*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44 #include "exec.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static void tcomplain (void) ATTRIBUTE_NORETURN;
58
59 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
60
61 static int return_zero (void);
62
63 static int return_one (void);
64
65 static int return_minus_one (void);
66
67 void target_ignore (void);
68
69 static void target_command (char *, int);
70
71 static struct target_ops *find_default_run_target (char *);
72
73 static LONGEST default_xfer_partial (struct target_ops *ops,
74 enum target_object object,
75 const char *annex, gdb_byte *readbuf,
76 const gdb_byte *writebuf,
77 ULONGEST offset, LONGEST len);
78
79 static LONGEST current_xfer_partial (struct target_ops *ops,
80 enum target_object object,
81 const char *annex, gdb_byte *readbuf,
82 const gdb_byte *writebuf,
83 ULONGEST offset, LONGEST len);
84
85 static LONGEST target_xfer_partial (struct target_ops *ops,
86 enum target_object object,
87 const char *annex,
88 void *readbuf, const void *writebuf,
89 ULONGEST offset, LONGEST len);
90
91 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
92 ptid_t ptid);
93
94 static void init_dummy_target (void);
95
96 static struct target_ops debug_target;
97
98 static void debug_to_open (char *, int);
99
100 static void debug_to_prepare_to_store (struct regcache *);
101
102 static void debug_to_files_info (struct target_ops *);
103
104 static int debug_to_insert_breakpoint (struct gdbarch *,
105 struct bp_target_info *);
106
107 static int debug_to_remove_breakpoint (struct gdbarch *,
108 struct bp_target_info *);
109
110 static int debug_to_can_use_hw_breakpoint (int, int, int);
111
112 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
113 struct bp_target_info *);
114
115 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
116 struct bp_target_info *);
117
118 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
119 struct expression *);
120
121 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
122 struct expression *);
123
124 static int debug_to_stopped_by_watchpoint (void);
125
126 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
127
128 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
129 CORE_ADDR, CORE_ADDR, int);
130
131 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
132
133 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
134 struct expression *);
135
136 static void debug_to_terminal_init (void);
137
138 static void debug_to_terminal_inferior (void);
139
140 static void debug_to_terminal_ours_for_output (void);
141
142 static void debug_to_terminal_save_ours (void);
143
144 static void debug_to_terminal_ours (void);
145
146 static void debug_to_terminal_info (char *, int);
147
148 static void debug_to_load (char *, int);
149
150 static int debug_to_can_run (void);
151
152 static void debug_to_stop (ptid_t);
153
154 /* Pointer to array of target architecture structures; the size of the
155 array; the current index into the array; the allocated size of the
156 array. */
157 struct target_ops **target_structs;
158 unsigned target_struct_size;
159 unsigned target_struct_index;
160 unsigned target_struct_allocsize;
161 #define DEFAULT_ALLOCSIZE 10
162
163 /* The initial current target, so that there is always a semi-valid
164 current target. */
165
166 static struct target_ops dummy_target;
167
168 /* Top of target stack. */
169
170 static struct target_ops *target_stack;
171
172 /* The target structure we are currently using to talk to a process
173 or file or whatever "inferior" we have. */
174
175 struct target_ops current_target;
176
177 /* Command list for target. */
178
179 static struct cmd_list_element *targetlist = NULL;
180
181 /* Nonzero if we should trust readonly sections from the
182 executable when reading memory. */
183
184 static int trust_readonly = 0;
185
186 /* Nonzero if we should show true memory content including
187 memory breakpoint inserted by gdb. */
188
189 static int show_memory_breakpoints = 0;
190
191 /* These globals control whether GDB attempts to perform these
192 operations; they are useful for targets that need to prevent
193 inadvertant disruption, such as in non-stop mode. */
194
195 int may_write_registers = 1;
196
197 int may_write_memory = 1;
198
199 int may_insert_breakpoints = 1;
200
201 int may_insert_tracepoints = 1;
202
203 int may_insert_fast_tracepoints = 1;
204
205 int may_stop = 1;
206
207 /* Non-zero if we want to see trace of target level stuff. */
208
209 static int targetdebug = 0;
210 static void
211 show_targetdebug (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
215 }
216
217 static void setup_target_debug (void);
218
219 /* The option sets this. */
220 static int stack_cache_enabled_p_1 = 1;
221 /* And set_stack_cache_enabled_p updates this.
222 The reason for the separation is so that we don't flush the cache for
223 on->on transitions. */
224 static int stack_cache_enabled_p = 1;
225
226 /* This is called *after* the stack-cache has been set.
227 Flush the cache for off->on and on->off transitions.
228 There's no real need to flush the cache for on->off transitions,
229 except cleanliness. */
230
231 static void
232 set_stack_cache_enabled_p (char *args, int from_tty,
233 struct cmd_list_element *c)
234 {
235 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
236 target_dcache_invalidate ();
237
238 stack_cache_enabled_p = stack_cache_enabled_p_1;
239 }
240
241 static void
242 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244 {
245 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
246 }
247
248 /* Cache of memory operations, to speed up remote access. */
249 static DCACHE *target_dcache;
250
251 /* Invalidate the target dcache. */
252
253 void
254 target_dcache_invalidate (void)
255 {
256 dcache_invalidate (target_dcache);
257 }
258
259 /* The user just typed 'target' without the name of a target. */
260
261 static void
262 target_command (char *arg, int from_tty)
263 {
264 fputs_filtered ("Argument required (target name). Try `help target'\n",
265 gdb_stdout);
266 }
267
268 /* Default target_has_* methods for process_stratum targets. */
269
270 int
271 default_child_has_all_memory (struct target_ops *ops)
272 {
273 /* If no inferior selected, then we can't read memory here. */
274 if (ptid_equal (inferior_ptid, null_ptid))
275 return 0;
276
277 return 1;
278 }
279
280 int
281 default_child_has_memory (struct target_ops *ops)
282 {
283 /* If no inferior selected, then we can't read memory here. */
284 if (ptid_equal (inferior_ptid, null_ptid))
285 return 0;
286
287 return 1;
288 }
289
290 int
291 default_child_has_stack (struct target_ops *ops)
292 {
293 /* If no inferior selected, there's no stack. */
294 if (ptid_equal (inferior_ptid, null_ptid))
295 return 0;
296
297 return 1;
298 }
299
300 int
301 default_child_has_registers (struct target_ops *ops)
302 {
303 /* Can't read registers from no inferior. */
304 if (ptid_equal (inferior_ptid, null_ptid))
305 return 0;
306
307 return 1;
308 }
309
310 int
311 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
312 {
313 /* If there's no thread selected, then we can't make it run through
314 hoops. */
315 if (ptid_equal (the_ptid, null_ptid))
316 return 0;
317
318 return 1;
319 }
320
321
322 int
323 target_has_all_memory_1 (void)
324 {
325 struct target_ops *t;
326
327 for (t = current_target.beneath; t != NULL; t = t->beneath)
328 if (t->to_has_all_memory (t))
329 return 1;
330
331 return 0;
332 }
333
334 int
335 target_has_memory_1 (void)
336 {
337 struct target_ops *t;
338
339 for (t = current_target.beneath; t != NULL; t = t->beneath)
340 if (t->to_has_memory (t))
341 return 1;
342
343 return 0;
344 }
345
346 int
347 target_has_stack_1 (void)
348 {
349 struct target_ops *t;
350
351 for (t = current_target.beneath; t != NULL; t = t->beneath)
352 if (t->to_has_stack (t))
353 return 1;
354
355 return 0;
356 }
357
358 int
359 target_has_registers_1 (void)
360 {
361 struct target_ops *t;
362
363 for (t = current_target.beneath; t != NULL; t = t->beneath)
364 if (t->to_has_registers (t))
365 return 1;
366
367 return 0;
368 }
369
370 int
371 target_has_execution_1 (ptid_t the_ptid)
372 {
373 struct target_ops *t;
374
375 for (t = current_target.beneath; t != NULL; t = t->beneath)
376 if (t->to_has_execution (t, the_ptid))
377 return 1;
378
379 return 0;
380 }
381
382 int
383 target_has_execution_current (void)
384 {
385 return target_has_execution_1 (inferior_ptid);
386 }
387
388 /* Add a possible target architecture to the list. */
389
390 void
391 add_target (struct target_ops *t)
392 {
393 /* Provide default values for all "must have" methods. */
394 if (t->to_xfer_partial == NULL)
395 t->to_xfer_partial = default_xfer_partial;
396
397 if (t->to_has_all_memory == NULL)
398 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
399
400 if (t->to_has_memory == NULL)
401 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
402
403 if (t->to_has_stack == NULL)
404 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
405
406 if (t->to_has_registers == NULL)
407 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
408
409 if (t->to_has_execution == NULL)
410 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
411
412 if (!target_structs)
413 {
414 target_struct_allocsize = DEFAULT_ALLOCSIZE;
415 target_structs = (struct target_ops **) xmalloc
416 (target_struct_allocsize * sizeof (*target_structs));
417 }
418 if (target_struct_size >= target_struct_allocsize)
419 {
420 target_struct_allocsize *= 2;
421 target_structs = (struct target_ops **)
422 xrealloc ((char *) target_structs,
423 target_struct_allocsize * sizeof (*target_structs));
424 }
425 target_structs[target_struct_size++] = t;
426
427 if (targetlist == NULL)
428 add_prefix_cmd ("target", class_run, target_command, _("\
429 Connect to a target machine or process.\n\
430 The first argument is the type or protocol of the target machine.\n\
431 Remaining arguments are interpreted by the target protocol. For more\n\
432 information on the arguments for a particular protocol, type\n\
433 `help target ' followed by the protocol name."),
434 &targetlist, "target ", 0, &cmdlist);
435 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
436 }
437
438 /* Stub functions */
439
440 void
441 target_ignore (void)
442 {
443 }
444
445 void
446 target_kill (void)
447 {
448 struct target_ops *t;
449
450 for (t = current_target.beneath; t != NULL; t = t->beneath)
451 if (t->to_kill != NULL)
452 {
453 if (targetdebug)
454 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
455
456 t->to_kill (t);
457 return;
458 }
459
460 noprocess ();
461 }
462
463 void
464 target_load (char *arg, int from_tty)
465 {
466 target_dcache_invalidate ();
467 (*current_target.to_load) (arg, from_tty);
468 }
469
470 void
471 target_create_inferior (char *exec_file, char *args,
472 char **env, int from_tty)
473 {
474 struct target_ops *t;
475
476 for (t = current_target.beneath; t != NULL; t = t->beneath)
477 {
478 if (t->to_create_inferior != NULL)
479 {
480 t->to_create_inferior (t, exec_file, args, env, from_tty);
481 if (targetdebug)
482 fprintf_unfiltered (gdb_stdlog,
483 "target_create_inferior (%s, %s, xxx, %d)\n",
484 exec_file, args, from_tty);
485 return;
486 }
487 }
488
489 internal_error (__FILE__, __LINE__,
490 _("could not find a target to create inferior"));
491 }
492
493 void
494 target_terminal_inferior (void)
495 {
496 /* A background resume (``run&'') should leave GDB in control of the
497 terminal. Use target_can_async_p, not target_is_async_p, since at
498 this point the target is not async yet. However, if sync_execution
499 is not set, we know it will become async prior to resume. */
500 if (target_can_async_p () && !sync_execution)
501 return;
502
503 /* If GDB is resuming the inferior in the foreground, install
504 inferior's terminal modes. */
505 (*current_target.to_terminal_inferior) ();
506 }
507
508 static int
509 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
510 struct target_ops *t)
511 {
512 errno = EIO; /* Can't read/write this location. */
513 return 0; /* No bytes handled. */
514 }
515
516 static void
517 tcomplain (void)
518 {
519 error (_("You can't do that when your target is `%s'"),
520 current_target.to_shortname);
521 }
522
523 void
524 noprocess (void)
525 {
526 error (_("You can't do that without a process to debug."));
527 }
528
529 static void
530 default_terminal_info (char *args, int from_tty)
531 {
532 printf_unfiltered (_("No saved terminal information.\n"));
533 }
534
535 /* A default implementation for the to_get_ada_task_ptid target method.
536
537 This function builds the PTID by using both LWP and TID as part of
538 the PTID lwp and tid elements. The pid used is the pid of the
539 inferior_ptid. */
540
541 static ptid_t
542 default_get_ada_task_ptid (long lwp, long tid)
543 {
544 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
545 }
546
547 static enum exec_direction_kind
548 default_execution_direction (void)
549 {
550 if (!target_can_execute_reverse)
551 return EXEC_FORWARD;
552 else if (!target_can_async_p ())
553 return EXEC_FORWARD;
554 else
555 gdb_assert_not_reached ("\
556 to_execution_direction must be implemented for reverse async");
557 }
558
559 /* Go through the target stack from top to bottom, copying over zero
560 entries in current_target, then filling in still empty entries. In
561 effect, we are doing class inheritance through the pushed target
562 vectors.
563
564 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
565 is currently implemented, is that it discards any knowledge of
566 which target an inherited method originally belonged to.
