Optimize memory_xfer_partial for remote
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48
49 static void target_info (char *, int);
50
51 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
52
53 static void default_terminal_info (struct target_ops *, const char *, int);
54
55 static int default_watchpoint_addr_within_range (struct target_ops *,
56 CORE_ADDR, CORE_ADDR, int);
57
58 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
59 CORE_ADDR, int);
60
61 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
62
63 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
64 long lwp, long tid);
65
66 static int default_follow_fork (struct target_ops *self, int follow_child,
67 int detach_fork);
68
69 static void default_mourn_inferior (struct target_ops *self);
70
71 static int default_search_memory (struct target_ops *ops,
72 CORE_ADDR start_addr,
73 ULONGEST search_space_len,
74 const gdb_byte *pattern,
75 ULONGEST pattern_len,
76 CORE_ADDR *found_addrp);
77
78 static int default_verify_memory (struct target_ops *self,
79 const gdb_byte *data,
80 CORE_ADDR memaddr, ULONGEST size);
81
82 static struct address_space *default_thread_address_space
83 (struct target_ops *self, ptid_t ptid);
84
85 static void tcomplain (void) ATTRIBUTE_NORETURN;
86
87 static int return_zero (struct target_ops *);
88
89 static int return_zero_has_execution (struct target_ops *, ptid_t);
90
91 static void target_command (char *, int);
92
93 static struct target_ops *find_default_run_target (char *);
94
95 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
96 ptid_t ptid);
97
98 static int dummy_find_memory_regions (struct target_ops *self,
99 find_memory_region_ftype ignore1,
100 void *ignore2);
101
102 static char *dummy_make_corefile_notes (struct target_ops *self,
103 bfd *ignore1, int *ignore2);
104
105 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
106
107 static enum exec_direction_kind default_execution_direction
108 (struct target_ops *self);
109
110 static struct target_ops debug_target;
111
112 #include "target-delegates.c"
113
114 static void init_dummy_target (void);
115
116 static void update_current_target (void);
117
118 /* Vector of existing target structures. */
119 typedef struct target_ops *target_ops_p;
120 DEF_VEC_P (target_ops_p);
121 static VEC (target_ops_p) *target_structs;
122
123 /* The initial current target, so that there is always a semi-valid
124 current target. */
125
126 static struct target_ops dummy_target;
127
128 /* Top of target stack. */
129
130 static struct target_ops *target_stack;
131
132 /* The target structure we are currently using to talk to a process
133 or file or whatever "inferior" we have. */
134
135 struct target_ops current_target;
136
137 /* Command list for target. */
138
139 static struct cmd_list_element *targetlist = NULL;
140
141 /* Nonzero if we should trust readonly sections from the
142 executable when reading memory. */
143
144 static int trust_readonly = 0;
145
146 /* Nonzero if we should show true memory content including
147 memory breakpoint inserted by gdb. */
148
149 static int show_memory_breakpoints = 0;
150
151 /* These globals control whether GDB attempts to perform these
152 operations; they are useful for targets that need to prevent
153 inadvertant disruption, such as in non-stop mode. */
154
155 int may_write_registers = 1;
156
157 int may_write_memory = 1;
158
159 int may_insert_breakpoints = 1;
160
161 int may_insert_tracepoints = 1;
162
163 int may_insert_fast_tracepoints = 1;
164
165 int may_stop = 1;
166
167 /* Non-zero if we want to see trace of target level stuff. */
168
169 static unsigned int targetdebug = 0;
170
171 static void
172 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
173 {
174 update_current_target ();
175 }
176
177 static void
178 show_targetdebug (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
182 }
183
184 static void setup_target_debug (void);
185
186 /* The user just typed 'target' without the name of a target. */
187
188 static void
189 target_command (char *arg, int from_tty)
190 {
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193 }
194
195 /* Default target_has_* methods for process_stratum targets. */
196
197 int
198 default_child_has_all_memory (struct target_ops *ops)
199 {
200 /* If no inferior selected, then we can't read memory here. */
