[gdb/testsuite] Fix gdb.dwarf2/dw2-filename.exp with -readnow
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "gdbsupport/agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "gdbsupport/byte-vector.h"
50 #include "gdbsupport/search.h"
51 #include "terminal.h"
52 #include <unordered_map>
53 #include "target-connection.h"
54 #include "valprint.h"
55
56 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
57
58 static void default_terminal_info (struct target_ops *, const char *, int);
59
60 static int default_watchpoint_addr_within_range (struct target_ops *,
61 CORE_ADDR, CORE_ADDR, int);
62
63 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
64 CORE_ADDR, int);
65
66 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
67
68 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
69 long lwp, long tid);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static void tcomplain (void) ATTRIBUTE_NORETURN;
85
86 static struct target_ops *find_default_run_target (const char *);
87
88 static int dummy_find_memory_regions (struct target_ops *self,
89 find_memory_region_ftype ignore1,
90 void *ignore2);
91
92 static gdb::unique_xmalloc_ptr<char> dummy_make_corefile_notes
93 (struct target_ops *self, bfd *ignore1, int *ignore2);
94
95 static std::string default_pid_to_str (struct target_ops *ops, ptid_t ptid);
96
97 static enum exec_direction_kind default_execution_direction
98 (struct target_ops *self);
99
100 /* Mapping between target_info objects (which have address identity)
101 and corresponding open/factory function/callback. Each add_target
102 call adds one entry to this map, and registers a "target
103 TARGET_NAME" command that when invoked calls the factory registered
104 here. The target_info object is associated with the command via
105 the command's context. */
106 static std::unordered_map<const target_info *, target_open_ftype *>
107 target_factories;
108
109 /* The singleton debug target. */
110
111 static struct target_ops *the_debug_target;
112
113 /* Top of target stack. */
114 /* The target structure we are currently using to talk to a process
115 or file or whatever "inferior" we have. */
116
117 target_ops *
118 current_top_target ()
119 {
120 return current_inferior ()->top_target ();
121 }
122
123 /* Command list for target. */
124
125 static struct cmd_list_element *targetlist = NULL;
126
127 /* True if we should trust readonly sections from the
128 executable when reading memory. */
129
130 static bool trust_readonly = false;
131
132 /* Nonzero if we should show true memory content including
133 memory breakpoint inserted by gdb. */
134
135 static int show_memory_breakpoints = 0;
136
137 /* These globals control whether GDB attempts to perform these
138 operations; they are useful for targets that need to prevent
139 inadvertent disruption, such as in non-stop mode. */
140
141 bool may_write_registers = true;
142
143 bool may_write_memory = true;
144
145 bool may_insert_breakpoints = true;
146
147 bool may_insert_tracepoints = true;
148
149 bool may_insert_fast_tracepoints = true;
150
151 bool may_stop = true;
152
153 /* Non-zero if we want to see trace of target level stuff. */
154
155 static unsigned int targetdebug = 0;
156
157 static void
158 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
159 {
160 if (targetdebug)
161 push_target (the_debug_target);
162 else
163 unpush_target (the_debug_target);
164 }
165
166 static void
167 show_targetdebug (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169 {
170 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
171 }
172
173 int
174 target_has_memory ()
175 {
176 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
177 if (t->has_memory ())
178 return 1;
179
180 return 0;
181 }
182
183 int
184 target_has_stack ()
185 {
186 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
187 if (t->has_stack ())
188 return 1;
189
190 return 0;
191 }
192
193 int
194 target_has_registers ()
195 {
196 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
197 if (t->has_registers ())
198 return 1;
199
200 return 0;
201 }
202
203 bool
204 target_has_execution (inferior *inf)
205 {
206 if (inf == nullptr)
207 inf = current_inferior ();
208
209 for (target_ops *t = inf->top_target ();
210 t != nullptr;
211 t = inf->find_target_beneath (t))
212 if (t->has_execution (inf))
213 return true;
214
215 return false;
216 }
217
218 /* This is used to implement the various target commands. */
219
220 static void
221 open_target (const char *args, int from_tty, struct cmd_list_element *command)
222 {
223 auto *ti = static_cast<target_info *> (get_cmd_context (command));
224 target_open_ftype *func = target_factories[ti];
225
226 if (targetdebug)
227 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
228 ti->shortname);
229
230 func (args, from_tty);
231
232 if (targetdebug)
233 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
234 ti->shortname, args, from_tty);
235 }
236
237 /* See target.h. */
238
239 void
240 add_target (const target_info &t, target_open_ftype *func,
241 completer_ftype *completer)
242 {
243 struct cmd_list_element *c;
244
245 auto &func_slot = target_factories[&t];
246 if (func_slot != nullptr)
247 internal_error (__FILE__, __LINE__,
248 _("target already added (\"%s\")."), t.shortname);
249 func_slot = func;
250
251 if (targetlist == NULL)
252 add_basic_prefix_cmd ("target", class_run, _("\
253 Connect to a target machine or process.\n\
254 The first argument is the type or protocol of the target machine.\n\
255 Remaining arguments are interpreted by the target protocol. For more\n\
256 information on the arguments for a particular protocol, type\n\
257 `help target ' followed by the protocol name."),
258 &targetlist, "target ", 0, &cmdlist);
259 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
260 set_cmd_context (c, (void *) &t);
261 set_cmd_sfunc (c, open_target);
262 if (completer != NULL)
263 set_cmd_completer (c, completer);
264 }
265
266 /* See target.h. */
267
268 void
269 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
270 {
271 struct cmd_list_element *c;
272 char *alt;
273
274 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
275 see PR cli/15104. */
276 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
277 set_cmd_sfunc (c, open_target);
278 set_cmd_context (c, (void *) &tinfo);
279 alt = xstrprintf ("target %s", tinfo.shortname);
280 deprecate_cmd (c, alt);
281 }
282
283 /* Stub functions */
284
285 void
286 target_kill (void)
287 {
288 current_top_target ()->kill ();
289 }
290
291 void
292 target_load (const char *arg, int from_tty)
293 {
294 target_dcache_invalidate ();
295 current_top_target ()->load (arg, from_tty);
296 }
297
298 /* Define it. */
299
300 target_terminal_state target_terminal::m_terminal_state
301 = target_terminal_state::is_ours;
302
303 /* See target/target.h. */
304
305 void
306 target_terminal::init (void)
307 {
308 current_top_target ()->terminal_init ();
309
310 m_terminal_state = target_terminal_state::is_ours;
311 }
312
313 /* See target/target.h. */
314
315 void
316 target_terminal::inferior (void)
317 {
318 struct ui *ui = current_ui;
319
320 /* A background resume (``run&'') should leave GDB in control of the
321 terminal. */
322 if (ui->prompt_state != PROMPT_BLOCKED)
323 return;
324
325 /* Since we always run the inferior in the main console (unless "set
326 inferior-tty" is in effect), when some UI other than the main one
327 calls target_terminal::inferior, then we leave the main UI's
328 terminal settings as is. */
329 if (ui != main_ui)
330 return;
331
332 /* If GDB is resuming the inferior in the foreground, install
333 inferior's terminal modes. */
334
335 struct inferior *inf = current_inferior ();
336
337 if (inf->terminal_state != target_terminal_state::is_inferior)
338 {
339 current_top_target ()->terminal_inferior ();
340 inf->terminal_state = target_terminal_state::is_inferior;
341 }
342
343 m_terminal_state = target_terminal_state::is_inferior;
344
345 /* If the user hit C-c before, pretend that it was hit right
346 here. */
347 if (check_quit_flag ())
348 target_pass_ctrlc ();
349 }
350
351 /* See target/target.h. */
352
353 void
354 target_terminal::restore_inferior (void)
355 {
356 struct ui *ui = current_ui;
357
358 /* See target_terminal::inferior(). */
359 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
360 return;
361
362 /* Restore the terminal settings of inferiors that were in the
363 foreground but are now ours_for_output due to a temporary
364 target_target::ours_for_output() call. */
365
366 {
367 scoped_restore_current_inferior restore_inferior;
368
369 for (::inferior *inf : all_inferiors ())
370 {
371 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
372 {
373 set_current_inferior (inf);
374 current_top_target ()->terminal_inferior ();
375 inf->terminal_state = target_terminal_state::is_inferior;
376 }
377 }
378 }
379
380 m_terminal_state = target_terminal_state::is_inferior;
381
382 /* If the user hit C-c before, pretend that it was hit right
383 here. */
384 if (check_quit_flag ())
385 target_pass_ctrlc ();
386 }
387
388 /* Switch terminal state to DESIRED_STATE, either is_ours, or
389 is_ours_for_output. */
390
391 static void
392 target_terminal_is_ours_kind (target_terminal_state desired_state)
393 {
394 scoped_restore_current_inferior restore_inferior;
395
396 /* Must do this in two passes. First, have all inferiors save the
397 current terminal settings. Then, after all inferiors have add a
398 chance to safely save the terminal settings, restore GDB's
399 terminal settings. */
400
401 for (inferior *inf : all_inferiors ())
402 {
403 if (inf->terminal_state == target_terminal_state::is_inferior)
404 {
405 set_current_inferior (inf);
406 current_top_target ()->terminal_save_inferior ();
407 }
408 }
409
410 for (inferior *inf : all_inferiors ())
411 {
412 /* Note we don't check is_inferior here like above because we
413 need to handle 'is_ours_for_output -> is_ours' too. Careful
414 to never transition from 'is_ours' to 'is_ours_for_output',
415 though. */
416 if (inf->terminal_state != target_terminal_state::is_ours
417 && inf->terminal_state != desired_state)
418 {
419 set_current_inferior (inf);
420 if (desired_state == target_terminal_state::is_ours)
421 current_top_target ()->terminal_ours ();
422 else if (desired_state == target_terminal_state::is_ours_for_output)
423 current_top_target ()->terminal_ours_for_output ();
424 else
425 gdb_assert_not_reached ("unhandled desired state");
426 inf->terminal_state = desired_state;
427 }
428 }
429 }
430
431 /* See target/target.h. */
432
433 void
434 target_terminal::ours ()
435 {
436 struct ui *ui = current_ui;
437
438 /* See target_terminal::inferior. */
439 if (ui != main_ui)
440 return;
441
442 if (m_terminal_state == target_terminal_state::is_ours)
443 return;
444
445 target_terminal_is_ours_kind (target_terminal_state::is_ours);
446 m_terminal_state = target_terminal_state::is_ours;
447 }
448
449 /* See target/target.h. */
450
451 void
452 target_terminal::ours_for_output ()
453 {
454 struct ui *ui = current_ui;
455
456 /* See target_terminal::inferior. */
457 if (ui != main_ui)
458 return;
459
460 if (!target_terminal::is_inferior ())
461 return;
462
463 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
464 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
465 }
466
467 /* See target/target.h. */
468
469 void
470 target_terminal::info (const char *arg, int from_tty)
471 {
472 current_top_target ()->terminal_info (arg, from_tty);
473 }
474
475 /* See target.h. */
476
477 bool
478 target_supports_terminal_ours (void)
479 {
480 /* The current top target is the target at the top of the target
481 stack of the current inferior. While normally there's always an
482 inferior, we must check for nullptr here because we can get here
483 very early during startup, before the initial inferior is first
484 created. */
485 inferior *inf = current_inferior ();
486
487 if (inf == nullptr)
488 return false;
489 return inf->top_target ()->supports_terminal_ours ();
490 }
491
492 static void
493 tcomplain (void)
494 {
495 error (_("You can't do that when your target is `%s'"),
496 current_top_target ()->shortname ());
497 }
498
499 void
500 noprocess (void)
501 {
502 error (_("You can't do that without a process to debug."));
503 }
504
505 static void
506 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
507 {
508 printf_unfiltered (_("No saved terminal information.\n"));
509 }
510
511 /* A default implementation for the to_get_ada_task_ptid target method.