567 Consequently, new new target methods should instead explicitly and
568 locally search the target stack for the target that can handle the
569 request. */
570
571 static void
572 update_current_target (void)
573 {
574 struct target_ops *t;
575
576 /* First, reset current's contents. */
577 memset (&current_target, 0, sizeof (current_target));
578
579 #define INHERIT(FIELD, TARGET) \
580 if (!current_target.FIELD) \
581 current_target.FIELD = (TARGET)->FIELD
582
583 for (t = target_stack; t; t = t->beneath)
584 {
585 INHERIT (to_shortname, t);
586 INHERIT (to_longname, t);
587 INHERIT (to_doc, t);
588 /* Do not inherit to_open. */
589 /* Do not inherit to_close. */
590 /* Do not inherit to_attach. */
591 INHERIT (to_post_attach, t);
592 INHERIT (to_attach_no_wait, t);
593 /* Do not inherit to_detach. */
594 /* Do not inherit to_disconnect. */
595 /* Do not inherit to_resume. */
596 /* Do not inherit to_wait. */
597 /* Do not inherit to_fetch_registers. */
598 /* Do not inherit to_store_registers. */
599 INHERIT (to_prepare_to_store, t);
600 INHERIT (deprecated_xfer_memory, t);
601 INHERIT (to_files_info, t);
602 INHERIT (to_insert_breakpoint, t);
603 INHERIT (to_remove_breakpoint, t);
604 INHERIT (to_can_use_hw_breakpoint, t);
605 INHERIT (to_insert_hw_breakpoint, t);
606 INHERIT (to_remove_hw_breakpoint, t);
607 /* Do not inherit to_ranged_break_num_registers. */
608 INHERIT (to_insert_watchpoint, t);
609 INHERIT (to_remove_watchpoint, t);
610 /* Do not inherit to_insert_mask_watchpoint. */
611 /* Do not inherit to_remove_mask_watchpoint. */
612 INHERIT (to_stopped_data_address, t);
613 INHERIT (to_have_steppable_watchpoint, t);
614 INHERIT (to_have_continuable_watchpoint, t);
615 INHERIT (to_stopped_by_watchpoint, t);
616 INHERIT (to_watchpoint_addr_within_range, t);
617 INHERIT (to_region_ok_for_hw_watchpoint, t);
618 INHERIT (to_can_accel_watchpoint_condition, t);
619 /* Do not inherit to_masked_watch_num_registers. */
620 INHERIT (to_terminal_init, t);
621 INHERIT (to_terminal_inferior, t);
622 INHERIT (to_terminal_ours_for_output, t);
623 INHERIT (to_terminal_ours, t);
624 INHERIT (to_terminal_save_ours, t);
625 INHERIT (to_terminal_info, t);
626 /* Do not inherit to_kill. */
627 INHERIT (to_load, t);
628 /* Do no inherit to_create_inferior. */
629 INHERIT (to_post_startup_inferior, t);
630 INHERIT (to_insert_fork_catchpoint, t);
631 INHERIT (to_remove_fork_catchpoint, t);
632 INHERIT (to_insert_vfork_catchpoint, t);
633 INHERIT (to_remove_vfork_catchpoint, t);
634 /* Do not inherit to_follow_fork. */
635 INHERIT (to_insert_exec_catchpoint, t);
636 INHERIT (to_remove_exec_catchpoint, t);
637 INHERIT (to_set_syscall_catchpoint, t);
638 INHERIT (to_has_exited, t);
639 /* Do not inherit to_mourn_inferior. */
640 INHERIT (to_can_run, t);
641 /* Do not inherit to_pass_signals. */
642 /* Do not inherit to_thread_alive. */
643 /* Do not inherit to_find_new_threads. */
644 /* Do not inherit to_pid_to_str. */
645 INHERIT (to_extra_thread_info, t);
646 INHERIT (to_thread_name, t);
647 INHERIT (to_stop, t);
648 /* Do not inherit to_xfer_partial. */
649 INHERIT (to_rcmd, t);
650 INHERIT (to_pid_to_exec_file, t);
651 INHERIT (to_log_command, t);
652 INHERIT (to_stratum, t);
653 /* Do not inherit to_has_all_memory. */
654 /* Do not inherit to_has_memory. */
655 /* Do not inherit to_has_stack. */
656 /* Do not inherit to_has_registers. */
657 /* Do not inherit to_has_execution. */
658 INHERIT (to_has_thread_control, t);
659 INHERIT (to_can_async_p, t);
660 INHERIT (to_is_async_p, t);
661 INHERIT (to_async, t);
662 INHERIT (to_find_memory_regions, t);
663 INHERIT (to_make_corefile_notes, t);
664 INHERIT (to_get_bookmark, t);
665 INHERIT (to_goto_bookmark, t);
666 /* Do not inherit to_get_thread_local_address. */
667 INHERIT (to_can_execute_reverse, t);
668 INHERIT (to_execution_direction, t);
669 INHERIT (to_thread_architecture, t);
670 /* Do not inherit to_read_description. */
671 INHERIT (to_get_ada_task_ptid, t);
672 /* Do not inherit to_search_memory. */
673 INHERIT (to_supports_multi_process, t);
674 INHERIT (to_supports_enable_disable_tracepoint, t);
675 INHERIT (to_supports_string_tracing, t);
676 INHERIT (to_trace_init, t);
677 INHERIT (to_download_tracepoint, t);
678 INHERIT (to_can_download_tracepoint, t);
679 INHERIT (to_download_trace_state_variable, t);
680 INHERIT (to_enable_tracepoint, t);
681 INHERIT (to_disable_tracepoint, t);
682 INHERIT (to_trace_set_readonly_regions, t);
683 INHERIT (to_trace_start, t);
684 INHERIT (to_get_trace_status, t);
685 INHERIT (to_get_tracepoint_status, t);
686 INHERIT (to_trace_stop, t);
687 INHERIT (to_trace_find, t);
688 INHERIT (to_get_trace_state_variable_value, t);
689 INHERIT (to_save_trace_data, t);
690 INHERIT (to_upload_tracepoints, t);
691 INHERIT (to_upload_trace_state_variables, t);
692 INHERIT (to_get_raw_trace_data, t);
693 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
694 INHERIT (to_set_disconnected_tracing, t);
695 INHERIT (to_set_circular_trace_buffer, t);
696 INHERIT (to_set_trace_notes, t);
697 INHERIT (to_get_tib_address, t);
698 INHERIT (to_set_permissions, t);
699 INHERIT (to_static_tracepoint_marker_at, t);
700 INHERIT (to_static_tracepoint_markers_by_strid, t);
701 INHERIT (to_traceframe_info, t);
702 INHERIT (to_magic, t);
703 /* Do not inherit to_memory_map. */
704 /* Do not inherit to_flash_erase. */
705 /* Do not inherit to_flash_done. */
706 }
707 #undef INHERIT
708
709 /* Clean up a target struct so it no longer has any zero pointers in
710 it. Some entries are defaulted to a method that print an error,
711 others are hard-wired to a standard recursive default. */
712
713 #define de_fault(field, value) \
714 if (!current_target.field) \
715 current_target.field = value
716
717 de_fault (to_open,
718 (void (*) (char *, int))
719 tcomplain);
720 de_fault (to_close,
721 (void (*) (int))
722 target_ignore);
723 de_fault (to_post_attach,
724 (void (*) (int))
725 target_ignore);
726 de_fault (to_prepare_to_store,
727 (void (*) (struct regcache *))
728 noprocess);
729 de_fault (deprecated_xfer_memory,
730 (int (*) (CORE_ADDR, gdb_byte *, int, int,
731 struct mem_attrib *, struct target_ops *))
732 nomemory);
733 de_fault (to_files_info,
734 (void (*) (struct target_ops *))
735 target_ignore);
736 de_fault (to_insert_breakpoint,
737 memory_insert_breakpoint);
738 de_fault (to_remove_breakpoint,
739 memory_remove_breakpoint);
740 de_fault (to_can_use_hw_breakpoint,
741 (int (*) (int, int, int))
742 return_zero);
743 de_fault (to_insert_hw_breakpoint,
744 (int (*) (struct gdbarch *, struct bp_target_info *))
745 return_minus_one);
746 de_fault (to_remove_hw_breakpoint,
747 (int (*) (struct gdbarch *, struct bp_target_info *))
748 return_minus_one);
749 de_fault (to_insert_watchpoint,
750 (int (*) (CORE_ADDR, int, int, struct expression *))
751 return_minus_one);
752 de_fault (to_remove_watchpoint,
753 (int (*) (CORE_ADDR, int, int, struct expression *))
754 return_minus_one);
755 de_fault (to_stopped_by_watchpoint,
756 (int (*) (void))
757 return_zero);
758 de_fault (to_stopped_data_address,
759 (int (*) (struct target_ops *, CORE_ADDR *))
760 return_zero);
761 de_fault (to_watchpoint_addr_within_range,
762 default_watchpoint_addr_within_range);
763 de_fault (to_region_ok_for_hw_watchpoint,
764 default_region_ok_for_hw_watchpoint);
765 de_fault (to_can_accel_watchpoint_condition,
766 (int (*) (CORE_ADDR, int, int, struct expression *))
767 return_zero);
768 de_fault (to_terminal_init,
769 (void (*) (void))
770 target_ignore);
771 de_fault (to_terminal_inferior,
772 (void (*) (void))
773 target_ignore);
774 de_fault (to_terminal_ours_for_output,
775 (void (*) (void))
776 target_ignore);
777 de_fault (to_terminal_ours,
778 (void (*) (void))
779 target_ignore);
780 de_fault (to_terminal_save_ours,
781 (void (*) (void))
782 target_ignore);
783 de_fault (to_terminal_info,
784 default_terminal_info);
785 de_fault (to_load,
786 (void (*) (char *, int))
787 tcomplain);
788 de_fault (to_post_startup_inferior,
789 (void (*) (ptid_t))
790 target_ignore);
791 de_fault (to_insert_fork_catchpoint,
792 (int (*) (int))
793 return_one);
794 de_fault (to_remove_fork_catchpoint,
795 (int (*) (int))
796 return_one);
797 de_fault (to_insert_vfork_catchpoint,
798 (int (*) (int))
799 return_one);
800 de_fault (to_remove_vfork_catchpoint,
801 (int (*) (int))
802 return_one);
803 de_fault (to_insert_exec_catchpoint,
804 (int (*) (int))
805 return_one);
806 de_fault (to_remove_exec_catchpoint,
807 (int (*) (int))
808 return_one);
809 de_fault (to_set_syscall_catchpoint,
810 (int (*) (int, int, int, int, int *))
811 return_one);
812 de_fault (to_has_exited,
813 (int (*) (int, int, int *))
814 return_zero);
815 de_fault (to_can_run,
816 return_zero);
817 de_fault (to_extra_thread_info,
818 (char *(*) (struct thread_info *))
819 return_zero);
820 de_fault (to_thread_name,
821 (char *(*) (struct thread_info *))
822 return_zero);
823 de_fault (to_stop,
824 (void (*) (ptid_t))
825 target_ignore);
826 current_target.to_xfer_partial = current_xfer_partial;
827 de_fault (to_rcmd,
828 (void (*) (char *, struct ui_file *))
829 tcomplain);
830 de_fault (to_pid_to_exec_file,
831 (char *(*) (int))
832 return_zero);
833 de_fault (to_async,
834 (void (*) (void (*) (enum inferior_event_type, void*), void*))
835 tcomplain);
836 de_fault (to_thread_architecture,
837 default_thread_architecture);
838 current_target.to_read_description = NULL;
839 de_fault (to_get_ada_task_ptid,
840 (ptid_t (*) (long, long))
841 default_get_ada_task_ptid);
842 de_fault (to_supports_multi_process,
843 (int (*) (void))
844 return_zero);
845 de_fault (to_supports_enable_disable_tracepoint,
846 (int (*) (void))
847 return_zero);
848 de_fault (to_supports_string_tracing,
849 (int (*) (void))
850 return_zero);
851 de_fault (to_trace_init,
852 (void (*) (void))
853 tcomplain);
854 de_fault (to_download_tracepoint,
855 (void (*) (struct bp_location *))
856 tcomplain);
857 de_fault (to_can_download_tracepoint,
858 (int (*) (void))
859 return_zero);
860 de_fault (to_download_trace_state_variable,
861 (void (*) (struct trace_state_variable *))
862 tcomplain);
863 de_fault (to_enable_tracepoint,
864 (void (*) (struct bp_location *))
865 tcomplain);
866 de_fault (to_disable_tracepoint,
867 (void (*) (struct bp_location *))
868 tcomplain);
869 de_fault (to_trace_set_readonly_regions,
870 (void (*) (void))
871 tcomplain);
872 de_fault (to_trace_start,
873 (void (*) (void))
874 tcomplain);
875 de_fault (to_get_trace_status,
876 (int (*) (struct trace_status *))
877 return_minus_one);
878 de_fault (to_get_tracepoint_status,
879 (void (*) (struct breakpoint *, struct uploaded_tp *))
880 tcomplain);
881 de_fault (to_trace_stop,
882 (void (*) (void))
883 tcomplain);
884 de_fault (to_trace_find,
885 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
886 return_minus_one);
887 de_fault (to_get_trace_state_variable_value,
888 (int (*) (int, LONGEST *))
889 return_zero);
890 de_fault (to_save_trace_data,
891 (int (*) (const char *))
892 tcomplain);
893 de_fault (to_upload_tracepoints,
894 (int (*) (struct uploaded_tp **))
895 return_zero);
896 de_fault (to_upload_trace_state_variables,
897 (int (*) (struct uploaded_tsv **))
898 return_zero);
899 de_fault (to_get_raw_trace_data,
900 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
901 tcomplain);
902 de_fault (to_get_min_fast_tracepoint_insn_len,
903 (int (*) (void))
904 return_minus_one);
905 de_fault (to_set_disconnected_tracing,
906 (void (*) (int))
907 target_ignore);
908 de_fault (to_set_circular_trace_buffer,
909 (void (*) (int))
910 target_ignore);
911 de_fault (to_set_trace_notes,
912 (int (*) (char *, char *, char *))
913 return_zero);
914 de_fault (to_get_tib_address,
915 (int (*) (ptid_t, CORE_ADDR *))
916 tcomplain);
917 de_fault (to_set_permissions,
918 (void (*) (void))
919 target_ignore);
920 de_fault (to_static_tracepoint_marker_at,
921 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
922 return_zero);
923 de_fault (to_static_tracepoint_markers_by_strid,
924 (VEC(static_tracepoint_marker_p) * (*) (const char *))
925 tcomplain);
926 de_fault (to_traceframe_info,
927 (struct traceframe_info * (*) (void))
928 tcomplain);
929 de_fault (to_execution_direction, default_execution_direction);
930
931 #undef de_fault
932
933 /* Finally, position the target-stack beneath the squashed
934 "current_target". That way code looking for a non-inherited
935 target method can quickly and simply find it. */
936 current_target.beneath = target_stack;
937
938 if (targetdebug)
939 setup_target_debug ();
940 }
941
942 /* Push a new target type into the stack of the existing target accessors,
943 possibly superseding some of the existing accessors.
944
945 Rather than allow an empty stack, we always have the dummy target at
946 the bottom stratum, so we can call the function vectors without
947 checking them. */
948
949 void
950 push_target (struct target_ops *t)
951 {
952 struct target_ops **cur;
953
954 /* Check magic number. If wrong, it probably means someone changed
955 the struct definition, but not all the places that initialize one. */
956 if (t->to_magic != OPS_MAGIC)
957 {
958 fprintf_unfiltered (gdb_stderr,
959 "Magic number of %s target struct wrong\n",
960 t->to_shortname);
961 internal_error (__FILE__, __LINE__,
962 _("failed internal consistency check"));
963 }
964
965 /* Find the proper stratum to install this target in. */
966 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
967 {
968 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
969 break;
970 }
971
972 /* If there's already targets at this stratum, remove them. */
973 /* FIXME: cagney/2003-10-15: I think this should be popping all
974 targets to CUR, and not just those at this stratum level. */
975 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
976 {
977 /* There's already something at this stratum level. Close it,
978 and un-hook it from the stack. */
979 struct target_ops *tmp = (*cur);
980
981 (*cur) = (*cur)->beneath;
982 tmp->beneath = NULL;
983 target_close (tmp, 0);
984 }
985
986 /* We have removed all targets in our stratum, now add the new one. */
987 t->beneath = (*cur);
988 (*cur) = t;
989
990 update_current_target ();
991 }
992
993 /* Remove a target_ops vector from the stack, wherever it may be.
