3197 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3198 target_pid_to_str (pid_to_ptid (pid)));
3199 gdb_flush (gdb_stdout);
3200 }
3201
3202 /* The inferior process has died. Long live the inferior! */
3203
3204 void
3205 generic_mourn_inferior (void)
3206 {
3207 ptid_t ptid;
3208
3209 ptid = inferior_ptid;
3210 inferior_ptid = null_ptid;
3211
3212 /* Mark breakpoints uninserted in case something tries to delete a
3213 breakpoint while we delete the inferior's threads (which would
3214 fail, since the inferior is long gone). */
3215 mark_breakpoints_out ();
3216
3217 if (!ptid_equal (ptid, null_ptid))
3218 {
3219 int pid = ptid_get_pid (ptid);
3220 exit_inferior (pid);
3221 }
3222
3223 /* Note this wipes step-resume breakpoints, so needs to be done
3224 after exit_inferior, which ends up referencing the step-resume
3225 breakpoints through clear_thread_inferior_resources. */
3226 breakpoint_init_inferior (inf_exited);
3227
3228 registers_changed ();
3229
3230 reopen_exec_file ();
3231 reinit_frame_cache ();
3232
3233 if (deprecated_detach_hook)
3234 deprecated_detach_hook ();
3235 }
3236 \f
3237 /* Convert a normal process ID to a string. Returns the string in a
3238 static buffer. */
3239
3240 const char *
3241 normal_pid_to_str (ptid_t ptid)
3242 {
3243 static char buf[32];
3244
3245 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3246 return buf;
3247 }
3248
3249 static const char *
3250 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3251 {
3252 return normal_pid_to_str (ptid);
3253 }
3254
3255 /* Error-catcher for target_find_memory_regions. */
3256 static int
3257 dummy_find_memory_regions (struct target_ops *self,
3258 find_memory_region_ftype ignore1, void *ignore2)
3259 {
3260 error (_("Command not implemented for this target."));
3261 return 0;
3262 }
3263
3264 /* Error-catcher for target_make_corefile_notes. */
3265 static char *
3266 dummy_make_corefile_notes (struct target_ops *self,
3267 bfd *ignore1, int *ignore2)
3268 {
3269 error (_("Command not implemented for this target."));
3270 return NULL;
3271 }
3272
3273 /* Set up the handful of non-empty slots needed by the dummy target
3274 vector. */
3275
3276 static void
3277 init_dummy_target (void)
3278 {
3279 dummy_target.to_shortname = "None";
3280 dummy_target.to_longname = "None";
3281 dummy_target.to_doc = "";
3282 dummy_target.to_supports_disable_randomization
3283 = find_default_supports_disable_randomization;
3284 dummy_target.to_stratum = dummy_stratum;
3285 dummy_target.to_has_all_memory = return_zero;
3286 dummy_target.to_has_memory = return_zero;
3287 dummy_target.to_has_stack = return_zero;
3288 dummy_target.to_has_registers = return_zero;
3289 dummy_target.to_has_execution = return_zero_has_execution;
3290 dummy_target.to_magic = OPS_MAGIC;
3291
3292 install_dummy_methods (&dummy_target);
3293 }
3294 \f
3295
3296 void
3297 target_close (struct target_ops *targ)
3298 {
3299 gdb_assert (!target_is_pushed (targ));
3300
3301 if (targ->to_xclose != NULL)
3302 targ->to_xclose (targ);
3303 else if (targ->to_close != NULL)
3304 targ->to_close (targ);
3305
3306 if (targetdebug)
3307 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3308 }
3309
3310 int
3311 target_thread_alive (ptid_t ptid)
3312 {
3313 return current_target.to_thread_alive (&current_target, ptid);
3314 }
3315
3316 void
3317 target_update_thread_list (void)
3318 {
3319 current_target.to_update_thread_list (&current_target);
3320 }
3321
3322 void
3323 target_stop (ptid_t ptid)
3324 {
3325 if (!may_stop)
3326 {
3327 warning (_("May not interrupt or stop the target, ignoring attempt"));
3328 return;
3329 }
3330
3331 (*current_target.to_stop) (&current_target, ptid);
3332 }
3333
3334 void
3335 target_interrupt (ptid_t ptid)
3336 {
3337 if (!may_stop)
3338 {
3339 warning (_("May not interrupt or stop the target, ignoring attempt"));
3340 return;
3341 }
3342
3343 (*current_target.to_interrupt) (&current_target, ptid);
3344 }
3345