512
513 This function builds the PTID by using both LWP and TID as part of
514 the PTID lwp and tid elements. The pid used is the pid of the
515 inferior_ptid. */
516
517 static ptid_t
518 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
519 {
520 return ptid_t (inferior_ptid.pid (), lwp, tid);
521 }
522
523 static enum exec_direction_kind
524 default_execution_direction (struct target_ops *self)
525 {
526 if (!target_can_execute_reverse ())
527 return EXEC_FORWARD;
528 else if (!target_can_async_p ())
529 return EXEC_FORWARD;
530 else
531 gdb_assert_not_reached ("\
532 to_execution_direction must be implemented for reverse async");
533 }
534
535 /* See target.h. */
536
537 void
538 decref_target (target_ops *t)
539 {
540 t->decref ();
541 if (t->refcount () == 0)
542 {
543 if (t->stratum () == process_stratum)
544 connection_list_remove (as_process_stratum_target (t));
545 target_close (t);
546 }
547 }
548
549 /* See target.h. */
550
551 void
552 target_stack::push (target_ops *t)
553 {
554 t->incref ();
555
556 strata stratum = t->stratum ();
557
558 if (stratum == process_stratum)
559 connection_list_add (as_process_stratum_target (t));
560
561 /* If there's already a target at this stratum, remove it. */
562
563 if (m_stack[stratum] != NULL)
564 unpush (m_stack[stratum]);
565
566 /* Now add the new one. */
567 m_stack[stratum] = t;
568
569 if (m_top < stratum)
570 m_top = stratum;
571 }
572
573 /* See target.h. */
574
575 void
576 push_target (struct target_ops *t)
577 {
578 current_inferior ()->push_target (t);
579 }
580
581 /* See target.h. */
582
583 void
584 push_target (target_ops_up &&t)
585 {
586 current_inferior ()->push_target (t.get ());
587 t.release ();
588 }
589
590 /* See target.h. */
591
592 int
593 unpush_target (struct target_ops *t)
594 {
595 return current_inferior ()->unpush_target (t);
596 }
597
598 /* See target.h. */
599
600 bool
601 target_stack::unpush (target_ops *t)
602 {
603 gdb_assert (t != NULL);
604
605 strata stratum = t->stratum ();
606
607 if (stratum == dummy_stratum)
608 internal_error (__FILE__, __LINE__,
609 _("Attempt to unpush the dummy target"));
610
611 /* Look for the specified target. Note that a target can only occur
612 once in the target stack. */
613
614 if (m_stack[stratum] != t)
615 {
616 /* If T wasn't pushed, quit. Only open targets should be
617 closed. */
618 return false;
619 }
620
621 /* Unchain the target. */
622 m_stack[stratum] = NULL;
623
624 if (m_top == stratum)
625 m_top = t->beneath ()->stratum ();
626
627 /* Finally close the target, if there are no inferiors
628 referencing this target still. Note we do this after unchaining,
629 so any target method calls from within the target_close
630 implementation don't end up in T anymore. Do leave the target
631 open if we have are other inferiors referencing this target
632 still. */
633 decref_target (t);
634
635 return true;
636 }
637
638 /* Unpush TARGET and assert that it worked. */
639
640 static void
641 unpush_target_and_assert (struct target_ops *target)
642 {
643 if (!unpush_target (target))
644 {
645 fprintf_unfiltered (gdb_stderr,
646 "pop_all_targets couldn't find target %s\n",
647 target->shortname ());
648 internal_error (__FILE__, __LINE__,
649 _("failed internal consistency check"));
650 }
651 }
652
653 void
654 pop_all_targets_above (enum strata above_stratum)
655 {
656 while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
657 unpush_target_and_assert (current_top_target ());
658 }
659
660 /* See target.h. */
661
662 void
663 pop_all_targets_at_and_above (enum strata stratum)
664 {
665 while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
666 unpush_target_and_assert (current_top_target ());
667 }
668
669 void
670 pop_all_targets (void)
671 {
672 pop_all_targets_above (dummy_stratum);
673 }
674
675 /* Return true if T is now pushed in the current inferior's target
676 stack. Return false otherwise. */
677
678 bool
679 target_is_pushed (target_ops *t)
680 {
681 return current_inferior ()->target_is_pushed (t);
682 }
683
684 /* Default implementation of to_get_thread_local_address. */
685
686 static void
687 generic_tls_error (void)
688 {
689 throw_error (TLS_GENERIC_ERROR,
690 _("Cannot find thread-local variables on this target"));
691 }
692
693 /* Using the objfile specified in OBJFILE, find the address for the
694 current thread's thread-local storage with offset OFFSET. */
695 CORE_ADDR
696 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
697 {
698 volatile CORE_ADDR addr = 0;
699 struct target_ops *target = current_top_target ();
700 struct gdbarch *gdbarch = target_gdbarch ();
701
702 if (gdbarch_fetch_tls_load_module_address_p (gdbarch))
703 {
704 ptid_t ptid = inferior_ptid;
705
706 try
707 {
708 CORE_ADDR lm_addr;
709
710 /* Fetch the load module address for this objfile. */
711 lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch,
712 objfile);
713
714 if (gdbarch_get_thread_local_address_p (gdbarch))
715 addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr,
716 offset);
717 else
718 addr = target->get_thread_local_address (ptid, lm_addr, offset);
719 }
720 /* If an error occurred, print TLS related messages here. Otherwise,
721 throw the error to some higher catcher. */
722 catch (const gdb_exception &ex)
723 {
724 int objfile_is_library = (objfile->flags & OBJF_SHARED);
725
726 switch (ex.error)
727 {
728 case TLS_NO_LIBRARY_SUPPORT_ERROR:
729 error (_("Cannot find thread-local variables "
730 "in this thread library."));
731 break;
732 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
733 if (objfile_is_library)
734 error (_("Cannot find shared library `%s' in dynamic"
735 " linker's load module list"), objfile_name (objfile));
736 else
737 error (_("Cannot find executable file `%s' in dynamic"
738 " linker's load module list"), objfile_name (objfile));
739 break;
740 case TLS_NOT_ALLOCATED_YET_ERROR:
741 if (objfile_is_library)
742 error (_("The inferior has not yet allocated storage for"
743 " thread-local variables in\n"
744 "the shared library `%s'\n"
745 "for %s"),
746 objfile_name (objfile),
747 target_pid_to_str (ptid).c_str ());
748 else
749 error (_("The inferior has not yet allocated storage for"
750 " thread-local variables in\n"
751 "the executable `%s'\n"
752 "for %s"),
753 objfile_name (objfile),
754 target_pid_to_str (ptid).c_str ());
755 break;
756 case TLS_GENERIC_ERROR:
757 if (objfile_is_library)
758 error (_("Cannot find thread-local storage for %s, "
759 "shared library %s:\n%s"),
760 target_pid_to_str (ptid).c_str (),
761 objfile_name (objfile), ex.what ());
762 else
763 error (_("Cannot find thread-local storage for %s, "
764 "executable file %s:\n%s"),
765 target_pid_to_str (ptid).c_str (),
766 objfile_name (objfile), ex.what ());
767 break;
768 default:
769 throw;
770 break;
771 }
772 }
773 }
774 else
775 error (_("Cannot find thread-local variables on this target"));
776
777 return addr;
778 }
779
780 const char *
781 target_xfer_status_to_string (enum target_xfer_status status)
782 {
783 #define CASE(X) case X: return #X
784 switch (status)
785 {
786 CASE(TARGET_XFER_E_IO);
787 CASE(TARGET_XFER_UNAVAILABLE);
788 default:
789 return "<unknown>";
790 }
791 #undef CASE
792 };
793
794
795 /* See target.h. */
796
797 gdb::unique_xmalloc_ptr<char>
798 target_read_string (CORE_ADDR memaddr, int len, int *bytes_read)
799 {
800 gdb::unique_xmalloc_ptr<gdb_byte> buffer;
801
802 int ignore;
803 if (bytes_read == nullptr)
804 bytes_read = &ignore;
805
806 /* Note that the endian-ness does not matter here. */
807 int errcode = read_string (memaddr, -1, 1, len, BFD_ENDIAN_LITTLE,
808 &buffer, bytes_read);
809 if (errcode != 0)
810 return {};
811
812 return gdb::unique_xmalloc_ptr<char> ((char *) buffer.release ());
813 }
814
815 target_section_table *
816 target_get_section_table (struct target_ops *target)
817 {
818 return target->get_section_table ();
819 }
820
821 /* Find a section containing ADDR. */
822
823 struct target_section *
824 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
825 {
826 target_section_table *table = target_get_section_table (target);
827
828 if (table == NULL)
829 return NULL;
830
831 for (target_section &secp : *table)
832 {
833 if (addr >= secp.addr && addr < secp.endaddr)
834 return &secp;
835 }
836 return NULL;
837 }
838
839
840 /* Helper for the memory xfer routines. Checks the attributes of the
841 memory region of MEMADDR against the read or write being attempted.
842 If the access is permitted returns true, otherwise returns false.
843 REGION_P is an optional output parameter. If not-NULL, it is
844 filled with a pointer to the memory region of MEMADDR. REG_LEN
845 returns LEN trimmed to the end of the region. This is how much the
846 caller can continue requesting, if the access is permitted. A
847 single xfer request must not straddle memory region boundaries. */
848
849 static int
850 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
851 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
852 struct mem_region **region_p)
853 {
854 struct mem_region *region;
855
856 region = lookup_mem_region (memaddr);
857
858 if (region_p != NULL)
859 *region_p = region;
860
861 switch (region->attrib.mode)
862 {
863 case MEM_RO:
864 if (writebuf != NULL)
865 return 0;
866 break;
867
868 case MEM_WO:
869 if (readbuf != NULL)
870 return 0;
871 break;
872
873 case MEM_FLASH:
874 /* We only support writing to flash during "load" for now. */
875 if (writebuf != NULL)
876 error (_("Writing to flash memory forbidden in this context"));
877 break;
878
879 case MEM_NONE:
880 return 0;
881 }
882
883 /* region->hi == 0 means there's no upper bound. */
884 if (memaddr + len < region->hi || region->hi == 0)
885 *reg_len = len;
886 else
887 *reg_len = region->hi - memaddr;
888
889 return 1;
890 }
891
892 /* Read memory from more than one valid target. A core file, for
893 instance, could have some of memory but delegate other bits to
894 the target below it. So, we must manually try all targets. */
895
896 enum target_xfer_status
897 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
898 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
899 ULONGEST *xfered_len)
900 {
901 enum target_xfer_status res;
902
903 do
904 {
905 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
906 readbuf, writebuf, memaddr, len,
907 xfered_len);
908 if (res == TARGET_XFER_OK)
909 break;
910
911 /* Stop if the target reports that the memory is not available. */
912 if (res == TARGET_XFER_UNAVAILABLE)
913 break;
914
915 /* Don't continue past targets which have all the memory.
916 At one time, this code was necessary to read data from
917 executables / shared libraries when data for the requested
918 addresses weren't available in the core file. But now the
919 core target handles this case itself. */
920 if (ops->has_all_memory ())
921 break;
922
923 ops = ops->beneath ();
924 }
925 while (ops != NULL);
926
927 /* The cache works at the raw memory level. Make sure the cache
928 gets updated with raw contents no matter what kind of memory
929 object was originally being written. Note we do write-through
930 first, so that if it fails, we don't write to the cache contents
931 that never made it to the target. */
932 if (writebuf != NULL
933 && inferior_ptid != null_ptid
934 && target_dcache_init_p ()
935 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
936 {
937 DCACHE *dcache = target_dcache_get ();
938
939 /* Note that writing to an area of memory which wasn't present
940 in the cache doesn't cause it to be loaded in. */
941 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
942 }
943
944 return res;
945 }
946
947 /* Perform a partial memory transfer.
948 For docs see target.h, to_xfer_partial. */
949
950 static enum target_xfer_status
951 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
952 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
953 ULONGEST len, ULONGEST *xfered_len)
954 {
955 enum target_xfer_status res;
956 ULONGEST reg_len;
957 struct mem_region *region;
958 struct inferior *inf;
959
960 /* For accesses to unmapped overlay sections, read directly from
961 files. Must do this first, as MEMADDR may need adjustment. */
962 if (readbuf != NULL && overlay_debugging)
963 {
964 struct obj_section *section = find_pc_overlay (memaddr);
965
966 if (pc_in_unmapped_range (memaddr, section))
967 {
968 target_section_table *table = target_get_section_table (ops);
969 const char *section_name = section->the_bfd_section->name;
970
971 memaddr = overlay_mapped_address (memaddr, section);
972
973 auto match_cb = [=] (const struct target_section *s)
974 {
975 return (strcmp (section_name, s->the_bfd_section->name) == 0);
976 };
977
978 return section_table_xfer_memory_partial (readbuf, writebuf,
979 memaddr, len, xfered_len,
980 *table, match_cb);
981 }
982 }
983
984 /* Try the executable files, if "trust-readonly-sections" is set. */
985 if (readbuf != NULL && trust_readonly)
986 {
987 struct target_section *secp;
988
989 secp = target_section_by_addr (ops, memaddr);
990 if (secp != NULL
991 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
992 {
993 target_section_table *table = target_get_section_table (ops);
994 return section_table_xfer_memory_partial (readbuf, writebuf,
995 memaddr, len, xfered_len,
996 *table);
997 }
998 }
999
1000 /* Try GDB's internal data cache. */
1001
1002 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1003 &region))
1004 return TARGET_XFER_E_IO;
1005
1006 if (inferior_ptid != null_ptid)
1007 inf = current_inferior ();
1008 else
1009 inf = NULL;
1010
1011 if (inf != NULL
1012 && readbuf != NULL
1013 /* The dcache reads whole cache lines; that doesn't play well
1014 with reading from a trace buffer, because reading outside of
1015 the collected memory range fails. */
1016 && get_traceframe_number () == -1
1017 && (region->attrib.cache
1018 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1019 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1020 {
1021 DCACHE *dcache = target_dcache_get_or_init ();
1022
1023 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1024 reg_len, xfered_len);
1025 }
1026
1027 /* If none of those methods found the memory we wanted, fall back
1028 to a target partial transfer. Normally a single call to
1029 to_xfer_partial is enough; if it doesn't recognize an object
1030 it will call the to_xfer_partial of the next target down.
1031 But for memory this won't do. Memory is the only target
1032 object which can be read from more than one valid target.