201 if (ptid_equal (inferior_ptid, null_ptid))
202 return 0;
203
204 return 1;
205 }
206
207 int
208 default_child_has_memory (struct target_ops *ops)
209 {
210 /* If no inferior selected, then we can't read memory here. */
211 if (ptid_equal (inferior_ptid, null_ptid))
212 return 0;
213
214 return 1;
215 }
216
217 int
218 default_child_has_stack (struct target_ops *ops)
219 {
220 /* If no inferior selected, there's no stack. */
221 if (ptid_equal (inferior_ptid, null_ptid))
222 return 0;
223
224 return 1;
225 }
226
227 int
228 default_child_has_registers (struct target_ops *ops)
229 {
230 /* Can't read registers from no inferior. */
231 if (ptid_equal (inferior_ptid, null_ptid))
232 return 0;
233
234 return 1;
235 }
236
237 int
238 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
239 {
240 /* If there's no thread selected, then we can't make it run through
241 hoops. */
242 if (ptid_equal (the_ptid, null_ptid))
243 return 0;
244
245 return 1;
246 }
247
248
249 int
250 target_has_all_memory_1 (void)
251 {
252 struct target_ops *t;
253
254 for (t = current_target.beneath; t != NULL; t = t->beneath)
255 if (t->to_has_all_memory (t))
256 return 1;
257
258 return 0;
259 }
260
261 int
262 target_has_memory_1 (void)
263 {
264 struct target_ops *t;
265
266 for (t = current_target.beneath; t != NULL; t = t->beneath)
267 if (t->to_has_memory (t))
268 return 1;
269
270 return 0;
271 }
272
273 int
274 target_has_stack_1 (void)
275 {
276 struct target_ops *t;
277
278 for (t = current_target.beneath; t != NULL; t = t->beneath)
279 if (t->to_has_stack (t))
280 return 1;
281
282 return 0;
283 }
284
285 int
286 target_has_registers_1 (void)
287 {
288 struct target_ops *t;
289
290 for (t = current_target.beneath; t != NULL; t = t->beneath)
291 if (t->to_has_registers (t))
292 return 1;
293
294 return 0;
295 }
296
297 int
298 target_has_execution_1 (ptid_t the_ptid)
299 {
300 struct target_ops *t;
301
302 for (t = current_target.beneath; t != NULL; t = t->beneath)
303 if (t->to_has_execution (t, the_ptid))
304 return 1;
305
306 return 0;
307 }
308
309 int
310 target_has_execution_current (void)
311 {
312 return target_has_execution_1 (inferior_ptid);
313 }
314
315 /* Complete initialization of T. This ensures that various fields in
316 T are set, if needed by the target implementation. */
317
318 void
319 complete_target_initialization (struct target_ops *t)
320 {
321 /* Provide default values for all "must have" methods. */
322
323 if (t->to_has_all_memory == NULL)
324 t->to_has_all_memory = return_zero;
325
326 if (t->to_has_memory == NULL)
327 t->to_has_memory = return_zero;
328
329 if (t->to_has_stack == NULL)
330 t->to_has_stack = return_zero;
331
332 if (t->to_has_registers == NULL)
333 t->to_has_registers = return_zero;
334
335 if (t->to_has_execution == NULL)
336 t->to_has_execution = return_zero_has_execution;
337
338 /* These methods can be called on an unpushed target and so require
339 a default implementation if the target might plausibly be the
340 default run target. */
341 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
342 && t->to_supports_non_stop != NULL));
343
344 install_delegators (t);
345 }
346
347 /* This is used to implement the various target commands. */
348
349 static void
350 open_target (char *args, int from_tty, struct cmd_list_element *command)
351 {
352 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
353
354 if (targetdebug)
355 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
356 ops->to_shortname);
357
358 ops->to_open (args, from_tty);
359
360 if (targetdebug)
361 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
362 ops->to_shortname, args, from_tty);
363 }
364
365 /* Add possible target architecture T to the list and add a new
366 command 'target T->to_shortname'. Set COMPLETER as the command's
367 completer if not NULL. */
368
369 void
370 add_target_with_completer (struct target_ops *t,
371 completer_ftype *completer)
372 {
373 struct cmd_list_element *c;
374
375 complete_target_initialization (t);
376
377 VEC_safe_push (target_ops_p, target_structs, t);
378
379 if (targetlist == NULL)
380 add_prefix_cmd ("target", class_run, target_command, _("\
381 Connect to a target machine or process.\n\
382 The first argument is the type or protocol of the target machine.\n\