3346 /* See target.h. */
3347
3348 void
3349 target_pass_ctrlc (void)
3350 {
3351 (*current_target.to_pass_ctrlc) (&current_target);
3352 }
3353
3354 /* See target.h. */
3355
3356 void
3357 default_target_pass_ctrlc (struct target_ops *ops)
3358 {
3359 target_interrupt (inferior_ptid);
3360 }
3361
3362 /* See target/target.h. */
3363
3364 void
3365 target_stop_and_wait (ptid_t ptid)
3366 {
3367 struct target_waitstatus status;
3368 int was_non_stop = non_stop;
3369
3370 non_stop = 1;
3371 target_stop (ptid);
3372
3373 memset (&status, 0, sizeof (status));
3374 target_wait (ptid, &status, 0);
3375
3376 non_stop = was_non_stop;
3377 }
3378
3379 /* See target/target.h. */
3380
3381 void
3382 target_continue_no_signal (ptid_t ptid)
3383 {
3384 target_resume (ptid, 0, GDB_SIGNAL_0);
3385 }
3386
3387 /* See target/target.h. */
3388
3389 void
3390 target_continue (ptid_t ptid, enum gdb_signal signal)
3391 {
3392 target_resume (ptid, 0, signal);
3393 }
3394
3395 /* Concatenate ELEM to LIST, a comma separate list, and return the
3396 result. The LIST incoming argument is released. */
3397
3398 static char *
3399 str_comma_list_concat_elem (char *list, const char *elem)
3400 {
3401 if (list == NULL)
3402 return xstrdup (elem);
3403 else
3404 return reconcat (list, list, ", ", elem, (char *) NULL);
3405 }
3406
3407 /* Helper for target_options_to_string. If OPT is present in
3408 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3409 Returns the new resulting string. OPT is removed from
3410 TARGET_OPTIONS. */
3411
3412 static char *
3413 do_option (int *target_options, char *ret,
3414 int opt, const char *opt_str)
3415 {
3416 if ((*target_options & opt) != 0)
3417 {
3418 ret = str_comma_list_concat_elem (ret, opt_str);
3419 *target_options &= ~opt;
3420 }
3421
3422 return ret;
3423 }
3424
3425 char *
3426 target_options_to_string (int target_options)
3427 {
3428 char *ret = NULL;
3429
3430 #define DO_TARG_OPTION(OPT) \
3431 ret = do_option (&target_options, ret, OPT, #OPT)
3432
3433 DO_TARG_OPTION (TARGET_WNOHANG);
3434
3435 if (target_options != 0)
3436 ret = str_comma_list_concat_elem (ret, "unknown???");
3437
3438 if (ret == NULL)
3439 ret = xstrdup ("");
3440 return ret;
3441 }
3442
3443 void
3444 target_fetch_registers (struct regcache *regcache, int regno)
3445 {
3446 current_target.to_fetch_registers (&current_target, regcache, regno);
3447 if (targetdebug)
3448 regcache->debug_print_register ("target_fetch_registers", regno);
3449 }
3450
3451 void
3452 target_store_registers (struct regcache *regcache, int regno)
3453 {
3454 if (!may_write_registers)
3455 error (_("Writing to registers is not allowed (regno %d)"), regno);
3456
3457 current_target.to_store_registers (&current_target, regcache, regno);
3458 if (targetdebug)
3459 {
3460 regcache->debug_print_register ("target_store_registers", regno);
3461 }
3462 }
3463
3464 int
3465 target_core_of_thread (ptid_t ptid)
3466 {
3467 return current_target.to_core_of_thread (&current_target, ptid);
3468 }
3469
3470 int
3471 simple_verify_memory (struct target_ops *ops,
3472 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3473 {
3474 LONGEST total_xfered = 0;
3475
3476 while (total_xfered < size)
3477 {
3478 ULONGEST xfered_len;
3479 enum target_xfer_status status;
3480 gdb_byte buf[1024];
3481 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3482
3483 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3484 buf, NULL, lma + total_xfered, howmuch,
3485 &xfered_len);
3486 if (status == TARGET_XFER_OK
3487 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3488 {
3489 total_xfered += xfered_len;
3490 QUIT;
3491 }
3492 else
3493 return 0;
3494 }
3495 return 1;
3496 }
3497
3498 /* Default implementation of memory verification. */
3499
3500 static int
3501 default_verify_memory (struct target_ops *self,
3502 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3503 {
3504 /* Start over from the top of the target stack. */
