* python/py-utils.c (gdb_pymodule_addobject): Cast away const.
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include "gdb_string.h"
25 #include "target.h"
26 #include "gdbcmd.h"
27 #include "symtab.h"
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdb_assert.h"
36 #include "gdbcore.h"
37 #include "exceptions.h"
38 #include "target-descriptions.h"
39 #include "gdbthread.h"
40 #include "solib.h"
41 #include "exec.h"
42 #include "inline-frame.h"
43 #include "tracepoint.h"
44 #include "gdb/fileio.h"
45 #include "agent.h"
46
47 static void target_info (char *, int);
48
49 static void default_terminal_info (const char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static void tcomplain (void) ATTRIBUTE_NORETURN;
57
58 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
59
60 static int return_zero (void);
61
62 static int return_one (void);
63
64 static int return_minus_one (void);
65
66 void target_ignore (void);
67
68 static void target_command (char *, int);
69
70 static struct target_ops *find_default_run_target (char *);
71
72 static LONGEST default_xfer_partial (struct target_ops *ops,
73 enum target_object object,
74 const char *annex, gdb_byte *readbuf,
75 const gdb_byte *writebuf,
76 ULONGEST offset, LONGEST len);
77
78 static LONGEST current_xfer_partial (struct target_ops *ops,
79 enum target_object object,
80 const char *annex, gdb_byte *readbuf,
81 const gdb_byte *writebuf,
82 ULONGEST offset, LONGEST len);
83
84 static LONGEST target_xfer_partial (struct target_ops *ops,
85 enum target_object object,
86 const char *annex,
87 void *readbuf, const void *writebuf,
88 ULONGEST offset, LONGEST len);
89
90 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
91 ptid_t ptid);
92
93 static void init_dummy_target (void);
94
95 static struct target_ops debug_target;
96
97 static void debug_to_open (char *, int);
98
99 static void debug_to_prepare_to_store (struct regcache *);
100
101 static void debug_to_files_info (struct target_ops *);
102
103 static int debug_to_insert_breakpoint (struct gdbarch *,
104 struct bp_target_info *);
105
106 static int debug_to_remove_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_can_use_hw_breakpoint (int, int, int);
110
111 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
112 struct bp_target_info *);
113
114 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
118 struct expression *);
119
120 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
121 struct expression *);
122
123 static int debug_to_stopped_by_watchpoint (void);
124
125 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
126
127 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
128 CORE_ADDR, CORE_ADDR, int);
129
130 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
131
132 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
133 struct expression *);
134
135 static void debug_to_terminal_init (void);
136
137 static void debug_to_terminal_inferior (void);
138
139 static void debug_to_terminal_ours_for_output (void);
140
141 static void debug_to_terminal_save_ours (void);
142
143 static void debug_to_terminal_ours (void);
144
145 static void debug_to_load (char *, int);
146
147 static int debug_to_can_run (void);
148
149 static void debug_to_stop (ptid_t);
150
151 /* Pointer to array of target architecture structures; the size of the
152 array; the current index into the array; the allocated size of the
153 array. */
154 struct target_ops **target_structs;
155 unsigned target_struct_size;
156 unsigned target_struct_index;
157 unsigned target_struct_allocsize;
158 #define DEFAULT_ALLOCSIZE 10
159
160 /* The initial current target, so that there is always a semi-valid
161 current target. */
162
163 static struct target_ops dummy_target;
164
165 /* Top of target stack. */
166
167 static struct target_ops *target_stack;
168
169 /* The target structure we are currently using to talk to a process
170 or file or whatever "inferior" we have. */
171
172 struct target_ops current_target;
173
174 /* Command list for target. */
175
176 static struct cmd_list_element *targetlist = NULL;
177
178 /* Nonzero if we should trust readonly sections from the
179 executable when reading memory. */
180
181 static int trust_readonly = 0;
182
183 /* Nonzero if we should show true memory content including
184 memory breakpoint inserted by gdb. */
185
186 static int show_memory_breakpoints = 0;
187
188 /* These globals control whether GDB attempts to perform these
189 operations; they are useful for targets that need to prevent
190 inadvertant disruption, such as in non-stop mode. */
191
192 int may_write_registers = 1;
193
194 int may_write_memory = 1;
195
196 int may_insert_breakpoints = 1;
197
198 int may_insert_tracepoints = 1;
199
200 int may_insert_fast_tracepoints = 1;
201
202 int may_stop = 1;
203
204 /* Non-zero if we want to see trace of target level stuff. */
205
206 static unsigned int targetdebug = 0;
207 static void
208 show_targetdebug (struct ui_file *file, int from_tty,
209 struct cmd_list_element *c, const char *value)
210 {
211 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
212 }
213
214 static void setup_target_debug (void);
215
216 /* The option sets this. */
217 static int stack_cache_enabled_p_1 = 1;
218 /* And set_stack_cache_enabled_p updates this.
219 The reason for the separation is so that we don't flush the cache for
220 on->on transitions. */
221 static int stack_cache_enabled_p = 1;
222
223 /* This is called *after* the stack-cache has been set.
224 Flush the cache for off->on and on->off transitions.
225 There's no real need to flush the cache for on->off transitions,
226 except cleanliness. */
227
228 static void
229 set_stack_cache_enabled_p (char *args, int from_tty,
230 struct cmd_list_element *c)
231 {
232 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
233 target_dcache_invalidate ();
234
235 stack_cache_enabled_p = stack_cache_enabled_p_1;
236 }
237
238 static void
239 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
243 }
244
245 /* Cache of memory operations, to speed up remote access. */
246 static DCACHE *target_dcache;
247
248 /* Invalidate the target dcache. */
249
250 void
251 target_dcache_invalidate (void)
252 {
253 dcache_invalidate (target_dcache);
254 }
255
256 /* The user just typed 'target' without the name of a target. */
257
258 static void
259 target_command (char *arg, int from_tty)
260 {
261 fputs_filtered ("Argument required (target name). Try `help target'\n",
262 gdb_stdout);
263 }
264
265 /* Default target_has_* methods for process_stratum targets. */
266
267 int
268 default_child_has_all_memory (struct target_ops *ops)
269 {
270 /* If no inferior selected, then we can't read memory here. */
271 if (ptid_equal (inferior_ptid, null_ptid))
272 return 0;
273
274 return 1;
275 }
276
277 int
278 default_child_has_memory (struct target_ops *ops)
279 {
280 /* If no inferior selected, then we can't read memory here. */
281 if (ptid_equal (inferior_ptid, null_ptid))
282 return 0;
283
284 return 1;
285 }
286
287 int
288 default_child_has_stack (struct target_ops *ops)
289 {
290 /* If no inferior selected, there's no stack. */
291 if (ptid_equal (inferior_ptid, null_ptid))
292 return 0;
293
294 return 1;
295 }
296
297 int
298 default_child_has_registers (struct target_ops *ops)
299 {
300 /* Can't read registers from no inferior. */
301 if (ptid_equal (inferior_ptid, null_ptid))
302 return 0;
303
304 return 1;
305 }
306
307 int
308 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
309 {
310 /* If there's no thread selected, then we can't make it run through
311 hoops. */
312 if (ptid_equal (the_ptid, null_ptid))
313 return 0;
314
315 return 1;
316 }
317
318
319 int
320 target_has_all_memory_1 (void)
321 {
322 struct target_ops *t;
323
324 for (t = current_target.beneath; t != NULL; t = t->beneath)
325 if (t->to_has_all_memory (t))
326 return 1;
327
328 return 0;
329 }
330
331 int
332 target_has_memory_1 (void)
333 {
334 struct target_ops *t;
335
336 for (t = current_target.beneath; t != NULL; t = t->beneath)
337 if (t->to_has_memory (t))
338 return 1;
339
340 return 0;
341 }
342
343 int
344 target_has_stack_1 (void)
345 {
346 struct target_ops *t;
347
348 for (t = current_target.beneath; t != NULL; t = t->beneath)
349 if (t->to_has_stack (t))
350 return 1;
351
352 return 0;
353 }
354
355 int
356 target_has_registers_1 (void)
357 {
358 struct target_ops *t;
359
360 for (t = current_target.beneath; t != NULL; t = t->beneath)
361 if (t->to_has_registers (t))
362 return 1;
363
364 return 0;
365 }
366
367 int
368 target_has_execution_1 (ptid_t the_ptid)
369 {
370 struct target_ops *t;
371
372 for (t = current_target.beneath; t != NULL; t = t->beneath)
373 if (t->to_has_execution (t, the_ptid))
374 return 1;
375
376 return 0;
377 }
378
379 int
380 target_has_execution_current (void)
381 {
382 return target_has_execution_1 (inferior_ptid);
383 }
384
385 /* Add possible target architecture T to the list and add a new
386 command 'target T->to_shortname'. Set COMPLETER as the command's
387 completer if not NULL. */
388
389 void
390 add_target_with_completer (struct target_ops *t,
391 completer_ftype *completer)
392 {
393 struct cmd_list_element *c;
394
395 /* Provide default values for all "must have" methods. */
396 if (t->to_xfer_partial == NULL)
397 t->to_xfer_partial = default_xfer_partial;
398
399 if (t->to_has_all_memory == NULL)
400 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
401
402 if (t->to_has_memory == NULL)
403 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
404
405 if (t->to_has_stack == NULL)
406 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
407
408 if (t->to_has_registers == NULL)
409 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
410
411 if (t->to_has_execution == NULL)
412 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
413
414 if (!target_structs)
415 {
416 target_struct_allocsize = DEFAULT_ALLOCSIZE;
417 target_structs = (struct target_ops **) xmalloc
418 (target_struct_allocsize * sizeof (*target_structs));
419 }
420 if (target_struct_size >= target_struct_allocsize)
421 {
422 target_struct_allocsize *= 2;
423 target_structs = (struct target_ops **)
424 xrealloc ((char *) target_structs,
425 target_struct_allocsize * sizeof (*target_structs));
426 }
427 target_structs[target_struct_size++] = t;
428
429 if (targetlist == NULL)
430 add_prefix_cmd ("target", class_run, target_command, _("\
431 Connect to a target machine or process.\n\
432 The first argument is the type or protocol of the target machine.\n\
433 Remaining arguments are interpreted by the target protocol. For more\n\
434 information on the arguments for a particular protocol, type\n\
435 `help target ' followed by the protocol name."),
436 &targetlist, "target ", 0, &cmdlist);
437 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
438 &targetlist);
439 if (completer != NULL)
440 set_cmd_completer (c, completer);
441 }
442
443 /* Add a possible target architecture to the list. */
444
445 void
446 add_target (struct target_ops *t)
447 {
448 add_target_with_completer (t, NULL);
449 }
450
451 /* See target.h. */
452
453 void
454 add_deprecated_target_alias (struct target_ops *t, char *alias)
455 {
456 struct cmd_list_element *c;
457 char *alt;
458
459 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
460 see PR cli/15104. */
461 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
462 alt = xstrprintf ("target %s", t->to_shortname);
463 deprecate_cmd (c, alt);
464 }
465
466 /* Stub functions */
467
468 void
469 target_ignore (void)
470 {
471 }
472
473 void
474 target_kill (void)
475 {
476 struct target_ops *t;
477
478 for (t = current_target.beneath; t != NULL; t = t->beneath)
479 if (t->to_kill != NULL)
480 {
481 if (targetdebug)
482 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
483
484 t->to_kill (t);
485 return;
486 }
487
488 noprocess ();
489 }
490
491 void
492 target_load (char *arg, int from_tty)
493 {
494 target_dcache_invalidate ();
495 (*current_target.to_load) (arg, from_tty);
496 }
497
498 void
499 target_create_inferior (char *exec_file, char *args,
500 char **env, int from_tty)
501 {
502 struct target_ops *t;
503
504 for (t = current_target.beneath; t != NULL; t = t->beneath)
505 {
506 if (t->to_create_inferior != NULL)
507 {
508 t->to_create_inferior (t, exec_file, args, env, from_tty);
509 if (targetdebug)
510 fprintf_unfiltered (gdb_stdlog,
511 "target_create_inferior (%s, %s, xxx, %d)\n",
512 exec_file, args, from_tty);
513 return;
514 }
515 }
516
517 internal_error (__FILE__, __LINE__,
518 _("could not find a target to create inferior"));
519 }
520
521 void
522 target_terminal_inferior (void)
523 {
524 /* A background resume (``run&'') should leave GDB in control of the
525 terminal. Use target_can_async_p, not target_is_async_p, since at
526 this point the target is not async yet. However, if sync_execution
527 is not set, we know it will become async prior to resume. */
528 if (target_can_async_p () && !sync_execution)
529 return;
530
531 /* If GDB is resuming the inferior in the foreground, install
532 inferior's terminal modes. */
533 (*current_target.to_terminal_inferior) ();
534 }
535
536 static int
537 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
538 struct target_ops *t)
539 {
540 errno = EIO; /* Can't read/write this location. */
541 return 0; /* No bytes handled. */
542 }
543
544 static void
545 tcomplain (void)
546 {
547 error (_("You can't do that when your target is `%s'"),
548 current_target.to_shortname);
549 }
550
551 void
552 noprocess (void)
553 {
554 error (_("You can't do that without a process to debug."));
555 }
556
557 static void
558 default_terminal_info (const char *args, int from_tty)
559 {
560 printf_unfiltered (_("No saved terminal information.\n"));
561 }
562
563 /* A default implementation for the to_get_ada_task_ptid target method.
564
565 This function builds the PTID by using both LWP and TID as part of
566 the PTID lwp and tid elements. The pid used is the pid of the
567 inferior_ptid. */
568
569 static ptid_t
570 default_get_ada_task_ptid (long lwp, long tid)
571 {
572 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
573 }
574
575 static enum exec_direction_kind
576 default_execution_direction (void)
577 {
578 if (!target_can_execute_reverse)
579 return EXEC_FORWARD;
580 else if (!target_can_async_p ())
581 return EXEC_FORWARD;
582 else
583 gdb_assert_not_reached ("\
584 to_execution_direction must be implemented for reverse async");
585 }
586
587 /* Go through the target stack from top to bottom, copying over zero
588 entries in current_target, then filling in still empty entries. In
589 effect, we are doing class inheritance through the pushed target
590 vectors.
591
592 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
593 is currently implemented, is that it discards any knowledge of
594 which target an inherited method originally belonged to.
