Add branch trace information to struct thread_info.
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include "gdb_string.h"
25 #include "target.h"
26 #include "gdbcmd.h"
27 #include "symtab.h"
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdb_assert.h"
36 #include "gdbcore.h"
37 #include "exceptions.h"
38 #include "target-descriptions.h"
39 #include "gdbthread.h"
40 #include "solib.h"
41 #include "exec.h"
42 #include "inline-frame.h"
43 #include "tracepoint.h"
44 #include "gdb/fileio.h"
45 #include "agent.h"
46
47 static void target_info (char *, int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static void tcomplain (void) ATTRIBUTE_NORETURN;
57
58 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
59
60 static int return_zero (void);
61
62 static int return_one (void);
63
64 static int return_minus_one (void);
65
66 void target_ignore (void);
67
68 static void target_command (char *, int);
69
70 static struct target_ops *find_default_run_target (char *);
71
72 static LONGEST default_xfer_partial (struct target_ops *ops,
73 enum target_object object,
74 const char *annex, gdb_byte *readbuf,
75 const gdb_byte *writebuf,
76 ULONGEST offset, LONGEST len);
77
78 static LONGEST current_xfer_partial (struct target_ops *ops,
79 enum target_object object,
80 const char *annex, gdb_byte *readbuf,
81 const gdb_byte *writebuf,
82 ULONGEST offset, LONGEST len);
83
84 static LONGEST target_xfer_partial (struct target_ops *ops,
85 enum target_object object,
86 const char *annex,
87 void *readbuf, const void *writebuf,
88 ULONGEST offset, LONGEST len);
89
90 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
91 ptid_t ptid);
92
93 static void init_dummy_target (void);
94
95 static struct target_ops debug_target;
96
97 static void debug_to_open (char *, int);
98
99 static void debug_to_prepare_to_store (struct regcache *);
100
101 static void debug_to_files_info (struct target_ops *);
102
103 static int debug_to_insert_breakpoint (struct gdbarch *,
104 struct bp_target_info *);
105
106 static int debug_to_remove_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_can_use_hw_breakpoint (int, int, int);
110
111 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
112 struct bp_target_info *);
113
114 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
118 struct expression *);
119
120 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
121 struct expression *);
122
123 static int debug_to_stopped_by_watchpoint (void);
124
125 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
126
127 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
128 CORE_ADDR, CORE_ADDR, int);
129
130 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
131
132 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
133 struct expression *);
134
135 static void debug_to_terminal_init (void);
136
137 static void debug_to_terminal_inferior (void);
138
139 static void debug_to_terminal_ours_for_output (void);
140
141 static void debug_to_terminal_save_ours (void);
142
143 static void debug_to_terminal_ours (void);
144
145 static void debug_to_terminal_info (char *, int);
146
147 static void debug_to_load (char *, int);
148
149 static int debug_to_can_run (void);
150
151 static void debug_to_stop (ptid_t);
152
153 /* Pointer to array of target architecture structures; the size of the
154 array; the current index into the array; the allocated size of the
155 array. */
156 struct target_ops **target_structs;
157 unsigned target_struct_size;
158 unsigned target_struct_index;
159 unsigned target_struct_allocsize;
160 #define DEFAULT_ALLOCSIZE 10
161
162 /* The initial current target, so that there is always a semi-valid
163 current target. */
164
165 static struct target_ops dummy_target;
166
167 /* Top of target stack. */
168
169 static struct target_ops *target_stack;
170
171 /* The target structure we are currently using to talk to a process
172 or file or whatever "inferior" we have. */
173
174 struct target_ops current_target;
175
176 /* Command list for target. */
177
178 static struct cmd_list_element *targetlist = NULL;
179
180 /* Nonzero if we should trust readonly sections from the
181 executable when reading memory. */
182
183 static int trust_readonly = 0;
184
185 /* Nonzero if we should show true memory content including
186 memory breakpoint inserted by gdb. */
187
188 static int show_memory_breakpoints = 0;
189
190 /* These globals control whether GDB attempts to perform these
191 operations; they are useful for targets that need to prevent
192 inadvertant disruption, such as in non-stop mode. */
193
194 int may_write_registers = 1;
195
196 int may_write_memory = 1;
197
198 int may_insert_breakpoints = 1;
199
200 int may_insert_tracepoints = 1;
201
202 int may_insert_fast_tracepoints = 1;
203
204 int may_stop = 1;
205
206 /* Non-zero if we want to see trace of target level stuff. */
207
208 static unsigned int targetdebug = 0;
209 static void
210 show_targetdebug (struct ui_file *file, int from_tty,
211 struct cmd_list_element *c, const char *value)
212 {
213 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
214 }
215
216 static void setup_target_debug (void);
217
218 /* The option sets this. */
219 static int stack_cache_enabled_p_1 = 1;
220 /* And set_stack_cache_enabled_p updates this.
221 The reason for the separation is so that we don't flush the cache for
222 on->on transitions. */
223 static int stack_cache_enabled_p = 1;
224
225 /* This is called *after* the stack-cache has been set.
226 Flush the cache for off->on and on->off transitions.
227 There's no real need to flush the cache for on->off transitions,
228 except cleanliness. */
229
230 static void
231 set_stack_cache_enabled_p (char *args, int from_tty,
232 struct cmd_list_element *c)
233 {
234 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
235 target_dcache_invalidate ();
236
237 stack_cache_enabled_p = stack_cache_enabled_p_1;
238 }
239
240 static void
241 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
242 struct cmd_list_element *c, const char *value)
243 {
244 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
245 }
246
247 /* Cache of memory operations, to speed up remote access. */
248 static DCACHE *target_dcache;
249
250 /* Invalidate the target dcache. */
251
252 void
253 target_dcache_invalidate (void)
254 {
255 dcache_invalidate (target_dcache);
256 }
257
258 /* The user just typed 'target' without the name of a target. */
259
260 static void
261 target_command (char *arg, int from_tty)
262 {
263 fputs_filtered ("Argument required (target name). Try `help target'\n",
264 gdb_stdout);
265 }
266
267 /* Default target_has_* methods for process_stratum targets. */
268
269 int
270 default_child_has_all_memory (struct target_ops *ops)
271 {
272 /* If no inferior selected, then we can't read memory here. */
273 if (ptid_equal (inferior_ptid, null_ptid))
274 return 0;
275
276 return 1;
277 }
278
279 int
280 default_child_has_memory (struct target_ops *ops)
281 {
282 /* If no inferior selected, then we can't read memory here. */
283 if (ptid_equal (inferior_ptid, null_ptid))
284 return 0;
285
286 return 1;
287 }
288
289 int
290 default_child_has_stack (struct target_ops *ops)
291 {
292 /* If no inferior selected, there's no stack. */
293 if (ptid_equal (inferior_ptid, null_ptid))
294 return 0;
295
296 return 1;
297 }
298
299 int
300 default_child_has_registers (struct target_ops *ops)
301 {
302 /* Can't read registers from no inferior. */
303 if (ptid_equal (inferior_ptid, null_ptid))
304 return 0;
305
306 return 1;
307 }
308
309 int
310 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
311 {
312 /* If there's no thread selected, then we can't make it run through
313 hoops. */
314 if (ptid_equal (the_ptid, null_ptid))
315 return 0;
316
317 return 1;
318 }
319
320
321 int
322 target_has_all_memory_1 (void)
323 {
324 struct target_ops *t;
325
326 for (t = current_target.beneath; t != NULL; t = t->beneath)
327 if (t->to_has_all_memory (t))
328 return 1;
329
330 return 0;
331 }
332
333 int
334 target_has_memory_1 (void)
335 {
336 struct target_ops *t;
337
338 for (t = current_target.beneath; t != NULL; t = t->beneath)
339 if (t->to_has_memory (t))
340 return 1;
341
342 return 0;
343 }
344
345 int
346 target_has_stack_1 (void)
347 {
348 struct target_ops *t;
349
350 for (t = current_target.beneath; t != NULL; t = t->beneath)
351 if (t->to_has_stack (t))
352 return 1;
353
354 return 0;
355 }
356
357 int
358 target_has_registers_1 (void)
359 {
360 struct target_ops *t;
361
362 for (t = current_target.beneath; t != NULL; t = t->beneath)
363 if (t->to_has_registers (t))
364 return 1;
365
366 return 0;
367 }
368
369 int
370 target_has_execution_1 (ptid_t the_ptid)
371 {
372 struct target_ops *t;
373
374 for (t = current_target.beneath; t != NULL; t = t->beneath)
375 if (t->to_has_execution (t, the_ptid))
376 return 1;
377
378 return 0;
379 }
380
381 int
382 target_has_execution_current (void)
383 {
384 return target_has_execution_1 (inferior_ptid);
385 }
386
387 /* Add a possible target architecture to the list. */
388
389 void
390 add_target (struct target_ops *t)
391 {
392 /* Provide default values for all "must have" methods. */
393 if (t->to_xfer_partial == NULL)
394 t->to_xfer_partial = default_xfer_partial;
395
396 if (t->to_has_all_memory == NULL)
397 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
398
399 if (t->to_has_memory == NULL)
400 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
401
402 if (t->to_has_stack == NULL)
403 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
404
405 if (t->to_has_registers == NULL)
406 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
407
408 if (t->to_has_execution == NULL)
409 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
410
411 if (!target_structs)
412 {
413 target_struct_allocsize = DEFAULT_ALLOCSIZE;
414 target_structs = (struct target_ops **) xmalloc
415 (target_struct_allocsize * sizeof (*target_structs));
416 }
417 if (target_struct_size >= target_struct_allocsize)
418 {
419 target_struct_allocsize *= 2;
420 target_structs = (struct target_ops **)
421 xrealloc ((char *) target_structs,
422 target_struct_allocsize * sizeof (*target_structs));
423 }
424 target_structs[target_struct_size++] = t;
425
426 if (targetlist == NULL)
427 add_prefix_cmd ("target", class_run, target_command, _("\
428 Connect to a target machine or process.\n\
429 The first argument is the type or protocol of the target machine.\n\
430 Remaining arguments are interpreted by the target protocol. For more\n\
431 information on the arguments for a particular protocol, type\n\
432 `help target ' followed by the protocol name."),
433 &targetlist, "target ", 0, &cmdlist);
434 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
435 }
436
437 /* Stub functions */
438
439 void
440 target_ignore (void)
441 {
442 }
443
444 void
445 target_kill (void)
446 {
447 struct target_ops *t;
448
449 for (t = current_target.beneath; t != NULL; t = t->beneath)
450 if (t->to_kill != NULL)
451 {
452 if (targetdebug)
453 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
454
455 t->to_kill (t);
456 return;
457 }
458
459 noprocess ();
460 }
461
462 void
463 target_load (char *arg, int from_tty)
464 {
465 target_dcache_invalidate ();
466 (*current_target.to_load) (arg, from_tty);
467 }
468
469 void
470 target_create_inferior (char *exec_file, char *args,
471 char **env, int from_tty)
472 {
473 struct target_ops *t;
474
475 for (t = current_target.beneath; t != NULL; t = t->beneath)
476 {
477 if (t->to_create_inferior != NULL)
478 {
479 t->to_create_inferior (t, exec_file, args, env, from_tty);
480 if (targetdebug)
481 fprintf_unfiltered (gdb_stdlog,
482 "target_create_inferior (%s, %s, xxx, %d)\n",
483 exec_file, args, from_tty);
484 return;
485 }
486 }
487
488 internal_error (__FILE__, __LINE__,
489 _("could not find a target to create inferior"));
490 }
491
492 void
493 target_terminal_inferior (void)
494 {
495 /* A background resume (``run&'') should leave GDB in control of the
496 terminal. Use target_can_async_p, not target_is_async_p, since at
497 this point the target is not async yet. However, if sync_execution
498 is not set, we know it will become async prior to resume. */
499 if (target_can_async_p () && !sync_execution)
500 return;
501
502 /* If GDB is resuming the inferior in the foreground, install
503 inferior's terminal modes. */
504 (*current_target.to_terminal_inferior) ();
505 }
506
507 static int
508 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
509 struct target_ops *t)
510 {
511 errno = EIO; /* Can't read/write this location. */
512 return 0; /* No bytes handled. */
513 }
514
515 static void
516 tcomplain (void)
517 {
518 error (_("You can't do that when your target is `%s'"),
519 current_target.to_shortname);
520 }
521
522 void
523 noprocess (void)
524 {
525 error (_("You can't do that without a process to debug."));
526 }
527
528 static void
529 default_terminal_info (char *args, int from_tty)
530 {
531 printf_unfiltered (_("No saved terminal information.\n"));
532 }
533
534 /* A default implementation for the to_get_ada_task_ptid target method.
535
536 This function builds the PTID by using both LWP and TID as part of
537 the PTID lwp and tid elements. The pid used is the pid of the
538 inferior_ptid. */
539
540 static ptid_t
541 default_get_ada_task_ptid (long lwp, long tid)
542 {
543 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
544 }
545
546 static enum exec_direction_kind
547 default_execution_direction (void)
548 {
549 if (!target_can_execute_reverse)
550 return EXEC_FORWARD;
551 else if (!target_can_async_p ())
552 return EXEC_FORWARD;
553 else
554 gdb_assert_not_reached ("\
555 to_execution_direction must be implemented for reverse async");
556 }
557
558 /* Go through the target stack from top to bottom, copying over zero
559 entries in current_target, then filling in still empty entries. In
560 effect, we are doing class inheritance through the pushed target
561 vectors.
562
563 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
564 is currently implemented, is that it discards any knowledge of
565 which target an inherited method originally belonged to.