1033 A core file, for instance, could have some of memory but
1034 delegate other bits to the target below it. So, we must
1035 manually try all targets. */
1036
1037 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1038 xfered_len);
1039
1040 /* If we still haven't got anything, return the last error. We
1041 give up. */
1042 return res;
1043 }
1044
1045 /* Perform a partial memory transfer. For docs see target.h,
1046 to_xfer_partial. */
1047
1048 static enum target_xfer_status
1049 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1050 gdb_byte *readbuf, const gdb_byte *writebuf,
1051 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1052 {
1053 enum target_xfer_status res;
1054
1055 /* Zero length requests are ok and require no work. */
1056 if (len == 0)
1057 return TARGET_XFER_EOF;
1058
1059 memaddr = address_significant (target_gdbarch (), memaddr);
1060
1061 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1062 breakpoint insns, thus hiding out from higher layers whether
1063 there are software breakpoints inserted in the code stream. */
1064 if (readbuf != NULL)
1065 {
1066 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1067 xfered_len);
1068
1069 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1070 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1071 }
1072 else
1073 {
1074 /* A large write request is likely to be partially satisfied
1075 by memory_xfer_partial_1. We will continually malloc
1076 and free a copy of the entire write request for breakpoint
1077 shadow handling even though we only end up writing a small
1078 subset of it. Cap writes to a limit specified by the target
1079 to mitigate this. */
1080 len = std::min (ops->get_memory_xfer_limit (), len);
1081
1082 gdb::byte_vector buf (writebuf, writebuf + len);
1083 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1084 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1085 xfered_len);
1086 }
1087
1088 return res;
1089 }
1090
1091 scoped_restore_tmpl<int>
1092 make_scoped_restore_show_memory_breakpoints (int show)
1093 {
1094 return make_scoped_restore (&show_memory_breakpoints, show);
1095 }
1096
1097 /* For docs see target.h, to_xfer_partial. */
1098
1099 enum target_xfer_status
1100 target_xfer_partial (struct target_ops *ops,
1101 enum target_object object, const char *annex,
1102 gdb_byte *readbuf, const gdb_byte *writebuf,
1103 ULONGEST offset, ULONGEST len,
1104 ULONGEST *xfered_len)
1105 {
1106 enum target_xfer_status retval;
1107
1108 /* Transfer is done when LEN is zero. */
1109 if (len == 0)
1110 return TARGET_XFER_EOF;
1111
1112 if (writebuf && !may_write_memory)
1113 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1114 core_addr_to_string_nz (offset), plongest (len));
1115
1116 *xfered_len = 0;
1117
1118 /* If this is a memory transfer, let the memory-specific code
1119 have a look at it instead. Memory transfers are more
1120 complicated. */
1121 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1122 || object == TARGET_OBJECT_CODE_MEMORY)
1123 retval = memory_xfer_partial (ops, object, readbuf,
1124 writebuf, offset, len, xfered_len);
1125 else if (object == TARGET_OBJECT_RAW_MEMORY)
1126 {
1127 /* Skip/avoid accessing the target if the memory region
1128 attributes block the access. Check this here instead of in
1129 raw_memory_xfer_partial as otherwise we'd end up checking
1130 this twice in the case of the memory_xfer_partial path is
1131 taken; once before checking the dcache, and another in the
1132 tail call to raw_memory_xfer_partial. */
1133 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1134 NULL))
1135 return TARGET_XFER_E_IO;
1136
1137 /* Request the normal memory object from other layers. */
1138 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1139 xfered_len);
1140 }
1141 else
1142 retval = ops->xfer_partial (object, annex, readbuf,
1143 writebuf, offset, len, xfered_len);
1144
1145 if (targetdebug)
1146 {
1147 const unsigned char *myaddr = NULL;
1148
1149 fprintf_unfiltered (gdb_stdlog,
1150 "%s:target_xfer_partial "
1151 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1152 ops->shortname (),
1153 (int) object,
1154 (annex ? annex : "(null)"),
1155 host_address_to_string (readbuf),
1156 host_address_to_string (writebuf),
1157 core_addr_to_string_nz (offset),
1158 pulongest (len), retval,
1159 pulongest (*xfered_len));
1160
1161 if (readbuf)
1162 myaddr = readbuf;
1163 if (writebuf)
1164 myaddr = writebuf;
1165 if (retval == TARGET_XFER_OK && myaddr != NULL)
1166 {
1167 int i;
1168
1169 fputs_unfiltered (", bytes =", gdb_stdlog);
1170 for (i = 0; i < *xfered_len; i++)
1171 {
1172 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1173 {
1174 if (targetdebug < 2 && i > 0)
1175 {
1176 fprintf_unfiltered (gdb_stdlog, " ...");
1177 break;
1178 }
1179 fprintf_unfiltered (gdb_stdlog, "\n");
1180 }
1181
1182 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1183 }
1184 }
1185
1186 fputc_unfiltered ('\n', gdb_stdlog);
1187 }
1188
1189 /* Check implementations of to_xfer_partial update *XFERED_LEN
1190 properly. Do assertion after printing debug messages, so that we
1191 can find more clues on assertion failure from debugging messages. */
1192 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1193 gdb_assert (*xfered_len > 0);
1194
1195 return retval;
1196 }
1197
1198 /* Read LEN bytes of target memory at address MEMADDR, placing the
1199 results in GDB's memory at MYADDR. Returns either 0 for success or
1200 -1 if any error occurs.
1201
1202 If an error occurs, no guarantee is made about the contents of the data at
1203 MYADDR. In particular, the caller should not depend upon partial reads
1204 filling the buffer with good data. There is no way for the caller to know
1205 how much good data might have been transfered anyway. Callers that can
1206 deal with partial reads should call target_read (which will retry until
1207 it makes no progress, and then return how much was transferred). */
1208
1209 int
1210 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1211 {
1212 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1213 myaddr, memaddr, len) == len)
1214 return 0;
1215 else
1216 return -1;
1217 }
1218
1219 /* See target/target.h. */
1220
1221 int
1222 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1223 {
1224 gdb_byte buf[4];
1225 int r;
1226
1227 r = target_read_memory (memaddr, buf, sizeof buf);
1228 if (r != 0)
1229 return r;
1230 *result = extract_unsigned_integer (buf, sizeof buf,
1231 gdbarch_byte_order (target_gdbarch ()));
1232 return 0;
1233 }
1234
1235 /* Like target_read_memory, but specify explicitly that this is a read
1236 from the target's raw memory. That is, this read bypasses the
1237 dcache, breakpoint shadowing, etc. */
1238
1239 int
1240 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1241 {
1242 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1243 myaddr, memaddr, len) == len)
1244 return 0;
1245 else
1246 return -1;
1247 }
1248
1249 /* Like target_read_memory, but specify explicitly that this is a read from
1250 the target's stack. This may trigger different cache behavior. */
1251
1252 int
1253 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1254 {
1255 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1256 myaddr, memaddr, len) == len)
1257 return 0;
1258 else
1259 return -1;
1260 }
1261
1262 /* Like target_read_memory, but specify explicitly that this is a read from
1263 the target's code. This may trigger different cache behavior. */
1264
1265 int
1266 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1267 {
1268 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1269 myaddr, memaddr, len) == len)
1270 return 0;
1271 else
1272 return -1;
1273 }
1274
1275 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1276 Returns either 0 for success or -1 if any error occurs. If an
1277 error occurs, no guarantee is made about how much data got written.
1278 Callers that can deal with partial writes should call
1279 target_write. */
1280
1281 int
1282 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1283 {
1284 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1285 myaddr, memaddr, len) == len)
1286 return 0;
1287 else
1288 return -1;
1289 }
1290
1291 /* Write LEN bytes from MYADDR to target raw memory at address
1292 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1293 If an error occurs, no guarantee is made about how much data got
1294 written. Callers that can deal with partial writes should call
1295 target_write. */
1296
1297 int
1298 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1299 {
1300 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1301 myaddr, memaddr, len) == len)
1302 return 0;
1303 else
1304 return -1;
1305 }
1306
1307 /* Fetch the target's memory map. */
1308
1309 std::vector<mem_region>
1310 target_memory_map (void)
1311 {
1312 std::vector<mem_region> result = current_top_target ()->memory_map ();
1313 if (result.empty ())
1314 return result;
1315
1316 std::sort (result.begin (), result.end ());
1317
1318 /* Check that regions do not overlap. Simultaneously assign
1319 a numbering for the "mem" commands to use to refer to
1320 each region. */
1321 mem_region *last_one = NULL;
1322 for (size_t ix = 0; ix < result.size (); ix++)
1323 {
1324 mem_region *this_one = &result[ix];
1325 this_one->number = ix;
1326
1327 if (last_one != NULL && last_one->hi > this_one->lo)
1328 {
1329 warning (_("Overlapping regions in memory map: ignoring"));
1330 return std::vector<mem_region> ();
1331 }
1332
1333 last_one = this_one;
1334 }
1335
1336 return result;
1337 }
1338
1339 void
1340 target_flash_erase (ULONGEST address, LONGEST length)
1341 {
1342 current_top_target ()->flash_erase (address, length);
1343 }
1344
1345 void
1346 target_flash_done (void)
1347 {
1348 current_top_target ()->flash_done ();
1349 }
1350
1351 static void
1352 show_trust_readonly (struct ui_file *file, int from_tty,
1353 struct cmd_list_element *c, const char *value)
1354 {
1355 fprintf_filtered (file,
1356 _("Mode for reading from readonly sections is %s.\n"),
1357 value);
1358 }
1359
1360 /* Target vector read/write partial wrapper functions. */
1361
1362 static enum target_xfer_status
1363 target_read_partial (struct target_ops *ops,
1364 enum target_object object,
1365 const char *annex, gdb_byte *buf,
1366 ULONGEST offset, ULONGEST len,
1367 ULONGEST *xfered_len)
1368 {
1369 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1370 xfered_len);
1371 }
1372
1373 static enum target_xfer_status
1374 target_write_partial (struct target_ops *ops,
1375 enum target_object object,
1376 const char *annex, const gdb_byte *buf,
1377 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1378 {
1379 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1380 xfered_len);
1381 }
1382
1383 /* Wrappers to perform the full transfer. */
1384
1385 /* For docs on target_read see target.h. */
1386
1387 LONGEST
1388 target_read (struct target_ops *ops,
1389 enum target_object object,
1390 const char *annex, gdb_byte *buf,
1391 ULONGEST offset, LONGEST len)
1392 {
1393 LONGEST xfered_total = 0;
1394 int unit_size = 1;
1395
1396 /* If we are reading from a memory object, find the length of an addressable
1397 unit for that architecture. */
1398 if (object == TARGET_OBJECT_MEMORY
1399 || object == TARGET_OBJECT_STACK_MEMORY
1400 || object == TARGET_OBJECT_CODE_MEMORY
1401 || object == TARGET_OBJECT_RAW_MEMORY)
1402 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1403
1404 while (xfered_total < len)
1405 {
1406 ULONGEST xfered_partial;
1407 enum target_xfer_status status;
1408
1409 status = target_read_partial (ops, object, annex,
1410 buf + xfered_total * unit_size,
1411 offset + xfered_total, len - xfered_total,
1412 &xfered_partial);
1413
1414 /* Call an observer, notifying them of the xfer progress? */
1415 if (status == TARGET_XFER_EOF)
1416 return xfered_total;
1417 else if (status == TARGET_XFER_OK)
1418 {
1419 xfered_total += xfered_partial;
1420 QUIT;
1421 }
1422 else
1423 return TARGET_XFER_E_IO;
1424
1425 }
1426 return len;
1427 }
1428
1429 /* Assuming that the entire [begin, end) range of memory cannot be
1430 read, try to read whatever subrange is possible to read.
1431
1432 The function returns, in RESULT, either zero or one memory block.
1433 If there's a readable subrange at the beginning, it is completely
1434 read and returned. Any further readable subrange will not be read.
1435 Otherwise, if there's a readable subrange at the end, it will be
1436 completely read and returned. Any readable subranges before it
1437 (obviously, not starting at the beginning), will be ignored. In
1438 other cases -- either no readable subrange, or readable subrange(s)
1439 that is neither at the beginning, or end, nothing is returned.
1440
1441 The purpose of this function is to handle a read across a boundary
1442 of accessible memory in a case when memory map is not available.
1443 The above restrictions are fine for this case, but will give
1444 incorrect results if the memory is 'patchy'. However, supporting
1445 'patchy' memory would require trying to read every single byte,
1446 and it seems unacceptable solution. Explicit memory map is
1447 recommended for this case -- and target_read_memory_robust will
1448 take care of reading multiple ranges then. */
1449
1450 static void
1451 read_whatever_is_readable (struct target_ops *ops,
1452 const ULONGEST begin, const ULONGEST end,
1453 int unit_size,
1454 std::vector<memory_read_result> *result)
1455 {
1456 ULONGEST current_begin = begin;
1457 ULONGEST current_end = end;
1458 int forward;
1459 ULONGEST xfered_len;
1460
1461 /* If we previously failed to read 1 byte, nothing can be done here. */
1462 if (end - begin <= 1)
1463 return;
1464
1465 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1466
1467 /* Check that either first or the last byte is readable, and give up
1468 if not. This heuristic is meant to permit reading accessible memory
1469 at the boundary of accessible region. */
1470 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1471 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1472 {
1473 forward = 1;
1474 ++current_begin;
1475 }
1476 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1477 buf.get () + (end - begin) - 1, end - 1, 1,
1478 &xfered_len) == TARGET_XFER_OK)
1479 {
1480 forward = 0;
1481 --current_end;
1482 }
1483 else
1484 return;
1485
1486 /* Loop invariant is that the [current_begin, current_end) was previously
1487 found to be not readable as a whole.
1488
1489 Note loop condition -- if the range has 1 byte, we can't divide the range
1490 so there's no point trying further. */
1491 while (current_end - current_begin > 1)
1492 {
1493 ULONGEST first_half_begin, first_half_end;
1494 ULONGEST second_half_begin, second_half_end;
1495 LONGEST xfer;
1496 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1497
1498 if (forward)
1499 {
1500 first_half_begin = current_begin;
1501 first_half_end = middle;
1502 second_half_begin = middle;
1503 second_half_end = current_end;
1504 }
1505 else
1506 {
1507 first_half_begin = middle;
1508 first_half_end = current_end;
1509 second_half_begin = current_begin;
1510 second_half_end = middle;
1511 }
1512
1513 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1514 buf.get () + (first_half_begin - begin) * unit_size,
1515 first_half_begin,
1516 first_half_end - first_half_begin);
1517
1518 if (xfer == first_half_end - first_half_begin)
1519 {
1520 /* This half reads up fine. So, the error must be in the
1521 other half. */
1522 current_begin = second_half_begin;
1523 current_end = second_half_end;
1524 }
1525 else
1526 {
1527 /* This half is not readable. Because we've tried one byte, we
1528 know some part of this half if actually readable. Go to the next
1529 iteration to divide again and try to read.