994 Return how many times it was removed (0 or 1). */
995
996 int
997 unpush_target (struct target_ops *t)
998 {
999 struct target_ops **cur;
1000 struct target_ops *tmp;
1001
1002 if (t->to_stratum == dummy_stratum)
1003 internal_error (__FILE__, __LINE__,
1004 _("Attempt to unpush the dummy target"));
1005
1006 /* Look for the specified target. Note that we assume that a target
1007 can only occur once in the target stack. */
1008
1009 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1010 {
1011 if ((*cur) == t)
1012 break;
1013 }
1014
1015 if ((*cur) == NULL)
1016 return 0; /* Didn't find target_ops, quit now. */
1017
1018 /* NOTE: cagney/2003-12-06: In '94 the close call was made
1019 unconditional by moving it to before the above check that the
1020 target was in the target stack (something about "Change the way
1021 pushing and popping of targets work to support target overlays
1022 and inheritance"). This doesn't make much sense - only open
1023 targets should be closed. */
1024 target_close (t, 0);
1025
1026 /* Unchain the target. */
1027 tmp = (*cur);
1028 (*cur) = (*cur)->beneath;
1029 tmp->beneath = NULL;
1030
1031 update_current_target ();
1032
1033 return 1;
1034 }
1035
1036 void
1037 pop_target (void)
1038 {
1039 target_close (target_stack, 0); /* Let it clean up. */
1040 if (unpush_target (target_stack) == 1)
1041 return;
1042
1043 fprintf_unfiltered (gdb_stderr,
1044 "pop_target couldn't find target %s\n",
1045 current_target.to_shortname);
1046 internal_error (__FILE__, __LINE__,
1047 _("failed internal consistency check"));
1048 }
1049
1050 void
1051 pop_all_targets_above (enum strata above_stratum, int quitting)
1052 {
1053 while ((int) (current_target.to_stratum) > (int) above_stratum)
1054 {
1055 target_close (target_stack, quitting);
1056 if (!unpush_target (target_stack))
1057 {
1058 fprintf_unfiltered (gdb_stderr,
1059 "pop_all_targets couldn't find target %s\n",
1060 target_stack->to_shortname);
1061 internal_error (__FILE__, __LINE__,
1062 _("failed internal consistency check"));
1063 break;
1064 }
1065 }
1066 }
1067
1068 void
1069 pop_all_targets (int quitting)
1070 {
1071 pop_all_targets_above (dummy_stratum, quitting);
1072 }
1073
1074 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1075
1076 int
1077 target_is_pushed (struct target_ops *t)
1078 {
1079 struct target_ops **cur;
1080
1081 /* Check magic number. If wrong, it probably means someone changed
1082 the struct definition, but not all the places that initialize one. */
1083 if (t->to_magic != OPS_MAGIC)
1084 {
1085 fprintf_unfiltered (gdb_stderr,
1086 "Magic number of %s target struct wrong\n",
1087 t->to_shortname);
1088 internal_error (__FILE__, __LINE__,
1089 _("failed internal consistency check"));
1090 }
1091
1092 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1093 if (*cur == t)
1094 return 1;
1095
1096 return 0;
1097 }
1098
1099 /* Using the objfile specified in OBJFILE, find the address for the
1100 current thread's thread-local storage with offset OFFSET. */
1101 CORE_ADDR
1102 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1103 {
1104 volatile CORE_ADDR addr = 0;
1105 struct target_ops *target;
1106
1107 for (target = current_target.beneath;
1108 target != NULL;
1109 target = target->beneath)
1110 {
1111 if (target->to_get_thread_local_address != NULL)
1112 break;
1113 }
1114
1115 if (target != NULL
1116 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1117 {
1118 ptid_t ptid = inferior_ptid;
1119 volatile struct gdb_exception ex;
1120
1121 TRY_CATCH (ex, RETURN_MASK_ALL)
1122 {
1123 CORE_ADDR lm_addr;
1124
1125 /* Fetch the load module address for this objfile. */
1126 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1127 objfile);
1128 /* If it's 0, throw the appropriate exception. */
1129 if (lm_addr == 0)
1130 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1131 _("TLS load module not found"));
1132
1133 addr = target->to_get_thread_local_address (target, ptid,
1134 lm_addr, offset);
1135 }
1136 /* If an error occurred, print TLS related messages here. Otherwise,
1137 throw the error to some higher catcher. */
1138 if (ex.reason < 0)
1139 {
1140 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1141
1142 switch (ex.error)
1143 {
1144 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1145 error (_("Cannot find thread-local variables "
1146 "in this thread library."));
1147 break;
1148 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1149 if (objfile_is_library)
1150 error (_("Cannot find shared library `%s' in dynamic"
1151 " linker's load module list"), objfile->name);
1152 else
1153 error (_("Cannot find executable file `%s' in dynamic"
1154 " linker's load module list"), objfile->name);
1155 break;
1156 case TLS_NOT_ALLOCATED_YET_ERROR:
1157 if (objfile_is_library)
1158 error (_("The inferior has not yet allocated storage for"
1159 " thread-local variables in\n"
1160 "the shared library `%s'\n"
1161 "for %s"),
1162 objfile->name, target_pid_to_str (ptid));
1163 else
1164 error (_("The inferior has not yet allocated storage for"
1165 " thread-local variables in\n"
1166 "the executable `%s'\n"
1167 "for %s"),
1168 objfile->name, target_pid_to_str (ptid));
1169 break;
1170 case TLS_GENERIC_ERROR:
1171 if (objfile_is_library)
1172 error (_("Cannot find thread-local storage for %s, "
1173 "shared library %s:\n%s"),
1174 target_pid_to_str (ptid),
1175 objfile->name, ex.message);
1176 else
1177 error (_("Cannot find thread-local storage for %s, "
1178 "executable file %s:\n%s"),
1179 target_pid_to_str (ptid),
1180 objfile->name, ex.message);
1181 break;
1182 default:
1183 throw_exception (ex);
1184 break;
1185 }
1186 }
1187 }
1188 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1189 TLS is an ABI-specific thing. But we don't do that yet. */
1190 else
1191 error (_("Cannot find thread-local variables on this target"));
1192
1193 return addr;
1194 }
1195
1196 #undef MIN
1197 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1198
1199 /* target_read_string -- read a null terminated string, up to LEN bytes,
1200 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1201 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1202 is responsible for freeing it. Return the number of bytes successfully
1203 read. */
1204
1205 int
1206 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1207 {
1208 int tlen, origlen, offset, i;
1209 gdb_byte buf[4];
1210 int errcode = 0;
1211 char *buffer;
1212 int buffer_allocated;
1213 char *bufptr;
1214 unsigned int nbytes_read = 0;
1215
1216 gdb_assert (string);
1217
1218 /* Small for testing. */
1219 buffer_allocated = 4;
1220 buffer = xmalloc (buffer_allocated);
1221 bufptr = buffer;
1222
1223 origlen = len;
1224
1225 while (len > 0)
1226 {
1227 tlen = MIN (len, 4 - (memaddr & 3));
1228 offset = memaddr & 3;
1229
1230 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1231 if (errcode != 0)
1232 {
1233 /* The transfer request might have crossed the boundary to an
1234 unallocated region of memory. Retry the transfer, requesting
1235 a single byte. */
1236 tlen = 1;
1237 offset = 0;
1238 errcode = target_read_memory (memaddr, buf, 1);
1239 if (errcode != 0)
1240 goto done;
1241 }
1242
1243 if (bufptr - buffer + tlen > buffer_allocated)
1244 {
1245 unsigned int bytes;
1246
1247 bytes = bufptr - buffer;
1248 buffer_allocated *= 2;
1249 buffer = xrealloc (buffer, buffer_allocated);
1250 bufptr = buffer + bytes;
1251 }
1252
1253 for (i = 0; i < tlen; i++)
1254 {
1255 *bufptr++ = buf[i + offset];
1256 if (buf[i + offset] == '\000')
1257 {
1258 nbytes_read += i + 1;
1259 goto done;
1260 }
1261 }
1262
1263 memaddr += tlen;
1264 len -= tlen;
1265 nbytes_read += tlen;
1266 }
1267 done:
1268 *string = buffer;
1269 if (errnop != NULL)
1270 *errnop = errcode;
1271 return nbytes_read;
1272 }
1273
1274 struct target_section_table *
1275 target_get_section_table (struct target_ops *target)
1276 {
1277 struct target_ops *t;
1278
1279 if (targetdebug)
1280 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1281
1282 for (t = target; t != NULL; t = t->beneath)
1283 if (t->to_get_section_table != NULL)
1284 return (*t->to_get_section_table) (t);
1285
1286 return NULL;
1287 }
1288
1289 /* Find a section containing ADDR. */
1290
1291 struct target_section *
1292 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1293 {
1294 struct target_section_table *table = target_get_section_table (target);
1295 struct target_section *secp;
1296
1297 if (table == NULL)
1298 return NULL;
1299
1300 for (secp = table->sections; secp < table->sections_end; secp++)
1301 {
1302 if (addr >= secp->addr && addr < secp->endaddr)
1303 return secp;
1304 }
1305 return NULL;
1306 }
1307
1308 /* Read memory from the live target, even if currently inspecting a
1309 traceframe. The return is the same as that of target_read. */
1310
1311 static LONGEST
1312 target_read_live_memory (enum target_object object,
1313 ULONGEST memaddr, gdb_byte *myaddr, LONGEST len)
1314 {
1315 int ret;
1316 struct cleanup *cleanup;
1317
1318 /* Switch momentarily out of tfind mode so to access live memory.
1319 Note that this must not clear global state, such as the frame
1320 cache, which must still remain valid for the previous traceframe.
1321 We may be _building_ the frame cache at this point. */
1322 cleanup = make_cleanup_restore_traceframe_number ();
1323 set_traceframe_number (-1);
1324
1325 ret = target_read (current_target.beneath, object, NULL,
1326 myaddr, memaddr, len);
1327
1328 do_cleanups (cleanup);
1329 return ret;
1330 }
1331
1332 /* Using the set of read-only target sections of OPS, read live
1333 read-only memory. Note that the actual reads start from the
1334 top-most target again.
1335
1336 For interface/parameters/return description see target.h,
1337 to_xfer_partial. */
1338
1339 static LONGEST
1340 memory_xfer_live_readonly_partial (struct target_ops *ops,
1341 enum target_object object,
1342 gdb_byte *readbuf, ULONGEST memaddr,
1343 LONGEST len)
1344 {
1345 struct target_section *secp;
1346 struct target_section_table *table;
1347
1348 secp = target_section_by_addr (ops, memaddr);
1349 if (secp != NULL
1350 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1351 & SEC_READONLY))
1352 {
1353 struct target_section *p;
1354 ULONGEST memend = memaddr + len;
1355
1356 table = target_get_section_table (ops);
1357
1358 for (p = table->sections; p < table->sections_end; p++)
1359 {
1360 if (memaddr >= p->addr)
1361 {
1362 if (memend <= p->endaddr)
1363 {
1364 /* Entire transfer is within this section. */
1365 return target_read_live_memory (object, memaddr,
1366 readbuf, len);
1367 }
1368 else if (memaddr >= p->endaddr)
1369 {
1370 /* This section ends before the transfer starts. */
1371 continue;
1372 }
1373 else
1374 {
1375 /* This section overlaps the transfer. Just do half. */
1376 len = p->endaddr - memaddr;
1377 return target_read_live_memory (object, memaddr,
1378 readbuf, len);
1379 }
1380 }
1381 }
1382 }
1383
1384 return 0;
1385 }
1386
1387 /* Perform a partial memory transfer.
1388 For docs see target.h, to_xfer_partial. */
1389
1390 static LONGEST
1391 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1392 void *readbuf, const void *writebuf, ULONGEST memaddr,
1393 LONGEST len)
1394 {
1395 LONGEST res;
1396 int reg_len;
1397 struct mem_region *region;
1398 struct inferior *inf;
1399
1400 /* For accesses to unmapped overlay sections, read directly from
1401 files. Must do this first, as MEMADDR may need adjustment. */
1402 if (readbuf != NULL && overlay_debugging)
1403 {
1404 struct obj_section *section = find_pc_overlay (memaddr);
1405
1406 if (pc_in_unmapped_range (memaddr, section))
1407 {
1408 struct target_section_table *table
1409 = target_get_section_table (ops);
1410 const char *section_name = section->the_bfd_section->name;
1411
1412 memaddr = overlay_mapped_address (memaddr, section);
1413 return section_table_xfer_memory_partial (readbuf, writebuf,
1414 memaddr, len,
1415 table->sections,
1416 table->sections_end,
1417 section_name);
1418 }
1419 }
1420
1421 /* Try the executable files, if "trust-readonly-sections" is set. */
1422 if (readbuf != NULL && trust_readonly)
1423 {
1424 struct target_section *secp;
1425 struct target_section_table *table;
1426
1427 secp = target_section_by_addr (ops, memaddr);
1428 if (secp != NULL
1429 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1430 & SEC_READONLY))
1431 {
1432 table = target_get_section_table (ops);
1433 return section_table_xfer_memory_partial (readbuf, writebuf,
1434 memaddr, len,
1435 table->sections,
1436 table->sections_end,
1437 NULL);
1438 }
1439 }
1440
1441 /* If reading unavailable memory in the context of traceframes, and
1442 this address falls within a read-only section, fallback to
1443 reading from live memory. */
1444 if (readbuf != NULL && get_traceframe_number () != -1)
1445 {
1446 VEC(mem_range_s) *available;
1447
1448 /* If we fail to get the set of available memory, then the
1449 target does not support querying traceframe info, and so we
1450 attempt reading from the traceframe anyway (assuming the
1451 target implements the old QTro packet then). */
1452 if (traceframe_available_memory (&available, memaddr, len))
1453 {
1454 struct cleanup *old_chain;
1455
1456 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1457
1458 if (VEC_empty (mem_range_s, available)
1459 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1460 {
1461 /* Don't read into the traceframe's available
1462 memory. */
1463 if (!VEC_empty (mem_range_s, available))
1464 {
1465 LONGEST oldlen = len;
1466
1467 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1468 gdb_assert (len <= oldlen);
1469 }
1470
1471 do_cleanups (old_chain);
1472
1473 /* This goes through the topmost target again. */
1474 res = memory_xfer_live_readonly_partial (ops, object,
1475 readbuf, memaddr, len);
1476 if (res > 0)
1477 return res;
1478
1479 /* No use trying further, we know some memory starting
1480 at MEMADDR isn't available. */
1481 return -1;
1482 }
1483
1484 /* Don't try to read more than how much is available, in
1485 case the target implements the deprecated QTro packet to
1486 cater for older GDBs (the target's knowledge of read-only
1487 sections may be outdated by now). */
1488 len = VEC_index (mem_range_s, available, 0)->length;
1489
1490 do_cleanups (old_chain);
1491 }
1492 }
1493
1494 /* Try GDB's internal data cache. */
1495 region = lookup_mem_region (memaddr);
1496 /* region->hi == 0 means there's no upper bound. */
1497 if (memaddr + len < region->hi || region->hi == 0)
1498 reg_len = len;
1499 else
1500 reg_len = region->hi - memaddr;
1501
1502 switch (region->attrib.mode)
1503 {
1504 case MEM_RO:
1505 if (writebuf != NULL)
1506 return -1;
1507 break;
1508
1509 case MEM_WO:
1510 if (readbuf != NULL)
1511 return -1;
1512 break;
1513
1514 case MEM_FLASH:
1515 /* We only support writing to flash during "load" for now. */
1516 if (writebuf != NULL)
1517 error (_("Writing to flash memory forbidden in this context"));
1518 break;
1519
1520 case MEM_NONE:
1521 return -1;
1522 }
1523
1524 if (!ptid_equal (inferior_ptid, null_ptid))
1525 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1526 else
1527 inf = NULL;
1528
1529 if (inf != NULL
1530 /* The dcache reads whole cache lines; that doesn't play well
1531 with reading from a trace buffer, because reading outside of
1532 the collected memory range fails. */
1533 && get_traceframe_number () == -1
1534 && (region->attrib.cache
1535 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1536 {
1537 if (readbuf != NULL)
1538 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1539 reg_len, 0);
1540 else
1541 /* FIXME drow/2006-08-09: If we're going to preserve const
1542 correctness dcache_xfer_memory should take readbuf and
1543 writebuf. */
1544 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1545 (void *) writebuf,
1546 reg_len, 1);
1547 if (res <= 0)
1548 return -1;
1549 else
1550 return res;
1551 }
1552
1553 /* If none of those methods found the memory we wanted, fall back
1554 to a target partial transfer. Normally a single call to
1555 to_xfer_partial is enough; if it doesn't recognize an object
1556 it will call the to_xfer_partial of the next target down.
1557 But for memory this won't do. Memory is the only target
1558 object which can be read from more than one valid target.