566 Consequently, new new target methods should instead explicitly and
567 locally search the target stack for the target that can handle the
568 request. */
569
570 static void
571 update_current_target (void)
572 {
573 struct target_ops *t;
574
575 /* First, reset current's contents. */
576 memset (&current_target, 0, sizeof (current_target));
577
578 #define INHERIT(FIELD, TARGET) \
579 if (!current_target.FIELD) \
580 current_target.FIELD = (TARGET)->FIELD
581
582 for (t = target_stack; t; t = t->beneath)
583 {
584 INHERIT (to_shortname, t);
585 INHERIT (to_longname, t);
586 INHERIT (to_doc, t);
587 /* Do not inherit to_open. */
588 /* Do not inherit to_close. */
589 /* Do not inherit to_attach. */
590 INHERIT (to_post_attach, t);
591 INHERIT (to_attach_no_wait, t);
592 /* Do not inherit to_detach. */
593 /* Do not inherit to_disconnect. */
594 /* Do not inherit to_resume. */
595 /* Do not inherit to_wait. */
596 /* Do not inherit to_fetch_registers. */
597 /* Do not inherit to_store_registers. */
598 INHERIT (to_prepare_to_store, t);
599 INHERIT (deprecated_xfer_memory, t);
600 INHERIT (to_files_info, t);
601 INHERIT (to_insert_breakpoint, t);
602 INHERIT (to_remove_breakpoint, t);
603 INHERIT (to_can_use_hw_breakpoint, t);
604 INHERIT (to_insert_hw_breakpoint, t);
605 INHERIT (to_remove_hw_breakpoint, t);
606 /* Do not inherit to_ranged_break_num_registers. */
607 INHERIT (to_insert_watchpoint, t);
608 INHERIT (to_remove_watchpoint, t);
609 /* Do not inherit to_insert_mask_watchpoint. */
610 /* Do not inherit to_remove_mask_watchpoint. */
611 INHERIT (to_stopped_data_address, t);
612 INHERIT (to_have_steppable_watchpoint, t);
613 INHERIT (to_have_continuable_watchpoint, t);
614 INHERIT (to_stopped_by_watchpoint, t);
615 INHERIT (to_watchpoint_addr_within_range, t);
616 INHERIT (to_region_ok_for_hw_watchpoint, t);
617 INHERIT (to_can_accel_watchpoint_condition, t);
618 /* Do not inherit to_masked_watch_num_registers. */
619 INHERIT (to_terminal_init, t);
620 INHERIT (to_terminal_inferior, t);
621 INHERIT (to_terminal_ours_for_output, t);
622 INHERIT (to_terminal_ours, t);
623 INHERIT (to_terminal_save_ours, t);
624 INHERIT (to_terminal_info, t);
625 /* Do not inherit to_kill. */
626 INHERIT (to_load, t);
627 /* Do no inherit to_create_inferior. */
628 INHERIT (to_post_startup_inferior, t);
629 INHERIT (to_insert_fork_catchpoint, t);
630 INHERIT (to_remove_fork_catchpoint, t);
631 INHERIT (to_insert_vfork_catchpoint, t);
632 INHERIT (to_remove_vfork_catchpoint, t);
633 /* Do not inherit to_follow_fork. */
634 INHERIT (to_insert_exec_catchpoint, t);
635 INHERIT (to_remove_exec_catchpoint, t);
636 INHERIT (to_set_syscall_catchpoint, t);
637 INHERIT (to_has_exited, t);
638 /* Do not inherit to_mourn_inferior. */
639 INHERIT (to_can_run, t);
640 /* Do not inherit to_pass_signals. */
641 /* Do not inherit to_program_signals. */
642 /* Do not inherit to_thread_alive. */
643 /* Do not inherit to_find_new_threads. */
644 /* Do not inherit to_pid_to_str. */
645 INHERIT (to_extra_thread_info, t);
646 INHERIT (to_thread_name, t);
647 INHERIT (to_stop, t);
648 /* Do not inherit to_xfer_partial. */
649 INHERIT (to_rcmd, t);
650 INHERIT (to_pid_to_exec_file, t);
651 INHERIT (to_log_command, t);
652 INHERIT (to_stratum, t);
653 /* Do not inherit to_has_all_memory. */
654 /* Do not inherit to_has_memory. */
655 /* Do not inherit to_has_stack. */
656 /* Do not inherit to_has_registers. */
657 /* Do not inherit to_has_execution. */
658 INHERIT (to_has_thread_control, t);
659 INHERIT (to_can_async_p, t);
660 INHERIT (to_is_async_p, t);
661 INHERIT (to_async, t);
662 INHERIT (to_find_memory_regions, t);
663 INHERIT (to_make_corefile_notes, t);
664 INHERIT (to_get_bookmark, t);
665 INHERIT (to_goto_bookmark, t);
666 /* Do not inherit to_get_thread_local_address. */
667 INHERIT (to_can_execute_reverse, t);
668 INHERIT (to_execution_direction, t);
669 INHERIT (to_thread_architecture, t);
670 /* Do not inherit to_read_description. */
671 INHERIT (to_get_ada_task_ptid, t);
672 /* Do not inherit to_search_memory. */
673 INHERIT (to_supports_multi_process, t);
674 INHERIT (to_supports_enable_disable_tracepoint, t);
675 INHERIT (to_supports_string_tracing, t);
676 INHERIT (to_trace_init, t);
677 INHERIT (to_download_tracepoint, t);
678 INHERIT (to_can_download_tracepoint, t);
679 INHERIT (to_download_trace_state_variable, t);
680 INHERIT (to_enable_tracepoint, t);
681 INHERIT (to_disable_tracepoint, t);
682 INHERIT (to_trace_set_readonly_regions, t);
683 INHERIT (to_trace_start, t);
684 INHERIT (to_get_trace_status, t);
685 INHERIT (to_get_tracepoint_status, t);
686 INHERIT (to_trace_stop, t);
687 INHERIT (to_trace_find, t);
688 INHERIT (to_get_trace_state_variable_value, t);
689 INHERIT (to_save_trace_data, t);
690 INHERIT (to_upload_tracepoints, t);
691 INHERIT (to_upload_trace_state_variables, t);
692 INHERIT (to_get_raw_trace_data, t);
693 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
694 INHERIT (to_set_disconnected_tracing, t);
695 INHERIT (to_set_circular_trace_buffer, t);
696 INHERIT (to_set_trace_buffer_size, t);
697 INHERIT (to_set_trace_notes, t);
698 INHERIT (to_get_tib_address, t);
699 INHERIT (to_set_permissions, t);
700 INHERIT (to_static_tracepoint_marker_at, t);
701 INHERIT (to_static_tracepoint_markers_by_strid, t);
702 INHERIT (to_traceframe_info, t);
703 INHERIT (to_use_agent, t);
704 INHERIT (to_can_use_agent, t);
705 INHERIT (to_magic, t);
706 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
707 INHERIT (to_can_run_breakpoint_commands, t);
708 /* Do not inherit to_memory_map. */
709 /* Do not inherit to_flash_erase. */
710 /* Do not inherit to_flash_done. */
711 }
712 #undef INHERIT
713
714 /* Clean up a target struct so it no longer has any zero pointers in
715 it. Some entries are defaulted to a method that print an error,
716 others are hard-wired to a standard recursive default. */
717
718 #define de_fault(field, value) \
719 if (!current_target.field) \
720 current_target.field = value
721
722 de_fault (to_open,
723 (void (*) (char *, int))
724 tcomplain);
725 de_fault (to_close,
726 (void (*) (int))
727 target_ignore);
728 de_fault (to_post_attach,
729 (void (*) (int))
730 target_ignore);
731 de_fault (to_prepare_to_store,
732 (void (*) (struct regcache *))
733 noprocess);
734 de_fault (deprecated_xfer_memory,
735 (int (*) (CORE_ADDR, gdb_byte *, int, int,
736 struct mem_attrib *, struct target_ops *))
737 nomemory);
738 de_fault (to_files_info,
739 (void (*) (struct target_ops *))
740 target_ignore);
741 de_fault (to_insert_breakpoint,
742 memory_insert_breakpoint);
743 de_fault (to_remove_breakpoint,
744 memory_remove_breakpoint);
745 de_fault (to_can_use_hw_breakpoint,
746 (int (*) (int, int, int))
747 return_zero);
748 de_fault (to_insert_hw_breakpoint,
749 (int (*) (struct gdbarch *, struct bp_target_info *))
750 return_minus_one);
751 de_fault (to_remove_hw_breakpoint,
752 (int (*) (struct gdbarch *, struct bp_target_info *))
753 return_minus_one);
754 de_fault (to_insert_watchpoint,
755 (int (*) (CORE_ADDR, int, int, struct expression *))
756 return_minus_one);
757 de_fault (to_remove_watchpoint,
758 (int (*) (CORE_ADDR, int, int, struct expression *))
759 return_minus_one);
760 de_fault (to_stopped_by_watchpoint,
761 (int (*) (void))
762 return_zero);
763 de_fault (to_stopped_data_address,
764 (int (*) (struct target_ops *, CORE_ADDR *))
765 return_zero);
766 de_fault (to_watchpoint_addr_within_range,
767 default_watchpoint_addr_within_range);
768 de_fault (to_region_ok_for_hw_watchpoint,
769 default_region_ok_for_hw_watchpoint);
770 de_fault (to_can_accel_watchpoint_condition,
771 (int (*) (CORE_ADDR, int, int, struct expression *))
772 return_zero);
773 de_fault (to_terminal_init,
774 (void (*) (void))
775 target_ignore);
776 de_fault (to_terminal_inferior,
777 (void (*) (void))
778 target_ignore);
779 de_fault (to_terminal_ours_for_output,
780 (void (*) (void))
781 target_ignore);
782 de_fault (to_terminal_ours,
783 (void (*) (void))
784 target_ignore);
785 de_fault (to_terminal_save_ours,
786 (void (*) (void))
787 target_ignore);
788 de_fault (to_terminal_info,
789 default_terminal_info);
790 de_fault (to_load,
791 (void (*) (char *, int))
792 tcomplain);
793 de_fault (to_post_startup_inferior,
794 (void (*) (ptid_t))
795 target_ignore);
796 de_fault (to_insert_fork_catchpoint,
797 (int (*) (int))
798 return_one);
799 de_fault (to_remove_fork_catchpoint,
800 (int (*) (int))
801 return_one);
802 de_fault (to_insert_vfork_catchpoint,
803 (int (*) (int))
804 return_one);
805 de_fault (to_remove_vfork_catchpoint,
806 (int (*) (int))
807 return_one);
808 de_fault (to_insert_exec_catchpoint,
809 (int (*) (int))
810 return_one);
811 de_fault (to_remove_exec_catchpoint,
812 (int (*) (int))
813 return_one);
814 de_fault (to_set_syscall_catchpoint,
815 (int (*) (int, int, int, int, int *))
816 return_one);
817 de_fault (to_has_exited,
818 (int (*) (int, int, int *))
819 return_zero);
820 de_fault (to_can_run,
821 return_zero);
822 de_fault (to_extra_thread_info,
823 (char *(*) (struct thread_info *))
824 return_zero);
825 de_fault (to_thread_name,
826 (char *(*) (struct thread_info *))
827 return_zero);
828 de_fault (to_stop,
829 (void (*) (ptid_t))
830 target_ignore);
831 current_target.to_xfer_partial = current_xfer_partial;
832 de_fault (to_rcmd,
833 (void (*) (char *, struct ui_file *))
834 tcomplain);
835 de_fault (to_pid_to_exec_file,
836 (char *(*) (int))
837 return_zero);
838 de_fault (to_async,
839 (void (*) (void (*) (enum inferior_event_type, void*), void*))
840 tcomplain);
841 de_fault (to_thread_architecture,
842 default_thread_architecture);
843 current_target.to_read_description = NULL;
844 de_fault (to_get_ada_task_ptid,
845 (ptid_t (*) (long, long))
846 default_get_ada_task_ptid);
847 de_fault (to_supports_multi_process,
848 (int (*) (void))
849 return_zero);
850 de_fault (to_supports_enable_disable_tracepoint,
851 (int (*) (void))
852 return_zero);
853 de_fault (to_supports_string_tracing,
854 (int (*) (void))
855 return_zero);
856 de_fault (to_trace_init,
857 (void (*) (void))
858 tcomplain);
859 de_fault (to_download_tracepoint,
860 (void (*) (struct bp_location *))
861 tcomplain);
862 de_fault (to_can_download_tracepoint,
863 (int (*) (void))
864 return_zero);
865 de_fault (to_download_trace_state_variable,
866 (void (*) (struct trace_state_variable *))
867 tcomplain);
868 de_fault (to_enable_tracepoint,
869 (void (*) (struct bp_location *))
870 tcomplain);
871 de_fault (to_disable_tracepoint,
872 (void (*) (struct bp_location *))
873 tcomplain);
874 de_fault (to_trace_set_readonly_regions,
875 (void (*) (void))
876 tcomplain);
877 de_fault (to_trace_start,
878 (void (*) (void))
879 tcomplain);
880 de_fault (to_get_trace_status,
881 (int (*) (struct trace_status *))
882 return_minus_one);
883 de_fault (to_get_tracepoint_status,
884 (void (*) (struct breakpoint *, struct uploaded_tp *))
885 tcomplain);
886 de_fault (to_trace_stop,
887 (void (*) (void))
888 tcomplain);
889 de_fault (to_trace_find,
890 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
891 return_minus_one);
892 de_fault (to_get_trace_state_variable_value,
893 (int (*) (int, LONGEST *))
894 return_zero);
895 de_fault (to_save_trace_data,
896 (int (*) (const char *))
897 tcomplain);
898 de_fault (to_upload_tracepoints,
899 (int (*) (struct uploaded_tp **))
900 return_zero);
901 de_fault (to_upload_trace_state_variables,
902 (int (*) (struct uploaded_tsv **))
903 return_zero);
904 de_fault (to_get_raw_trace_data,
905 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
906 tcomplain);
907 de_fault (to_get_min_fast_tracepoint_insn_len,
908 (int (*) (void))
909 return_minus_one);
910 de_fault (to_set_disconnected_tracing,
911 (void (*) (int))
912 target_ignore);
913 de_fault (to_set_circular_trace_buffer,
914 (void (*) (int))
915 target_ignore);
916 de_fault (to_set_trace_buffer_size,
917 (void (*) (LONGEST))
918 target_ignore);
919 de_fault (to_set_trace_notes,
920 (int (*) (char *, char *, char *))
921 return_zero);
922 de_fault (to_get_tib_address,
923 (int (*) (ptid_t, CORE_ADDR *))
924 tcomplain);
925 de_fault (to_set_permissions,
926 (void (*) (void))
927 target_ignore);
928 de_fault (to_static_tracepoint_marker_at,
929 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
930 return_zero);
931 de_fault (to_static_tracepoint_markers_by_strid,
932 (VEC(static_tracepoint_marker_p) * (*) (const char *))
933 tcomplain);
934 de_fault (to_traceframe_info,
935 (struct traceframe_info * (*) (void))
936 tcomplain);
937 de_fault (to_supports_evaluation_of_breakpoint_conditions,
938 (int (*) (void))
939 return_zero);
940 de_fault (to_can_run_breakpoint_commands,
941 (int (*) (void))
942 return_zero);
943 de_fault (to_use_agent,
944 (int (*) (int))
945 tcomplain);
946 de_fault (to_can_use_agent,
947 (int (*) (void))
948 return_zero);
949 de_fault (to_execution_direction, default_execution_direction);
950
951 #undef de_fault
952
953 /* Finally, position the target-stack beneath the squashed
954 "current_target". That way code looking for a non-inherited
955 target method can quickly and simply find it. */
956 current_target.beneath = target_stack;
957
958 if (targetdebug)
959 setup_target_debug ();
960 }
961
962 /* Push a new target type into the stack of the existing target accessors,
963 possibly superseding some of the existing accessors.
964
965 Rather than allow an empty stack, we always have the dummy target at
966 the bottom stratum, so we can call the function vectors without
967 checking them. */
968
969 void
970 push_target (struct target_ops *t)
971 {
972 struct target_ops **cur;
973
974 /* Check magic number. If wrong, it probably means someone changed
975 the struct definition, but not all the places that initialize one. */
976 if (t->to_magic != OPS_MAGIC)
977 {
978 fprintf_unfiltered (gdb_stderr,
979 "Magic number of %s target struct wrong\n",
980 t->to_shortname);
981 internal_error (__FILE__, __LINE__,
982 _("failed internal consistency check"));
983 }
984
985 /* Find the proper stratum to install this target in. */
986 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
987 {
988 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
989 break;
990 }
991
992 /* If there's already targets at this stratum, remove them. */
993 /* FIXME: cagney/2003-10-15: I think this should be popping all
994 targets to CUR, and not just those at this stratum level. */
995 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
996 {
997 /* There's already something at this stratum level. Close it,
998 and un-hook it from the stack. */
999 struct target_ops *tmp = (*cur);
1000
1001 (*cur) = (*cur)->beneath;
1002 tmp->beneath = NULL;
1003 target_close (tmp, 0);
1004 }
1005
1006 /* We have removed all targets in our stratum, now add the new one. */
1007 t->beneath = (*cur);
1008 (*cur) = t;
1009
1010 update_current_target ();
1011 }
1012
1013 /* Remove a target_ops vector from the stack, wherever it may be.
1014 Return how many times it was removed (0 or 1). */
1015
1016 int
1017 unpush_target (struct target_ops *t)
1018 {
1019 struct target_ops **cur;
1020 struct target_ops *tmp;
1021
1022 if (t->to_stratum == dummy_stratum)
1023 internal_error (__FILE__, __LINE__,
1024 _("Attempt to unpush the dummy target"));
1025
1026 /* Look for the specified target. Note that we assume that a target
1027 can only occur once in the target stack. */
1028
1029 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1030 {
1031 if ((*cur) == t)
1032 break;
1033 }
1034
1035 /* If we don't find target_ops, quit. Only open targets should be
1036 closed. */
1037 if ((*cur) == NULL)
1038 return 0;
1039
1040 /* Unchain the target. */
1041 tmp = (*cur);
1042 (*cur) = (*cur)->beneath;
1043 tmp->beneath = NULL;
1044
1045 update_current_target ();
1046
1047 /* Finally close the target. Note we do this after unchaining, so
1048 any target method calls from within the target_close
1049 implementation don't end up in T anymore. */
1050 target_close (t, 0);
1051
1052 return 1;
1053 }
1054
1055 void
1056 pop_target (void)
1057 {
1058 target_close (target_stack, 0); /* Let it clean up. */
1059 if (unpush_target (target_stack) == 1)
1060 return;
1061
1062 fprintf_unfiltered (gdb_stderr,
1063 "pop_target couldn't find target %s\n",
1064 current_target.to_shortname);
1065 internal_error (__FILE__, __LINE__,
1066 _("failed internal consistency check"));
1067 }
1068
1069 void
1070 pop_all_targets_above (enum strata above_stratum, int quitting)
1071 {
1072 while ((int) (current_target.to_stratum) > (int) above_stratum)
1073 {
1074 target_close (target_stack, quitting);
1075 if (!unpush_target (target_stack))
1076 {
1077 fprintf_unfiltered (gdb_stderr,
1078 "pop_all_targets couldn't find target %s\n",
1079 target_stack->to_shortname);
1080 internal_error (__FILE__, __LINE__,
1081 _("failed internal consistency check"));
1082 break;
1083 }
1084 }
1085 }
1086
1087 void
1088 pop_all_targets (int quitting)
1089 {
1090 pop_all_targets_above (dummy_stratum, quitting);
1091 }
1092
1093 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1094
1095 int
1096 target_is_pushed (struct target_ops *t)
1097 {
1098 struct target_ops **cur;
1099
1100 /* Check magic number. If wrong, it probably means someone changed
1101 the struct definition, but not all the places that initialize one. */
1102 if (t->to_magic != OPS_MAGIC)
1103 {
1104 fprintf_unfiltered (gdb_stderr,
1105 "Magic number of %s target struct wrong\n",
1106 t->to_shortname);
1107 internal_error (__FILE__, __LINE__,
1108 _("failed internal consistency check"));
1109 }
1110
1111 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1112 if (*cur == t)
1113 return 1;
1114
1115 return 0;
1116 }
1117
1118 /* Using the objfile specified in OBJFILE, find the address for the
1119 current thread's thread-local storage with offset OFFSET. */
1120 CORE_ADDR
1121 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1122 {
1123 volatile CORE_ADDR addr = 0;
1124 struct target_ops *target;
1125
1126 for (target = current_target.beneath;
1127 target != NULL;
1128 target = target->beneath)
1129 {
1130 if (target->to_get_thread_local_address != NULL)
1131 break;
1132 }
1133
1134 if (target != NULL
1135 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
1136 {
1137 ptid_t ptid = inferior_ptid;
1138 volatile struct gdb_exception ex;
1139
1140 TRY_CATCH (ex, RETURN_MASK_ALL)
1141 {
1142 CORE_ADDR lm_addr;
1143
1144 /* Fetch the load module address for this objfile. */
1145 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
1146 objfile);
1147 /* If it's 0, throw the appropriate exception. */
1148 if (lm_addr == 0)
1149 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1150 _("TLS load module not found"));
1151
1152 addr = target->to_get_thread_local_address (target, ptid,
1153 lm_addr, offset);
1154 }
1155 /* If an error occurred, print TLS related messages here. Otherwise,
1156 throw the error to some higher catcher. */
1157 if (ex.reason < 0)
1158 {
1159 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1160
1161 switch (ex.error)
1162 {
1163 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1164 error (_("Cannot find thread-local variables "
1165 "in this thread library."));
1166 break;
1167 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1168 if (objfile_is_library)
1169 error (_("Cannot find shared library `%s' in dynamic"
1170 " linker's load module list"), objfile->name);
1171 else
1172 error (_("Cannot find executable file `%s' in dynamic"
1173 " linker's load module list"), objfile->name);
1174 break;
1175 case TLS_NOT_ALLOCATED_YET_ERROR:
1176 if (objfile_is_library)
1177 error (_("The inferior has not yet allocated storage for"
1178 " thread-local variables in\n"
1179 "the shared library `%s'\n"
1180 "for %s"),
1181 objfile->name, target_pid_to_str (ptid));
1182 else
1183 error (_("The inferior has not yet allocated storage for"
1184 " thread-local variables in\n"
1185 "the executable `%s'\n"
1186 "for %s"),
1187 objfile->name, target_pid_to_str (ptid));
1188 break;
1189 case TLS_GENERIC_ERROR:
1190 if (objfile_is_library)
1191 error (_("Cannot find thread-local storage for %s, "
1192 "shared library %s:\n%s"),
1193 target_pid_to_str (ptid),
1194 objfile->name, ex.message);
1195 else
1196 error (_("Cannot find thread-local storage for %s, "
1197 "executable file %s:\n%s"),
1198 target_pid_to_str (ptid),
1199 objfile->name, ex.message);
1200 break;
1201 default:
1202 throw_exception (ex);
1203 break;
1204 }
1205 }
1206 }
1207 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1208 TLS is an ABI-specific thing. But we don't do that yet. */
1209 else
1210 error (_("Cannot find thread-local variables on this target"));
1211
1212 return addr;
1213 }
1214
1215 #undef MIN
1216 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1217
1218 /* target_read_string -- read a null terminated string, up to LEN bytes,
1219 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1220 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1221 is responsible for freeing it. Return the number of bytes successfully
1222 read. */
1223
1224 int
1225 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1226 {
1227 int tlen, offset, i;
1228 gdb_byte buf[4];
1229 int errcode = 0;
1230 char *buffer;
1231 int buffer_allocated;
1232 char *bufptr;
1233 unsigned int nbytes_read = 0;
1234
1235 gdb_assert (string);
1236
1237 /* Small for testing. */
1238 buffer_allocated = 4;
1239 buffer = xmalloc (buffer_allocated);
1240 bufptr = buffer;
1241
1242 while (len > 0)
1243 {
1244 tlen = MIN (len, 4 - (memaddr & 3));
1245 offset = memaddr & 3;
1246
1247 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1248 if (errcode != 0)
1249 {
1250 /* The transfer request might have crossed the boundary to an
1251 unallocated region of memory. Retry the transfer, requesting
1252 a single byte. */
1253 tlen = 1;
1254 offset = 0;
1255 errcode = target_read_memory (memaddr, buf, 1);
1256 if (errcode != 0)
1257 goto done;
1258 }
1259
1260 if (bufptr - buffer + tlen > buffer_allocated)
1261 {
1262 unsigned int bytes;
1263
1264 bytes = bufptr - buffer;
1265 buffer_allocated *= 2;
1266 buffer = xrealloc (buffer, buffer_allocated);
1267 bufptr = buffer + bytes;
1268 }
1269
1270 for (i = 0; i < tlen; i++)
1271 {
1272 *bufptr++ = buf[i + offset];
1273 if (buf[i + offset] == '\000')
1274 {
1275 nbytes_read += i + 1;
1276 goto done;
1277 }
1278 }
1279
1280 memaddr += tlen;
1281 len -= tlen;
1282 nbytes_read += tlen;
1283 }
1284 done:
1285 *string = buffer;
1286 if (errnop != NULL)
1287 *errnop = errcode;
1288 return nbytes_read;
1289 }
1290
1291 struct target_section_table *
1292 target_get_section_table (struct target_ops *target)
1293 {
1294 struct target_ops *t;
1295
1296 if (targetdebug)
1297 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1298
1299 for (t = target; t != NULL; t = t->beneath)
1300 if (t->to_get_section_table != NULL)
1301 return (*t->to_get_section_table) (t);
1302
1303 return NULL;
1304 }
1305
1306 /* Find a section containing ADDR. */
1307
1308 struct target_section *
1309 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1310 {
1311 struct target_section_table *table = target_get_section_table (target);
1312 struct target_section *secp;
1313
1314 if (table == NULL)
1315 return NULL;
1316
1317 for (secp = table->sections; secp < table->sections_end; secp++)
1318 {
1319 if (addr >= secp->addr && addr < secp->endaddr)
1320 return secp;
1321 }
1322 return NULL;
1323 }
1324
1325 /* Read memory from the live target, even if currently inspecting a
1326 traceframe. The return is the same as that of target_read. */
1327
1328 static LONGEST
1329 target_read_live_memory (enum target_object object,
1330 ULONGEST memaddr, gdb_byte *myaddr, LONGEST len)
1331 {
1332 int ret;
1333 struct cleanup *cleanup;
1334
1335 /* Switch momentarily out of tfind mode so to access live memory.