383 Remaining arguments are interpreted by the target protocol. For more\n\
384 information on the arguments for a particular protocol, type\n\
385 `help target ' followed by the protocol name."),
386 &targetlist, "target ", 0, &cmdlist);
387 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
388 set_cmd_sfunc (c, open_target);
389 set_cmd_context (c, t);
390 if (completer != NULL)
391 set_cmd_completer (c, completer);
392 }
393
394 /* Add a possible target architecture to the list. */
395
396 void
397 add_target (struct target_ops *t)
398 {
399 add_target_with_completer (t, NULL);
400 }
401
402 /* See target.h. */
403
404 void
405 add_deprecated_target_alias (struct target_ops *t, char *alias)
406 {
407 struct cmd_list_element *c;
408 char *alt;
409
410 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
411 see PR cli/15104. */
412 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
413 set_cmd_sfunc (c, open_target);
414 set_cmd_context (c, t);
415 alt = xstrprintf ("target %s", t->to_shortname);
416 deprecate_cmd (c, alt);
417 }
418
419 /* Stub functions */
420
421 void
422 target_kill (void)
423 {
424 current_target.to_kill (&current_target);
425 }
426
427 void
428 target_load (const char *arg, int from_tty)
429 {
430 target_dcache_invalidate ();
431 (*current_target.to_load) (&current_target, arg, from_tty);
432 }
433
434 /* Possible terminal states. */
435
436 enum terminal_state
437 {
438 /* The inferior's terminal settings are in effect. */
439 terminal_is_inferior = 0,
440
441 /* Some of our terminal settings are in effect, enough to get
442 proper output. */
443 terminal_is_ours_for_output = 1,
444
445 /* Our terminal settings are in effect, for output and input. */
446 terminal_is_ours = 2
447 };
448
449 static enum terminal_state terminal_state = terminal_is_ours;
450
451 /* See target.h. */
452
453 void
454 target_terminal_init (void)
455 {
456 (*current_target.to_terminal_init) (&current_target);
457
458 terminal_state = terminal_is_ours;
459 }
460
461 /* See target.h. */
462
463 int
464 target_terminal_is_inferior (void)
465 {
466 return (terminal_state == terminal_is_inferior);
467 }
468
469 /* See target.h. */
470
471 int
472 target_terminal_is_ours (void)
473 {
474 return (terminal_state == terminal_is_ours);
475 }
476
477 /* See target.h. */
478
479 void
480 target_terminal_inferior (void)
481 {
482 struct ui *ui = current_ui;
483
484 /* A background resume (``run&'') should leave GDB in control of the
485 terminal. */
486 if (ui->prompt_state != PROMPT_BLOCKED)
487 return;
488
489 /* Always delete the current UI's input file handler, regardless of
490 terminal_state, because terminal_state is only valid for the main
491 UI. */
492 delete_file_handler (ui->input_fd);
493
494 /* Since we always run the inferior in the main console (unless "set
495 inferior-tty" is in effect), when some UI other than the main one
496 calls target_terminal_inferior/target_terminal_inferior, then we
497 only register/unregister the UI's input from the event loop, but
498 leave the main UI's terminal settings as is. */
499 if (ui != main_ui)
500 return;
501
502 if (terminal_state == terminal_is_inferior)
503 return;
504
505 /* If GDB is resuming the inferior in the foreground, install
506 inferior's terminal modes. */
507 (*current_target.to_terminal_inferior) (&current_target);
508 terminal_state = terminal_is_inferior;
509
510 /* If the user hit C-c before, pretend that it was hit right
511 here. */
512 if (check_quit_flag ())
513 target_pass_ctrlc ();
514 }
515
516 /* See target.h. */
517
518 void
519 target_terminal_ours (void)
520 {
521 struct ui *ui = current_ui;
522
523 /* Always add the current UI's input file handler, regardless of
524 terminal_state, because terminal_state is only valid for the main
525 UI. */
526 add_file_handler (ui->input_fd, stdin_event_handler, ui);
527
528 /* See target_terminal_inferior. */
529 if (ui != main_ui)
530 return;
531
532 if (terminal_state == terminal_is_ours)
533 return;
534
535 (*current_target.to_terminal_ours) (&current_target);
536 terminal_state = terminal_is_ours;
537 }
538
539 /* See target.h. */
540
541 void
542 target_terminal_ours_for_output (void)
543 {
544 struct ui *ui = current_ui;
545
546 /* See target_terminal_inferior. */
547 if (ui != main_ui)
548 return;
549
550 if (terminal_state != terminal_is_inferior)