3505 return simple_verify_memory (current_target.beneath,
3506 data, memaddr, size);
3507 }
3508
3509 int
3510 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3511 {
3512 return current_target.to_verify_memory (&current_target,
3513 data, memaddr, size);
3514 }
3515
3516 /* The documentation for this function is in its prototype declaration in
3517 target.h. */
3518
3519 int
3520 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3521 enum target_hw_bp_type rw)
3522 {
3523 return current_target.to_insert_mask_watchpoint (&current_target,
3524 addr, mask, rw);
3525 }
3526
3527 /* The documentation for this function is in its prototype declaration in
3528 target.h. */
3529
3530 int
3531 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3532 enum target_hw_bp_type rw)
3533 {
3534 return current_target.to_remove_mask_watchpoint (&current_target,
3535 addr, mask, rw);
3536 }
3537
3538 /* The documentation for this function is in its prototype declaration
3539 in target.h. */
3540
3541 int
3542 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3543 {
3544 return current_target.to_masked_watch_num_registers (&current_target,
3545 addr, mask);
3546 }
3547
3548 /* The documentation for this function is in its prototype declaration
3549 in target.h. */
3550
3551 int
3552 target_ranged_break_num_registers (void)
3553 {
3554 return current_target.to_ranged_break_num_registers (&current_target);
3555 }
3556
3557 /* See target.h. */
3558
3559 int
3560 target_supports_btrace (enum btrace_format format)
3561 {
3562 return current_target.to_supports_btrace (&current_target, format);
3563 }
3564
3565 /* See target.h. */
3566
3567 struct btrace_target_info *
3568 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3569 {
3570 return current_target.to_enable_btrace (&current_target, ptid, conf);
3571 }
3572
3573 /* See target.h. */
3574
3575 void
3576 target_disable_btrace (struct btrace_target_info *btinfo)
3577 {
3578 current_target.to_disable_btrace (&current_target, btinfo);
3579 }
3580
3581 /* See target.h. */
3582
3583 void
3584 target_teardown_btrace (struct btrace_target_info *btinfo)
3585 {
3586 current_target.to_teardown_btrace (&current_target, btinfo);
3587 }
3588
3589 /* See target.h. */
3590
3591 enum btrace_error
3592 target_read_btrace (struct btrace_data *btrace,
3593 struct btrace_target_info *btinfo,
3594 enum btrace_read_type type)
3595 {
3596 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3597 }
3598
3599 /* See target.h. */
3600
3601 const struct btrace_config *
3602 target_btrace_conf (const struct btrace_target_info *btinfo)
3603 {
3604 return current_target.to_btrace_conf (&current_target, btinfo);
3605 }
3606
3607 /* See target.h. */
3608
3609 void
3610 target_stop_recording (void)
3611 {
3612 current_target.to_stop_recording (&current_target);
3613 }
3614
3615 /* See target.h. */
3616
3617 void
3618 target_save_record (const char *filename)
3619 {
3620 current_target.to_save_record (&current_target, filename);
3621 }
3622
3623 /* See target.h. */
3624
3625 int
3626 target_supports_delete_record (void)
3627 {
3628 struct target_ops *t;
3629
3630 for (t = current_target.beneath; t != NULL; t = t->beneath)
3631 if (t->to_delete_record != delegate_delete_record
3632 && t->to_delete_record != tdefault_delete_record)
3633 return 1;
3634
3635 return 0;
3636 }
3637
3638 /* See target.h. */
3639
3640 void
3641 target_delete_record (void)
3642 {
3643 current_target.to_delete_record (&current_target);
3644 }
3645
3646 /* See target.h. */
3647
3648 enum record_method
3649 target_record_method (ptid_t ptid)
3650 {
3651 return current_target.to_record_method (&current_target, ptid);
3652 }
3653
3654 /* See target.h. */
3655
3656 int
3657 target_record_is_replaying (ptid_t ptid)
3658 {
3659 return current_target.to_record_is_replaying (&current_target, ptid);
3660 }
3661
3662 /* See target.h. */
3663
3664 int
3665 target_record_will_replay (ptid_t ptid, int dir)
3666 {
