*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44 #include "exec.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static int nosymbol (char *, CORE_ADDR *);
58
59 static void tcomplain (void) ATTRIBUTE_NORETURN;
60
61 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
62
63 static int return_zero (void);
64
65 static int return_one (void);
66
67 static int return_minus_one (void);
68
69 void target_ignore (void);
70
71 static void target_command (char *, int);
72
73 static struct target_ops *find_default_run_target (char *);
74
75 static LONGEST default_xfer_partial (struct target_ops *ops,
76 enum target_object object,
77 const char *annex, gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, LONGEST len);
80
81 static LONGEST current_xfer_partial (struct target_ops *ops,
82 enum target_object object,
83 const char *annex, gdb_byte *readbuf,
84 const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 static LONGEST target_xfer_partial (struct target_ops *ops,
88 enum target_object object,
89 const char *annex,
90 void *readbuf, const void *writebuf,
91 ULONGEST offset, LONGEST len);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static void init_dummy_target (void);
97
98 static struct target_ops debug_target;
99
100 static void debug_to_open (char *, int);
101
102 static void debug_to_prepare_to_store (struct regcache *);
103
104 static void debug_to_files_info (struct target_ops *);
105
106 static int debug_to_insert_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_remove_breakpoint (struct gdbarch *,
110 struct bp_target_info *);
111
112 static int debug_to_can_use_hw_breakpoint (int, int, int);
113
114 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
118 struct bp_target_info *);
119
120 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
121 struct expression *);
122
123 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
124 struct expression *);
125
126 static int debug_to_stopped_by_watchpoint (void);
127
128 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
129
130 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
131 CORE_ADDR, CORE_ADDR, int);
132
133 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
134
135 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
136 struct expression *);
137
138 static void debug_to_terminal_init (void);
139
140 static void debug_to_terminal_inferior (void);
141
142 static void debug_to_terminal_ours_for_output (void);
143
144 static void debug_to_terminal_save_ours (void);
145
146 static void debug_to_terminal_ours (void);
147
148 static void debug_to_terminal_info (char *, int);
149
150 static void debug_to_load (char *, int);
151
152 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
153
154 static int debug_to_can_run (void);
155
156 static void debug_to_notice_signals (ptid_t);
157
158 static void debug_to_stop (ptid_t);
159
160 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
161 wierd and mysterious ways. Putting the variable here lets those
162 wierd and mysterious ways keep building while they are being
163 converted to the inferior inheritance structure. */
164 struct target_ops deprecated_child_ops;
165
166 /* Pointer to array of target architecture structures; the size of the
167 array; the current index into the array; the allocated size of the
168 array. */
169 struct target_ops **target_structs;
170 unsigned target_struct_size;
171 unsigned target_struct_index;
172 unsigned target_struct_allocsize;
173 #define DEFAULT_ALLOCSIZE 10
174
175 /* The initial current target, so that there is always a semi-valid
176 current target. */
177
178 static struct target_ops dummy_target;
179
180 /* Top of target stack. */
181
182 static struct target_ops *target_stack;
183
184 /* The target structure we are currently using to talk to a process
185 or file or whatever "inferior" we have. */
186
187 struct target_ops current_target;
188
189 /* Command list for target. */
190
191 static struct cmd_list_element *targetlist = NULL;
192
193 /* Nonzero if we should trust readonly sections from the
194 executable when reading memory. */
195
196 static int trust_readonly = 0;
197
198 /* Nonzero if we should show true memory content including
199 memory breakpoint inserted by gdb. */
200
201 static int show_memory_breakpoints = 0;
202
203 /* These globals control whether GDB attempts to perform these
204 operations; they are useful for targets that need to prevent
205 inadvertant disruption, such as in non-stop mode. */
206
207 int may_write_registers = 1;
208
209 int may_write_memory = 1;
210
211 int may_insert_breakpoints = 1;
212
213 int may_insert_tracepoints = 1;
214
215 int may_insert_fast_tracepoints = 1;
216
217 int may_stop = 1;
218
219 /* Non-zero if we want to see trace of target level stuff. */
220
221 static int targetdebug = 0;
222 static void
223 show_targetdebug (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
227 }
228
229 static void setup_target_debug (void);
230
231 /* The option sets this. */
232 static int stack_cache_enabled_p_1 = 1;
233 /* And set_stack_cache_enabled_p updates this.
234 The reason for the separation is so that we don't flush the cache for
235 on->on transitions. */
236 static int stack_cache_enabled_p = 1;
237
238 /* This is called *after* the stack-cache has been set.
239 Flush the cache for off->on and on->off transitions.
240 There's no real need to flush the cache for on->off transitions,
241 except cleanliness. */
242
243 static void
244 set_stack_cache_enabled_p (char *args, int from_tty,
245 struct cmd_list_element *c)
246 {
247 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
248 target_dcache_invalidate ();
249
250 stack_cache_enabled_p = stack_cache_enabled_p_1;
251 }
252
253 static void
254 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
255 struct cmd_list_element *c, const char *value)
256 {
257 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
258 }
259
260 /* Cache of memory operations, to speed up remote access. */
261 static DCACHE *target_dcache;
262
263 /* Invalidate the target dcache. */
264
265 void
266 target_dcache_invalidate (void)
267 {
268 dcache_invalidate (target_dcache);
269 }
270
271 /* The user just typed 'target' without the name of a target. */
272
273 static void
274 target_command (char *arg, int from_tty)
275 {
276 fputs_filtered ("Argument required (target name). Try `help target'\n",
277 gdb_stdout);
278 }
279
280 /* Default target_has_* methods for process_stratum targets. */
281
282 int
283 default_child_has_all_memory (struct target_ops *ops)
284 {
285 /* If no inferior selected, then we can't read memory here. */
286 if (ptid_equal (inferior_ptid, null_ptid))
287 return 0;
288
289 return 1;
290 }
291
292 int
293 default_child_has_memory (struct target_ops *ops)
294 {
295 /* If no inferior selected, then we can't read memory here. */
296 if (ptid_equal (inferior_ptid, null_ptid))
297 return 0;
298
299 return 1;
300 }
301
302 int
303 default_child_has_stack (struct target_ops *ops)
304 {
305 /* If no inferior selected, there's no stack. */
306 if (ptid_equal (inferior_ptid, null_ptid))
307 return 0;
308
309 return 1;
310 }
311
312 int
313 default_child_has_registers (struct target_ops *ops)
314 {
315 /* Can't read registers from no inferior. */
316 if (ptid_equal (inferior_ptid, null_ptid))
317 return 0;
318
319 return 1;
320 }
321
322 int
323 default_child_has_execution (struct target_ops *ops)
324 {
325 /* If there's no thread selected, then we can't make it run through
326 hoops. */
327 if (ptid_equal (inferior_ptid, null_ptid))
328 return 0;
329
330 return 1;
331 }
332
333
334 int
335 target_has_all_memory_1 (void)
336 {
337 struct target_ops *t;
338
339 for (t = current_target.beneath; t != NULL; t = t->beneath)
340 if (t->to_has_all_memory (t))
341 return 1;
342
343 return 0;
344 }
345
346 int
347 target_has_memory_1 (void)
348 {
349 struct target_ops *t;
350
351 for (t = current_target.beneath; t != NULL; t = t->beneath)
352 if (t->to_has_memory (t))
353 return 1;
354
355 return 0;
356 }
357
358 int
359 target_has_stack_1 (void)
360 {
361 struct target_ops *t;
362
363 for (t = current_target.beneath; t != NULL; t = t->beneath)
364 if (t->to_has_stack (t))
365 return 1;
366
367 return 0;
368 }
369
370 int
371 target_has_registers_1 (void)
372 {
373 struct target_ops *t;
374
375 for (t = current_target.beneath; t != NULL; t = t->beneath)
376 if (t->to_has_registers (t))
377 return 1;
378
379 return 0;
380 }
381
382 int
383 target_has_execution_1 (void)
384 {
385 struct target_ops *t;
386
387 for (t = current_target.beneath; t != NULL; t = t->beneath)
388 if (t->to_has_execution (t))
389 return 1;
390
391 return 0;
392 }
393
394 /* Add a possible target architecture to the list. */
395
396 void
397 add_target (struct target_ops *t)
398 {
399 /* Provide default values for all "must have" methods. */
400 if (t->to_xfer_partial == NULL)
401 t->to_xfer_partial = default_xfer_partial;
402
403 if (t->to_has_all_memory == NULL)
404 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
405
406 if (t->to_has_memory == NULL)
407 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
408
409 if (t->to_has_stack == NULL)
410 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
411
412 if (t->to_has_registers == NULL)
413 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
414
415 if (t->to_has_execution == NULL)
416 t->to_has_execution = (int (*) (struct target_ops *)) return_zero;
417
418 if (!target_structs)
419 {
420 target_struct_allocsize = DEFAULT_ALLOCSIZE;
421 target_structs = (struct target_ops **) xmalloc
422 (target_struct_allocsize * sizeof (*target_structs));
423 }
424 if (target_struct_size >= target_struct_allocsize)
425 {
426 target_struct_allocsize *= 2;
427 target_structs = (struct target_ops **)
428 xrealloc ((char *) target_structs,
429 target_struct_allocsize * sizeof (*target_structs));
430 }
431 target_structs[target_struct_size++] = t;
432
433 if (targetlist == NULL)
434 add_prefix_cmd ("target", class_run, target_command, _("\
435 Connect to a target machine or process.\n\
436 The first argument is the type or protocol of the target machine.\n\
437 Remaining arguments are interpreted by the target protocol. For more\n\
438 information on the arguments for a particular protocol, type\n\
439 `help target ' followed by the protocol name."),
440 &targetlist, "target ", 0, &cmdlist);
441 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
442 }
443
444 /* Stub functions */
445
446 void
447 target_ignore (void)
448 {
449 }
450
451 void
452 target_kill (void)
453 {
454 struct target_ops *t;
455
456 for (t = current_target.beneath; t != NULL; t = t->beneath)
457 if (t->to_kill != NULL)
458 {
459 if (targetdebug)
460 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
461
462 t->to_kill (t);
463 return;
464 }
465
466 noprocess ();
467 }
468
469 void
470 target_load (char *arg, int from_tty)
471 {
472 target_dcache_invalidate ();
473 (*current_target.to_load) (arg, from_tty);
474 }
475
476 void
477 target_create_inferior (char *exec_file, char *args,
478 char **env, int from_tty)
479 {
480 struct target_ops *t;
481
482 for (t = current_target.beneath; t != NULL; t = t->beneath)
483 {
484 if (t->to_create_inferior != NULL)
485 {
486 t->to_create_inferior (t, exec_file, args, env, from_tty);
487 if (targetdebug)
488 fprintf_unfiltered (gdb_stdlog,
489 "target_create_inferior (%s, %s, xxx, %d)\n",
490 exec_file, args, from_tty);
491 return;
492 }
493 }
494
495 internal_error (__FILE__, __LINE__,
496 "could not find a target to create inferior");
497 }
498
499 void
500 target_terminal_inferior (void)
501 {
502 /* A background resume (``run&'') should leave GDB in control of the
503 terminal. Use target_can_async_p, not target_is_async_p, since at
504 this point the target is not async yet. However, if sync_execution
505 is not set, we know it will become async prior to resume. */
506 if (target_can_async_p () && !sync_execution)
507 return;
508
509 /* If GDB is resuming the inferior in the foreground, install
510 inferior's terminal modes. */
511 (*current_target.to_terminal_inferior) ();
512 }
513
514 static int
515 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
516 struct target_ops *t)
517 {
518 errno = EIO; /* Can't read/write this location */
519 return 0; /* No bytes handled */
520 }
521
522 static void
523 tcomplain (void)
524 {
525 error (_("You can't do that when your target is `%s'"),
526 current_target.to_shortname);
527 }
528
529 void
530 noprocess (void)
531 {
532 error (_("You can't do that without a process to debug."));
533 }
534
535 static int
536 nosymbol (char *name, CORE_ADDR *addrp)
537 {
538 return 1; /* Symbol does not exist in target env */
539 }
540
541 static void
542 default_terminal_info (char *args, int from_tty)
543 {
544 printf_unfiltered (_("No saved terminal information.\n"));
545 }
546
547 /* A default implementation for the to_get_ada_task_ptid target method.
548
549 This function builds the PTID by using both LWP and TID as part of
550 the PTID lwp and tid elements. The pid used is the pid of the
551 inferior_ptid. */
552
553 static ptid_t
554 default_get_ada_task_ptid (long lwp, long tid)
555 {
556 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
557 }
558
559 /* Go through the target stack from top to bottom, copying over zero
560 entries in current_target, then filling in still empty entries. In
561 effect, we are doing class inheritance through the pushed target
562 vectors.
563
564 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
565 is currently implemented, is that it discards any knowledge of
566 which target an inherited method originally belonged to.