1336 Note that this must not clear global state, such as the frame
1337 cache, which must still remain valid for the previous traceframe.
1338 We may be _building_ the frame cache at this point. */
1339 cleanup = make_cleanup_restore_traceframe_number ();
1340 set_traceframe_number (-1);
1341
1342 ret = target_read (current_target.beneath, object, NULL,
1343 myaddr, memaddr, len);
1344
1345 do_cleanups (cleanup);
1346 return ret;
1347 }
1348
1349 /* Using the set of read-only target sections of OPS, read live
1350 read-only memory. Note that the actual reads start from the
1351 top-most target again.
1352
1353 For interface/parameters/return description see target.h,
1354 to_xfer_partial. */
1355
1356 static LONGEST
1357 memory_xfer_live_readonly_partial (struct target_ops *ops,
1358 enum target_object object,
1359 gdb_byte *readbuf, ULONGEST memaddr,
1360 LONGEST len)
1361 {
1362 struct target_section *secp;
1363 struct target_section_table *table;
1364
1365 secp = target_section_by_addr (ops, memaddr);
1366 if (secp != NULL
1367 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1368 & SEC_READONLY))
1369 {
1370 struct target_section *p;
1371 ULONGEST memend = memaddr + len;
1372
1373 table = target_get_section_table (ops);
1374
1375 for (p = table->sections; p < table->sections_end; p++)
1376 {
1377 if (memaddr >= p->addr)
1378 {
1379 if (memend <= p->endaddr)
1380 {
1381 /* Entire transfer is within this section. */
1382 return target_read_live_memory (object, memaddr,
1383 readbuf, len);
1384 }
1385 else if (memaddr >= p->endaddr)
1386 {
1387 /* This section ends before the transfer starts. */
1388 continue;
1389 }
1390 else
1391 {
1392 /* This section overlaps the transfer. Just do half. */
1393 len = p->endaddr - memaddr;
1394 return target_read_live_memory (object, memaddr,
1395 readbuf, len);
1396 }
1397 }
1398 }
1399 }
1400
1401 return 0;
1402 }
1403
1404 /* Perform a partial memory transfer.
1405 For docs see target.h, to_xfer_partial. */
1406
1407 static LONGEST
1408 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1409 void *readbuf, const void *writebuf, ULONGEST memaddr,
1410 LONGEST len)
1411 {
1412 LONGEST res;
1413 int reg_len;
1414 struct mem_region *region;
1415 struct inferior *inf;
1416
1417 /* For accesses to unmapped overlay sections, read directly from
1418 files. Must do this first, as MEMADDR may need adjustment. */
1419 if (readbuf != NULL && overlay_debugging)
1420 {
1421 struct obj_section *section = find_pc_overlay (memaddr);
1422
1423 if (pc_in_unmapped_range (memaddr, section))
1424 {
1425 struct target_section_table *table
1426 = target_get_section_table (ops);
1427 const char *section_name = section->the_bfd_section->name;
1428
1429 memaddr = overlay_mapped_address (memaddr, section);
1430 return section_table_xfer_memory_partial (readbuf, writebuf,
1431 memaddr, len,
1432 table->sections,
1433 table->sections_end,
1434 section_name);
1435 }
1436 }
1437
1438 /* Try the executable files, if "trust-readonly-sections" is set. */
1439 if (readbuf != NULL && trust_readonly)
1440 {
1441 struct target_section *secp;
1442 struct target_section_table *table;
1443
1444 secp = target_section_by_addr (ops, memaddr);
1445 if (secp != NULL
1446 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1447 & SEC_READONLY))
1448 {
1449 table = target_get_section_table (ops);
1450 return section_table_xfer_memory_partial (readbuf, writebuf,
1451 memaddr, len,
1452 table->sections,
1453 table->sections_end,
1454 NULL);
1455 }
1456 }
1457
1458 /* If reading unavailable memory in the context of traceframes, and
1459 this address falls within a read-only section, fallback to
1460 reading from live memory. */
1461 if (readbuf != NULL && get_traceframe_number () != -1)
1462 {
1463 VEC(mem_range_s) *available;
1464
1465 /* If we fail to get the set of available memory, then the
1466 target does not support querying traceframe info, and so we
1467 attempt reading from the traceframe anyway (assuming the
1468 target implements the old QTro packet then). */
1469 if (traceframe_available_memory (&available, memaddr, len))
1470 {
1471 struct cleanup *old_chain;
1472
1473 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1474
1475 if (VEC_empty (mem_range_s, available)
1476 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1477 {
1478 /* Don't read into the traceframe's available
1479 memory. */
1480 if (!VEC_empty (mem_range_s, available))
1481 {
1482 LONGEST oldlen = len;
1483
1484 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1485 gdb_assert (len <= oldlen);
1486 }
1487
1488 do_cleanups (old_chain);
1489
1490 /* This goes through the topmost target again. */
1491 res = memory_xfer_live_readonly_partial (ops, object,
1492 readbuf, memaddr, len);
1493 if (res > 0)
1494 return res;
1495
1496 /* No use trying further, we know some memory starting
1497 at MEMADDR isn't available. */
1498 return -1;
1499 }
1500
1501 /* Don't try to read more than how much is available, in
1502 case the target implements the deprecated QTro packet to
1503 cater for older GDBs (the target's knowledge of read-only
1504 sections may be outdated by now). */
1505 len = VEC_index (mem_range_s, available, 0)->length;
1506
1507 do_cleanups (old_chain);
1508 }
1509 }
1510
1511 /* Try GDB's internal data cache. */
1512 region = lookup_mem_region (memaddr);
1513 /* region->hi == 0 means there's no upper bound. */
1514 if (memaddr + len < region->hi || region->hi == 0)
1515 reg_len = len;
1516 else
1517 reg_len = region->hi - memaddr;
1518
1519 switch (region->attrib.mode)
1520 {
1521 case MEM_RO:
1522 if (writebuf != NULL)
1523 return -1;
1524 break;
1525
1526 case MEM_WO:
1527 if (readbuf != NULL)
1528 return -1;
1529 break;
1530
1531 case MEM_FLASH:
1532 /* We only support writing to flash during "load" for now. */
1533 if (writebuf != NULL)
1534 error (_("Writing to flash memory forbidden in this context"));
1535 break;
1536
1537 case MEM_NONE:
1538 return -1;
1539 }
1540
1541 if (!ptid_equal (inferior_ptid, null_ptid))
1542 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1543 else
1544 inf = NULL;
1545
1546 if (inf != NULL
1547 /* The dcache reads whole cache lines; that doesn't play well
1548 with reading from a trace buffer, because reading outside of
1549 the collected memory range fails. */
1550 && get_traceframe_number () == -1
1551 && (region->attrib.cache
1552 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1553 {
1554 if (readbuf != NULL)
1555 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1556 reg_len, 0);
1557 else
1558 /* FIXME drow/2006-08-09: If we're going to preserve const
1559 correctness dcache_xfer_memory should take readbuf and
1560 writebuf. */
1561 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1562 (void *) writebuf,
1563 reg_len, 1);
1564 if (res <= 0)
1565 return -1;
1566 else
1567 return res;
1568 }
1569
1570 /* If none of those methods found the memory we wanted, fall back
1571 to a target partial transfer. Normally a single call to
1572 to_xfer_partial is enough; if it doesn't recognize an object
1573 it will call the to_xfer_partial of the next target down.
1574 But for memory this won't do. Memory is the only target
1575 object which can be read from more than one valid target.
1576 A core file, for instance, could have some of memory but
1577 delegate other bits to the target below it. So, we must
1578 manually try all targets. */
1579
1580 do
1581 {
1582 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1583 readbuf, writebuf, memaddr, reg_len);
1584 if (res > 0)
1585 break;
1586
1587 /* We want to continue past core files to executables, but not
1588 past a running target's memory. */
1589 if (ops->to_has_all_memory (ops))
1590 break;
1591
1592 ops = ops->beneath;
1593 }
1594 while (ops != NULL);
1595
1596 /* Make sure the cache gets updated no matter what - if we are writing
1597 to the stack. Even if this write is not tagged as such, we still need
1598 to update the cache. */
1599
1600 if (res > 0
1601 && inf != NULL
1602 && writebuf != NULL
1603 && !region->attrib.cache
1604 && stack_cache_enabled_p
1605 && object != TARGET_OBJECT_STACK_MEMORY)
1606 {
1607 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1608 }
1609
1610 /* If we still haven't got anything, return the last error. We
1611 give up. */
1612 return res;
1613 }
1614
1615 /* Perform a partial memory transfer. For docs see target.h,
1616 to_xfer_partial. */
1617
1618 static LONGEST
1619 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1620 void *readbuf, const void *writebuf, ULONGEST memaddr,
1621 LONGEST len)
1622 {
1623 int res;
1624
1625 /* Zero length requests are ok and require no work. */
1626 if (len == 0)
1627 return 0;
1628
1629 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1630 breakpoint insns, thus hiding out from higher layers whether
1631 there are software breakpoints inserted in the code stream. */
1632 if (readbuf != NULL)
1633 {
1634 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len);
1635
1636 if (res > 0 && !show_memory_breakpoints)
1637 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1638 }
1639 else
1640 {
1641 void *buf;
1642 struct cleanup *old_chain;
1643
1644 buf = xmalloc (len);
1645 old_chain = make_cleanup (xfree, buf);
1646 memcpy (buf, writebuf, len);
1647
1648 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1649 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len);
1650
1651 do_cleanups (old_chain);
1652 }
1653
1654 return res;
1655 }
1656
1657 static void
1658 restore_show_memory_breakpoints (void *arg)
1659 {
1660 show_memory_breakpoints = (uintptr_t) arg;
1661 }
1662
1663 struct cleanup *
1664 make_show_memory_breakpoints_cleanup (int show)
1665 {
1666 int current = show_memory_breakpoints;
1667
1668 show_memory_breakpoints = show;
1669 return make_cleanup (restore_show_memory_breakpoints,
1670 (void *) (uintptr_t) current);
1671 }
1672
1673 /* For docs see target.h, to_xfer_partial. */
1674
1675 static LONGEST
1676 target_xfer_partial (struct target_ops *ops,
1677 enum target_object object, const char *annex,
1678 void *readbuf, const void *writebuf,
1679 ULONGEST offset, LONGEST len)
1680 {
1681 LONGEST retval;
1682
1683 gdb_assert (ops->to_xfer_partial != NULL);
1684
1685 if (writebuf && !may_write_memory)
1686 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1687 core_addr_to_string_nz (offset), plongest (len));
1688
1689 /* If this is a memory transfer, let the memory-specific code
1690 have a look at it instead. Memory transfers are more
1691 complicated. */
1692 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1693 retval = memory_xfer_partial (ops, object, readbuf,
1694 writebuf, offset, len);
1695 else
1696 {
1697 enum target_object raw_object = object;
1698
1699 /* If this is a raw memory transfer, request the normal
1700 memory object from other layers. */
1701 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1702 raw_object = TARGET_OBJECT_MEMORY;
1703
1704 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1705 writebuf, offset, len);
1706 }
1707
1708 if (targetdebug)
1709 {
1710 const unsigned char *myaddr = NULL;
1711
1712 fprintf_unfiltered (gdb_stdlog,
1713 "%s:target_xfer_partial "
1714 "(%d, %s, %s, %s, %s, %s) = %s",
1715 ops->to_shortname,
1716 (int) object,
1717 (annex ? annex : "(null)"),
1718 host_address_to_string (readbuf),
1719 host_address_to_string (writebuf),
1720 core_addr_to_string_nz (offset),
1721 plongest (len), plongest (retval));
1722
1723 if (readbuf)
1724 myaddr = readbuf;
1725 if (writebuf)
1726 myaddr = writebuf;
1727 if (retval > 0 && myaddr != NULL)
1728 {
1729 int i;
1730
1731 fputs_unfiltered (", bytes =", gdb_stdlog);
1732 for (i = 0; i < retval; i++)
1733 {
1734 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1735 {
1736 if (targetdebug < 2 && i > 0)
1737 {
1738 fprintf_unfiltered (gdb_stdlog, " ...");
1739 break;
1740 }
1741 fprintf_unfiltered (gdb_stdlog, "\n");
1742 }
1743
1744 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1745 }
1746 }
1747
1748 fputc_unfiltered ('\n', gdb_stdlog);
1749 }
1750 return retval;
1751 }
1752
1753 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1754 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1755 if any error occurs.
1756
1757 If an error occurs, no guarantee is made about the contents of the data at
1758 MYADDR. In particular, the caller should not depend upon partial reads
1759 filling the buffer with good data. There is no way for the caller to know
1760 how much good data might have been transfered anyway. Callers that can
1761 deal with partial reads should call target_read (which will retry until
1762 it makes no progress, and then return how much was transferred). */
1763
1764 int
1765 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1766 {
1767 /* Dispatch to the topmost target, not the flattened current_target.
1768 Memory accesses check target->to_has_(all_)memory, and the
1769 flattened target doesn't inherit those. */
1770 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1771 myaddr, memaddr, len) == len)
1772 return 0;
1773 else
1774 return EIO;
1775 }
1776
1777 /* Like target_read_memory, but specify explicitly that this is a read from
1778 the target's stack. This may trigger different cache behavior. */
1779
1780 int
1781 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1782 {
1783 /* Dispatch to the topmost target, not the flattened current_target.
1784 Memory accesses check target->to_has_(all_)memory, and the
1785 flattened target doesn't inherit those. */
1786
1787 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1788 myaddr, memaddr, len) == len)
1789 return 0;
1790 else
1791 return EIO;
1792 }
1793
1794 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1795 Returns either 0 for success or an errno value if any error occurs.
1796 If an error occurs, no guarantee is made about how much data got written.
1797 Callers that can deal with partial writes should call target_write. */
1798
1799 int
1800 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1801 {
1802 /* Dispatch to the topmost target, not the flattened current_target.