3667 return current_target.to_record_will_replay (&current_target, ptid, dir);
3668 }
3669
3670 /* See target.h. */
3671
3672 void
3673 target_record_stop_replaying (void)
3674 {
3675 current_target.to_record_stop_replaying (&current_target);
3676 }
3677
3678 /* See target.h. */
3679
3680 void
3681 target_goto_record_begin (void)
3682 {
3683 current_target.to_goto_record_begin (&current_target);
3684 }
3685
3686 /* See target.h. */
3687
3688 void
3689 target_goto_record_end (void)
3690 {
3691 current_target.to_goto_record_end (&current_target);
3692 }
3693
3694 /* See target.h. */
3695
3696 void
3697 target_goto_record (ULONGEST insn)
3698 {
3699 current_target.to_goto_record (&current_target, insn);
3700 }
3701
3702 /* See target.h. */
3703
3704 void
3705 target_insn_history (int size, gdb_disassembly_flags flags)
3706 {
3707 current_target.to_insn_history (&current_target, size, flags);
3708 }
3709
3710 /* See target.h. */
3711
3712 void
3713 target_insn_history_from (ULONGEST from, int size,
3714 gdb_disassembly_flags flags)
3715 {
3716 current_target.to_insn_history_from (&current_target, from, size, flags);
3717 }
3718
3719 /* See target.h. */
3720
3721 void
3722 target_insn_history_range (ULONGEST begin, ULONGEST end,
3723 gdb_disassembly_flags flags)
3724 {
3725 current_target.to_insn_history_range (&current_target, begin, end, flags);
3726 }
3727
3728 /* See target.h. */
3729
3730 void
3731 target_call_history (int size, int flags)
3732 {
3733 current_target.to_call_history (&current_target, size, flags);
3734 }
3735
3736 /* See target.h. */
3737
3738 void
3739 target_call_history_from (ULONGEST begin, int size, int flags)
3740 {
3741 current_target.to_call_history_from (&current_target, begin, size, flags);
3742 }
3743
3744 /* See target.h. */
3745
3746 void
3747 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3748 {
3749 current_target.to_call_history_range (&current_target, begin, end, flags);
3750 }
3751
3752 /* See target.h. */
3753
3754 const struct frame_unwind *
3755 target_get_unwinder (void)
3756 {
3757 return current_target.to_get_unwinder (&current_target);
3758 }
3759
3760 /* See target.h. */
3761
3762 const struct frame_unwind *
3763 target_get_tailcall_unwinder (void)
3764 {
3765 return current_target.to_get_tailcall_unwinder (&current_target);
3766 }
3767
3768 /* See target.h. */
3769
3770 void
3771 target_prepare_to_generate_core (void)
3772 {
3773 current_target.to_prepare_to_generate_core (&current_target);
3774 }
3775
3776 /* See target.h. */
3777
3778 void
3779 target_done_generating_core (void)
3780 {
3781 current_target.to_done_generating_core (&current_target);
3782 }
3783
3784 static void
3785 setup_target_debug (void)
3786 {
3787 memcpy (&debug_target, &current_target, sizeof debug_target);
3788
3789 init_debug_target (&current_target);
3790 }
3791 \f
3792
3793 static char targ_desc[] =
3794 "Names of targets and files being debugged.\nShows the entire \
3795 stack of targets currently in use (including the exec-file,\n\
3796 core-file, and process, if any), as well as the symbol file name.";
3797
3798 static void
3799 default_rcmd (struct target_ops *self, const char *command,
3800 struct ui_file *output)
3801 {
3802 error (_("\"monitor\" command not supported by this target."));
3803 }
3804
3805 static void
3806 do_monitor_command (char *cmd,
3807 int from_tty)
3808 {
3809 target_rcmd (cmd, gdb_stdtarg);
3810 }
3811
3812 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3813 ignored. */
3814
3815 void
3816 flash_erase_command (char *cmd, int from_tty)
3817 {
3818 /* Used to communicate termination of flash operations to the target. */
3819 bool found_flash_region = false;
3820 struct mem_region *m;
3821 struct gdbarch *gdbarch = target_gdbarch ();
3822
3823 VEC(mem_region_s) *mem_regions = target_memory_map ();
3824
3825 /* Iterate over all memory regions. */
3826 for (int i = 0; VEC_iterate (mem_region_s, mem_regions, i, m); i++)
3827 {