595 Consequently, new new target methods should instead explicitly and
596 locally search the target stack for the target that can handle the
597 request. */
598
599 static void
600 update_current_target (void)
601 {
602 struct target_ops *t;
603
604 /* First, reset current's contents. */
605 memset (&current_target, 0, sizeof (current_target));
606
607 #define INHERIT(FIELD, TARGET) \
608 if (!current_target.FIELD) \
609 current_target.FIELD = (TARGET)->FIELD
610
611 for (t = target_stack; t; t = t->beneath)
612 {
613 INHERIT (to_shortname, t);
614 INHERIT (to_longname, t);
615 INHERIT (to_doc, t);
616 /* Do not inherit to_open. */
617 /* Do not inherit to_close. */
618 /* Do not inherit to_attach. */
619 INHERIT (to_post_attach, t);
620 INHERIT (to_attach_no_wait, t);
621 /* Do not inherit to_detach. */
622 /* Do not inherit to_disconnect. */
623 /* Do not inherit to_resume. */
624 /* Do not inherit to_wait. */
625 /* Do not inherit to_fetch_registers. */
626 /* Do not inherit to_store_registers. */
627 INHERIT (to_prepare_to_store, t);
628 INHERIT (deprecated_xfer_memory, t);
629 INHERIT (to_files_info, t);
630 INHERIT (to_insert_breakpoint, t);
631 INHERIT (to_remove_breakpoint, t);
632 INHERIT (to_can_use_hw_breakpoint, t);
633 INHERIT (to_insert_hw_breakpoint, t);
634 INHERIT (to_remove_hw_breakpoint, t);
635 /* Do not inherit to_ranged_break_num_registers. */
636 INHERIT (to_insert_watchpoint, t);
637 INHERIT (to_remove_watchpoint, t);
638 /* Do not inherit to_insert_mask_watchpoint. */
639 /* Do not inherit to_remove_mask_watchpoint. */
640 INHERIT (to_stopped_data_address, t);
641 INHERIT (to_have_steppable_watchpoint, t);
642 INHERIT (to_have_continuable_watchpoint, t);
643 INHERIT (to_stopped_by_watchpoint, t);
644 INHERIT (to_watchpoint_addr_within_range, t);
645 INHERIT (to_region_ok_for_hw_watchpoint, t);
646 INHERIT (to_can_accel_watchpoint_condition, t);
647 /* Do not inherit to_masked_watch_num_registers. */
648 INHERIT (to_terminal_init, t);
649 INHERIT (to_terminal_inferior, t);
650 INHERIT (to_terminal_ours_for_output, t);
651 INHERIT (to_terminal_ours, t);
652 INHERIT (to_terminal_save_ours, t);
653 INHERIT (to_terminal_info, t);
654 /* Do not inherit to_kill. */
655 INHERIT (to_load, t);
656 /* Do no inherit to_create_inferior. */
657 INHERIT (to_post_startup_inferior, t);
658 INHERIT (to_insert_fork_catchpoint, t);
659 INHERIT (to_remove_fork_catchpoint, t);
660 INHERIT (to_insert_vfork_catchpoint, t);
661 INHERIT (to_remove_vfork_catchpoint, t);
662 /* Do not inherit to_follow_fork. */
663 INHERIT (to_insert_exec_catchpoint, t);
664 INHERIT (to_remove_exec_catchpoint, t);
665 INHERIT (to_set_syscall_catchpoint, t);
666 INHERIT (to_has_exited, t);
667 /* Do not inherit to_mourn_inferior. */
668 INHERIT (to_can_run, t);
669 /* Do not inherit to_pass_signals. */
670 /* Do not inherit to_program_signals. */
671 /* Do not inherit to_thread_alive. */
672 /* Do not inherit to_find_new_threads. */
673 /* Do not inherit to_pid_to_str. */
674 INHERIT (to_extra_thread_info, t);
675 INHERIT (to_thread_name, t);
676 INHERIT (to_stop, t);
677 /* Do not inherit to_xfer_partial. */
678 INHERIT (to_rcmd, t);
679 INHERIT (to_pid_to_exec_file, t);
680 INHERIT (to_log_command, t);
681 INHERIT (to_stratum, t);
682 /* Do not inherit to_has_all_memory. */
683 /* Do not inherit to_has_memory. */
684 /* Do not inherit to_has_stack. */
685 /* Do not inherit to_has_registers. */
686 /* Do not inherit to_has_execution. */
687 INHERIT (to_has_thread_control, t);
688 INHERIT (to_can_async_p, t);
689 INHERIT (to_is_async_p, t);
690 INHERIT (to_async, t);
691 INHERIT (to_find_memory_regions, t);
692 INHERIT (to_make_corefile_notes, t);
693 INHERIT (to_get_bookmark, t);
694 INHERIT (to_goto_bookmark, t);
695 /* Do not inherit to_get_thread_local_address. */
696 INHERIT (to_can_execute_reverse, t);
697 INHERIT (to_execution_direction, t);
698 INHERIT (to_thread_architecture, t);
699 /* Do not inherit to_read_description. */
700 INHERIT (to_get_ada_task_ptid, t);
701 /* Do not inherit to_search_memory. */
702 INHERIT (to_supports_multi_process, t);
703 INHERIT (to_supports_enable_disable_tracepoint, t);
704 INHERIT (to_supports_string_tracing, t);
705 INHERIT (to_trace_init, t);
706 INHERIT (to_download_tracepoint, t);
707 INHERIT (to_can_download_tracepoint, t);
708 INHERIT (to_download_trace_state_variable, t);
709 INHERIT (to_enable_tracepoint, t);
710 INHERIT (to_disable_tracepoint, t);
711 INHERIT (to_trace_set_readonly_regions, t);
712 INHERIT (to_trace_start, t);
713 INHERIT (to_get_trace_status, t);
714 INHERIT (to_get_tracepoint_status, t);
715 INHERIT (to_trace_stop, t);
716 INHERIT (to_trace_find, t);
717 INHERIT (to_get_trace_state_variable_value, t);
718 INHERIT (to_save_trace_data, t);
719 INHERIT (to_upload_tracepoints, t);
720 INHERIT (to_upload_trace_state_variables, t);
721 INHERIT (to_get_raw_trace_data, t);
722 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
723 INHERIT (to_set_disconnected_tracing, t);
724 INHERIT (to_set_circular_trace_buffer, t);
725 INHERIT (to_set_trace_buffer_size, t);
726 INHERIT (to_set_trace_notes, t);
727 INHERIT (to_get_tib_address, t);
728 INHERIT (to_set_permissions, t);
729 INHERIT (to_static_tracepoint_marker_at, t);
730 INHERIT (to_static_tracepoint_markers_by_strid, t);
731 INHERIT (to_traceframe_info, t);
732 INHERIT (to_use_agent, t);
733 INHERIT (to_can_use_agent, t);
734 INHERIT (to_augmented_libraries_svr4_read, t);
735 INHERIT (to_magic, t);
736 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
737 INHERIT (to_can_run_breakpoint_commands, t);
738 /* Do not inherit to_memory_map. */
739 /* Do not inherit to_flash_erase. */
740 /* Do not inherit to_flash_done. */
741 }
742 #undef INHERIT
743
744 /* Clean up a target struct so it no longer has any zero pointers in
745 it. Some entries are defaulted to a method that print an error,
746 others are hard-wired to a standard recursive default. */
747
748 #define de_fault(field, value) \
749 if (!current_target.field) \
750 current_target.field = value
751
752 de_fault (to_open,
753 (void (*) (char *, int))
754 tcomplain);
755 de_fault (to_close,
756 (void (*) (void))
757 target_ignore);
758 de_fault (to_post_attach,
759 (void (*) (int))
760 target_ignore);
761 de_fault (to_prepare_to_store,
762 (void (*) (struct regcache *))
763 noprocess);
764 de_fault (deprecated_xfer_memory,
765 (int (*) (CORE_ADDR, gdb_byte *, int, int,
766 struct mem_attrib *, struct target_ops *))
767 nomemory);
768 de_fault (to_files_info,
769 (void (*) (struct target_ops *))
770 target_ignore);
771 de_fault (to_insert_breakpoint,
772 memory_insert_breakpoint);
773 de_fault (to_remove_breakpoint,
774 memory_remove_breakpoint);
775 de_fault (to_can_use_hw_breakpoint,
776 (int (*) (int, int, int))
777 return_zero);
778 de_fault (to_insert_hw_breakpoint,
779 (int (*) (struct gdbarch *, struct bp_target_info *))
780 return_minus_one);
781 de_fault (to_remove_hw_breakpoint,
782 (int (*) (struct gdbarch *, struct bp_target_info *))
783 return_minus_one);
784 de_fault (to_insert_watchpoint,
785 (int (*) (CORE_ADDR, int, int, struct expression *))
786 return_minus_one);
787 de_fault (to_remove_watchpoint,
788 (int (*) (CORE_ADDR, int, int, struct expression *))
789 return_minus_one);
790 de_fault (to_stopped_by_watchpoint,
791 (int (*) (void))
792 return_zero);
793 de_fault (to_stopped_data_address,
794 (int (*) (struct target_ops *, CORE_ADDR *))
795 return_zero);
796 de_fault (to_watchpoint_addr_within_range,
797 default_watchpoint_addr_within_range);
798 de_fault (to_region_ok_for_hw_watchpoint,
799 default_region_ok_for_hw_watchpoint);
800 de_fault (to_can_accel_watchpoint_condition,
801 (int (*) (CORE_ADDR, int, int, struct expression *))
802 return_zero);
803 de_fault (to_terminal_init,
804 (void (*) (void))
805 target_ignore);
806 de_fault (to_terminal_inferior,
807 (void (*) (void))
808 target_ignore);
809 de_fault (to_terminal_ours_for_output,
810 (void (*) (void))
811 target_ignore);
812 de_fault (to_terminal_ours,
813 (void (*) (void))
814 target_ignore);
815 de_fault (to_terminal_save_ours,
816 (void (*) (void))
817 target_ignore);
818 de_fault (to_terminal_info,
819 default_terminal_info);
820 de_fault (to_load,
821 (void (*) (char *, int))
822 tcomplain);
823 de_fault (to_post_startup_inferior,
824 (void (*) (ptid_t))
825 target_ignore);
826 de_fault (to_insert_fork_catchpoint,
827 (int (*) (int))
828 return_one);
829 de_fault (to_remove_fork_catchpoint,
830 (int (*) (int))
831 return_one);
832 de_fault (to_insert_vfork_catchpoint,
833 (int (*) (int))
834 return_one);
835 de_fault (to_remove_vfork_catchpoint,
836 (int (*) (int))
837 return_one);
838 de_fault (to_insert_exec_catchpoint,
839 (int (*) (int))
840 return_one);
841 de_fault (to_remove_exec_catchpoint,
842 (int (*) (int))
843 return_one);
844 de_fault (to_set_syscall_catchpoint,
845 (int (*) (int, int, int, int, int *))
846 return_one);
847 de_fault (to_has_exited,
848 (int (*) (int, int, int *))
849 return_zero);
850 de_fault (to_can_run,
851 return_zero);
852 de_fault (to_extra_thread_info,
853 (char *(*) (struct thread_info *))
854 return_zero);
855 de_fault (to_thread_name,
856 (char *(*) (struct thread_info *))
857 return_zero);
858 de_fault (to_stop,
859 (void (*) (ptid_t))
860 target_ignore);
861 current_target.to_xfer_partial = current_xfer_partial;
862 de_fault (to_rcmd,
863 (void (*) (char *, struct ui_file *))
864 tcomplain);
865 de_fault (to_pid_to_exec_file,
866 (char *(*) (int))
867 return_zero);
868 de_fault (to_async,
869 (void (*) (void (*) (enum inferior_event_type, void*), void*))
870 tcomplain);
871 de_fault (to_thread_architecture,
872 default_thread_architecture);
873 current_target.to_read_description = NULL;
874 de_fault (to_get_ada_task_ptid,
875 (ptid_t (*) (long, long))
876 default_get_ada_task_ptid);
877 de_fault (to_supports_multi_process,
878 (int (*) (void))
879 return_zero);
880 de_fault (to_supports_enable_disable_tracepoint,
881 (int (*) (void))
882 return_zero);
883 de_fault (to_supports_string_tracing,
884 (int (*) (void))
885 return_zero);
886 de_fault (to_trace_init,
887 (void (*) (void))
888 tcomplain);
889 de_fault (to_download_tracepoint,
890 (void (*) (struct bp_location *))
891 tcomplain);
892 de_fault (to_can_download_tracepoint,
893 (int (*) (void))
894 return_zero);
895 de_fault (to_download_trace_state_variable,
896 (void (*) (struct trace_state_variable *))
897 tcomplain);
898 de_fault (to_enable_tracepoint,
899 (void (*) (struct bp_location *))
900 tcomplain);
901 de_fault (to_disable_tracepoint,
902 (void (*) (struct bp_location *))
903 tcomplain);
904 de_fault (to_trace_set_readonly_regions,
905 (void (*) (void))
906 tcomplain);
907 de_fault (to_trace_start,
908 (void (*) (void))
909 tcomplain);
910 de_fault (to_get_trace_status,
911 (int (*) (struct trace_status *))
912 return_minus_one);
913 de_fault (to_get_tracepoint_status,
914 (void (*) (struct breakpoint *, struct uploaded_tp *))
915 tcomplain);
916 de_fault (to_trace_stop,
917 (void (*) (void))
918 tcomplain);
919 de_fault (to_trace_find,
920 (int (*) (enum trace_find_type, int, CORE_ADDR, CORE_ADDR, int *))
921 return_minus_one);
922 de_fault (to_get_trace_state_variable_value,
923 (int (*) (int, LONGEST *))
924 return_zero);
925 de_fault (to_save_trace_data,
926 (int (*) (const char *))
927 tcomplain);
928 de_fault (to_upload_tracepoints,
929 (int (*) (struct uploaded_tp **))
930 return_zero);
931 de_fault (to_upload_trace_state_variables,
932 (int (*) (struct uploaded_tsv **))
933 return_zero);
934 de_fault (to_get_raw_trace_data,
935 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
936 tcomplain);
937 de_fault (to_get_min_fast_tracepoint_insn_len,
938 (int (*) (void))
939 return_minus_one);
940 de_fault (to_set_disconnected_tracing,
941 (void (*) (int))
942 target_ignore);
943 de_fault (to_set_circular_trace_buffer,
944 (void (*) (int))
945 target_ignore);
946 de_fault (to_set_trace_buffer_size,
947 (void (*) (LONGEST))
948 target_ignore);
949 de_fault (to_set_trace_notes,
950 (int (*) (const char *, const char *, const char *))
951 return_zero);
952 de_fault (to_get_tib_address,
953 (int (*) (ptid_t, CORE_ADDR *))
954 tcomplain);
955 de_fault (to_set_permissions,
956 (void (*) (void))
957 target_ignore);
958 de_fault (to_static_tracepoint_marker_at,
959 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
960 return_zero);
961 de_fault (to_static_tracepoint_markers_by_strid,
962 (VEC(static_tracepoint_marker_p) * (*) (const char *))
963 tcomplain);
964 de_fault (to_traceframe_info,
965 (struct traceframe_info * (*) (void))
966 tcomplain);
967 de_fault (to_supports_evaluation_of_breakpoint_conditions,
968 (int (*) (void))
969 return_zero);
970 de_fault (to_can_run_breakpoint_commands,
971 (int (*) (void))
972 return_zero);
973 de_fault (to_use_agent,
974 (int (*) (int))
975 tcomplain);
976 de_fault (to_can_use_agent,
977 (int (*) (void))
978 return_zero);
979 de_fault (to_augmented_libraries_svr4_read,
980 (int (*) (void))
981 return_zero);
982 de_fault (to_execution_direction, default_execution_direction);
983
984 #undef de_fault
985
986 /* Finally, position the target-stack beneath the squashed
987 "current_target". That way code looking for a non-inherited
988 target method can quickly and simply find it. */
989 current_target.beneath = target_stack;
990
991 if (targetdebug)
992 setup_target_debug ();
993 }
994
995 /* Push a new target type into the stack of the existing target accessors,
996 possibly superseding some of the existing accessors.
997
998 Rather than allow an empty stack, we always have the dummy target at
999 the bottom stratum, so we can call the function vectors without
1000 checking them. */
1001
1002 void
1003 push_target (struct target_ops *t)
1004 {
1005 struct target_ops **cur;
1006
1007 /* Check magic number. If wrong, it probably means someone changed
1008 the struct definition, but not all the places that initialize one. */
1009 if (t->to_magic != OPS_MAGIC)
1010 {
1011 fprintf_unfiltered (gdb_stderr,
1012 "Magic number of %s target struct wrong\n",
1013 t->to_shortname);
1014 internal_error (__FILE__, __LINE__,
1015 _("failed internal consistency check"));
1016 }
1017
1018 /* Find the proper stratum to install this target in. */
1019 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1020 {
1021 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
1022 break;
1023 }
1024
1025 /* If there's already targets at this stratum, remove them. */
1026 /* FIXME: cagney/2003-10-15: I think this should be popping all
1027 targets to CUR, and not just those at this stratum level. */
1028 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
1029 {
1030 /* There's already something at this stratum level. Close it,
1031 and un-hook it from the stack. */
1032 struct target_ops *tmp = (*cur);
1033
1034 (*cur) = (*cur)->beneath;
1035 tmp->beneath = NULL;
1036 target_close (tmp);
1037 }
1038
1039 /* We have removed all targets in our stratum, now add the new one. */
1040 t->beneath = (*cur);
1041 (*cur) = t;
1042
1043 update_current_target ();
1044 }
1045
1046 /* Remove a target_ops vector from the stack, wherever it may be.
1047 Return how many times it was removed (0 or 1). */
1048
1049 int
1050 unpush_target (struct target_ops *t)
1051 {
1052 struct target_ops **cur;
1053 struct target_ops *tmp;
1054
1055 if (t->to_stratum == dummy_stratum)
1056 internal_error (__FILE__, __LINE__,
1057 _("Attempt to unpush the dummy target"));
1058
1059 /* Look for the specified target. Note that we assume that a target
1060 can only occur once in the target stack. */
1061
1062 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1063 {
1064 if ((*cur) == t)
1065 break;
1066 }
1067
1068 /* If we don't find target_ops, quit. Only open targets should be
1069 closed. */
1070 if ((*cur) == NULL)
1071 return 0;
1072
1073 /* Unchain the target. */
1074 tmp = (*cur);
1075 (*cur) = (*cur)->beneath;
1076 tmp->beneath = NULL;
1077
1078 update_current_target ();
1079
1080 /* Finally close the target. Note we do this after unchaining, so
1081 any target method calls from within the target_close
1082 implementation don't end up in T anymore. */
1083 target_close (t);
1084
1085 return 1;
1086 }
1087
1088 void
1089 pop_target (void)
1090 {
1091 target_close (target_stack); /* Let it clean up. */
1092 if (unpush_target (target_stack) == 1)
1093 return;
1094
1095 fprintf_unfiltered (gdb_stderr,
1096 "pop_target couldn't find target %s\n",
1097 current_target.to_shortname);
1098 internal_error (__FILE__, __LINE__,
1099 _("failed internal consistency check"));
1100 }
1101
1102 void
1103 pop_all_targets_above (enum strata above_stratum)
1104 {
1105 while ((int) (current_target.to_stratum) > (int) above_stratum)
1106 {
1107 target_close (target_stack);
1108 if (!unpush_target (target_stack))
1109 {
1110 fprintf_unfiltered (gdb_stderr,
1111 "pop_all_targets couldn't find target %s\n",
1112 target_stack->to_shortname);
1113 internal_error (__FILE__, __LINE__,
1114 _("failed internal consistency check"));
1115 break;
1116 }
1117 }
1118 }
1119
1120 void
1121 pop_all_targets (void)
1122 {
1123 pop_all_targets_above (dummy_stratum);
1124 }
1125
1126 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1127
1128 int
1129 target_is_pushed (struct target_ops *t)
1130 {
1131 struct target_ops **cur;
1132
1133 /* Check magic number. If wrong, it probably means someone changed
1134 the struct definition, but not all the places that initialize one. */
1135 if (t->to_magic != OPS_MAGIC)
1136 {
1137 fprintf_unfiltered (gdb_stderr,
1138 "Magic number of %s target struct wrong\n",
1139 t->to_shortname);
1140 internal_error (__FILE__, __LINE__,
1141 _("failed internal consistency check"));
1142 }
1143
1144 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1145 if (*cur == t)
1146 return 1;
1147
1148 return 0;
1149 }
1150
1151 /* Using the objfile specified in OBJFILE, find the address for the
1152 current thread's thread-local storage with offset OFFSET. */
1153 CORE_ADDR
1154 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1155 {
1156 volatile CORE_ADDR addr = 0;
1157 struct target_ops *target;
1158
1159 for (target = current_target.beneath;
1160 target != NULL;
1161 target = target->beneath)
1162 {
1163 if (target->to_get_thread_local_address != NULL)
1164 break;
1165 }
1166
1167 if (target != NULL
1168 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
1169 {
1170 ptid_t ptid = inferior_ptid;
1171 volatile struct gdb_exception ex;
1172
1173 TRY_CATCH (ex, RETURN_MASK_ALL)
1174 {
1175 CORE_ADDR lm_addr;
1176
1177 /* Fetch the load module address for this objfile. */
1178 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
1179 objfile);
1180 /* If it's 0, throw the appropriate exception. */
1181 if (lm_addr == 0)
1182 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1183 _("TLS load module not found"));
1184
1185 addr = target->to_get_thread_local_address (target, ptid,
1186 lm_addr, offset);
1187 }
1188 /* If an error occurred, print TLS related messages here. Otherwise,
1189 throw the error to some higher catcher. */
1190 if (ex.reason < 0)
1191 {
1192 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1193
1194 switch (ex.error)
1195 {
1196 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1197 error (_("Cannot find thread-local variables "
1198 "in this thread library."));
1199 break;
1200 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1201 if (objfile_is_library)
1202 error (_("Cannot find shared library `%s' in dynamic"
1203 " linker's load module list"), objfile->name);
1204 else
1205 error (_("Cannot find executable file `%s' in dynamic"
1206 " linker's load module list"), objfile->name);
1207 break;
1208 case TLS_NOT_ALLOCATED_YET_ERROR:
1209 if (objfile_is_library)
1210 error (_("The inferior has not yet allocated storage for"
1211 " thread-local variables in\n"
1212 "the shared library `%s'\n"
1213 "for %s"),
1214 objfile->name, target_pid_to_str (ptid));
1215 else
1216 error (_("The inferior has not yet allocated storage for"
1217 " thread-local variables in\n"
1218 "the executable `%s'\n"
1219 "for %s"),
1220 objfile->name, target_pid_to_str (ptid));
1221 break;
1222 case TLS_GENERIC_ERROR:
1223 if (objfile_is_library)
1224 error (_("Cannot find thread-local storage for %s, "
1225 "shared library %s:\n%s"),
1226 target_pid_to_str (ptid),
1227 objfile->name, ex.message);
1228 else
1229 error (_("Cannot find thread-local storage for %s, "
1230 "executable file %s:\n%s"),
1231 target_pid_to_str (ptid),
1232 objfile->name, ex.message);
1233 break;
1234 default:
1235 throw_exception (ex);
1236 break;
1237 }
1238 }
1239 }
1240 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1241 TLS is an ABI-specific thing. But we don't do that yet. */
1242 else
1243 error (_("Cannot find thread-local variables on this target"));
1244
1245 return addr;
1246 }
1247
1248 #undef MIN
1249 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1250
1251 /* target_read_string -- read a null terminated string, up to LEN bytes,
1252 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1253 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1254 is responsible for freeing it. Return the number of bytes successfully
1255 read. */
1256
1257 int
1258 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1259 {
1260 int tlen, offset, i;
1261 gdb_byte buf[4];
1262 int errcode = 0;
1263 char *buffer;
1264 int buffer_allocated;
1265 char *bufptr;
1266 unsigned int nbytes_read = 0;
1267
1268 gdb_assert (string);
1269
1270 /* Small for testing. */
1271 buffer_allocated = 4;
1272 buffer = xmalloc (buffer_allocated);
1273 bufptr = buffer;
1274
1275 while (len > 0)
1276 {
1277 tlen = MIN (len, 4 - (memaddr & 3));
1278 offset = memaddr & 3;
1279
1280 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1281 if (errcode != 0)
1282 {
1283 /* The transfer request might have crossed the boundary to an
1284 unallocated region of memory. Retry the transfer, requesting
1285 a single byte. */
1286 tlen = 1;
1287 offset = 0;
1288 errcode = target_read_memory (memaddr, buf, 1);
1289 if (errcode != 0)
1290 goto done;
1291 }
1292
1293 if (bufptr - buffer + tlen > buffer_allocated)
1294 {
1295 unsigned int bytes;
1296
1297 bytes = bufptr - buffer;
1298 buffer_allocated *= 2;
1299 buffer = xrealloc (buffer, buffer_allocated);
1300 bufptr = buffer + bytes;
1301 }
1302
1303 for (i = 0; i < tlen; i++)
1304 {
1305 *bufptr++ = buf[i + offset];
1306 if (buf[i + offset] == '\000')
1307 {
1308 nbytes_read += i + 1;
1309 goto done;
1310 }
1311 }
1312
1313 memaddr += tlen;
1314 len -= tlen;
1315 nbytes_read += tlen;
1316 }
1317 done:
1318 *string = buffer;
1319 if (errnop != NULL)
1320 *errnop = errcode;
1321 return nbytes_read;
1322 }
1323
1324 struct target_section_table *
1325 target_get_section_table (struct target_ops *target)
1326 {
1327 struct target_ops *t;
1328
1329 if (targetdebug)
1330 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1331
1332 for (t = target; t != NULL; t = t->beneath)
1333 if (t->to_get_section_table != NULL)
1334 return (*t->to_get_section_table) (t);
1335
1336 return NULL;
1337 }
1338
1339 /* Find a section containing ADDR. */
1340
1341 struct target_section *
1342 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1343 {
1344 struct target_section_table *table = target_get_section_table (target);
1345 struct target_section *secp;
1346
1347 if (table == NULL)
1348 return NULL;
1349
1350 for (secp = table->sections; secp < table->sections_end; secp++)
1351 {
1352 if (addr >= secp->addr && addr < secp->endaddr)
1353 return secp;
1354 }
1355 return NULL;
1356 }
1357
1358 /* Read memory from the live target, even if currently inspecting a
1359 traceframe. The return is the same as that of target_read. */
1360
1361 static LONGEST
1362 target_read_live_memory (enum target_object object,
1363 ULONGEST memaddr, gdb_byte *myaddr, LONGEST len)
1364 {
1365 int ret;
1366 struct cleanup *cleanup;
1367
1368 /* Switch momentarily out of tfind mode so to access live memory.