1803 Memory accesses check target->to_has_(all_)memory, and the
1804 flattened target doesn't inherit those. */
1805 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1806 myaddr, memaddr, len) == len)
1807 return 0;
1808 else
1809 return EIO;
1810 }
1811
1812 /* Write LEN bytes from MYADDR to target raw memory at address
1813 MEMADDR. Returns either 0 for success or an errno value if any
1814 error occurs. If an error occurs, no guarantee is made about how
1815 much data got written. Callers that can deal with partial writes
1816 should call target_write. */
1817
1818 int
1819 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1820 {
1821 /* Dispatch to the topmost target, not the flattened current_target.
1822 Memory accesses check target->to_has_(all_)memory, and the
1823 flattened target doesn't inherit those. */
1824 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1825 myaddr, memaddr, len) == len)
1826 return 0;
1827 else
1828 return EIO;
1829 }
1830
1831 /* Fetch the target's memory map. */
1832
1833 VEC(mem_region_s) *
1834 target_memory_map (void)
1835 {
1836 VEC(mem_region_s) *result;
1837 struct mem_region *last_one, *this_one;
1838 int ix;
1839 struct target_ops *t;
1840
1841 if (targetdebug)
1842 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1843
1844 for (t = current_target.beneath; t != NULL; t = t->beneath)
1845 if (t->to_memory_map != NULL)
1846 break;
1847
1848 if (t == NULL)
1849 return NULL;
1850
1851 result = t->to_memory_map (t);
1852 if (result == NULL)
1853 return NULL;
1854
1855 qsort (VEC_address (mem_region_s, result),
1856 VEC_length (mem_region_s, result),
1857 sizeof (struct mem_region), mem_region_cmp);
1858
1859 /* Check that regions do not overlap. Simultaneously assign
1860 a numbering for the "mem" commands to use to refer to
1861 each region. */
1862 last_one = NULL;
1863 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1864 {
1865 this_one->number = ix;
1866
1867 if (last_one && last_one->hi > this_one->lo)
1868 {
1869 warning (_("Overlapping regions in memory map: ignoring"));
1870 VEC_free (mem_region_s, result);
1871 return NULL;
1872 }
1873 last_one = this_one;
1874 }
1875
1876 return result;
1877 }
1878
1879 void
1880 target_flash_erase (ULONGEST address, LONGEST length)
1881 {
1882 struct target_ops *t;
1883
1884 for (t = current_target.beneath; t != NULL; t = t->beneath)
1885 if (t->to_flash_erase != NULL)
1886 {
1887 if (targetdebug)
1888 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1889 hex_string (address), phex (length, 0));
1890 t->to_flash_erase (t, address, length);
1891 return;
1892 }
1893
1894 tcomplain ();
1895 }
1896
1897 void
1898 target_flash_done (void)
1899 {
1900 struct target_ops *t;
1901
1902 for (t = current_target.beneath; t != NULL; t = t->beneath)
1903 if (t->to_flash_done != NULL)
1904 {
1905 if (targetdebug)
1906 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1907 t->to_flash_done (t);
1908 return;
1909 }
1910
1911 tcomplain ();
1912 }
1913
1914 static void
1915 show_trust_readonly (struct ui_file *file, int from_tty,
1916 struct cmd_list_element *c, const char *value)
1917 {
1918 fprintf_filtered (file,
1919 _("Mode for reading from readonly sections is %s.\n"),
1920 value);
1921 }
1922
1923 /* More generic transfers. */
1924
1925 static LONGEST
1926 default_xfer_partial (struct target_ops *ops, enum target_object object,
1927 const char *annex, gdb_byte *readbuf,
1928 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1929 {
1930 if (object == TARGET_OBJECT_MEMORY
1931 && ops->deprecated_xfer_memory != NULL)
1932 /* If available, fall back to the target's
1933 "deprecated_xfer_memory" method. */
1934 {
1935 int xfered = -1;
1936
1937 errno = 0;
1938 if (writebuf != NULL)
1939 {
1940 void *buffer = xmalloc (len);
1941 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1942
1943 memcpy (buffer, writebuf, len);
1944 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1945 1/*write*/, NULL, ops);
1946 do_cleanups (cleanup);
1947 }
1948 if (readbuf != NULL)
1949 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1950 0/*read*/, NULL, ops);
1951 if (xfered > 0)
1952 return xfered;
1953 else if (xfered == 0 && errno == 0)
1954 /* "deprecated_xfer_memory" uses 0, cross checked against
1955 ERRNO as one indication of an error. */
1956 return 0;
1957 else
1958 return -1;
1959 }
1960 else if (ops->beneath != NULL)
1961 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1962 readbuf, writebuf, offset, len);
1963 else
1964 return -1;
1965 }
1966
1967 /* The xfer_partial handler for the topmost target. Unlike the default,
1968 it does not need to handle memory specially; it just passes all
1969 requests down the stack. */
1970
1971 static LONGEST
1972 current_xfer_partial (struct target_ops *ops, enum target_object object,
1973 const char *annex, gdb_byte *readbuf,
1974 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1975 {
1976 if (ops->beneath != NULL)
1977 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1978 readbuf, writebuf, offset, len);
1979 else
1980 return -1;
1981 }
1982
1983 /* Target vector read/write partial wrapper functions. */
1984
1985 static LONGEST
1986 target_read_partial (struct target_ops *ops,
1987 enum target_object object,
1988 const char *annex, gdb_byte *buf,
1989 ULONGEST offset, LONGEST len)
1990 {
1991 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1992 }
1993
1994 static LONGEST
1995 target_write_partial (struct target_ops *ops,
1996 enum target_object object,
1997 const char *annex, const gdb_byte *buf,
1998 ULONGEST offset, LONGEST len)
1999 {
2000 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
2001 }
2002
2003 /* Wrappers to perform the full transfer. */
2004
2005 /* For docs on target_read see target.h. */
2006
2007 LONGEST
2008 target_read (struct target_ops *ops,
2009 enum target_object object,
2010 const char *annex, gdb_byte *buf,
2011 ULONGEST offset, LONGEST len)
2012 {
2013 LONGEST xfered = 0;
2014
2015 while (xfered < len)
2016 {
2017 LONGEST xfer = target_read_partial (ops, object, annex,
2018 (gdb_byte *) buf + xfered,
2019 offset + xfered, len - xfered);
2020
2021 /* Call an observer, notifying them of the xfer progress? */
2022 if (xfer == 0)
2023 return xfered;
2024 if (xfer < 0)
2025 return -1;
2026 xfered += xfer;
2027 QUIT;
2028 }
2029 return len;
2030 }
2031
2032 /* Assuming that the entire [begin, end) range of memory cannot be
2033 read, try to read whatever subrange is possible to read.
2034
2035 The function returns, in RESULT, either zero or one memory block.
2036 If there's a readable subrange at the beginning, it is completely
2037 read and returned. Any further readable subrange will not be read.
2038 Otherwise, if there's a readable subrange at the end, it will be
2039 completely read and returned. Any readable subranges before it
2040 (obviously, not starting at the beginning), will be ignored. In
2041 other cases -- either no readable subrange, or readable subrange(s)
2042 that is neither at the beginning, or end, nothing is returned.
2043
2044 The purpose of this function is to handle a read across a boundary
2045 of accessible memory in a case when memory map is not available.
2046 The above restrictions are fine for this case, but will give
2047 incorrect results if the memory is 'patchy'. However, supporting
2048 'patchy' memory would require trying to read every single byte,
2049 and it seems unacceptable solution. Explicit memory map is
2050 recommended for this case -- and target_read_memory_robust will
2051 take care of reading multiple ranges then. */
2052
2053 static void
2054 read_whatever_is_readable (struct target_ops *ops,
2055 ULONGEST begin, ULONGEST end,
2056 VEC(memory_read_result_s) **result)
2057 {
2058 gdb_byte *buf = xmalloc (end - begin);
2059 ULONGEST current_begin = begin;
2060 ULONGEST current_end = end;
2061 int forward;
2062 memory_read_result_s r;
2063
2064 /* If we previously failed to read 1 byte, nothing can be done here. */
2065 if (end - begin <= 1)
2066 {
2067 xfree (buf);
2068 return;
2069 }
2070
2071 /* Check that either first or the last byte is readable, and give up
2072 if not. This heuristic is meant to permit reading accessible memory
2073 at the boundary of accessible region. */
2074 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2075 buf, begin, 1) == 1)
2076 {
2077 forward = 1;
2078 ++current_begin;
2079 }
2080 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2081 buf + (end-begin) - 1, end - 1, 1) == 1)
2082 {
2083 forward = 0;
2084 --current_end;
2085 }
2086 else
2087 {
2088 xfree (buf);
2089 return;
2090 }
2091
2092 /* Loop invariant is that the [current_begin, current_end) was previously
2093 found to be not readable as a whole.
2094
2095 Note loop condition -- if the range has 1 byte, we can't divide the range
2096 so there's no point trying further. */
2097 while (current_end - current_begin > 1)
2098 {
2099 ULONGEST first_half_begin, first_half_end;
2100 ULONGEST second_half_begin, second_half_end;
2101 LONGEST xfer;
2102 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2103
2104 if (forward)
2105 {
2106 first_half_begin = current_begin;
2107 first_half_end = middle;
2108 second_half_begin = middle;
2109 second_half_end = current_end;
2110 }
2111 else
2112 {
2113 first_half_begin = middle;
2114 first_half_end = current_end;
2115 second_half_begin = current_begin;
2116 second_half_end = middle;
2117 }
2118
2119 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2120 buf + (first_half_begin - begin),
2121 first_half_begin,
2122 first_half_end - first_half_begin);
2123
2124 if (xfer == first_half_end - first_half_begin)
2125 {
2126 /* This half reads up fine. So, the error must be in the
2127 other half. */
2128 current_begin = second_half_begin;
2129 current_end = second_half_end;
2130 }
2131 else
2132 {
2133 /* This half is not readable. Because we've tried one byte, we
2134 know some part of this half if actually redable. Go to the next
2135 iteration to divide again and try to read.
2136
2137 We don't handle the other half, because this function only tries
2138 to read a single readable subrange. */
2139 current_begin = first_half_begin;
2140 current_end = first_half_end;
2141 }
2142 }
2143
2144 if (forward)
2145 {
2146 /* The [begin, current_begin) range has been read. */
2147 r.begin = begin;
2148 r.end = current_begin;
2149 r.data = buf;
2150 }
2151 else
2152 {
2153 /* The [current_end, end) range has been read. */
2154 LONGEST rlen = end - current_end;
2155
2156 r.data = xmalloc (rlen);
2157 memcpy (r.data, buf + current_end - begin, rlen);
2158 r.begin = current_end;
2159 r.end = end;
2160 xfree (buf);
2161 }
2162 VEC_safe_push(memory_read_result_s, (*result), &r);
2163 }
2164
2165 void
2166 free_memory_read_result_vector (void *x)
2167 {
2168 VEC(memory_read_result_s) *v = x;
2169 memory_read_result_s *current;
2170 int ix;
2171
2172 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2173 {
2174 xfree (current->data);
2175 }
2176 VEC_free (memory_read_result_s, v);
2177 }
2178
2179 VEC(memory_read_result_s) *
2180 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2181 {
2182 VEC(memory_read_result_s) *result = 0;
2183
2184 LONGEST xfered = 0;
2185 while (xfered < len)
2186 {
2187 struct mem_region *region = lookup_mem_region (offset + xfered);
2188 LONGEST rlen;
2189
2190 /* If there is no explicit region, a fake one should be created. */
2191 gdb_assert (region);
2192
2193 if (region->hi == 0)
2194 rlen = len - xfered;
2195 else
2196 rlen = region->hi - offset;
2197
2198 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2199 {
2200 /* Cannot read this region. Note that we can end up here only
2201 if the region is explicitly marked inaccessible, or
2202 'inaccessible-by-default' is in effect. */
2203 xfered += rlen;
2204 }
2205 else
2206 {
2207 LONGEST to_read = min (len - xfered, rlen);
2208 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2209
2210 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2211 (gdb_byte *) buffer,
2212 offset + xfered, to_read);
2213 /* Call an observer, notifying them of the xfer progress? */
2214 if (xfer <= 0)
2215 {
2216 /* Got an error reading full chunk. See if maybe we can read
2217 some subrange. */
2218 xfree (buffer);
2219 read_whatever_is_readable (ops, offset + xfered,
2220 offset + xfered + to_read, &result);
2221 xfered += to_read;
2222 }
2223 else
2224 {
2225 struct memory_read_result r;
2226 r.data = buffer;
2227 r.begin = offset + xfered;
2228 r.end = r.begin + xfer;
2229 VEC_safe_push (memory_read_result_s, result, &r);
2230 xfered += xfer;
2231 }
2232 QUIT;
2233 }
2234 }
2235 return result;
2236 }
2237
2238
2239 /* An alternative to target_write with progress callbacks. */
2240
2241 LONGEST
2242 target_write_with_progress (struct target_ops *ops,
2243 enum target_object object,
2244 const char *annex, const gdb_byte *buf,
2245 ULONGEST offset, LONGEST len,
2246 void (*progress) (ULONGEST, void *), void *baton)
2247 {
2248 LONGEST xfered = 0;
2249
2250 /* Give the progress callback a chance to set up. */
2251 if (progress)
2252 (*progress) (0, baton);
2253
2254 while (xfered < len)
2255 {
2256 LONGEST xfer = target_write_partial (ops, object, annex,
2257 (gdb_byte *) buf + xfered,
2258 offset + xfered, len - xfered);
2259
2260 if (xfer == 0)
2261 return xfered;
2262 if (xfer < 0)
2263 return -1;
2264
2265 if (progress)
2266 (*progress) (xfer, baton);
2267
2268 xfered += xfer;
2269 QUIT;
2270 }
2271 return len;
2272 }
2273
2274 /* For docs on target_write see target.h. */
2275
2276 LONGEST
2277 target_write (struct target_ops *ops,
2278 enum target_object object,
2279 const char *annex, const gdb_byte *buf,
2280 ULONGEST offset, LONGEST len)
2281 {
2282 return target_write_with_progress (ops, object, annex, buf, offset, len,
2283 NULL, NULL);
2284 }
2285
2286 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2287 the size of the transferred data. PADDING additional bytes are
2288 available in *BUF_P. This is a helper function for
2289 target_read_alloc; see the declaration of that function for more
2290 information. */
2291
2292 static LONGEST
2293 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2294 const char *annex, gdb_byte **buf_p, int padding)
2295 {
2296 size_t buf_alloc, buf_pos;
2297 gdb_byte *buf;
2298 LONGEST n;
2299
2300 /* This function does not have a length parameter; it reads the
2301 entire OBJECT). Also, it doesn't support objects fetched partly
2302 from one target and partly from another (in a different stratum,
2303 e.g. a core file and an executable). Both reasons make it
2304 unsuitable for reading memory. */
2305 gdb_assert (object != TARGET_OBJECT_MEMORY);
2306
2307 /* Start by reading up to 4K at a time. The target will throttle
2308 this number down if necessary. */
2309 buf_alloc = 4096;
2310 buf = xmalloc (buf_alloc);
2311 buf_pos = 0;
2312 while (1)
2313 {
2314 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2315 buf_pos, buf_alloc - buf_pos - padding);
2316 if (n < 0)
2317 {
2318 /* An error occurred. */
2319 xfree (buf);
2320 return -1;
2321 }
2322 else if (n == 0)
2323 {
2324 /* Read all there was. */
2325 if (buf_pos == 0)
2326 xfree (buf);
2327 else
2328 *buf_p = buf;
2329 return buf_pos;
2330 }
2331
2332 buf_pos += n;
2333
2334 /* If the buffer is filling up, expand it. */
2335 if (buf_alloc < buf_pos * 2)
2336 {
2337 buf_alloc *= 2;
2338 buf = xrealloc (buf, buf_alloc);
2339 }
2340
2341 QUIT;
2342 }
2343 }
2344
2345 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2346 the size of the transferred data. See the declaration in "target.h"
2347 function for more information about the return value. */
2348
2349 LONGEST
2350 target_read_alloc (struct target_ops *ops, enum target_object object,
2351 const char *annex, gdb_byte **buf_p)
2352 {
2353 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2354 }
2355
2356 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2357 returned as a string, allocated using xmalloc. If an error occurs
2358 or the transfer is unsupported, NULL is returned. Empty objects
2359 are returned as allocated but empty strings. A warning is issued
2360 if the result contains any embedded NUL bytes. */
2361
2362 char *
2363 target_read_stralloc (struct target_ops *ops, enum target_object object,
2364 const char *annex)
2365 {
2366 char *buffer;
2367 LONGEST i, transferred;
2368
2369 transferred = target_read_alloc_1 (ops, object, annex,
2370 (gdb_byte **) &buffer, 1);
2371
2372 if (transferred < 0)
2373 return NULL;
2374
2375 if (transferred == 0)
2376 return xstrdup ("");
2377
2378 buffer[transferred] = 0;
2379
2380 /* Check for embedded NUL bytes; but allow trailing NULs. */
2381 for (i = strlen (buffer); i < transferred; i++)
2382 if (buffer[i] != 0)
2383 {
2384 warning (_("target object %d, annex %s, "
2385 "contained unexpected null characters"),
2386 (int) object, annex ? annex : "(none)");
2387 break;
2388 }
2389
2390 return buffer;
2391 }
2392
2393 /* Memory transfer methods. */
2394
2395 void
2396 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2397 LONGEST len)
2398 {
2399 /* This method is used to read from an alternate, non-current
2400 target. This read must bypass the overlay support (as symbols
2401 don't match this target), and GDB's internal cache (wrong cache
2402 for this target). */
2403 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2404 != len)
2405 memory_error (EIO, addr);
2406 }
2407
2408 ULONGEST
2409 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2410 int len, enum bfd_endian byte_order)
2411 {
2412 gdb_byte buf[sizeof (ULONGEST)];
2413
2414 gdb_assert (len <= sizeof (buf));
2415 get_target_memory (ops, addr, buf, len);
2416 return extract_unsigned_integer (buf, len, byte_order);
2417 }
2418
2419 int
2420 target_insert_breakpoint (struct gdbarch *gdbarch,
2421 struct bp_target_info *bp_tgt)
2422 {
2423 if (!may_insert_breakpoints)
2424 {
2425 warning (_("May not insert breakpoints"));
2426 return 1;
2427 }
2428
2429 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2430 }
2431
2432 int
2433 target_remove_breakpoint (struct gdbarch *gdbarch,
2434 struct bp_target_info *bp_tgt)
2435 {
2436 /* This is kind of a weird case to handle, but the permission might
2437 have been changed after breakpoints were inserted - in which case
2438 we should just take the user literally and assume that any
2439 breakpoints should be left in place. */
2440 if (!may_insert_breakpoints)
2441 {
2442 warning (_("May not remove breakpoints"));
2443 return 1;
2444 }
2445
2446 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2447 }
2448
2449 static void
2450 target_info (char *args, int from_tty)
2451 {
2452 struct target_ops *t;
2453 int has_all_mem = 0;
2454
2455 if (symfile_objfile != NULL)
2456 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2457
2458 for (t = target_stack; t != NULL; t = t->beneath)
2459 {
2460 if (!(*t->to_has_memory) (t))
2461 continue;
2462
2463 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2464 continue;
2465 if (has_all_mem)
2466 printf_unfiltered (_("\tWhile running this, "
2467 "GDB does not access memory from...\n"));
2468 printf_unfiltered ("%s:\n", t->to_longname);
2469 (t->to_files_info) (t);
2470 has_all_mem = (*t->to_has_all_memory) (t);
2471 }
2472 }
2473
2474 /* This function is called before any new inferior is created, e.g.