551 return;
552 (*current_target.to_terminal_ours_for_output) (&current_target);
553 terminal_state = terminal_is_ours_for_output;
554 }
555
556 /* See target.h. */
557
558 int
559 target_supports_terminal_ours (void)
560 {
561 struct target_ops *t;
562
563 for (t = current_target.beneath; t != NULL; t = t->beneath)
564 {
565 if (t->to_terminal_ours != delegate_terminal_ours
566 && t->to_terminal_ours != tdefault_terminal_ours)
567 return 1;
568 }
569
570 return 0;
571 }
572
573 /* Restore the terminal to its previous state (helper for
574 make_cleanup_restore_target_terminal). */
575
576 static void
577 cleanup_restore_target_terminal (void *arg)
578 {
579 enum terminal_state *previous_state = (enum terminal_state *) arg;
580
581 switch (*previous_state)
582 {
583 case terminal_is_ours:
584 target_terminal_ours ();
585 break;
586 case terminal_is_ours_for_output:
587 target_terminal_ours_for_output ();
588 break;
589 case terminal_is_inferior:
590 target_terminal_inferior ();
591 break;
592 }
593 }
594
595 /* See target.h. */
596
597 struct cleanup *
598 make_cleanup_restore_target_terminal (void)
599 {
600 enum terminal_state *ts = XNEW (enum terminal_state);
601
602 *ts = terminal_state;
603
604 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
605 }
606
607 static void
608 tcomplain (void)
609 {
610 error (_("You can't do that when your target is `%s'"),
611 current_target.to_shortname);
612 }
613
614 void
615 noprocess (void)
616 {
617 error (_("You can't do that without a process to debug."));
618 }
619
620 static void
621 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
622 {
623 printf_unfiltered (_("No saved terminal information.\n"));
624 }
625
626 /* A default implementation for the to_get_ada_task_ptid target method.
627
628 This function builds the PTID by using both LWP and TID as part of
629 the PTID lwp and tid elements. The pid used is the pid of the
630 inferior_ptid. */
631
632 static ptid_t
633 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
634 {
635 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
636 }
637
638 static enum exec_direction_kind
639 default_execution_direction (struct target_ops *self)
640 {
641 if (!target_can_execute_reverse)
642 return EXEC_FORWARD;
643 else if (!target_can_async_p ())
644 return EXEC_FORWARD;
645 else
646 gdb_assert_not_reached ("\
647 to_execution_direction must be implemented for reverse async");
648 }
649
650 /* Go through the target stack from top to bottom, copying over zero
651 entries in current_target, then filling in still empty entries. In
652 effect, we are doing class inheritance through the pushed target
653 vectors.
654
655 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
656 is currently implemented, is that it discards any knowledge of
657 which target an inherited method originally belonged to.
658 Consequently, new new target methods should instead explicitly and
659 locally search the target stack for the target that can handle the
660 request. */
661
662 static void
663 update_current_target (void)
664 {
665 struct target_ops *t;
666
667 /* First, reset current's contents. */
668 memset (&current_target, 0, sizeof (current_target));
669
670 /* Install the delegators. */
671 install_delegators (&current_target);
672
673 current_target.to_stratum = target_stack->to_stratum;
674
675 #define INHERIT(FIELD, TARGET) \
676 if (!current_target.FIELD) \
677 current_target.FIELD = (TARGET)->FIELD
678
679 /* Do not add any new INHERITs here. Instead, use the delegation
680 mechanism provided by make-target-delegates. */
681 for (t = target_stack; t; t = t->beneath)
682 {
683 INHERIT (to_shortname, t);
684 INHERIT (to_longname, t);
685 INHERIT (to_attach_no_wait, t);
686 INHERIT (to_have_steppable_watchpoint, t);
687 INHERIT (to_have_continuable_watchpoint, t);
688 INHERIT (to_has_thread_control, t);
689 }
690 #undef INHERIT
691
692 /* Finally, position the target-stack beneath the squashed
693 "current_target". That way code looking for a non-inherited
694 target method can quickly and simply find it. */
695 current_target.beneath = target_stack;
696
697 if (targetdebug)
698 setup_target_debug ();
699 }
700
701 /* Push a new target type into the stack of the existing target accessors,
702 possibly superseding some of the existing accessors.