1530
1531 We don't handle the other half, because this function only tries
1532 to read a single readable subrange. */
1533 current_begin = first_half_begin;
1534 current_end = first_half_end;
1535 }
1536 }
1537
1538 if (forward)
1539 {
1540 /* The [begin, current_begin) range has been read. */
1541 result->emplace_back (begin, current_end, std::move (buf));
1542 }
1543 else
1544 {
1545 /* The [current_end, end) range has been read. */
1546 LONGEST region_len = end - current_end;
1547
1548 gdb::unique_xmalloc_ptr<gdb_byte> data
1549 ((gdb_byte *) xmalloc (region_len * unit_size));
1550 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1551 region_len * unit_size);
1552 result->emplace_back (current_end, end, std::move (data));
1553 }
1554 }
1555
1556 std::vector<memory_read_result>
1557 read_memory_robust (struct target_ops *ops,
1558 const ULONGEST offset, const LONGEST len)
1559 {
1560 std::vector<memory_read_result> result;
1561 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1562
1563 LONGEST xfered_total = 0;
1564 while (xfered_total < len)
1565 {
1566 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1567 LONGEST region_len;
1568
1569 /* If there is no explicit region, a fake one should be created. */
1570 gdb_assert (region);
1571
1572 if (region->hi == 0)
1573 region_len = len - xfered_total;
1574 else
1575 region_len = region->hi - offset;
1576
1577 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1578 {
1579 /* Cannot read this region. Note that we can end up here only
1580 if the region is explicitly marked inaccessible, or
1581 'inaccessible-by-default' is in effect. */
1582 xfered_total += region_len;
1583 }
1584 else
1585 {
1586 LONGEST to_read = std::min (len - xfered_total, region_len);
1587 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1588 ((gdb_byte *) xmalloc (to_read * unit_size));
1589
1590 LONGEST xfered_partial =
1591 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1592 offset + xfered_total, to_read);
1593 /* Call an observer, notifying them of the xfer progress? */
1594 if (xfered_partial <= 0)
1595 {
1596 /* Got an error reading full chunk. See if maybe we can read
1597 some subrange. */
1598 read_whatever_is_readable (ops, offset + xfered_total,
1599 offset + xfered_total + to_read,
1600 unit_size, &result);
1601 xfered_total += to_read;
1602 }
1603 else
1604 {
1605 result.emplace_back (offset + xfered_total,
1606 offset + xfered_total + xfered_partial,
1607 std::move (buffer));
1608 xfered_total += xfered_partial;
1609 }
1610 QUIT;
1611 }
1612 }
1613
1614 return result;
1615 }
1616
1617
1618 /* An alternative to target_write with progress callbacks. */
1619
1620 LONGEST
1621 target_write_with_progress (struct target_ops *ops,
1622 enum target_object object,
1623 const char *annex, const gdb_byte *buf,
1624 ULONGEST offset, LONGEST len,
1625 void (*progress) (ULONGEST, void *), void *baton)
1626 {
1627 LONGEST xfered_total = 0;
1628 int unit_size = 1;
1629
1630 /* If we are writing to a memory object, find the length of an addressable
1631 unit for that architecture. */
1632 if (object == TARGET_OBJECT_MEMORY
1633 || object == TARGET_OBJECT_STACK_MEMORY
1634 || object == TARGET_OBJECT_CODE_MEMORY
1635 || object == TARGET_OBJECT_RAW_MEMORY)
1636 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1637
1638 /* Give the progress callback a chance to set up. */
1639 if (progress)
1640 (*progress) (0, baton);
1641
1642 while (xfered_total < len)
1643 {
1644 ULONGEST xfered_partial;
1645 enum target_xfer_status status;
1646
1647 status = target_write_partial (ops, object, annex,
1648 buf + xfered_total * unit_size,
1649 offset + xfered_total, len - xfered_total,
1650 &xfered_partial);
1651
1652 if (status != TARGET_XFER_OK)
1653 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1654
1655 if (progress)
1656 (*progress) (xfered_partial, baton);
1657
1658 xfered_total += xfered_partial;
1659 QUIT;
1660 }
1661 return len;
1662 }
1663
1664 /* For docs on target_write see target.h. */
1665
1666 LONGEST
1667 target_write (struct target_ops *ops,
1668 enum target_object object,
1669 const char *annex, const gdb_byte *buf,
1670 ULONGEST offset, LONGEST len)
1671 {
1672 return target_write_with_progress (ops, object, annex, buf, offset, len,
1673 NULL, NULL);
1674 }
1675
1676 /* Help for target_read_alloc and target_read_stralloc. See their comments
1677 for details. */
1678
1679 template <typename T>
1680 gdb::optional<gdb::def_vector<T>>
1681 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1682 const char *annex)
1683 {
1684 gdb::def_vector<T> buf;
1685 size_t buf_pos = 0;
1686 const int chunk = 4096;
1687
1688 /* This function does not have a length parameter; it reads the
1689 entire OBJECT). Also, it doesn't support objects fetched partly
1690 from one target and partly from another (in a different stratum,
1691 e.g. a core file and an executable). Both reasons make it
1692 unsuitable for reading memory. */
1693 gdb_assert (object != TARGET_OBJECT_MEMORY);
1694
1695 /* Start by reading up to 4K at a time. The target will throttle
1696 this number down if necessary. */
1697 while (1)
1698 {
1699 ULONGEST xfered_len;
1700 enum target_xfer_status status;
1701
1702 buf.resize (buf_pos + chunk);
1703
1704 status = target_read_partial (ops, object, annex,
1705 (gdb_byte *) &buf[buf_pos],
1706 buf_pos, chunk,
1707 &xfered_len);
1708
1709 if (status == TARGET_XFER_EOF)
1710 {
1711 /* Read all there was. */
1712 buf.resize (buf_pos);
1713 return buf;
1714 }
1715 else if (status != TARGET_XFER_OK)
1716 {
1717 /* An error occurred. */
1718 return {};
1719 }
1720
1721 buf_pos += xfered_len;
1722
1723 QUIT;
1724 }
1725 }
1726
1727 /* See target.h */
1728
1729 gdb::optional<gdb::byte_vector>
1730 target_read_alloc (struct target_ops *ops, enum target_object object,
1731 const char *annex)
1732 {
1733 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1734 }
1735
1736 /* See target.h. */
1737
1738 gdb::optional<gdb::char_vector>
1739 target_read_stralloc (struct target_ops *ops, enum target_object object,
1740 const char *annex)
1741 {
1742 gdb::optional<gdb::char_vector> buf
1743 = target_read_alloc_1<char> (ops, object, annex);
1744
1745 if (!buf)
1746 return {};
1747
1748 if (buf->empty () || buf->back () != '\0')
1749 buf->push_back ('\0');
1750
1751 /* Check for embedded NUL bytes; but allow trailing NULs. */
1752 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1753 it != buf->end (); it++)
1754 if (*it != '\0')
1755 {
1756 warning (_("target object %d, annex %s, "
1757 "contained unexpected null characters"),
1758 (int) object, annex ? annex : "(none)");
1759 break;
1760 }
1761
1762 return buf;
1763 }
1764
1765 /* Memory transfer methods. */
1766
1767 void
1768 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1769 LONGEST len)
1770 {
1771 /* This method is used to read from an alternate, non-current
1772 target. This read must bypass the overlay support (as symbols
1773 don't match this target), and GDB's internal cache (wrong cache
1774 for this target). */
1775 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1776 != len)
1777 memory_error (TARGET_XFER_E_IO, addr);
1778 }
1779
1780 ULONGEST
1781 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1782 int len, enum bfd_endian byte_order)
1783 {
1784 gdb_byte buf[sizeof (ULONGEST)];
1785
1786 gdb_assert (len <= sizeof (buf));
1787 get_target_memory (ops, addr, buf, len);
1788 return extract_unsigned_integer (buf, len, byte_order);
1789 }
1790
1791 /* See target.h. */
1792
1793 int
1794 target_insert_breakpoint (struct gdbarch *gdbarch,
1795 struct bp_target_info *bp_tgt)
1796 {
1797 if (!may_insert_breakpoints)
1798 {
1799 warning (_("May not insert breakpoints"));
1800 return 1;
1801 }
1802
1803 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1804 }
1805
1806 /* See target.h. */
1807
1808 int
1809 target_remove_breakpoint (struct gdbarch *gdbarch,
1810 struct bp_target_info *bp_tgt,
1811 enum remove_bp_reason reason)
1812 {
1813 /* This is kind of a weird case to handle, but the permission might
1814 have been changed after breakpoints were inserted - in which case
1815 we should just take the user literally and assume that any
1816 breakpoints should be left in place. */
1817 if (!may_insert_breakpoints)
1818 {
1819 warning (_("May not remove breakpoints"));
1820 return 1;
1821 }
1822
1823 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1824 }
1825
1826 static void
1827 info_target_command (const char *args, int from_tty)
1828 {
1829 int has_all_mem = 0;
1830
1831 if (symfile_objfile != NULL)
1832 printf_unfiltered (_("Symbols from \"%s\".\n"),
1833 objfile_name (symfile_objfile));
1834
1835 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1836 {
1837 if (!t->has_memory ())
1838 continue;
1839
1840 if ((int) (t->stratum ()) <= (int) dummy_stratum)
1841 continue;
1842 if (has_all_mem)
1843 printf_unfiltered (_("\tWhile running this, "
1844 "GDB does not access memory from...\n"));
1845 printf_unfiltered ("%s:\n", t->longname ());
1846 t->files_info ();
1847 has_all_mem = t->has_all_memory ();
1848 }
1849 }
1850
1851 /* This function is called before any new inferior is created, e.g.
1852 by running a program, attaching, or connecting to a target.
1853 It cleans up any state from previous invocations which might
1854 change between runs. This is a subset of what target_preopen
1855 resets (things which might change between targets). */
1856
1857 void
1858 target_pre_inferior (int from_tty)
1859 {
1860 /* Clear out solib state. Otherwise the solib state of the previous
1861 inferior might have survived and is entirely wrong for the new
1862 target. This has been observed on GNU/Linux using glibc 2.3. How
1863 to reproduce:
1864
1865 bash$ ./foo&
1866 [1] 4711
1867 bash$ ./foo&
1868 [1] 4712
1869 bash$ gdb ./foo
1870 [...]