1559 A core file, for instance, could have some of memory but
1560 delegate other bits to the target below it. So, we must
1561 manually try all targets. */
1562
1563 do
1564 {
1565 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1566 readbuf, writebuf, memaddr, reg_len);
1567 if (res > 0)
1568 break;
1569
1570 /* We want to continue past core files to executables, but not
1571 past a running target's memory. */
1572 if (ops->to_has_all_memory (ops))
1573 break;
1574
1575 ops = ops->beneath;
1576 }
1577 while (ops != NULL);
1578
1579 /* Make sure the cache gets updated no matter what - if we are writing
1580 to the stack. Even if this write is not tagged as such, we still need
1581 to update the cache. */
1582
1583 if (res > 0
1584 && inf != NULL
1585 && writebuf != NULL
1586 && !region->attrib.cache
1587 && stack_cache_enabled_p
1588 && object != TARGET_OBJECT_STACK_MEMORY)
1589 {
1590 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1591 }
1592
1593 /* If we still haven't got anything, return the last error. We
1594 give up. */
1595 return res;
1596 }
1597
1598 /* Perform a partial memory transfer. For docs see target.h,
1599 to_xfer_partial. */
1600
1601 static LONGEST
1602 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1603 void *readbuf, const void *writebuf, ULONGEST memaddr,
1604 LONGEST len)
1605 {
1606 int res;
1607
1608 /* Zero length requests are ok and require no work. */
1609 if (len == 0)
1610 return 0;
1611
1612 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1613 breakpoint insns, thus hiding out from higher layers whether
1614 there are software breakpoints inserted in the code stream. */
1615 if (readbuf != NULL)
1616 {
1617 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len);
1618
1619 if (res > 0 && !show_memory_breakpoints)
1620 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1621 }
1622 else
1623 {
1624 void *buf;
1625 struct cleanup *old_chain;
1626
1627 buf = xmalloc (len);
1628 old_chain = make_cleanup (xfree, buf);
1629 memcpy (buf, writebuf, len);
1630
1631 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1632 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len);
1633
1634 do_cleanups (old_chain);
1635 }
1636
1637 return res;
1638 }
1639
1640 static void
1641 restore_show_memory_breakpoints (void *arg)
1642 {
1643 show_memory_breakpoints = (uintptr_t) arg;
1644 }
1645
1646 struct cleanup *
1647 make_show_memory_breakpoints_cleanup (int show)
1648 {
1649 int current = show_memory_breakpoints;
1650
1651 show_memory_breakpoints = show;
1652 return make_cleanup (restore_show_memory_breakpoints,
1653 (void *) (uintptr_t) current);
1654 }
1655
1656 /* For docs see target.h, to_xfer_partial. */
1657
1658 static LONGEST
1659 target_xfer_partial (struct target_ops *ops,
1660 enum target_object object, const char *annex,
1661 void *readbuf, const void *writebuf,
1662 ULONGEST offset, LONGEST len)
1663 {
1664 LONGEST retval;
1665
1666 gdb_assert (ops->to_xfer_partial != NULL);
1667
1668 if (writebuf && !may_write_memory)
1669 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1670 core_addr_to_string_nz (offset), plongest (len));
1671
1672 /* If this is a memory transfer, let the memory-specific code
1673 have a look at it instead. Memory transfers are more
1674 complicated. */
1675 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1676 retval = memory_xfer_partial (ops, object, readbuf,
1677 writebuf, offset, len);
1678 else
1679 {
1680 enum target_object raw_object = object;
1681
1682 /* If this is a raw memory transfer, request the normal
1683 memory object from other layers. */
1684 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1685 raw_object = TARGET_OBJECT_MEMORY;
1686
1687 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1688 writebuf, offset, len);
1689 }
1690
1691 if (targetdebug)
1692 {
1693 const unsigned char *myaddr = NULL;
1694
1695 fprintf_unfiltered (gdb_stdlog,
1696 "%s:target_xfer_partial "
1697 "(%d, %s, %s, %s, %s, %s) = %s",
1698 ops->to_shortname,
1699 (int) object,
1700 (annex ? annex : "(null)"),
1701 host_address_to_string (readbuf),
1702 host_address_to_string (writebuf),
1703 core_addr_to_string_nz (offset),
1704 plongest (len), plongest (retval));
1705
1706 if (readbuf)
1707 myaddr = readbuf;
1708 if (writebuf)
1709 myaddr = writebuf;
1710 if (retval > 0 && myaddr != NULL)
1711 {
1712 int i;
1713
1714 fputs_unfiltered (", bytes =", gdb_stdlog);
1715 for (i = 0; i < retval; i++)
1716 {
1717 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1718 {
1719 if (targetdebug < 2 && i > 0)
1720 {
1721 fprintf_unfiltered (gdb_stdlog, " ...");
1722 break;
1723 }
1724 fprintf_unfiltered (gdb_stdlog, "\n");
1725 }
1726
1727 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1728 }
1729 }
1730
1731 fputc_unfiltered ('\n', gdb_stdlog);
1732 }
1733 return retval;
1734 }
1735
1736 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1737 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1738 if any error occurs.
1739
1740 If an error occurs, no guarantee is made about the contents of the data at
1741 MYADDR. In particular, the caller should not depend upon partial reads
1742 filling the buffer with good data. There is no way for the caller to know
1743 how much good data might have been transfered anyway. Callers that can
1744 deal with partial reads should call target_read (which will retry until
1745 it makes no progress, and then return how much was transferred). */
1746
1747 int
1748 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1749 {
1750 /* Dispatch to the topmost target, not the flattened current_target.
1751 Memory accesses check target->to_has_(all_)memory, and the
1752 flattened target doesn't inherit those. */
1753 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1754 myaddr, memaddr, len) == len)
1755 return 0;
1756 else
1757 return EIO;
1758 }
1759
1760 /* Like target_read_memory, but specify explicitly that this is a read from
1761 the target's stack. This may trigger different cache behavior. */
1762
1763 int
1764 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1765 {
1766 /* Dispatch to the topmost target, not the flattened current_target.
1767 Memory accesses check target->to_has_(all_)memory, and the
1768 flattened target doesn't inherit those. */
1769
1770 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1771 myaddr, memaddr, len) == len)
1772 return 0;
1773 else
1774 return EIO;
1775 }
1776
1777 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1778 Returns either 0 for success or an errno value if any error occurs.
1779 If an error occurs, no guarantee is made about how much data got written.
1780 Callers that can deal with partial writes should call target_write. */
1781
1782 int
1783 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1784 {
1785 /* Dispatch to the topmost target, not the flattened current_target.
1786 Memory accesses check target->to_has_(all_)memory, and the
1787 flattened target doesn't inherit those. */
1788 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1789 myaddr, memaddr, len) == len)
1790 return 0;
1791 else
1792 return EIO;
1793 }
1794
1795 /* Write LEN bytes from MYADDR to target raw memory at address
1796 MEMADDR. Returns either 0 for success or an errno value if any
1797 error occurs. If an error occurs, no guarantee is made about how
1798 much data got written. Callers that can deal with partial writes
1799 should call target_write. */
1800
1801 int
1802 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1803 {
1804 /* Dispatch to the topmost target, not the flattened current_target.
1805 Memory accesses check target->to_has_(all_)memory, and the
1806 flattened target doesn't inherit those. */
1807 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1808 myaddr, memaddr, len) == len)
1809 return 0;
1810 else
1811 return EIO;
1812 }
1813
1814 /* Fetch the target's memory map. */
1815
1816 VEC(mem_region_s) *
1817 target_memory_map (void)
1818 {
1819 VEC(mem_region_s) *result;
1820 struct mem_region *last_one, *this_one;
1821 int ix;
1822 struct target_ops *t;
1823
1824 if (targetdebug)
1825 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1826
1827 for (t = current_target.beneath; t != NULL; t = t->beneath)
1828 if (t->to_memory_map != NULL)
1829 break;
1830
1831 if (t == NULL)
1832 return NULL;
1833
1834 result = t->to_memory_map (t);
1835 if (result == NULL)
1836 return NULL;
1837
1838 qsort (VEC_address (mem_region_s, result),
1839 VEC_length (mem_region_s, result),
1840 sizeof (struct mem_region), mem_region_cmp);
1841
1842 /* Check that regions do not overlap. Simultaneously assign
1843 a numbering for the "mem" commands to use to refer to
1844 each region. */
1845 last_one = NULL;
1846 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1847 {
1848 this_one->number = ix;
1849
1850 if (last_one && last_one->hi > this_one->lo)
1851 {
1852 warning (_("Overlapping regions in memory map: ignoring"));
1853 VEC_free (mem_region_s, result);
1854 return NULL;
1855 }
1856 last_one = this_one;
1857 }
1858
1859 return result;
1860 }
1861
1862 void
1863 target_flash_erase (ULONGEST address, LONGEST length)
1864 {
1865 struct target_ops *t;
1866
1867 for (t = current_target.beneath; t != NULL; t = t->beneath)
1868 if (t->to_flash_erase != NULL)
1869 {
1870 if (targetdebug)
1871 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1872 hex_string (address), phex (length, 0));
1873 t->to_flash_erase (t, address, length);
1874 return;
1875 }
1876
1877 tcomplain ();
1878 }
1879
1880 void
1881 target_flash_done (void)
1882 {
1883 struct target_ops *t;
1884
1885 for (t = current_target.beneath; t != NULL; t = t->beneath)
1886 if (t->to_flash_done != NULL)
1887 {
1888 if (targetdebug)
1889 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1890 t->to_flash_done (t);
1891 return;
1892 }
1893
1894 tcomplain ();
1895 }
1896
1897 static void
1898 show_trust_readonly (struct ui_file *file, int from_tty,
1899 struct cmd_list_element *c, const char *value)
1900 {
1901 fprintf_filtered (file,
1902 _("Mode for reading from readonly sections is %s.\n"),
1903 value);
1904 }
1905
1906 /* More generic transfers. */
1907
1908 static LONGEST
1909 default_xfer_partial (struct target_ops *ops, enum target_object object,
1910 const char *annex, gdb_byte *readbuf,
1911 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1912 {
1913 if (object == TARGET_OBJECT_MEMORY
1914 && ops->deprecated_xfer_memory != NULL)
1915 /* If available, fall back to the target's
1916 "deprecated_xfer_memory" method. */
1917 {
1918 int xfered = -1;
1919
1920 errno = 0;
1921 if (writebuf != NULL)
1922 {
1923 void *buffer = xmalloc (len);
1924 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1925
1926 memcpy (buffer, writebuf, len);
1927 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1928 1/*write*/, NULL, ops);
1929 do_cleanups (cleanup);
1930 }
1931 if (readbuf != NULL)
1932 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1933 0/*read*/, NULL, ops);
1934 if (xfered > 0)
1935 return xfered;
1936 else if (xfered == 0 && errno == 0)
1937 /* "deprecated_xfer_memory" uses 0, cross checked against
1938 ERRNO as one indication of an error. */
1939 return 0;
1940 else
1941 return -1;
1942 }
1943 else if (ops->beneath != NULL)
1944 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1945 readbuf, writebuf, offset, len);
1946 else
1947 return -1;
1948 }
1949
1950 /* The xfer_partial handler for the topmost target. Unlike the default,
1951 it does not need to handle memory specially; it just passes all
1952 requests down the stack. */
1953
1954 static LONGEST
1955 current_xfer_partial (struct target_ops *ops, enum target_object object,
1956 const char *annex, gdb_byte *readbuf,
1957 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1958 {
1959 if (ops->beneath != NULL)
1960 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1961 readbuf, writebuf, offset, len);
1962 else
1963 return -1;
1964 }
1965
1966 /* Target vector read/write partial wrapper functions. */
1967
1968 static LONGEST
1969 target_read_partial (struct target_ops *ops,
1970 enum target_object object,
1971 const char *annex, gdb_byte *buf,
1972 ULONGEST offset, LONGEST len)
1973 {
1974 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1975 }
1976
1977 static LONGEST
1978 target_write_partial (struct target_ops *ops,
1979 enum target_object object,
1980 const char *annex, const gdb_byte *buf,
1981 ULONGEST offset, LONGEST len)
1982 {
1983 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1984 }
1985
1986 /* Wrappers to perform the full transfer. */
1987
1988 /* For docs on target_read see target.h. */
1989
1990 LONGEST
1991 target_read (struct target_ops *ops,
1992 enum target_object object,
1993 const char *annex, gdb_byte *buf,
1994 ULONGEST offset, LONGEST len)
1995 {
1996 LONGEST xfered = 0;
1997
1998 while (xfered < len)
1999 {
2000 LONGEST xfer = target_read_partial (ops, object, annex,
2001 (gdb_byte *) buf + xfered,
2002 offset + xfered, len - xfered);
2003
2004 /* Call an observer, notifying them of the xfer progress? */
2005 if (xfer == 0)
2006 return xfered;
2007 if (xfer < 0)
2008 return -1;
2009 xfered += xfer;
2010 QUIT;
2011 }
2012 return len;
2013 }
2014
2015 /* Assuming that the entire [begin, end) range of memory cannot be
2016 read, try to read whatever subrange is possible to read.
2017
2018 The function returns, in RESULT, either zero or one memory block.
2019 If there's a readable subrange at the beginning, it is completely
2020 read and returned. Any further readable subrange will not be read.
2021 Otherwise, if there's a readable subrange at the end, it will be
2022 completely read and returned. Any readable subranges before it
2023 (obviously, not starting at the beginning), will be ignored. In
2024 other cases -- either no readable subrange, or readable subrange(s)
2025 that is neither at the beginning, or end, nothing is returned.
2026
2027 The purpose of this function is to handle a read across a boundary
2028 of accessible memory in a case when memory map is not available.
2029 The above restrictions are fine for this case, but will give
2030 incorrect results if the memory is 'patchy'. However, supporting
2031 'patchy' memory would require trying to read every single byte,
2032 and it seems unacceptable solution. Explicit memory map is
2033 recommended for this case -- and target_read_memory_robust will
2034 take care of reading multiple ranges then. */
2035
2036 static void
2037 read_whatever_is_readable (struct target_ops *ops,
2038 ULONGEST begin, ULONGEST end,
2039 VEC(memory_read_result_s) **result)
2040 {
2041 gdb_byte *buf = xmalloc (end - begin);
2042 ULONGEST current_begin = begin;
2043 ULONGEST current_end = end;
2044 int forward;
2045 memory_read_result_s r;
2046
2047 /* If we previously failed to read 1 byte, nothing can be done here. */
2048 if (end - begin <= 1)
2049 {
2050 xfree (buf);
2051 return;
2052 }
2053
2054 /* Check that either first or the last byte is readable, and give up
2055 if not. This heuristic is meant to permit reading accessible memory
2056 at the boundary of accessible region. */
2057 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2058 buf, begin, 1) == 1)
2059 {
2060 forward = 1;
2061 ++current_begin;
2062 }
2063 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2064 buf + (end-begin) - 1, end - 1, 1) == 1)
2065 {
2066 forward = 0;
2067 --current_end;
2068 }
2069 else
2070 {
2071 xfree (buf);
2072 return;
2073 }
2074
2075 /* Loop invariant is that the [current_begin, current_end) was previously
2076 found to be not readable as a whole.
2077
2078 Note loop condition -- if the range has 1 byte, we can't divide the range
2079 so there's no point trying further. */
2080 while (current_end - current_begin > 1)
2081 {
2082 ULONGEST first_half_begin, first_half_end;
2083 ULONGEST second_half_begin, second_half_end;
2084 LONGEST xfer;
2085 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2086
2087 if (forward)
2088 {
2089 first_half_begin = current_begin;
2090 first_half_end = middle;
2091 second_half_begin = middle;
2092 second_half_end = current_end;
2093 }
2094 else
2095 {
2096 first_half_begin = middle;
2097 first_half_end = current_end;
2098 second_half_begin = current_begin;
2099 second_half_end = middle;
2100 }
2101
2102 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2103 buf + (first_half_begin - begin),
2104 first_half_begin,
2105 first_half_end - first_half_begin);
2106
2107 if (xfer == first_half_end - first_half_begin)
2108 {
2109 /* This half reads up fine. So, the error must be in the
2110 other half. */
2111 current_begin = second_half_begin;
2112 current_end = second_half_end;
2113 }
2114 else
2115 {
2116 /* This half is not readable. Because we've tried one byte, we
2117 know some part of this half if actually redable. Go to the next
2118 iteration to divide again and try to read.