567 Consequently, new new target methods should instead explicitly and
568 locally search the target stack for the target that can handle the
569 request. */
570
571 static void
572 update_current_target (void)
573 {
574 struct target_ops *t;
575
576 /* First, reset current's contents. */
577 memset (&current_target, 0, sizeof (current_target));
578
579 #define INHERIT(FIELD, TARGET) \
580 if (!current_target.FIELD) \
581 current_target.FIELD = (TARGET)->FIELD
582
583 for (t = target_stack; t; t = t->beneath)
584 {
585 INHERIT (to_shortname, t);
586 INHERIT (to_longname, t);
587 INHERIT (to_doc, t);
588 /* Do not inherit to_open. */
589 /* Do not inherit to_close. */
590 /* Do not inherit to_attach. */
591 INHERIT (to_post_attach, t);
592 INHERIT (to_attach_no_wait, t);
593 /* Do not inherit to_detach. */
594 /* Do not inherit to_disconnect. */
595 /* Do not inherit to_resume. */
596 /* Do not inherit to_wait. */
597 /* Do not inherit to_fetch_registers. */
598 /* Do not inherit to_store_registers. */
599 INHERIT (to_prepare_to_store, t);
600 INHERIT (deprecated_xfer_memory, t);
601 INHERIT (to_files_info, t);
602 INHERIT (to_insert_breakpoint, t);
603 INHERIT (to_remove_breakpoint, t);
604 INHERIT (to_can_use_hw_breakpoint, t);
605 INHERIT (to_insert_hw_breakpoint, t);
606 INHERIT (to_remove_hw_breakpoint, t);
607 INHERIT (to_insert_watchpoint, t);
608 INHERIT (to_remove_watchpoint, t);
609 INHERIT (to_stopped_data_address, t);
610 INHERIT (to_have_steppable_watchpoint, t);
611 INHERIT (to_have_continuable_watchpoint, t);
612 INHERIT (to_stopped_by_watchpoint, t);
613 INHERIT (to_watchpoint_addr_within_range, t);
614 INHERIT (to_region_ok_for_hw_watchpoint, t);
615 INHERIT (to_can_accel_watchpoint_condition, t);
616 INHERIT (to_terminal_init, t);
617 INHERIT (to_terminal_inferior, t);
618 INHERIT (to_terminal_ours_for_output, t);
619 INHERIT (to_terminal_ours, t);
620 INHERIT (to_terminal_save_ours, t);
621 INHERIT (to_terminal_info, t);
622 /* Do not inherit to_kill. */
623 INHERIT (to_load, t);
624 INHERIT (to_lookup_symbol, t);
625 /* Do no inherit to_create_inferior. */
626 INHERIT (to_post_startup_inferior, t);
627 INHERIT (to_acknowledge_created_inferior, t);
628 INHERIT (to_insert_fork_catchpoint, t);
629 INHERIT (to_remove_fork_catchpoint, t);
630 INHERIT (to_insert_vfork_catchpoint, t);
631 INHERIT (to_remove_vfork_catchpoint, t);
632 /* Do not inherit to_follow_fork. */
633 INHERIT (to_insert_exec_catchpoint, t);
634 INHERIT (to_remove_exec_catchpoint, t);
635 INHERIT (to_set_syscall_catchpoint, t);
636 INHERIT (to_has_exited, t);
637 /* Do not inherit to_mourn_inferior. */
638 INHERIT (to_can_run, t);
639 INHERIT (to_notice_signals, t);
640 /* Do not inherit to_thread_alive. */
641 /* Do not inherit to_find_new_threads. */
642 /* Do not inherit to_pid_to_str. */
643 INHERIT (to_extra_thread_info, t);
644 INHERIT (to_stop, t);
645 /* Do not inherit to_xfer_partial. */
646 INHERIT (to_rcmd, t);
647 INHERIT (to_pid_to_exec_file, t);
648 INHERIT (to_log_command, t);
649 INHERIT (to_stratum, t);
650 /* Do not inherit to_has_all_memory */
651 /* Do not inherit to_has_memory */
652 /* Do not inherit to_has_stack */
653 /* Do not inherit to_has_registers */
654 /* Do not inherit to_has_execution */
655 INHERIT (to_has_thread_control, t);
656 INHERIT (to_can_async_p, t);
657 INHERIT (to_is_async_p, t);
658 INHERIT (to_async, t);
659 INHERIT (to_async_mask, t);
660 INHERIT (to_find_memory_regions, t);
661 INHERIT (to_make_corefile_notes, t);
662 INHERIT (to_get_bookmark, t);
663 INHERIT (to_goto_bookmark, t);
664 /* Do not inherit to_get_thread_local_address. */
665 INHERIT (to_can_execute_reverse, t);
666 INHERIT (to_thread_architecture, t);
667 /* Do not inherit to_read_description. */
668 INHERIT (to_get_ada_task_ptid, t);
669 /* Do not inherit to_search_memory. */
670 INHERIT (to_supports_multi_process, t);
671 INHERIT (to_trace_init, t);
672 INHERIT (to_download_tracepoint, t);
673 INHERIT (to_download_trace_state_variable, t);
674 INHERIT (to_trace_set_readonly_regions, t);
675 INHERIT (to_trace_start, t);
676 INHERIT (to_get_trace_status, t);
677 INHERIT (to_trace_stop, t);
678 INHERIT (to_trace_find, t);
679 INHERIT (to_get_trace_state_variable_value, t);
680 INHERIT (to_save_trace_data, t);
681 INHERIT (to_upload_tracepoints, t);
682 INHERIT (to_upload_trace_state_variables, t);
683 INHERIT (to_get_raw_trace_data, t);
684 INHERIT (to_set_disconnected_tracing, t);
685 INHERIT (to_set_circular_trace_buffer, t);
686 INHERIT (to_get_tib_address, t);
687 INHERIT (to_set_permissions, t);
688 INHERIT (to_static_tracepoint_marker_at, t);
689 INHERIT (to_static_tracepoint_markers_by_strid, t);
690 INHERIT (to_magic, t);
691 /* Do not inherit to_memory_map. */
692 /* Do not inherit to_flash_erase. */
693 /* Do not inherit to_flash_done. */
694 }
695 #undef INHERIT
696
697 /* Clean up a target struct so it no longer has any zero pointers in
698 it. Some entries are defaulted to a method that print an error,
699 others are hard-wired to a standard recursive default. */
700
701 #define de_fault(field, value) \
702 if (!current_target.field) \
703 current_target.field = value
704
705 de_fault (to_open,
706 (void (*) (char *, int))
707 tcomplain);
708 de_fault (to_close,
709 (void (*) (int))
710 target_ignore);
711 de_fault (to_post_attach,
712 (void (*) (int))
713 target_ignore);
714 de_fault (to_prepare_to_store,
715 (void (*) (struct regcache *))
716 noprocess);
717 de_fault (deprecated_xfer_memory,
718 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
719 nomemory);
720 de_fault (to_files_info,
721 (void (*) (struct target_ops *))
722 target_ignore);
723 de_fault (to_insert_breakpoint,
724 memory_insert_breakpoint);
725 de_fault (to_remove_breakpoint,
726 memory_remove_breakpoint);
727 de_fault (to_can_use_hw_breakpoint,
728 (int (*) (int, int, int))
729 return_zero);
730 de_fault (to_insert_hw_breakpoint,
731 (int (*) (struct gdbarch *, struct bp_target_info *))
732 return_minus_one);
733 de_fault (to_remove_hw_breakpoint,
734 (int (*) (struct gdbarch *, struct bp_target_info *))
735 return_minus_one);
736 de_fault (to_insert_watchpoint,
737 (int (*) (CORE_ADDR, int, int, struct expression *))
738 return_minus_one);
739 de_fault (to_remove_watchpoint,
740 (int (*) (CORE_ADDR, int, int, struct expression *))
741 return_minus_one);
742 de_fault (to_stopped_by_watchpoint,
743 (int (*) (void))
744 return_zero);
745 de_fault (to_stopped_data_address,
746 (int (*) (struct target_ops *, CORE_ADDR *))
747 return_zero);
748 de_fault (to_watchpoint_addr_within_range,
749 default_watchpoint_addr_within_range);
750 de_fault (to_region_ok_for_hw_watchpoint,
751 default_region_ok_for_hw_watchpoint);
752 de_fault (to_can_accel_watchpoint_condition,
753 (int (*) (CORE_ADDR, int, int, struct expression *))
754 return_zero);
755 de_fault (to_terminal_init,
756 (void (*) (void))
757 target_ignore);
758 de_fault (to_terminal_inferior,
759 (void (*) (void))
760 target_ignore);
761 de_fault (to_terminal_ours_for_output,
762 (void (*) (void))
763 target_ignore);
764 de_fault (to_terminal_ours,
765 (void (*) (void))
766 target_ignore);
767 de_fault (to_terminal_save_ours,
768 (void (*) (void))
769 target_ignore);
770 de_fault (to_terminal_info,
771 default_terminal_info);
772 de_fault (to_load,
773 (void (*) (char *, int))
774 tcomplain);
775 de_fault (to_lookup_symbol,
776 (int (*) (char *, CORE_ADDR *))
777 nosymbol);
778 de_fault (to_post_startup_inferior,
779 (void (*) (ptid_t))
780 target_ignore);
781 de_fault (to_acknowledge_created_inferior,
782 (void (*) (int))
783 target_ignore);
784 de_fault (to_insert_fork_catchpoint,
785 (void (*) (int))
786 tcomplain);
787 de_fault (to_remove_fork_catchpoint,
788 (int (*) (int))
789 tcomplain);
790 de_fault (to_insert_vfork_catchpoint,
791 (void (*) (int))
792 tcomplain);
793 de_fault (to_remove_vfork_catchpoint,
794 (int (*) (int))
795 tcomplain);
796 de_fault (to_insert_exec_catchpoint,
797 (void (*) (int))
798 tcomplain);
799 de_fault (to_remove_exec_catchpoint,
800 (int (*) (int))
801 tcomplain);
802 de_fault (to_set_syscall_catchpoint,
803 (int (*) (int, int, int, int, int *))
804 tcomplain);
805 de_fault (to_has_exited,
806 (int (*) (int, int, int *))
807 return_zero);
808 de_fault (to_can_run,
809 return_zero);
810 de_fault (to_notice_signals,
811 (void (*) (ptid_t))
812 target_ignore);
813 de_fault (to_extra_thread_info,
814 (char *(*) (struct thread_info *))
815 return_zero);
816 de_fault (to_stop,
817 (void (*) (ptid_t))
818 target_ignore);
819 current_target.to_xfer_partial = current_xfer_partial;
820 de_fault (to_rcmd,
821 (void (*) (char *, struct ui_file *))
822 tcomplain);
823 de_fault (to_pid_to_exec_file,
824 (char *(*) (int))
825 return_zero);
826 de_fault (to_async,
827 (void (*) (void (*) (enum inferior_event_type, void*), void*))
828 tcomplain);
829 de_fault (to_async_mask,
830 (int (*) (int))
831 return_one);
832 de_fault (to_thread_architecture,
833 default_thread_architecture);
834 current_target.to_read_description = NULL;
835 de_fault (to_get_ada_task_ptid,
836 (ptid_t (*) (long, long))
837 default_get_ada_task_ptid);
838 de_fault (to_supports_multi_process,
839 (int (*) (void))
840 return_zero);
841 de_fault (to_trace_init,
842 (void (*) (void))
843 tcomplain);
844 de_fault (to_download_tracepoint,
845 (void (*) (struct breakpoint *))
846 tcomplain);
847 de_fault (to_download_trace_state_variable,
848 (void (*) (struct trace_state_variable *))
849 tcomplain);
850 de_fault (to_trace_set_readonly_regions,
851 (void (*) (void))
852 tcomplain);
853 de_fault (to_trace_start,
854 (void (*) (void))
855 tcomplain);
856 de_fault (to_get_trace_status,
857 (int (*) (struct trace_status *))
858 return_minus_one);
859 de_fault (to_trace_stop,
860 (void (*) (void))
861 tcomplain);
862 de_fault (to_trace_find,
863 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
864 return_minus_one);
865 de_fault (to_get_trace_state_variable_value,
866 (int (*) (int, LONGEST *))
867 return_zero);
868 de_fault (to_save_trace_data,
869 (int (*) (const char *))
870 tcomplain);
871 de_fault (to_upload_tracepoints,
872 (int (*) (struct uploaded_tp **))
873 return_zero);
874 de_fault (to_upload_trace_state_variables,
875 (int (*) (struct uploaded_tsv **))
876 return_zero);
877 de_fault (to_get_raw_trace_data,
878 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
879 tcomplain);
880 de_fault (to_set_disconnected_tracing,
881 (void (*) (int))
882 target_ignore);
883 de_fault (to_set_circular_trace_buffer,
884 (void (*) (int))
885 target_ignore);
886 de_fault (to_get_tib_address,
887 (int (*) (ptid_t, CORE_ADDR *))
888 tcomplain);
889 de_fault (to_set_permissions,
890 (void (*) (void))
891 target_ignore);
892 de_fault (to_static_tracepoint_marker_at,
893 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
894 return_zero);
895 de_fault (to_static_tracepoint_markers_by_strid,
896 (VEC(static_tracepoint_marker_p) * (*) (const char *))
897 tcomplain);
898 #undef de_fault
899
900 /* Finally, position the target-stack beneath the squashed
901 "current_target". That way code looking for a non-inherited
902 target method can quickly and simply find it. */
903 current_target.beneath = target_stack;
904
905 if (targetdebug)
906 setup_target_debug ();
907 }
908
909 /* Push a new target type into the stack of the existing target accessors,
910 possibly superseding some of the existing accessors.
911
912 Rather than allow an empty stack, we always have the dummy target at
913 the bottom stratum, so we can call the function vectors without
914 checking them. */
915
916 void
917 push_target (struct target_ops *t)
918 {
919 struct target_ops **cur;
920
921 /* Check magic number. If wrong, it probably means someone changed
922 the struct definition, but not all the places that initialize one. */
923 if (t->to_magic != OPS_MAGIC)
924 {
925 fprintf_unfiltered (gdb_stderr,
926 "Magic number of %s target struct wrong\n",
927 t->to_shortname);
928 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
929 }
930
931 /* Find the proper stratum to install this target in. */
932 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
933 {
934 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
935 break;
936 }
937
938 /* If there's already targets at this stratum, remove them. */
939 /* FIXME: cagney/2003-10-15: I think this should be popping all
940 targets to CUR, and not just those at this stratum level. */
941 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
942 {
943 /* There's already something at this stratum level. Close it,
944 and un-hook it from the stack. */
945 struct target_ops *tmp = (*cur);
946
947 (*cur) = (*cur)->beneath;
948 tmp->beneath = NULL;
949 target_close (tmp, 0);
950 }
951
952 /* We have removed all targets in our stratum, now add the new one. */
953 t->beneath = (*cur);
954 (*cur) = t;
955
956 update_current_target ();
957 }
958
959 /* Remove a target_ops vector from the stack, wherever it may be.