1871 (gdb) attach 4711
1872 (gdb) detach
1873 (gdb) attach 4712
1874 Cannot access memory at address 0xdeadbeef
1875 */
1876
1877 /* In some OSs, the shared library list is the same/global/shared
1878 across inferiors. If code is shared between processes, so are
1879 memory regions and features. */
1880 if (!gdbarch_has_global_solist (target_gdbarch ()))
1881 {
1882 no_shared_libraries (NULL, from_tty);
1883
1884 invalidate_target_mem_regions ();
1885
1886 target_clear_description ();
1887 }
1888
1889 /* attach_flag may be set if the previous process associated with
1890 the inferior was attached to. */
1891 current_inferior ()->attach_flag = 0;
1892
1893 current_inferior ()->highest_thread_num = 0;
1894
1895 agent_capability_invalidate ();
1896 }
1897
1898 /* This is to be called by the open routine before it does
1899 anything. */
1900
1901 void
1902 target_preopen (int from_tty)
1903 {
1904 dont_repeat ();
1905
1906 if (current_inferior ()->pid != 0)
1907 {
1908 if (!from_tty
1909 || !target_has_execution ()
1910 || query (_("A program is being debugged already. Kill it? ")))
1911 {
1912 /* Core inferiors actually should be detached, not
1913 killed. */
1914 if (target_has_execution ())
1915 target_kill ();
1916 else
1917 target_detach (current_inferior (), 0);
1918 }
1919 else
1920 error (_("Program not killed."));
1921 }
1922
1923 /* Calling target_kill may remove the target from the stack. But if
1924 it doesn't (which seems like a win for UDI), remove it now. */
1925 /* Leave the exec target, though. The user may be switching from a
1926 live process to a core of the same program. */
1927 pop_all_targets_above (file_stratum);
1928
1929 target_pre_inferior (from_tty);
1930 }
1931
1932 /* See target.h. */
1933
1934 void
1935 target_detach (inferior *inf, int from_tty)
1936 {
1937 /* After we have detached, we will clear the register cache for this inferior
1938 by calling registers_changed_ptid. We must save the pid_ptid before
1939 detaching, as the target detach method will clear inf->pid. */
1940 ptid_t save_pid_ptid = ptid_t (inf->pid);
1941
1942 /* As long as some to_detach implementations rely on the current_inferior
1943 (either directly, or indirectly, like through target_gdbarch or by
1944 reading memory), INF needs to be the current inferior. When that
1945 requirement will become no longer true, then we can remove this
1946 assertion. */
1947 gdb_assert (inf == current_inferior ());
1948
1949 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
1950 /* Don't remove global breakpoints here. They're removed on
1951 disconnection from the target. */
1952 ;
1953 else
1954 /* If we're in breakpoints-always-inserted mode, have to remove
1955 breakpoints before detaching. */
1956 remove_breakpoints_inf (current_inferior ());
1957
1958 prepare_for_detach ();
1959
1960 /* Hold a strong reference because detaching may unpush the
1961 target. */
1962 auto proc_target_ref = target_ops_ref::new_reference (inf->process_target ());
1963
1964 current_top_target ()->detach (inf, from_tty);
1965
1966 process_stratum_target *proc_target
1967 = as_process_stratum_target (proc_target_ref.get ());
1968
1969 registers_changed_ptid (proc_target, save_pid_ptid);
1970
1971 /* We have to ensure we have no frame cache left. Normally,
1972 registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
1973 inferior_ptid matches save_pid_ptid, but in our case, it does not
1974 call it, as inferior_ptid has been reset. */
1975 reinit_frame_cache ();
1976 }
1977
1978 void
1979 target_disconnect (const char *args, int from_tty)
1980 {
1981 /* If we're in breakpoints-always-inserted mode or if breakpoints
1982 are global across processes, we have to remove them before
1983 disconnecting. */
1984 remove_breakpoints ();
1985
1986 current_top_target ()->disconnect (args, from_tty);
1987 }
1988
1989 /* See target/target.h. */
1990
1991 ptid_t
1992 target_wait (ptid_t ptid, struct target_waitstatus *status,
1993 target_wait_flags options)
1994 {
1995 target_ops *target = current_top_target ();
1996
1997 if (!target->can_async_p ())
1998 gdb_assert ((options & TARGET_WNOHANG) == 0);
1999
2000 return target->wait (ptid, status, options);
2001 }
2002
2003 /* See target.h. */
2004
2005 ptid_t
2006 default_target_wait (struct target_ops *ops,
2007 ptid_t ptid, struct target_waitstatus *status,
2008 target_wait_flags options)
2009 {
2010 status->kind = TARGET_WAITKIND_IGNORE;
2011 return minus_one_ptid;
2012 }
2013
2014 std::string
2015 target_pid_to_str (ptid_t ptid)
2016 {
2017 return current_top_target ()->pid_to_str (ptid);
2018 }
2019
2020 const char *
2021 target_thread_name (struct thread_info *info)
2022 {
2023 gdb_assert (info->inf == current_inferior ());
2024
2025 return current_top_target ()->thread_name (info);
2026 }
2027
2028 struct thread_info *
2029 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2030 int handle_len,
2031 struct inferior *inf)
2032 {
2033 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2034 handle_len, inf);
2035 }
2036
2037 /* See target.h. */
2038
2039 gdb::byte_vector
2040 target_thread_info_to_thread_handle (struct thread_info *tip)
2041 {
2042 return current_top_target ()->thread_info_to_thread_handle (tip);
2043 }
2044
2045 void
2046 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2047 {
2048 process_stratum_target *curr_target = current_inferior ()->process_target ();
2049
2050 target_dcache_invalidate ();
2051
2052 current_top_target ()->resume (ptid, step, signal);
2053
2054 registers_changed_ptid (curr_target, ptid);
2055 /* We only set the internal executing state here. The user/frontend
2056 running state is set at a higher level. This also clears the
2057 thread's stop_pc as side effect. */
2058 set_executing (curr_target, ptid, true);
2059 clear_inline_frame_state (curr_target, ptid);
2060 }
2061
2062 /* If true, target_commit_resume is a nop. */
2063 static int defer_target_commit_resume;
2064
2065 /* See target.h. */
2066
2067 void
2068 target_commit_resume (void)
2069 {
2070 if (defer_target_commit_resume)
2071 return;
2072
2073 current_top_target ()->commit_resume ();
2074 }
2075
2076 /* See target.h. */
2077
2078 scoped_restore_tmpl<int>
2079 make_scoped_defer_target_commit_resume ()
2080 {
2081 return make_scoped_restore (&defer_target_commit_resume, 1);
2082 }
2083
2084 void
2085 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2086 {
2087 current_top_target ()->pass_signals (pass_signals);
2088 }
2089
2090 void
2091 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2092 {
2093 current_top_target ()->program_signals (program_signals);
2094 }
2095
2096 static bool
2097 default_follow_fork (struct target_ops *self, bool follow_child,
2098 bool detach_fork)
2099 {
2100 /* Some target returned a fork event, but did not know how to follow it. */
2101 internal_error (__FILE__, __LINE__,
2102 _("could not find a target to follow fork"));
2103 }
2104
2105 /* Look through the list of possible targets for a target that can
2106 follow forks. */
2107
2108 bool
2109 target_follow_fork (bool follow_child, bool detach_fork)
2110 {
2111 return current_top_target ()->follow_fork (follow_child, detach_fork);
2112 }
2113
2114 /* Target wrapper for follow exec hook. */
2115
2116 void
2117 target_follow_exec (struct inferior *inf, const char *execd_pathname)
2118 {
2119 current_top_target ()->follow_exec (inf, execd_pathname);
2120 }
2121
2122 static void
2123 default_mourn_inferior (struct target_ops *self)
2124 {
2125 internal_error (__FILE__, __LINE__,
2126 _("could not find a target to follow mourn inferior"));
2127 }
2128
2129 void
2130 target_mourn_inferior (ptid_t ptid)
2131 {
2132 gdb_assert (ptid == inferior_ptid);
2133 current_top_target ()->mourn_inferior ();
2134
2135 /* We no longer need to keep handles on any of the object files.
2136 Make sure to release them to avoid unnecessarily locking any
2137 of them while we're not actually debugging. */
2138 bfd_cache_close_all ();
2139 }
2140
2141 /* Look for a target which can describe architectural features, starting
2142 from TARGET. If we find one, return its description. */
2143
2144 const struct target_desc *
2145 target_read_description (struct target_ops *target)
2146 {
2147 return target->read_description ();
2148 }
2149
2150
2151 /* Default implementation of memory-searching. */
2152
2153 static int
2154 default_search_memory (struct target_ops *self,
2155 CORE_ADDR start_addr, ULONGEST search_space_len,
2156 const gdb_byte *pattern, ULONGEST pattern_len,
2157 CORE_ADDR *found_addrp)
2158 {
2159 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
2160 {
2161 return target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
2162 result, addr, len) == len;
2163 };
2164
2165 /* Start over from the top of the target stack. */
2166 return simple_search_memory (read_memory, start_addr, search_space_len,
2167 pattern, pattern_len, found_addrp);
2168 }
2169
2170 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2171 sequence of bytes in PATTERN with length PATTERN_LEN.
2172
2173 The result is 1 if found, 0 if not found, and -1 if there was an error
2174 requiring halting of the search (e.g. memory read error).
2175 If the pattern is found the address is recorded in FOUND_ADDRP. */
2176
2177 int
2178 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2179 const gdb_byte *pattern, ULONGEST pattern_len,
2180 CORE_ADDR *found_addrp)
2181 {
2182 return current_top_target ()->search_memory (start_addr, search_space_len,
2183 pattern, pattern_len, found_addrp);
2184 }
2185
2186 /* Look through the currently pushed targets. If none of them will
2187 be able to restart the currently running process, issue an error
2188 message. */
2189
2190 void
2191 target_require_runnable (void)
2192 {
2193 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2194 {
2195 /* If this target knows how to create a new program, then
2196 assume we will still be able to after killing the current
2197 one. Either killing and mourning will not pop T, or else
2198 find_default_run_target will find it again. */
2199 if (t->can_create_inferior ())
2200 return;
2201
2202 /* Do not worry about targets at certain strata that can not
2203 create inferiors. Assume they will be pushed again if
2204 necessary, and continue to the process_stratum. */
2205 if (t->stratum () > process_stratum)
2206 continue;
2207
2208 error (_("The \"%s\" target does not support \"run\". "
2209 "Try \"help target\" or \"continue\"."),
2210 t->shortname ());
2211 }
2212
2213 /* This function is only called if the target is running. In that
2214 case there should have been a process_stratum target and it
2215 should either know how to create inferiors, or not... */
2216 internal_error (__FILE__, __LINE__, _("No targets found"));
2217 }
2218
2219 /* Whether GDB is allowed to fall back to the default run target for
2220 "run", "attach", etc. when no target is connected yet. */
2221 static bool auto_connect_native_target = true;
2222
2223 static void
2224 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2225 struct cmd_list_element *c, const char *value)
2226 {
2227 fprintf_filtered (file,
2228 _("Whether GDB may automatically connect to the "
2229 "native target is %s.\n"),
2230 value);
2231 }
2232
2233 /* A pointer to the target that can respond to "run" or "attach".
2234 Native targets are always singletons and instantiated early at GDB
2235 startup. */
2236 static target_ops *the_native_target;
2237
2238 /* See target.h. */
2239
2240 void
2241 set_native_target (target_ops *target)
2242 {
2243 if (the_native_target != NULL)
2244 internal_error (__FILE__, __LINE__,
2245 _("native target already set (\"%s\")."),
2246 the_native_target->longname ());
2247
2248 the_native_target = target;
2249 }
2250
2251 /* See target.h. */
2252
2253 target_ops *
2254 get_native_target ()
2255 {
2256 return the_native_target;
2257 }
2258
2259 /* Look through the list of possible targets for a target that can
2260 execute a run or attach command without any other data. This is
2261 used to locate the default process stratum.
2262
2263 If DO_MESG is not NULL, the result is always valid (error() is
2264 called for errors); else, return NULL on error. */
2265
2266 static struct target_ops *
2267 find_default_run_target (const char *do_mesg)
2268 {
2269 if (auto_connect_native_target && the_native_target != NULL)
2270 return the_native_target;
2271
2272 if (do_mesg != NULL)
2273 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2274 return NULL;
2275 }
2276
2277 /* See target.h. */
2278
2279 struct target_ops *
2280 find_attach_target (void)
2281 {
2282 /* If a target on the current stack can attach, use it. */
2283 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2284 {
2285 if (t->can_attach ())
2286 return t;
2287 }
2288
2289 /* Otherwise, use the default run target for attaching. */
2290 return find_default_run_target ("attach");
2291 }
2292
2293 /* See target.h. */
2294
2295 struct target_ops *
2296 find_run_target (void)
2297 {
2298 /* If a target on the current stack can run, use it. */
2299 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2300 {
2301 if (t->can_create_inferior ())
2302 return t;
2303 }
2304
2305 /* Otherwise, use the default run target. */
2306 return find_default_run_target ("run");
2307 }
2308
2309 bool
2310 target_ops::info_proc (const char *args, enum info_proc_what what)
2311 {
2312 return false;
2313 }
2314
2315 /* Implement the "info proc" command. */
2316
2317 int
2318 target_info_proc (const char *args, enum info_proc_what what)
2319 {
2320 struct target_ops *t;
2321
2322 /* If we're already connected to something that can get us OS
2323 related data, use it. Otherwise, try using the native
2324 target. */
2325 t = find_target_at (process_stratum);
2326 if (t == NULL)
2327 t = find_default_run_target (NULL);
2328
2329 for (; t != NULL; t = t->beneath ())
2330 {
2331 if (t->info_proc (args, what))
2332 {
2333 if (targetdebug)
2334 fprintf_unfiltered (gdb_stdlog,
2335 "target_info_proc (\"%s\", %d)\n", args, what);
2336
2337 return 1;
2338 }
2339 }
2340
2341 return 0;
2342 }
2343
2344 static int
2345 find_default_supports_disable_randomization (struct target_ops *self)
2346 {
2347 struct target_ops *t;
2348
2349 t = find_default_run_target (NULL);
2350 if (t != NULL)
2351 return t->supports_disable_randomization ();
2352 return 0;
2353 }
2354
2355 int
2356 target_supports_disable_randomization (void)
2357 {