1369 Note that this must not clear global state, such as the frame
1370 cache, which must still remain valid for the previous traceframe.
1371 We may be _building_ the frame cache at this point. */
1372 cleanup = make_cleanup_restore_traceframe_number ();
1373 set_traceframe_number (-1);
1374
1375 ret = target_read (current_target.beneath, object, NULL,
1376 myaddr, memaddr, len);
1377
1378 do_cleanups (cleanup);
1379 return ret;
1380 }
1381
1382 /* Using the set of read-only target sections of OPS, read live
1383 read-only memory. Note that the actual reads start from the
1384 top-most target again.
1385
1386 For interface/parameters/return description see target.h,
1387 to_xfer_partial. */
1388
1389 static LONGEST
1390 memory_xfer_live_readonly_partial (struct target_ops *ops,
1391 enum target_object object,
1392 gdb_byte *readbuf, ULONGEST memaddr,
1393 LONGEST len)
1394 {
1395 struct target_section *secp;
1396 struct target_section_table *table;
1397
1398 secp = target_section_by_addr (ops, memaddr);
1399 if (secp != NULL
1400 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1401 & SEC_READONLY))
1402 {
1403 struct target_section *p;
1404 ULONGEST memend = memaddr + len;
1405
1406 table = target_get_section_table (ops);
1407
1408 for (p = table->sections; p < table->sections_end; p++)
1409 {
1410 if (memaddr >= p->addr)
1411 {
1412 if (memend <= p->endaddr)
1413 {
1414 /* Entire transfer is within this section. */
1415 return target_read_live_memory (object, memaddr,
1416 readbuf, len);
1417 }
1418 else if (memaddr >= p->endaddr)
1419 {
1420 /* This section ends before the transfer starts. */
1421 continue;
1422 }
1423 else
1424 {
1425 /* This section overlaps the transfer. Just do half. */
1426 len = p->endaddr - memaddr;
1427 return target_read_live_memory (object, memaddr,
1428 readbuf, len);
1429 }
1430 }
1431 }
1432 }
1433
1434 return 0;
1435 }
1436
1437 /* Perform a partial memory transfer.
1438 For docs see target.h, to_xfer_partial. */
1439
1440 static LONGEST
1441 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1442 void *readbuf, const void *writebuf, ULONGEST memaddr,
1443 LONGEST len)
1444 {
1445 LONGEST res;
1446 int reg_len;
1447 struct mem_region *region;
1448 struct inferior *inf;
1449
1450 /* For accesses to unmapped overlay sections, read directly from
1451 files. Must do this first, as MEMADDR may need adjustment. */
1452 if (readbuf != NULL && overlay_debugging)
1453 {
1454 struct obj_section *section = find_pc_overlay (memaddr);
1455
1456 if (pc_in_unmapped_range (memaddr, section))
1457 {
1458 struct target_section_table *table
1459 = target_get_section_table (ops);
1460 const char *section_name = section->the_bfd_section->name;
1461
1462 memaddr = overlay_mapped_address (memaddr, section);
1463 return section_table_xfer_memory_partial (readbuf, writebuf,
1464 memaddr, len,
1465 table->sections,
1466 table->sections_end,
1467 section_name);
1468 }
1469 }
1470
1471 /* Try the executable files, if "trust-readonly-sections" is set. */
1472 if (readbuf != NULL && trust_readonly)
1473 {
1474 struct target_section *secp;
1475 struct target_section_table *table;
1476
1477 secp = target_section_by_addr (ops, memaddr);
1478 if (secp != NULL
1479 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1480 & SEC_READONLY))
1481 {
1482 table = target_get_section_table (ops);
1483 return section_table_xfer_memory_partial (readbuf, writebuf,
1484 memaddr, len,
1485 table->sections,
1486 table->sections_end,
1487 NULL);
1488 }
1489 }
1490
1491 /* If reading unavailable memory in the context of traceframes, and
1492 this address falls within a read-only section, fallback to
1493 reading from live memory. */
1494 if (readbuf != NULL && get_traceframe_number () != -1)
1495 {
1496 VEC(mem_range_s) *available;
1497
1498 /* If we fail to get the set of available memory, then the
1499 target does not support querying traceframe info, and so we
1500 attempt reading from the traceframe anyway (assuming the
1501 target implements the old QTro packet then). */
1502 if (traceframe_available_memory (&available, memaddr, len))
1503 {
1504 struct cleanup *old_chain;
1505
1506 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1507
1508 if (VEC_empty (mem_range_s, available)
1509 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1510 {
1511 /* Don't read into the traceframe's available
1512 memory. */
1513 if (!VEC_empty (mem_range_s, available))
1514 {
1515 LONGEST oldlen = len;
1516
1517 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1518 gdb_assert (len <= oldlen);
1519 }
1520
1521 do_cleanups (old_chain);
1522
1523 /* This goes through the topmost target again. */
1524 res = memory_xfer_live_readonly_partial (ops, object,
1525 readbuf, memaddr, len);
1526 if (res > 0)
1527 return res;
1528
1529 /* No use trying further, we know some memory starting
1530 at MEMADDR isn't available. */
1531 return -1;
1532 }
1533
1534 /* Don't try to read more than how much is available, in
1535 case the target implements the deprecated QTro packet to
1536 cater for older GDBs (the target's knowledge of read-only
1537 sections may be outdated by now). */
1538 len = VEC_index (mem_range_s, available, 0)->length;
1539
1540 do_cleanups (old_chain);
1541 }
1542 }
1543
1544 /* Try GDB's internal data cache. */
1545 region = lookup_mem_region (memaddr);
1546 /* region->hi == 0 means there's no upper bound. */
1547 if (memaddr + len < region->hi || region->hi == 0)
1548 reg_len = len;
1549 else
1550 reg_len = region->hi - memaddr;
1551
1552 switch (region->attrib.mode)
1553 {
1554 case MEM_RO:
1555 if (writebuf != NULL)
1556 return -1;
1557 break;
1558
1559 case MEM_WO:
1560 if (readbuf != NULL)
1561 return -1;
1562 break;
1563
1564 case MEM_FLASH:
1565 /* We only support writing to flash during "load" for now. */
1566 if (writebuf != NULL)
1567 error (_("Writing to flash memory forbidden in this context"));
1568 break;
1569
1570 case MEM_NONE:
1571 return -1;
1572 }
1573
1574 if (!ptid_equal (inferior_ptid, null_ptid))
1575 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1576 else
1577 inf = NULL;
1578
1579 if (inf != NULL
1580 /* The dcache reads whole cache lines; that doesn't play well
1581 with reading from a trace buffer, because reading outside of
1582 the collected memory range fails. */
1583 && get_traceframe_number () == -1
1584 && (region->attrib.cache
1585 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1586 {
1587 if (readbuf != NULL)
1588 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1589 reg_len, 0);
1590 else
1591 /* FIXME drow/2006-08-09: If we're going to preserve const
1592 correctness dcache_xfer_memory should take readbuf and
1593 writebuf. */
1594 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1595 (void *) writebuf,
1596 reg_len, 1);
1597 if (res <= 0)
1598 return -1;
1599 else
1600 return res;
1601 }
1602
1603 /* If none of those methods found the memory we wanted, fall back
1604 to a target partial transfer. Normally a single call to
1605 to_xfer_partial is enough; if it doesn't recognize an object
1606 it will call the to_xfer_partial of the next target down.
1607 But for memory this won't do. Memory is the only target
1608 object which can be read from more than one valid target.
1609 A core file, for instance, could have some of memory but
1610 delegate other bits to the target below it. So, we must
1611 manually try all targets. */
1612
1613 do
1614 {
1615 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1616 readbuf, writebuf, memaddr, reg_len);
1617 if (res > 0)
1618 break;
1619
1620 /* We want to continue past core files to executables, but not
1621 past a running target's memory. */
1622 if (ops->to_has_all_memory (ops))
1623 break;
1624
1625 ops = ops->beneath;
1626 }
1627 while (ops != NULL);
1628
1629 /* Make sure the cache gets updated no matter what - if we are writing
1630 to the stack. Even if this write is not tagged as such, we still need
1631 to update the cache. */
1632
1633 if (res > 0
1634 && inf != NULL
1635 && writebuf != NULL
1636 && !region->attrib.cache
1637 && stack_cache_enabled_p
1638 && object != TARGET_OBJECT_STACK_MEMORY)
1639 {
1640 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1641 }
1642
1643 /* If we still haven't got anything, return the last error. We
1644 give up. */
1645 return res;
1646 }
1647
1648 /* Perform a partial memory transfer. For docs see target.h,
1649 to_xfer_partial. */
1650
1651 static LONGEST
1652 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1653 void *readbuf, const void *writebuf, ULONGEST memaddr,
1654 LONGEST len)
1655 {
1656 int res;
1657
1658 /* Zero length requests are ok and require no work. */
1659 if (len == 0)
1660 return 0;
1661
1662 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1663 breakpoint insns, thus hiding out from higher layers whether
1664 there are software breakpoints inserted in the code stream. */
1665 if (readbuf != NULL)
1666 {
1667 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len);
1668
1669 if (res > 0 && !show_memory_breakpoints)
1670 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1671 }
1672 else
1673 {
1674 void *buf;
1675 struct cleanup *old_chain;
1676
1677 buf = xmalloc (len);
1678 old_chain = make_cleanup (xfree, buf);
1679 memcpy (buf, writebuf, len);
1680
1681 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1682 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len);
1683
1684 do_cleanups (old_chain);
1685 }
1686
1687 return res;
1688 }
1689
1690 static void
1691 restore_show_memory_breakpoints (void *arg)
1692 {
1693 show_memory_breakpoints = (uintptr_t) arg;
1694 }
1695
1696 struct cleanup *
1697 make_show_memory_breakpoints_cleanup (int show)
1698 {
1699 int current = show_memory_breakpoints;
1700
1701 show_memory_breakpoints = show;
1702 return make_cleanup (restore_show_memory_breakpoints,
1703 (void *) (uintptr_t) current);
1704 }
1705
1706 /* For docs see target.h, to_xfer_partial. */
1707
1708 static LONGEST
1709 target_xfer_partial (struct target_ops *ops,
1710 enum target_object object, const char *annex,
1711 void *readbuf, const void *writebuf,
1712 ULONGEST offset, LONGEST len)
1713 {
1714 LONGEST retval;
1715
1716 gdb_assert (ops->to_xfer_partial != NULL);
1717
1718 if (writebuf && !may_write_memory)
1719 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1720 core_addr_to_string_nz (offset), plongest (len));
1721
1722 /* If this is a memory transfer, let the memory-specific code
1723 have a look at it instead. Memory transfers are more
1724 complicated. */
1725 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1726 retval = memory_xfer_partial (ops, object, readbuf,
1727 writebuf, offset, len);
1728 else
1729 {
1730 enum target_object raw_object = object;
1731
1732 /* If this is a raw memory transfer, request the normal
1733 memory object from other layers. */
1734 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1735 raw_object = TARGET_OBJECT_MEMORY;
1736
1737 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1738 writebuf, offset, len);
1739 }
1740
1741 if (targetdebug)
1742 {
1743 const unsigned char *myaddr = NULL;
1744
1745 fprintf_unfiltered (gdb_stdlog,
1746 "%s:target_xfer_partial "
1747 "(%d, %s, %s, %s, %s, %s) = %s",
1748 ops->to_shortname,
1749 (int) object,
1750 (annex ? annex : "(null)"),
1751 host_address_to_string (readbuf),
1752 host_address_to_string (writebuf),
1753 core_addr_to_string_nz (offset),
1754 plongest (len), plongest (retval));
1755
1756 if (readbuf)
1757 myaddr = readbuf;
1758 if (writebuf)
1759 myaddr = writebuf;
1760 if (retval > 0 && myaddr != NULL)
1761 {
1762 int i;
1763
1764 fputs_unfiltered (", bytes =", gdb_stdlog);
1765 for (i = 0; i < retval; i++)
1766 {
1767 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1768 {
1769 if (targetdebug < 2 && i > 0)
1770 {
1771 fprintf_unfiltered (gdb_stdlog, " ...");
1772 break;
1773 }
1774 fprintf_unfiltered (gdb_stdlog, "\n");
1775 }
1776
1777 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1778 }
1779 }
1780
1781 fputc_unfiltered ('\n', gdb_stdlog);
1782 }
1783 return retval;
1784 }
1785
1786 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1787 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1788 if any error occurs.
1789
1790 If an error occurs, no guarantee is made about the contents of the data at
1791 MYADDR. In particular, the caller should not depend upon partial reads
1792 filling the buffer with good data. There is no way for the caller to know
1793 how much good data might have been transfered anyway. Callers that can
1794 deal with partial reads should call target_read (which will retry until
1795 it makes no progress, and then return how much was transferred). */
1796
1797 int
1798 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1799 {
1800 /* Dispatch to the topmost target, not the flattened current_target.
1801 Memory accesses check target->to_has_(all_)memory, and the
1802 flattened target doesn't inherit those. */
1803 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1804 myaddr, memaddr, len) == len)
1805 return 0;
1806 else
1807 return EIO;
1808 }
1809
1810 /* Like target_read_memory, but specify explicitly that this is a read from
1811 the target's stack. This may trigger different cache behavior. */
1812
1813 int
1814 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1815 {
1816 /* Dispatch to the topmost target, not the flattened current_target.
1817 Memory accesses check target->to_has_(all_)memory, and the
1818 flattened target doesn't inherit those. */
1819
1820 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1821 myaddr, memaddr, len) == len)
1822 return 0;
1823 else
1824 return EIO;
1825 }
1826
1827 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1828 Returns either 0 for success or an errno value if any error occurs.
1829 If an error occurs, no guarantee is made about how much data got written.
1830 Callers that can deal with partial writes should call target_write. */
1831
1832 int
1833 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1834 {
1835 /* Dispatch to the topmost target, not the flattened current_target.
1836 Memory accesses check target->to_has_(all_)memory, and the
1837 flattened target doesn't inherit those. */
1838 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1839 myaddr, memaddr, len) == len)
1840 return 0;
1841 else
1842 return EIO;
1843 }
1844
1845 /* Write LEN bytes from MYADDR to target raw memory at address
1846 MEMADDR. Returns either 0 for success or an errno value if any
1847 error occurs. If an error occurs, no guarantee is made about how
1848 much data got written. Callers that can deal with partial writes
1849 should call target_write. */
1850
1851 int
1852 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1853 {
1854 /* Dispatch to the topmost target, not the flattened current_target.