960 Return how many times it was removed (0 or 1). */
961
962 int
963 unpush_target (struct target_ops *t)
964 {
965 struct target_ops **cur;
966 struct target_ops *tmp;
967
968 if (t->to_stratum == dummy_stratum)
969 internal_error (__FILE__, __LINE__,
970 "Attempt to unpush the dummy target");
971
972 /* Look for the specified target. Note that we assume that a target
973 can only occur once in the target stack. */
974
975 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
976 {
977 if ((*cur) == t)
978 break;
979 }
980
981 if ((*cur) == NULL)
982 return 0; /* Didn't find target_ops, quit now */
983
984 /* NOTE: cagney/2003-12-06: In '94 the close call was made
985 unconditional by moving it to before the above check that the
986 target was in the target stack (something about "Change the way
987 pushing and popping of targets work to support target overlays
988 and inheritance"). This doesn't make much sense - only open
989 targets should be closed. */
990 target_close (t, 0);
991
992 /* Unchain the target */
993 tmp = (*cur);
994 (*cur) = (*cur)->beneath;
995 tmp->beneath = NULL;
996
997 update_current_target ();
998
999 return 1;
1000 }
1001
1002 void
1003 pop_target (void)
1004 {
1005 target_close (target_stack, 0); /* Let it clean up */
1006 if (unpush_target (target_stack) == 1)
1007 return;
1008
1009 fprintf_unfiltered (gdb_stderr,
1010 "pop_target couldn't find target %s\n",
1011 current_target.to_shortname);
1012 internal_error (__FILE__, __LINE__,
1013 _("failed internal consistency check"));
1014 }
1015
1016 void
1017 pop_all_targets_above (enum strata above_stratum, int quitting)
1018 {
1019 while ((int) (current_target.to_stratum) > (int) above_stratum)
1020 {
1021 target_close (target_stack, quitting);
1022 if (!unpush_target (target_stack))
1023 {
1024 fprintf_unfiltered (gdb_stderr,
1025 "pop_all_targets couldn't find target %s\n",
1026 target_stack->to_shortname);
1027 internal_error (__FILE__, __LINE__,
1028 _("failed internal consistency check"));
1029 break;
1030 }
1031 }
1032 }
1033
1034 void
1035 pop_all_targets (int quitting)
1036 {
1037 pop_all_targets_above (dummy_stratum, quitting);
1038 }
1039
1040 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1041
1042 int
1043 target_is_pushed (struct target_ops *t)
1044 {
1045 struct target_ops **cur;
1046
1047 /* Check magic number. If wrong, it probably means someone changed
1048 the struct definition, but not all the places that initialize one. */
1049 if (t->to_magic != OPS_MAGIC)
1050 {
1051 fprintf_unfiltered (gdb_stderr,
1052 "Magic number of %s target struct wrong\n",
1053 t->to_shortname);
1054 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1055 }
1056
1057 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1058 if (*cur == t)
1059 return 1;
1060
1061 return 0;
1062 }
1063
1064 /* Using the objfile specified in OBJFILE, find the address for the
1065 current thread's thread-local storage with offset OFFSET. */
1066 CORE_ADDR
1067 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1068 {
1069 volatile CORE_ADDR addr = 0;
1070 struct target_ops *target;
1071
1072 for (target = current_target.beneath;
1073 target != NULL;
1074 target = target->beneath)
1075 {
1076 if (target->to_get_thread_local_address != NULL)
1077 break;
1078 }
1079
1080 if (target != NULL
1081 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1082 {
1083 ptid_t ptid = inferior_ptid;
1084 volatile struct gdb_exception ex;
1085
1086 TRY_CATCH (ex, RETURN_MASK_ALL)
1087 {
1088 CORE_ADDR lm_addr;
1089
1090 /* Fetch the load module address for this objfile. */
1091 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1092 objfile);
1093 /* If it's 0, throw the appropriate exception. */
1094 if (lm_addr == 0)
1095 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1096 _("TLS load module not found"));
1097
1098 addr = target->to_get_thread_local_address (target, ptid, lm_addr, offset);
1099 }
1100 /* If an error occurred, print TLS related messages here. Otherwise,
1101 throw the error to some higher catcher. */
1102 if (ex.reason < 0)
1103 {
1104 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1105
1106 switch (ex.error)
1107 {
1108 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1109 error (_("Cannot find thread-local variables in this thread library."));
1110 break;
1111 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1112 if (objfile_is_library)
1113 error (_("Cannot find shared library `%s' in dynamic"
1114 " linker's load module list"), objfile->name);
1115 else
1116 error (_("Cannot find executable file `%s' in dynamic"
1117 " linker's load module list"), objfile->name);
1118 break;
1119 case TLS_NOT_ALLOCATED_YET_ERROR:
1120 if (objfile_is_library)
1121 error (_("The inferior has not yet allocated storage for"
1122 " thread-local variables in\n"
1123 "the shared library `%s'\n"
1124 "for %s"),
1125 objfile->name, target_pid_to_str (ptid));
1126 else
1127 error (_("The inferior has not yet allocated storage for"
1128 " thread-local variables in\n"
1129 "the executable `%s'\n"
1130 "for %s"),
1131 objfile->name, target_pid_to_str (ptid));
1132 break;
1133 case TLS_GENERIC_ERROR:
1134 if (objfile_is_library)
1135 error (_("Cannot find thread-local storage for %s, "
1136 "shared library %s:\n%s"),
1137 target_pid_to_str (ptid),
1138 objfile->name, ex.message);
1139 else
1140 error (_("Cannot find thread-local storage for %s, "
1141 "executable file %s:\n%s"),
1142 target_pid_to_str (ptid),
1143 objfile->name, ex.message);
1144 break;
1145 default:
1146 throw_exception (ex);
1147 break;
1148 }
1149 }
1150 }
1151 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1152 TLS is an ABI-specific thing. But we don't do that yet. */
1153 else
1154 error (_("Cannot find thread-local variables on this target"));
1155
1156 return addr;
1157 }
1158
1159 #undef MIN
1160 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1161
1162 /* target_read_string -- read a null terminated string, up to LEN bytes,
1163 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1164 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1165 is responsible for freeing it. Return the number of bytes successfully
1166 read. */
1167
1168 int
1169 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1170 {
1171 int tlen, origlen, offset, i;
1172 gdb_byte buf[4];
1173 int errcode = 0;
1174 char *buffer;
1175 int buffer_allocated;
1176 char *bufptr;
1177 unsigned int nbytes_read = 0;
1178
1179 gdb_assert (string);
1180
1181 /* Small for testing. */
1182 buffer_allocated = 4;
1183 buffer = xmalloc (buffer_allocated);
1184 bufptr = buffer;
1185
1186 origlen = len;
1187
1188 while (len > 0)
1189 {
1190 tlen = MIN (len, 4 - (memaddr & 3));
1191 offset = memaddr & 3;
1192
1193 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1194 if (errcode != 0)
1195 {
1196 /* The transfer request might have crossed the boundary to an
1197 unallocated region of memory. Retry the transfer, requesting
1198 a single byte. */
1199 tlen = 1;
1200 offset = 0;
1201 errcode = target_read_memory (memaddr, buf, 1);
1202 if (errcode != 0)
1203 goto done;
1204 }
1205
1206 if (bufptr - buffer + tlen > buffer_allocated)
1207 {
1208 unsigned int bytes;
1209
1210 bytes = bufptr - buffer;
1211 buffer_allocated *= 2;
1212 buffer = xrealloc (buffer, buffer_allocated);
1213 bufptr = buffer + bytes;
1214 }
1215
1216 for (i = 0; i < tlen; i++)
1217 {
1218 *bufptr++ = buf[i + offset];
1219 if (buf[i + offset] == '\000')
1220 {
1221 nbytes_read += i + 1;
1222 goto done;
1223 }
1224 }
1225
1226 memaddr += tlen;
1227 len -= tlen;
1228 nbytes_read += tlen;
1229 }
1230 done:
1231 *string = buffer;
1232 if (errnop != NULL)
1233 *errnop = errcode;
1234 return nbytes_read;
1235 }
1236
1237 struct target_section_table *
1238 target_get_section_table (struct target_ops *target)
1239 {
1240 struct target_ops *t;
1241
1242 if (targetdebug)
1243 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1244
1245 for (t = target; t != NULL; t = t->beneath)
1246 if (t->to_get_section_table != NULL)
1247 return (*t->to_get_section_table) (t);
1248
1249 return NULL;
1250 }
1251
1252 /* Find a section containing ADDR. */
1253
1254 struct target_section *
1255 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1256 {
1257 struct target_section_table *table = target_get_section_table (target);
1258 struct target_section *secp;
1259
1260 if (table == NULL)
1261 return NULL;
1262
1263 for (secp = table->sections; secp < table->sections_end; secp++)
1264 {
1265 if (addr >= secp->addr && addr < secp->endaddr)
1266 return secp;
1267 }
1268 return NULL;
1269 }
1270
1271 /* Perform a partial memory transfer.
1272 For docs see target.h, to_xfer_partial. */
1273
1274 static LONGEST
1275 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1276 void *readbuf, const void *writebuf, ULONGEST memaddr,
1277 LONGEST len)
1278 {
1279 LONGEST res;
1280 int reg_len;
1281 struct mem_region *region;
1282 struct inferior *inf;
1283
1284 /* Zero length requests are ok and require no work. */
1285 if (len == 0)
1286 return 0;
1287
1288 /* For accesses to unmapped overlay sections, read directly from
1289 files. Must do this first, as MEMADDR may need adjustment. */
1290 if (readbuf != NULL && overlay_debugging)
1291 {
1292 struct obj_section *section = find_pc_overlay (memaddr);
1293
1294 if (pc_in_unmapped_range (memaddr, section))
1295 {
1296 struct target_section_table *table
1297 = target_get_section_table (ops);
1298 const char *section_name = section->the_bfd_section->name;
1299
1300 memaddr = overlay_mapped_address (memaddr, section);
1301 return section_table_xfer_memory_partial (readbuf, writebuf,
1302 memaddr, len,
1303 table->sections,
1304 table->sections_end,
1305 section_name);
1306 }
1307 }
1308
1309 /* Try the executable files, if "trust-readonly-sections" is set. */
1310 if (readbuf != NULL && trust_readonly)
1311 {
1312 struct target_section *secp;
1313 struct target_section_table *table;
1314
1315 secp = target_section_by_addr (ops, memaddr);
1316 if (secp != NULL
1317 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1318 & SEC_READONLY))
1319 {
1320 table = target_get_section_table (ops);
1321 return section_table_xfer_memory_partial (readbuf, writebuf,
1322 memaddr, len,
1323 table->sections,
1324 table->sections_end,
1325 NULL);
1326 }
1327 }
1328
1329 /* Try GDB's internal data cache. */
1330 region = lookup_mem_region (memaddr);
1331 /* region->hi == 0 means there's no upper bound. */
1332 if (memaddr + len < region->hi || region->hi == 0)
1333 reg_len = len;
1334 else
1335 reg_len = region->hi - memaddr;
1336
1337 switch (region->attrib.mode)
1338 {
1339 case MEM_RO:
1340 if (writebuf != NULL)
1341 return -1;
1342 break;
1343
1344 case MEM_WO:
1345 if (readbuf != NULL)
1346 return -1;
1347 break;
1348
1349 case MEM_FLASH:
1350 /* We only support writing to flash during "load" for now. */
1351 if (writebuf != NULL)
1352 error (_("Writing to flash memory forbidden in this context"));
1353 break;
1354
1355 case MEM_NONE:
1356 return -1;
1357 }
1358
1359 if (!ptid_equal (inferior_ptid, null_ptid))
1360 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1361 else
1362 inf = NULL;
1363
1364 if (inf != NULL
1365 /* The dcache reads whole cache lines; that doesn't play well
1366 with reading from a trace buffer, because reading outside of
1367 the collected memory range fails. */
1368 && get_traceframe_number () == -1
1369 && (region->attrib.cache
1370 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1371 {
1372 if (readbuf != NULL)
1373 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1374 reg_len, 0);
1375 else
1376 /* FIXME drow/2006-08-09: If we're going to preserve const
1377 correctness dcache_xfer_memory should take readbuf and
1378 writebuf. */
1379 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1380 (void *) writebuf,
1381 reg_len, 1);
1382 if (res <= 0)
1383 return -1;
1384 else
1385 {
1386 if (readbuf && !show_memory_breakpoints)
1387 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1388 return res;
1389 }
1390 }
1391
1392 /* If none of those methods found the memory we wanted, fall back
1393 to a target partial transfer. Normally a single call to
1394 to_xfer_partial is enough; if it doesn't recognize an object
1395 it will call the to_xfer_partial of the next target down.
1396 But for memory this won't do. Memory is the only target
1397 object which can be read from more than one valid target.
1398 A core file, for instance, could have some of memory but
1399 delegate other bits to the target below it. So, we must
1400 manually try all targets. */
1401
1402 do
1403 {
1404 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1405 readbuf, writebuf, memaddr, reg_len);
1406 if (res > 0)
1407 break;
1408
1409 /* We want to continue past core files to executables, but not
1410 past a running target's memory. */
1411 if (ops->to_has_all_memory (ops))
1412 break;
1413
1414 ops = ops->beneath;
1415 }
1416 while (ops != NULL);
1417
1418 if (readbuf && !show_memory_breakpoints)
1419 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1420
1421 /* Make sure the cache gets updated no matter what - if we are writing
1422 to the stack. Even if this write is not tagged as such, we still need
1423 to update the cache. */
1424
1425 if (res > 0
1426 && inf != NULL
1427 && writebuf != NULL
1428 && !region->attrib.cache
1429 && stack_cache_enabled_p
1430 && object != TARGET_OBJECT_STACK_MEMORY)
1431 {
1432 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1433 }
1434
1435 /* If we still haven't got anything, return the last error. We
1436 give up. */
1437 return res;
1438 }
1439
1440 static void
1441 restore_show_memory_breakpoints (void *arg)
1442 {
1443 show_memory_breakpoints = (uintptr_t) arg;
1444 }
1445
1446 struct cleanup *
1447 make_show_memory_breakpoints_cleanup (int show)
1448 {
1449 int current = show_memory_breakpoints;
1450
1451 show_memory_breakpoints = show;
1452 return make_cleanup (restore_show_memory_breakpoints,
1453 (void *) (uintptr_t) current);
1454 }
1455
1456 /* For docs see target.h, to_xfer_partial. */
1457
1458 static LONGEST
1459 target_xfer_partial (struct target_ops *ops,
1460 enum target_object object, const char *annex,
1461 void *readbuf, const void *writebuf,
1462 ULONGEST offset, LONGEST len)
1463 {
1464 LONGEST retval;
1465
1466 gdb_assert (ops->to_xfer_partial != NULL);
1467
1468 if (writebuf && !may_write_memory)
1469 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1470 core_addr_to_string_nz (offset), plongest (len));
1471
1472 /* If this is a memory transfer, let the memory-specific code
1473 have a look at it instead. Memory transfers are more
1474 complicated. */
1475 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1476 retval = memory_xfer_partial (ops, object, readbuf,
1477 writebuf, offset, len);
1478 else
1479 {
1480 enum target_object raw_object = object;
1481
1482 /* If this is a raw memory transfer, request the normal
1483 memory object from other layers. */
1484 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1485 raw_object = TARGET_OBJECT_MEMORY;
1486
1487 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1488 writebuf, offset, len);
1489 }
1490
1491 if (targetdebug)
1492 {
1493 const unsigned char *myaddr = NULL;
1494
1495 fprintf_unfiltered (gdb_stdlog,
1496 "%s:target_xfer_partial (%d, %s, %s, %s, %s, %s) = %s",
1497 ops->to_shortname,
1498 (int) object,
1499 (annex ? annex : "(null)"),
1500 host_address_to_string (readbuf),
1501 host_address_to_string (writebuf),
1502 core_addr_to_string_nz (offset),
1503 plongest (len), plongest (retval));
1504
1505 if (readbuf)
1506 myaddr = readbuf;
1507 if (writebuf)
1508 myaddr = writebuf;
1509 if (retval > 0 && myaddr != NULL)
1510 {
1511 int i;
1512
1513 fputs_unfiltered (", bytes =", gdb_stdlog);
1514 for (i = 0; i < retval; i++)
1515 {
1516 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1517 {
1518 if (targetdebug < 2 && i > 0)
1519 {
1520 fprintf_unfiltered (gdb_stdlog, " ...");
1521 break;
1522 }
1523 fprintf_unfiltered (gdb_stdlog, "\n");
1524 }
1525
1526 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1527 }
1528 }
1529
1530 fputc_unfiltered ('\n', gdb_stdlog);
1531 }
1532 return retval;
1533 }
1534
1535 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1536 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1537 if any error occurs.