2358 return current_top_target ()->supports_disable_randomization ();
2359 }
2360
2361 /* See target/target.h. */
2362
2363 int
2364 target_supports_multi_process (void)
2365 {
2366 return current_top_target ()->supports_multi_process ();
2367 }
2368
2369 /* See target.h. */
2370
2371 gdb::optional<gdb::char_vector>
2372 target_get_osdata (const char *type)
2373 {
2374 struct target_ops *t;
2375
2376 /* If we're already connected to something that can get us OS
2377 related data, use it. Otherwise, try using the native
2378 target. */
2379 t = find_target_at (process_stratum);
2380 if (t == NULL)
2381 t = find_default_run_target ("get OS data");
2382
2383 if (!t)
2384 return {};
2385
2386 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2387 }
2388
2389 /* Determine the current address space of thread PTID. */
2390
2391 struct address_space *
2392 target_thread_address_space (ptid_t ptid)
2393 {
2394 struct address_space *aspace;
2395
2396 aspace = current_top_target ()->thread_address_space (ptid);
2397 gdb_assert (aspace != NULL);
2398
2399 return aspace;
2400 }
2401
2402 /* See target.h. */
2403
2404 target_ops *
2405 target_ops::beneath () const
2406 {
2407 return current_inferior ()->find_target_beneath (this);
2408 }
2409
2410 void
2411 target_ops::close ()
2412 {
2413 }
2414
2415 bool
2416 target_ops::can_attach ()
2417 {
2418 return 0;
2419 }
2420
2421 void
2422 target_ops::attach (const char *, int)
2423 {
2424 gdb_assert_not_reached ("target_ops::attach called");
2425 }
2426
2427 bool
2428 target_ops::can_create_inferior ()
2429 {
2430 return 0;
2431 }
2432
2433 void
2434 target_ops::create_inferior (const char *, const std::string &,
2435 char **, int)
2436 {
2437 gdb_assert_not_reached ("target_ops::create_inferior called");
2438 }
2439
2440 bool
2441 target_ops::can_run ()
2442 {
2443 return false;
2444 }
2445
2446 int
2447 target_can_run ()
2448 {
2449 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2450 {
2451 if (t->can_run ())
2452 return 1;
2453 }
2454
2455 return 0;
2456 }
2457
2458 /* Target file operations. */
2459
2460 static struct target_ops *
2461 default_fileio_target (void)
2462 {
2463 struct target_ops *t;
2464
2465 /* If we're already connected to something that can perform
2466 file I/O, use it. Otherwise, try using the native target. */
2467 t = find_target_at (process_stratum);
2468 if (t != NULL)
2469 return t;
2470 return find_default_run_target ("file I/O");
2471 }
2472
2473 /* File handle for target file operations. */
2474
2475 struct fileio_fh_t
2476 {
2477 /* The target on which this file is open. NULL if the target is
2478 meanwhile closed while the handle is open. */
2479 target_ops *target;
2480
2481 /* The file descriptor on the target. */
2482 int target_fd;
2483
2484 /* Check whether this fileio_fh_t represents a closed file. */
2485 bool is_closed ()
2486 {
2487 return target_fd < 0;
2488 }
2489 };
2490
2491 /* Vector of currently open file handles. The value returned by
2492 target_fileio_open and passed as the FD argument to other
2493 target_fileio_* functions is an index into this vector. This
2494 vector's entries are never freed; instead, files are marked as
2495 closed, and the handle becomes available for reuse. */
2496 static std::vector<fileio_fh_t> fileio_fhandles;
2497
2498 /* Index into fileio_fhandles of the lowest handle that might be
2499 closed. This permits handle reuse without searching the whole
2500 list each time a new file is opened. */
2501 static int lowest_closed_fd;
2502
2503 /* Invalidate the target associated with open handles that were open
2504 on target TARG, since we're about to close (and maybe destroy) the
2505 target. The handles remain open from the client's perspective, but
2506 trying to do anything with them other than closing them will fail
2507 with EIO. */
2508
2509 static void
2510 fileio_handles_invalidate_target (target_ops *targ)
2511 {
2512 for (fileio_fh_t &fh : fileio_fhandles)
2513 if (fh.target == targ)
2514 fh.target = NULL;
2515 }
2516
2517 /* Acquire a target fileio file descriptor. */
2518
2519 static int
2520 acquire_fileio_fd (target_ops *target, int target_fd)
2521 {
2522 /* Search for closed handles to reuse. */
2523 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2524 {
2525 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2526
2527 if (fh.is_closed ())
2528 break;
2529 }
2530
2531 /* Push a new handle if no closed handles were found. */
2532 if (lowest_closed_fd == fileio_fhandles.size ())
2533 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2534 else
2535 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2536
2537 /* Should no longer be marked closed. */
2538 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2539
2540 /* Return its index, and start the next lookup at
2541 the next index. */
2542 return lowest_closed_fd++;
2543 }
2544
2545 /* Release a target fileio file descriptor. */
2546
2547 static void
2548 release_fileio_fd (int fd, fileio_fh_t *fh)
2549 {
2550 fh->target_fd = -1;
2551 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2552 }
2553
2554 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2555
2556 static fileio_fh_t *
2557 fileio_fd_to_fh (int fd)
2558 {
2559 return &fileio_fhandles[fd];
2560 }
2561
2562
2563 /* Default implementations of file i/o methods. We don't want these
2564 to delegate automatically, because we need to know which target
2565 supported the method, in order to call it directly from within
2566 pread/pwrite, etc. */
2567
2568 int
2569 target_ops::fileio_open (struct inferior *inf, const char *filename,
2570 int flags, int mode, int warn_if_slow,
2571 int *target_errno)
2572 {
2573 *target_errno = FILEIO_ENOSYS;
2574 return -1;
2575 }
2576
2577 int
2578 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2579 ULONGEST offset, int *target_errno)
2580 {
2581 *target_errno = FILEIO_ENOSYS;
2582 return -1;
2583 }
2584
2585 int
2586 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2587 ULONGEST offset, int *target_errno)
2588 {
2589 *target_errno = FILEIO_ENOSYS;
2590 return -1;
2591 }
2592
2593 int
2594 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2595 {
2596 *target_errno = FILEIO_ENOSYS;
2597 return -1;
2598 }
2599
2600 int
2601 target_ops::fileio_close (int fd, int *target_errno)
2602 {
2603 *target_errno = FILEIO_ENOSYS;
2604 return -1;
2605 }
2606
2607 int
2608 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2609 int *target_errno)
2610 {
2611 *target_errno = FILEIO_ENOSYS;
2612 return -1;
2613 }
2614
2615 gdb::optional<std::string>
2616 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2617 int *target_errno)
2618 {
2619 *target_errno = FILEIO_ENOSYS;
2620 return {};
2621 }
2622
2623 /* See target.h. */
2624
2625 int
2626 target_fileio_open (struct inferior *inf, const char *filename,
2627 int flags, int mode, bool warn_if_slow, int *target_errno)
2628 {
2629 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2630 {
2631 int fd = t->fileio_open (inf, filename, flags, mode,
2632 warn_if_slow, target_errno);
2633
2634 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2635 continue;
2636
2637 if (fd < 0)
2638 fd = -1;
2639 else
2640 fd = acquire_fileio_fd (t, fd);
2641
2642 if (targetdebug)
2643 fprintf_unfiltered (gdb_stdlog,
2644 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2645 " = %d (%d)\n",
2646 inf == NULL ? 0 : inf->num,
2647 filename, flags, mode,
2648 warn_if_slow, fd,
2649 fd != -1 ? 0 : *target_errno);
2650 return fd;
2651 }
2652
2653 *target_errno = FILEIO_ENOSYS;
2654 return -1;
2655 }
2656
2657 /* See target.h. */
2658
2659 int
2660 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2661 ULONGEST offset, int *target_errno)
2662 {
2663 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2664 int ret = -1;
2665
2666 if (fh->is_closed ())
2667 *target_errno = EBADF;
2668 else if (fh->target == NULL)
2669 *target_errno = EIO;
2670 else
2671 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2672 len, offset, target_errno);
2673
2674 if (targetdebug)
2675 fprintf_unfiltered (gdb_stdlog,
2676 "target_fileio_pwrite (%d,...,%d,%s) "
2677 "= %d (%d)\n",
2678 fd, len, pulongest (offset),
2679 ret, ret != -1 ? 0 : *target_errno);
2680 return ret;
2681 }
2682
2683 /* See target.h. */
2684
2685 int
2686 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2687 ULONGEST offset, int *target_errno)
2688 {
2689 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2690 int ret = -1;
2691
2692 if (fh->is_closed ())
2693 *target_errno = EBADF;
2694 else if (fh->target == NULL)
2695 *target_errno = EIO;
2696 else
2697 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2698 len, offset, target_errno);
2699
2700 if (targetdebug)
2701 fprintf_unfiltered (gdb_stdlog,
2702 "target_fileio_pread (%d,...,%d,%s) "
2703 "= %d (%d)\n",
2704 fd, len, pulongest (offset),
2705 ret, ret != -1 ? 0 : *target_errno);
2706 return ret;
2707 }
2708
2709 /* See target.h. */
2710
2711 int
2712 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2713 {
2714 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2715 int ret = -1;
2716
2717 if (fh->is_closed ())
2718 *target_errno = EBADF;
2719 else if (fh->target == NULL)
2720 *target_errno = EIO;
2721 else
2722 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2723
2724 if (targetdebug)
2725 fprintf_unfiltered (gdb_stdlog,
2726 "target_fileio_fstat (%d) = %d (%d)\n",
2727 fd, ret, ret != -1 ? 0 : *target_errno);
2728 return ret;
2729 }
2730
2731 /* See target.h. */
2732
2733 int
2734 target_fileio_close (int fd, int *target_errno)
2735 {
2736 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2737 int ret = -1;
2738
2739 if (fh->is_closed ())
2740 *target_errno = EBADF;
2741 else
2742 {
2743 if (fh->target != NULL)
2744 ret = fh->target->fileio_close (fh->target_fd,
2745 target_errno);
2746 else
2747 ret = 0;
2748 release_fileio_fd (fd, fh);
2749 }
2750
2751 if (targetdebug)
2752 fprintf_unfiltered (gdb_stdlog,
2753 "target_fileio_close (%d) = %d (%d)\n",
2754 fd, ret, ret != -1 ? 0 : *target_errno);
2755 return ret;
2756 }
2757
2758 /* See target.h. */
2759
2760 int
2761 target_fileio_unlink (struct inferior *inf, const char *filename,
2762 int *target_errno)
2763 {
2764 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2765 {
2766 int ret = t->fileio_unlink (inf, filename, target_errno);
2767
2768 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2769 continue;
2770
2771 if (targetdebug)
2772 fprintf_unfiltered (gdb_stdlog,
2773 "target_fileio_unlink (%d,%s)"
2774 " = %d (%d)\n",
2775 inf == NULL ? 0 : inf->num, filename,
2776 ret, ret != -1 ? 0 : *target_errno);
2777 return ret;
2778 }
2779
2780 *target_errno = FILEIO_ENOSYS;
2781 return -1;
2782 }
2783
2784 /* See target.h. */
2785
2786 gdb::optional<std::string>
2787 target_fileio_readlink (struct inferior *inf, const char *filename,
2788 int *target_errno)
2789 {
2790 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2791 {
2792 gdb::optional<std::string> ret
2793 = t->fileio_readlink (inf, filename, target_errno);
2794
2795 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
2796 continue;
2797
2798 if (targetdebug)
2799 fprintf_unfiltered (gdb_stdlog,
2800 "target_fileio_readlink (%d,%s)"
2801 " = %s (%d)\n",
2802 inf == NULL ? 0 : inf->num,
2803 filename, ret ? ret->c_str () : "(nil)",
2804 ret ? 0 : *target_errno);
2805 return ret;
2806 }
2807
2808 *target_errno = FILEIO_ENOSYS;
2809 return {};
2810 }
2811
2812 /* Like scoped_fd, but specific to target fileio. */
2813
2814 class scoped_target_fd
2815 {
2816 public:
2817 explicit scoped_target_fd (int fd) noexcept
2818 : m_fd (fd)
2819 {
2820 }
2821
2822 ~scoped_target_fd ()
2823 {
2824 if (m_fd >= 0)
2825 {
2826 int target_errno;
2827
2828 target_fileio_close (m_fd, &target_errno);
2829 }
2830 }
2831
2832 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
2833
2834 int get () const noexcept
2835 {
2836 return m_fd;
2837 }
2838
2839 private:
2840 int m_fd;
2841 };
2842
2843 /* Read target file FILENAME, in the filesystem as seen by INF. If
2844 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2845 remote targets, the remote stub). Store the result in *BUF_P and
2846 return the size of the transferred data. PADDING additional bytes
2847 are available in *BUF_P. This is a helper function for
2848 target_fileio_read_alloc; see the declaration of that function for
2849 more information. */
2850
2851 static LONGEST
2852 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
2853 gdb_byte **buf_p, int padding)
2854 {
2855 size_t buf_alloc, buf_pos;
2856 gdb_byte *buf;
2857 LONGEST n;
2858 int target_errno;
2859
2860 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
2861 0700, false, &target_errno));
2862 if (fd.get () == -1)
2863 return -1;
2864
2865 /* Start by reading up to 4K at a time. The target will throttle
2866 this number down if necessary. */
2867 buf_alloc = 4096;
2868 buf = (gdb_byte *) xmalloc (buf_alloc);
2869 buf_pos = 0;
2870 while (1)
2871 {
2872 n = target_fileio_pread (fd.get (), &buf[buf_pos],
2873 buf_alloc - buf_pos - padding, buf_pos,
2874 &target_errno);
2875 if (n < 0)
2876 {
2877 /* An error occurred. */
2878 xfree (buf);
2879 return -1;
2880 }
2881 else if (n == 0)
2882 {
2883 /* Read all there was. */
2884 if (buf_pos == 0)
2885 xfree (buf);
2886 else
2887 *buf_p = buf;
2888 return buf_pos;
2889 }
2890
2891 buf_pos += n;
2892
2893 /* If the buffer is filling up, expand it. */
2894 if (buf_alloc < buf_pos * 2)
2895 {
2896 buf_alloc *= 2;
2897 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
2898 }
2899
2900 QUIT;
2901 }
2902 }
2903
2904 /* See target.h. */
2905
2906 LONGEST
2907 target_fileio_read_alloc (struct inferior *inf, const char *filename,
2908 gdb_byte **buf_p)
2909 {
2910 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
2911 }
2912
2913 /* See target.h. */
2914
2915 gdb::unique_xmalloc_ptr<char>
2916 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
2917 {
2918 gdb_byte *buffer;
2919 char *bufstr;
2920 LONGEST i, transferred;
2921
2922 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
2923 bufstr = (char *) buffer;
2924
2925 if (transferred < 0)
2926 return gdb::unique_xmalloc_ptr<char> (nullptr);
2927
2928 if (transferred == 0)
2929 return make_unique_xstrdup ("");
2930
2931 bufstr[transferred] = 0;
2932
2933 /* Check for embedded NUL bytes; but allow trailing NULs. */
2934 for (i = strlen (bufstr); i < transferred; i++)
2935 if (bufstr[i] != 0)
2936 {