1855 Memory accesses check target->to_has_(all_)memory, and the
1856 flattened target doesn't inherit those. */
1857 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1858 myaddr, memaddr, len) == len)
1859 return 0;
1860 else
1861 return EIO;
1862 }
1863
1864 /* Fetch the target's memory map. */
1865
1866 VEC(mem_region_s) *
1867 target_memory_map (void)
1868 {
1869 VEC(mem_region_s) *result;
1870 struct mem_region *last_one, *this_one;
1871 int ix;
1872 struct target_ops *t;
1873
1874 if (targetdebug)
1875 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1876
1877 for (t = current_target.beneath; t != NULL; t = t->beneath)
1878 if (t->to_memory_map != NULL)
1879 break;
1880
1881 if (t == NULL)
1882 return NULL;
1883
1884 result = t->to_memory_map (t);
1885 if (result == NULL)
1886 return NULL;
1887
1888 qsort (VEC_address (mem_region_s, result),
1889 VEC_length (mem_region_s, result),
1890 sizeof (struct mem_region), mem_region_cmp);
1891
1892 /* Check that regions do not overlap. Simultaneously assign
1893 a numbering for the "mem" commands to use to refer to
1894 each region. */
1895 last_one = NULL;
1896 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1897 {
1898 this_one->number = ix;
1899
1900 if (last_one && last_one->hi > this_one->lo)
1901 {
1902 warning (_("Overlapping regions in memory map: ignoring"));
1903 VEC_free (mem_region_s, result);
1904 return NULL;
1905 }
1906 last_one = this_one;
1907 }
1908
1909 return result;
1910 }
1911
1912 void
1913 target_flash_erase (ULONGEST address, LONGEST length)
1914 {
1915 struct target_ops *t;
1916
1917 for (t = current_target.beneath; t != NULL; t = t->beneath)
1918 if (t->to_flash_erase != NULL)
1919 {
1920 if (targetdebug)
1921 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1922 hex_string (address), phex (length, 0));
1923 t->to_flash_erase (t, address, length);
1924 return;
1925 }
1926
1927 tcomplain ();
1928 }
1929
1930 void
1931 target_flash_done (void)
1932 {
1933 struct target_ops *t;
1934
1935 for (t = current_target.beneath; t != NULL; t = t->beneath)
1936 if (t->to_flash_done != NULL)
1937 {
1938 if (targetdebug)
1939 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1940 t->to_flash_done (t);
1941 return;
1942 }
1943
1944 tcomplain ();
1945 }
1946
1947 static void
1948 show_trust_readonly (struct ui_file *file, int from_tty,
1949 struct cmd_list_element *c, const char *value)
1950 {
1951 fprintf_filtered (file,
1952 _("Mode for reading from readonly sections is %s.\n"),
1953 value);
1954 }
1955
1956 /* More generic transfers. */
1957
1958 static LONGEST
1959 default_xfer_partial (struct target_ops *ops, enum target_object object,
1960 const char *annex, gdb_byte *readbuf,
1961 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1962 {
1963 if (object == TARGET_OBJECT_MEMORY
1964 && ops->deprecated_xfer_memory != NULL)
1965 /* If available, fall back to the target's
1966 "deprecated_xfer_memory" method. */
1967 {
1968 int xfered = -1;
1969
1970 errno = 0;
1971 if (writebuf != NULL)
1972 {
1973 void *buffer = xmalloc (len);
1974 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1975
1976 memcpy (buffer, writebuf, len);
1977 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1978 1/*write*/, NULL, ops);
1979 do_cleanups (cleanup);
1980 }
1981 if (readbuf != NULL)
1982 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1983 0/*read*/, NULL, ops);
1984 if (xfered > 0)
1985 return xfered;
1986 else if (xfered == 0 && errno == 0)
1987 /* "deprecated_xfer_memory" uses 0, cross checked against
1988 ERRNO as one indication of an error. */
1989 return 0;
1990 else
1991 return -1;
1992 }
1993 else if (ops->beneath != NULL)
1994 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1995 readbuf, writebuf, offset, len);
1996 else
1997 return -1;
1998 }
1999
2000 /* The xfer_partial handler for the topmost target. Unlike the default,
2001 it does not need to handle memory specially; it just passes all
2002 requests down the stack. */
2003
2004 static LONGEST
2005 current_xfer_partial (struct target_ops *ops, enum target_object object,
2006 const char *annex, gdb_byte *readbuf,
2007 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
2008 {
2009 if (ops->beneath != NULL)
2010 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
2011 readbuf, writebuf, offset, len);
2012 else
2013 return -1;
2014 }
2015
2016 /* Target vector read/write partial wrapper functions. */
2017
2018 static LONGEST
2019 target_read_partial (struct target_ops *ops,
2020 enum target_object object,
2021 const char *annex, gdb_byte *buf,
2022 ULONGEST offset, LONGEST len)
2023 {
2024 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
2025 }
2026
2027 static LONGEST
2028 target_write_partial (struct target_ops *ops,
2029 enum target_object object,
2030 const char *annex, const gdb_byte *buf,
2031 ULONGEST offset, LONGEST len)
2032 {
2033 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
2034 }
2035
2036 /* Wrappers to perform the full transfer. */
2037
2038 /* For docs on target_read see target.h. */
2039
2040 LONGEST
2041 target_read (struct target_ops *ops,
2042 enum target_object object,
2043 const char *annex, gdb_byte *buf,
2044 ULONGEST offset, LONGEST len)
2045 {
2046 LONGEST xfered = 0;
2047
2048 while (xfered < len)
2049 {
2050 LONGEST xfer = target_read_partial (ops, object, annex,
2051 (gdb_byte *) buf + xfered,
2052 offset + xfered, len - xfered);
2053
2054 /* Call an observer, notifying them of the xfer progress? */
2055 if (xfer == 0)
2056 return xfered;
2057 if (xfer < 0)
2058 return -1;
2059 xfered += xfer;
2060 QUIT;
2061 }
2062 return len;
2063 }
2064
2065 /* Assuming that the entire [begin, end) range of memory cannot be
2066 read, try to read whatever subrange is possible to read.
2067
2068 The function returns, in RESULT, either zero or one memory block.
2069 If there's a readable subrange at the beginning, it is completely
2070 read and returned. Any further readable subrange will not be read.
2071 Otherwise, if there's a readable subrange at the end, it will be
2072 completely read and returned. Any readable subranges before it
2073 (obviously, not starting at the beginning), will be ignored. In
2074 other cases -- either no readable subrange, or readable subrange(s)
2075 that is neither at the beginning, or end, nothing is returned.
2076
2077 The purpose of this function is to handle a read across a boundary
2078 of accessible memory in a case when memory map is not available.
2079 The above restrictions are fine for this case, but will give
2080 incorrect results if the memory is 'patchy'. However, supporting
2081 'patchy' memory would require trying to read every single byte,
2082 and it seems unacceptable solution. Explicit memory map is
2083 recommended for this case -- and target_read_memory_robust will
2084 take care of reading multiple ranges then. */
2085
2086 static void
2087 read_whatever_is_readable (struct target_ops *ops,
2088 ULONGEST begin, ULONGEST end,
2089 VEC(memory_read_result_s) **result)
2090 {
2091 gdb_byte *buf = xmalloc (end - begin);
2092 ULONGEST current_begin = begin;
2093 ULONGEST current_end = end;
2094 int forward;
2095 memory_read_result_s r;
2096
2097 /* If we previously failed to read 1 byte, nothing can be done here. */
2098 if (end - begin <= 1)
2099 {
2100 xfree (buf);
2101 return;
2102 }
2103
2104 /* Check that either first or the last byte is readable, and give up
2105 if not. This heuristic is meant to permit reading accessible memory
2106 at the boundary of accessible region. */
2107 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2108 buf, begin, 1) == 1)
2109 {
2110 forward = 1;
2111 ++current_begin;
2112 }
2113 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2114 buf + (end-begin) - 1, end - 1, 1) == 1)
2115 {
2116 forward = 0;
2117 --current_end;
2118 }
2119 else
2120 {
2121 xfree (buf);
2122 return;
2123 }
2124
2125 /* Loop invariant is that the [current_begin, current_end) was previously
2126 found to be not readable as a whole.
2127
2128 Note loop condition -- if the range has 1 byte, we can't divide the range
2129 so there's no point trying further. */
2130 while (current_end - current_begin > 1)
2131 {
2132 ULONGEST first_half_begin, first_half_end;
2133 ULONGEST second_half_begin, second_half_end;
2134 LONGEST xfer;
2135 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2136
2137 if (forward)
2138 {
2139 first_half_begin = current_begin;
2140 first_half_end = middle;
2141 second_half_begin = middle;
2142 second_half_end = current_end;
2143 }
2144 else
2145 {
2146 first_half_begin = middle;
2147 first_half_end = current_end;
2148 second_half_begin = current_begin;
2149 second_half_end = middle;
2150 }
2151
2152 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2153 buf + (first_half_begin - begin),
2154 first_half_begin,
2155 first_half_end - first_half_begin);
2156
2157 if (xfer == first_half_end - first_half_begin)
2158 {
2159 /* This half reads up fine. So, the error must be in the
2160 other half. */
2161 current_begin = second_half_begin;
2162 current_end = second_half_end;
2163 }
2164 else
2165 {
2166 /* This half is not readable. Because we've tried one byte, we
2167 know some part of this half if actually redable. Go to the next
2168 iteration to divide again and try to read.
2169
2170 We don't handle the other half, because this function only tries
2171 to read a single readable subrange. */
2172 current_begin = first_half_begin;
2173 current_end = first_half_end;
2174 }
2175 }
2176
2177 if (forward)
2178 {
2179 /* The [begin, current_begin) range has been read. */
2180 r.begin = begin;
2181 r.end = current_begin;
2182 r.data = buf;
2183 }
2184 else
2185 {
2186 /* The [current_end, end) range has been read. */
2187 LONGEST rlen = end - current_end;
2188
2189 r.data = xmalloc (rlen);
2190 memcpy (r.data, buf + current_end - begin, rlen);
2191 r.begin = current_end;
2192 r.end = end;
2193 xfree (buf);
2194 }
2195 VEC_safe_push(memory_read_result_s, (*result), &r);
2196 }
2197
2198 void
2199 free_memory_read_result_vector (void *x)
2200 {
2201 VEC(memory_read_result_s) *v = x;
2202 memory_read_result_s *current;
2203 int ix;
2204
2205 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2206 {
2207 xfree (current->data);
2208 }
2209 VEC_free (memory_read_result_s, v);
2210 }
2211
2212 VEC(memory_read_result_s) *
2213 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2214 {
2215 VEC(memory_read_result_s) *result = 0;
2216
2217 LONGEST xfered = 0;
2218 while (xfered < len)
2219 {
2220 struct mem_region *region = lookup_mem_region (offset + xfered);
2221 LONGEST rlen;
2222
2223 /* If there is no explicit region, a fake one should be created. */
2224 gdb_assert (region);
2225
2226 if (region->hi == 0)
2227 rlen = len - xfered;
2228 else
2229 rlen = region->hi - offset;
2230
2231 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2232 {
2233 /* Cannot read this region. Note that we can end up here only
2234 if the region is explicitly marked inaccessible, or
2235 'inaccessible-by-default' is in effect. */
2236 xfered += rlen;
2237 }
2238 else
2239 {
2240 LONGEST to_read = min (len - xfered, rlen);
2241 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2242
2243 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2244 (gdb_byte *) buffer,
2245 offset + xfered, to_read);
2246 /* Call an observer, notifying them of the xfer progress? */
2247 if (xfer <= 0)
2248 {
2249 /* Got an error reading full chunk. See if maybe we can read
2250 some subrange. */
2251 xfree (buffer);
2252 read_whatever_is_readable (ops, offset + xfered,
2253 offset + xfered + to_read, &result);
2254 xfered += to_read;
2255 }
2256 else
2257 {
2258 struct memory_read_result r;
2259 r.data = buffer;
2260 r.begin = offset + xfered;
2261 r.end = r.begin + xfer;
2262 VEC_safe_push (memory_read_result_s, result, &r);
2263 xfered += xfer;
2264 }
2265 QUIT;
2266 }
2267 }
2268 return result;
2269 }
2270
2271
2272 /* An alternative to target_write with progress callbacks. */
2273
2274 LONGEST
2275 target_write_with_progress (struct target_ops *ops,
2276 enum target_object object,
2277 const char *annex, const gdb_byte *buf,
2278 ULONGEST offset, LONGEST len,
2279 void (*progress) (ULONGEST, void *), void *baton)
2280 {
2281 LONGEST xfered = 0;
2282
2283 /* Give the progress callback a chance to set up. */
2284 if (progress)
2285 (*progress) (0, baton);
2286
2287 while (xfered < len)
2288 {
2289 LONGEST xfer = target_write_partial (ops, object, annex,
2290 (gdb_byte *) buf + xfered,
2291 offset + xfered, len - xfered);
2292
2293 if (xfer == 0)
2294 return xfered;
2295 if (xfer < 0)
2296 return -1;
2297
2298 if (progress)
2299 (*progress) (xfer, baton);
2300
2301 xfered += xfer;
2302 QUIT;
2303 }
2304 return len;
2305 }
2306
2307 /* For docs on target_write see target.h. */
2308
2309 LONGEST
2310 target_write (struct target_ops *ops,
2311 enum target_object object,
2312 const char *annex, const gdb_byte *buf,
2313 ULONGEST offset, LONGEST len)
2314 {
2315 return target_write_with_progress (ops, object, annex, buf, offset, len,
2316 NULL, NULL);
2317 }
2318
2319 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2320 the size of the transferred data. PADDING additional bytes are
2321 available in *BUF_P. This is a helper function for
2322 target_read_alloc; see the declaration of that function for more
2323 information. */
2324
2325 static LONGEST
2326 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2327 const char *annex, gdb_byte **buf_p, int padding)
2328 {
2329 size_t buf_alloc, buf_pos;
2330 gdb_byte *buf;
2331 LONGEST n;
2332
2333 /* This function does not have a length parameter; it reads the
2334 entire OBJECT). Also, it doesn't support objects fetched partly
2335 from one target and partly from another (in a different stratum,
2336 e.g. a core file and an executable). Both reasons make it
2337 unsuitable for reading memory. */
2338 gdb_assert (object != TARGET_OBJECT_MEMORY);
2339
2340 /* Start by reading up to 4K at a time. The target will throttle
2341 this number down if necessary. */
2342 buf_alloc = 4096;
2343 buf = xmalloc (buf_alloc);
2344 buf_pos = 0;
2345 while (1)
2346 {
2347 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2348 buf_pos, buf_alloc - buf_pos - padding);
2349 if (n < 0)
2350 {
2351 /* An error occurred. */
2352 xfree (buf);
2353 return -1;
2354 }
2355 else if (n == 0)
2356 {
2357 /* Read all there was. */
2358 if (buf_pos == 0)
2359 xfree (buf);
2360 else
2361 *buf_p = buf;
2362 return buf_pos;
2363 }
2364
2365 buf_pos += n;
2366
2367 /* If the buffer is filling up, expand it. */
2368 if (buf_alloc < buf_pos * 2)
2369 {
2370 buf_alloc *= 2;
2371 buf = xrealloc (buf, buf_alloc);
2372 }
2373
2374 QUIT;
2375 }
2376 }
2377
2378 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2379 the size of the transferred data. See the declaration in "target.h"
2380 function for more information about the return value. */
2381
2382 LONGEST
2383 target_read_alloc (struct target_ops *ops, enum target_object object,
2384 const char *annex, gdb_byte **buf_p)
2385 {
2386 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2387 }
2388
2389 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2390 returned as a string, allocated using xmalloc. If an error occurs
2391 or the transfer is unsupported, NULL is returned. Empty objects
2392 are returned as allocated but empty strings. A warning is issued
2393 if the result contains any embedded NUL bytes. */
2394
2395 char *
2396 target_read_stralloc (struct target_ops *ops, enum target_object object,
2397 const char *annex)
2398 {
2399 gdb_byte *buffer;
2400 char *bufstr;
2401 LONGEST i, transferred;
2402
2403 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2404 bufstr = (char *) buffer;
2405
2406 if (transferred < 0)
2407 return NULL;
2408
2409 if (transferred == 0)
2410 return xstrdup ("");
2411
2412 bufstr[transferred] = 0;
2413
2414 /* Check for embedded NUL bytes; but allow trailing NULs. */
2415 for (i = strlen (bufstr); i < transferred; i++)
2416 if (bufstr[i] != 0)
2417 {
2418 warning (_("target object %d, annex %s, "
2419 "contained unexpected null characters"),
2420 (int) object, annex ? annex : "(none)");
2421 break;
2422 }
2423
2424 return bufstr;
2425 }
2426
2427 /* Memory transfer methods. */
2428
2429 void
2430 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2431 LONGEST len)
2432 {
2433 /* This method is used to read from an alternate, non-current
2434 target. This read must bypass the overlay support (as symbols
2435 don't match this target), and GDB's internal cache (wrong cache
2436 for this target). */
2437 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2438 != len)
2439 memory_error (EIO, addr);
2440 }
2441
2442 ULONGEST
2443 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2444 int len, enum bfd_endian byte_order)
2445 {
2446 gdb_byte buf[sizeof (ULONGEST)];
2447
2448 gdb_assert (len <= sizeof (buf));
2449 get_target_memory (ops, addr, buf, len);
2450 return extract_unsigned_integer (buf, len, byte_order);
2451 }
2452
2453 int
2454 target_insert_breakpoint (struct gdbarch *gdbarch,
2455 struct bp_target_info *bp_tgt)
2456 {
2457 if (!may_insert_breakpoints)
2458 {
2459 warning (_("May not insert breakpoints"));
2460 return 1;
2461 }
2462
2463 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2464 }
2465
2466 int
2467 target_remove_breakpoint (struct gdbarch *gdbarch,
2468 struct bp_target_info *bp_tgt)
2469 {
2470 /* This is kind of a weird case to handle, but the permission might
2471 have been changed after breakpoints were inserted - in which case
2472 we should just take the user literally and assume that any
2473 breakpoints should be left in place. */
2474 if (!may_insert_breakpoints)
2475 {
2476 warning (_("May not remove breakpoints"));
2477 return 1;
2478 }
2479
2480 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2481 }
2482
2483 static void
2484 target_info (char *args, int from_tty)
2485 {
2486 struct target_ops *t;
2487 int has_all_mem = 0;
2488
2489 if (symfile_objfile != NULL)
2490 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2491
2492 for (t = target_stack; t != NULL; t = t->beneath)
2493 {
2494 if (!(*t->to_has_memory) (t))
2495 continue;
2496
2497 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2498 continue;
2499 if (has_all_mem)
2500 printf_unfiltered (_("\tWhile running this, "
2501 "GDB does not access memory from...\n"));
2502 printf_unfiltered ("%s:\n", t->to_longname);
2503 (t->to_files_info) (t);
2504 has_all_mem = (*t->to_has_all_memory) (t);
2505 }
2506 }
2507
2508 /* This function is called before any new inferior is created, e.g.
2509 by running a program, attaching, or connecting to a target.
2510 It cleans up any state from previous invocations which might
2511 change between runs. This is a subset of what target_preopen
2512 resets (things which might change between targets). */
2513
2514 void
2515 target_pre_inferior (int from_tty)
2516 {
2517 /* Clear out solib state. Otherwise the solib state of the previous
2518 inferior might have survived and is entirely wrong for the new
2519 target. This has been observed on GNU/Linux using glibc 2.3. How
2520 to reproduce:
2521
2522 bash$ ./foo&
2523 [1] 4711
2524 bash$ ./foo&
2525 [1] 4712
2526 bash$ gdb ./foo
2527 [...]