1538
1539 If an error occurs, no guarantee is made about the contents of the data at
1540 MYADDR. In particular, the caller should not depend upon partial reads
1541 filling the buffer with good data. There is no way for the caller to know
1542 how much good data might have been transfered anyway. Callers that can
1543 deal with partial reads should call target_read (which will retry until
1544 it makes no progress, and then return how much was transferred). */
1545
1546 int
1547 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1548 {
1549 /* Dispatch to the topmost target, not the flattened current_target.
1550 Memory accesses check target->to_has_(all_)memory, and the
1551 flattened target doesn't inherit those. */
1552 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1553 myaddr, memaddr, len) == len)
1554 return 0;
1555 else
1556 return EIO;
1557 }
1558
1559 /* Like target_read_memory, but specify explicitly that this is a read from
1560 the target's stack. This may trigger different cache behavior. */
1561
1562 int
1563 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1564 {
1565 /* Dispatch to the topmost target, not the flattened current_target.
1566 Memory accesses check target->to_has_(all_)memory, and the
1567 flattened target doesn't inherit those. */
1568
1569 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1570 myaddr, memaddr, len) == len)
1571 return 0;
1572 else
1573 return EIO;
1574 }
1575
1576 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1577 Returns either 0 for success or an errno value if any error occurs.
1578 If an error occurs, no guarantee is made about how much data got written.
1579 Callers that can deal with partial writes should call target_write. */
1580
1581 int
1582 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1583 {
1584 /* Dispatch to the topmost target, not the flattened current_target.
1585 Memory accesses check target->to_has_(all_)memory, and the
1586 flattened target doesn't inherit those. */
1587 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1588 myaddr, memaddr, len) == len)
1589 return 0;
1590 else
1591 return EIO;
1592 }
1593
1594 /* Fetch the target's memory map. */
1595
1596 VEC(mem_region_s) *
1597 target_memory_map (void)
1598 {
1599 VEC(mem_region_s) *result;
1600 struct mem_region *last_one, *this_one;
1601 int ix;
1602 struct target_ops *t;
1603
1604 if (targetdebug)
1605 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1606
1607 for (t = current_target.beneath; t != NULL; t = t->beneath)
1608 if (t->to_memory_map != NULL)
1609 break;
1610
1611 if (t == NULL)
1612 return NULL;
1613
1614 result = t->to_memory_map (t);
1615 if (result == NULL)
1616 return NULL;
1617
1618 qsort (VEC_address (mem_region_s, result),
1619 VEC_length (mem_region_s, result),
1620 sizeof (struct mem_region), mem_region_cmp);
1621
1622 /* Check that regions do not overlap. Simultaneously assign
1623 a numbering for the "mem" commands to use to refer to
1624 each region. */
1625 last_one = NULL;
1626 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1627 {
1628 this_one->number = ix;
1629
1630 if (last_one && last_one->hi > this_one->lo)
1631 {
1632 warning (_("Overlapping regions in memory map: ignoring"));
1633 VEC_free (mem_region_s, result);
1634 return NULL;
1635 }
1636 last_one = this_one;
1637 }
1638
1639 return result;
1640 }
1641
1642 void
1643 target_flash_erase (ULONGEST address, LONGEST length)
1644 {
1645 struct target_ops *t;
1646
1647 for (t = current_target.beneath; t != NULL; t = t->beneath)
1648 if (t->to_flash_erase != NULL)
1649 {
1650 if (targetdebug)
1651 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1652 hex_string (address), phex (length, 0));
1653 t->to_flash_erase (t, address, length);
1654 return;
1655 }
1656
1657 tcomplain ();
1658 }
1659
1660 void
1661 target_flash_done (void)
1662 {
1663 struct target_ops *t;
1664
1665 for (t = current_target.beneath; t != NULL; t = t->beneath)
1666 if (t->to_flash_done != NULL)
1667 {
1668 if (targetdebug)
1669 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1670 t->to_flash_done (t);
1671 return;
1672 }
1673
1674 tcomplain ();
1675 }
1676
1677 static void
1678 show_trust_readonly (struct ui_file *file, int from_tty,
1679 struct cmd_list_element *c, const char *value)
1680 {
1681 fprintf_filtered (file, _("\
1682 Mode for reading from readonly sections is %s.\n"),
1683 value);
1684 }
1685
1686 /* More generic transfers. */
1687
1688 static LONGEST
1689 default_xfer_partial (struct target_ops *ops, enum target_object object,
1690 const char *annex, gdb_byte *readbuf,
1691 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1692 {
1693 if (object == TARGET_OBJECT_MEMORY
1694 && ops->deprecated_xfer_memory != NULL)
1695 /* If available, fall back to the target's
1696 "deprecated_xfer_memory" method. */
1697 {
1698 int xfered = -1;
1699
1700 errno = 0;
1701 if (writebuf != NULL)
1702 {
1703 void *buffer = xmalloc (len);
1704 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1705
1706 memcpy (buffer, writebuf, len);
1707 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1708 1/*write*/, NULL, ops);
1709 do_cleanups (cleanup);
1710 }
1711 if (readbuf != NULL)
1712 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1713 0/*read*/, NULL, ops);
1714 if (xfered > 0)
1715 return xfered;
1716 else if (xfered == 0 && errno == 0)
1717 /* "deprecated_xfer_memory" uses 0, cross checked against
1718 ERRNO as one indication of an error. */
1719 return 0;
1720 else
1721 return -1;
1722 }
1723 else if (ops->beneath != NULL)
1724 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1725 readbuf, writebuf, offset, len);
1726 else
1727 return -1;
1728 }
1729
1730 /* The xfer_partial handler for the topmost target. Unlike the default,
1731 it does not need to handle memory specially; it just passes all
1732 requests down the stack. */
1733
1734 static LONGEST
1735 current_xfer_partial (struct target_ops *ops, enum target_object object,
1736 const char *annex, gdb_byte *readbuf,
1737 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1738 {
1739 if (ops->beneath != NULL)
1740 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1741 readbuf, writebuf, offset, len);
1742 else
1743 return -1;
1744 }
1745
1746 /* Target vector read/write partial wrapper functions. */
1747
1748 static LONGEST
1749 target_read_partial (struct target_ops *ops,
1750 enum target_object object,
1751 const char *annex, gdb_byte *buf,
1752 ULONGEST offset, LONGEST len)
1753 {
1754 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1755 }
1756
1757 static LONGEST
1758 target_write_partial (struct target_ops *ops,
1759 enum target_object object,
1760 const char *annex, const gdb_byte *buf,
1761 ULONGEST offset, LONGEST len)
1762 {
1763 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1764 }
1765
1766 /* Wrappers to perform the full transfer. */
1767
1768 /* For docs on target_read see target.h. */
1769
1770 LONGEST
1771 target_read (struct target_ops *ops,
1772 enum target_object object,
1773 const char *annex, gdb_byte *buf,
1774 ULONGEST offset, LONGEST len)
1775 {
1776 LONGEST xfered = 0;
1777
1778 while (xfered < len)
1779 {
1780 LONGEST xfer = target_read_partial (ops, object, annex,
1781 (gdb_byte *) buf + xfered,
1782 offset + xfered, len - xfered);
1783
1784 /* Call an observer, notifying them of the xfer progress? */
1785 if (xfer == 0)
1786 return xfered;
1787 if (xfer < 0)
1788 return -1;
1789 xfered += xfer;
1790 QUIT;
1791 }
1792 return len;
1793 }
1794
1795 /** Assuming that the entire [begin, end) range of memory cannot be read,
1796 try to read whatever subrange is possible to read.
1797
1798 The function results, in RESULT, either zero or one memory block.
1799 If there's a readable subrange at the beginning, it is completely
1800 read and returned. Any further readable subrange will not be read.
1801 Otherwise, if there's a readable subrange at the end, it will be
1802 completely read and returned. Any readable subranges before it (obviously,
1803 not starting at the beginning), will be ignored. In other cases --
1804 either no readable subrange, or readable subrange (s) that is neither
1805 at the beginning, or end, nothing is returned.
1806
1807 The purpose of this function is to handle a read across a boundary of
1808 accessible memory in a case when memory map is not available. The above
1809 restrictions are fine for this case, but will give incorrect results if
1810 the memory is 'patchy'. However, supporting 'patchy' memory would require
1811 trying to read every single byte, and it seems unacceptable solution.
1812 Explicit memory map is recommended for this case -- and
1813 target_read_memory_robust will take care of reading multiple ranges then. */
1814
1815 static void
1816 read_whatever_is_readable (struct target_ops *ops, ULONGEST begin, ULONGEST end,
1817 VEC(memory_read_result_s) **result)
1818 {
1819 gdb_byte *buf = xmalloc (end-begin);
1820 ULONGEST current_begin = begin;
1821 ULONGEST current_end = end;
1822 int forward;
1823 memory_read_result_s r;
1824
1825 /* If we previously failed to read 1 byte, nothing can be done here. */
1826 if (end - begin <= 1)
1827 return;
1828
1829 /* Check that either first or the last byte is readable, and give up
1830 if not. This heuristic is meant to permit reading accessible memory
1831 at the boundary of accessible region. */
1832 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1833 buf, begin, 1) == 1)
1834 {
1835 forward = 1;
1836 ++current_begin;
1837 }
1838 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1839 buf + (end-begin) - 1, end - 1, 1) == 1)
1840 {
1841 forward = 0;
1842 --current_end;
1843 }
1844 else
1845 {
1846 return;
1847 }
1848
1849 /* Loop invariant is that the [current_begin, current_end) was previously
1850 found to be not readable as a whole.
1851
1852 Note loop condition -- if the range has 1 byte, we can't divide the range
1853 so there's no point trying further. */
1854 while (current_end - current_begin > 1)
1855 {
1856 ULONGEST first_half_begin, first_half_end;
1857 ULONGEST second_half_begin, second_half_end;
1858 LONGEST xfer;
1859
1860 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1861 if (forward)
1862 {
1863 first_half_begin = current_begin;
1864 first_half_end = middle;
1865 second_half_begin = middle;
1866 second_half_end = current_end;
1867 }
1868 else
1869 {
1870 first_half_begin = middle;
1871 first_half_end = current_end;
1872 second_half_begin = current_begin;
1873 second_half_end = middle;
1874 }
1875
1876 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1877 buf + (first_half_begin - begin),
1878 first_half_begin,
1879 first_half_end - first_half_begin);
1880
1881 if (xfer == first_half_end - first_half_begin)
1882 {
1883 /* This half reads up fine. So, the error must be in the other half. */
1884 current_begin = second_half_begin;
1885 current_end = second_half_end;
1886 }
1887 else
1888 {
1889 /* This half is not readable. Because we've tried one byte, we
1890 know some part of this half if actually redable. Go to the next
1891 iteration to divide again and try to read.