703
704 Rather than allow an empty stack, we always have the dummy target at
705 the bottom stratum, so we can call the function vectors without
706 checking them. */
707
708 void
709 push_target (struct target_ops *t)
710 {
711 struct target_ops **cur;
712
713 /* Check magic number. If wrong, it probably means someone changed
714 the struct definition, but not all the places that initialize one. */
715 if (t->to_magic != OPS_MAGIC)
716 {
717 fprintf_unfiltered (gdb_stderr,
718 "Magic number of %s target struct wrong\n",
719 t->to_shortname);
720 internal_error (__FILE__, __LINE__,
721 _("failed internal consistency check"));
722 }
723
724 /* Find the proper stratum to install this target in. */
725 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
726 {
727 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
728 break;
729 }
730
731 /* If there's already targets at this stratum, remove them. */
732 /* FIXME: cagney/2003-10-15: I think this should be popping all
733 targets to CUR, and not just those at this stratum level. */
734 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
735 {
736 /* There's already something at this stratum level. Close it,
737 and un-hook it from the stack. */
738 struct target_ops *tmp = (*cur);
739
740 (*cur) = (*cur)->beneath;
741 tmp->beneath = NULL;
742 target_close (tmp);
743 }
744
745 /* We have removed all targets in our stratum, now add the new one. */
746 t->beneath = (*cur);
747 (*cur) = t;
748
749 update_current_target ();
750 }
751
752 /* Remove a target_ops vector from the stack, wherever it may be.
753 Return how many times it was removed (0 or 1). */
754
755 int
756 unpush_target (struct target_ops *t)
757 {
758 struct target_ops **cur;
759 struct target_ops *tmp;
760
761 if (t->to_stratum == dummy_stratum)
762 internal_error (__FILE__, __LINE__,
763 _("Attempt to unpush the dummy target"));
764
765 /* Look for the specified target. Note that we assume that a target
766 can only occur once in the target stack. */
767
768 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
769 {
770 if ((*cur) == t)
771 break;
772 }
773
774 /* If we don't find target_ops, quit. Only open targets should be
775 closed. */
776 if ((*cur) == NULL)
777 return 0;
778
779 /* Unchain the target. */
780 tmp = (*cur);
781 (*cur) = (*cur)->beneath;
782 tmp->beneath = NULL;
783
784 update_current_target ();
785
786 /* Finally close the target. Note we do this after unchaining, so
787 any target method calls from within the target_close
788 implementation don't end up in T anymore. */
789 target_close (t);
790
791 return 1;
792 }
793
794 /* Unpush TARGET and assert that it worked. */
795
796 static void
797 unpush_target_and_assert (struct target_ops *target)
798 {
799 if (!unpush_target (target))
800 {
801 fprintf_unfiltered (gdb_stderr,
802 "pop_all_targets couldn't find target %s\n",
803 target->to_shortname);
804 internal_error (__FILE__, __LINE__,
805 _("failed internal consistency check"));
806 }
807 }
808
809 void
810 pop_all_targets_above (enum strata above_stratum)
811 {
812 while ((int) (current_target.to_stratum) > (int) above_stratum)
813 unpush_target_and_assert (target_stack);
814 }
815
816 /* See target.h. */
817
818 void
819 pop_all_targets_at_and_above (enum strata stratum)
820 {
821 while ((int) (current_target.to_stratum) >= (int) stratum)
822 unpush_target_and_assert (target_stack);
823 }
824
825 void
826 pop_all_targets (void)
827 {
828 pop_all_targets_above (dummy_stratum);
829 }
830
831 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
832
833 int
834 target_is_pushed (struct target_ops *t)
835 {
836 struct target_ops *cur;
837
838 /* Check magic number. If wrong, it probably means someone changed
839 the struct definition, but not all the places that initialize one. */
840 if (t->to_magic != OPS_MAGIC)
841 {
842 fprintf_unfiltered (gdb_stderr,
843 "Magic number of %s target struct wrong\n",
844 t->to_shortname);
845 internal_error (__FILE__, __LINE__,
846 _("failed internal consistency check"));
847 }
848
849 for (cur = target_stack; cur != NULL; cur = cur->beneath)
850 if (cur == t)
851 return 1;
852
853 return 0;
854 }
855
856 /* Default implementation of to_get_thread_local_address. */
857
858 static void
859 generic_tls_error (void)
860 {
861 throw_error (TLS_GENERIC_ERROR,
862 _("Cannot find thread-local variables on this target"));
863 }
864
865 /* Using the objfile specified in OBJFILE, find the address for the
866 current thread's thread-local storage with offset OFFSET. */
867 CORE_ADDR
868 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
869 {
870 volatile CORE_ADDR addr = 0;
871 struct target_ops *target = &current_target;
872
873 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
874 {
875 ptid_t ptid = inferior_ptid;
876
877 TRY
878 {
879 CORE_ADDR lm_addr;
880
881 /* Fetch the load module address for this objfile. */
882 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
883 objfile);
884