3828 /* Fetch the memory attribute. */
3829 struct mem_attrib *attrib = &m->attrib;
3830
3831 /* Is this a flash memory region? */
3832 if (attrib->mode == MEM_FLASH)
3833 {
3834 found_flash_region = true;
3835 target_flash_erase (m->lo, m->hi - m->lo);
3836
3837 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3838
3839 current_uiout->message (_("Erasing flash memory region at address "));
3840 current_uiout->field_fmt ("address", "%s", paddress (gdbarch,
3841 m->lo));
3842 current_uiout->message (", size = ");
3843 current_uiout->field_fmt ("size", "%s", hex_string (m->hi - m->lo));
3844 current_uiout->message ("\n");
3845 }
3846 }
3847
3848 /* Did we do any flash operations? If so, we need to finalize them. */
3849 if (found_flash_region)
3850 target_flash_done ();
3851 else
3852 current_uiout->message (_("No flash memory regions found.\n"));
3853 }
3854
3855 /* Print the name of each layers of our target stack. */
3856
3857 static void
3858 maintenance_print_target_stack (const char *cmd, int from_tty)
3859 {
3860 struct target_ops *t;
3861
3862 printf_filtered (_("The current target stack is:\n"));
3863
3864 for (t = target_stack; t != NULL; t = t->beneath)
3865 {
3866 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3867 }
3868 }
3869
3870 /* See target.h. */
3871
3872 void
3873 target_async (int enable)
3874 {
3875 infrun_async (enable);
3876 current_target.to_async (&current_target, enable);
3877 }
3878
3879 /* See target.h. */
3880
3881 void
3882 target_thread_events (int enable)
3883 {
3884 current_target.to_thread_events (&current_target, enable);
3885 }
3886
3887 /* Controls if targets can report that they can/are async. This is
3888 just for maintainers to use when debugging gdb. */
3889 int target_async_permitted = 1;
3890
3891 /* The set command writes to this variable. If the inferior is
3892 executing, target_async_permitted is *not* updated. */
3893 static int target_async_permitted_1 = 1;
3894
3895 static void
3896 maint_set_target_async_command (char *args, int from_tty,
3897 struct cmd_list_element *c)
3898 {
3899 if (have_live_inferiors ())
3900 {
3901 target_async_permitted_1 = target_async_permitted;
3902 error (_("Cannot change this setting while the inferior is running."));
3903 }
3904
3905 target_async_permitted = target_async_permitted_1;
3906 }
3907
3908 static void
3909 maint_show_target_async_command (struct ui_file *file, int from_tty,
3910 struct cmd_list_element *c,
3911 const char *value)
3912 {
3913 fprintf_filtered (file,
3914 _("Controlling the inferior in "
3915 "asynchronous mode is %s.\n"), value);
3916 }
3917
3918 /* Return true if the target operates in non-stop mode even with "set
3919 non-stop off". */
3920
3921 static int
3922 target_always_non_stop_p (void)
3923 {
3924 return current_target.to_always_non_stop_p (&current_target);
3925 }
3926
3927 /* See target.h. */
3928
3929 int
3930 target_is_non_stop_p (void)
3931 {
3932 return (non_stop
3933 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3934 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3935 && target_always_non_stop_p ()));
3936 }
3937
3938 /* Controls if targets can report that they always run in non-stop
3939 mode. This is just for maintainers to use when debugging gdb. */
3940 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3941
3942 /* The set command writes to this variable. If the inferior is
3943 executing, target_non_stop_enabled is *not* updated. */
3944 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3945
3946 /* Implementation of "maint set target-non-stop". */
3947
3948 static void
3949 maint_set_target_non_stop_command (char *args, int from_tty,
3950 struct cmd_list_element *c)
3951 {
3952 if (have_live_inferiors ())
3953 {
3954 target_non_stop_enabled_1 = target_non_stop_enabled;
3955 error (_("Cannot change this setting while the inferior is running."));
3956 }
3957
3958 target_non_stop_enabled = target_non_stop_enabled_1;
3959 }