2937 warning (_("target file %s "
2938 "contained unexpected null characters"),
2939 filename);
2940 break;
2941 }
2942
2943 return gdb::unique_xmalloc_ptr<char> (bufstr);
2944 }
2945
2946
2947 static int
2948 default_region_ok_for_hw_watchpoint (struct target_ops *self,
2949 CORE_ADDR addr, int len)
2950 {
2951 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
2952 }
2953
2954 static int
2955 default_watchpoint_addr_within_range (struct target_ops *target,
2956 CORE_ADDR addr,
2957 CORE_ADDR start, int length)
2958 {
2959 return addr >= start && addr < start + length;
2960 }
2961
2962 /* See target.h. */
2963
2964 target_ops *
2965 target_stack::find_beneath (const target_ops *t) const
2966 {
2967 /* Look for a non-empty slot at stratum levels beneath T's. */
2968 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
2969 if (m_stack[stratum] != NULL)
2970 return m_stack[stratum];
2971
2972 return NULL;
2973 }
2974
2975 /* See target.h. */
2976
2977 struct target_ops *
2978 find_target_at (enum strata stratum)
2979 {
2980 return current_inferior ()->target_at (stratum);
2981 }
2982
2983 \f
2984
2985 /* See target.h */
2986
2987 void
2988 target_announce_detach (int from_tty)
2989 {
2990 pid_t pid;
2991 const char *exec_file;
2992
2993 if (!from_tty)
2994 return;
2995
2996 exec_file = get_exec_file (0);
2997 if (exec_file == NULL)
2998 exec_file = "";
2999
3000 pid = inferior_ptid.pid ();
3001 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3002 target_pid_to_str (ptid_t (pid)).c_str ());
3003 }
3004
3005 /* The inferior process has died. Long live the inferior! */
3006
3007 void
3008 generic_mourn_inferior (void)
3009 {
3010 inferior *inf = current_inferior ();
3011
3012 switch_to_no_thread ();
3013
3014 /* Mark breakpoints uninserted in case something tries to delete a
3015 breakpoint while we delete the inferior's threads (which would
3016 fail, since the inferior is long gone). */
3017 mark_breakpoints_out ();
3018
3019 if (inf->pid != 0)
3020 exit_inferior (inf);
3021
3022 /* Note this wipes step-resume breakpoints, so needs to be done
3023 after exit_inferior, which ends up referencing the step-resume
3024 breakpoints through clear_thread_inferior_resources. */
3025 breakpoint_init_inferior (inf_exited);
3026
3027 registers_changed ();
3028
3029 reopen_exec_file ();
3030 reinit_frame_cache ();
3031
3032 if (deprecated_detach_hook)
3033 deprecated_detach_hook ();
3034 }
3035 \f
3036 /* Convert a normal process ID to a string. Returns the string in a
3037 static buffer. */
3038
3039 std::string
3040 normal_pid_to_str (ptid_t ptid)
3041 {
3042 return string_printf ("process %d", ptid.pid ());
3043 }
3044
3045 static std::string
3046 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3047 {
3048 return normal_pid_to_str (ptid);
3049 }
3050
3051 /* Error-catcher for target_find_memory_regions. */
3052 static int
3053 dummy_find_memory_regions (struct target_ops *self,
3054 find_memory_region_ftype ignore1, void *ignore2)
3055 {
3056 error (_("Command not implemented for this target."));
3057 return 0;
3058 }
3059
3060 /* Error-catcher for target_make_corefile_notes. */
3061 static gdb::unique_xmalloc_ptr<char>
3062 dummy_make_corefile_notes (struct target_ops *self,
3063 bfd *ignore1, int *ignore2)
3064 {
3065 error (_("Command not implemented for this target."));
3066 return NULL;
3067 }
3068
3069 #include "target-delegates.c"
3070
3071 /* The initial current target, so that there is always a semi-valid
3072 current target. */
3073
3074 static dummy_target the_dummy_target;
3075
3076 /* See target.h. */
3077
3078 target_ops *
3079 get_dummy_target ()
3080 {
3081 return &the_dummy_target;
3082 }
3083
3084 static const target_info dummy_target_info = {
3085 "None",
3086 N_("None"),
3087 ""
3088 };
3089
3090 strata
3091 dummy_target::stratum () const
3092 {
3093 return dummy_stratum;
3094 }
3095
3096 strata
3097 debug_target::stratum () const
3098 {
3099 return debug_stratum;
3100 }
3101
3102 const target_info &
3103 dummy_target::info () const
3104 {
3105 return dummy_target_info;
3106 }
3107
3108 const target_info &
3109 debug_target::info () const
3110 {
3111 return beneath ()->info ();
3112 }
3113
3114 \f
3115
3116 void
3117 target_close (struct target_ops *targ)
3118 {
3119 gdb_assert (!target_is_pushed (targ));
3120
3121 fileio_handles_invalidate_target (targ);
3122
3123 targ->close ();
3124
3125 if (targetdebug)
3126 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3127 }
3128
3129 int
3130 target_thread_alive (ptid_t ptid)
3131 {
3132 return current_top_target ()->thread_alive (ptid);
3133 }
3134
3135 void
3136 target_update_thread_list (void)
3137 {
3138 current_top_target ()->update_thread_list ();
3139 }
3140
3141 void
3142 target_stop (ptid_t ptid)
3143 {
3144 if (!may_stop)
3145 {
3146 warning (_("May not interrupt or stop the target, ignoring attempt"));
3147 return;
3148 }
3149
3150 current_top_target ()->stop (ptid);
3151 }
3152
3153 void
3154 target_interrupt ()
3155 {
3156 if (!may_stop)
3157 {
3158 warning (_("May not interrupt or stop the target, ignoring attempt"));
3159 return;
3160 }
3161
3162 current_top_target ()->interrupt ();
3163 }
3164
3165 /* See target.h. */
3166
3167 void
3168 target_pass_ctrlc (void)
3169 {
3170 /* Pass the Ctrl-C to the first target that has a thread
3171 running. */
3172 for (inferior *inf : all_inferiors ())
3173 {
3174 target_ops *proc_target = inf->process_target ();
3175 if (proc_target == NULL)
3176 continue;
3177
3178 for (thread_info *thr : inf->non_exited_threads ())
3179 {
3180 /* A thread can be THREAD_STOPPED and executing, while
3181 running an infcall. */
3182 if (thr->state == THREAD_RUNNING || thr->executing)
3183 {
3184 /* We can get here quite deep in target layers. Avoid
3185 switching thread context or anything that would
3186 communicate with the target (e.g., to fetch
3187 registers), or flushing e.g., the frame cache. We
3188 just switch inferior in order to be able to call
3189 through the target_stack. */
3190 scoped_restore_current_inferior restore_inferior;
3191 set_current_inferior (inf);
3192 current_top_target ()->pass_ctrlc ();
3193 return;
3194 }
3195 }
3196 }
3197 }
3198
3199 /* See target.h. */
3200
3201 void
3202 default_target_pass_ctrlc (struct target_ops *ops)
3203 {
3204 target_interrupt ();
3205 }
3206
3207 /* See target/target.h. */
3208
3209 void
3210 target_stop_and_wait (ptid_t ptid)
3211 {
3212 struct target_waitstatus status;
3213 bool was_non_stop = non_stop;
3214
3215 non_stop = true;
3216 target_stop (ptid);
3217
3218 memset (&status, 0, sizeof (status));
3219 target_wait (ptid, &status, 0);
3220
3221 non_stop = was_non_stop;
3222 }
3223
3224 /* See target/target.h. */
3225
3226 void
3227 target_continue_no_signal (ptid_t ptid)
3228 {
3229 target_resume (ptid, 0, GDB_SIGNAL_0);
3230 }
3231
3232 /* See target/target.h. */
3233
3234 void
3235 target_continue (ptid_t ptid, enum gdb_signal signal)
3236 {
3237 target_resume (ptid, 0, signal);
3238 }
3239
3240 /* Concatenate ELEM to LIST, a comma-separated list. */
3241
3242 static void
3243 str_comma_list_concat_elem (std::string *list, const char *elem)
3244 {
3245 if (!list->empty ())
3246 list->append (", ");
3247
3248 list->append (elem);
3249 }
3250
3251 /* Helper for target_options_to_string. If OPT is present in
3252 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3253 OPT is removed from TARGET_OPTIONS. */
3254
3255 static void
3256 do_option (target_wait_flags *target_options, std::string *ret,
3257 target_wait_flag opt, const char *opt_str)
3258 {
3259 if ((*target_options & opt) != 0)
3260 {
3261 str_comma_list_concat_elem (ret, opt_str);
3262 *target_options &= ~opt;
3263 }
3264 }
3265
3266 /* See target.h. */
3267
3268 std::string
3269 target_options_to_string (target_wait_flags target_options)
3270 {
3271 std::string ret;
3272
3273 #define DO_TARG_OPTION(OPT) \
3274 do_option (&target_options, &ret, OPT, #OPT)
3275
3276 DO_TARG_OPTION (TARGET_WNOHANG);
3277
3278 if (target_options != 0)
3279 str_comma_list_concat_elem (&ret, "unknown???");
3280
3281 return ret;
3282 }
3283
3284 void
3285 target_fetch_registers (struct regcache *regcache, int regno)
3286 {
3287 current_top_target ()->fetch_registers (regcache, regno);
3288 if (targetdebug)
3289 regcache->debug_print_register ("target_fetch_registers", regno);
3290 }
3291
3292 void
3293 target_store_registers (struct regcache *regcache, int regno)
3294 {
3295 if (!may_write_registers)
3296 error (_("Writing to registers is not allowed (regno %d)"), regno);
3297
3298 current_top_target ()->store_registers (regcache, regno);
3299 if (targetdebug)
3300 {
3301 regcache->debug_print_register ("target_store_registers", regno);
3302 }
3303 }
3304
3305 int
3306 target_core_of_thread (ptid_t ptid)
3307 {
3308 return current_top_target ()->core_of_thread (ptid);
3309 }
3310
3311 int
3312 simple_verify_memory (struct target_ops *ops,
3313 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3314 {
3315 LONGEST total_xfered = 0;
3316
3317 while (total_xfered < size)
3318 {
3319 ULONGEST xfered_len;
3320 enum target_xfer_status status;
3321 gdb_byte buf[1024];
3322 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3323
3324 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3325 buf, NULL, lma + total_xfered, howmuch,
3326 &xfered_len);
3327 if (status == TARGET_XFER_OK
3328 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3329 {
3330 total_xfered += xfered_len;
3331 QUIT;
3332 }
3333 else
3334 return 0;
3335 }
3336 return 1;
3337 }
3338
3339 /* Default implementation of memory verification. */
3340
3341 static int
3342 default_verify_memory (struct target_ops *self,
3343 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3344 {
3345 /* Start over from the top of the target stack. */
3346 return simple_verify_memory (current_top_target (),
3347 data, memaddr, size);
3348 }
3349
3350 int
3351 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3352 {
3353 return current_top_target ()->verify_memory (data, memaddr, size);
3354 }
3355
3356 /* The documentation for this function is in its prototype declaration in
3357 target.h. */
3358
3359 int
3360 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3361 enum target_hw_bp_type rw)
3362 {
3363 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3364 }
3365
3366 /* The documentation for this function is in its prototype declaration in
3367 target.h. */
3368
3369 int
3370 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3371 enum target_hw_bp_type rw)
3372 {
3373 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3374 }
3375
3376 /* The documentation for this function is in its prototype declaration
3377 in target.h. */
3378
3379 int
3380 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3381 {
3382 return current_top_target ()->masked_watch_num_registers (addr, mask);
3383 }
3384
3385 /* The documentation for this function is in its prototype declaration
3386 in target.h. */
3387
3388 int
3389 target_ranged_break_num_registers (void)
3390 {
3391 return current_top_target ()->ranged_break_num_registers ();
3392 }
3393
3394 /* See target.h. */
3395
3396 struct btrace_target_info *
3397 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3398 {
3399 return current_top_target ()->enable_btrace (ptid, conf);
3400 }
3401
3402 /* See target.h. */
3403
3404 void
3405 target_disable_btrace (struct btrace_target_info *btinfo)
3406 {
3407 current_top_target ()->disable_btrace (btinfo);
3408 }
3409
3410 /* See target.h. */
3411
3412 void
3413 target_teardown_btrace (struct btrace_target_info *btinfo)
3414 {
3415 current_top_target ()->teardown_btrace (btinfo);
3416 }
3417
3418 /* See target.h. */
3419
3420 enum btrace_error
3421 target_read_btrace (struct btrace_data *btrace,
3422 struct btrace_target_info *btinfo,
3423 enum btrace_read_type type)
3424 {
3425 return current_top_target ()->read_btrace (btrace, btinfo, type);
3426 }
3427
3428 /* See target.h. */
3429
3430 const struct btrace_config *
3431 target_btrace_conf (const struct btrace_target_info *btinfo)
3432 {
3433 return current_top_target ()->btrace_conf (btinfo);
3434 }
3435
3436 /* See target.h. */
3437
3438 void
3439 target_stop_recording (void)
3440 {
3441 current_top_target ()->stop_recording ();
3442 }
3443
3444 /* See target.h. */
3445
3446 void
3447 target_save_record (const char *filename)
3448 {
3449 current_top_target ()->save_record (filename);
3450 }
3451
3452 /* See target.h. */
3453
3454 int
3455 target_supports_delete_record ()
3456 {
3457 return current_top_target ()->supports_delete_record ();
3458 }
3459
3460 /* See target.h. */
3461
3462 void
3463 target_delete_record (void)
3464 {
3465 current_top_target ()->delete_record ();
3466 }
3467
3468 /* See target.h. */
3469
3470 enum record_method
3471 target_record_method (ptid_t ptid)
3472 {
3473 return current_top_target ()->record_method (ptid);
3474 }
3475
3476 /* See target.h. */
3477
3478 int
3479 target_record_is_replaying (ptid_t ptid)
3480 {
3481 return current_top_target ()->record_is_replaying (ptid);
3482 }
3483
3484 /* See target.h. */
3485
3486 int
3487 target_record_will_replay (ptid_t ptid, int dir)
3488 {
3489 return current_top_target ()->record_will_replay (ptid, dir);
3490 }
3491
3492 /* See target.h. */
3493
3494 void
3495 target_record_stop_replaying (void)
3496 {
3497 current_top_target ()->record_stop_replaying ();
3498 }
3499
3500 /* See target.h. */
3501
3502 void
3503 target_goto_record_begin (void)
3504 {
3505 current_top_target ()->goto_record_begin ();
3506 }
3507
3508 /* See target.h. */
3509
3510 void
3511 target_goto_record_end (void)
3512 {
3513 current_top_target ()->goto_record_end ();
3514 }
3515
3516 /* See target.h. */
3517
3518 void
3519 target_goto_record (ULONGEST insn)
3520 {
3521 current_top_target ()->goto_record (insn);
3522 }
3523
3524 /* See target.h. */
3525
3526 void
3527 target_insn_history (int size, gdb_disassembly_flags flags)
3528 {
3529 current_top_target ()->insn_history (size, flags);
3530 }
3531
3532 /* See target.h. */
3533
3534 void
3535 target_insn_history_from (ULONGEST from, int size,
3536 gdb_disassembly_flags flags)
3537 {
3538 current_top_target ()->insn_history_from (from, size, flags);
3539 }
3540
3541 /* See target.h. */
3542
3543 void
3544 target_insn_history_range (ULONGEST begin, ULONGEST end,
3545 gdb_disassembly_flags flags)
3546 {
3547 current_top_target ()->insn_history_range (begin, end, flags);
3548 }
3549
3550 /* See target.h. */