885 addr = target->to_get_thread_local_address (target, ptid,
886 lm_addr, offset);
887 }
888 /* If an error occurred, print TLS related messages here. Otherwise,
889 throw the error to some higher catcher. */
890 CATCH (ex, RETURN_MASK_ALL)
891 {
892 int objfile_is_library = (objfile->flags & OBJF_SHARED);
893
894 switch (ex.error)
895 {
896 case TLS_NO_LIBRARY_SUPPORT_ERROR:
897 error (_("Cannot find thread-local variables "
898 "in this thread library."));
899 break;
900 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
901 if (objfile_is_library)
902 error (_("Cannot find shared library `%s' in dynamic"
903 " linker's load module list"), objfile_name (objfile));
904 else
905 error (_("Cannot find executable file `%s' in dynamic"
906 " linker's load module list"), objfile_name (objfile));
907 break;
908 case TLS_NOT_ALLOCATED_YET_ERROR:
909 if (objfile_is_library)
910 error (_("The inferior has not yet allocated storage for"
911 " thread-local variables in\n"
912 "the shared library `%s'\n"
913 "for %s"),
914 objfile_name (objfile), target_pid_to_str (ptid));
915 else
916 error (_("The inferior has not yet allocated storage for"
917 " thread-local variables in\n"
918 "the executable `%s'\n"
919 "for %s"),
920 objfile_name (objfile), target_pid_to_str (ptid));
921 break;
922 case TLS_GENERIC_ERROR:
923 if (objfile_is_library)
924 error (_("Cannot find thread-local storage for %s, "
925 "shared library %s:\n%s"),
926 target_pid_to_str (ptid),
927 objfile_name (objfile), ex.message);
928 else
929 error (_("Cannot find thread-local storage for %s, "
930 "executable file %s:\n%s"),
931 target_pid_to_str (ptid),
932 objfile_name (objfile), ex.message);
933 break;
934 default:
935 throw_exception (ex);
936 break;
937 }
938 }
939 END_CATCH
940 }
941 /* It wouldn't be wrong here to try a gdbarch method, too; finding
942 TLS is an ABI-specific thing. But we don't do that yet. */
943 else
944 error (_("Cannot find thread-local variables on this target"));
945
946 return addr;
947 }
948
949 const char *
950 target_xfer_status_to_string (enum target_xfer_status status)
951 {
952 #define CASE(X) case X: return #X
953 switch (status)
954 {
955 CASE(TARGET_XFER_E_IO);
956 CASE(TARGET_XFER_UNAVAILABLE);
957 default:
958 return "<unknown>";
959 }
960 #undef CASE
961 };
962
963
964 #undef MIN
965 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
966
967 /* target_read_string -- read a null terminated string, up to LEN bytes,
968 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
969 Set *STRING to a pointer to malloc'd memory containing the data; the caller
970 is responsible for freeing it. Return the number of bytes successfully
971 read. */
972
973 int
974 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
975 {
976 int tlen, offset, i;
977 gdb_byte buf[4];
978 int errcode = 0;
979 char *buffer;
980 int buffer_allocated;
981 char *bufptr;
982 unsigned int nbytes_read = 0;
983
984 gdb_assert (string);
985
986 /* Small for testing. */
987 buffer_allocated = 4;
988 buffer = (char *) xmalloc (buffer_allocated);
989 bufptr = buffer;
990
991 while (len > 0)
992 {
993 tlen = MIN (len, 4 - (memaddr & 3));
994 offset = memaddr & 3;
995
996 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
997 if (errcode != 0)
998 {
999 /* The transfer request might have crossed the boundary to an
1000 unallocated region of memory. Retry the transfer, requesting
1001 a single byte. */
1002 tlen = 1;
1003 offset = 0;
1004 errcode = target_read_memory (memaddr, buf, 1);
1005 if (errcode != 0)
1006 goto done;
1007 }
1008
1009 if (bufptr - buffer + tlen > buffer_allocated)
1010 {
1011 unsigned int bytes;
1012
1013 bytes = bufptr - buffer;
1014 buffer_allocated *= 2;
1015 buffer = (char *) xrealloc (buffer, buffer_allocated);
1016 bufptr = buffer + bytes;
1017 }
1018
1019 for (i = 0; i < tlen; i++)
1020 {
1021 *bufptr++ = buf[i + offset];
1022 if (buf[i + offset] == '\000')
1023 {
1024 nbytes_read += i + 1;
1025 goto done;
1026 }
1027 }
1028
1029 memaddr += tlen;
1030 len -= tlen;
1031 nbytes_read += tlen;
1032 }
1033 done:
1034 *string = buffer;
1035 if (errnop != NULL)
1036 *errnop = errcode;
1037 return nbytes_read;
1038 }
1039
1040 struct target_section_table *
1041 target_get_section_table (struct target_ops *target)
1042 {
1043 return (*target->to_get_section_table) (target);
1044 }
1045
1046 /* Find a section containing ADDR. */
1047
1048 struct target_section *
1049 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1050 {
1051 struct target_section_table *table = target_get_section_table (target);
1052 struct target_section *secp;
1053
1054 if (table == NULL)
1055 return NULL;
1056
1057 for (secp = table->sections; secp < table->sections_end; secp++)
1058 {
1059 if (addr >= secp->addr && addr < secp->endaddr)
1060 return secp;
1061 }
1062 return NULL;
1063 }
1064
1065
1066 /* Helper for the memory xfer routines. Checks the attributes of the
1067 memory region of MEMADDR against the read or write being attempted.