2119
2120 We don't handle the other half, because this function only tries
2121 to read a single readable subrange. */
2122 current_begin = first_half_begin;
2123 current_end = first_half_end;
2124 }
2125 }
2126
2127 if (forward)
2128 {
2129 /* The [begin, current_begin) range has been read. */
2130 r.begin = begin;
2131 r.end = current_begin;
2132 r.data = buf;
2133 }
2134 else
2135 {
2136 /* The [current_end, end) range has been read. */
2137 LONGEST rlen = end - current_end;
2138
2139 r.data = xmalloc (rlen);
2140 memcpy (r.data, buf + current_end - begin, rlen);
2141 r.begin = current_end;
2142 r.end = end;
2143 xfree (buf);
2144 }
2145 VEC_safe_push(memory_read_result_s, (*result), &r);
2146 }
2147
2148 void
2149 free_memory_read_result_vector (void *x)
2150 {
2151 VEC(memory_read_result_s) *v = x;
2152 memory_read_result_s *current;
2153 int ix;
2154
2155 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2156 {
2157 xfree (current->data);
2158 }
2159 VEC_free (memory_read_result_s, v);
2160 }
2161
2162 VEC(memory_read_result_s) *
2163 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2164 {
2165 VEC(memory_read_result_s) *result = 0;
2166
2167 LONGEST xfered = 0;
2168 while (xfered < len)
2169 {
2170 struct mem_region *region = lookup_mem_region (offset + xfered);
2171 LONGEST rlen;
2172
2173 /* If there is no explicit region, a fake one should be created. */
2174 gdb_assert (region);
2175
2176 if (region->hi == 0)
2177 rlen = len - xfered;
2178 else
2179 rlen = region->hi - offset;
2180
2181 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2182 {
2183 /* Cannot read this region. Note that we can end up here only
2184 if the region is explicitly marked inaccessible, or
2185 'inaccessible-by-default' is in effect. */
2186 xfered += rlen;
2187 }
2188 else
2189 {
2190 LONGEST to_read = min (len - xfered, rlen);
2191 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2192
2193 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2194 (gdb_byte *) buffer,
2195 offset + xfered, to_read);
2196 /* Call an observer, notifying them of the xfer progress? */
2197 if (xfer <= 0)
2198 {
2199 /* Got an error reading full chunk. See if maybe we can read
2200 some subrange. */
2201 xfree (buffer);
2202 read_whatever_is_readable (ops, offset + xfered,
2203 offset + xfered + to_read, &result);
2204 xfered += to_read;
2205 }
2206 else
2207 {
2208 struct memory_read_result r;
2209 r.data = buffer;
2210 r.begin = offset + xfered;
2211 r.end = r.begin + xfer;
2212 VEC_safe_push (memory_read_result_s, result, &r);
2213 xfered += xfer;
2214 }
2215 QUIT;
2216 }
2217 }
2218 return result;
2219 }
2220
2221
2222 /* An alternative to target_write with progress callbacks. */
2223
2224 LONGEST
2225 target_write_with_progress (struct target_ops *ops,
2226 enum target_object object,
2227 const char *annex, const gdb_byte *buf,
2228 ULONGEST offset, LONGEST len,
2229 void (*progress) (ULONGEST, void *), void *baton)
2230 {
2231 LONGEST xfered = 0;
2232
2233 /* Give the progress callback a chance to set up. */
2234 if (progress)
2235 (*progress) (0, baton);
2236
2237 while (xfered < len)
2238 {
2239 LONGEST xfer = target_write_partial (ops, object, annex,
2240 (gdb_byte *) buf + xfered,
2241 offset + xfered, len - xfered);
2242
2243 if (xfer == 0)
2244 return xfered;
2245 if (xfer < 0)
2246 return -1;
2247
2248 if (progress)
2249 (*progress) (xfer, baton);
2250
2251 xfered += xfer;
2252 QUIT;
2253 }
2254 return len;
2255 }
2256
2257 /* For docs on target_write see target.h. */
2258
2259 LONGEST
2260 target_write (struct target_ops *ops,
2261 enum target_object object,
2262 const char *annex, const gdb_byte *buf,
2263 ULONGEST offset, LONGEST len)
2264 {
2265 return target_write_with_progress (ops, object, annex, buf, offset, len,
2266 NULL, NULL);
2267 }
2268
2269 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2270 the size of the transferred data. PADDING additional bytes are
2271 available in *BUF_P. This is a helper function for
2272 target_read_alloc; see the declaration of that function for more
2273 information. */
2274
2275 static LONGEST
2276 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2277 const char *annex, gdb_byte **buf_p, int padding)
2278 {
2279 size_t buf_alloc, buf_pos;
2280 gdb_byte *buf;
2281 LONGEST n;
2282
2283 /* This function does not have a length parameter; it reads the
2284 entire OBJECT). Also, it doesn't support objects fetched partly
2285 from one target and partly from another (in a different stratum,
2286 e.g. a core file and an executable). Both reasons make it
2287 unsuitable for reading memory. */
2288 gdb_assert (object != TARGET_OBJECT_MEMORY);
2289
2290 /* Start by reading up to 4K at a time. The target will throttle
2291 this number down if necessary. */
2292 buf_alloc = 4096;
2293 buf = xmalloc (buf_alloc);
2294 buf_pos = 0;
2295 while (1)
2296 {
2297 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2298 buf_pos, buf_alloc - buf_pos - padding);
2299 if (n < 0)
2300 {
2301 /* An error occurred. */
2302 xfree (buf);
2303 return -1;
2304 }
2305 else if (n == 0)
2306 {
2307 /* Read all there was. */
2308 if (buf_pos == 0)
2309 xfree (buf);
2310 else
2311 *buf_p = buf;
2312 return buf_pos;
2313 }
2314
2315 buf_pos += n;
2316
2317 /* If the buffer is filling up, expand it. */
2318 if (buf_alloc < buf_pos * 2)
2319 {
2320 buf_alloc *= 2;
2321 buf = xrealloc (buf, buf_alloc);
2322 }
2323
2324 QUIT;
2325 }
2326 }
2327
2328 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2329 the size of the transferred data. See the declaration in "target.h"
2330 function for more information about the return value. */
2331
2332 LONGEST
2333 target_read_alloc (struct target_ops *ops, enum target_object object,
2334 const char *annex, gdb_byte **buf_p)
2335 {
2336 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2337 }
2338
2339 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2340 returned as a string, allocated using xmalloc. If an error occurs
2341 or the transfer is unsupported, NULL is returned. Empty objects
2342 are returned as allocated but empty strings. A warning is issued
2343 if the result contains any embedded NUL bytes. */
2344
2345 char *
2346 target_read_stralloc (struct target_ops *ops, enum target_object object,
2347 const char *annex)
2348 {
2349 gdb_byte *buffer;
2350 LONGEST transferred;
2351
2352 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2353
2354 if (transferred < 0)
2355 return NULL;
2356
2357 if (transferred == 0)
2358 return xstrdup ("");
2359
2360 buffer[transferred] = 0;
2361 if (strlen (buffer) < transferred)
2362 warning (_("target object %d, annex %s, "
2363 "contained unexpected null characters"),
2364 (int) object, annex ? annex : "(none)");
2365
2366 return (char *) buffer;
2367 }
2368
2369 /* Memory transfer methods. */
2370
2371 void
2372 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2373 LONGEST len)
2374 {
2375 /* This method is used to read from an alternate, non-current
2376 target. This read must bypass the overlay support (as symbols
2377 don't match this target), and GDB's internal cache (wrong cache
2378 for this target). */
2379 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2380 != len)
2381 memory_error (EIO, addr);
2382 }
2383
2384 ULONGEST
2385 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2386 int len, enum bfd_endian byte_order)
2387 {
2388 gdb_byte buf[sizeof (ULONGEST)];
2389
2390 gdb_assert (len <= sizeof (buf));
2391 get_target_memory (ops, addr, buf, len);
2392 return extract_unsigned_integer (buf, len, byte_order);
2393 }
2394
2395 int
2396 target_insert_breakpoint (struct gdbarch *gdbarch,
2397 struct bp_target_info *bp_tgt)
2398 {
2399 if (!may_insert_breakpoints)
2400 {
2401 warning (_("May not insert breakpoints"));
2402 return 1;
2403 }
2404
2405 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2406 }
2407
2408 int
2409 target_remove_breakpoint (struct gdbarch *gdbarch,
2410 struct bp_target_info *bp_tgt)
2411 {
2412 /* This is kind of a weird case to handle, but the permission might
2413 have been changed after breakpoints were inserted - in which case
2414 we should just take the user literally and assume that any
2415 breakpoints should be left in place. */
2416 if (!may_insert_breakpoints)
2417 {
2418 warning (_("May not remove breakpoints"));
2419 return 1;
2420 }
2421
2422 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2423 }
2424
2425 static void
2426 target_info (char *args, int from_tty)
2427 {
2428 struct target_ops *t;
2429 int has_all_mem = 0;
2430
2431 if (symfile_objfile != NULL)
2432 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2433
2434 for (t = target_stack; t != NULL; t = t->beneath)
2435 {
2436 if (!(*t->to_has_memory) (t))
2437 continue;
2438
2439 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2440 continue;
2441 if (has_all_mem)
2442 printf_unfiltered (_("\tWhile running this, "
2443 "GDB does not access memory from...\n"));
2444 printf_unfiltered ("%s:\n", t->to_longname);
2445 (t->to_files_info) (t);
2446 has_all_mem = (*t->to_has_all_memory) (t);
2447 }
2448 }
2449
2450 /* This function is called before any new inferior is created, e.g.
2451 by running a program, attaching, or connecting to a target.
2452 It cleans up any state from previous invocations which might
2453 change between runs. This is a subset of what target_preopen
2454 resets (things which might change between targets). */
2455
2456 void
2457 target_pre_inferior (int from_tty)
2458 {
2459 /* Clear out solib state. Otherwise the solib state of the previous
2460 inferior might have survived and is entirely wrong for the new
2461 target. This has been observed on GNU/Linux using glibc 2.3. How
2462 to reproduce:
2463
2464 bash$ ./foo&
2465 [1] 4711
2466 bash$ ./foo&
2467 [1] 4712
2468 bash$ gdb ./foo
2469 [...]
2470 (gdb) attach 4711
2471 (gdb) detach
2472 (gdb) attach 4712
2473 Cannot access memory at address 0xdeadbeef
2474 */
2475
2476 /* In some OSs, the shared library list is the same/global/shared
2477 across inferiors. If code is shared between processes, so are
2478 memory regions and features. */
2479 if (!gdbarch_has_global_solist (target_gdbarch))
2480 {
2481 no_shared_libraries (NULL, from_tty);
2482
2483 invalidate_target_mem_regions ();
2484
2485 target_clear_description ();
2486 }
2487 }
2488
2489 /* Callback for iterate_over_inferiors. Gets rid of the given
2490 inferior. */
2491
2492 static int
2493 dispose_inferior (struct inferior *inf, void *args)
2494 {
2495 struct thread_info *thread;
2496
2497 thread = any_thread_of_process (inf->pid);
2498 if (thread)
2499 {
2500 switch_to_thread (thread->ptid);
2501
2502 /* Core inferiors actually should be detached, not killed. */
2503 if (target_has_execution)
2504 target_kill ();
2505 else
2506 target_detach (NULL, 0);
2507 }
2508
2509 return 0;
2510 }
2511
2512 /* This is to be called by the open routine before it does
2513 anything. */
2514
2515 void
2516 target_preopen (int from_tty)
2517 {
2518 dont_repeat ();
2519
2520 if (have_inferiors ())
2521 {
2522 if (!from_tty
2523 || !have_live_inferiors ()
2524 || query (_("A program is being debugged already. Kill it? ")))
2525 iterate_over_inferiors (dispose_inferior, NULL);
2526 else
2527 error (_("Program not killed."));
2528 }
2529
2530 /* Calling target_kill may remove the target from the stack. But if
2531 it doesn't (which seems like a win for UDI), remove it now. */
2532 /* Leave the exec target, though. The user may be switching from a
2533 live process to a core of the same program. */
2534 pop_all_targets_above (file_stratum, 0);
2535
2536 target_pre_inferior (from_tty);
2537 }
2538
2539 /* Detach a target after doing deferred register stores. */
2540
2541 void
2542 target_detach (char *args, int from_tty)
2543 {
2544 struct target_ops* t;
2545
2546 if (gdbarch_has_global_breakpoints (target_gdbarch))
2547 /* Don't remove global breakpoints here. They're removed on
2548 disconnection from the target. */
2549 ;
2550 else
2551 /* If we're in breakpoints-always-inserted mode, have to remove
2552 them before detaching. */
2553 remove_breakpoints_pid (PIDGET (inferior_ptid));
2554
2555 prepare_for_detach ();
2556
2557 for (t = current_target.beneath; t != NULL; t = t->beneath)
2558 {
2559 if (t->to_detach != NULL)
2560 {
2561 t->to_detach (t, args, from_tty);
2562 if (targetdebug)
2563 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2564 args, from_tty);
2565 return;
2566 }
2567 }
2568
2569 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2570 }
2571
2572 void
2573 target_disconnect (char *args, int from_tty)
2574 {
2575 struct target_ops *t;
2576
2577 /* If we're in breakpoints-always-inserted mode or if breakpoints
2578 are global across processes, we have to remove them before
2579 disconnecting. */
2580 remove_breakpoints ();
2581
2582 for (t = current_target.beneath; t != NULL; t = t->beneath)
2583 if (t->to_disconnect != NULL)
2584 {
2585 if (targetdebug)
2586 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2587 args, from_tty);
2588 t->to_disconnect (t, args, from_tty);
2589 return;
2590 }
2591
2592 tcomplain ();
2593 }
2594
2595 ptid_t
2596 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2597 {
2598 struct target_ops *t;
2599
2600 for (t = current_target.beneath; t != NULL; t = t->beneath)
2601 {
2602 if (t->to_wait != NULL)
2603 {
2604 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2605
2606 if (targetdebug)
2607 {
2608 char *status_string;
2609
2610 status_string = target_waitstatus_to_string (status);
2611 fprintf_unfiltered (gdb_stdlog,
2612 "target_wait (%d, status) = %d, %s\n",
2613 PIDGET (ptid), PIDGET (retval),
2614 status_string);
2615 xfree (status_string);
2616 }
2617
2618 return retval;
2619 }
2620 }
2621
2622 noprocess ();
2623 }
2624
2625 char *
2626 target_pid_to_str (ptid_t ptid)
2627 {
2628 struct target_ops *t;
2629
2630 for (t = current_target.beneath; t != NULL; t = t->beneath)
2631 {
2632 if (t->to_pid_to_str != NULL)
2633 return (*t->to_pid_to_str) (t, ptid);
2634 }
2635
2636 return normal_pid_to_str (ptid);
2637 }
2638
2639 char *
2640 target_thread_name (struct thread_info *info)
2641 {
2642 struct target_ops *t;
2643
2644 for (t = current_target.beneath; t != NULL; t = t->beneath)
2645 {
2646 if (t->to_thread_name != NULL)
2647 return (*t->to_thread_name) (info);
2648 }
2649
2650 return NULL;
2651 }
2652
2653 void
2654 target_resume (ptid_t ptid, int step, enum target_signal signal)
2655 {
2656 struct target_ops *t;
2657
2658 target_dcache_invalidate ();
2659
2660 for (t = current_target.beneath; t != NULL; t = t->beneath)
2661 {
2662 if (t->to_resume != NULL)
2663 {
2664 t->to_resume (t, ptid, step, signal);
2665 if (targetdebug)
2666 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2667 PIDGET (ptid),
2668 step ? "step" : "continue",
2669 target_signal_to_name (signal));
2670
2671 registers_changed_ptid (ptid);
2672 set_executing (ptid, 1);
2673 set_running (ptid, 1);
2674 clear_inline_frame_state (ptid);
2675 return;
2676 }
2677 }
2678
2679 noprocess ();
2680 }
2681
2682 void
2683 target_pass_signals (int numsigs, unsigned char *pass_signals)
2684 {
2685 struct target_ops *t;
2686
2687 for (t = current_target.beneath; t != NULL; t = t->beneath)
2688 {
2689 if (t->to_pass_signals != NULL)
2690 {
2691 if (targetdebug)
2692 {
2693 int i;
2694
2695 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2696 numsigs);
2697
2698 for (i = 0; i < numsigs; i++)
2699 if (pass_signals[i])
2700 fprintf_unfiltered (gdb_stdlog, " %s",
2701 target_signal_to_name (i));
2702
2703 fprintf_unfiltered (gdb_stdlog, " })\n");
2704 }
2705
2706 (*t->to_pass_signals) (numsigs, pass_signals);
2707 return;
2708 }
2709 }
2710 }
2711
2712 /* Look through the list of possible targets for a target that can
2713 follow forks. */
2714
2715 int
2716 target_follow_fork (int follow_child)
2717 {
2718 struct target_ops *t;
2719
2720 for (t = current_target.beneath; t != NULL; t = t->beneath)
2721 {
2722 if (t->to_follow_fork != NULL)
2723 {
2724 int retval = t->to_follow_fork (t, follow_child);
2725
2726 if (targetdebug)
2727 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2728 follow_child, retval);
2729 return retval;
2730 }
2731 }
2732
2733 /* Some target returned a fork event, but did not know how to follow it. */
2734 internal_error (__FILE__, __LINE__,
2735 _("could not find a target to follow fork"));
2736 }
2737
2738 void
2739 target_mourn_inferior (void)
2740 {
2741 struct target_ops *t;
2742
2743 for (t = current_target.beneath; t != NULL; t = t->beneath)
2744 {
2745 if (t->to_mourn_inferior != NULL)
2746 {
2747 t->to_mourn_inferior (t);
2748 if (targetdebug)
2749 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2750
2751 /* We no longer need to keep handles on any of the object files.