2475 by running a program, attaching, or connecting to a target.
2476 It cleans up any state from previous invocations which might
2477 change between runs. This is a subset of what target_preopen
2478 resets (things which might change between targets). */
2479
2480 void
2481 target_pre_inferior (int from_tty)
2482 {
2483 /* Clear out solib state. Otherwise the solib state of the previous
2484 inferior might have survived and is entirely wrong for the new
2485 target. This has been observed on GNU/Linux using glibc 2.3. How
2486 to reproduce:
2487
2488 bash$ ./foo&
2489 [1] 4711
2490 bash$ ./foo&
2491 [1] 4712
2492 bash$ gdb ./foo
2493 [...]
2494 (gdb) attach 4711
2495 (gdb) detach
2496 (gdb) attach 4712
2497 Cannot access memory at address 0xdeadbeef
2498 */
2499
2500 /* In some OSs, the shared library list is the same/global/shared
2501 across inferiors. If code is shared between processes, so are
2502 memory regions and features. */
2503 if (!gdbarch_has_global_solist (target_gdbarch ()))
2504 {
2505 no_shared_libraries (NULL, from_tty);
2506
2507 invalidate_target_mem_regions ();
2508
2509 target_clear_description ();
2510 }
2511
2512 agent_capability_invalidate ();
2513 }
2514
2515 /* Callback for iterate_over_inferiors. Gets rid of the given
2516 inferior. */
2517
2518 static int
2519 dispose_inferior (struct inferior *inf, void *args)
2520 {
2521 struct thread_info *thread;
2522
2523 thread = any_thread_of_process (inf->pid);
2524 if (thread)
2525 {
2526 switch_to_thread (thread->ptid);
2527
2528 /* Core inferiors actually should be detached, not killed. */
2529 if (target_has_execution)
2530 target_kill ();
2531 else
2532 target_detach (NULL, 0);
2533 }
2534
2535 return 0;
2536 }
2537
2538 /* This is to be called by the open routine before it does
2539 anything. */
2540
2541 void
2542 target_preopen (int from_tty)
2543 {
2544 dont_repeat ();
2545
2546 if (have_inferiors ())
2547 {
2548 if (!from_tty
2549 || !have_live_inferiors ()
2550 || query (_("A program is being debugged already. Kill it? ")))
2551 iterate_over_inferiors (dispose_inferior, NULL);
2552 else
2553 error (_("Program not killed."));
2554 }
2555
2556 /* Calling target_kill may remove the target from the stack. But if
2557 it doesn't (which seems like a win for UDI), remove it now. */
2558 /* Leave the exec target, though. The user may be switching from a
2559 live process to a core of the same program. */
2560 pop_all_targets_above (file_stratum, 0);
2561
2562 target_pre_inferior (from_tty);
2563 }
2564
2565 /* Detach a target after doing deferred register stores. */
2566
2567 void
2568 target_detach (char *args, int from_tty)
2569 {
2570 struct target_ops* t;
2571
2572 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2573 /* Don't remove global breakpoints here. They're removed on
2574 disconnection from the target. */
2575 ;
2576 else
2577 /* If we're in breakpoints-always-inserted mode, have to remove
2578 them before detaching. */
2579 remove_breakpoints_pid (PIDGET (inferior_ptid));
2580
2581 prepare_for_detach ();
2582
2583 for (t = current_target.beneath; t != NULL; t = t->beneath)
2584 {
2585 if (t->to_detach != NULL)
2586 {
2587 t->to_detach (t, args, from_tty);
2588 if (targetdebug)
2589 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2590 args, from_tty);
2591 return;
2592 }
2593 }
2594
2595 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2596 }
2597
2598 void
2599 target_disconnect (char *args, int from_tty)
2600 {
2601 struct target_ops *t;
2602
2603 /* If we're in breakpoints-always-inserted mode or if breakpoints
2604 are global across processes, we have to remove them before
2605 disconnecting. */
2606 remove_breakpoints ();
2607
2608 for (t = current_target.beneath; t != NULL; t = t->beneath)
2609 if (t->to_disconnect != NULL)
2610 {
2611 if (targetdebug)
2612 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2613 args, from_tty);
2614 t->to_disconnect (t, args, from_tty);
2615 return;
2616 }
2617
2618 tcomplain ();
2619 }
2620
2621 ptid_t
2622 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2623 {
2624 struct target_ops *t;
2625
2626 for (t = current_target.beneath; t != NULL; t = t->beneath)
2627 {
2628 if (t->to_wait != NULL)
2629 {
2630 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2631
2632 if (targetdebug)
2633 {
2634 char *status_string;
2635 char *options_string;
2636
2637 status_string = target_waitstatus_to_string (status);
2638 options_string = target_options_to_string (options);
2639 fprintf_unfiltered (gdb_stdlog,
2640 "target_wait (%d, status, options={%s})"
2641 " = %d, %s\n",
2642 PIDGET (ptid), options_string,
2643 PIDGET (retval), status_string);
2644 xfree (status_string);
2645 xfree (options_string);
2646 }
2647
2648 return retval;
2649 }
2650 }
2651
2652 noprocess ();
2653 }
2654
2655 char *
2656 target_pid_to_str (ptid_t ptid)
2657 {
2658 struct target_ops *t;
2659
2660 for (t = current_target.beneath; t != NULL; t = t->beneath)
2661 {
2662 if (t->to_pid_to_str != NULL)
2663 return (*t->to_pid_to_str) (t, ptid);
2664 }
2665
2666 return normal_pid_to_str (ptid);
2667 }
2668
2669 char *
2670 target_thread_name (struct thread_info *info)
2671 {
2672 struct target_ops *t;
2673
2674 for (t = current_target.beneath; t != NULL; t = t->beneath)
2675 {
2676 if (t->to_thread_name != NULL)
2677 return (*t->to_thread_name) (info);
2678 }
2679
2680 return NULL;
2681 }
2682
2683 void
2684 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2685 {
2686 struct target_ops *t;
2687
2688 target_dcache_invalidate ();
2689
2690 for (t = current_target.beneath; t != NULL; t = t->beneath)
2691 {
2692 if (t->to_resume != NULL)
2693 {
2694 t->to_resume (t, ptid, step, signal);
2695 if (targetdebug)
2696 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2697 PIDGET (ptid),
2698 step ? "step" : "continue",
2699 gdb_signal_to_name (signal));
2700
2701 registers_changed_ptid (ptid);
2702 set_executing (ptid, 1);
2703 set_running (ptid, 1);
2704 clear_inline_frame_state (ptid);
2705 return;
2706 }
2707 }
2708
2709 noprocess ();
2710 }
2711
2712 void
2713 target_pass_signals (int numsigs, unsigned char *pass_signals)
2714 {
2715 struct target_ops *t;
2716
2717 for (t = current_target.beneath; t != NULL; t = t->beneath)
2718 {
2719 if (t->to_pass_signals != NULL)
2720 {
2721 if (targetdebug)
2722 {
2723 int i;
2724
2725 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2726 numsigs);
2727
2728 for (i = 0; i < numsigs; i++)
2729 if (pass_signals[i])
2730 fprintf_unfiltered (gdb_stdlog, " %s",
2731 gdb_signal_to_name (i));
2732
2733 fprintf_unfiltered (gdb_stdlog, " })\n");
2734 }
2735
2736 (*t->to_pass_signals) (numsigs, pass_signals);
2737 return;
2738 }
2739 }
2740 }
2741
2742 void
2743 target_program_signals (int numsigs, unsigned char *program_signals)
2744 {
2745 struct target_ops *t;
2746
2747 for (t = current_target.beneath; t != NULL; t = t->beneath)
2748 {
2749 if (t->to_program_signals != NULL)
2750 {
2751 if (targetdebug)
2752 {
2753 int i;
2754
2755 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2756 numsigs);
2757
2758 for (i = 0; i < numsigs; i++)
2759 if (program_signals[i])
2760 fprintf_unfiltered (gdb_stdlog, " %s",
2761 gdb_signal_to_name (i));
2762
2763 fprintf_unfiltered (gdb_stdlog, " })\n");
2764 }
2765
2766 (*t->to_program_signals) (numsigs, program_signals);
2767 return;
2768 }
2769 }
2770 }
2771
2772 /* Look through the list of possible targets for a target that can
2773 follow forks. */
2774
2775 int
2776 target_follow_fork (int follow_child)
2777 {
2778 struct target_ops *t;
2779
2780 for (t = current_target.beneath; t != NULL; t = t->beneath)
2781 {
2782 if (t->to_follow_fork != NULL)
2783 {
2784 int retval = t->to_follow_fork (t, follow_child);
2785
2786 if (targetdebug)
2787 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2788 follow_child, retval);
2789 return retval;
2790 }
2791 }
2792
2793 /* Some target returned a fork event, but did not know how to follow it. */
2794 internal_error (__FILE__, __LINE__,
2795 _("could not find a target to follow fork"));
2796 }
2797
2798 void
2799 target_mourn_inferior (void)
2800 {
2801 struct target_ops *t;
2802
2803 for (t = current_target.beneath; t != NULL; t = t->beneath)
2804 {
2805 if (t->to_mourn_inferior != NULL)
2806 {
2807 t->to_mourn_inferior (t);
2808 if (targetdebug)
2809 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2810
2811 /* We no longer need to keep handles on any of the object files.
2812 Make sure to release them to avoid unnecessarily locking any
2813 of them while we're not actually debugging. */
2814 bfd_cache_close_all ();
2815
2816 return;
2817 }
2818 }
2819
2820 internal_error (__FILE__, __LINE__,
2821 _("could not find a target to follow mourn inferior"));
2822 }
2823
2824 /* Look for a target which can describe architectural features, starting
2825 from TARGET. If we find one, return its description. */
2826
2827 const struct target_desc *
2828 target_read_description (struct target_ops *target)
2829 {
2830 struct target_ops *t;
2831
2832 for (t = target; t != NULL; t = t->beneath)
2833 if (t->to_read_description != NULL)
2834 {
2835 const struct target_desc *tdesc;
2836
2837 tdesc = t->to_read_description (t);
2838 if (tdesc)
2839 return tdesc;
2840 }
2841
2842 return NULL;
2843 }
2844
2845 /* The default implementation of to_search_memory.
2846 This implements a basic search of memory, reading target memory and
2847 performing the search here (as opposed to performing the search in on the
2848 target side with, for example, gdbserver). */
2849
2850 int
2851 simple_search_memory (struct target_ops *ops,
2852 CORE_ADDR start_addr, ULONGEST search_space_len,
2853 const gdb_byte *pattern, ULONGEST pattern_len,
2854 CORE_ADDR *found_addrp)
2855 {
2856 /* NOTE: also defined in find.c testcase. */
2857 #define SEARCH_CHUNK_SIZE 16000
2858 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2859 /* Buffer to hold memory contents for searching. */
2860 gdb_byte *search_buf;
2861 unsigned search_buf_size;
2862 struct cleanup *old_cleanups;
2863
2864 search_buf_size = chunk_size + pattern_len - 1;
2865
2866 /* No point in trying to allocate a buffer larger than the search space. */
2867 if (search_space_len < search_buf_size)
2868 search_buf_size = search_space_len;
2869
2870 search_buf = malloc (search_buf_size);
2871 if (search_buf == NULL)
2872 error (_("Unable to allocate memory to perform the search."));
2873 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2874
2875 /* Prime the search buffer. */
2876
2877 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2878 search_buf, start_addr, search_buf_size) != search_buf_size)
2879 {
2880 warning (_("Unable to access %s bytes of target "
2881 "memory at %s, halting search."),
2882 pulongest (search_buf_size), hex_string (start_addr));
2883 do_cleanups (old_cleanups);
2884 return -1;
2885 }
2886
2887 /* Perform the search.
2888
2889 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2890 When we've scanned N bytes we copy the trailing bytes to the start and
2891 read in another N bytes. */
2892
2893 while (search_space_len >= pattern_len)
2894 {
2895 gdb_byte *found_ptr;
2896 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2897
2898 found_ptr = memmem (search_buf, nr_search_bytes,
2899 pattern, pattern_len);
2900
2901 if (found_ptr != NULL)
2902 {
2903 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2904
2905 *found_addrp = found_addr;
2906 do_cleanups (old_cleanups);
2907 return 1;
2908 }
2909
2910 /* Not found in this chunk, skip to next chunk. */
2911
2912 /* Don't let search_space_len wrap here, it's unsigned. */
2913 if (search_space_len >= chunk_size)
2914 search_space_len -= chunk_size;
2915 else
2916 search_space_len = 0;
2917
2918 if (search_space_len >= pattern_len)
2919 {
2920 unsigned keep_len = search_buf_size - chunk_size;
2921 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2922 int nr_to_read;
2923
2924 /* Copy the trailing part of the previous iteration to the front
2925 of the buffer for the next iteration. */
2926 gdb_assert (keep_len == pattern_len - 1);
2927 memcpy (search_buf, search_buf + chunk_size, keep_len);
2928
2929 nr_to_read = min (search_space_len - keep_len, chunk_size);
2930
2931 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2932 search_buf + keep_len, read_addr,
2933 nr_to_read) != nr_to_read)
2934 {
2935 warning (_("Unable to access %s bytes of target "
2936 "memory at %s, halting search."),
2937 plongest (nr_to_read),
2938 hex_string (read_addr));
2939 do_cleanups (old_cleanups);
2940 return -1;
2941 }
2942
2943 start_addr += chunk_size;
2944 }
2945 }
2946
2947 /* Not found. */
2948
2949 do_cleanups (old_cleanups);
2950 return 0;
2951 }
2952
2953 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2954 sequence of bytes in PATTERN with length PATTERN_LEN.
2955
2956 The result is 1 if found, 0 if not found, and -1 if there was an error
2957 requiring halting of the search (e.g. memory read error).
2958 If the pattern is found the address is recorded in FOUND_ADDRP. */
2959
2960 int
2961 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2962 const gdb_byte *pattern, ULONGEST pattern_len,
2963 CORE_ADDR *found_addrp)
2964 {
2965 struct target_ops *t;
2966 int found;
2967
2968 /* We don't use INHERIT to set current_target.to_search_memory,
2969 so we have to scan the target stack and handle targetdebug
2970 ourselves. */
2971
2972 if (targetdebug)
2973 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2974 hex_string (start_addr));
2975
2976 for (t = current_target.beneath; t != NULL; t = t->beneath)
2977 if (t->to_search_memory != NULL)
2978 break;
2979
2980 if (t != NULL)
2981 {
2982 found = t->to_search_memory (t, start_addr, search_space_len,
2983 pattern, pattern_len, found_addrp);
2984 }
2985 else
2986 {
2987 /* If a special version of to_search_memory isn't available, use the
2988 simple version. */
2989 found = simple_search_memory (current_target.beneath,
2990 start_addr, search_space_len,
2991 pattern, pattern_len, found_addrp);
2992 }
2993
2994 if (targetdebug)
2995 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2996
2997 return found;
2998 }
2999
3000 /* Look through the currently pushed targets. If none of them will
3001 be able to restart the currently running process, issue an error
3002 message. */
3003
3004 void
3005 target_require_runnable (void)
3006 {
3007 struct target_ops *t;
3008
3009 for (t = target_stack; t != NULL; t = t->beneath)
3010 {
3011 /* If this target knows how to create a new program, then
3012 assume we will still be able to after killing the current
3013 one. Either killing and mourning will not pop T, or else
3014 find_default_run_target will find it again. */
3015 if (t->to_create_inferior != NULL)
3016 return;
3017
3018 /* Do not worry about thread_stratum targets that can not
3019 create inferiors. Assume they will be pushed again if
3020 necessary, and continue to the process_stratum. */
3021 if (t->to_stratum == thread_stratum
3022 || t->to_stratum == arch_stratum)
3023 continue;
3024
3025 error (_("The \"%s\" target does not support \"run\". "
3026 "Try \"help target\" or \"continue\"."),
3027 t->to_shortname);
3028 }
3029
3030 /* This function is only called if the target is running. In that
3031 case there should have been a process_stratum target and it
3032 should either know how to create inferiors, or not... */
3033 internal_error (__FILE__, __LINE__, _("No targets found"));
3034 }
3035
3036 /* Look through the list of possible targets for a target that can
3037 execute a run or attach command without any other data. This is
3038 used to locate the default process stratum.