3960
3961 /* Implementation of "maint show target-non-stop". */
3962
3963 static void
3964 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3965 struct cmd_list_element *c,
3966 const char *value)
3967 {
3968 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3969 fprintf_filtered (file,
3970 _("Whether the target is always in non-stop mode "
3971 "is %s (currently %s).\n"), value,
3972 target_always_non_stop_p () ? "on" : "off");
3973 else
3974 fprintf_filtered (file,
3975 _("Whether the target is always in non-stop mode "
3976 "is %s.\n"), value);
3977 }
3978
3979 /* Temporary copies of permission settings. */
3980
3981 static int may_write_registers_1 = 1;
3982 static int may_write_memory_1 = 1;
3983 static int may_insert_breakpoints_1 = 1;
3984 static int may_insert_tracepoints_1 = 1;
3985 static int may_insert_fast_tracepoints_1 = 1;
3986 static int may_stop_1 = 1;
3987
3988 /* Make the user-set values match the real values again. */
3989
3990 void
3991 update_target_permissions (void)
3992 {
3993 may_write_registers_1 = may_write_registers;
3994 may_write_memory_1 = may_write_memory;
3995 may_insert_breakpoints_1 = may_insert_breakpoints;
3996 may_insert_tracepoints_1 = may_insert_tracepoints;
3997 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3998 may_stop_1 = may_stop;
3999 }
4000
4001 /* The one function handles (most of) the permission flags in the same
4002 way. */
4003
4004 static void
4005 set_target_permissions (char *args, int from_tty,
4006 struct cmd_list_element *c)
4007 {
4008 if (target_has_execution)
4009 {
4010 update_target_permissions ();
4011 error (_("Cannot change this setting while the inferior is running."));
4012 }
4013
4014 /* Make the real values match the user-changed values. */
4015 may_write_registers = may_write_registers_1;
4016 may_insert_breakpoints = may_insert_breakpoints_1;
4017 may_insert_tracepoints = may_insert_tracepoints_1;
4018 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4019 may_stop = may_stop_1;
4020 update_observer_mode ();
4021 }
4022
4023 /* Set memory write permission independently of observer mode. */
4024
4025 static void
4026 set_write_memory_permission (char *args, int from_tty,
4027 struct cmd_list_element *c)
4028 {
4029 /* Make the real values match the user-changed values. */
4030 may_write_memory = may_write_memory_1;
4031 update_observer_mode ();
4032 }
4033
4034
4035 void
4036 initialize_targets (void)
4037 {
4038 init_dummy_target ();
4039 push_target (&dummy_target);
4040
4041 add_info ("target", info_target_command, targ_desc);
4042 add_info ("files", info_target_command, targ_desc);
4043
4044 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4045 Set target debugging."), _("\
4046 Show target debugging."), _("\
4047 When non-zero, target debugging is enabled. Higher numbers are more\n\
4048 verbose."),
4049 set_targetdebug,
4050 show_targetdebug,
4051 &setdebuglist, &showdebuglist);
4052
4053 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4054 &trust_readonly, _("\
4055 Set mode for reading from readonly sections."), _("\
4056 Show mode for reading from readonly sections."), _("\
4057 When this mode is on, memory reads from readonly sections (such as .text)\n\
4058 will be read from the object file instead of from the target. This will\n\
4059 result in significant performance improvement for remote targets."),
4060 NULL,
4061 show_trust_readonly,
4062 &setlist, &showlist);
4063
4064 add_com ("monitor", class_obscure, do_monitor_command,
4065 _("Send a command to the remote monitor (remote targets only)."));
4066
4067 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4068 _("Print the name of each layer of the internal target stack."),
4069 &maintenanceprintlist);
4070
4071 add_setshow_boolean_cmd ("target-async", no_class,
4072 &target_async_permitted_1, _("\
4073 Set whether gdb controls the inferior in asynchronous mode."), _("\
4074 Show whether gdb controls the inferior in asynchronous mode."), _("\