1892
1893 We don't handle the other half, because this function only tries
1894 to read a single readable subrange. */
1895 current_begin = first_half_begin;
1896 current_end = first_half_end;
1897 }
1898 }
1899
1900 if (forward)
1901 {
1902 /* The [begin, current_begin) range has been read. */
1903 r.begin = begin;
1904 r.end = current_begin;
1905 r.data = buf;
1906 }
1907 else
1908 {
1909 /* The [current_end, end) range has been read. */
1910 LONGEST rlen = end - current_end;
1911 r.data = xmalloc (rlen);
1912 memcpy (r.data, buf + current_end - begin, rlen);
1913 r.begin = current_end;
1914 r.end = end;
1915 xfree (buf);
1916 }
1917 VEC_safe_push(memory_read_result_s, (*result), &r);
1918 }
1919
1920 void
1921 free_memory_read_result_vector (void *x)
1922 {
1923 VEC(memory_read_result_s) *v = x;
1924 memory_read_result_s *current;
1925 int ix;
1926
1927 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1928 {
1929 xfree (current->data);
1930 }
1931 VEC_free (memory_read_result_s, v);
1932 }
1933
1934 VEC(memory_read_result_s) *
1935 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1936 {
1937 VEC(memory_read_result_s) *result = 0;
1938
1939 LONGEST xfered = 0;
1940 while (xfered < len)
1941 {
1942 struct mem_region *region = lookup_mem_region (offset + xfered);
1943 LONGEST rlen;
1944
1945 /* If there is no explicit region, a fake one should be created. */
1946 gdb_assert (region);
1947
1948 if (region->hi == 0)
1949 rlen = len - xfered;
1950 else
1951 rlen = region->hi - offset;
1952
1953 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1954 {
1955 /* Cannot read this region. Note that we can end up here only
1956 if the region is explicitly marked inaccessible, or
1957 'inaccessible-by-default' is in effect. */
1958 xfered += rlen;
1959 }
1960 else
1961 {
1962 LONGEST to_read = min (len - xfered, rlen);
1963 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1964
1965 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1966 (gdb_byte *) buffer,
1967 offset + xfered, to_read);
1968 /* Call an observer, notifying them of the xfer progress? */
1969 if (xfer <= 0)
1970 {
1971 /* Got an error reading full chunk. See if maybe we can read
1972 some subrange. */
1973 xfree (buffer);
1974 read_whatever_is_readable (ops, offset + xfered, offset + xfered + to_read, &result);
1975 xfered += to_read;
1976 }
1977 else
1978 {
1979 struct memory_read_result r;
1980 r.data = buffer;
1981 r.begin = offset + xfered;
1982 r.end = r.begin + xfer;
1983 VEC_safe_push (memory_read_result_s, result, &r);
1984 xfered += xfer;
1985 }
1986 QUIT;
1987 }
1988 }
1989 return result;
1990 }
1991
1992
1993 /* An alternative to target_write with progress callbacks. */
1994
1995 LONGEST
1996 target_write_with_progress (struct target_ops *ops,
1997 enum target_object object,
1998 const char *annex, const gdb_byte *buf,
1999 ULONGEST offset, LONGEST len,
2000 void (*progress) (ULONGEST, void *), void *baton)
2001 {
2002 LONGEST xfered = 0;
2003
2004 /* Give the progress callback a chance to set up. */
2005 if (progress)
2006 (*progress) (0, baton);
2007
2008 while (xfered < len)
2009 {
2010 LONGEST xfer = target_write_partial (ops, object, annex,
2011 (gdb_byte *) buf + xfered,
2012 offset + xfered, len - xfered);
2013
2014 if (xfer == 0)
2015 return xfered;
2016 if (xfer < 0)
2017 return -1;
2018
2019 if (progress)
2020 (*progress) (xfer, baton);
2021
2022 xfered += xfer;
2023 QUIT;
2024 }
2025 return len;
2026 }
2027
2028 /* For docs on target_write see target.h. */
2029
2030 LONGEST
2031 target_write (struct target_ops *ops,
2032 enum target_object object,
2033 const char *annex, const gdb_byte *buf,
2034 ULONGEST offset, LONGEST len)
2035 {
2036 return target_write_with_progress (ops, object, annex, buf, offset, len,
2037 NULL, NULL);
2038 }
2039
2040 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2041 the size of the transferred data. PADDING additional bytes are
2042 available in *BUF_P. This is a helper function for
2043 target_read_alloc; see the declaration of that function for more
2044 information. */
2045
2046 static LONGEST
2047 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2048 const char *annex, gdb_byte **buf_p, int padding)
2049 {
2050 size_t buf_alloc, buf_pos;
2051 gdb_byte *buf;
2052 LONGEST n;
2053
2054 /* This function does not have a length parameter; it reads the
2055 entire OBJECT). Also, it doesn't support objects fetched partly
2056 from one target and partly from another (in a different stratum,
2057 e.g. a core file and an executable). Both reasons make it
2058 unsuitable for reading memory. */
2059 gdb_assert (object != TARGET_OBJECT_MEMORY);
2060
2061 /* Start by reading up to 4K at a time. The target will throttle
2062 this number down if necessary. */
2063 buf_alloc = 4096;
2064 buf = xmalloc (buf_alloc);
2065 buf_pos = 0;
2066 while (1)
2067 {
2068 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2069 buf_pos, buf_alloc - buf_pos - padding);
2070 if (n < 0)
2071 {
2072 /* An error occurred. */
2073 xfree (buf);
2074 return -1;
2075 }
2076 else if (n == 0)
2077 {
2078 /* Read all there was. */
2079 if (buf_pos == 0)
2080 xfree (buf);
2081 else
2082 *buf_p = buf;
2083 return buf_pos;
2084 }
2085
2086 buf_pos += n;
2087
2088 /* If the buffer is filling up, expand it. */
2089 if (buf_alloc < buf_pos * 2)
2090 {
2091 buf_alloc *= 2;
2092 buf = xrealloc (buf, buf_alloc);
2093 }
2094
2095 QUIT;
2096 }
2097 }
2098
2099 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2100 the size of the transferred data. See the declaration in "target.h"
2101 function for more information about the return value. */
2102
2103 LONGEST
2104 target_read_alloc (struct target_ops *ops, enum target_object object,
2105 const char *annex, gdb_byte **buf_p)
2106 {
2107 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2108 }
2109
2110 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2111 returned as a string, allocated using xmalloc. If an error occurs
2112 or the transfer is unsupported, NULL is returned. Empty objects
2113 are returned as allocated but empty strings. A warning is issued
2114 if the result contains any embedded NUL bytes. */
2115
2116 char *
2117 target_read_stralloc (struct target_ops *ops, enum target_object object,
2118 const char *annex)
2119 {
2120 gdb_byte *buffer;
2121 LONGEST transferred;
2122
2123 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2124
2125 if (transferred < 0)
2126 return NULL;
2127
2128 if (transferred == 0)
2129 return xstrdup ("");
2130
2131 buffer[transferred] = 0;
2132 if (strlen (buffer) < transferred)
2133 warning (_("target object %d, annex %s, "
2134 "contained unexpected null characters"),
2135 (int) object, annex ? annex : "(none)");
2136
2137 return (char *) buffer;
2138 }
2139
2140 /* Memory transfer methods. */
2141
2142 void
2143 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2144 LONGEST len)
2145 {
2146 /* This method is used to read from an alternate, non-current
2147 target. This read must bypass the overlay support (as symbols
2148 don't match this target), and GDB's internal cache (wrong cache
2149 for this target). */
2150 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2151 != len)
2152 memory_error (EIO, addr);
2153 }
2154
2155 ULONGEST
2156 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2157 int len, enum bfd_endian byte_order)
2158 {
2159 gdb_byte buf[sizeof (ULONGEST)];
2160
2161 gdb_assert (len <= sizeof (buf));
2162 get_target_memory (ops, addr, buf, len);
2163 return extract_unsigned_integer (buf, len, byte_order);
2164 }
2165
2166 int
2167 target_insert_breakpoint (struct gdbarch *gdbarch,
2168 struct bp_target_info *bp_tgt)
2169 {
2170 if (!may_insert_breakpoints)
2171 {
2172 warning (_("May not insert breakpoints"));
2173 return 1;
2174 }
2175
2176 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2177 }
2178
2179 int
2180 target_remove_breakpoint (struct gdbarch *gdbarch,
2181 struct bp_target_info *bp_tgt)
2182 {
2183 /* This is kind of a weird case to handle, but the permission might
2184 have been changed after breakpoints were inserted - in which case
2185 we should just take the user literally and assume that any
2186 breakpoints should be left in place. */
2187 if (!may_insert_breakpoints)
2188 {
2189 warning (_("May not remove breakpoints"));
2190 return 1;
2191 }
2192
2193 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2194 }
2195
2196 static void
2197 target_info (char *args, int from_tty)
2198 {
2199 struct target_ops *t;
2200 int has_all_mem = 0;
2201
2202 if (symfile_objfile != NULL)
2203 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2204
2205 for (t = target_stack; t != NULL; t = t->beneath)
2206 {
2207 if (!(*t->to_has_memory) (t))
2208 continue;
2209
2210 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2211 continue;
2212 if (has_all_mem)
2213 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
2214 printf_unfiltered ("%s:\n", t->to_longname);
2215 (t->to_files_info) (t);
2216 has_all_mem = (*t->to_has_all_memory) (t);
2217 }
2218 }
2219
2220 /* This function is called before any new inferior is created, e.g.
2221 by running a program, attaching, or connecting to a target.
2222 It cleans up any state from previous invocations which might
2223 change between runs. This is a subset of what target_preopen
2224 resets (things which might change between targets). */
2225
2226 void
2227 target_pre_inferior (int from_tty)
2228 {
2229 /* Clear out solib state. Otherwise the solib state of the previous
2230 inferior might have survived and is entirely wrong for the new
2231 target. This has been observed on GNU/Linux using glibc 2.3. How
2232 to reproduce:
2233
2234 bash$ ./foo&
2235 [1] 4711
2236 bash$ ./foo&
2237 [1] 4712
2238 bash$ gdb ./foo
2239 [...]
2240 (gdb) attach 4711
2241 (gdb) detach
2242 (gdb) attach 4712
2243 Cannot access memory at address 0xdeadbeef
2244 */
2245
2246 /* In some OSs, the shared library list is the same/global/shared
2247 across inferiors. If code is shared between processes, so are
2248 memory regions and features. */
2249 if (!gdbarch_has_global_solist (target_gdbarch))
2250 {
2251 no_shared_libraries (NULL, from_tty);
2252
2253 invalidate_target_mem_regions ();
2254
2255 target_clear_description ();
2256 }
2257 }
2258
2259 /* Callback for iterate_over_inferiors. Gets rid of the given
2260 inferior. */
2261
2262 static int
2263 dispose_inferior (struct inferior *inf, void *args)
2264 {
2265 struct thread_info *thread;
2266
2267 thread = any_thread_of_process (inf->pid);
2268 if (thread)
2269 {
2270 switch_to_thread (thread->ptid);
2271
2272 /* Core inferiors actually should be detached, not killed. */
2273 if (target_has_execution)
2274 target_kill ();
2275 else
2276 target_detach (NULL, 0);
2277 }
2278
2279 return 0;
2280 }
2281
2282 /* This is to be called by the open routine before it does
2283 anything. */
2284
2285 void
2286 target_preopen (int from_tty)
2287 {
2288 dont_repeat ();
2289
2290 if (have_inferiors ())
2291 {
2292 if (!from_tty
2293 || !have_live_inferiors ()
2294 || query (_("A program is being debugged already. Kill it? ")))
2295 iterate_over_inferiors (dispose_inferior, NULL);
2296 else
2297 error (_("Program not killed."));
2298 }
2299
2300 /* Calling target_kill may remove the target from the stack. But if
2301 it doesn't (which seems like a win for UDI), remove it now. */
2302 /* Leave the exec target, though. The user may be switching from a
2303 live process to a core of the same program. */
2304 pop_all_targets_above (file_stratum, 0);
2305
2306 target_pre_inferior (from_tty);
2307 }
2308
2309 /* Detach a target after doing deferred register stores. */
2310
2311 void
2312 target_detach (char *args, int from_tty)
2313 {
2314 struct target_ops* t;
2315
2316 if (gdbarch_has_global_breakpoints (target_gdbarch))
2317 /* Don't remove global breakpoints here. They're removed on
2318 disconnection from the target. */
2319 ;
2320 else
2321 /* If we're in breakpoints-always-inserted mode, have to remove
2322 them before detaching. */
2323 remove_breakpoints_pid (PIDGET (inferior_ptid));
2324
2325 prepare_for_detach ();
2326
2327 for (t = current_target.beneath; t != NULL; t = t->beneath)
2328 {
2329 if (t->to_detach != NULL)
2330 {
2331 t->to_detach (t, args, from_tty);
2332 if (targetdebug)
2333 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2334 args, from_tty);
2335 return;
2336 }
2337 }
2338
2339 internal_error (__FILE__, __LINE__, "could not find a target to detach");
2340 }
2341
2342 void
2343 target_disconnect (char *args, int from_tty)
2344 {
2345 struct target_ops *t;
2346
2347 /* If we're in breakpoints-always-inserted mode or if breakpoints
2348 are global across processes, we have to remove them before
2349 disconnecting. */
2350 remove_breakpoints ();
2351
2352 for (t = current_target.beneath; t != NULL; t = t->beneath)
2353 if (t->to_disconnect != NULL)
2354 {
2355 if (targetdebug)
2356 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2357 args, from_tty);
2358 t->to_disconnect (t, args, from_tty);
2359 return;
2360 }
2361
2362 tcomplain ();
2363 }
2364
2365 ptid_t
2366 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2367 {
2368 struct target_ops *t;
2369
2370 for (t = current_target.beneath; t != NULL; t = t->beneath)
2371 {
2372 if (t->to_wait != NULL)
2373 {
2374 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2375
2376 if (targetdebug)
2377 {
2378 char *status_string;
2379
2380 status_string = target_waitstatus_to_string (status);
2381 fprintf_unfiltered (gdb_stdlog,
2382 "target_wait (%d, status) = %d, %s\n",
2383 PIDGET (ptid), PIDGET (retval),
2384 status_string);
2385 xfree (status_string);
2386 }
2387
2388 return retval;
2389 }
2390 }
2391
2392 noprocess ();
2393 }
2394
2395 char *
2396 target_pid_to_str (ptid_t ptid)
2397 {
2398 struct target_ops *t;
2399
2400 for (t = current_target.beneath; t != NULL; t = t->beneath)
2401 {
2402 if (t->to_pid_to_str != NULL)
2403 return (*t->to_pid_to_str) (t, ptid);
2404 }
2405
2406 return normal_pid_to_str (ptid);
2407 }
2408
2409 void
2410 target_resume (ptid_t ptid, int step, enum target_signal signal)
2411 {
2412 struct target_ops *t;
2413
2414 target_dcache_invalidate ();
2415
2416 for (t = current_target.beneath; t != NULL; t = t->beneath)
2417 {
2418 if (t->to_resume != NULL)
2419 {
2420 t->to_resume (t, ptid, step, signal);
2421 if (targetdebug)
2422 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2423 PIDGET (ptid),
2424 step ? "step" : "continue",
2425 target_signal_to_name (signal));
2426
2427 registers_changed_ptid (ptid);
2428 set_executing (ptid, 1);
2429 set_running (ptid, 1);
2430 clear_inline_frame_state (ptid);
2431 return;
2432 }
2433 }
2434
2435 noprocess ();
2436 }
2437 /* Look through the list of possible targets for a target that can
2438 follow forks. */
2439
2440 int
2441 target_follow_fork (int follow_child)
2442 {
2443 struct target_ops *t;
2444
2445 for (t = current_target.beneath; t != NULL; t = t->beneath)
2446 {
2447 if (t->to_follow_fork != NULL)
2448 {
2449 int retval = t->to_follow_fork (t, follow_child);
2450
2451 if (targetdebug)
2452 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2453 follow_child, retval);
2454 return retval;
2455 }
2456 }
2457
2458 /* Some target returned a fork event, but did not know how to follow it. */
2459 internal_error (__FILE__, __LINE__,
2460 "could not find a target to follow fork");
2461 }
2462
2463 void
2464 target_mourn_inferior (void)
2465 {
2466 struct target_ops *t;
2467
2468 for (t = current_target.beneath; t != NULL; t = t->beneath)
2469 {
2470 if (t->to_mourn_inferior != NULL)
2471 {
2472 t->to_mourn_inferior (t);
2473 if (targetdebug)
2474 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2475
2476 /* We no longer need to keep handles on any of the object files.
2477 Make sure to release them to avoid unnecessarily locking any
2478 of them while we're not actually debugging. */
2479 bfd_cache_close_all ();
2480
2481 return;
2482 }
2483 }
2484
2485 internal_error (__FILE__, __LINE__,
2486 "could not find a target to follow mourn inferior");
2487 }
2488
2489 /* Look for a target which can describe architectural features, starting
2490 from TARGET. If we find one, return its description. */
2491
2492 const struct target_desc *
2493 target_read_description (struct target_ops *target)
2494 {
2495 struct target_ops *t;
2496
2497 for (t = target; t != NULL; t = t->beneath)
2498 if (t->to_read_description != NULL)
2499 {
2500 const struct target_desc *tdesc;
2501
2502 tdesc = t->to_read_description (t);
2503 if (tdesc)
2504 return tdesc;
2505 }
2506
2507 return NULL;
2508 }
2509
2510 /* The default implementation of to_search_memory.