2752 Make sure to release them to avoid unnecessarily locking any
2753 of them while we're not actually debugging. */
2754 bfd_cache_close_all ();
2755
2756 return;
2757 }
2758 }
2759
2760 internal_error (__FILE__, __LINE__,
2761 _("could not find a target to follow mourn inferior"));
2762 }
2763
2764 /* Look for a target which can describe architectural features, starting
2765 from TARGET. If we find one, return its description. */
2766
2767 const struct target_desc *
2768 target_read_description (struct target_ops *target)
2769 {
2770 struct target_ops *t;
2771
2772 for (t = target; t != NULL; t = t->beneath)
2773 if (t->to_read_description != NULL)
2774 {
2775 const struct target_desc *tdesc;
2776
2777 tdesc = t->to_read_description (t);
2778 if (tdesc)
2779 return tdesc;
2780 }
2781
2782 return NULL;
2783 }
2784
2785 /* The default implementation of to_search_memory.
2786 This implements a basic search of memory, reading target memory and
2787 performing the search here (as opposed to performing the search in on the
2788 target side with, for example, gdbserver). */
2789
2790 int
2791 simple_search_memory (struct target_ops *ops,
2792 CORE_ADDR start_addr, ULONGEST search_space_len,
2793 const gdb_byte *pattern, ULONGEST pattern_len,
2794 CORE_ADDR *found_addrp)
2795 {
2796 /* NOTE: also defined in find.c testcase. */
2797 #define SEARCH_CHUNK_SIZE 16000
2798 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2799 /* Buffer to hold memory contents for searching. */
2800 gdb_byte *search_buf;
2801 unsigned search_buf_size;
2802 struct cleanup *old_cleanups;
2803
2804 search_buf_size = chunk_size + pattern_len - 1;
2805
2806 /* No point in trying to allocate a buffer larger than the search space. */
2807 if (search_space_len < search_buf_size)
2808 search_buf_size = search_space_len;
2809
2810 search_buf = malloc (search_buf_size);
2811 if (search_buf == NULL)
2812 error (_("Unable to allocate memory to perform the search."));
2813 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2814
2815 /* Prime the search buffer. */
2816
2817 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2818 search_buf, start_addr, search_buf_size) != search_buf_size)
2819 {
2820 warning (_("Unable to access target memory at %s, halting search."),
2821 hex_string (start_addr));
2822 do_cleanups (old_cleanups);
2823 return -1;
2824 }
2825
2826 /* Perform the search.
2827
2828 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2829 When we've scanned N bytes we copy the trailing bytes to the start and
2830 read in another N bytes. */
2831
2832 while (search_space_len >= pattern_len)
2833 {
2834 gdb_byte *found_ptr;
2835 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2836
2837 found_ptr = memmem (search_buf, nr_search_bytes,
2838 pattern, pattern_len);
2839
2840 if (found_ptr != NULL)
2841 {
2842 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2843
2844 *found_addrp = found_addr;
2845 do_cleanups (old_cleanups);
2846 return 1;
2847 }
2848
2849 /* Not found in this chunk, skip to next chunk. */
2850
2851 /* Don't let search_space_len wrap here, it's unsigned. */
2852 if (search_space_len >= chunk_size)
2853 search_space_len -= chunk_size;
2854 else
2855 search_space_len = 0;
2856
2857 if (search_space_len >= pattern_len)
2858 {
2859 unsigned keep_len = search_buf_size - chunk_size;
2860 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2861 int nr_to_read;
2862
2863 /* Copy the trailing part of the previous iteration to the front
2864 of the buffer for the next iteration. */
2865 gdb_assert (keep_len == pattern_len - 1);
2866 memcpy (search_buf, search_buf + chunk_size, keep_len);
2867
2868 nr_to_read = min (search_space_len - keep_len, chunk_size);
2869
2870 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2871 search_buf + keep_len, read_addr,
2872 nr_to_read) != nr_to_read)
2873 {
2874 warning (_("Unable to access target "
2875 "memory at %s, halting search."),
2876 hex_string (read_addr));
2877 do_cleanups (old_cleanups);
2878 return -1;
2879 }
2880
2881 start_addr += chunk_size;
2882 }
2883 }
2884
2885 /* Not found. */
2886
2887 do_cleanups (old_cleanups);
2888 return 0;
2889 }
2890
2891 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2892 sequence of bytes in PATTERN with length PATTERN_LEN.
2893
2894 The result is 1 if found, 0 if not found, and -1 if there was an error
2895 requiring halting of the search (e.g. memory read error).
2896 If the pattern is found the address is recorded in FOUND_ADDRP. */
2897
2898 int
2899 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2900 const gdb_byte *pattern, ULONGEST pattern_len,
2901 CORE_ADDR *found_addrp)
2902 {
2903 struct target_ops *t;
2904 int found;
2905
2906 /* We don't use INHERIT to set current_target.to_search_memory,
2907 so we have to scan the target stack and handle targetdebug
2908 ourselves. */
2909
2910 if (targetdebug)
2911 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2912 hex_string (start_addr));
2913
2914 for (t = current_target.beneath; t != NULL; t = t->beneath)
2915 if (t->to_search_memory != NULL)
2916 break;
2917
2918 if (t != NULL)
2919 {
2920 found = t->to_search_memory (t, start_addr, search_space_len,
2921 pattern, pattern_len, found_addrp);
2922 }
2923 else
2924 {
2925 /* If a special version of to_search_memory isn't available, use the
2926 simple version. */
2927 found = simple_search_memory (current_target.beneath,
2928 start_addr, search_space_len,
2929 pattern, pattern_len, found_addrp);
2930 }
2931
2932 if (targetdebug)
2933 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2934
2935 return found;
2936 }
2937
2938 /* Look through the currently pushed targets. If none of them will
2939 be able to restart the currently running process, issue an error
2940 message. */
2941
2942 void
2943 target_require_runnable (void)
2944 {
2945 struct target_ops *t;
2946
2947 for (t = target_stack; t != NULL; t = t->beneath)
2948 {
2949 /* If this target knows how to create a new program, then
2950 assume we will still be able to after killing the current
2951 one. Either killing and mourning will not pop T, or else
2952 find_default_run_target will find it again. */
2953 if (t->to_create_inferior != NULL)
2954 return;
2955
2956 /* Do not worry about thread_stratum targets that can not
2957 create inferiors. Assume they will be pushed again if
2958 necessary, and continue to the process_stratum. */
2959 if (t->to_stratum == thread_stratum
2960 || t->to_stratum == arch_stratum)
2961 continue;
2962
2963 error (_("The \"%s\" target does not support \"run\". "
2964 "Try \"help target\" or \"continue\"."),
2965 t->to_shortname);
2966 }
2967
2968 /* This function is only called if the target is running. In that
2969 case there should have been a process_stratum target and it
2970 should either know how to create inferiors, or not... */
2971 internal_error (__FILE__, __LINE__, _("No targets found"));
2972 }
2973
2974 /* Look through the list of possible targets for a target that can
2975 execute a run or attach command without any other data. This is
2976 used to locate the default process stratum.
2977
2978 If DO_MESG is not NULL, the result is always valid (error() is
2979 called for errors); else, return NULL on error. */
2980
2981 static struct target_ops *
2982 find_default_run_target (char *do_mesg)
2983 {
2984 struct target_ops **t;
2985 struct target_ops *runable = NULL;
2986 int count;
2987
2988 count = 0;
2989
2990 for (t = target_structs; t < target_structs + target_struct_size;
2991 ++t)
2992 {
2993 if ((*t)->to_can_run && target_can_run (*t))
2994 {
2995 runable = *t;
2996 ++count;
2997 }
2998 }
2999
3000 if (count != 1)
3001 {
3002 if (do_mesg)
3003 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3004 else
3005 return NULL;
3006 }
3007
3008 return runable;
3009 }
3010
3011 void
3012 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3013 {
3014 struct target_ops *t;
3015
3016 t = find_default_run_target ("attach");
3017 (t->to_attach) (t, args, from_tty);
3018 return;
3019 }
3020
3021 void
3022 find_default_create_inferior (struct target_ops *ops,
3023 char *exec_file, char *allargs, char **env,
3024 int from_tty)
3025 {
3026 struct target_ops *t;
3027
3028 t = find_default_run_target ("run");
3029 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3030 return;
3031 }
3032
3033 static int
3034 find_default_can_async_p (void)
3035 {
3036 struct target_ops *t;
3037
3038 /* This may be called before the target is pushed on the stack;
3039 look for the default process stratum. If there's none, gdb isn't
3040 configured with a native debugger, and target remote isn't
3041 connected yet. */
3042 t = find_default_run_target (NULL);
3043 if (t && t->to_can_async_p)
3044 return (t->to_can_async_p) ();
3045 return 0;
3046 }
3047
3048 static int
3049 find_default_is_async_p (void)
3050 {
3051 struct target_ops *t;
3052
3053 /* This may be called before the target is pushed on the stack;
3054 look for the default process stratum. If there's none, gdb isn't
3055 configured with a native debugger, and target remote isn't
3056 connected yet. */
3057 t = find_default_run_target (NULL);
3058 if (t && t->to_is_async_p)
3059 return (t->to_is_async_p) ();
3060 return 0;
3061 }
3062
3063 static int
3064 find_default_supports_non_stop (void)
3065 {
3066 struct target_ops *t;
3067
3068 t = find_default_run_target (NULL);
3069 if (t && t->to_supports_non_stop)
3070 return (t->to_supports_non_stop) ();
3071 return 0;
3072 }
3073
3074 int
3075 target_supports_non_stop (void)
3076 {
3077 struct target_ops *t;
3078
3079 for (t = &current_target; t != NULL; t = t->beneath)
3080 if (t->to_supports_non_stop)
3081 return t->to_supports_non_stop ();
3082
3083 return 0;
3084 }
3085
3086 static int
3087 find_default_supports_disable_randomization (void)
3088 {
3089 struct target_ops *t;
3090
3091 t = find_default_run_target (NULL);
3092 if (t && t->to_supports_disable_randomization)
3093 return (t->to_supports_disable_randomization) ();
3094 return 0;
3095 }
3096
3097 int
3098 target_supports_disable_randomization (void)
3099 {
3100 struct target_ops *t;
3101
3102 for (t = &current_target; t != NULL; t = t->beneath)
3103 if (t->to_supports_disable_randomization)
3104 return t->to_supports_disable_randomization ();
3105
3106 return 0;
3107 }
3108
3109 char *
3110 target_get_osdata (const char *type)
3111 {
3112 struct target_ops *t;
3113
3114 /* If we're already connected to something that can get us OS
3115 related data, use it. Otherwise, try using the native
3116 target. */
3117 if (current_target.to_stratum >= process_stratum)
3118 t = current_target.beneath;
3119 else
3120 t = find_default_run_target ("get OS data");
3121
3122 if (!t)
3123 return NULL;
3124
3125 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3126 }
3127
3128 /* Determine the current address space of thread PTID. */
3129
3130 struct address_space *
3131 target_thread_address_space (ptid_t ptid)
3132 {
3133 struct address_space *aspace;
3134 struct inferior *inf;
3135 struct target_ops *t;
3136
3137 for (t = current_target.beneath; t != NULL; t = t->beneath)
3138 {
3139 if (t->to_thread_address_space != NULL)
3140 {
3141 aspace = t->to_thread_address_space (t, ptid);
3142 gdb_assert (aspace);
3143
3144 if (targetdebug)
3145 fprintf_unfiltered (gdb_stdlog,
3146 "target_thread_address_space (%s) = %d\n",
3147 target_pid_to_str (ptid),
3148 address_space_num (aspace));
3149 return aspace;
3150 }
3151 }
3152
3153 /* Fall-back to the "main" address space of the inferior. */
3154 inf = find_inferior_pid (ptid_get_pid (ptid));
3155
3156 if (inf == NULL || inf->aspace == NULL)
3157 internal_error (__FILE__, __LINE__,
3158 _("Can't determine the current "
3159 "address space of thread %s\n"),
3160 target_pid_to_str (ptid));
3161
3162 return inf->aspace;
3163 }
3164
3165 static int
3166 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3167 {
3168 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
3169 }
3170
3171 static int
3172 default_watchpoint_addr_within_range (struct target_ops *target,
3173 CORE_ADDR addr,
3174 CORE_ADDR start, int length)
3175 {
3176 return addr >= start && addr < start + length;
3177 }
3178
3179 static struct gdbarch *
3180 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3181 {
3182 return target_gdbarch;
3183 }
3184
3185 static int
3186 return_zero (void)
3187 {
3188 return 0;
3189 }
3190
3191 static int
3192 return_one (void)
3193 {
3194 return 1;
3195 }
3196
3197 static int
3198 return_minus_one (void)
3199 {
3200 return -1;
3201 }
3202
3203 /* Find a single runnable target in the stack and return it. If for
3204 some reason there is more than one, return NULL. */
3205
3206 struct target_ops *
3207 find_run_target (void)
3208 {
3209 struct target_ops **t;
3210 struct target_ops *runable = NULL;
3211 int count;
3212
3213 count = 0;
3214
3215 for (t = target_structs; t < target_structs + target_struct_size; ++t)
3216 {
3217 if ((*t)->to_can_run && target_can_run (*t))
3218 {
3219 runable = *t;
3220 ++count;
3221 }
3222 }
3223
3224 return (count == 1 ? runable : NULL);
3225 }
3226
3227 /*
3228 * Find the next target down the stack from the specified target.
3229 */
3230
3231 struct target_ops *
3232 find_target_beneath (struct target_ops *t)
3233 {
3234 return t->beneath;
3235 }
3236
3237 \f
3238 /* The inferior process has died. Long live the inferior! */
3239
3240 void
3241 generic_mourn_inferior (void)
3242 {
3243 ptid_t ptid;
3244
3245 ptid = inferior_ptid;
3246 inferior_ptid = null_ptid;
3247
3248 if (!ptid_equal (ptid, null_ptid))
3249 {
3250 int pid = ptid_get_pid (ptid);
3251 exit_inferior (pid);
3252 }
3253
3254 breakpoint_init_inferior (inf_exited);
3255 registers_changed ();
3256
3257 reopen_exec_file ();
3258 reinit_frame_cache ();
3259
3260 if (deprecated_detach_hook)
3261 deprecated_detach_hook ();
3262 }
3263 \f
3264 /* Helper function for child_wait and the derivatives of child_wait.