3039
3040 If DO_MESG is not NULL, the result is always valid (error() is
3041 called for errors); else, return NULL on error. */
3042
3043 static struct target_ops *
3044 find_default_run_target (char *do_mesg)
3045 {
3046 struct target_ops **t;
3047 struct target_ops *runable = NULL;
3048 int count;
3049
3050 count = 0;
3051
3052 for (t = target_structs; t < target_structs + target_struct_size;
3053 ++t)
3054 {
3055 if ((*t)->to_can_run && target_can_run (*t))
3056 {
3057 runable = *t;
3058 ++count;
3059 }
3060 }
3061
3062 if (count != 1)
3063 {
3064 if (do_mesg)
3065 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3066 else
3067 return NULL;
3068 }
3069
3070 return runable;
3071 }
3072
3073 void
3074 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3075 {
3076 struct target_ops *t;
3077
3078 t = find_default_run_target ("attach");
3079 (t->to_attach) (t, args, from_tty);
3080 return;
3081 }
3082
3083 void
3084 find_default_create_inferior (struct target_ops *ops,
3085 char *exec_file, char *allargs, char **env,
3086 int from_tty)
3087 {
3088 struct target_ops *t;
3089
3090 t = find_default_run_target ("run");
3091 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3092 return;
3093 }
3094
3095 static int
3096 find_default_can_async_p (void)
3097 {
3098 struct target_ops *t;
3099
3100 /* This may be called before the target is pushed on the stack;
3101 look for the default process stratum. If there's none, gdb isn't
3102 configured with a native debugger, and target remote isn't
3103 connected yet. */
3104 t = find_default_run_target (NULL);
3105 if (t && t->to_can_async_p)
3106 return (t->to_can_async_p) ();
3107 return 0;
3108 }
3109
3110 static int
3111 find_default_is_async_p (void)
3112 {
3113 struct target_ops *t;
3114
3115 /* This may be called before the target is pushed on the stack;
3116 look for the default process stratum. If there's none, gdb isn't
3117 configured with a native debugger, and target remote isn't
3118 connected yet. */
3119 t = find_default_run_target (NULL);
3120 if (t && t->to_is_async_p)
3121 return (t->to_is_async_p) ();
3122 return 0;
3123 }
3124
3125 static int
3126 find_default_supports_non_stop (void)
3127 {
3128 struct target_ops *t;
3129
3130 t = find_default_run_target (NULL);
3131 if (t && t->to_supports_non_stop)
3132 return (t->to_supports_non_stop) ();
3133 return 0;
3134 }
3135
3136 int
3137 target_supports_non_stop (void)
3138 {
3139 struct target_ops *t;
3140
3141 for (t = &current_target; t != NULL; t = t->beneath)
3142 if (t->to_supports_non_stop)
3143 return t->to_supports_non_stop ();
3144
3145 return 0;
3146 }
3147
3148 /* Implement the "info proc" command. */
3149
3150 int
3151 target_info_proc (char *args, enum info_proc_what what)
3152 {
3153 struct target_ops *t;
3154
3155 /* If we're already connected to something that can get us OS
3156 related data, use it. Otherwise, try using the native
3157 target. */
3158 if (current_target.to_stratum >= process_stratum)
3159 t = current_target.beneath;
3160 else
3161 t = find_default_run_target (NULL);
3162
3163 for (; t != NULL; t = t->beneath)
3164 {
3165 if (t->to_info_proc != NULL)
3166 {
3167 t->to_info_proc (t, args, what);
3168
3169 if (targetdebug)
3170 fprintf_unfiltered (gdb_stdlog,
3171 "target_info_proc (\"%s\", %d)\n", args, what);
3172
3173 return 1;
3174 }
3175 }
3176
3177 return 0;
3178 }
3179
3180 static int
3181 find_default_supports_disable_randomization (void)
3182 {
3183 struct target_ops *t;
3184
3185 t = find_default_run_target (NULL);
3186 if (t && t->to_supports_disable_randomization)
3187 return (t->to_supports_disable_randomization) ();
3188 return 0;
3189 }
3190
3191 int
3192 target_supports_disable_randomization (void)
3193 {
3194 struct target_ops *t;
3195
3196 for (t = &current_target; t != NULL; t = t->beneath)
3197 if (t->to_supports_disable_randomization)
3198 return t->to_supports_disable_randomization ();
3199
3200 return 0;
3201 }
3202
3203 char *
3204 target_get_osdata (const char *type)
3205 {
3206 struct target_ops *t;
3207
3208 /* If we're already connected to something that can get us OS
3209 related data, use it. Otherwise, try using the native
3210 target. */
3211 if (current_target.to_stratum >= process_stratum)
3212 t = current_target.beneath;
3213 else
3214 t = find_default_run_target ("get OS data");
3215
3216 if (!t)
3217 return NULL;
3218
3219 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3220 }
3221
3222 /* Determine the current address space of thread PTID. */
3223
3224 struct address_space *
3225 target_thread_address_space (ptid_t ptid)
3226 {
3227 struct address_space *aspace;
3228 struct inferior *inf;
3229 struct target_ops *t;
3230
3231 for (t = current_target.beneath; t != NULL; t = t->beneath)
3232 {
3233 if (t->to_thread_address_space != NULL)
3234 {
3235 aspace = t->to_thread_address_space (t, ptid);
3236 gdb_assert (aspace);
3237
3238 if (targetdebug)
3239 fprintf_unfiltered (gdb_stdlog,
3240 "target_thread_address_space (%s) = %d\n",
3241 target_pid_to_str (ptid),
3242 address_space_num (aspace));
3243 return aspace;
3244 }
3245 }
3246
3247 /* Fall-back to the "main" address space of the inferior. */
3248 inf = find_inferior_pid (ptid_get_pid (ptid));
3249
3250 if (inf == NULL || inf->aspace == NULL)
3251 internal_error (__FILE__, __LINE__,
3252 _("Can't determine the current "
3253 "address space of thread %s\n"),
3254 target_pid_to_str (ptid));
3255
3256 return inf->aspace;
3257 }
3258
3259
3260 /* Target file operations. */
3261
3262 static struct target_ops *
3263 default_fileio_target (void)
3264 {
3265 /* If we're already connected to something that can perform
3266 file I/O, use it. Otherwise, try using the native target. */
3267 if (current_target.to_stratum >= process_stratum)
3268 return current_target.beneath;
3269 else
3270 return find_default_run_target ("file I/O");
3271 }
3272
3273 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3274 target file descriptor, or -1 if an error occurs (and set
3275 *TARGET_ERRNO). */
3276 int
3277 target_fileio_open (const char *filename, int flags, int mode,
3278 int *target_errno)
3279 {
3280 struct target_ops *t;
3281
3282 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3283 {
3284 if (t->to_fileio_open != NULL)
3285 {
3286 int fd = t->to_fileio_open (filename, flags, mode, target_errno);
3287
3288 if (targetdebug)
3289 fprintf_unfiltered (gdb_stdlog,
3290 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3291 filename, flags, mode,
3292 fd, fd != -1 ? 0 : *target_errno);
3293 return fd;
3294 }
3295 }
3296
3297 *target_errno = FILEIO_ENOSYS;
3298 return -1;
3299 }
3300
3301 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3302 Return the number of bytes written, or -1 if an error occurs
3303 (and set *TARGET_ERRNO). */
3304 int
3305 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3306 ULONGEST offset, int *target_errno)
3307 {
3308 struct target_ops *t;
3309
3310 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3311 {
3312 if (t->to_fileio_pwrite != NULL)
3313 {
3314 int ret = t->to_fileio_pwrite (fd, write_buf, len, offset,
3315 target_errno);
3316
3317 if (targetdebug)
3318 fprintf_unfiltered (gdb_stdlog,
3319 "target_fileio_pwrite (%d,...,%d,%s) "
3320 "= %d (%d)\n",
3321 fd, len, pulongest (offset),
3322 ret, ret != -1 ? 0 : *target_errno);
3323 return ret;
3324 }
3325 }
3326
3327 *target_errno = FILEIO_ENOSYS;
3328 return -1;
3329 }
3330
3331 /* Read up to LEN bytes FD on the target into READ_BUF.
3332 Return the number of bytes read, or -1 if an error occurs
3333 (and set *TARGET_ERRNO). */
3334 int
3335 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3336 ULONGEST offset, int *target_errno)
3337 {
3338 struct target_ops *t;
3339
3340 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3341 {
3342 if (t->to_fileio_pread != NULL)
3343 {
3344 int ret = t->to_fileio_pread (fd, read_buf, len, offset,
3345 target_errno);
3346
3347 if (targetdebug)
3348 fprintf_unfiltered (gdb_stdlog,
3349 "target_fileio_pread (%d,...,%d,%s) "
3350 "= %d (%d)\n",
3351 fd, len, pulongest (offset),
3352 ret, ret != -1 ? 0 : *target_errno);
3353 return ret;
3354 }
3355 }
3356
3357 *target_errno = FILEIO_ENOSYS;
3358 return -1;
3359 }
3360
3361 /* Close FD on the target. Return 0, or -1 if an error occurs
3362 (and set *TARGET_ERRNO). */
3363 int
3364 target_fileio_close (int fd, int *target_errno)
3365 {
3366 struct target_ops *t;
3367
3368 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3369 {
3370 if (t->to_fileio_close != NULL)
3371 {
3372 int ret = t->to_fileio_close (fd, target_errno);
3373
3374 if (targetdebug)
3375 fprintf_unfiltered (gdb_stdlog,
3376 "target_fileio_close (%d) = %d (%d)\n",
3377 fd, ret, ret != -1 ? 0 : *target_errno);
3378 return ret;
3379 }
3380 }
3381
3382 *target_errno = FILEIO_ENOSYS;
3383 return -1;
3384 }
3385
3386 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3387 occurs (and set *TARGET_ERRNO). */
3388 int
3389 target_fileio_unlink (const char *filename, int *target_errno)
3390 {
3391 struct target_ops *t;
3392
3393 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3394 {
3395 if (t->to_fileio_unlink != NULL)
3396 {
3397 int ret = t->to_fileio_unlink (filename, target_errno);
3398
3399 if (targetdebug)
3400 fprintf_unfiltered (gdb_stdlog,
3401 "target_fileio_unlink (%s) = %d (%d)\n",
3402 filename, ret, ret != -1 ? 0 : *target_errno);
3403 return ret;
3404 }
3405 }
3406
3407 *target_errno = FILEIO_ENOSYS;
3408 return -1;
3409 }
3410
3411 /* Read value of symbolic link FILENAME on the target. Return a
3412 null-terminated string allocated via xmalloc, or NULL if an error
3413 occurs (and set *TARGET_ERRNO). */
3414 char *
3415 target_fileio_readlink (const char *filename, int *target_errno)
3416 {
3417 struct target_ops *t;
3418
3419 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3420 {
3421 if (t->to_fileio_readlink != NULL)
3422 {
3423 char *ret = t->to_fileio_readlink (filename, target_errno);
3424
3425 if (targetdebug)
3426 fprintf_unfiltered (gdb_stdlog,
3427 "target_fileio_readlink (%s) = %s (%d)\n",
3428 filename, ret? ret : "(nil)",
3429 ret? 0 : *target_errno);
3430 return ret;
3431 }
3432 }
3433
3434 *target_errno = FILEIO_ENOSYS;
3435 return NULL;
3436 }
3437
3438 static void
3439 target_fileio_close_cleanup (void *opaque)
3440 {
3441 int fd = *(int *) opaque;
3442 int target_errno;
3443
3444 target_fileio_close (fd, &target_errno);
3445 }
3446
3447 /* Read target file FILENAME. Store the result in *BUF_P and
3448 return the size of the transferred data. PADDING additional bytes are
3449 available in *BUF_P. This is a helper function for
3450 target_fileio_read_alloc; see the declaration of that function for more
3451 information. */
3452
3453 static LONGEST
3454 target_fileio_read_alloc_1 (const char *filename,
3455 gdb_byte **buf_p, int padding)
3456 {
3457 struct cleanup *close_cleanup;
3458 size_t buf_alloc, buf_pos;
3459 gdb_byte *buf;
3460 LONGEST n;
3461 int fd;
3462 int target_errno;
3463
3464 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3465 if (fd == -1)
3466 return -1;
3467
3468 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3469
3470 /* Start by reading up to 4K at a time. The target will throttle
3471 this number down if necessary. */
3472 buf_alloc = 4096;
3473 buf = xmalloc (buf_alloc);
3474 buf_pos = 0;
3475 while (1)
3476 {
3477 n = target_fileio_pread (fd, &buf[buf_pos],
3478 buf_alloc - buf_pos - padding, buf_pos,
3479 &target_errno);
3480 if (n < 0)
3481 {
3482 /* An error occurred. */
3483 do_cleanups (close_cleanup);
3484 xfree (buf);
3485 return -1;
3486 }
3487 else if (n == 0)
3488 {
3489 /* Read all there was. */
3490 do_cleanups (close_cleanup);
3491 if (buf_pos == 0)
3492 xfree (buf);
3493 else
3494 *buf_p = buf;
3495 return buf_pos;
3496 }
3497
3498 buf_pos += n;
3499
3500 /* If the buffer is filling up, expand it. */
3501 if (buf_alloc < buf_pos * 2)
3502 {
3503 buf_alloc *= 2;
3504 buf = xrealloc (buf, buf_alloc);
3505 }
3506
3507 QUIT;
3508 }
3509 }
3510
3511 /* Read target file FILENAME. Store the result in *BUF_P and return
3512 the size of the transferred data. See the declaration in "target.h"
3513 function for more information about the return value. */
3514
3515 LONGEST
3516 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3517 {
3518 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3519 }
3520
3521 /* Read target file FILENAME. The result is NUL-terminated and
3522 returned as a string, allocated using xmalloc. If an error occurs
3523 or the transfer is unsupported, NULL is returned. Empty objects
3524 are returned as allocated but empty strings. A warning is issued
3525 if the result contains any embedded NUL bytes. */
3526
3527 char *
3528 target_fileio_read_stralloc (const char *filename)
3529 {
3530 char *buffer;
3531 LONGEST i, transferred;
3532
3533 transferred = target_fileio_read_alloc_1 (filename,
3534 (gdb_byte **) &buffer, 1);
3535
3536 if (transferred < 0)
3537 return NULL;
3538
3539 if (transferred == 0)
3540 return xstrdup ("");
3541
3542 buffer[transferred] = 0;
3543
3544 /* Check for embedded NUL bytes; but allow trailing NULs. */
3545 for (i = strlen (buffer); i < transferred; i++)
3546 if (buffer[i] != 0)
3547 {
3548 warning (_("target file %s "
3549 "contained unexpected null characters"),
3550 filename);
3551 break;
3552 }
3553
3554 return buffer;
3555 }
3556
3557
3558 static int
3559 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3560 {
3561 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3562 }
3563
3564 static int
3565 default_watchpoint_addr_within_range (struct target_ops *target,
3566 CORE_ADDR addr,
3567 CORE_ADDR start, int length)
3568 {
3569 return addr >= start && addr < start + length;
3570 }
3571
3572 static struct gdbarch *
3573 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3574 {
3575 return target_gdbarch ();
3576 }
3577
3578 static int
3579 return_zero (void)
3580 {
3581 return 0;
3582 }
3583
3584 static int
3585 return_one (void)
3586 {
3587 return 1;
3588 }
3589
3590 static int
3591 return_minus_one (void)
3592 {
3593 return -1;
3594 }
3595
3596 /* Find a single runnable target in the stack and return it. If for
3597 some reason there is more than one, return NULL. */
3598
3599 struct target_ops *
3600 find_run_target (void)
3601 {
3602 struct target_ops **t;
3603 struct target_ops *runable = NULL;
3604 int count;
3605
3606 count = 0;
3607
3608 for (t = target_structs; t < target_structs + target_struct_size; ++t)
3609 {
3610 if ((*t)->to_can_run && target_can_run (*t))
3611 {
3612 runable = *t;
3613 ++count;
3614 }
3615 }
3616
3617 return (count == 1 ? runable : NULL);
3618 }
3619
3620 /*
3621 * Find the next target down the stack from the specified target.