2511 This implements a basic search of memory, reading target memory and
2512 performing the search here (as opposed to performing the search in on the
2513 target side with, for example, gdbserver). */
2514
2515 int
2516 simple_search_memory (struct target_ops *ops,
2517 CORE_ADDR start_addr, ULONGEST search_space_len,
2518 const gdb_byte *pattern, ULONGEST pattern_len,
2519 CORE_ADDR *found_addrp)
2520 {
2521 /* NOTE: also defined in find.c testcase. */
2522 #define SEARCH_CHUNK_SIZE 16000
2523 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2524 /* Buffer to hold memory contents for searching. */
2525 gdb_byte *search_buf;
2526 unsigned search_buf_size;
2527 struct cleanup *old_cleanups;
2528
2529 search_buf_size = chunk_size + pattern_len - 1;
2530
2531 /* No point in trying to allocate a buffer larger than the search space. */
2532 if (search_space_len < search_buf_size)
2533 search_buf_size = search_space_len;
2534
2535 search_buf = malloc (search_buf_size);
2536 if (search_buf == NULL)
2537 error (_("Unable to allocate memory to perform the search."));
2538 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2539
2540 /* Prime the search buffer. */
2541
2542 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2543 search_buf, start_addr, search_buf_size) != search_buf_size)
2544 {
2545 warning (_("Unable to access target memory at %s, halting search."),
2546 hex_string (start_addr));
2547 do_cleanups (old_cleanups);
2548 return -1;
2549 }
2550
2551 /* Perform the search.
2552
2553 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2554 When we've scanned N bytes we copy the trailing bytes to the start and
2555 read in another N bytes. */
2556
2557 while (search_space_len >= pattern_len)
2558 {
2559 gdb_byte *found_ptr;
2560 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2561
2562 found_ptr = memmem (search_buf, nr_search_bytes,
2563 pattern, pattern_len);
2564
2565 if (found_ptr != NULL)
2566 {
2567 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2568
2569 *found_addrp = found_addr;
2570 do_cleanups (old_cleanups);
2571 return 1;
2572 }
2573
2574 /* Not found in this chunk, skip to next chunk. */
2575
2576 /* Don't let search_space_len wrap here, it's unsigned. */
2577 if (search_space_len >= chunk_size)
2578 search_space_len -= chunk_size;
2579 else
2580 search_space_len = 0;
2581
2582 if (search_space_len >= pattern_len)
2583 {
2584 unsigned keep_len = search_buf_size - chunk_size;
2585 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2586 int nr_to_read;
2587
2588 /* Copy the trailing part of the previous iteration to the front
2589 of the buffer for the next iteration. */
2590 gdb_assert (keep_len == pattern_len - 1);
2591 memcpy (search_buf, search_buf + chunk_size, keep_len);
2592
2593 nr_to_read = min (search_space_len - keep_len, chunk_size);
2594
2595 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2596 search_buf + keep_len, read_addr,
2597 nr_to_read) != nr_to_read)
2598 {
2599 warning (_("Unable to access target memory at %s, halting search."),
2600 hex_string (read_addr));
2601 do_cleanups (old_cleanups);
2602 return -1;
2603 }
2604
2605 start_addr += chunk_size;
2606 }
2607 }
2608
2609 /* Not found. */
2610
2611 do_cleanups (old_cleanups);
2612 return 0;
2613 }
2614
2615 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2616 sequence of bytes in PATTERN with length PATTERN_LEN.
2617
2618 The result is 1 if found, 0 if not found, and -1 if there was an error
2619 requiring halting of the search (e.g. memory read error).
2620 If the pattern is found the address is recorded in FOUND_ADDRP. */
2621
2622 int
2623 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2624 const gdb_byte *pattern, ULONGEST pattern_len,
2625 CORE_ADDR *found_addrp)
2626 {
2627 struct target_ops *t;
2628 int found;
2629
2630 /* We don't use INHERIT to set current_target.to_search_memory,
2631 so we have to scan the target stack and handle targetdebug
2632 ourselves. */
2633
2634 if (targetdebug)
2635 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2636 hex_string (start_addr));
2637
2638 for (t = current_target.beneath; t != NULL; t = t->beneath)
2639 if (t->to_search_memory != NULL)
2640 break;
2641
2642 if (t != NULL)
2643 {
2644 found = t->to_search_memory (t, start_addr, search_space_len,
2645 pattern, pattern_len, found_addrp);
2646 }
2647 else
2648 {
2649 /* If a special version of to_search_memory isn't available, use the
2650 simple version. */
2651 found = simple_search_memory (current_target.beneath,
2652 start_addr, search_space_len,
2653 pattern, pattern_len, found_addrp);
2654 }
2655
2656 if (targetdebug)
2657 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2658
2659 return found;
2660 }
2661
2662 /* Look through the currently pushed targets. If none of them will
2663 be able to restart the currently running process, issue an error
2664 message. */
2665
2666 void
2667 target_require_runnable (void)
2668 {
2669 struct target_ops *t;
2670
2671 for (t = target_stack; t != NULL; t = t->beneath)
2672 {
2673 /* If this target knows how to create a new program, then
2674 assume we will still be able to after killing the current
2675 one. Either killing and mourning will not pop T, or else
2676 find_default_run_target will find it again. */
2677 if (t->to_create_inferior != NULL)
2678 return;
2679
2680 /* Do not worry about thread_stratum targets that can not
2681 create inferiors. Assume they will be pushed again if
2682 necessary, and continue to the process_stratum. */
2683 if (t->to_stratum == thread_stratum
2684 || t->to_stratum == arch_stratum)
2685 continue;
2686
2687 error (_("\
2688 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2689 t->to_shortname);
2690 }
2691
2692 /* This function is only called if the target is running. In that
2693 case there should have been a process_stratum target and it
2694 should either know how to create inferiors, or not... */
2695 internal_error (__FILE__, __LINE__, "No targets found");
2696 }
2697
2698 /* Look through the list of possible targets for a target that can
2699 execute a run or attach command without any other data. This is
2700 used to locate the default process stratum.
2701
2702 If DO_MESG is not NULL, the result is always valid (error() is
2703 called for errors); else, return NULL on error. */
2704
2705 static struct target_ops *
2706 find_default_run_target (char *do_mesg)
2707 {
2708 struct target_ops **t;
2709 struct target_ops *runable = NULL;
2710 int count;
2711
2712 count = 0;
2713
2714 for (t = target_structs; t < target_structs + target_struct_size;
2715 ++t)
2716 {
2717 if ((*t)->to_can_run && target_can_run (*t))
2718 {
2719 runable = *t;
2720 ++count;
2721 }
2722 }
2723
2724 if (count != 1)
2725 {
2726 if (do_mesg)
2727 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2728 else
2729 return NULL;
2730 }
2731
2732 return runable;
2733 }
2734
2735 void
2736 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2737 {
2738 struct target_ops *t;
2739
2740 t = find_default_run_target ("attach");
2741 (t->to_attach) (t, args, from_tty);
2742 return;
2743 }
2744
2745 void
2746 find_default_create_inferior (struct target_ops *ops,
2747 char *exec_file, char *allargs, char **env,
2748 int from_tty)
2749 {
2750 struct target_ops *t;
2751
2752 t = find_default_run_target ("run");
2753 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2754 return;
2755 }
2756
2757 static int
2758 find_default_can_async_p (void)
2759 {
2760 struct target_ops *t;
2761
2762 /* This may be called before the target is pushed on the stack;
2763 look for the default process stratum. If there's none, gdb isn't
2764 configured with a native debugger, and target remote isn't
2765 connected yet. */
2766 t = find_default_run_target (NULL);
2767 if (t && t->to_can_async_p)
2768 return (t->to_can_async_p) ();
2769 return 0;
2770 }
2771
2772 static int
2773 find_default_is_async_p (void)
2774 {
2775 struct target_ops *t;
2776
2777 /* This may be called before the target is pushed on the stack;
2778 look for the default process stratum. If there's none, gdb isn't
2779 configured with a native debugger, and target remote isn't
2780 connected yet. */
2781 t = find_default_run_target (NULL);
2782 if (t && t->to_is_async_p)
2783 return (t->to_is_async_p) ();
2784 return 0;
2785 }
2786
2787 static int
2788 find_default_supports_non_stop (void)
2789 {
2790 struct target_ops *t;
2791
2792 t = find_default_run_target (NULL);
2793 if (t && t->to_supports_non_stop)
2794 return (t->to_supports_non_stop) ();
2795 return 0;
2796 }
2797
2798 int
2799 target_supports_non_stop (void)
2800 {
2801 struct target_ops *t;
2802
2803 for (t = &current_target; t != NULL; t = t->beneath)
2804 if (t->to_supports_non_stop)
2805 return t->to_supports_non_stop ();
2806
2807 return 0;
2808 }
2809
2810
2811 char *
2812 target_get_osdata (const char *type)
2813 {
2814 struct target_ops *t;
2815
2816 /* If we're already connected to something that can get us OS
2817 related data, use it. Otherwise, try using the native
2818 target. */
2819 if (current_target.to_stratum >= process_stratum)
2820 t = current_target.beneath;
2821 else
2822 t = find_default_run_target ("get OS data");
2823
2824 if (!t)
2825 return NULL;
2826
2827 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2828 }
2829
2830 /* Determine the current address space of thread PTID. */
2831
2832 struct address_space *
2833 target_thread_address_space (ptid_t ptid)
2834 {
2835 struct address_space *aspace;
2836 struct inferior *inf;
2837 struct target_ops *t;
2838
2839 for (t = current_target.beneath; t != NULL; t = t->beneath)
2840 {
2841 if (t->to_thread_address_space != NULL)
2842 {
2843 aspace = t->to_thread_address_space (t, ptid);
2844 gdb_assert (aspace);
2845
2846 if (targetdebug)
2847 fprintf_unfiltered (gdb_stdlog,
2848 "target_thread_address_space (%s) = %d\n",
2849 target_pid_to_str (ptid),
2850 address_space_num (aspace));
2851 return aspace;
2852 }
2853 }
2854
2855 /* Fall-back to the "main" address space of the inferior. */
2856 inf = find_inferior_pid (ptid_get_pid (ptid));
2857
2858 if (inf == NULL || inf->aspace == NULL)
2859 internal_error (__FILE__, __LINE__, "\
2860 Can't determine the current address space of thread %s\n",
2861 target_pid_to_str (ptid));
2862
2863 return inf->aspace;
2864 }
2865
2866 static int
2867 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2868 {
2869 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2870 }
2871
2872 static int
2873 default_watchpoint_addr_within_range (struct target_ops *target,
2874 CORE_ADDR addr,
2875 CORE_ADDR start, int length)
2876 {
2877 return addr >= start && addr < start + length;
2878 }
2879
2880 static struct gdbarch *
2881 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2882 {
2883 return target_gdbarch;
2884 }
2885
2886 static int
2887 return_zero (void)
2888 {
2889 return 0;
2890 }
2891
2892 static int
2893 return_one (void)
2894 {
2895 return 1;
2896 }
2897
2898 static int
2899 return_minus_one (void)
2900 {
2901 return -1;
2902 }
2903
2904 /* Find a single runnable target in the stack and return it. If for
2905 some reason there is more than one, return NULL. */
2906
2907 struct target_ops *
2908 find_run_target (void)
2909 {
2910 struct target_ops **t;
2911 struct target_ops *runable = NULL;
2912 int count;
2913
2914 count = 0;
2915
2916 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2917 {
2918 if ((*t)->to_can_run && target_can_run (*t))
2919 {
2920 runable = *t;
2921 ++count;
2922 }
2923 }
2924
2925 return (count == 1 ? runable : NULL);
2926 }
2927
2928 /*
2929 * Find the next target down the stack from the specified target.
2930 */
2931
2932 struct target_ops *
2933 find_target_beneath (struct target_ops *t)
2934 {
2935 return t->beneath;
2936 }
2937
2938 \f
2939 /* The inferior process has died. Long live the inferior! */
2940
2941 void
2942 generic_mourn_inferior (void)
2943 {
2944 ptid_t ptid;
2945
2946 ptid = inferior_ptid;
2947 inferior_ptid = null_ptid;
2948
2949 if (!ptid_equal (ptid, null_ptid))
2950 {
2951 int pid = ptid_get_pid (ptid);
2952 exit_inferior (pid);
2953 }
2954
2955 breakpoint_init_inferior (inf_exited);
2956 registers_changed ();
2957
2958 reopen_exec_file ();
2959 reinit_frame_cache ();
2960
2961 if (deprecated_detach_hook)
2962 deprecated_detach_hook ();
2963 }
2964 \f
2965 /* Helper function for child_wait and the derivatives of child_wait.