2528 (gdb) attach 4711
2529 (gdb) detach
2530 (gdb) attach 4712
2531 Cannot access memory at address 0xdeadbeef
2532 */
2533
2534 /* In some OSs, the shared library list is the same/global/shared
2535 across inferiors. If code is shared between processes, so are
2536 memory regions and features. */
2537 if (!gdbarch_has_global_solist (target_gdbarch ()))
2538 {
2539 no_shared_libraries (NULL, from_tty);
2540
2541 invalidate_target_mem_regions ();
2542
2543 target_clear_description ();
2544 }
2545
2546 agent_capability_invalidate ();
2547 }
2548
2549 /* Callback for iterate_over_inferiors. Gets rid of the given
2550 inferior. */
2551
2552 static int
2553 dispose_inferior (struct inferior *inf, void *args)
2554 {
2555 struct thread_info *thread;
2556
2557 thread = any_thread_of_process (inf->pid);
2558 if (thread)
2559 {
2560 switch_to_thread (thread->ptid);
2561
2562 /* Core inferiors actually should be detached, not killed. */
2563 if (target_has_execution)
2564 target_kill ();
2565 else
2566 target_detach (NULL, 0);
2567 }
2568
2569 return 0;
2570 }
2571
2572 /* This is to be called by the open routine before it does
2573 anything. */
2574
2575 void
2576 target_preopen (int from_tty)
2577 {
2578 dont_repeat ();
2579
2580 if (have_inferiors ())
2581 {
2582 if (!from_tty
2583 || !have_live_inferiors ()
2584 || query (_("A program is being debugged already. Kill it? ")))
2585 iterate_over_inferiors (dispose_inferior, NULL);
2586 else
2587 error (_("Program not killed."));
2588 }
2589
2590 /* Calling target_kill may remove the target from the stack. But if
2591 it doesn't (which seems like a win for UDI), remove it now. */
2592 /* Leave the exec target, though. The user may be switching from a
2593 live process to a core of the same program. */
2594 pop_all_targets_above (file_stratum);
2595
2596 target_pre_inferior (from_tty);
2597 }
2598
2599 /* Detach a target after doing deferred register stores. */
2600
2601 void
2602 target_detach (char *args, int from_tty)
2603 {
2604 struct target_ops* t;
2605
2606 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2607 /* Don't remove global breakpoints here. They're removed on
2608 disconnection from the target. */
2609 ;
2610 else
2611 /* If we're in breakpoints-always-inserted mode, have to remove
2612 them before detaching. */
2613 remove_breakpoints_pid (PIDGET (inferior_ptid));
2614
2615 prepare_for_detach ();
2616
2617 for (t = current_target.beneath; t != NULL; t = t->beneath)
2618 {
2619 if (t->to_detach != NULL)
2620 {
2621 t->to_detach (t, args, from_tty);
2622 if (targetdebug)
2623 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2624 args, from_tty);
2625 return;
2626 }
2627 }
2628
2629 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2630 }
2631
2632 void
2633 target_disconnect (char *args, int from_tty)
2634 {
2635 struct target_ops *t;
2636
2637 /* If we're in breakpoints-always-inserted mode or if breakpoints
2638 are global across processes, we have to remove them before
2639 disconnecting. */
2640 remove_breakpoints ();
2641
2642 for (t = current_target.beneath; t != NULL; t = t->beneath)
2643 if (t->to_disconnect != NULL)
2644 {
2645 if (targetdebug)
2646 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2647 args, from_tty);
2648 t->to_disconnect (t, args, from_tty);
2649 return;
2650 }
2651
2652 tcomplain ();
2653 }
2654
2655 ptid_t
2656 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2657 {
2658 struct target_ops *t;
2659
2660 for (t = current_target.beneath; t != NULL; t = t->beneath)
2661 {
2662 if (t->to_wait != NULL)
2663 {
2664 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2665
2666 if (targetdebug)
2667 {
2668 char *status_string;
2669 char *options_string;
2670
2671 status_string = target_waitstatus_to_string (status);
2672 options_string = target_options_to_string (options);
2673 fprintf_unfiltered (gdb_stdlog,
2674 "target_wait (%d, status, options={%s})"
2675 " = %d, %s\n",
2676 PIDGET (ptid), options_string,
2677 PIDGET (retval), status_string);
2678 xfree (status_string);
2679 xfree (options_string);
2680 }
2681
2682 return retval;
2683 }
2684 }
2685
2686 noprocess ();
2687 }
2688
2689 char *
2690 target_pid_to_str (ptid_t ptid)
2691 {
2692 struct target_ops *t;
2693
2694 for (t = current_target.beneath; t != NULL; t = t->beneath)
2695 {
2696 if (t->to_pid_to_str != NULL)
2697 return (*t->to_pid_to_str) (t, ptid);
2698 }
2699
2700 return normal_pid_to_str (ptid);
2701 }
2702
2703 char *
2704 target_thread_name (struct thread_info *info)
2705 {
2706 struct target_ops *t;
2707
2708 for (t = current_target.beneath; t != NULL; t = t->beneath)
2709 {
2710 if (t->to_thread_name != NULL)
2711 return (*t->to_thread_name) (info);
2712 }
2713
2714 return NULL;
2715 }
2716
2717 void
2718 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2719 {
2720 struct target_ops *t;
2721
2722 target_dcache_invalidate ();
2723
2724 for (t = current_target.beneath; t != NULL; t = t->beneath)
2725 {
2726 if (t->to_resume != NULL)
2727 {
2728 t->to_resume (t, ptid, step, signal);
2729 if (targetdebug)
2730 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2731 PIDGET (ptid),
2732 step ? "step" : "continue",
2733 gdb_signal_to_name (signal));
2734
2735 registers_changed_ptid (ptid);
2736 set_executing (ptid, 1);
2737 set_running (ptid, 1);
2738 clear_inline_frame_state (ptid);
2739 return;
2740 }
2741 }
2742
2743 noprocess ();
2744 }
2745
2746 void
2747 target_pass_signals (int numsigs, unsigned char *pass_signals)
2748 {
2749 struct target_ops *t;
2750
2751 for (t = current_target.beneath; t != NULL; t = t->beneath)
2752 {
2753 if (t->to_pass_signals != NULL)
2754 {
2755 if (targetdebug)
2756 {
2757 int i;
2758
2759 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2760 numsigs);
2761
2762 for (i = 0; i < numsigs; i++)
2763 if (pass_signals[i])
2764 fprintf_unfiltered (gdb_stdlog, " %s",
2765 gdb_signal_to_name (i));
2766
2767 fprintf_unfiltered (gdb_stdlog, " })\n");
2768 }
2769
2770 (*t->to_pass_signals) (numsigs, pass_signals);
2771 return;
2772 }
2773 }
2774 }
2775
2776 void
2777 target_program_signals (int numsigs, unsigned char *program_signals)
2778 {
2779 struct target_ops *t;
2780
2781 for (t = current_target.beneath; t != NULL; t = t->beneath)
2782 {
2783 if (t->to_program_signals != NULL)
2784 {
2785 if (targetdebug)
2786 {
2787 int i;
2788
2789 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2790 numsigs);
2791
2792 for (i = 0; i < numsigs; i++)
2793 if (program_signals[i])
2794 fprintf_unfiltered (gdb_stdlog, " %s",
2795 gdb_signal_to_name (i));
2796
2797 fprintf_unfiltered (gdb_stdlog, " })\n");
2798 }
2799
2800 (*t->to_program_signals) (numsigs, program_signals);
2801 return;
2802 }
2803 }
2804 }
2805
2806 /* Look through the list of possible targets for a target that can
2807 follow forks. */
2808
2809 int
2810 target_follow_fork (int follow_child)
2811 {
2812 struct target_ops *t;
2813
2814 for (t = current_target.beneath; t != NULL; t = t->beneath)
2815 {
2816 if (t->to_follow_fork != NULL)
2817 {
2818 int retval = t->to_follow_fork (t, follow_child);
2819
2820 if (targetdebug)
2821 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2822 follow_child, retval);
2823 return retval;
2824 }
2825 }
2826
2827 /* Some target returned a fork event, but did not know how to follow it. */
2828 internal_error (__FILE__, __LINE__,
2829 _("could not find a target to follow fork"));
2830 }
2831
2832 void
2833 target_mourn_inferior (void)
2834 {
2835 struct target_ops *t;
2836
2837 for (t = current_target.beneath; t != NULL; t = t->beneath)
2838 {
2839 if (t->to_mourn_inferior != NULL)
2840 {
2841 t->to_mourn_inferior (t);
2842 if (targetdebug)
2843 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2844
2845 /* We no longer need to keep handles on any of the object files.
2846 Make sure to release them to avoid unnecessarily locking any
2847 of them while we're not actually debugging. */
2848 bfd_cache_close_all ();
2849
2850 return;
2851 }
2852 }
2853
2854 internal_error (__FILE__, __LINE__,
2855 _("could not find a target to follow mourn inferior"));
2856 }
2857
2858 /* Look for a target which can describe architectural features, starting
2859 from TARGET. If we find one, return its description. */
2860
2861 const struct target_desc *
2862 target_read_description (struct target_ops *target)
2863 {
2864 struct target_ops *t;
2865
2866 for (t = target; t != NULL; t = t->beneath)
2867 if (t->to_read_description != NULL)
2868 {
2869 const struct target_desc *tdesc;
2870
2871 tdesc = t->to_read_description (t);
2872 if (tdesc)
2873 return tdesc;
2874 }
2875
2876 return NULL;
2877 }
2878
2879 /* The default implementation of to_search_memory.
2880 This implements a basic search of memory, reading target memory and
2881 performing the search here (as opposed to performing the search in on the
2882 target side with, for example, gdbserver). */
2883
2884 int
2885 simple_search_memory (struct target_ops *ops,
2886 CORE_ADDR start_addr, ULONGEST search_space_len,
2887 const gdb_byte *pattern, ULONGEST pattern_len,
2888 CORE_ADDR *found_addrp)
2889 {
2890 /* NOTE: also defined in find.c testcase. */
2891 #define SEARCH_CHUNK_SIZE 16000
2892 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2893 /* Buffer to hold memory contents for searching. */
2894 gdb_byte *search_buf;
2895 unsigned search_buf_size;
2896 struct cleanup *old_cleanups;
2897
2898 search_buf_size = chunk_size + pattern_len - 1;
2899
2900 /* No point in trying to allocate a buffer larger than the search space. */
2901 if (search_space_len < search_buf_size)
2902 search_buf_size = search_space_len;
2903
2904 search_buf = malloc (search_buf_size);
2905 if (search_buf == NULL)
2906 error (_("Unable to allocate memory to perform the search."));
2907 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2908
2909 /* Prime the search buffer. */
2910
2911 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2912 search_buf, start_addr, search_buf_size) != search_buf_size)
2913 {
2914 warning (_("Unable to access %s bytes of target "
2915 "memory at %s, halting search."),
2916 pulongest (search_buf_size), hex_string (start_addr));
2917 do_cleanups (old_cleanups);
2918 return -1;
2919 }
2920
2921 /* Perform the search.
2922
2923 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2924 When we've scanned N bytes we copy the trailing bytes to the start and
2925 read in another N bytes. */
2926
2927 while (search_space_len >= pattern_len)
2928 {
2929 gdb_byte *found_ptr;
2930 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2931
2932 found_ptr = memmem (search_buf, nr_search_bytes,
2933 pattern, pattern_len);
2934
2935 if (found_ptr != NULL)
2936 {
2937 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2938
2939 *found_addrp = found_addr;
2940 do_cleanups (old_cleanups);
2941 return 1;
2942 }
2943
2944 /* Not found in this chunk, skip to next chunk. */
2945
2946 /* Don't let search_space_len wrap here, it's unsigned. */
2947 if (search_space_len >= chunk_size)
2948 search_space_len -= chunk_size;
2949 else
2950 search_space_len = 0;
2951
2952 if (search_space_len >= pattern_len)
2953 {
2954 unsigned keep_len = search_buf_size - chunk_size;
2955 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2956 int nr_to_read;
2957
2958 /* Copy the trailing part of the previous iteration to the front
2959 of the buffer for the next iteration. */
2960 gdb_assert (keep_len == pattern_len - 1);
2961 memcpy (search_buf, search_buf + chunk_size, keep_len);
2962
2963 nr_to_read = min (search_space_len - keep_len, chunk_size);
2964
2965 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2966 search_buf + keep_len, read_addr,
2967 nr_to_read) != nr_to_read)
2968 {
2969 warning (_("Unable to access %s bytes of target "
2970 "memory at %s, halting search."),
2971 plongest (nr_to_read),
2972 hex_string (read_addr));
2973 do_cleanups (old_cleanups);
2974 return -1;
2975 }
2976
2977 start_addr += chunk_size;
2978 }
2979 }
2980
2981 /* Not found. */
2982
2983 do_cleanups (old_cleanups);
2984 return 0;
2985 }
2986
2987 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2988 sequence of bytes in PATTERN with length PATTERN_LEN.
2989
2990 The result is 1 if found, 0 if not found, and -1 if there was an error
2991 requiring halting of the search (e.g. memory read error).
2992 If the pattern is found the address is recorded in FOUND_ADDRP. */
2993
2994 int
2995 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2996 const gdb_byte *pattern, ULONGEST pattern_len,
2997 CORE_ADDR *found_addrp)
2998 {
2999 struct target_ops *t;
3000 int found;
3001
3002 /* We don't use INHERIT to set current_target.to_search_memory,
3003 so we have to scan the target stack and handle targetdebug
3004 ourselves. */
3005
3006 if (targetdebug)
3007 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
3008 hex_string (start_addr));
3009
3010 for (t = current_target.beneath; t != NULL; t = t->beneath)
3011 if (t->to_search_memory != NULL)
3012 break;
3013
3014 if (t != NULL)
3015 {
3016 found = t->to_search_memory (t, start_addr, search_space_len,
3017 pattern, pattern_len, found_addrp);
3018 }
3019 else
3020 {
3021 /* If a special version of to_search_memory isn't available, use the
3022 simple version. */
3023 found = simple_search_memory (current_target.beneath,
3024 start_addr, search_space_len,
3025 pattern, pattern_len, found_addrp);
3026 }
3027
3028 if (targetdebug)
3029 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
3030
3031 return found;
3032 }
3033
3034 /* Look through the currently pushed targets. If none of them will
3035 be able to restart the currently running process, issue an error
3036 message. */
3037
3038 void
3039 target_require_runnable (void)
3040 {
3041 struct target_ops *t;
3042
3043 for (t = target_stack; t != NULL; t = t->beneath)
3044 {
3045 /* If this target knows how to create a new program, then
3046 assume we will still be able to after killing the current
3047 one. Either killing and mourning will not pop T, or else
3048 find_default_run_target will find it again. */
3049 if (t->to_create_inferior != NULL)
3050 return;
3051
3052 /* Do not worry about thread_stratum targets that can not
3053 create inferiors. Assume they will be pushed again if
3054 necessary, and continue to the process_stratum. */
3055 if (t->to_stratum == thread_stratum
3056 || t->to_stratum == arch_stratum)
3057 continue;
3058
3059 error (_("The \"%s\" target does not support \"run\". "
3060 "Try \"help target\" or \"continue\"."),
3061 t->to_shortname);
3062 }
3063
3064 /* This function is only called if the target is running. In that
3065 case there should have been a process_stratum target and it
3066 should either know how to create inferiors, or not... */
3067 internal_error (__FILE__, __LINE__, _("No targets found"));
3068 }
3069
3070 /* Look through the list of possible targets for a target that can
3071 execute a run or attach command without any other data. This is
3072 used to locate the default process stratum.