3551
3552 void
3553 target_call_history (int size, record_print_flags flags)
3554 {
3555 current_top_target ()->call_history (size, flags);
3556 }
3557
3558 /* See target.h. */
3559
3560 void
3561 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3562 {
3563 current_top_target ()->call_history_from (begin, size, flags);
3564 }
3565
3566 /* See target.h. */
3567
3568 void
3569 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3570 {
3571 current_top_target ()->call_history_range (begin, end, flags);
3572 }
3573
3574 /* See target.h. */
3575
3576 const struct frame_unwind *
3577 target_get_unwinder (void)
3578 {
3579 return current_top_target ()->get_unwinder ();
3580 }
3581
3582 /* See target.h. */
3583
3584 const struct frame_unwind *
3585 target_get_tailcall_unwinder (void)
3586 {
3587 return current_top_target ()->get_tailcall_unwinder ();
3588 }
3589
3590 /* See target.h. */
3591
3592 void
3593 target_prepare_to_generate_core (void)
3594 {
3595 current_top_target ()->prepare_to_generate_core ();
3596 }
3597
3598 /* See target.h. */
3599
3600 void
3601 target_done_generating_core (void)
3602 {
3603 current_top_target ()->done_generating_core ();
3604 }
3605
3606 \f
3607
3608 static char targ_desc[] =
3609 "Names of targets and files being debugged.\nShows the entire \
3610 stack of targets currently in use (including the exec-file,\n\
3611 core-file, and process, if any), as well as the symbol file name.";
3612
3613 static void
3614 default_rcmd (struct target_ops *self, const char *command,
3615 struct ui_file *output)
3616 {
3617 error (_("\"monitor\" command not supported by this target."));
3618 }
3619
3620 static void
3621 do_monitor_command (const char *cmd, int from_tty)
3622 {
3623 target_rcmd (cmd, gdb_stdtarg);
3624 }
3625
3626 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3627 ignored. */
3628
3629 void
3630 flash_erase_command (const char *cmd, int from_tty)
3631 {
3632 /* Used to communicate termination of flash operations to the target. */
3633 bool found_flash_region = false;
3634 struct gdbarch *gdbarch = target_gdbarch ();
3635
3636 std::vector<mem_region> mem_regions = target_memory_map ();
3637
3638 /* Iterate over all memory regions. */
3639 for (const mem_region &m : mem_regions)
3640 {
3641 /* Is this a flash memory region? */
3642 if (m.attrib.mode == MEM_FLASH)
3643 {
3644 found_flash_region = true;
3645 target_flash_erase (m.lo, m.hi - m.lo);
3646
3647 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3648
3649 current_uiout->message (_("Erasing flash memory region at address "));
3650 current_uiout->field_core_addr ("address", gdbarch, m.lo);
3651 current_uiout->message (", size = ");
3652 current_uiout->field_string ("size", hex_string (m.hi - m.lo));
3653 current_uiout->message ("\n");
3654 }
3655 }
3656
3657 /* Did we do any flash operations? If so, we need to finalize them. */
3658 if (found_flash_region)
3659 target_flash_done ();
3660 else
3661 current_uiout->message (_("No flash memory regions found.\n"));
3662 }
3663
3664 /* Print the name of each layers of our target stack. */
3665
3666 static void
3667 maintenance_print_target_stack (const char *cmd, int from_tty)
3668 {
3669 printf_filtered (_("The current target stack is:\n"));
3670
3671 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3672 {
3673 if (t->stratum () == debug_stratum)
3674 continue;
3675 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3676 }
3677 }
3678
3679 /* See target.h. */
3680
3681 void
3682 target_async (int enable)
3683 {
3684 infrun_async (enable);
3685 current_top_target ()->async (enable);
3686 }
3687
3688 /* See target.h. */
3689
3690 void
3691 target_thread_events (int enable)
3692 {
3693 current_top_target ()->thread_events (enable);
3694 }
3695
3696 /* Controls if targets can report that they can/are async. This is
3697 just for maintainers to use when debugging gdb. */
3698 bool target_async_permitted = true;
3699
3700 /* The set command writes to this variable. If the inferior is
3701 executing, target_async_permitted is *not* updated. */
3702 static bool target_async_permitted_1 = true;
3703
3704 static void
3705 maint_set_target_async_command (const char *args, int from_tty,
3706 struct cmd_list_element *c)
3707 {
3708 if (have_live_inferiors ())
3709 {
3710 target_async_permitted_1 = target_async_permitted;
3711 error (_("Cannot change this setting while the inferior is running."));
3712 }
3713
3714 target_async_permitted = target_async_permitted_1;
3715 }
3716
3717 static void
3718 maint_show_target_async_command (struct ui_file *file, int from_tty,
3719 struct cmd_list_element *c,
3720 const char *value)
3721 {
3722 fprintf_filtered (file,
3723 _("Controlling the inferior in "
3724 "asynchronous mode is %s.\n"), value);
3725 }
3726
3727 /* Return true if the target operates in non-stop mode even with "set
3728 non-stop off". */
3729
3730 static int
3731 target_always_non_stop_p (void)
3732 {
3733 return current_top_target ()->always_non_stop_p ();
3734 }
3735
3736 /* See target.h. */
3737
3738 int
3739 target_is_non_stop_p (void)
3740 {
3741 return (non_stop
3742 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3743 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3744 && target_always_non_stop_p ()));
3745 }
3746
3747 /* See target.h. */
3748
3749 bool
3750 exists_non_stop_target ()
3751 {
3752 if (target_is_non_stop_p ())
3753 return true;
3754
3755 scoped_restore_current_thread restore_thread;
3756
3757 for (inferior *inf : all_inferiors ())
3758 {
3759 switch_to_inferior_no_thread (inf);
3760 if (target_is_non_stop_p ())
3761 return true;
3762 }
3763
3764 return false;
3765 }
3766
3767 /* Controls if targets can report that they always run in non-stop
3768 mode. This is just for maintainers to use when debugging gdb. */
3769 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3770
3771 /* The set command writes to this variable. If the inferior is
3772 executing, target_non_stop_enabled is *not* updated. */
3773 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3774
3775 /* Implementation of "maint set target-non-stop". */
3776
3777 static void
3778 maint_set_target_non_stop_command (const char *args, int from_tty,
3779 struct cmd_list_element *c)
3780 {
3781 if (have_live_inferiors ())
3782 {
3783 target_non_stop_enabled_1 = target_non_stop_enabled;
3784 error (_("Cannot change this setting while the inferior is running."));
3785 }
3786
3787 target_non_stop_enabled = target_non_stop_enabled_1;
3788 }
3789
3790 /* Implementation of "maint show target-non-stop". */
3791
3792 static void
3793 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3794 struct cmd_list_element *c,
3795 const char *value)
3796 {
3797 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3798 fprintf_filtered (file,
3799 _("Whether the target is always in non-stop mode "
3800 "is %s (currently %s).\n"), value,
3801 target_always_non_stop_p () ? "on" : "off");
3802 else
3803 fprintf_filtered (file,
3804 _("Whether the target is always in non-stop mode "
3805 "is %s.\n"), value);
3806 }
3807
3808 /* Temporary copies of permission settings. */
3809
3810 static bool may_write_registers_1 = true;
3811 static bool may_write_memory_1 = true;
3812 static bool may_insert_breakpoints_1 = true;
3813 static bool may_insert_tracepoints_1 = true;
3814 static bool may_insert_fast_tracepoints_1 = true;
3815 static bool may_stop_1 = true;
3816
3817 /* Make the user-set values match the real values again. */
3818
3819 void
3820 update_target_permissions (void)
3821 {
3822 may_write_registers_1 = may_write_registers;
3823 may_write_memory_1 = may_write_memory;
3824 may_insert_breakpoints_1 = may_insert_breakpoints;
3825 may_insert_tracepoints_1 = may_insert_tracepoints;
3826 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3827 may_stop_1 = may_stop;
3828 }
3829
3830 /* The one function handles (most of) the permission flags in the same
3831 way. */
3832
3833 static void
3834 set_target_permissions (const char *args, int from_tty,
3835 struct cmd_list_element *c)
3836 {
3837 if (target_has_execution ())
3838 {
3839 update_target_permissions ();
3840 error (_("Cannot change this setting while the inferior is running."));
3841 }
3842
3843 /* Make the real values match the user-changed values. */
3844 may_write_registers = may_write_registers_1;
3845 may_insert_breakpoints = may_insert_breakpoints_1;
3846 may_insert_tracepoints = may_insert_tracepoints_1;
3847 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3848 may_stop = may_stop_1;
3849 update_observer_mode ();
3850 }
3851
3852 /* Set memory write permission independently of observer mode. */
3853
3854 static void
3855 set_write_memory_permission (const char *args, int from_tty,
3856 struct cmd_list_element *c)
3857 {
3858 /* Make the real values match the user-changed values. */
3859 may_write_memory = may_write_memory_1;
3860 update_observer_mode ();
3861 }
3862
3863 void _initialize_target ();
3864
3865 void
3866 _initialize_target ()
3867 {
3868 the_debug_target = new debug_target ();
3869
3870 add_info ("target", info_target_command, targ_desc);
3871 add_info ("files", info_target_command, targ_desc);
3872
3873 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3874 Set target debugging."), _("\
3875 Show target debugging."), _("\
3876 When non-zero, target debugging is enabled. Higher numbers are more\n\
3877 verbose."),
3878 set_targetdebug,
3879 show_targetdebug,
3880 &setdebuglist, &showdebuglist);
3881
3882 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3883 &trust_readonly, _("\
3884 Set mode for reading from readonly sections."), _("\
3885 Show mode for reading from readonly sections."), _("\
3886 When this mode is on, memory reads from readonly sections (such as .text)\n\
3887 will be read from the object file instead of from the target. This will\n\
3888 result in significant performance improvement for remote targets."),
3889 NULL,
3890 show_trust_readonly,
3891 &setlist, &showlist);
3892
3893 add_com ("monitor", class_obscure, do_monitor_command,
3894 _("Send a command to the remote monitor (remote targets only)."));
3895
3896 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3897 _("Print the name of each layer of the internal target stack."),
3898 &maintenanceprintlist);
3899
3900 add_setshow_boolean_cmd ("target-async", no_class,
3901 &target_async_permitted_1, _("\
3902 Set whether gdb controls the inferior in asynchronous mode."), _("\
3903 Show whether gdb controls the inferior in asynchronous mode."), _("\
3904 Tells gdb whether to control the inferior in asynchronous mode."),
3905 maint_set_target_async_command,
3906 maint_show_target_async_command,
3907 &maintenance_set_cmdlist,
3908 &maintenance_show_cmdlist);
3909
3910 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
3911 &target_non_stop_enabled_1, _("\
3912 Set whether gdb always controls the inferior in non-stop mode."), _("\
3913 Show whether gdb always controls the inferior in non-stop mode."), _("\
3914 Tells gdb whether to control the inferior in non-stop mode."),
3915 maint_set_target_non_stop_command,
3916 maint_show_target_non_stop_command,
3917 &maintenance_set_cmdlist,
3918 &maintenance_show_cmdlist);
3919
3920 add_setshow_boolean_cmd ("may-write-registers", class_support,
3921 &may_write_registers_1, _("\
3922 Set permission to write into registers."), _("\
3923 Show permission to write into registers."), _("\
3924 When this permission is on, GDB may write into the target's registers.\n\
3925 Otherwise, any sort of write attempt will result in an error."),
3926 set_target_permissions, NULL,
3927 &setlist, &showlist);
3928
3929 add_setshow_boolean_cmd ("may-write-memory", class_support,
3930 &may_write_memory_1, _("\
3931 Set permission to write into target memory."), _("\
3932 Show permission to write into target memory."), _("\
3933 When this permission is on, GDB may write into the target's memory.\n\
3934 Otherwise, any sort of write attempt will result in an error."),
3935 set_write_memory_permission, NULL,
3936 &setlist, &showlist);
3937
3938 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3939 &may_insert_breakpoints_1, _("\
3940 Set permission to insert breakpoints in the target."), _("\
3941 Show permission to insert breakpoints in the target."), _("\
3942 When this permission is on, GDB may insert breakpoints in the program.\n\
3943 Otherwise, any sort of insertion attempt will result in an error."),
3944 set_target_permissions, NULL,
3945 &setlist, &showlist);
3946
3947 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3948 &may_insert_tracepoints_1, _("\
3949 Set permission to insert tracepoints in the target."), _("\
3950 Show permission to insert tracepoints in the target."), _("\
3951 When this permission is on, GDB may insert tracepoints in the program.\n\
3952 Otherwise, any sort of insertion attempt will result in an error."),
3953 set_target_permissions, NULL,
3954 &setlist, &showlist);
3955
3956 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3957 &may_insert_fast_tracepoints_1, _("\
3958 Set permission to insert fast tracepoints in the target."), _("\
3959 Show permission to insert fast tracepoints in the target."), _("\
3960 When this permission is on, GDB may insert fast tracepoints.\n\
3961 Otherwise, any sort of insertion attempt will result in an error."),
3962 set_target_permissions, NULL,
3963 &setlist, &showlist);
3964
3965 add_setshow_boolean_cmd ("may-interrupt", class_support,
3966 &may_stop_1, _("\
3967 Set permission to interrupt or signal the target."), _("\
3968 Show permission to interrupt or signal the target."), _("\
3969 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3970 Otherwise, any attempt to interrupt or stop will be ignored."),
3971 set_target_permissions, NULL,
3972 &setlist, &showlist);
3973
3974 add_com ("flash-erase", no_class, flash_erase_command,
3975 _("Erase all flash memory regions."));
3976
3977 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3978 &auto_connect_native_target, _("\
3979 Set whether GDB may automatically connect to the native target."), _("\
3980 Show whether GDB may automatically connect to the native target."), _("\
3981 When on, and GDB is not connected to a target yet, GDB\n\
3982 attempts \"run\" and other commands with the native target."),
3983 NULL, show_auto_connect_native_target,
3984 &setlist, &showlist);
3985 }
This page took 0.113137 seconds and 4 git commands to generate.