1068 If the access is permitted returns true, otherwise returns false.
1069 REGION_P is an optional output parameter. If not-NULL, it is
1070 filled with a pointer to the memory region of MEMADDR. REG_LEN
1071 returns LEN trimmed to the end of the region. This is how much the
1072 caller can continue requesting, if the access is permitted. A
1073 single xfer request must not straddle memory region boundaries. */
1074
1075 static int
1076 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1077 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1078 struct mem_region **region_p)
1079 {
1080 struct mem_region *region;
1081
1082 region = lookup_mem_region (memaddr);
1083
1084 if (region_p != NULL)
1085 *region_p = region;
1086
1087 switch (region->attrib.mode)
1088 {
1089 case MEM_RO:
1090 if (writebuf != NULL)
1091 return 0;
1092 break;
1093
1094 case MEM_WO:
1095 if (readbuf != NULL)
1096 return 0;
1097 break;
1098
1099 case MEM_FLASH:
1100 /* We only support writing to flash during "load" for now. */
1101 if (writebuf != NULL)
1102 error (_("Writing to flash memory forbidden in this context"));
1103 break;
1104
1105 case MEM_NONE:
1106 return 0;
1107 }
1108
1109 /* region->hi == 0 means there's no upper bound. */
1110 if (memaddr + len < region->hi || region->hi == 0)
1111 *reg_len = len;
1112 else
1113 *reg_len = region->hi - memaddr;
1114
1115 return 1;
1116 }
1117
1118 /* Read memory from more than one valid target. A core file, for
1119 instance, could have some of memory but delegate other bits to
1120 the target below it. So, we must manually try all targets. */
1121
1122 enum target_xfer_status
1123 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1124 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1125 ULONGEST *xfered_len)
1126 {
1127 enum target_xfer_status res;
1128
1129 do
1130 {
1131 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1132 readbuf, writebuf, memaddr, len,
1133 xfered_len);
1134 if (res == TARGET_XFER_OK)
1135 break;
1136
1137 /* Stop if the target reports that the memory is not available. */
1138 if (res == TARGET_XFER_UNAVAILABLE)
1139 break;
1140
1141 /* We want to continue past core files to executables, but not
1142 past a running target's memory. */
1143 if (ops->to_has_all_memory (ops))
1144 break;
1145
1146 ops = ops->beneath;
1147 }
1148 while (ops != NULL);
1149
1150 /* The cache works at the raw memory level. Make sure the cache
1151 gets updated with raw contents no matter what kind of memory
1152 object was originally being written. Note we do write-through
1153 first, so that if it fails, we don't write to the cache contents
1154 that never made it to the target. */
1155 if (writebuf != NULL
1156 && !ptid_equal (inferior_ptid, null_ptid)
1157 && target_dcache_init_p ()
1158 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1159 {
1160 DCACHE *dcache = target_dcache_get ();
1161
1162 /* Note that writing to an area of memory which wasn't present
1163 in the cache doesn't cause it to be loaded in. */
1164 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1165 }
1166
1167 return res;
1168 }
1169
1170 /* Perform a partial memory transfer.