2966 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2967 translation of that in OURSTATUS. */
2968 void
2969 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2970 {
2971 if (WIFEXITED (hoststatus))
2972 {
2973 ourstatus->kind = TARGET_WAITKIND_EXITED;
2974 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2975 }
2976 else if (!WIFSTOPPED (hoststatus))
2977 {
2978 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2979 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2980 }
2981 else
2982 {
2983 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2984 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2985 }
2986 }
2987 \f
2988 /* Convert a normal process ID to a string. Returns the string in a
2989 static buffer. */
2990
2991 char *
2992 normal_pid_to_str (ptid_t ptid)
2993 {
2994 static char buf[32];
2995
2996 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2997 return buf;
2998 }
2999
3000 static char *
3001 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3002 {
3003 return normal_pid_to_str (ptid);
3004 }
3005
3006 /* Error-catcher for target_find_memory_regions. */
3007 static int
3008 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3009 {
3010 error (_("Command not implemented for this target."));
3011 return 0;
3012 }
3013
3014 /* Error-catcher for target_make_corefile_notes. */
3015 static char *
3016 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3017 {
3018 error (_("Command not implemented for this target."));
3019 return NULL;
3020 }
3021
3022 /* Error-catcher for target_get_bookmark. */
3023 static gdb_byte *
3024 dummy_get_bookmark (char *ignore1, int ignore2)
3025 {
3026 tcomplain ();
3027 return NULL;
3028 }
3029
3030 /* Error-catcher for target_goto_bookmark. */
3031 static void
3032 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3033 {
3034 tcomplain ();
3035 }
3036
3037 /* Set up the handful of non-empty slots needed by the dummy target
3038 vector. */
3039
3040 static void
3041 init_dummy_target (void)
3042 {
3043 dummy_target.to_shortname = "None";
3044 dummy_target.to_longname = "None";
3045 dummy_target.to_doc = "";
3046 dummy_target.to_attach = find_default_attach;
3047 dummy_target.to_detach =
3048 (void (*)(struct target_ops *, char *, int))target_ignore;
3049 dummy_target.to_create_inferior = find_default_create_inferior;
3050 dummy_target.to_can_async_p = find_default_can_async_p;
3051 dummy_target.to_is_async_p = find_default_is_async_p;
3052 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3053 dummy_target.to_pid_to_str = dummy_pid_to_str;
3054 dummy_target.to_stratum = dummy_stratum;
3055 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3056 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3057 dummy_target.to_get_bookmark = dummy_get_bookmark;
3058 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3059 dummy_target.to_xfer_partial = default_xfer_partial;
3060 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3061 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3062 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3063 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3064 dummy_target.to_has_execution = (int (*) (struct target_ops *)) return_zero;
3065 dummy_target.to_stopped_by_watchpoint = return_zero;
3066 dummy_target.to_stopped_data_address =
3067 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3068 dummy_target.to_magic = OPS_MAGIC;
3069 }
3070 \f
3071 static void
3072 debug_to_open (char *args, int from_tty)
3073 {
3074 debug_target.to_open (args, from_tty);
3075
3076 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3077 }
3078
3079 void
3080 target_close (struct target_ops *targ, int quitting)
3081 {
3082 if (targ->to_xclose != NULL)
3083 targ->to_xclose (targ, quitting);
3084 else if (targ->to_close != NULL)
3085 targ->to_close (quitting);
3086
3087 if (targetdebug)
3088 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
3089 }
3090
3091 void
3092 target_attach (char *args, int from_tty)
3093 {
3094 struct target_ops *t;
3095
3096 for (t = current_target.beneath; t != NULL; t = t->beneath)
3097 {
3098 if (t->to_attach != NULL)
3099 {
3100 t->to_attach (t, args, from_tty);
3101 if (targetdebug)
3102 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3103 args, from_tty);
3104 return;
3105 }
3106 }
3107
3108 internal_error (__FILE__, __LINE__,
3109 "could not find a target to attach");
3110 }
3111
3112 int
3113 target_thread_alive (ptid_t ptid)
3114 {
3115 struct target_ops *t;
3116
3117 for (t = current_target.beneath; t != NULL; t = t->beneath)
3118 {
3119 if (t->to_thread_alive != NULL)
3120 {
3121 int retval;
3122
3123 retval = t->to_thread_alive (t, ptid);
3124 if (targetdebug)
3125 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3126 PIDGET (ptid), retval);
3127
3128 return retval;
3129 }
3130 }
3131
3132 return 0;
3133 }
3134
3135 void
3136 target_find_new_threads (void)
3137 {
3138 struct target_ops *t;
3139
3140 for (t = current_target.beneath; t != NULL; t = t->beneath)
3141 {
3142 if (t->to_find_new_threads != NULL)
3143 {
3144 t->to_find_new_threads (t);
3145 if (targetdebug)
3146 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3147
3148 return;
3149 }
3150 }
3151 }
3152
3153 void
3154 target_stop (ptid_t ptid)
3155 {
3156 if (!may_stop)
3157 {
3158 warning (_("May not interrupt or stop the target, ignoring attempt"));
3159 return;
3160 }
3161
3162 (*current_target.to_stop) (ptid);
3163 }
3164
3165 static void
3166 debug_to_post_attach (int pid)
3167 {
3168 debug_target.to_post_attach (pid);
3169
3170 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3171 }
3172
3173 /* Return a pretty printed form of target_waitstatus.
3174 Space for the result is malloc'd, caller must free. */
3175
3176 char *
3177 target_waitstatus_to_string (const struct target_waitstatus *ws)
3178 {
3179 const char *kind_str = "status->kind = ";
3180
3181 switch (ws->kind)
3182 {
3183 case TARGET_WAITKIND_EXITED:
3184 return xstrprintf ("%sexited, status = %d",
3185 kind_str, ws->value.integer);
3186 case TARGET_WAITKIND_STOPPED:
3187 return xstrprintf ("%sstopped, signal = %s",
3188 kind_str, target_signal_to_name (ws->value.sig));
3189 case TARGET_WAITKIND_SIGNALLED:
3190 return xstrprintf ("%ssignalled, signal = %s",
3191 kind_str, target_signal_to_name (ws->value.sig));
3192 case TARGET_WAITKIND_LOADED:
3193 return xstrprintf ("%sloaded", kind_str);
3194 case TARGET_WAITKIND_FORKED:
3195 return xstrprintf ("%sforked", kind_str);
3196 case TARGET_WAITKIND_VFORKED:
3197 return xstrprintf ("%svforked", kind_str);
3198 case TARGET_WAITKIND_EXECD:
3199 return xstrprintf ("%sexecd", kind_str);
3200 case TARGET_WAITKIND_SYSCALL_ENTRY:
3201 return xstrprintf ("%sentered syscall", kind_str);
3202 case TARGET_WAITKIND_SYSCALL_RETURN:
3203 return xstrprintf ("%sexited syscall", kind_str);
3204 case TARGET_WAITKIND_SPURIOUS:
3205 return xstrprintf ("%sspurious", kind_str);
3206 case TARGET_WAITKIND_IGNORE:
3207 return xstrprintf ("%signore", kind_str);
3208 case TARGET_WAITKIND_NO_HISTORY:
3209 return xstrprintf ("%sno-history", kind_str);
3210 default:
3211 return xstrprintf ("%sunknown???", kind_str);
3212 }
3213 }
3214
3215 static void
3216 debug_print_register (const char * func,
3217 struct regcache *regcache, int regno)
3218 {
3219 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3220
3221 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3222 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3223 && gdbarch_register_name (gdbarch, regno) != NULL
3224 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3225 fprintf_unfiltered (gdb_stdlog, "(%s)",
3226 gdbarch_register_name (gdbarch, regno));
3227 else
3228 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3229 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3230 {
3231 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3232 int i, size = register_size (gdbarch, regno);
3233 unsigned char buf[MAX_REGISTER_SIZE];
3234
3235 regcache_raw_collect (regcache, regno, buf);
3236 fprintf_unfiltered (gdb_stdlog, " = ");
3237 for (i = 0; i < size; i++)
3238 {
3239 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3240 }
3241 if (size <= sizeof (LONGEST))
3242 {
3243 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3244
3245 fprintf_unfiltered (gdb_stdlog, " %s %s",
3246 core_addr_to_string_nz (val), plongest (val));
3247 }
3248 }
3249 fprintf_unfiltered (gdb_stdlog, "\n");
3250 }
3251
3252 void
3253 target_fetch_registers (struct regcache *regcache, int regno)
3254 {
3255 struct target_ops *t;
3256
3257 for (t = current_target.beneath; t != NULL; t = t->beneath)
3258 {
3259 if (t->to_fetch_registers != NULL)
3260 {
3261 t->to_fetch_registers (t, regcache, regno);
3262 if (targetdebug)
3263 debug_print_register ("target_fetch_registers", regcache, regno);
3264 return;
3265 }
3266 }
3267 }
3268
3269 void
3270 target_store_registers (struct regcache *regcache, int regno)
3271 {
3272 struct target_ops *t;
3273
3274 if (!may_write_registers)
3275 error (_("Writing to registers is not allowed (regno %d)"), regno);
3276
3277 for (t = current_target.beneath; t != NULL; t = t->beneath)
3278 {
3279 if (t->to_store_registers != NULL)
3280 {
3281 t->to_store_registers (t, regcache, regno);
3282 if (targetdebug)
3283 {
3284 debug_print_register ("target_store_registers", regcache, regno);
3285 }
3286 return;
3287 }
3288 }
3289
3290 noprocess ();
3291 }
3292
3293 int
3294 target_core_of_thread (ptid_t ptid)
3295 {
3296 struct target_ops *t;
3297
3298 for (t = current_target.beneath; t != NULL; t = t->beneath)
3299 {
3300 if (t->to_core_of_thread != NULL)
3301 {
3302 int retval = t->to_core_of_thread (t, ptid);
3303
3304 if (targetdebug)
3305 fprintf_unfiltered (gdb_stdlog, "target_core_of_thread (%d) = %d\n",
3306 PIDGET (ptid), retval);
3307 return retval;
3308 }
3309 }
3310
3311 return -1;
3312 }
3313
3314 int
3315 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3316 {
3317 struct target_ops *t;
3318
3319 for (t = current_target.beneath; t != NULL; t = t->beneath)
3320 {
3321 if (t->to_verify_memory != NULL)
3322 {
3323 int retval = t->to_verify_memory (t, data, memaddr, size);
3324
3325 if (targetdebug)
3326 fprintf_unfiltered (gdb_stdlog, "target_verify_memory (%s, %s) = %d\n",
3327 paddress (target_gdbarch, memaddr),
3328 pulongest (size),
3329 retval);
3330 return retval;
3331 }
3332 }
3333
3334 tcomplain ();
3335 }
3336
3337 static void
3338 debug_to_prepare_to_store (struct regcache *regcache)
3339 {
3340 debug_target.to_prepare_to_store (regcache);
3341
3342 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3343 }
3344
3345 static int
3346 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
3347 int write, struct mem_attrib *attrib,
3348 struct target_ops *target)
3349 {
3350 int retval;
3351
3352 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
3353 attrib, target);
3354
3355 fprintf_unfiltered (gdb_stdlog,
3356 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
3357 paddress (target_gdbarch, memaddr), len,
3358 write ? "write" : "read", retval);
3359
3360 if (retval > 0)
3361 {
3362 int i;
3363
3364 fputs_unfiltered (", bytes =", gdb_stdlog);
3365 for (i = 0; i < retval; i++)
3366 {
3367 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
3368 {
3369 if (targetdebug < 2 && i > 0)
3370 {
3371 fprintf_unfiltered (gdb_stdlog, " ...");
3372 break;
3373 }
3374 fprintf_unfiltered (gdb_stdlog, "\n");
3375 }
3376
3377 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
3378 }
3379 }
3380
3381 fputc_unfiltered ('\n', gdb_stdlog);
3382
3383 return retval;
3384 }
3385
3386 static void
3387 debug_to_files_info (struct target_ops *target)
3388 {
3389 debug_target.to_files_info (target);
3390
3391 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3392 }
3393
3394 static int
3395 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
3396 struct bp_target_info *bp_tgt)
3397 {
3398 int retval;
3399
3400 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
3401
3402 fprintf_unfiltered (gdb_stdlog,
3403 "target_insert_breakpoint (%s, xxx) = %ld\n",
3404 core_addr_to_string (bp_tgt->placed_address),
3405 (unsigned long) retval);
3406 return retval;
3407 }
3408
3409 static int
3410 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
3411 struct bp_target_info *bp_tgt)
3412 {
3413 int retval;
3414
3415 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
3416
3417 fprintf_unfiltered (gdb_stdlog,
3418 "target_remove_breakpoint (%s, xxx) = %ld\n",
3419 core_addr_to_string (bp_tgt->placed_address),
3420 (unsigned long) retval);
3421 return retval;
3422 }
3423
3424 static int
3425 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
3426 {
3427 int retval;
3428
3429 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
3430
3431 fprintf_unfiltered (gdb_stdlog,
3432 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3433 (unsigned long) type,
3434 (unsigned long) cnt,
3435 (unsigned long) from_tty,
3436 (unsigned long) retval);
3437 return retval;
3438 }
3439
3440 static int
3441 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3442 {
3443 CORE_ADDR retval;
3444
3445 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
3446
3447 fprintf_unfiltered (gdb_stdlog,
3448 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
3449 core_addr_to_string (addr), (unsigned long) len,
3450 core_addr_to_string (retval));
3451 return retval;
3452 }
3453
3454 static int
3455 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
3456 struct expression *cond)
3457 {
3458 int retval;
3459
3460 retval = debug_target.to_can_accel_watchpoint_condition (addr, len, rw, cond);
3461
3462 fprintf_unfiltered (gdb_stdlog,
3463 "target_can_accel_watchpoint_condition (%s, %d, %d, %s) = %ld\n",
3464 core_addr_to_string (addr), len, rw,
3465 host_address_to_string (cond), (unsigned long) retval);
3466 return retval;
3467 }
3468
3469 static int
3470 debug_to_stopped_by_watchpoint (void)
3471 {
3472 int retval;
3473
3474 retval = debug_target.to_stopped_by_watchpoint ();
3475
3476 fprintf_unfiltered (gdb_stdlog,
3477 "target_stopped_by_watchpoint () = %ld\n",
3478 (unsigned long) retval);
3479 return retval;
3480 }
3481
3482 static int
3483 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3484 {
3485 int retval;
3486
3487 retval = debug_target.to_stopped_data_address (target, addr);
3488
3489 fprintf_unfiltered (gdb_stdlog,
3490 "target_stopped_data_address ([%s]) = %ld\n",
3491 core_addr_to_string (*addr),
3492 (unsigned long)retval);
3493 return retval;
3494 }
3495
3496 static int
3497 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3498 CORE_ADDR addr,
3499 CORE_ADDR start, int length)
3500 {
3501 int retval;
3502
3503 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3504 start, length);
3505
3506 fprintf_filtered (gdb_stdlog,
3507 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
3508 core_addr_to_string (addr), core_addr_to_string (start),
3509 length, retval);
3510 return retval;
3511 }
3512
3513 static int
3514 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
3515 struct bp_target_info *bp_tgt)
3516 {
3517 int retval;
3518
3519 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
3520
3521 fprintf_unfiltered (gdb_stdlog,
3522 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
3523 core_addr_to_string (bp_tgt->placed_address),
3524 (unsigned long) retval);
3525 return retval;
3526 }
3527
3528 static int
3529 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
3530 struct bp_target_info *bp_tgt)
3531 {
3532 int retval;
3533
3534 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
3535
3536 fprintf_unfiltered (gdb_stdlog,
3537 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
3538 core_addr_to_string (bp_tgt->placed_address),
3539 (unsigned long) retval);
3540 return retval;
3541 }
3542
3543 static int
3544 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
3545 struct expression *cond)
3546 {
3547 int retval;
3548
3549 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
3550
3551 fprintf_unfiltered (gdb_stdlog,
3552 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
3553 core_addr_to_string (addr), len, type,
3554 host_address_to_string (cond), (unsigned long) retval);
3555 return retval;
3556 }
3557
3558 static int
3559 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
3560 struct expression *cond)
3561 {
3562 int retval;
3563
3564 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
3565
3566 fprintf_unfiltered (gdb_stdlog,
3567 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
3568 core_addr_to_string (addr), len, type,
3569 host_address_to_string (cond), (unsigned long) retval);
3570 return retval;