3073
3074 If DO_MESG is not NULL, the result is always valid (error() is
3075 called for errors); else, return NULL on error. */
3076
3077 static struct target_ops *
3078 find_default_run_target (char *do_mesg)
3079 {
3080 struct target_ops **t;
3081 struct target_ops *runable = NULL;
3082 int count;
3083
3084 count = 0;
3085
3086 for (t = target_structs; t < target_structs + target_struct_size;
3087 ++t)
3088 {
3089 if ((*t)->to_can_run && target_can_run (*t))
3090 {
3091 runable = *t;
3092 ++count;
3093 }
3094 }
3095
3096 if (count != 1)
3097 {
3098 if (do_mesg)
3099 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3100 else
3101 return NULL;
3102 }
3103
3104 return runable;
3105 }
3106
3107 void
3108 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3109 {
3110 struct target_ops *t;
3111
3112 t = find_default_run_target ("attach");
3113 (t->to_attach) (t, args, from_tty);
3114 return;
3115 }
3116
3117 void
3118 find_default_create_inferior (struct target_ops *ops,
3119 char *exec_file, char *allargs, char **env,
3120 int from_tty)
3121 {
3122 struct target_ops *t;
3123
3124 t = find_default_run_target ("run");
3125 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3126 return;
3127 }
3128
3129 static int
3130 find_default_can_async_p (void)
3131 {
3132 struct target_ops *t;
3133
3134 /* This may be called before the target is pushed on the stack;
3135 look for the default process stratum. If there's none, gdb isn't
3136 configured with a native debugger, and target remote isn't
3137 connected yet. */
3138 t = find_default_run_target (NULL);
3139 if (t && t->to_can_async_p)
3140 return (t->to_can_async_p) ();
3141 return 0;
3142 }
3143
3144 static int
3145 find_default_is_async_p (void)
3146 {
3147 struct target_ops *t;
3148
3149 /* This may be called before the target is pushed on the stack;
3150 look for the default process stratum. If there's none, gdb isn't
3151 configured with a native debugger, and target remote isn't
3152 connected yet. */
3153 t = find_default_run_target (NULL);
3154 if (t && t->to_is_async_p)
3155 return (t->to_is_async_p) ();
3156 return 0;
3157 }
3158
3159 static int
3160 find_default_supports_non_stop (void)
3161 {
3162 struct target_ops *t;
3163
3164 t = find_default_run_target (NULL);
3165 if (t && t->to_supports_non_stop)
3166 return (t->to_supports_non_stop) ();
3167 return 0;
3168 }
3169
3170 int
3171 target_supports_non_stop (void)
3172 {
3173 struct target_ops *t;
3174
3175 for (t = &current_target; t != NULL; t = t->beneath)
3176 if (t->to_supports_non_stop)
3177 return t->to_supports_non_stop ();
3178
3179 return 0;
3180 }
3181
3182 /* Implement the "info proc" command. */
3183
3184 int
3185 target_info_proc (char *args, enum info_proc_what what)
3186 {
3187 struct target_ops *t;
3188
3189 /* If we're already connected to something that can get us OS
3190 related data, use it. Otherwise, try using the native
3191 target. */
3192 if (current_target.to_stratum >= process_stratum)
3193 t = current_target.beneath;
3194 else
3195 t = find_default_run_target (NULL);
3196
3197 for (; t != NULL; t = t->beneath)
3198 {
3199 if (t->to_info_proc != NULL)
3200 {
3201 t->to_info_proc (t, args, what);
3202
3203 if (targetdebug)
3204 fprintf_unfiltered (gdb_stdlog,
3205 "target_info_proc (\"%s\", %d)\n", args, what);
3206
3207 return 1;
3208 }
3209 }
3210
3211 return 0;
3212 }
3213
3214 static int
3215 find_default_supports_disable_randomization (void)
3216 {
3217 struct target_ops *t;
3218
3219 t = find_default_run_target (NULL);
3220 if (t && t->to_supports_disable_randomization)
3221 return (t->to_supports_disable_randomization) ();
3222 return 0;
3223 }
3224
3225 int
3226 target_supports_disable_randomization (void)
3227 {
3228 struct target_ops *t;
3229
3230 for (t = &current_target; t != NULL; t = t->beneath)
3231 if (t->to_supports_disable_randomization)
3232 return t->to_supports_disable_randomization ();
3233
3234 return 0;
3235 }
3236
3237 char *
3238 target_get_osdata (const char *type)
3239 {
3240 struct target_ops *t;
3241
3242 /* If we're already connected to something that can get us OS
3243 related data, use it. Otherwise, try using the native
3244 target. */
3245 if (current_target.to_stratum >= process_stratum)
3246 t = current_target.beneath;
3247 else
3248 t = find_default_run_target ("get OS data");
3249
3250 if (!t)
3251 return NULL;
3252
3253 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3254 }
3255
3256 /* Determine the current address space of thread PTID. */
3257
3258 struct address_space *
3259 target_thread_address_space (ptid_t ptid)
3260 {
3261 struct address_space *aspace;
3262 struct inferior *inf;
3263 struct target_ops *t;
3264
3265 for (t = current_target.beneath; t != NULL; t = t->beneath)
3266 {
3267 if (t->to_thread_address_space != NULL)
3268 {
3269 aspace = t->to_thread_address_space (t, ptid);
3270 gdb_assert (aspace);
3271
3272 if (targetdebug)
3273 fprintf_unfiltered (gdb_stdlog,
3274 "target_thread_address_space (%s) = %d\n",
3275 target_pid_to_str (ptid),
3276 address_space_num (aspace));
3277 return aspace;
3278 }
3279 }
3280
3281 /* Fall-back to the "main" address space of the inferior. */
3282 inf = find_inferior_pid (ptid_get_pid (ptid));
3283
3284 if (inf == NULL || inf->aspace == NULL)
3285 internal_error (__FILE__, __LINE__,
3286 _("Can't determine the current "
3287 "address space of thread %s\n"),
3288 target_pid_to_str (ptid));
3289
3290 return inf->aspace;
3291 }
3292
3293
3294 /* Target file operations. */
3295
3296 static struct target_ops *
3297 default_fileio_target (void)
3298 {
3299 /* If we're already connected to something that can perform
3300 file I/O, use it. Otherwise, try using the native target. */
3301 if (current_target.to_stratum >= process_stratum)
3302 return current_target.beneath;
3303 else
3304 return find_default_run_target ("file I/O");
3305 }
3306
3307 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3308 target file descriptor, or -1 if an error occurs (and set
3309 *TARGET_ERRNO). */
3310 int
3311 target_fileio_open (const char *filename, int flags, int mode,
3312 int *target_errno)
3313 {
3314 struct target_ops *t;
3315
3316 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3317 {
3318 if (t->to_fileio_open != NULL)
3319 {
3320 int fd = t->to_fileio_open (filename, flags, mode, target_errno);
3321
3322 if (targetdebug)
3323 fprintf_unfiltered (gdb_stdlog,
3324 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3325 filename, flags, mode,
3326 fd, fd != -1 ? 0 : *target_errno);
3327 return fd;
3328 }
3329 }
3330
3331 *target_errno = FILEIO_ENOSYS;
3332 return -1;
3333 }
3334
3335 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3336 Return the number of bytes written, or -1 if an error occurs
3337 (and set *TARGET_ERRNO). */
3338 int
3339 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3340 ULONGEST offset, int *target_errno)
3341 {
3342 struct target_ops *t;
3343
3344 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3345 {
3346 if (t->to_fileio_pwrite != NULL)
3347 {
3348 int ret = t->to_fileio_pwrite (fd, write_buf, len, offset,
3349 target_errno);
3350
3351 if (targetdebug)
3352 fprintf_unfiltered (gdb_stdlog,
3353 "target_fileio_pwrite (%d,...,%d,%s) "
3354 "= %d (%d)\n",
3355 fd, len, pulongest (offset),
3356 ret, ret != -1 ? 0 : *target_errno);
3357 return ret;
3358 }
3359 }
3360
3361 *target_errno = FILEIO_ENOSYS;
3362 return -1;
3363 }
3364
3365 /* Read up to LEN bytes FD on the target into READ_BUF.
3366 Return the number of bytes read, or -1 if an error occurs
3367 (and set *TARGET_ERRNO). */
3368 int
3369 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3370 ULONGEST offset, int *target_errno)
3371 {
3372 struct target_ops *t;
3373
3374 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3375 {
3376 if (t->to_fileio_pread != NULL)
3377 {
3378 int ret = t->to_fileio_pread (fd, read_buf, len, offset,
3379 target_errno);
3380
3381 if (targetdebug)
3382 fprintf_unfiltered (gdb_stdlog,
3383 "target_fileio_pread (%d,...,%d,%s) "
3384 "= %d (%d)\n",
3385 fd, len, pulongest (offset),
3386 ret, ret != -1 ? 0 : *target_errno);
3387 return ret;
3388 }
3389 }
3390
3391 *target_errno = FILEIO_ENOSYS;
3392 return -1;
3393 }
3394
3395 /* Close FD on the target. Return 0, or -1 if an error occurs
3396 (and set *TARGET_ERRNO). */
3397 int
3398 target_fileio_close (int fd, int *target_errno)
3399 {
3400 struct target_ops *t;
3401
3402 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3403 {
3404 if (t->to_fileio_close != NULL)
3405 {
3406 int ret = t->to_fileio_close (fd, target_errno);
3407
3408 if (targetdebug)
3409 fprintf_unfiltered (gdb_stdlog,
3410 "target_fileio_close (%d) = %d (%d)\n",
3411 fd, ret, ret != -1 ? 0 : *target_errno);
3412 return ret;
3413 }
3414 }
3415
3416 *target_errno = FILEIO_ENOSYS;
3417 return -1;
3418 }
3419
3420 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3421 occurs (and set *TARGET_ERRNO). */
3422 int
3423 target_fileio_unlink (const char *filename, int *target_errno)
3424 {
3425 struct target_ops *t;
3426
3427 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3428 {
3429 if (t->to_fileio_unlink != NULL)
3430 {
3431 int ret = t->to_fileio_unlink (filename, target_errno);
3432
3433 if (targetdebug)
3434 fprintf_unfiltered (gdb_stdlog,
3435 "target_fileio_unlink (%s) = %d (%d)\n",
3436 filename, ret, ret != -1 ? 0 : *target_errno);
3437 return ret;
3438 }
3439 }
3440
3441 *target_errno = FILEIO_ENOSYS;
3442 return -1;
3443 }
3444
3445 /* Read value of symbolic link FILENAME on the target. Return a
3446 null-terminated string allocated via xmalloc, or NULL if an error
3447 occurs (and set *TARGET_ERRNO). */
3448 char *
3449 target_fileio_readlink (const char *filename, int *target_errno)
3450 {
3451 struct target_ops *t;
3452
3453 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3454 {
3455 if (t->to_fileio_readlink != NULL)
3456 {
3457 char *ret = t->to_fileio_readlink (filename, target_errno);
3458
3459 if (targetdebug)
3460 fprintf_unfiltered (gdb_stdlog,
3461 "target_fileio_readlink (%s) = %s (%d)\n",
3462 filename, ret? ret : "(nil)",
3463 ret? 0 : *target_errno);
3464 return ret;
3465 }
3466 }
3467
3468 *target_errno = FILEIO_ENOSYS;
3469 return NULL;
3470 }
3471
3472 static void
3473 target_fileio_close_cleanup (void *opaque)
3474 {
3475 int fd = *(int *) opaque;
3476 int target_errno;
3477
3478 target_fileio_close (fd, &target_errno);
3479 }
3480
3481 /* Read target file FILENAME. Store the result in *BUF_P and
3482 return the size of the transferred data. PADDING additional bytes are
3483 available in *BUF_P. This is a helper function for
3484 target_fileio_read_alloc; see the declaration of that function for more
3485 information. */
3486
3487 static LONGEST
3488 target_fileio_read_alloc_1 (const char *filename,
3489 gdb_byte **buf_p, int padding)
3490 {
3491 struct cleanup *close_cleanup;
3492 size_t buf_alloc, buf_pos;
3493 gdb_byte *buf;
3494 LONGEST n;
3495 int fd;
3496 int target_errno;
3497
3498 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3499 if (fd == -1)
3500 return -1;
3501
3502 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3503
3504 /* Start by reading up to 4K at a time. The target will throttle
3505 this number down if necessary. */
3506 buf_alloc = 4096;
3507 buf = xmalloc (buf_alloc);
3508 buf_pos = 0;
3509 while (1)
3510 {
3511 n = target_fileio_pread (fd, &buf[buf_pos],
3512 buf_alloc - buf_pos - padding, buf_pos,
3513 &target_errno);
3514 if (n < 0)
3515 {
3516 /* An error occurred. */
3517 do_cleanups (close_cleanup);
3518 xfree (buf);
3519 return -1;
3520 }
3521 else if (n == 0)
3522 {
3523 /* Read all there was. */
3524 do_cleanups (close_cleanup);
3525 if (buf_pos == 0)
3526 xfree (buf);
3527 else
3528 *buf_p = buf;
3529 return buf_pos;
3530 }
3531
3532 buf_pos += n;
3533
3534 /* If the buffer is filling up, expand it. */
3535 if (buf_alloc < buf_pos * 2)
3536 {
3537 buf_alloc *= 2;
3538 buf = xrealloc (buf, buf_alloc);
3539 }
3540
3541 QUIT;
3542 }
3543 }
3544
3545 /* Read target file FILENAME. Store the result in *BUF_P and return
3546 the size of the transferred data. See the declaration in "target.h"
3547 function for more information about the return value. */
3548
3549 LONGEST
3550 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3551 {
3552 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3553 }
3554
3555 /* Read target file FILENAME. The result is NUL-terminated and
3556 returned as a string, allocated using xmalloc. If an error occurs
3557 or the transfer is unsupported, NULL is returned. Empty objects
3558 are returned as allocated but empty strings. A warning is issued
3559 if the result contains any embedded NUL bytes. */
3560
3561 char *
3562 target_fileio_read_stralloc (const char *filename)
3563 {
3564 gdb_byte *buffer;
3565 char *bufstr;
3566 LONGEST i, transferred;
3567
3568 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3569 bufstr = (char *) buffer;
3570
3571 if (transferred < 0)
3572 return NULL;
3573
3574 if (transferred == 0)
3575 return xstrdup ("");
3576
3577 bufstr[transferred] = 0;
3578
3579 /* Check for embedded NUL bytes; but allow trailing NULs. */
3580 for (i = strlen (bufstr); i < transferred; i++)
3581 if (bufstr[i] != 0)
3582 {
3583 warning (_("target file %s "
3584 "contained unexpected null characters"),
3585 filename);
3586 break;
3587 }
3588
3589 return bufstr;
3590 }
3591
3592
3593 static int
3594 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3595 {
3596 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3597 }
3598
3599 static int
3600 default_watchpoint_addr_within_range (struct target_ops *target,
3601 CORE_ADDR addr,
3602 CORE_ADDR start, int length)
3603 {
3604 return addr >= start && addr < start + length;
3605 }
3606
3607 static struct gdbarch *
3608 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3609 {
3610 return target_gdbarch ();
3611 }
3612
3613 static int
3614 return_zero (void)
3615 {
3616 return 0;
3617 }
3618
3619 static int
3620 return_one (void)
3621 {
3622 return 1;
3623 }
3624
3625 static int
3626 return_minus_one (void)
3627 {
3628 return -1;
3629 }
3630
3631 /* Find a single runnable target in the stack and return it. If for
3632 some reason there is more than one, return NULL. */
3633
3634 struct target_ops *
3635 find_run_target (void)
3636 {
3637 struct target_ops **t;
3638 struct target_ops *runable = NULL;
3639 int count;
3640
3641 count = 0;
3642
3643 for (t = target_structs; t < target_structs + target_struct_size; ++t)
3644 {
3645 if ((*t)->to_can_run && target_can_run (*t))
3646 {
3647 runable = *t;
3648 ++count;
3649 }
3650 }
3651
3652 return (count == 1 ? runable : NULL);
3653 }
3654
3655 /*
3656 * Find the next target down the stack from the specified target.
3657 */
3658
3659 struct target_ops *
3660 find_target_beneath (struct target_ops *t)
3661 {
3662 return t->beneath;
3663 }
3664
3665 \f
3666 /* The inferior process has died. Long live the inferior! */
3667
3668 void
3669 generic_mourn_inferior (void)
3670 {
3671 ptid_t ptid;
3672
3673 ptid = inferior_ptid;
3674 inferior_ptid = null_ptid;
3675
3676 /* Mark breakpoints uninserted in case something tries to delete a
3677 breakpoint while we delete the inferior's threads (which would
3678 fail, since the inferior is long gone). */
3679 mark_breakpoints_out ();
3680
3681 if (!ptid_equal (ptid, null_ptid))
3682 {
3683 int pid = ptid_get_pid (ptid);
3684 exit_inferior (pid);
3685 }
3686
3687 /* Note this wipes step-resume breakpoints, so needs to be done
3688 after exit_inferior, which ends up referencing the step-resume
3689 breakpoints through clear_thread_inferior_resources. */
3690 breakpoint_init_inferior (inf_exited);
3691
3692 registers_changed ();
3693
3694 reopen_exec_file ();
3695 reinit_frame_cache ();
3696
3697 if (deprecated_detach_hook)
3698 deprecated_detach_hook ();
3699 }
3700 \f
3701 /* Convert a normal process ID to a string. Returns the string in a
3702 static buffer. */
3703
3704 char *
3705 normal_pid_to_str (ptid_t ptid)
3706 {
3707 static char buf[32];
3708
3709 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3710 return buf;
3711 }
3712
3713 static char *
3714 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3715 {
3716 return normal_pid_to_str (ptid);
3717 }
3718
3719 /* Error-catcher for target_find_memory_regions. */
3720 static int
3721 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3722 {
3723 error (_("Command not implemented for this target."));
3724 return 0;
3725 }
3726
3727 /* Error-catcher for target_make_corefile_notes. */
3728 static char *
3729 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3730 {
3731 error (_("Command not implemented for this target."));
3732 return NULL;
3733 }
3734
3735 /* Error-catcher for target_get_bookmark. */
3736 static gdb_byte *
3737 dummy_get_bookmark (char *ignore1, int ignore2)
3738 {
3739 tcomplain ();
3740 return NULL;
3741 }
3742
3743 /* Error-catcher for target_goto_bookmark. */
3744 static void
3745 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3746 {
3747 tcomplain ();
3748 }
3749
3750 /* Set up the handful of non-empty slots needed by the dummy target
3751 vector. */
3752
3753 static void
3754 init_dummy_target (void)
3755 {
3756 dummy_target.to_shortname = "None";
3757 dummy_target.to_longname = "None";
3758 dummy_target.to_doc = "";
3759 dummy_target.to_attach = find_default_attach;
3760 dummy_target.to_detach =
3761 (void (*)(struct target_ops *, char *, int))target_ignore;
3762 dummy_target.to_create_inferior = find_default_create_inferior;
3763 dummy_target.to_can_async_p = find_default_can_async_p;
3764 dummy_target.to_is_async_p = find_default_is_async_p;
3765 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3766 dummy_target.to_supports_disable_randomization
3767 = find_default_supports_disable_randomization;
3768 dummy_target.to_pid_to_str = dummy_pid_to_str;
3769 dummy_target.to_stratum = dummy_stratum;
3770 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3771 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3772 dummy_target.to_get_bookmark = dummy_get_bookmark;
3773 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3774 dummy_target.to_xfer_partial = default_xfer_partial;
3775 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3776 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3777 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3778 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3779 dummy_target.to_has_execution
3780 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3781 dummy_target.to_stopped_by_watchpoint = return_zero;
3782 dummy_target.to_stopped_data_address =
3783 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3784 dummy_target.to_magic = OPS_MAGIC;
3785 }
3786 \f
3787 static void
3788 debug_to_open (char *args, int from_tty)
3789 {
3790 debug_target.to_open (args, from_tty);
3791
3792 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3793 }
3794
3795 void
3796 target_close (struct target_ops *targ)
3797 {
3798 if (targ->to_xclose != NULL)
3799 targ->to_xclose (targ);
3800 else if (targ->to_close != NULL)
3801 targ->to_close ();
3802
3803 if (targetdebug)
3804 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3805 }
3806
3807 void
3808 target_attach (char *args, int from_tty)
3809 {
3810 struct target_ops *t;
3811
3812 for (t = current_target.beneath; t != NULL; t = t->beneath)
3813 {
3814 if (t->to_attach != NULL)
3815 {
3816 t->to_attach (t, args, from_tty);
3817 if (targetdebug)
3818 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3819 args, from_tty);
3820 return;
3821 }
3822 }
3823
3824 internal_error (__FILE__, __LINE__,
3825 _("could not find a target to attach"));
3826 }
3827
3828 int
3829 target_thread_alive (ptid_t ptid)
3830 {
3831 struct target_ops *t;
3832
3833 for (t = current_target.beneath; t != NULL; t = t->beneath)
3834 {
3835 if (t->to_thread_alive != NULL)
3836 {
3837 int retval;
3838
3839 retval = t->to_thread_alive (t, ptid);
3840 if (targetdebug)
3841 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3842 PIDGET (ptid), retval);
3843
3844 return retval;
3845 }
3846 }
3847
3848 return 0;
3849 }
3850
3851 void
3852 target_find_new_threads (void)
3853 {
3854 struct target_ops *t;
3855
3856 for (t = current_target.beneath; t != NULL; t = t->beneath)
3857 {
3858 if (t->to_find_new_threads != NULL)
3859 {
3860 t->to_find_new_threads (t);
3861 if (targetdebug)
3862 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3863
3864 return;
3865 }
3866 }
3867 }
3868
3869 void
3870 target_stop (ptid_t ptid)
3871 {
3872 if (!may_stop)
3873 {
3874 warning (_("May not interrupt or stop the target, ignoring attempt"));
3875 return;
3876 }
3877
3878 (*current_target.to_stop) (ptid);
3879 }
3880
3881 static void
3882 debug_to_post_attach (int pid)
3883 {
3884 debug_target.to_post_attach (pid);
3885
3886 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3887 }
3888
3889 /* Return a pretty printed form of target_waitstatus.