3622 */
3623
3624 struct target_ops *
3625 find_target_beneath (struct target_ops *t)
3626 {
3627 return t->beneath;
3628 }
3629
3630 \f
3631 /* The inferior process has died. Long live the inferior! */
3632
3633 void
3634 generic_mourn_inferior (void)
3635 {
3636 ptid_t ptid;
3637
3638 ptid = inferior_ptid;
3639 inferior_ptid = null_ptid;
3640
3641 /* Mark breakpoints uninserted in case something tries to delete a
3642 breakpoint while we delete the inferior's threads (which would
3643 fail, since the inferior is long gone). */
3644 mark_breakpoints_out ();
3645
3646 if (!ptid_equal (ptid, null_ptid))
3647 {
3648 int pid = ptid_get_pid (ptid);
3649 exit_inferior (pid);
3650 }
3651
3652 /* Note this wipes step-resume breakpoints, so needs to be done
3653 after exit_inferior, which ends up referencing the step-resume
3654 breakpoints through clear_thread_inferior_resources. */
3655 breakpoint_init_inferior (inf_exited);
3656
3657 registers_changed ();
3658
3659 reopen_exec_file ();
3660 reinit_frame_cache ();
3661
3662 if (deprecated_detach_hook)
3663 deprecated_detach_hook ();
3664 }
3665 \f
3666 /* Convert a normal process ID to a string. Returns the string in a
3667 static buffer. */
3668
3669 char *
3670 normal_pid_to_str (ptid_t ptid)
3671 {
3672 static char buf[32];
3673
3674 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3675 return buf;
3676 }
3677
3678 static char *
3679 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3680 {
3681 return normal_pid_to_str (ptid);
3682 }
3683
3684 /* Error-catcher for target_find_memory_regions. */
3685 static int
3686 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3687 {
3688 error (_("Command not implemented for this target."));
3689 return 0;
3690 }
3691
3692 /* Error-catcher for target_make_corefile_notes. */
3693 static char *
3694 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3695 {
3696 error (_("Command not implemented for this target."));
3697 return NULL;
3698 }
3699
3700 /* Error-catcher for target_get_bookmark. */
3701 static gdb_byte *
3702 dummy_get_bookmark (char *ignore1, int ignore2)
3703 {
3704 tcomplain ();
3705 return NULL;
3706 }
3707
3708 /* Error-catcher for target_goto_bookmark. */
3709 static void
3710 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3711 {
3712 tcomplain ();
3713 }
3714
3715 /* Set up the handful of non-empty slots needed by the dummy target
3716 vector. */
3717
3718 static void
3719 init_dummy_target (void)
3720 {
3721 dummy_target.to_shortname = "None";
3722 dummy_target.to_longname = "None";
3723 dummy_target.to_doc = "";
3724 dummy_target.to_attach = find_default_attach;
3725 dummy_target.to_detach =
3726 (void (*)(struct target_ops *, char *, int))target_ignore;
3727 dummy_target.to_create_inferior = find_default_create_inferior;
3728 dummy_target.to_can_async_p = find_default_can_async_p;
3729 dummy_target.to_is_async_p = find_default_is_async_p;
3730 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3731 dummy_target.to_supports_disable_randomization
3732 = find_default_supports_disable_randomization;
3733 dummy_target.to_pid_to_str = dummy_pid_to_str;
3734 dummy_target.to_stratum = dummy_stratum;
3735 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3736 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3737 dummy_target.to_get_bookmark = dummy_get_bookmark;
3738 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3739 dummy_target.to_xfer_partial = default_xfer_partial;
3740 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3741 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3742 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3743 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3744 dummy_target.to_has_execution
3745 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3746 dummy_target.to_stopped_by_watchpoint = return_zero;
3747 dummy_target.to_stopped_data_address =
3748 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3749 dummy_target.to_magic = OPS_MAGIC;
3750 }
3751 \f
3752 static void
3753 debug_to_open (char *args, int from_tty)
3754 {
3755 debug_target.to_open (args, from_tty);
3756
3757 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3758 }
3759
3760 void
3761 target_close (struct target_ops *targ, int quitting)
3762 {
3763 if (targ->to_xclose != NULL)
3764 targ->to_xclose (targ, quitting);
3765 else if (targ->to_close != NULL)
3766 targ->to_close (quitting);
3767
3768 if (targetdebug)
3769 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
3770 }
3771
3772 void
3773 target_attach (char *args, int from_tty)
3774 {
3775 struct target_ops *t;
3776
3777 for (t = current_target.beneath; t != NULL; t = t->beneath)
3778 {
3779 if (t->to_attach != NULL)
3780 {
3781 t->to_attach (t, args, from_tty);
3782 if (targetdebug)
3783 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3784 args, from_tty);
3785 return;
3786 }
3787 }
3788
3789 internal_error (__FILE__, __LINE__,
3790 _("could not find a target to attach"));
3791 }
3792
3793 int
3794 target_thread_alive (ptid_t ptid)
3795 {
3796 struct target_ops *t;
3797
3798 for (t = current_target.beneath; t != NULL; t = t->beneath)
3799 {
3800 if (t->to_thread_alive != NULL)
3801 {
3802 int retval;
3803
3804 retval = t->to_thread_alive (t, ptid);
3805 if (targetdebug)
3806 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3807 PIDGET (ptid), retval);
3808
3809 return retval;
3810 }
3811 }
3812
3813 return 0;
3814 }
3815
3816 void
3817 target_find_new_threads (void)
3818 {
3819 struct target_ops *t;
3820
3821 for (t = current_target.beneath; t != NULL; t = t->beneath)
3822 {
3823 if (t->to_find_new_threads != NULL)
3824 {
3825 t->to_find_new_threads (t);
3826 if (targetdebug)
3827 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3828
3829 return;
3830 }
3831 }
3832 }
3833
3834 void
3835 target_stop (ptid_t ptid)
3836 {
3837 if (!may_stop)
3838 {
3839 warning (_("May not interrupt or stop the target, ignoring attempt"));
3840 return;
3841 }
3842
3843 (*current_target.to_stop) (ptid);
3844 }
3845
3846 static void
3847 debug_to_post_attach (int pid)
3848 {
3849 debug_target.to_post_attach (pid);
3850
3851 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3852 }
3853
3854 /* Return a pretty printed form of target_waitstatus.
3855 Space for the result is malloc'd, caller must free. */
3856
3857 char *
3858 target_waitstatus_to_string (const struct target_waitstatus *ws)
3859 {
3860 const char *kind_str = "status->kind = ";
3861
3862 switch (ws->kind)
3863 {
3864 case TARGET_WAITKIND_EXITED:
3865 return xstrprintf ("%sexited, status = %d",
3866 kind_str, ws->value.integer);
3867 case TARGET_WAITKIND_STOPPED:
3868 return xstrprintf ("%sstopped, signal = %s",
3869 kind_str, gdb_signal_to_name (ws->value.sig));
3870 case TARGET_WAITKIND_SIGNALLED:
3871 return xstrprintf ("%ssignalled, signal = %s",
3872 kind_str, gdb_signal_to_name (ws->value.sig));
3873 case TARGET_WAITKIND_LOADED:
3874 return xstrprintf ("%sloaded", kind_str);
3875 case TARGET_WAITKIND_FORKED:
3876 return xstrprintf ("%sforked", kind_str);
3877 case TARGET_WAITKIND_VFORKED:
3878 return xstrprintf ("%svforked", kind_str);
3879 case TARGET_WAITKIND_EXECD:
3880 return xstrprintf ("%sexecd", kind_str);
3881 case TARGET_WAITKIND_VFORK_DONE:
3882 return xstrprintf ("%svfork-done", kind_str);
3883 case TARGET_WAITKIND_SYSCALL_ENTRY:
3884 return xstrprintf ("%sentered syscall", kind_str);
3885 case TARGET_WAITKIND_SYSCALL_RETURN:
3886 return xstrprintf ("%sexited syscall", kind_str);
3887 case TARGET_WAITKIND_SPURIOUS:
3888 return xstrprintf ("%sspurious", kind_str);
3889 case TARGET_WAITKIND_IGNORE:
3890 return xstrprintf ("%signore", kind_str);
3891 case TARGET_WAITKIND_NO_HISTORY:
3892 return xstrprintf ("%sno-history", kind_str);
3893 case TARGET_WAITKIND_NO_RESUMED:
3894 return xstrprintf ("%sno-resumed", kind_str);
3895 default:
3896 return xstrprintf ("%sunknown???", kind_str);
3897 }
3898 }
3899
3900 /* Concatenate ELEM to LIST, a comma separate list, and return the
3901 result. The LIST incoming argument is released. */
3902
3903 static char *
3904 str_comma_list_concat_elem (char *list, const char *elem)
3905 {
3906 if (list == NULL)
3907 return xstrdup (elem);
3908 else
3909 return reconcat (list, list, ", ", elem, (char *) NULL);
3910 }
3911
3912 /* Helper for target_options_to_string. If OPT is present in
3913 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3914 Returns the new resulting string. OPT is removed from
3915 TARGET_OPTIONS. */
3916
3917 static char *
3918 do_option (int *target_options, char *ret,
3919 int opt, char *opt_str)
3920 {
3921 if ((*target_options & opt) != 0)
3922 {
3923 ret = str_comma_list_concat_elem (ret, opt_str);
3924 *target_options &= ~opt;
3925 }
3926
3927 return ret;
3928 }
3929
3930 char *
3931 target_options_to_string (int target_options)
3932 {
3933 char *ret = NULL;
3934
3935 #define DO_TARG_OPTION(OPT) \
3936 ret = do_option (&target_options, ret, OPT, #OPT)
3937
3938 DO_TARG_OPTION (TARGET_WNOHANG);
3939
3940 if (target_options != 0)
3941 ret = str_comma_list_concat_elem (ret, "unknown???");
3942
3943 if (ret == NULL)
3944 ret = xstrdup ("");
3945 return ret;
3946 }
3947
3948 static void
3949 debug_print_register (const char * func,
3950 struct regcache *regcache, int regno)
3951 {
3952 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3953
3954 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3955 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3956 && gdbarch_register_name (gdbarch, regno) != NULL
3957 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3958 fprintf_unfiltered (gdb_stdlog, "(%s)",
3959 gdbarch_register_name (gdbarch, regno));
3960 else
3961 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3962 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3963 {
3964 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3965 int i, size = register_size (gdbarch, regno);
3966 gdb_byte buf[MAX_REGISTER_SIZE];
3967
3968 regcache_raw_collect (regcache, regno, buf);
3969 fprintf_unfiltered (gdb_stdlog, " = ");
3970 for (i = 0; i < size; i++)
3971 {
3972 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3973 }
3974 if (size <= sizeof (LONGEST))
3975 {
3976 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3977
3978 fprintf_unfiltered (gdb_stdlog, " %s %s",
3979 core_addr_to_string_nz (val), plongest (val));
3980 }
3981 }
3982 fprintf_unfiltered (gdb_stdlog, "\n");
3983 }
3984
3985 void
3986 target_fetch_registers (struct regcache *regcache, int regno)
3987 {
3988 struct target_ops *t;
3989
3990 for (t = current_target.beneath; t != NULL; t = t->beneath)
3991 {
3992 if (t->to_fetch_registers != NULL)
3993 {
3994 t->to_fetch_registers (t, regcache, regno);
3995 if (targetdebug)
3996 debug_print_register ("target_fetch_registers", regcache, regno);
3997 return;
3998 }
3999 }
4000 }
4001
4002 void
4003 target_store_registers (struct regcache *regcache, int regno)
4004 {
4005 struct target_ops *t;
4006
4007 if (!may_write_registers)
4008 error (_("Writing to registers is not allowed (regno %d)"), regno);
4009
4010 for (t = current_target.beneath; t != NULL; t = t->beneath)
4011 {
4012 if (t->to_store_registers != NULL)
4013 {
4014 t->to_store_registers (t, regcache, regno);
4015 if (targetdebug)
4016 {
4017 debug_print_register ("target_store_registers", regcache, regno);
4018 }
4019 return;
4020 }
4021 }
4022
4023 noprocess ();
4024 }
4025
4026 int
4027 target_core_of_thread (ptid_t ptid)
4028 {
4029 struct target_ops *t;
4030
4031 for (t = current_target.beneath; t != NULL; t = t->beneath)
4032 {
4033 if (t->to_core_of_thread != NULL)
4034 {
4035 int retval = t->to_core_of_thread (t, ptid);
4036
4037 if (targetdebug)
4038 fprintf_unfiltered (gdb_stdlog,
4039 "target_core_of_thread (%d) = %d\n",
4040 PIDGET (ptid), retval);
4041 return retval;
4042 }
4043 }
4044
4045 return -1;
4046 }
4047
4048 int
4049 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
4050 {
4051 struct target_ops *t;
4052
4053 for (t = current_target.beneath; t != NULL; t = t->beneath)
4054 {
4055 if (t->to_verify_memory != NULL)
4056 {
4057 int retval = t->to_verify_memory (t, data, memaddr, size);
4058
4059 if (targetdebug)
4060 fprintf_unfiltered (gdb_stdlog,
4061 "target_verify_memory (%s, %s) = %d\n",
4062 paddress (target_gdbarch (), memaddr),
4063 pulongest (size),
4064 retval);
4065 return retval;
4066 }
4067 }
4068
4069 tcomplain ();
4070 }
4071
4072 /* The documentation for this function is in its prototype declaration in
4073 target.h. */
4074
4075 int
4076 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4077 {
4078 struct target_ops *t;
4079
4080 for (t = current_target.beneath; t != NULL; t = t->beneath)
4081 if (t->to_insert_mask_watchpoint != NULL)
4082 {
4083 int ret;
4084
4085 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
4086
4087 if (targetdebug)
4088 fprintf_unfiltered (gdb_stdlog, "\
4089 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
4090 core_addr_to_string (addr),
4091 core_addr_to_string (mask), rw, ret);
4092
4093 return ret;
4094 }
4095
4096 return 1;
4097 }
4098
4099 /* The documentation for this function is in its prototype declaration in
4100 target.h. */
4101
4102 int
4103 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4104 {
4105 struct target_ops *t;
4106
4107 for (t = current_target.beneath; t != NULL; t = t->beneath)
4108 if (t->to_remove_mask_watchpoint != NULL)
4109 {
4110 int ret;
4111
4112 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
4113
4114 if (targetdebug)
4115 fprintf_unfiltered (gdb_stdlog, "\
4116 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
4117 core_addr_to_string (addr),
4118 core_addr_to_string (mask), rw, ret);
4119
4120 return ret;
4121 }
4122
4123 return 1;
4124 }
4125
4126 /* The documentation for this function is in its prototype declaration
4127 in target.h. */
4128
4129 int
4130 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4131 {
4132 struct target_ops *t;
4133
4134 for (t = current_target.beneath; t != NULL; t = t->beneath)
4135 if (t->to_masked_watch_num_registers != NULL)
4136 return t->to_masked_watch_num_registers (t, addr, mask);
4137
4138 return -1;
4139 }
4140
4141 /* The documentation for this function is in its prototype declaration
4142 in target.h. */
4143
4144 int
4145 target_ranged_break_num_registers (void)
4146 {
4147 struct target_ops *t;
4148
4149 for (t = current_target.beneath; t != NULL; t = t->beneath)
4150 if (t->to_ranged_break_num_registers != NULL)
4151 return t->to_ranged_break_num_registers (t);
4152
4153 return -1;
4154 }
4155
4156 /* See target.h. */
4157
4158 int
4159 target_supports_btrace (void)
4160 {
4161 struct target_ops *t;
4162
4163 for (t = current_target.beneath; t != NULL; t = t->beneath)
4164 if (t->to_supports_btrace != NULL)
4165 return t->to_supports_btrace ();
4166
4167 return 0;
4168 }
4169
4170 /* See target.h. */
4171
4172 struct btrace_target_info *
4173 target_enable_btrace (ptid_t ptid)
4174 {
4175 struct target_ops *t;
4176
4177 for (t = current_target.beneath; t != NULL; t = t->beneath)
4178 if (t->to_enable_btrace != NULL)
4179 return t->to_enable_btrace (ptid);
4180
4181 tcomplain ();
4182 return NULL;
4183 }
4184
4185 /* See target.h. */
4186
4187 void
4188 target_disable_btrace (struct btrace_target_info *btinfo)
4189 {
4190 struct target_ops *t;
4191
4192 for (t = current_target.beneath; t != NULL; t = t->beneath)
4193 if (t->to_disable_btrace != NULL)
4194 return t->to_disable_btrace (btinfo);
4195
4196 tcomplain ();
4197 }
4198
4199 /* See target.h. */
4200
4201 void
4202 target_teardown_btrace (struct btrace_target_info *btinfo)
4203 {
4204 struct target_ops *t;
4205
4206 for (t = current_target.beneath; t != NULL; t = t->beneath)
4207 if (t->to_teardown_btrace != NULL)
4208 return t->to_teardown_btrace (btinfo);
4209
4210 tcomplain ();
4211 }
4212
4213 /* See target.h. */
4214
4215 VEC (btrace_block_s) *
4216 target_read_btrace (struct btrace_target_info *btinfo,
4217 enum btrace_read_type type)
4218 {
4219 struct target_ops *t;
4220
4221 for (t = current_target.beneath; t != NULL; t = t->beneath)
4222 if (t->to_read_btrace != NULL)
4223 return t->to_read_btrace (btinfo, type);
4224
4225 tcomplain ();
4226 return NULL;
4227 }
4228
4229 static void
4230 debug_to_prepare_to_store (struct regcache *regcache)
4231 {
4232 debug_target.to_prepare_to_store (regcache);
4233
4234 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4235 }
4236
4237 static int
4238 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4239 int write, struct mem_attrib *attrib,
4240 struct target_ops *target)
4241 {
4242 int retval;
4243
4244 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4245 attrib, target);
4246
4247 fprintf_unfiltered (gdb_stdlog,
4248 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4249 paddress (target_gdbarch (), memaddr), len,
4250 write ? "write" : "read", retval);
4251
4252 if (retval > 0)
4253 {
4254 int i;
4255
4256 fputs_unfiltered (", bytes =", gdb_stdlog);
4257 for (i = 0; i < retval; i++)
4258 {
4259 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4260 {
4261 if (targetdebug < 2 && i > 0)
4262 {
4263 fprintf_unfiltered (gdb_stdlog, " ...");
4264 break;
4265 }
4266 fprintf_unfiltered (gdb_stdlog, "\n");
4267 }
4268
4269 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4270 }
4271 }
4272
4273 fputc_unfiltered ('\n', gdb_stdlog);
4274
4275 return retval;
4276 }
4277
4278 static void
4279 debug_to_files_info (struct target_ops *target)
4280 {
4281 debug_target.to_files_info (target);
4282
4283 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4284 }
4285
4286 static int
4287 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
4288 struct bp_target_info *bp_tgt)
4289 {
4290 int retval;
4291
4292 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
4293
4294 fprintf_unfiltered (gdb_stdlog,
4295 "target_insert_breakpoint (%s, xxx) = %ld\n",
4296 core_addr_to_string (bp_tgt->placed_address),
4297 (unsigned long) retval);
4298 return retval;
4299 }
4300
4301 static int
4302 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
4303 struct bp_target_info *bp_tgt)
4304 {
4305 int retval;
4306
4307 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
4308
4309 fprintf_unfiltered (gdb_stdlog,
4310 "target_remove_breakpoint (%s, xxx) = %ld\n",
4311 core_addr_to_string (bp_tgt->placed_address),
4312 (unsigned long) retval);
4313 return retval;
4314 }
4315
4316 static int
4317 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
4318 {
4319 int retval;
4320
4321 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
4322
4323 fprintf_unfiltered (gdb_stdlog,
4324 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4325 (unsigned long) type,
4326 (unsigned long) cnt,
4327 (unsigned long) from_tty,
4328 (unsigned long) retval);
4329 return retval;
4330 }
4331
4332 static int
4333 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
4334 {
4335 CORE_ADDR retval;
4336
4337 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
4338
4339 fprintf_unfiltered (gdb_stdlog,
4340 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4341 core_addr_to_string (addr), (unsigned long) len,
4342 core_addr_to_string (retval));
4343 return retval;
4344 }
4345
4346 static int