4075 Tells gdb whether to control the inferior in asynchronous mode."),
4076 maint_set_target_async_command,
4077 maint_show_target_async_command,
4078 &maintenance_set_cmdlist,
4079 &maintenance_show_cmdlist);
4080
4081 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4082 &target_non_stop_enabled_1, _("\
4083 Set whether gdb always controls the inferior in non-stop mode."), _("\
4084 Show whether gdb always controls the inferior in non-stop mode."), _("\
4085 Tells gdb whether to control the inferior in non-stop mode."),
4086 maint_set_target_non_stop_command,
4087 maint_show_target_non_stop_command,
4088 &maintenance_set_cmdlist,
4089 &maintenance_show_cmdlist);
4090
4091 add_setshow_boolean_cmd ("may-write-registers", class_support,
4092 &may_write_registers_1, _("\
4093 Set permission to write into registers."), _("\
4094 Show permission to write into registers."), _("\
4095 When this permission is on, GDB may write into the target's registers.\n\
4096 Otherwise, any sort of write attempt will result in an error."),
4097 set_target_permissions, NULL,
4098 &setlist, &showlist);
4099
4100 add_setshow_boolean_cmd ("may-write-memory", class_support,
4101 &may_write_memory_1, _("\
4102 Set permission to write into target memory."), _("\
4103 Show permission to write into target memory."), _("\
4104 When this permission is on, GDB may write into the target's memory.\n\
4105 Otherwise, any sort of write attempt will result in an error."),
4106 set_write_memory_permission, NULL,
4107 &setlist, &showlist);
4108
4109 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4110 &may_insert_breakpoints_1, _("\
4111 Set permission to insert breakpoints in the target."), _("\
4112 Show permission to insert breakpoints in the target."), _("\
4113 When this permission is on, GDB may insert breakpoints in the program.\n\
4114 Otherwise, any sort of insertion attempt will result in an error."),
4115 set_target_permissions, NULL,
4116 &setlist, &showlist);
4117
4118 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4119 &may_insert_tracepoints_1, _("\
4120 Set permission to insert tracepoints in the target."), _("\
4121 Show permission to insert tracepoints in the target."), _("\
4122 When this permission is on, GDB may insert tracepoints in the program.\n\
4123 Otherwise, any sort of insertion attempt will result in an error."),
4124 set_target_permissions, NULL,
4125 &setlist, &showlist);
4126
4127 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4128 &may_insert_fast_tracepoints_1, _("\
4129 Set permission to insert fast tracepoints in the target."), _("\
4130 Show permission to insert fast tracepoints in the target."), _("\
4131 When this permission is on, GDB may insert fast tracepoints.\n\
4132 Otherwise, any sort of insertion attempt will result in an error."),
4133 set_target_permissions, NULL,
4134 &setlist, &showlist);
4135
4136 add_setshow_boolean_cmd ("may-interrupt", class_support,
4137 &may_stop_1, _("\
4138 Set permission to interrupt or signal the target."), _("\
4139 Show permission to interrupt or signal the target."), _("\
4140 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4141 Otherwise, any attempt to interrupt or stop will be ignored."),
4142 set_target_permissions, NULL,
4143 &setlist, &showlist);
4144
4145 add_com ("flash-erase", no_class, flash_erase_command,
4146 _("Erase all flash memory regions."));
4147
4148 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4149 &auto_connect_native_target, _("\
4150 Set whether GDB may automatically connect to the native target."), _("\
4151 Show whether GDB may automatically connect to the native target."), _("\
4152 When on, and GDB is not connected to a target yet, GDB\n\
4153 attempts \"run\" and other commands with the native target."),
4154 NULL, show_auto_connect_native_target,
4155 &setlist, &showlist);
4156 }
This page took 0.119555 seconds and 4 git commands to generate.