3890 Space for the result is malloc'd, caller must free. */
3891
3892 char *
3893 target_waitstatus_to_string (const struct target_waitstatus *ws)
3894 {
3895 const char *kind_str = "status->kind = ";
3896
3897 switch (ws->kind)
3898 {
3899 case TARGET_WAITKIND_EXITED:
3900 return xstrprintf ("%sexited, status = %d",
3901 kind_str, ws->value.integer);
3902 case TARGET_WAITKIND_STOPPED:
3903 return xstrprintf ("%sstopped, signal = %s",
3904 kind_str, gdb_signal_to_name (ws->value.sig));
3905 case TARGET_WAITKIND_SIGNALLED:
3906 return xstrprintf ("%ssignalled, signal = %s",
3907 kind_str, gdb_signal_to_name (ws->value.sig));
3908 case TARGET_WAITKIND_LOADED:
3909 return xstrprintf ("%sloaded", kind_str);
3910 case TARGET_WAITKIND_FORKED:
3911 return xstrprintf ("%sforked", kind_str);
3912 case TARGET_WAITKIND_VFORKED:
3913 return xstrprintf ("%svforked", kind_str);
3914 case TARGET_WAITKIND_EXECD:
3915 return xstrprintf ("%sexecd", kind_str);
3916 case TARGET_WAITKIND_VFORK_DONE:
3917 return xstrprintf ("%svfork-done", kind_str);
3918 case TARGET_WAITKIND_SYSCALL_ENTRY:
3919 return xstrprintf ("%sentered syscall", kind_str);
3920 case TARGET_WAITKIND_SYSCALL_RETURN:
3921 return xstrprintf ("%sexited syscall", kind_str);
3922 case TARGET_WAITKIND_SPURIOUS:
3923 return xstrprintf ("%sspurious", kind_str);
3924 case TARGET_WAITKIND_IGNORE:
3925 return xstrprintf ("%signore", kind_str);
3926 case TARGET_WAITKIND_NO_HISTORY:
3927 return xstrprintf ("%sno-history", kind_str);
3928 case TARGET_WAITKIND_NO_RESUMED:
3929 return xstrprintf ("%sno-resumed", kind_str);
3930 default:
3931 return xstrprintf ("%sunknown???", kind_str);
3932 }
3933 }
3934
3935 /* Concatenate ELEM to LIST, a comma separate list, and return the
3936 result. The LIST incoming argument is released. */
3937
3938 static char *
3939 str_comma_list_concat_elem (char *list, const char *elem)
3940 {
3941 if (list == NULL)
3942 return xstrdup (elem);
3943 else
3944 return reconcat (list, list, ", ", elem, (char *) NULL);
3945 }
3946
3947 /* Helper for target_options_to_string. If OPT is present in
3948 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3949 Returns the new resulting string. OPT is removed from
3950 TARGET_OPTIONS. */
3951
3952 static char *
3953 do_option (int *target_options, char *ret,
3954 int opt, char *opt_str)
3955 {
3956 if ((*target_options & opt) != 0)
3957 {
3958 ret = str_comma_list_concat_elem (ret, opt_str);
3959 *target_options &= ~opt;
3960 }
3961
3962 return ret;
3963 }
3964
3965 char *
3966 target_options_to_string (int target_options)
3967 {
3968 char *ret = NULL;
3969
3970 #define DO_TARG_OPTION(OPT) \
3971 ret = do_option (&target_options, ret, OPT, #OPT)
3972
3973 DO_TARG_OPTION (TARGET_WNOHANG);
3974
3975 if (target_options != 0)
3976 ret = str_comma_list_concat_elem (ret, "unknown???");
3977
3978 if (ret == NULL)
3979 ret = xstrdup ("");
3980 return ret;
3981 }
3982
3983 static void
3984 debug_print_register (const char * func,
3985 struct regcache *regcache, int regno)
3986 {
3987 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3988
3989 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3990 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3991 && gdbarch_register_name (gdbarch, regno) != NULL
3992 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3993 fprintf_unfiltered (gdb_stdlog, "(%s)",
3994 gdbarch_register_name (gdbarch, regno));
3995 else
3996 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3997 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3998 {
3999 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4000 int i, size = register_size (gdbarch, regno);
4001 gdb_byte buf[MAX_REGISTER_SIZE];
4002
4003 regcache_raw_collect (regcache, regno, buf);
4004 fprintf_unfiltered (gdb_stdlog, " = ");
4005 for (i = 0; i < size; i++)
4006 {
4007 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
4008 }
4009 if (size <= sizeof (LONGEST))
4010 {
4011 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
4012
4013 fprintf_unfiltered (gdb_stdlog, " %s %s",
4014 core_addr_to_string_nz (val), plongest (val));
4015 }
4016 }
4017 fprintf_unfiltered (gdb_stdlog, "\n");
4018 }
4019
4020 void
4021 target_fetch_registers (struct regcache *regcache, int regno)
4022 {
4023 struct target_ops *t;
4024
4025 for (t = current_target.beneath; t != NULL; t = t->beneath)
4026 {
4027 if (t->to_fetch_registers != NULL)
4028 {
4029 t->to_fetch_registers (t, regcache, regno);
4030 if (targetdebug)
4031 debug_print_register ("target_fetch_registers", regcache, regno);
4032 return;
4033 }
4034 }
4035 }
4036
4037 void
4038 target_store_registers (struct regcache *regcache, int regno)
4039 {
4040 struct target_ops *t;
4041
4042 if (!may_write_registers)
4043 error (_("Writing to registers is not allowed (regno %d)"), regno);
4044
4045 for (t = current_target.beneath; t != NULL; t = t->beneath)
4046 {
4047 if (t->to_store_registers != NULL)
4048 {
4049 t->to_store_registers (t, regcache, regno);
4050 if (targetdebug)
4051 {
4052 debug_print_register ("target_store_registers", regcache, regno);
4053 }
4054 return;
4055 }
4056 }
4057
4058 noprocess ();
4059 }
4060
4061 int
4062 target_core_of_thread (ptid_t ptid)
4063 {
4064 struct target_ops *t;
4065
4066 for (t = current_target.beneath; t != NULL; t = t->beneath)
4067 {
4068 if (t->to_core_of_thread != NULL)
4069 {
4070 int retval = t->to_core_of_thread (t, ptid);
4071
4072 if (targetdebug)
4073 fprintf_unfiltered (gdb_stdlog,
4074 "target_core_of_thread (%d) = %d\n",
4075 PIDGET (ptid), retval);
4076 return retval;
4077 }
4078 }
4079
4080 return -1;
4081 }
4082
4083 int
4084 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
4085 {
4086 struct target_ops *t;
4087
4088 for (t = current_target.beneath; t != NULL; t = t->beneath)
4089 {
4090 if (t->to_verify_memory != NULL)
4091 {
4092 int retval = t->to_verify_memory (t, data, memaddr, size);
4093
4094 if (targetdebug)
4095 fprintf_unfiltered (gdb_stdlog,
4096 "target_verify_memory (%s, %s) = %d\n",
4097 paddress (target_gdbarch (), memaddr),
4098 pulongest (size),
4099 retval);
4100 return retval;
4101 }
4102 }
4103
4104 tcomplain ();
4105 }
4106
4107 /* The documentation for this function is in its prototype declaration in
4108 target.h. */
4109
4110 int
4111 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4112 {
4113 struct target_ops *t;
4114
4115 for (t = current_target.beneath; t != NULL; t = t->beneath)
4116 if (t->to_insert_mask_watchpoint != NULL)
4117 {
4118 int ret;
4119
4120 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
4121
4122 if (targetdebug)
4123 fprintf_unfiltered (gdb_stdlog, "\
4124 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
4125 core_addr_to_string (addr),
4126 core_addr_to_string (mask), rw, ret);
4127
4128 return ret;
4129 }
4130
4131 return 1;
4132 }
4133
4134 /* The documentation for this function is in its prototype declaration in
4135 target.h. */
4136
4137 int
4138 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4139 {
4140 struct target_ops *t;
4141
4142 for (t = current_target.beneath; t != NULL; t = t->beneath)
4143 if (t->to_remove_mask_watchpoint != NULL)
4144 {
4145 int ret;
4146
4147 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
4148
4149 if (targetdebug)
4150 fprintf_unfiltered (gdb_stdlog, "\
4151 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
4152 core_addr_to_string (addr),
4153 core_addr_to_string (mask), rw, ret);
4154
4155 return ret;
4156 }
4157
4158 return 1;
4159 }
4160
4161 /* The documentation for this function is in its prototype declaration
4162 in target.h. */
4163
4164 int
4165 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4166 {
4167 struct target_ops *t;
4168
4169 for (t = current_target.beneath; t != NULL; t = t->beneath)
4170 if (t->to_masked_watch_num_registers != NULL)
4171 return t->to_masked_watch_num_registers (t, addr, mask);
4172
4173 return -1;
4174 }
4175
4176 /* The documentation for this function is in its prototype declaration
4177 in target.h. */
4178
4179 int
4180 target_ranged_break_num_registers (void)
4181 {
4182 struct target_ops *t;
4183
4184 for (t = current_target.beneath; t != NULL; t = t->beneath)
4185 if (t->to_ranged_break_num_registers != NULL)
4186 return t->to_ranged_break_num_registers (t);
4187
4188 return -1;
4189 }
4190
4191 /* See target.h. */
4192
4193 int
4194 target_supports_btrace (void)
4195 {
4196 struct target_ops *t;
4197
4198 for (t = current_target.beneath; t != NULL; t = t->beneath)
4199 if (t->to_supports_btrace != NULL)
4200 return t->to_supports_btrace ();
4201
4202 return 0;
4203 }
4204
4205 /* See target.h. */
4206
4207 struct btrace_target_info *
4208 target_enable_btrace (ptid_t ptid)
4209 {
4210 struct target_ops *t;
4211
4212 for (t = current_target.beneath; t != NULL; t = t->beneath)
4213 if (t->to_enable_btrace != NULL)
4214 return t->to_enable_btrace (ptid);
4215
4216 tcomplain ();
4217 return NULL;
4218 }
4219
4220 /* See target.h. */
4221
4222 void
4223 target_disable_btrace (struct btrace_target_info *btinfo)
4224 {
4225 struct target_ops *t;
4226
4227 for (t = current_target.beneath; t != NULL; t = t->beneath)
4228 if (t->to_disable_btrace != NULL)
4229 return t->to_disable_btrace (btinfo);
4230
4231 tcomplain ();
4232 }
4233
4234 /* See target.h. */
4235
4236 void
4237 target_teardown_btrace (struct btrace_target_info *btinfo)
4238 {
4239 struct target_ops *t;
4240
4241 for (t = current_target.beneath; t != NULL; t = t->beneath)
4242 if (t->to_teardown_btrace != NULL)
4243 return t->to_teardown_btrace (btinfo);
4244
4245 tcomplain ();
4246 }
4247
4248 /* See target.h. */
4249
4250 VEC (btrace_block_s) *
4251 target_read_btrace (struct btrace_target_info *btinfo,
4252 enum btrace_read_type type)
4253 {
4254 struct target_ops *t;
4255
4256 for (t = current_target.beneath; t != NULL; t = t->beneath)
4257 if (t->to_read_btrace != NULL)
4258 return t->to_read_btrace (btinfo, type);
4259
4260 tcomplain ();
4261 return NULL;
4262 }
4263
4264 /* See target.h. */
4265
4266 void
4267 target_stop_recording (void)
4268 {
4269 struct target_ops *t;
4270
4271 for (t = current_target.beneath; t != NULL; t = t->beneath)
4272 if (t->to_stop_recording != NULL)
4273 {
4274 t->to_stop_recording ();
4275 return;
4276 }
4277
4278 /* This is optional. */
4279 }
4280
4281 /* See target.h. */
4282
4283 void
4284 target_info_record (void)
4285 {
4286 struct target_ops *t;
4287
4288 for (t = current_target.beneath; t != NULL; t = t->beneath)
4289 if (t->to_info_record != NULL)
4290 {
4291 t->to_info_record ();
4292 return;
4293 }
4294
4295 tcomplain ();
4296 }
4297
4298 /* See target.h. */
4299
4300 void
4301 target_save_record (const char *filename)
4302 {
4303 struct target_ops *t;
4304
4305 for (t = current_target.beneath; t != NULL; t = t->beneath)
4306 if (t->to_save_record != NULL)
4307 {
4308 t->to_save_record (filename);
4309 return;
4310 }
4311
4312 tcomplain ();
4313 }
4314
4315 /* See target.h. */
4316
4317 int
4318 target_supports_delete_record (void)
4319 {
4320 struct target_ops *t;
4321
4322 for (t = current_target.beneath; t != NULL; t = t->beneath)
4323 if (t->to_delete_record != NULL)
4324 return 1;
4325
4326 return 0;
4327 }
4328
4329 /* See target.h. */
4330
4331 void
4332 target_delete_record (void)
4333 {
4334 struct target_ops *t;
4335
4336 for (t = current_target.beneath; t != NULL; t = t->beneath)
4337 if (t->to_delete_record != NULL)
4338 {
4339 t->to_delete_record ();
4340 return;
4341 }
4342
4343 tcomplain ();
4344 }
4345
4346 /* See target.h. */
4347
4348 int
4349 target_record_is_replaying (void)
4350 {
4351 struct target_ops *t;
4352
4353 for (t = current_target.beneath; t != NULL; t = t->beneath)
4354 if (t->to_record_is_replaying != NULL)
4355 return t->to_record_is_replaying ();
4356
4357 return 0;
4358 }
4359
4360 /* See target.h. */
4361
4362 void
4363 target_goto_record_begin (void)
4364 {
4365 struct target_ops *t;
4366
4367 for (t = current_target.beneath; t != NULL; t = t->beneath)
4368 if (t->to_goto_record_begin != NULL)
4369 {
4370 t->to_goto_record_begin ();
4371 return;
4372 }
4373
4374 tcomplain ();
4375 }
4376
4377 /* See target.h. */
4378
4379 void
4380 target_goto_record_end (void)
4381 {
4382 struct target_ops *t;
4383
4384 for (t = current_target.beneath; t != NULL; t = t->beneath)
4385 if (t->to_goto_record_end != NULL)
4386 {
4387 t->to_goto_record_end ();
4388 return;
4389 }
4390
4391 tcomplain ();
4392 }
4393
4394 /* See target.h. */
4395
4396 void
4397 target_goto_record (ULONGEST insn)
4398 {
4399 struct target_ops *t;
4400
4401 for (t = current_target.beneath; t != NULL; t = t->beneath)
4402 if (t->to_goto_record != NULL)
4403 {
4404 t->to_goto_record (insn);
4405 return;
4406 }
4407
4408 tcomplain ();
4409 }
4410
4411 /* See target.h. */
4412
4413 void
4414 target_insn_history (int size, int flags)
4415 {
4416 struct target_ops *t;
4417
4418 for (t = current_target.beneath; t != NULL; t = t->beneath)
4419 if (t->to_insn_history != NULL)
4420 {
4421 t->to_insn_history (size, flags);
4422 return;
4423 }
4424
4425 tcomplain ();
4426 }
4427
4428 /* See target.h. */
4429
4430 void
4431 target_insn_history_from (ULONGEST from, int size, int flags)
4432 {
4433 struct target_ops *t;
4434
4435 for (t = current_target.beneath; t != NULL; t = t->beneath)
4436 if (t->to_insn_history_from != NULL)
4437 {
4438 t->to_insn_history_from (from, size, flags);
4439 return;
4440 }
4441
4442 tcomplain ();
4443 }
4444
4445 /* See target.h. */
4446
4447 void
4448 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4449 {
4450 struct target_ops *t;
4451
4452 for (t = current_target.beneath; t != NULL; t = t->beneath)
4453 if (t->to_insn_history_range != NULL)
4454 {
4455 t->to_insn_history_range (begin, end, flags);
4456 return;
4457 }
4458
4459 tcomplain ();
4460 }
4461
4462 /* See target.h. */
4463
4464 void
4465 target_call_history (int size, int flags)
4466 {
4467 struct target_ops *t;
4468
4469 for (t = current_target.beneath; t != NULL; t = t->beneath)
4470 if (t->to_call_history != NULL)
4471 {
4472 t->to_call_history (size, flags);
4473 return;
4474 }
4475
4476 tcomplain ();
4477 }
4478
4479 /* See target.h. */
4480
4481 void
4482 target_call_history_from (ULONGEST begin, int size, int flags)
4483 {
4484 struct target_ops *t;
4485
4486 for (t = current_target.beneath; t != NULL; t = t->beneath)
4487 if (t->to_call_history_from != NULL)
4488 {
4489 t->to_call_history_from (begin, size, flags);
4490 return;
4491 }
4492
4493 tcomplain ();
4494 }
4495
4496 /* See target.h. */
4497
4498 void
4499 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4500 {
4501 struct target_ops *t;
4502
4503 for (t = current_target.beneath; t != NULL; t = t->beneath)
4504 if (t->to_call_history_range != NULL)
4505 {
4506 t->to_call_history_range (begin, end, flags);
4507 return;
4508 }
4509
4510 tcomplain ();
4511 }
4512
4513 static void
4514 debug_to_prepare_to_store (struct regcache *regcache)
4515 {
4516 debug_target.to_prepare_to_store (regcache);
4517
4518 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4519 }
4520
4521 static int
4522 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4523 int write, struct mem_attrib *attrib,
4524 struct target_ops *target)
4525 {
4526 int retval;
4527
4528 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4529 attrib, target);
4530
4531 fprintf_unfiltered (gdb_stdlog,
4532 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4533 paddress (target_gdbarch (), memaddr), len,
4534 write ? "write" : "read", retval);
4535
4536 if (retval > 0)
4537 {
4538 int i;
4539
4540 fputs_unfiltered (", bytes =", gdb_stdlog);
4541 for (i = 0; i < retval; i++)
4542 {
4543 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4544 {
4545 if (targetdebug < 2 && i > 0)
4546 {
4547 fprintf_unfiltered (gdb_stdlog, " ...");
4548 break;
4549 }
4550 fprintf_unfiltered (gdb_stdlog, "\n");
4551 }
4552
4553 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4554 }
4555 }
4556
4557 fputc_unfiltered ('\n', gdb_stdlog);
4558
4559 return retval;
4560 }
4561
4562 static void
4563 debug_to_files_info (struct target_ops *target)
4564 {
4565 debug_target.to_files_info (target);
4566
4567 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4568 }
4569
4570 static int
4571 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
4572 struct bp_target_info *bp_tgt)
4573 {
4574 int retval;
4575
4576 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
4577
4578 fprintf_unfiltered (gdb_stdlog,
4579 "target_insert_breakpoint (%s, xxx) = %ld\n",
4580 core_addr_to_string (bp_tgt->placed_address),
4581 (unsigned long) retval);
4582 return retval;
4583 }
4584
4585 static int
4586 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
4587 struct bp_target_info *bp_tgt)
4588 {
4589 int retval;
4590
4591 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
4592
4593 fprintf_unfiltered (gdb_stdlog,
4594 "target_remove_breakpoint (%s, xxx) = %ld\n",
4595 core_addr_to_string (bp_tgt->placed_address),
4596 (unsigned long) retval);
4597 return retval;
4598 }
4599
4600 static int
4601 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
4602 {
4603 int retval;
4604
4605 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
4606
4607 fprintf_unfiltered (gdb_stdlog,
4608 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4609 (unsigned long) type,
4610 (unsigned long) cnt,
4611 (unsigned long) from_tty,
4612 (unsigned long) retval);
4613 return retval;
4614 }
4615
4616 static int
4617 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
4618 {
4619 CORE_ADDR retval;
4620
4621 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
4622
4623 fprintf_unfiltered (gdb_stdlog,
4624 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4625 core_addr_to_string (addr), (unsigned long) len,
4626 core_addr_to_string (retval));
4627 return retval;
4628 }
4629
4630 static int
4631 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
4632 struct expression *cond)
4633 {
4634 int retval;
4635
4636 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
4637 rw, cond);
4638
4639 fprintf_unfiltered (gdb_stdlog,
4640 "target_can_accel_watchpoint_condition "
4641 "(%s, %d, %d, %s) = %ld\n",
4642 core_addr_to_string (addr), len, rw,
4643 host_address_to_string (cond), (unsigned long) retval);
4644 return retval;
4645 }
4646
4647 static int
4648 debug_to_stopped_by_watchpoint (void)
4649 {
4650 int retval;
4651
4652 retval = debug_target.to_stopped_by_watchpoint ();
4653
4654 fprintf_unfiltered (gdb_stdlog,
4655 "target_stopped_by_watchpoint () = %ld\n",
4656 (unsigned long) retval);