3265 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
3266 translation of that in OURSTATUS. */
3267 void
3268 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
3269 {
3270 if (WIFEXITED (hoststatus))
3271 {
3272 ourstatus->kind = TARGET_WAITKIND_EXITED;
3273 ourstatus->value.integer = WEXITSTATUS (hoststatus);
3274 }
3275 else if (!WIFSTOPPED (hoststatus))
3276 {
3277 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3278 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
3279 }
3280 else
3281 {
3282 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3283 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
3284 }
3285 }
3286 \f
3287 /* Convert a normal process ID to a string. Returns the string in a
3288 static buffer. */
3289
3290 char *
3291 normal_pid_to_str (ptid_t ptid)
3292 {
3293 static char buf[32];
3294
3295 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3296 return buf;
3297 }
3298
3299 static char *
3300 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3301 {
3302 return normal_pid_to_str (ptid);
3303 }
3304
3305 /* Error-catcher for target_find_memory_regions. */
3306 static int
3307 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3308 {
3309 error (_("Command not implemented for this target."));
3310 return 0;
3311 }
3312
3313 /* Error-catcher for target_make_corefile_notes. */
3314 static char *
3315 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3316 {
3317 error (_("Command not implemented for this target."));
3318 return NULL;
3319 }
3320
3321 /* Error-catcher for target_get_bookmark. */
3322 static gdb_byte *
3323 dummy_get_bookmark (char *ignore1, int ignore2)
3324 {
3325 tcomplain ();
3326 return NULL;
3327 }
3328
3329 /* Error-catcher for target_goto_bookmark. */
3330 static void
3331 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3332 {
3333 tcomplain ();
3334 }
3335
3336 /* Set up the handful of non-empty slots needed by the dummy target
3337 vector. */
3338
3339 static void
3340 init_dummy_target (void)
3341 {
3342 dummy_target.to_shortname = "None";
3343 dummy_target.to_longname = "None";
3344 dummy_target.to_doc = "";
3345 dummy_target.to_attach = find_default_attach;
3346 dummy_target.to_detach =
3347 (void (*)(struct target_ops *, char *, int))target_ignore;
3348 dummy_target.to_create_inferior = find_default_create_inferior;
3349 dummy_target.to_can_async_p = find_default_can_async_p;
3350 dummy_target.to_is_async_p = find_default_is_async_p;
3351 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3352 dummy_target.to_supports_disable_randomization
3353 = find_default_supports_disable_randomization;
3354 dummy_target.to_pid_to_str = dummy_pid_to_str;
3355 dummy_target.to_stratum = dummy_stratum;
3356 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3357 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3358 dummy_target.to_get_bookmark = dummy_get_bookmark;
3359 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3360 dummy_target.to_xfer_partial = default_xfer_partial;
3361 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3362 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3363 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3364 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3365 dummy_target.to_has_execution
3366 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3367 dummy_target.to_stopped_by_watchpoint = return_zero;
3368 dummy_target.to_stopped_data_address =
3369 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3370 dummy_target.to_magic = OPS_MAGIC;
3371 }
3372 \f
3373 static void
3374 debug_to_open (char *args, int from_tty)
3375 {
3376 debug_target.to_open (args, from_tty);
3377
3378 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3379 }
3380
3381 void
3382 target_close (struct target_ops *targ, int quitting)
3383 {
3384 if (targ->to_xclose != NULL)
3385 targ->to_xclose (targ, quitting);
3386 else if (targ->to_close != NULL)
3387 targ->to_close (quitting);
3388
3389 if (targetdebug)
3390 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
3391 }
3392
3393 void
3394 target_attach (char *args, int from_tty)
3395 {
3396 struct target_ops *t;
3397
3398 for (t = current_target.beneath; t != NULL; t = t->beneath)
3399 {
3400 if (t->to_attach != NULL)
3401 {
3402 t->to_attach (t, args, from_tty);
3403 if (targetdebug)
3404 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3405 args, from_tty);
3406 return;
3407 }
3408 }
3409
3410 internal_error (__FILE__, __LINE__,
3411 _("could not find a target to attach"));
3412 }
3413
3414 int
3415 target_thread_alive (ptid_t ptid)
3416 {
3417 struct target_ops *t;
3418
3419 for (t = current_target.beneath; t != NULL; t = t->beneath)
3420 {
3421 if (t->to_thread_alive != NULL)
3422 {
3423 int retval;
3424
3425 retval = t->to_thread_alive (t, ptid);
3426 if (targetdebug)
3427 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3428 PIDGET (ptid), retval);
3429
3430 return retval;
3431 }
3432 }
3433
3434 return 0;
3435 }
3436
3437 void
3438 target_find_new_threads (void)
3439 {
3440 struct target_ops *t;
3441
3442 for (t = current_target.beneath; t != NULL; t = t->beneath)
3443 {
3444 if (t->to_find_new_threads != NULL)
3445 {
3446 t->to_find_new_threads (t);
3447 if (targetdebug)
3448 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3449
3450 return;
3451 }
3452 }
3453 }
3454
3455 void
3456 target_stop (ptid_t ptid)
3457 {
3458 if (!may_stop)
3459 {
3460 warning (_("May not interrupt or stop the target, ignoring attempt"));
3461 return;
3462 }
3463
3464 (*current_target.to_stop) (ptid);
3465 }
3466
3467 static void
3468 debug_to_post_attach (int pid)
3469 {
3470 debug_target.to_post_attach (pid);
3471
3472 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3473 }
3474
3475 /* Return a pretty printed form of target_waitstatus.
3476 Space for the result is malloc'd, caller must free. */
3477
3478 char *
3479 target_waitstatus_to_string (const struct target_waitstatus *ws)
3480 {
3481 const char *kind_str = "status->kind = ";
3482
3483 switch (ws->kind)
3484 {
3485 case TARGET_WAITKIND_EXITED:
3486 return xstrprintf ("%sexited, status = %d",
3487 kind_str, ws->value.integer);
3488 case TARGET_WAITKIND_STOPPED:
3489 return xstrprintf ("%sstopped, signal = %s",
3490 kind_str, target_signal_to_name (ws->value.sig));
3491 case TARGET_WAITKIND_SIGNALLED:
3492 return xstrprintf ("%ssignalled, signal = %s",
3493 kind_str, target_signal_to_name (ws->value.sig));
3494 case TARGET_WAITKIND_LOADED:
3495 return xstrprintf ("%sloaded", kind_str);
3496 case TARGET_WAITKIND_FORKED:
3497 return xstrprintf ("%sforked", kind_str);
3498 case TARGET_WAITKIND_VFORKED:
3499 return xstrprintf ("%svforked", kind_str);
3500 case TARGET_WAITKIND_EXECD:
3501 return xstrprintf ("%sexecd", kind_str);
3502 case TARGET_WAITKIND_SYSCALL_ENTRY:
3503 return xstrprintf ("%sentered syscall", kind_str);
3504 case TARGET_WAITKIND_SYSCALL_RETURN:
3505 return xstrprintf ("%sexited syscall", kind_str);
3506 case TARGET_WAITKIND_SPURIOUS:
3507 return xstrprintf ("%sspurious", kind_str);
3508 case TARGET_WAITKIND_IGNORE:
3509 return xstrprintf ("%signore", kind_str);
3510 case TARGET_WAITKIND_NO_HISTORY:
3511 return xstrprintf ("%sno-history", kind_str);
3512 case TARGET_WAITKIND_NO_RESUMED:
3513 return xstrprintf ("%sno-resumed", kind_str);
3514 default:
3515 return xstrprintf ("%sunknown???", kind_str);
3516 }
3517 }
3518
3519 static void
3520 debug_print_register (const char * func,
3521 struct regcache *regcache, int regno)
3522 {
3523 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3524
3525 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3526 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3527 && gdbarch_register_name (gdbarch, regno) != NULL
3528 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3529 fprintf_unfiltered (gdb_stdlog, "(%s)",
3530 gdbarch_register_name (gdbarch, regno));
3531 else
3532 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3533 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3534 {
3535 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3536 int i, size = register_size (gdbarch, regno);
3537 unsigned char buf[MAX_REGISTER_SIZE];
3538
3539 regcache_raw_collect (regcache, regno, buf);
3540 fprintf_unfiltered (gdb_stdlog, " = ");
3541 for (i = 0; i < size; i++)
3542 {
3543 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3544 }
3545 if (size <= sizeof (LONGEST))
3546 {
3547 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3548
3549 fprintf_unfiltered (gdb_stdlog, " %s %s",
3550 core_addr_to_string_nz (val), plongest (val));
3551 }
3552 }
3553 fprintf_unfiltered (gdb_stdlog, "\n");
3554 }
3555
3556 void
3557 target_fetch_registers (struct regcache *regcache, int regno)
3558 {
3559 struct target_ops *t;
3560
3561 for (t = current_target.beneath; t != NULL; t = t->beneath)
3562 {
3563 if (t->to_fetch_registers != NULL)
3564 {
3565 t->to_fetch_registers (t, regcache, regno);
3566 if (targetdebug)
3567 debug_print_register ("target_fetch_registers", regcache, regno);
3568 return;
3569 }
3570 }
3571 }
3572
3573 void
3574 target_store_registers (struct regcache *regcache, int regno)
3575 {
3576 struct target_ops *t;
3577
3578 if (!may_write_registers)
3579 error (_("Writing to registers is not allowed (regno %d)"), regno);
3580
3581 for (t = current_target.beneath; t != NULL; t = t->beneath)
3582 {
3583 if (t->to_store_registers != NULL)
3584 {
3585 t->to_store_registers (t, regcache, regno);
3586 if (targetdebug)
3587 {
3588 debug_print_register ("target_store_registers", regcache, regno);
3589 }
3590 return;
3591 }
3592 }
3593
3594 noprocess ();
3595 }
3596
3597 int
3598 target_core_of_thread (ptid_t ptid)
3599 {
3600 struct target_ops *t;
3601
3602 for (t = current_target.beneath; t != NULL; t = t->beneath)
3603 {
3604 if (t->to_core_of_thread != NULL)
3605 {
3606 int retval = t->to_core_of_thread (t, ptid);
3607
3608 if (targetdebug)
3609 fprintf_unfiltered (gdb_stdlog,
3610 "target_core_of_thread (%d) = %d\n",
3611 PIDGET (ptid), retval);
3612 return retval;
3613 }
3614 }
3615
3616 return -1;
3617 }
3618
3619 int
3620 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3621 {
3622 struct target_ops *t;
3623
3624 for (t = current_target.beneath; t != NULL; t = t->beneath)
3625 {
3626 if (t->to_verify_memory != NULL)
3627 {
3628 int retval = t->to_verify_memory (t, data, memaddr, size);
3629
3630 if (targetdebug)
3631 fprintf_unfiltered (gdb_stdlog,
3632 "target_verify_memory (%s, %s) = %d\n",
3633 paddress (target_gdbarch, memaddr),
3634 pulongest (size),
3635 retval);
3636 return retval;
3637 }
3638 }
3639
3640 tcomplain ();
3641 }
3642
3643 /* The documentation for this function is in its prototype declaration in
3644 target.h. */
3645
3646 int
3647 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3648 {
3649 struct target_ops *t;
3650
3651 for (t = current_target.beneath; t != NULL; t = t->beneath)
3652 if (t->to_insert_mask_watchpoint != NULL)
3653 {
3654 int ret;
3655
3656 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
3657
3658 if (targetdebug)
3659 fprintf_unfiltered (gdb_stdlog, "\
3660 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3661 core_addr_to_string (addr),
3662 core_addr_to_string (mask), rw, ret);
3663
3664 return ret;
3665 }
3666
3667 return 1;
3668 }
3669
3670 /* The documentation for this function is in its prototype declaration in
3671 target.h. */
3672
3673 int
3674 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3675 {
3676 struct target_ops *t;
3677
3678 for (t = current_target.beneath; t != NULL; t = t->beneath)
3679 if (t->to_remove_mask_watchpoint != NULL)
3680 {
3681 int ret;
3682
3683 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
3684
3685 if (targetdebug)
3686 fprintf_unfiltered (gdb_stdlog, "\
3687 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3688 core_addr_to_string (addr),
3689 core_addr_to_string (mask), rw, ret);
3690
3691 return ret;
3692 }
3693
3694 return 1;
3695 }
3696
3697 /* The documentation for this function is in its prototype declaration
3698 in target.h. */
3699
3700 int
3701 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3702 {
3703 struct target_ops *t;
3704
3705 for (t = current_target.beneath; t != NULL; t = t->beneath)
3706 if (t->to_masked_watch_num_registers != NULL)
3707 return t->to_masked_watch_num_registers (t, addr, mask);
3708
3709 return -1;
3710 }
3711
3712 /* The documentation for this function is in its prototype declaration
3713 in target.h. */
3714
3715 int
3716 target_ranged_break_num_registers (void)
3717 {
3718 struct target_ops *t;
3719
3720 for (t = current_target.beneath; t != NULL; t = t->beneath)
3721 if (t->to_ranged_break_num_registers != NULL)
3722 return t->to_ranged_break_num_registers (t);
3723
3724 return -1;
3725 }
3726
3727 static void
3728 debug_to_prepare_to_store (struct regcache *regcache)
3729 {
3730 debug_target.to_prepare_to_store (regcache);
3731
3732 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3733 }
3734
3735 static int
3736 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
3737 int write, struct mem_attrib *attrib,
3738 struct target_ops *target)
3739 {
3740 int retval;
3741
3742 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
3743 attrib, target);
3744
3745 fprintf_unfiltered (gdb_stdlog,
3746 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
3747 paddress (target_gdbarch, memaddr), len,
3748 write ? "write" : "read", retval);
3749
3750 if (retval > 0)
3751 {
3752 int i;
3753
3754 fputs_unfiltered (", bytes =", gdb_stdlog);
3755 for (i = 0; i < retval; i++)
3756 {
3757 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
3758 {
3759 if (targetdebug < 2 && i > 0)
3760 {
3761 fprintf_unfiltered (gdb_stdlog, " ...");
3762 break;
3763 }
3764 fprintf_unfiltered (gdb_stdlog, "\n");
3765 }
3766
3767 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
3768 }
3769 }
3770
3771 fputc_unfiltered ('\n', gdb_stdlog);
3772
3773 return retval;
3774 }
3775
3776 static void
3777 debug_to_files_info (struct target_ops *target)
3778 {
3779 debug_target.to_files_info (target);
3780
3781 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3782 }
3783
3784 static int
3785 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
3786 struct bp_target_info *bp_tgt)
3787 {
3788 int retval;
3789
3790 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
3791
3792 fprintf_unfiltered (gdb_stdlog,
3793 "target_insert_breakpoint (%s, xxx) = %ld\n",
3794 core_addr_to_string (bp_tgt->placed_address),
3795 (unsigned long) retval);
3796 return retval;
3797 }
3798
3799 static int
3800 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
3801 struct bp_target_info *bp_tgt)
3802 {
3803 int retval;
3804
3805 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
3806
3807 fprintf_unfiltered (gdb_stdlog,
3808 "target_remove_breakpoint (%s, xxx) = %ld\n",
3809 core_addr_to_string (bp_tgt->placed_address),
3810 (unsigned long) retval);
3811 return retval;
3812 }
3813
3814 static int
3815 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
3816 {
3817 int retval;
3818
3819 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
3820
3821 fprintf_unfiltered (gdb_stdlog,
3822 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3823 (unsigned long) type,
3824 (unsigned long) cnt,
3825 (unsigned long) from_tty,
3826 (unsigned long) retval);
3827 return retval;
3828 }
3829
3830 static int
3831 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3832 {
3833 CORE_ADDR retval;
3834
3835 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
3836
3837 fprintf_unfiltered (gdb_stdlog,
3838 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
3839 core_addr_to_string (addr), (unsigned long) len,
3840 core_addr_to_string (retval));
3841 return retval;
3842 }
3843
3844 static int
3845 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
3846 struct expression *cond)
3847 {
3848 int retval;
3849
3850 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
3851 rw, cond);
3852
3853 fprintf_unfiltered (gdb_stdlog,
3854 "target_can_accel_watchpoint_condition "
3855 "(%s, %d, %d, %s) = %ld\n",
3856 core_addr_to_string (addr), len, rw,
3857 host_address_to_string (cond), (unsigned long) retval);
3858 return retval;
3859 }
3860
3861 static int
3862 debug_to_stopped_by_watchpoint (void)
3863 {
3864 int retval;
3865
3866 retval = debug_target.to_stopped_by_watchpoint ();
3867
3868 fprintf_unfiltered (gdb_stdlog,
3869 "target_stopped_by_watchpoint () = %ld\n",
3870 (unsigned long) retval);
3871 return retval;
3872 }
3873
3874 static int
3875 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3876 {
3877 int retval;
3878
3879 retval = debug_target.to_stopped_data_address (target, addr);
3880
3881 fprintf_unfiltered (gdb_stdlog,
3882 "target_stopped_data_address ([%s]) = %ld\n",
3883 core_addr_to_string (*addr),
3884 (unsigned long)retval);
3885 return retval;
3886 }
3887
3888 static int
3889 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3890 CORE_ADDR addr,
3891 CORE_ADDR start, int length)
3892 {
3893 int retval;
3894
3895 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3896 start, length);
3897
3898 fprintf_filtered (gdb_stdlog,
3899 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
3900 core_addr_to_string (addr), core_addr_to_string (start),
3901 length, retval);
3902 return retval;
3903 }
3904
3905 static int
3906 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
3907 struct bp_target_info *bp_tgt)
3908 {
3909 int retval;
3910
3911 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
3912