3571 }
3572
3573 static void
3574 debug_to_terminal_init (void)
3575 {
3576 debug_target.to_terminal_init ();
3577
3578 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3579 }
3580
3581 static void
3582 debug_to_terminal_inferior (void)
3583 {
3584 debug_target.to_terminal_inferior ();
3585
3586 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3587 }
3588
3589 static void
3590 debug_to_terminal_ours_for_output (void)
3591 {
3592 debug_target.to_terminal_ours_for_output ();
3593
3594 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3595 }
3596
3597 static void
3598 debug_to_terminal_ours (void)
3599 {
3600 debug_target.to_terminal_ours ();
3601
3602 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3603 }
3604
3605 static void
3606 debug_to_terminal_save_ours (void)
3607 {
3608 debug_target.to_terminal_save_ours ();
3609
3610 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3611 }
3612
3613 static void
3614 debug_to_terminal_info (char *arg, int from_tty)
3615 {
3616 debug_target.to_terminal_info (arg, from_tty);
3617
3618 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3619 from_tty);
3620 }
3621
3622 static void
3623 debug_to_load (char *args, int from_tty)
3624 {
3625 debug_target.to_load (args, from_tty);
3626
3627 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3628 }
3629
3630 static int
3631 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
3632 {
3633 int retval;
3634
3635 retval = debug_target.to_lookup_symbol (name, addrp);
3636
3637 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
3638
3639 return retval;
3640 }
3641
3642 static void
3643 debug_to_post_startup_inferior (ptid_t ptid)
3644 {
3645 debug_target.to_post_startup_inferior (ptid);
3646
3647 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3648 PIDGET (ptid));
3649 }
3650
3651 static void
3652 debug_to_acknowledge_created_inferior (int pid)
3653 {
3654 debug_target.to_acknowledge_created_inferior (pid);
3655
3656 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
3657 pid);
3658 }
3659
3660 static void
3661 debug_to_insert_fork_catchpoint (int pid)
3662 {
3663 debug_target.to_insert_fork_catchpoint (pid);
3664
3665 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
3666 pid);
3667 }
3668
3669 static int
3670 debug_to_remove_fork_catchpoint (int pid)
3671 {
3672 int retval;
3673
3674 retval = debug_target.to_remove_fork_catchpoint (pid);
3675
3676 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3677 pid, retval);
3678
3679 return retval;
3680 }
3681
3682 static void
3683 debug_to_insert_vfork_catchpoint (int pid)
3684 {
3685 debug_target.to_insert_vfork_catchpoint (pid);
3686
3687 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
3688 pid);
3689 }
3690
3691 static int
3692 debug_to_remove_vfork_catchpoint (int pid)
3693 {
3694 int retval;
3695
3696 retval = debug_target.to_remove_vfork_catchpoint (pid);
3697
3698 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3699 pid, retval);
3700
3701 return retval;
3702 }
3703
3704 static void
3705 debug_to_insert_exec_catchpoint (int pid)
3706 {
3707 debug_target.to_insert_exec_catchpoint (pid);
3708
3709 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
3710 pid);
3711 }
3712
3713 static int
3714 debug_to_remove_exec_catchpoint (int pid)
3715 {
3716 int retval;
3717
3718 retval = debug_target.to_remove_exec_catchpoint (pid);
3719
3720 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3721 pid, retval);
3722
3723 return retval;
3724 }
3725
3726 static int
3727 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3728 {
3729 int has_exited;
3730
3731 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3732
3733 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3734 pid, wait_status, *exit_status, has_exited);
3735
3736 return has_exited;
3737 }
3738
3739 static int
3740 debug_to_can_run (void)
3741 {
3742 int retval;
3743
3744 retval = debug_target.to_can_run ();
3745
3746 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3747
3748 return retval;
3749 }
3750
3751 static void
3752 debug_to_notice_signals (ptid_t ptid)
3753 {
3754 debug_target.to_notice_signals (ptid);
3755
3756 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3757 PIDGET (ptid));
3758 }
3759
3760 static struct gdbarch *
3761 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
3762 {
3763 struct gdbarch *retval;
3764
3765 retval = debug_target.to_thread_architecture (ops, ptid);
3766
3767 fprintf_unfiltered (gdb_stdlog, "target_thread_architecture (%s) = %s [%s]\n",
3768 target_pid_to_str (ptid), host_address_to_string (retval),
3769 gdbarch_bfd_arch_info (retval)->printable_name);
3770 return retval;
3771 }
3772
3773 static void
3774 debug_to_stop (ptid_t ptid)
3775 {
3776 debug_target.to_stop (ptid);
3777
3778 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3779 target_pid_to_str (ptid));
3780 }
3781
3782 static void
3783 debug_to_rcmd (char *command,
3784 struct ui_file *outbuf)
3785 {
3786 debug_target.to_rcmd (command, outbuf);
3787 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3788 }
3789
3790 static char *
3791 debug_to_pid_to_exec_file (int pid)
3792 {
3793 char *exec_file;
3794
3795 exec_file = debug_target.to_pid_to_exec_file (pid);
3796
3797 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3798 pid, exec_file);
3799
3800 return exec_file;
3801 }
3802
3803 static void
3804 setup_target_debug (void)
3805 {
3806 memcpy (&debug_target, &current_target, sizeof debug_target);
3807
3808 current_target.to_open = debug_to_open;
3809 current_target.to_post_attach = debug_to_post_attach;
3810 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3811 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3812 current_target.to_files_info = debug_to_files_info;
3813 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3814 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3815 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3816 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3817 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3818 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3819 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3820 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3821 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3822 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3823 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3824 current_target.to_can_accel_watchpoint_condition = debug_to_can_accel_watchpoint_condition;
3825 current_target.to_terminal_init = debug_to_terminal_init;
3826 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3827 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3828 current_target.to_terminal_ours = debug_to_terminal_ours;
3829 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3830 current_target.to_terminal_info = debug_to_terminal_info;
3831 current_target.to_load = debug_to_load;
3832 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3833 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3834 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3835 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3836 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3837 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3838 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3839 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3840 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3841 current_target.to_has_exited = debug_to_has_exited;
3842 current_target.to_can_run = debug_to_can_run;
3843 current_target.to_notice_signals = debug_to_notice_signals;
3844 current_target.to_stop = debug_to_stop;
3845 current_target.to_rcmd = debug_to_rcmd;
3846 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3847 current_target.to_thread_architecture = debug_to_thread_architecture;
3848 }
3849 \f
3850
3851 static char targ_desc[] =
3852 "Names of targets and files being debugged.\n\
3853 Shows the entire stack of targets currently in use (including the exec-file,\n\
3854 core-file, and process, if any), as well as the symbol file name.";
3855
3856 static void
3857 do_monitor_command (char *cmd,
3858 int from_tty)
3859 {
3860 if ((current_target.to_rcmd
3861 == (void (*) (char *, struct ui_file *)) tcomplain)
3862 || (current_target.to_rcmd == debug_to_rcmd
3863 && (debug_target.to_rcmd
3864 == (void (*) (char *, struct ui_file *)) tcomplain)))
3865 error (_("\"monitor\" command not supported by this target."));
3866 target_rcmd (cmd, gdb_stdtarg);
3867 }
3868
3869 /* Print the name of each layers of our target stack. */
3870
3871 static void
3872 maintenance_print_target_stack (char *cmd, int from_tty)
3873 {
3874 struct target_ops *t;
3875
3876 printf_filtered (_("The current target stack is:\n"));
3877
3878 for (t = target_stack; t != NULL; t = t->beneath)
3879 {
3880 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3881 }
3882 }
3883
3884 /* Controls if async mode is permitted. */
3885 int target_async_permitted = 0;
3886
3887 /* The set command writes to this variable. If the inferior is
3888 executing, linux_nat_async_permitted is *not* updated. */
3889 static int target_async_permitted_1 = 0;
3890
3891 static void
3892 set_maintenance_target_async_permitted (char *args, int from_tty,
3893 struct cmd_list_element *c)
3894 {
3895 if (have_live_inferiors ())
3896 {
3897 target_async_permitted_1 = target_async_permitted;
3898 error (_("Cannot change this setting while the inferior is running."));
3899 }
3900
3901 target_async_permitted = target_async_permitted_1;
3902 }
3903
3904 static void
3905 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3906 struct cmd_list_element *c,
3907 const char *value)
3908 {
3909 fprintf_filtered (file, _("\
3910 Controlling the inferior in asynchronous mode is %s.\n"), value);
3911 }
3912
3913 /* Temporary copies of permission settings. */
3914
3915 static int may_write_registers_1 = 1;
3916 static int may_write_memory_1 = 1;
3917 static int may_insert_breakpoints_1 = 1;
3918 static int may_insert_tracepoints_1 = 1;
3919 static int may_insert_fast_tracepoints_1 = 1;
3920 static int may_stop_1 = 1;
3921
3922 /* Make the user-set values match the real values again. */
3923
3924 void
3925 update_target_permissions (void)
3926 {
3927 may_write_registers_1 = may_write_registers;
3928 may_write_memory_1 = may_write_memory;
3929 may_insert_breakpoints_1 = may_insert_breakpoints;
3930 may_insert_tracepoints_1 = may_insert_tracepoints;
3931 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3932 may_stop_1 = may_stop;
3933 }
3934
3935 /* The one function handles (most of) the permission flags in the same
3936 way. */
3937
3938 static void
3939 set_target_permissions (char *args, int from_tty,
3940 struct cmd_list_element *c)
3941 {
3942 if (target_has_execution)
3943 {
3944 update_target_permissions ();
3945 error (_("Cannot change this setting while the inferior is running."));
3946 }
3947
3948 /* Make the real values match the user-changed values. */
3949 may_write_registers = may_write_registers_1;
3950 may_insert_breakpoints = may_insert_breakpoints_1;
3951 may_insert_tracepoints = may_insert_tracepoints_1;
3952 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3953 may_stop = may_stop_1;
3954 update_observer_mode ();
3955 }
3956
3957 /* Set memory write permission independently of observer mode. */
3958
3959 static void
3960 set_write_memory_permission (char *args, int from_tty,
3961 struct cmd_list_element *c)
3962 {
3963 /* Make the real values match the user-changed values. */
3964 may_write_memory = may_write_memory_1;
3965 update_observer_mode ();
3966 }
3967
3968
3969 void
3970 initialize_targets (void)
3971 {
3972 init_dummy_target ();
3973 push_target (&dummy_target);
3974
3975 add_info ("target", target_info, targ_desc);
3976 add_info ("files", target_info, targ_desc);
3977
3978 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3979 Set target debugging."), _("\
3980 Show target debugging."), _("\
3981 When non-zero, target debugging is enabled. Higher numbers are more\n\
3982 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3983 command."),
3984 NULL,
3985 show_targetdebug,
3986 &setdebuglist, &showdebuglist);
3987
3988 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3989 &trust_readonly, _("\
3990 Set mode for reading from readonly sections."), _("\
3991 Show mode for reading from readonly sections."), _("\
3992 When this mode is on, memory reads from readonly sections (such as .text)\n\
3993 will be read from the object file instead of from the target. This will\n\
3994 result in significant performance improvement for remote targets."),
3995 NULL,
3996 show_trust_readonly,
3997 &setlist, &showlist);
3998
3999 add_com ("monitor", class_obscure, do_monitor_command,
4000 _("Send a command to the remote monitor (remote targets only)."));
4001
4002 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4003 _("Print the name of each layer of the internal target stack."),
4004 &maintenanceprintlist);
4005
4006 add_setshow_boolean_cmd ("target-async", no_class,
4007 &target_async_permitted_1, _("\
4008 Set whether gdb controls the inferior in asynchronous mode."), _("\
4009 Show whether gdb controls the inferior in asynchronous mode."), _("\
4010 Tells gdb whether to control the inferior in asynchronous mode."),
4011 set_maintenance_target_async_permitted,
4012 show_maintenance_target_async_permitted,
4013 &setlist,
4014 &showlist);
4015
4016 add_setshow_boolean_cmd ("stack-cache", class_support,
4017 &stack_cache_enabled_p_1, _("\
4018 Set cache use for stack access."), _("\
4019 Show cache use for stack access."), _("\
4020 When on, use the data cache for all stack access, regardless of any\n\
4021 configured memory regions. This improves remote performance significantly.\n\
4022 By default, caching for stack access is on."),
4023 set_stack_cache_enabled_p,
4024 show_stack_cache_enabled_p,
4025 &setlist, &showlist);
4026
4027 add_setshow_boolean_cmd ("may-write-registers", class_support,
4028 &may_write_registers_1, _("\
4029 Set permission to write into registers."), _("\
4030 Show permission to write into registers."), _("\
4031 When this permission is on, GDB may write into the target's registers.\n\
4032 Otherwise, any sort of write attempt will result in an error."),
4033 set_target_permissions, NULL,
4034 &setlist, &showlist);
4035
4036 add_setshow_boolean_cmd ("may-write-memory", class_support,
4037 &may_write_memory_1, _("\
4038 Set permission to write into target memory."), _("\
4039 Show permission to write into target memory."), _("\
4040 When this permission is on, GDB may write into the target's memory.\n\
4041 Otherwise, any sort of write attempt will result in an error."),
4042 set_write_memory_permission, NULL,
4043 &setlist, &showlist);
4044
4045 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4046 &may_insert_breakpoints_1, _("\
4047 Set permission to insert breakpoints in the target."), _("\
4048 Show permission to insert breakpoints in the target."), _("\
4049 When this permission is on, GDB may insert breakpoints in the program.\n\
4050 Otherwise, any sort of insertion attempt will result in an error."),
4051 set_target_permissions, NULL,
4052 &setlist, &showlist);
4053
4054 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4055 &may_insert_tracepoints_1, _("\
4056 Set permission to insert tracepoints in the target."), _("\
4057 Show permission to insert tracepoints in the target."), _("\
4058 When this permission is on, GDB may insert tracepoints in the program.\n\
4059 Otherwise, any sort of insertion attempt will result in an error."),
4060 set_target_permissions, NULL,
4061 &setlist, &showlist);
4062
4063 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4064 &may_insert_fast_tracepoints_1, _("\
4065 Set permission to insert fast tracepoints in the target."), _("\
4066 Show permission to insert fast tracepoints in the target."), _("\
4067 When this permission is on, GDB may insert fast tracepoints.\n\
4068 Otherwise, any sort of insertion attempt will result in an error."),
4069 set_target_permissions, NULL,
4070 &setlist, &showlist);
4071
4072 add_setshow_boolean_cmd ("may-interrupt", class_support,
4073 &may_stop_1, _("\
4074 Set permission to interrupt or signal the target."), _("\
4075 Show permission to interrupt or signal the target."), _("\
4076 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4077 Otherwise, any attempt to interrupt or stop will be ignored."),
4078 set_target_permissions, NULL,
4079 &setlist, &showlist);
4080
4081
4082 target_dcache = dcache_init ();
4083 }
This page took 0.113904 seconds and 4 git commands to generate.