4657 return retval;
4658 }
4659
4660 static int
4661 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4662 {
4663 int retval;
4664
4665 retval = debug_target.to_stopped_data_address (target, addr);
4666
4667 fprintf_unfiltered (gdb_stdlog,
4668 "target_stopped_data_address ([%s]) = %ld\n",
4669 core_addr_to_string (*addr),
4670 (unsigned long)retval);
4671 return retval;
4672 }
4673
4674 static int
4675 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4676 CORE_ADDR addr,
4677 CORE_ADDR start, int length)
4678 {
4679 int retval;
4680
4681 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4682 start, length);
4683
4684 fprintf_filtered (gdb_stdlog,
4685 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4686 core_addr_to_string (addr), core_addr_to_string (start),
4687 length, retval);
4688 return retval;
4689 }
4690
4691 static int
4692 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
4693 struct bp_target_info *bp_tgt)
4694 {
4695 int retval;
4696
4697 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
4698
4699 fprintf_unfiltered (gdb_stdlog,
4700 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4701 core_addr_to_string (bp_tgt->placed_address),
4702 (unsigned long) retval);
4703 return retval;
4704 }
4705
4706 static int
4707 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
4708 struct bp_target_info *bp_tgt)
4709 {
4710 int retval;
4711
4712 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
4713
4714 fprintf_unfiltered (gdb_stdlog,
4715 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4716 core_addr_to_string (bp_tgt->placed_address),
4717 (unsigned long) retval);
4718 return retval;
4719 }
4720
4721 static int
4722 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
4723 struct expression *cond)
4724 {
4725 int retval;
4726
4727 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
4728
4729 fprintf_unfiltered (gdb_stdlog,
4730 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4731 core_addr_to_string (addr), len, type,
4732 host_address_to_string (cond), (unsigned long) retval);
4733 return retval;
4734 }
4735
4736 static int
4737 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
4738 struct expression *cond)
4739 {
4740 int retval;
4741
4742 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
4743
4744 fprintf_unfiltered (gdb_stdlog,
4745 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4746 core_addr_to_string (addr), len, type,
4747 host_address_to_string (cond), (unsigned long) retval);
4748 return retval;
4749 }
4750
4751 static void
4752 debug_to_terminal_init (void)
4753 {
4754 debug_target.to_terminal_init ();
4755
4756 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4757 }
4758
4759 static void
4760 debug_to_terminal_inferior (void)
4761 {
4762 debug_target.to_terminal_inferior ();
4763
4764 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4765 }
4766
4767 static void
4768 debug_to_terminal_ours_for_output (void)
4769 {
4770 debug_target.to_terminal_ours_for_output ();
4771
4772 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4773 }
4774
4775 static void
4776 debug_to_terminal_ours (void)
4777 {
4778 debug_target.to_terminal_ours ();
4779
4780 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4781 }
4782
4783 static void
4784 debug_to_terminal_save_ours (void)
4785 {
4786 debug_target.to_terminal_save_ours ();
4787
4788 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4789 }
4790
4791 static void
4792 debug_to_terminal_info (const char *arg, int from_tty)
4793 {
4794 debug_target.to_terminal_info (arg, from_tty);
4795
4796 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4797 from_tty);
4798 }
4799
4800 static void
4801 debug_to_load (char *args, int from_tty)
4802 {
4803 debug_target.to_load (args, from_tty);
4804
4805 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4806 }
4807
4808 static void
4809 debug_to_post_startup_inferior (ptid_t ptid)
4810 {
4811 debug_target.to_post_startup_inferior (ptid);
4812
4813 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4814 PIDGET (ptid));
4815 }
4816
4817 static int
4818 debug_to_insert_fork_catchpoint (int pid)
4819 {
4820 int retval;
4821
4822 retval = debug_target.to_insert_fork_catchpoint (pid);
4823
4824 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4825 pid, retval);
4826
4827 return retval;
4828 }
4829
4830 static int
4831 debug_to_remove_fork_catchpoint (int pid)
4832 {
4833 int retval;
4834
4835 retval = debug_target.to_remove_fork_catchpoint (pid);
4836
4837 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4838 pid, retval);
4839
4840 return retval;
4841 }
4842
4843 static int
4844 debug_to_insert_vfork_catchpoint (int pid)
4845 {
4846 int retval;
4847
4848 retval = debug_target.to_insert_vfork_catchpoint (pid);
4849
4850 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4851 pid, retval);
4852
4853 return retval;
4854 }
4855
4856 static int
4857 debug_to_remove_vfork_catchpoint (int pid)
4858 {
4859 int retval;
4860
4861 retval = debug_target.to_remove_vfork_catchpoint (pid);
4862
4863 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4864 pid, retval);
4865
4866 return retval;
4867 }
4868
4869 static int
4870 debug_to_insert_exec_catchpoint (int pid)
4871 {
4872 int retval;
4873
4874 retval = debug_target.to_insert_exec_catchpoint (pid);
4875
4876 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4877 pid, retval);
4878
4879 return retval;
4880 }
4881
4882 static int
4883 debug_to_remove_exec_catchpoint (int pid)
4884 {
4885 int retval;
4886
4887 retval = debug_target.to_remove_exec_catchpoint (pid);
4888
4889 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4890 pid, retval);
4891
4892 return retval;
4893 }
4894
4895 static int
4896 debug_to_has_exited (int pid, int wait_status, int *exit_status)
4897 {
4898 int has_exited;
4899
4900 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
4901
4902 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4903 pid, wait_status, *exit_status, has_exited);
4904
4905 return has_exited;
4906 }
4907
4908 static int
4909 debug_to_can_run (void)
4910 {
4911 int retval;
4912
4913 retval = debug_target.to_can_run ();
4914
4915 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4916
4917 return retval;
4918 }
4919
4920 static struct gdbarch *
4921 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4922 {
4923 struct gdbarch *retval;
4924
4925 retval = debug_target.to_thread_architecture (ops, ptid);
4926
4927 fprintf_unfiltered (gdb_stdlog,
4928 "target_thread_architecture (%s) = %s [%s]\n",
4929 target_pid_to_str (ptid),
4930 host_address_to_string (retval),
4931 gdbarch_bfd_arch_info (retval)->printable_name);
4932 return retval;
4933 }
4934
4935 static void
4936 debug_to_stop (ptid_t ptid)
4937 {
4938 debug_target.to_stop (ptid);
4939
4940 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4941 target_pid_to_str (ptid));
4942 }
4943
4944 static void
4945 debug_to_rcmd (char *command,
4946 struct ui_file *outbuf)
4947 {
4948 debug_target.to_rcmd (command, outbuf);
4949 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4950 }
4951
4952 static char *
4953 debug_to_pid_to_exec_file (int pid)
4954 {
4955 char *exec_file;
4956
4957 exec_file = debug_target.to_pid_to_exec_file (pid);
4958
4959 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4960 pid, exec_file);
4961
4962 return exec_file;
4963 }
4964
4965 static void
4966 setup_target_debug (void)
4967 {
4968 memcpy (&debug_target, &current_target, sizeof debug_target);
4969
4970 current_target.to_open = debug_to_open;
4971 current_target.to_post_attach = debug_to_post_attach;
4972 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4973 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4974 current_target.to_files_info = debug_to_files_info;
4975 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4976 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4977 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4978 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4979 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4980 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4981 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4982 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4983 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4984 current_target.to_watchpoint_addr_within_range
4985 = debug_to_watchpoint_addr_within_range;
4986 current_target.to_region_ok_for_hw_watchpoint
4987 = debug_to_region_ok_for_hw_watchpoint;
4988 current_target.to_can_accel_watchpoint_condition
4989 = debug_to_can_accel_watchpoint_condition;
4990 current_target.to_terminal_init = debug_to_terminal_init;
4991 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4992 current_target.to_terminal_ours_for_output
4993 = debug_to_terminal_ours_for_output;
4994 current_target.to_terminal_ours = debug_to_terminal_ours;
4995 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4996 current_target.to_terminal_info = debug_to_terminal_info;
4997 current_target.to_load = debug_to_load;
4998 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4999 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
5000 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
5001 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
5002 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
5003 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
5004 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
5005 current_target.to_has_exited = debug_to_has_exited;
5006 current_target.to_can_run = debug_to_can_run;
5007 current_target.to_stop = debug_to_stop;
5008 current_target.to_rcmd = debug_to_rcmd;
5009 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
5010 current_target.to_thread_architecture = debug_to_thread_architecture;
5011 }
5012 \f
5013
5014 static char targ_desc[] =
5015 "Names of targets and files being debugged.\nShows the entire \
5016 stack of targets currently in use (including the exec-file,\n\
5017 core-file, and process, if any), as well as the symbol file name.";
5018
5019 static void
5020 do_monitor_command (char *cmd,
5021 int from_tty)
5022 {
5023 if ((current_target.to_rcmd
5024 == (void (*) (char *, struct ui_file *)) tcomplain)
5025 || (current_target.to_rcmd == debug_to_rcmd
5026 && (debug_target.to_rcmd
5027 == (void (*) (char *, struct ui_file *)) tcomplain)))
5028 error (_("\"monitor\" command not supported by this target."));
5029 target_rcmd (cmd, gdb_stdtarg);
5030 }
5031
5032 /* Print the name of each layers of our target stack. */
5033
5034 static void
5035 maintenance_print_target_stack (char *cmd, int from_tty)
5036 {
5037 struct target_ops *t;
5038
5039 printf_filtered (_("The current target stack is:\n"));
5040
5041 for (t = target_stack; t != NULL; t = t->beneath)
5042 {
5043 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
5044 }
5045 }
5046
5047 /* Controls if async mode is permitted. */
5048 int target_async_permitted = 0;
5049
5050 /* The set command writes to this variable. If the inferior is
5051 executing, linux_nat_async_permitted is *not* updated. */
5052 static int target_async_permitted_1 = 0;
5053
5054 static void
5055 set_target_async_command (char *args, int from_tty,
5056 struct cmd_list_element *c)
5057 {
5058 if (have_live_inferiors ())
5059 {
5060 target_async_permitted_1 = target_async_permitted;
5061 error (_("Cannot change this setting while the inferior is running."));
5062 }
5063
5064 target_async_permitted = target_async_permitted_1;
5065 }
5066
5067 static void
5068 show_target_async_command (struct ui_file *file, int from_tty,
5069 struct cmd_list_element *c,
5070 const char *value)
5071 {
5072 fprintf_filtered (file,
5073 _("Controlling the inferior in "
5074 "asynchronous mode is %s.\n"), value);
5075 }
5076
5077 /* Temporary copies of permission settings. */
5078
5079 static int may_write_registers_1 = 1;
5080 static int may_write_memory_1 = 1;
5081 static int may_insert_breakpoints_1 = 1;
5082 static int may_insert_tracepoints_1 = 1;
5083 static int may_insert_fast_tracepoints_1 = 1;
5084 static int may_stop_1 = 1;
5085
5086 /* Make the user-set values match the real values again. */
5087
5088 void
5089 update_target_permissions (void)
5090 {
5091 may_write_registers_1 = may_write_registers;
5092 may_write_memory_1 = may_write_memory;
5093 may_insert_breakpoints_1 = may_insert_breakpoints;
5094 may_insert_tracepoints_1 = may_insert_tracepoints;
5095 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
5096 may_stop_1 = may_stop;
5097 }
5098
5099 /* The one function handles (most of) the permission flags in the same
5100 way. */
5101
5102 static void
5103 set_target_permissions (char *args, int from_tty,
5104 struct cmd_list_element *c)
5105 {
5106 if (target_has_execution)
5107 {
5108 update_target_permissions ();
5109 error (_("Cannot change this setting while the inferior is running."));
5110 }
5111
5112 /* Make the real values match the user-changed values. */
5113 may_write_registers = may_write_registers_1;
5114 may_insert_breakpoints = may_insert_breakpoints_1;
5115 may_insert_tracepoints = may_insert_tracepoints_1;
5116 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
5117 may_stop = may_stop_1;
5118 update_observer_mode ();
5119 }
5120
5121 /* Set memory write permission independently of observer mode. */
5122
5123 static void
5124 set_write_memory_permission (char *args, int from_tty,
5125 struct cmd_list_element *c)
5126 {
5127 /* Make the real values match the user-changed values. */
5128 may_write_memory = may_write_memory_1;
5129 update_observer_mode ();
5130 }
5131
5132
5133 void
5134 initialize_targets (void)
5135 {
5136 init_dummy_target ();
5137 push_target (&dummy_target);
5138
5139 add_info ("target", target_info, targ_desc);
5140 add_info ("files", target_info, targ_desc);
5141
5142 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
5143 Set target debugging."), _("\
5144 Show target debugging."), _("\
5145 When non-zero, target debugging is enabled. Higher numbers are more\n\
5146 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
5147 command."),
5148 NULL,
5149 show_targetdebug,
5150 &setdebuglist, &showdebuglist);
5151
5152 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
5153 &trust_readonly, _("\
5154 Set mode for reading from readonly sections."), _("\
5155 Show mode for reading from readonly sections."), _("\
5156 When this mode is on, memory reads from readonly sections (such as .text)\n\
5157 will be read from the object file instead of from the target. This will\n\
5158 result in significant performance improvement for remote targets."),
5159 NULL,
5160 show_trust_readonly,
5161 &setlist, &showlist);
5162
5163 add_com ("monitor", class_obscure, do_monitor_command,
5164 _("Send a command to the remote monitor (remote targets only)."));
5165
5166 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
5167 _("Print the name of each layer of the internal target stack."),
5168 &maintenanceprintlist);
5169
5170 add_setshow_boolean_cmd ("target-async", no_class,
5171 &target_async_permitted_1, _("\
5172 Set whether gdb controls the inferior in asynchronous mode."), _("\
5173 Show whether gdb controls the inferior in asynchronous mode."), _("\
5174 Tells gdb whether to control the inferior in asynchronous mode."),
5175 set_target_async_command,
5176 show_target_async_command,
5177 &setlist,
5178 &showlist);
5179
5180 add_setshow_boolean_cmd ("stack-cache", class_support,
5181 &stack_cache_enabled_p_1, _("\
5182 Set cache use for stack access."), _("\
5183 Show cache use for stack access."), _("\
5184 When on, use the data cache for all stack access, regardless of any\n\
5185 configured memory regions. This improves remote performance significantly.\n\
5186 By default, caching for stack access is on."),
5187 set_stack_cache_enabled_p,
5188 show_stack_cache_enabled_p,
5189 &setlist, &showlist);
5190
5191 add_setshow_boolean_cmd ("may-write-registers", class_support,
5192 &may_write_registers_1, _("\
5193 Set permission to write into registers."), _("\
5194 Show permission to write into registers."), _("\
5195 When this permission is on, GDB may write into the target's registers.\n\
5196 Otherwise, any sort of write attempt will result in an error."),
5197 set_target_permissions, NULL,
5198 &setlist, &showlist);
5199
5200 add_setshow_boolean_cmd ("may-write-memory", class_support,
5201 &may_write_memory_1, _("\
5202 Set permission to write into target memory."), _("\
5203 Show permission to write into target memory."), _("\
5204 When this permission is on, GDB may write into the target's memory.\n\
5205 Otherwise, any sort of write attempt will result in an error."),
5206 set_write_memory_permission, NULL,
5207 &setlist, &showlist);
5208
5209 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
5210 &may_insert_breakpoints_1, _("\
5211 Set permission to insert breakpoints in the target."), _("\
5212 Show permission to insert breakpoints in the target."), _("\
5213 When this permission is on, GDB may insert breakpoints in the program.\n\
5214 Otherwise, any sort of insertion attempt will result in an error."),
5215 set_target_permissions, NULL,
5216 &setlist, &showlist);
5217
5218 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
5219 &may_insert_tracepoints_1, _("\
5220 Set permission to insert tracepoints in the target."), _("\
5221 Show permission to insert tracepoints in the target."), _("\
5222 When this permission is on, GDB may insert tracepoints in the program.\n\
5223 Otherwise, any sort of insertion attempt will result in an error."),
5224 set_target_permissions, NULL,
5225 &setlist, &showlist);
5226
5227 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
5228 &may_insert_fast_tracepoints_1, _("\
5229 Set permission to insert fast tracepoints in the target."), _("\
5230 Show permission to insert fast tracepoints in the target."), _("\
5231 When this permission is on, GDB may insert fast tracepoints.\n\
5232 Otherwise, any sort of insertion attempt will result in an error."),
5233 set_target_permissions, NULL,
5234 &setlist, &showlist);
5235
5236 add_setshow_boolean_cmd ("may-interrupt", class_support,
5237 &may_stop_1, _("\
5238 Set permission to interrupt or signal the target."), _("\
5239 Show permission to interrupt or signal the target."), _("\
5240 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5241 Otherwise, any attempt to interrupt or stop will be ignored."),
5242 set_target_permissions, NULL,
5243 &setlist, &showlist);
5244
5245
5246 target_dcache = dcache_init ();
5247 }
This page took 0.153733 seconds and 4 git commands to generate.