3913 fprintf_unfiltered (gdb_stdlog,
3914 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
3915 core_addr_to_string (bp_tgt->placed_address),
3916 (unsigned long) retval);
3917 return retval;
3918 }
3919
3920 static int
3921 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
3922 struct bp_target_info *bp_tgt)
3923 {
3924 int retval;
3925
3926 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
3927
3928 fprintf_unfiltered (gdb_stdlog,
3929 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
3930 core_addr_to_string (bp_tgt->placed_address),
3931 (unsigned long) retval);
3932 return retval;
3933 }
3934
3935 static int
3936 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
3937 struct expression *cond)
3938 {
3939 int retval;
3940
3941 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
3942
3943 fprintf_unfiltered (gdb_stdlog,
3944 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
3945 core_addr_to_string (addr), len, type,
3946 host_address_to_string (cond), (unsigned long) retval);
3947 return retval;
3948 }
3949
3950 static int
3951 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
3952 struct expression *cond)
3953 {
3954 int retval;
3955
3956 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
3957
3958 fprintf_unfiltered (gdb_stdlog,
3959 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
3960 core_addr_to_string (addr), len, type,
3961 host_address_to_string (cond), (unsigned long) retval);
3962 return retval;
3963 }
3964
3965 static void
3966 debug_to_terminal_init (void)
3967 {
3968 debug_target.to_terminal_init ();
3969
3970 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3971 }
3972
3973 static void
3974 debug_to_terminal_inferior (void)
3975 {
3976 debug_target.to_terminal_inferior ();
3977
3978 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3979 }
3980
3981 static void
3982 debug_to_terminal_ours_for_output (void)
3983 {
3984 debug_target.to_terminal_ours_for_output ();
3985
3986 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3987 }
3988
3989 static void
3990 debug_to_terminal_ours (void)
3991 {
3992 debug_target.to_terminal_ours ();
3993
3994 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3995 }
3996
3997 static void
3998 debug_to_terminal_save_ours (void)
3999 {
4000 debug_target.to_terminal_save_ours ();
4001
4002 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4003 }
4004
4005 static void
4006 debug_to_terminal_info (char *arg, int from_tty)
4007 {
4008 debug_target.to_terminal_info (arg, from_tty);
4009
4010 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4011 from_tty);
4012 }
4013
4014 static void
4015 debug_to_load (char *args, int from_tty)
4016 {
4017 debug_target.to_load (args, from_tty);
4018
4019 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4020 }
4021
4022 static void
4023 debug_to_post_startup_inferior (ptid_t ptid)
4024 {
4025 debug_target.to_post_startup_inferior (ptid);
4026
4027 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4028 PIDGET (ptid));
4029 }
4030
4031 static int
4032 debug_to_insert_fork_catchpoint (int pid)
4033 {
4034 int retval;
4035
4036 retval = debug_target.to_insert_fork_catchpoint (pid);
4037
4038 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4039 pid, retval);
4040
4041 return retval;
4042 }
4043
4044 static int
4045 debug_to_remove_fork_catchpoint (int pid)
4046 {
4047 int retval;
4048
4049 retval = debug_target.to_remove_fork_catchpoint (pid);
4050
4051 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4052 pid, retval);
4053
4054 return retval;
4055 }
4056
4057 static int
4058 debug_to_insert_vfork_catchpoint (int pid)
4059 {
4060 int retval;
4061
4062 retval = debug_target.to_insert_vfork_catchpoint (pid);
4063
4064 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4065 pid, retval);
4066
4067 return retval;
4068 }
4069
4070 static int
4071 debug_to_remove_vfork_catchpoint (int pid)
4072 {
4073 int retval;
4074
4075 retval = debug_target.to_remove_vfork_catchpoint (pid);
4076
4077 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4078 pid, retval);
4079
4080 return retval;
4081 }
4082
4083 static int
4084 debug_to_insert_exec_catchpoint (int pid)
4085 {
4086 int retval;
4087
4088 retval = debug_target.to_insert_exec_catchpoint (pid);
4089
4090 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4091 pid, retval);
4092
4093 return retval;
4094 }
4095
4096 static int
4097 debug_to_remove_exec_catchpoint (int pid)
4098 {
4099 int retval;
4100
4101 retval = debug_target.to_remove_exec_catchpoint (pid);
4102
4103 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4104 pid, retval);
4105
4106 return retval;
4107 }
4108
4109 static int
4110 debug_to_has_exited (int pid, int wait_status, int *exit_status)
4111 {
4112 int has_exited;
4113
4114 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
4115
4116 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4117 pid, wait_status, *exit_status, has_exited);
4118
4119 return has_exited;
4120 }
4121
4122 static int
4123 debug_to_can_run (void)
4124 {
4125 int retval;
4126
4127 retval = debug_target.to_can_run ();
4128
4129 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4130
4131 return retval;
4132 }
4133
4134 static struct gdbarch *
4135 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4136 {
4137 struct gdbarch *retval;
4138
4139 retval = debug_target.to_thread_architecture (ops, ptid);
4140
4141 fprintf_unfiltered (gdb_stdlog,
4142 "target_thread_architecture (%s) = %s [%s]\n",
4143 target_pid_to_str (ptid),
4144 host_address_to_string (retval),
4145 gdbarch_bfd_arch_info (retval)->printable_name);
4146 return retval;
4147 }
4148
4149 static void
4150 debug_to_stop (ptid_t ptid)
4151 {
4152 debug_target.to_stop (ptid);
4153
4154 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4155 target_pid_to_str (ptid));
4156 }
4157
4158 static void
4159 debug_to_rcmd (char *command,
4160 struct ui_file *outbuf)
4161 {
4162 debug_target.to_rcmd (command, outbuf);
4163 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4164 }
4165
4166 static char *
4167 debug_to_pid_to_exec_file (int pid)
4168 {
4169 char *exec_file;
4170
4171 exec_file = debug_target.to_pid_to_exec_file (pid);
4172
4173 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4174 pid, exec_file);
4175
4176 return exec_file;
4177 }
4178
4179 static void
4180 setup_target_debug (void)
4181 {
4182 memcpy (&debug_target, &current_target, sizeof debug_target);
4183
4184 current_target.to_open = debug_to_open;
4185 current_target.to_post_attach = debug_to_post_attach;
4186 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4187 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4188 current_target.to_files_info = debug_to_files_info;
4189 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4190 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4191 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4192 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4193 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4194 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4195 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4196 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4197 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4198 current_target.to_watchpoint_addr_within_range
4199 = debug_to_watchpoint_addr_within_range;
4200 current_target.to_region_ok_for_hw_watchpoint
4201 = debug_to_region_ok_for_hw_watchpoint;
4202 current_target.to_can_accel_watchpoint_condition
4203 = debug_to_can_accel_watchpoint_condition;
4204 current_target.to_terminal_init = debug_to_terminal_init;
4205 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4206 current_target.to_terminal_ours_for_output
4207 = debug_to_terminal_ours_for_output;
4208 current_target.to_terminal_ours = debug_to_terminal_ours;
4209 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4210 current_target.to_terminal_info = debug_to_terminal_info;
4211 current_target.to_load = debug_to_load;
4212 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4213 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4214 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4215 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4216 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4217 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4218 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4219 current_target.to_has_exited = debug_to_has_exited;
4220 current_target.to_can_run = debug_to_can_run;
4221 current_target.to_stop = debug_to_stop;
4222 current_target.to_rcmd = debug_to_rcmd;
4223 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4224 current_target.to_thread_architecture = debug_to_thread_architecture;
4225 }
4226 \f
4227
4228 static char targ_desc[] =
4229 "Names of targets and files being debugged.\nShows the entire \
4230 stack of targets currently in use (including the exec-file,\n\
4231 core-file, and process, if any), as well as the symbol file name.";
4232
4233 static void
4234 do_monitor_command (char *cmd,
4235 int from_tty)
4236 {
4237 if ((current_target.to_rcmd
4238 == (void (*) (char *, struct ui_file *)) tcomplain)
4239 || (current_target.to_rcmd == debug_to_rcmd
4240 && (debug_target.to_rcmd
4241 == (void (*) (char *, struct ui_file *)) tcomplain)))
4242 error (_("\"monitor\" command not supported by this target."));
4243 target_rcmd (cmd, gdb_stdtarg);
4244 }
4245
4246 /* Print the name of each layers of our target stack. */
4247
4248 static void
4249 maintenance_print_target_stack (char *cmd, int from_tty)
4250 {
4251 struct target_ops *t;
4252
4253 printf_filtered (_("The current target stack is:\n"));
4254
4255 for (t = target_stack; t != NULL; t = t->beneath)
4256 {
4257 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4258 }
4259 }
4260
4261 /* Controls if async mode is permitted. */
4262 int target_async_permitted = 0;
4263
4264 /* The set command writes to this variable. If the inferior is
4265 executing, linux_nat_async_permitted is *not* updated. */
4266 static int target_async_permitted_1 = 0;
4267
4268 static void
4269 set_maintenance_target_async_permitted (char *args, int from_tty,
4270 struct cmd_list_element *c)
4271 {
4272 if (have_live_inferiors ())
4273 {
4274 target_async_permitted_1 = target_async_permitted;
4275 error (_("Cannot change this setting while the inferior is running."));
4276 }
4277
4278 target_async_permitted = target_async_permitted_1;
4279 }
4280
4281 static void
4282 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
4283 struct cmd_list_element *c,
4284 const char *value)
4285 {
4286 fprintf_filtered (file,
4287 _("Controlling the inferior in "
4288 "asynchronous mode is %s.\n"), value);
4289 }
4290
4291 /* Temporary copies of permission settings. */
4292
4293 static int may_write_registers_1 = 1;
4294 static int may_write_memory_1 = 1;
4295 static int may_insert_breakpoints_1 = 1;
4296 static int may_insert_tracepoints_1 = 1;
4297 static int may_insert_fast_tracepoints_1 = 1;
4298 static int may_stop_1 = 1;
4299
4300 /* Make the user-set values match the real values again. */
4301
4302 void
4303 update_target_permissions (void)
4304 {
4305 may_write_registers_1 = may_write_registers;
4306 may_write_memory_1 = may_write_memory;
4307 may_insert_breakpoints_1 = may_insert_breakpoints;
4308 may_insert_tracepoints_1 = may_insert_tracepoints;
4309 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4310 may_stop_1 = may_stop;
4311 }
4312
4313 /* The one function handles (most of) the permission flags in the same
4314 way. */
4315
4316 static void
4317 set_target_permissions (char *args, int from_tty,
4318 struct cmd_list_element *c)
4319 {
4320 if (target_has_execution)
4321 {
4322 update_target_permissions ();
4323 error (_("Cannot change this setting while the inferior is running."));
4324 }
4325
4326 /* Make the real values match the user-changed values. */
4327 may_write_registers = may_write_registers_1;
4328 may_insert_breakpoints = may_insert_breakpoints_1;
4329 may_insert_tracepoints = may_insert_tracepoints_1;
4330 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4331 may_stop = may_stop_1;
4332 update_observer_mode ();
4333 }
4334
4335 /* Set memory write permission independently of observer mode. */
4336
4337 static void
4338 set_write_memory_permission (char *args, int from_tty,
4339 struct cmd_list_element *c)
4340 {
4341 /* Make the real values match the user-changed values. */
4342 may_write_memory = may_write_memory_1;
4343 update_observer_mode ();
4344 }
4345
4346
4347 void
4348 initialize_targets (void)
4349 {
4350 init_dummy_target ();
4351 push_target (&dummy_target);
4352
4353 add_info ("target", target_info, targ_desc);
4354 add_info ("files", target_info, targ_desc);
4355
4356 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4357 Set target debugging."), _("\
4358 Show target debugging."), _("\
4359 When non-zero, target debugging is enabled. Higher numbers are more\n\
4360 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4361 command."),
4362 NULL,
4363 show_targetdebug,
4364 &setdebuglist, &showdebuglist);
4365
4366 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4367 &trust_readonly, _("\
4368 Set mode for reading from readonly sections."), _("\
4369 Show mode for reading from readonly sections."), _("\
4370 When this mode is on, memory reads from readonly sections (such as .text)\n\
4371 will be read from the object file instead of from the target. This will\n\
4372 result in significant performance improvement for remote targets."),
4373 NULL,
4374 show_trust_readonly,
4375 &setlist, &showlist);
4376
4377 add_com ("monitor", class_obscure, do_monitor_command,
4378 _("Send a command to the remote monitor (remote targets only)."));
4379
4380 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4381 _("Print the name of each layer of the internal target stack."),
4382 &maintenanceprintlist);
4383
4384 add_setshow_boolean_cmd ("target-async", no_class,
4385 &target_async_permitted_1, _("\
4386 Set whether gdb controls the inferior in asynchronous mode."), _("\
4387 Show whether gdb controls the inferior in asynchronous mode."), _("\
4388 Tells gdb whether to control the inferior in asynchronous mode."),
4389 set_maintenance_target_async_permitted,
4390 show_maintenance_target_async_permitted,
4391 &setlist,
4392 &showlist);
4393
4394 add_setshow_boolean_cmd ("stack-cache", class_support,
4395 &stack_cache_enabled_p_1, _("\
4396 Set cache use for stack access."), _("\
4397 Show cache use for stack access."), _("\
4398 When on, use the data cache for all stack access, regardless of any\n\
4399 configured memory regions. This improves remote performance significantly.\n\
4400 By default, caching for stack access is on."),
4401 set_stack_cache_enabled_p,
4402 show_stack_cache_enabled_p,
4403 &setlist, &showlist);
4404
4405 add_setshow_boolean_cmd ("may-write-registers", class_support,
4406 &may_write_registers_1, _("\
4407 Set permission to write into registers."), _("\
4408 Show permission to write into registers."), _("\
4409 When this permission is on, GDB may write into the target's registers.\n\
4410 Otherwise, any sort of write attempt will result in an error."),
4411 set_target_permissions, NULL,
4412 &setlist, &showlist);
4413
4414 add_setshow_boolean_cmd ("may-write-memory", class_support,
4415 &may_write_memory_1, _("\
4416 Set permission to write into target memory."), _("\
4417 Show permission to write into target memory."), _("\
4418 When this permission is on, GDB may write into the target's memory.\n\
4419 Otherwise, any sort of write attempt will result in an error."),
4420 set_write_memory_permission, NULL,
4421 &setlist, &showlist);
4422
4423 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4424 &may_insert_breakpoints_1, _("\
4425 Set permission to insert breakpoints in the target."), _("\
4426 Show permission to insert breakpoints in the target."), _("\
4427 When this permission is on, GDB may insert breakpoints in the program.\n\
4428 Otherwise, any sort of insertion attempt will result in an error."),
4429 set_target_permissions, NULL,
4430 &setlist, &showlist);
4431
4432 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4433 &may_insert_tracepoints_1, _("\
4434 Set permission to insert tracepoints in the target."), _("\
4435 Show permission to insert tracepoints in the target."), _("\
4436 When this permission is on, GDB may insert tracepoints in the program.\n\
4437 Otherwise, any sort of insertion attempt will result in an error."),
4438 set_target_permissions, NULL,
4439 &setlist, &showlist);
4440
4441 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4442 &may_insert_fast_tracepoints_1, _("\
4443 Set permission to insert fast tracepoints in the target."), _("\
4444 Show permission to insert fast tracepoints in the target."), _("\
4445 When this permission is on, GDB may insert fast tracepoints.\n\
4446 Otherwise, any sort of insertion attempt will result in an error."),
4447 set_target_permissions, NULL,
4448 &setlist, &showlist);
4449
4450 add_setshow_boolean_cmd ("may-interrupt", class_support,
4451 &may_stop_1, _("\
4452 Set permission to interrupt or signal the target."), _("\
4453 Show permission to interrupt or signal the target."), _("\
4454 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4455 Otherwise, any attempt to interrupt or stop will be ignored."),
4456 set_target_permissions, NULL,
4457 &setlist, &showlist);
4458
4459
4460 target_dcache = dcache_init ();
4461 }
This page took 0.125111 seconds and 4 git commands to generate.