4347 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
4348 struct expression *cond)
4349 {
4350 int retval;
4351
4352 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
4353 rw, cond);
4354
4355 fprintf_unfiltered (gdb_stdlog,
4356 "target_can_accel_watchpoint_condition "
4357 "(%s, %d, %d, %s) = %ld\n",
4358 core_addr_to_string (addr), len, rw,
4359 host_address_to_string (cond), (unsigned long) retval);
4360 return retval;
4361 }
4362
4363 static int
4364 debug_to_stopped_by_watchpoint (void)
4365 {
4366 int retval;
4367
4368 retval = debug_target.to_stopped_by_watchpoint ();
4369
4370 fprintf_unfiltered (gdb_stdlog,
4371 "target_stopped_by_watchpoint () = %ld\n",
4372 (unsigned long) retval);
4373 return retval;
4374 }
4375
4376 static int
4377 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4378 {
4379 int retval;
4380
4381 retval = debug_target.to_stopped_data_address (target, addr);
4382
4383 fprintf_unfiltered (gdb_stdlog,
4384 "target_stopped_data_address ([%s]) = %ld\n",
4385 core_addr_to_string (*addr),
4386 (unsigned long)retval);
4387 return retval;
4388 }
4389
4390 static int
4391 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4392 CORE_ADDR addr,
4393 CORE_ADDR start, int length)
4394 {
4395 int retval;
4396
4397 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4398 start, length);
4399
4400 fprintf_filtered (gdb_stdlog,
4401 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4402 core_addr_to_string (addr), core_addr_to_string (start),
4403 length, retval);
4404 return retval;
4405 }
4406
4407 static int
4408 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
4409 struct bp_target_info *bp_tgt)
4410 {
4411 int retval;
4412
4413 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
4414
4415 fprintf_unfiltered (gdb_stdlog,
4416 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4417 core_addr_to_string (bp_tgt->placed_address),
4418 (unsigned long) retval);
4419 return retval;
4420 }
4421
4422 static int
4423 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
4424 struct bp_target_info *bp_tgt)
4425 {
4426 int retval;
4427
4428 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
4429
4430 fprintf_unfiltered (gdb_stdlog,
4431 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4432 core_addr_to_string (bp_tgt->placed_address),
4433 (unsigned long) retval);
4434 return retval;
4435 }
4436
4437 static int
4438 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
4439 struct expression *cond)
4440 {
4441 int retval;
4442
4443 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
4444
4445 fprintf_unfiltered (gdb_stdlog,
4446 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4447 core_addr_to_string (addr), len, type,
4448 host_address_to_string (cond), (unsigned long) retval);
4449 return retval;
4450 }
4451
4452 static int
4453 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
4454 struct expression *cond)
4455 {
4456 int retval;
4457
4458 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
4459
4460 fprintf_unfiltered (gdb_stdlog,
4461 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4462 core_addr_to_string (addr), len, type,
4463 host_address_to_string (cond), (unsigned long) retval);
4464 return retval;
4465 }
4466
4467 static void
4468 debug_to_terminal_init (void)
4469 {
4470 debug_target.to_terminal_init ();
4471
4472 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4473 }
4474
4475 static void
4476 debug_to_terminal_inferior (void)
4477 {
4478 debug_target.to_terminal_inferior ();
4479
4480 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4481 }
4482
4483 static void
4484 debug_to_terminal_ours_for_output (void)
4485 {
4486 debug_target.to_terminal_ours_for_output ();
4487
4488 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4489 }
4490
4491 static void
4492 debug_to_terminal_ours (void)
4493 {
4494 debug_target.to_terminal_ours ();
4495
4496 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4497 }
4498
4499 static void
4500 debug_to_terminal_save_ours (void)
4501 {
4502 debug_target.to_terminal_save_ours ();
4503
4504 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4505 }
4506
4507 static void
4508 debug_to_terminal_info (char *arg, int from_tty)
4509 {
4510 debug_target.to_terminal_info (arg, from_tty);
4511
4512 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4513 from_tty);
4514 }
4515
4516 static void
4517 debug_to_load (char *args, int from_tty)
4518 {
4519 debug_target.to_load (args, from_tty);
4520
4521 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4522 }
4523
4524 static void
4525 debug_to_post_startup_inferior (ptid_t ptid)
4526 {
4527 debug_target.to_post_startup_inferior (ptid);
4528
4529 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4530 PIDGET (ptid));
4531 }
4532
4533 static int
4534 debug_to_insert_fork_catchpoint (int pid)
4535 {
4536 int retval;
4537
4538 retval = debug_target.to_insert_fork_catchpoint (pid);
4539
4540 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4541 pid, retval);
4542
4543 return retval;
4544 }
4545
4546 static int
4547 debug_to_remove_fork_catchpoint (int pid)
4548 {
4549 int retval;
4550
4551 retval = debug_target.to_remove_fork_catchpoint (pid);
4552
4553 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4554 pid, retval);
4555
4556 return retval;
4557 }
4558
4559 static int
4560 debug_to_insert_vfork_catchpoint (int pid)
4561 {
4562 int retval;
4563
4564 retval = debug_target.to_insert_vfork_catchpoint (pid);
4565
4566 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4567 pid, retval);
4568
4569 return retval;
4570 }
4571
4572 static int
4573 debug_to_remove_vfork_catchpoint (int pid)
4574 {
4575 int retval;
4576
4577 retval = debug_target.to_remove_vfork_catchpoint (pid);
4578
4579 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4580 pid, retval);
4581
4582 return retval;
4583 }
4584
4585 static int
4586 debug_to_insert_exec_catchpoint (int pid)
4587 {
4588 int retval;
4589
4590 retval = debug_target.to_insert_exec_catchpoint (pid);
4591
4592 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4593 pid, retval);
4594
4595 return retval;
4596 }
4597
4598 static int
4599 debug_to_remove_exec_catchpoint (int pid)
4600 {
4601 int retval;
4602
4603 retval = debug_target.to_remove_exec_catchpoint (pid);
4604
4605 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4606 pid, retval);
4607
4608 return retval;
4609 }
4610
4611 static int
4612 debug_to_has_exited (int pid, int wait_status, int *exit_status)
4613 {
4614 int has_exited;
4615
4616 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
4617
4618 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4619 pid, wait_status, *exit_status, has_exited);
4620
4621 return has_exited;
4622 }
4623
4624 static int
4625 debug_to_can_run (void)
4626 {
4627 int retval;
4628
4629 retval = debug_target.to_can_run ();
4630
4631 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4632
4633 return retval;
4634 }
4635
4636 static struct gdbarch *
4637 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4638 {
4639 struct gdbarch *retval;
4640
4641 retval = debug_target.to_thread_architecture (ops, ptid);
4642
4643 fprintf_unfiltered (gdb_stdlog,
4644 "target_thread_architecture (%s) = %s [%s]\n",
4645 target_pid_to_str (ptid),
4646 host_address_to_string (retval),
4647 gdbarch_bfd_arch_info (retval)->printable_name);
4648 return retval;
4649 }
4650
4651 static void
4652 debug_to_stop (ptid_t ptid)
4653 {
4654 debug_target.to_stop (ptid);
4655
4656 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4657 target_pid_to_str (ptid));
4658 }
4659
4660 static void
4661 debug_to_rcmd (char *command,
4662 struct ui_file *outbuf)
4663 {
4664 debug_target.to_rcmd (command, outbuf);
4665 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4666 }
4667
4668 static char *
4669 debug_to_pid_to_exec_file (int pid)
4670 {
4671 char *exec_file;
4672
4673 exec_file = debug_target.to_pid_to_exec_file (pid);
4674
4675 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4676 pid, exec_file);
4677
4678 return exec_file;
4679 }
4680
4681 static void
4682 setup_target_debug (void)
4683 {
4684 memcpy (&debug_target, &current_target, sizeof debug_target);
4685
4686 current_target.to_open = debug_to_open;
4687 current_target.to_post_attach = debug_to_post_attach;
4688 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4689 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4690 current_target.to_files_info = debug_to_files_info;
4691 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4692 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4693 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4694 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4695 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4696 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4697 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4698 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4699 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4700 current_target.to_watchpoint_addr_within_range
4701 = debug_to_watchpoint_addr_within_range;
4702 current_target.to_region_ok_for_hw_watchpoint
4703 = debug_to_region_ok_for_hw_watchpoint;
4704 current_target.to_can_accel_watchpoint_condition
4705 = debug_to_can_accel_watchpoint_condition;
4706 current_target.to_terminal_init = debug_to_terminal_init;
4707 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4708 current_target.to_terminal_ours_for_output
4709 = debug_to_terminal_ours_for_output;
4710 current_target.to_terminal_ours = debug_to_terminal_ours;
4711 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4712 current_target.to_terminal_info = debug_to_terminal_info;
4713 current_target.to_load = debug_to_load;
4714 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4715 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4716 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4717 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4718 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4719 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4720 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4721 current_target.to_has_exited = debug_to_has_exited;
4722 current_target.to_can_run = debug_to_can_run;
4723 current_target.to_stop = debug_to_stop;
4724 current_target.to_rcmd = debug_to_rcmd;
4725 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4726 current_target.to_thread_architecture = debug_to_thread_architecture;
4727 }
4728 \f
4729
4730 static char targ_desc[] =
4731 "Names of targets and files being debugged.\nShows the entire \
4732 stack of targets currently in use (including the exec-file,\n\
4733 core-file, and process, if any), as well as the symbol file name.";
4734
4735 static void
4736 do_monitor_command (char *cmd,
4737 int from_tty)
4738 {
4739 if ((current_target.to_rcmd
4740 == (void (*) (char *, struct ui_file *)) tcomplain)
4741 || (current_target.to_rcmd == debug_to_rcmd
4742 && (debug_target.to_rcmd
4743 == (void (*) (char *, struct ui_file *)) tcomplain)))
4744 error (_("\"monitor\" command not supported by this target."));
4745 target_rcmd (cmd, gdb_stdtarg);
4746 }
4747
4748 /* Print the name of each layers of our target stack. */
4749
4750 static void
4751 maintenance_print_target_stack (char *cmd, int from_tty)
4752 {
4753 struct target_ops *t;
4754
4755 printf_filtered (_("The current target stack is:\n"));
4756
4757 for (t = target_stack; t != NULL; t = t->beneath)
4758 {
4759 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4760 }
4761 }
4762
4763 /* Controls if async mode is permitted. */
4764 int target_async_permitted = 0;
4765
4766 /* The set command writes to this variable. If the inferior is
4767 executing, linux_nat_async_permitted is *not* updated. */
4768 static int target_async_permitted_1 = 0;
4769
4770 static void
4771 set_target_async_command (char *args, int from_tty,
4772 struct cmd_list_element *c)
4773 {
4774 if (have_live_inferiors ())
4775 {
4776 target_async_permitted_1 = target_async_permitted;
4777 error (_("Cannot change this setting while the inferior is running."));
4778 }
4779
4780 target_async_permitted = target_async_permitted_1;
4781 }
4782
4783 static void
4784 show_target_async_command (struct ui_file *file, int from_tty,
4785 struct cmd_list_element *c,
4786 const char *value)
4787 {
4788 fprintf_filtered (file,
4789 _("Controlling the inferior in "
4790 "asynchronous mode is %s.\n"), value);
4791 }
4792
4793 /* Temporary copies of permission settings. */
4794
4795 static int may_write_registers_1 = 1;
4796 static int may_write_memory_1 = 1;
4797 static int may_insert_breakpoints_1 = 1;
4798 static int may_insert_tracepoints_1 = 1;
4799 static int may_insert_fast_tracepoints_1 = 1;
4800 static int may_stop_1 = 1;
4801
4802 /* Make the user-set values match the real values again. */
4803
4804 void
4805 update_target_permissions (void)
4806 {
4807 may_write_registers_1 = may_write_registers;
4808 may_write_memory_1 = may_write_memory;
4809 may_insert_breakpoints_1 = may_insert_breakpoints;
4810 may_insert_tracepoints_1 = may_insert_tracepoints;
4811 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4812 may_stop_1 = may_stop;
4813 }
4814
4815 /* The one function handles (most of) the permission flags in the same
4816 way. */
4817
4818 static void
4819 set_target_permissions (char *args, int from_tty,
4820 struct cmd_list_element *c)
4821 {
4822 if (target_has_execution)
4823 {
4824 update_target_permissions ();
4825 error (_("Cannot change this setting while the inferior is running."));
4826 }
4827
4828 /* Make the real values match the user-changed values. */
4829 may_write_registers = may_write_registers_1;
4830 may_insert_breakpoints = may_insert_breakpoints_1;
4831 may_insert_tracepoints = may_insert_tracepoints_1;
4832 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4833 may_stop = may_stop_1;
4834 update_observer_mode ();
4835 }
4836
4837 /* Set memory write permission independently of observer mode. */
4838
4839 static void
4840 set_write_memory_permission (char *args, int from_tty,
4841 struct cmd_list_element *c)
4842 {
4843 /* Make the real values match the user-changed values. */
4844 may_write_memory = may_write_memory_1;
4845 update_observer_mode ();
4846 }
4847
4848
4849 void
4850 initialize_targets (void)
4851 {
4852 init_dummy_target ();
4853 push_target (&dummy_target);
4854
4855 add_info ("target", target_info, targ_desc);
4856 add_info ("files", target_info, targ_desc);
4857
4858 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4859 Set target debugging."), _("\
4860 Show target debugging."), _("\
4861 When non-zero, target debugging is enabled. Higher numbers are more\n\
4862 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4863 command."),
4864 NULL,
4865 show_targetdebug,
4866 &setdebuglist, &showdebuglist);
4867
4868 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4869 &trust_readonly, _("\
4870 Set mode for reading from readonly sections."), _("\
4871 Show mode for reading from readonly sections."), _("\
4872 When this mode is on, memory reads from readonly sections (such as .text)\n\
4873 will be read from the object file instead of from the target. This will\n\
4874 result in significant performance improvement for remote targets."),
4875 NULL,
4876 show_trust_readonly,
4877 &setlist, &showlist);
4878
4879 add_com ("monitor", class_obscure, do_monitor_command,
4880 _("Send a command to the remote monitor (remote targets only)."));
4881
4882 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4883 _("Print the name of each layer of the internal target stack."),
4884 &maintenanceprintlist);
4885
4886 add_setshow_boolean_cmd ("target-async", no_class,
4887 &target_async_permitted_1, _("\
4888 Set whether gdb controls the inferior in asynchronous mode."), _("\
4889 Show whether gdb controls the inferior in asynchronous mode."), _("\
4890 Tells gdb whether to control the inferior in asynchronous mode."),
4891 set_target_async_command,
4892 show_target_async_command,
4893 &setlist,
4894 &showlist);
4895
4896 add_setshow_boolean_cmd ("stack-cache", class_support,
4897 &stack_cache_enabled_p_1, _("\
4898 Set cache use for stack access."), _("\
4899 Show cache use for stack access."), _("\
4900 When on, use the data cache for all stack access, regardless of any\n\
4901 configured memory regions. This improves remote performance significantly.\n\
4902 By default, caching for stack access is on."),
4903 set_stack_cache_enabled_p,
4904 show_stack_cache_enabled_p,
4905 &setlist, &showlist);
4906
4907 add_setshow_boolean_cmd ("may-write-registers", class_support,
4908 &may_write_registers_1, _("\
4909 Set permission to write into registers."), _("\
4910 Show permission to write into registers."), _("\
4911 When this permission is on, GDB may write into the target's registers.\n\
4912 Otherwise, any sort of write attempt will result in an error."),
4913 set_target_permissions, NULL,
4914 &setlist, &showlist);
4915
4916 add_setshow_boolean_cmd ("may-write-memory", class_support,
4917 &may_write_memory_1, _("\
4918 Set permission to write into target memory."), _("\
4919 Show permission to write into target memory."), _("\
4920 When this permission is on, GDB may write into the target's memory.\n\
4921 Otherwise, any sort of write attempt will result in an error."),
4922 set_write_memory_permission, NULL,
4923 &setlist, &showlist);
4924
4925 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4926 &may_insert_breakpoints_1, _("\
4927 Set permission to insert breakpoints in the target."), _("\
4928 Show permission to insert breakpoints in the target."), _("\
4929 When this permission is on, GDB may insert breakpoints in the program.\n\
4930 Otherwise, any sort of insertion attempt will result in an error."),
4931 set_target_permissions, NULL,
4932 &setlist, &showlist);
4933
4934 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4935 &may_insert_tracepoints_1, _("\
4936 Set permission to insert tracepoints in the target."), _("\
4937 Show permission to insert tracepoints in the target."), _("\
4938 When this permission is on, GDB may insert tracepoints in the program.\n\
4939 Otherwise, any sort of insertion attempt will result in an error."),
4940 set_target_permissions, NULL,
4941 &setlist, &showlist);
4942
4943 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4944 &may_insert_fast_tracepoints_1, _("\
4945 Set permission to insert fast tracepoints in the target."), _("\
4946 Show permission to insert fast tracepoints in the target."), _("\
4947 When this permission is on, GDB may insert fast tracepoints.\n\
4948 Otherwise, any sort of insertion attempt will result in an error."),
4949 set_target_permissions, NULL,
4950 &setlist, &showlist);
4951
4952 add_setshow_boolean_cmd ("may-interrupt", class_support,
4953 &may_stop_1, _("\
4954 Set permission to interrupt or signal the target."), _("\
4955 Show permission to interrupt or signal the target."), _("\
4956 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4957 Otherwise, any attempt to interrupt or stop will be ignored."),
4958 set_target_permissions, NULL,
4959 &setlist, &showlist);
4960
4961
4962 target_dcache = dcache_init ();
4963 }
This page took 0.183728 seconds and 4 git commands to generate.