1171 For docs see target.h, to_xfer_partial. */
1172
1173 static enum target_xfer_status
1174 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1175 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1176 ULONGEST len, ULONGEST *xfered_len)
1177 {
1178 enum target_xfer_status res;
1179 ULONGEST reg_len;
1180 struct mem_region *region;
1181 struct inferior *inf;
1182
1183 /* For accesses to unmapped overlay sections, read directly from
1184 files. Must do this first, as MEMADDR may need adjustment. */
1185 if (readbuf != NULL && overlay_debugging)
1186 {
1187 struct obj_section *section = find_pc_overlay (memaddr);
1188
1189 if (pc_in_unmapped_range (memaddr, section))
1190 {
1191 struct target_section_table *table
1192 = target_get_section_table (ops);
1193 const char *section_name = section->the_bfd_section->name;
1194
1195 memaddr = overlay_mapped_address (memaddr, section);
1196 return section_table_xfer_memory_partial (readbuf, writebuf,
1197 memaddr, len, xfered_len,
1198 table->sections,
1199 table->sections_end,
1200 section_name);
1201 }
1202 }
1203
1204 /* Try the executable files, if "trust-readonly-sections" is set. */
1205 if (readbuf != NULL && trust_readonly)
1206 {
1207 struct target_section *secp;
1208 struct target_section_table *table;
1209
1210 secp = target_section_by_addr (ops, memaddr);
1211 if (secp != NULL
1212 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1213 secp->the_bfd_section)
1214 & SEC_READONLY))
1215 {
1216 table = target_get_section_table (ops);
1217 return section_table_xfer_memory_partial (readbuf, writebuf,
1218 memaddr, len, xfered_len,
1219 table->sections,
1220 table->sections_end,
1221 NULL);
1222 }
1223 }
1224
1225 /* Try GDB's internal data cache. */
1226
1227 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1228 &region))
1229 return TARGET_XFER_E_IO;
1230
1231 if (!ptid_equal (inferior_ptid, null_ptid))
1232 inf = find_inferior_ptid (inferior_ptid);
1233 else
1234 inf = NULL;
1235
1236 if (inf != NULL
1237 && readbuf != NULL
1238 /* The dcache reads whole cache lines; that doesn't play well
1239 with reading from a trace buffer, because reading outside of
1240 the collected memory range fails. */
1241 && get_traceframe_number () == -1
1242 && (region->attrib.cache
1243 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1244 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1245 {
1246 DCACHE *dcache = target_dcache_get_or_init ();
1247
1248 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1249 reg_len, xfered_len);
1250 }
1251
1252 /* If none of those methods found the memory we wanted, fall back
1253 to a target partial transfer. Normally a single call to
1254 to_xfer_partial is enough; if it doesn't recognize an object
1255 it will call the to_xfer_partial of the next target down.
1256 But for memory this won't do. Memory is the only target
1257 object which can be read from more than one valid target.
1258 A core file, for instance, could have some of memory but
1259 delegate other bits to the target below it. So, we must
1260 manually try all targets. */
1261
1262 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1263 xfered_len);
1264
1265 /* If we still haven't got anything, return the last error. We
1266 give up. */
1267 return res;
1268 }
1269
1270 /* Perform a partial memory transfer. For docs see target.h,
1271 to_xfer_partial. */
1272
1273 static enum target_xfer_status
1274 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1275 gdb_byte *readbuf, const gdb_byte *writebuf,
1276 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1277 {
1278 enum target_xfer_status res;
1279
1280 /* Zero length requests are ok and require no work. */
1281 if (len == 0)
1282 return TARGET_XFER_EOF;
1283
1284 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1285 breakpoint insns, thus hiding out from higher layers whether
1286 there are software breakpoints inserted in the code stream. */
1287 if (readbuf != NULL)
1288 {
1289 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1290 xfered_len);
1291
1292 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1293 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1294 }
1295 else
1296 {
1297 gdb_byte *buf;
1298 struct cleanup *old_chain;
1299
1300 /* A large write request is likely to be partially satisfied
1301 by memory_xfer_partial_1. We will continually malloc
1302 and free a copy of the entire write request for breakpoint
1303 shadow handling even though we only end up writing a small
1304 subset of it. Cap writes to a limit specified by the target
1305 to mitigate this. */
1306 len = min (ops->to_get_memory_xfer_limit (ops), len);
1307
1308 buf = (gdb_byte *) xmalloc (len);
1309 old_chain = make_cleanup (xfree, buf);
1310 memcpy (buf, writebuf, len);
1311
1312 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1313 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1314 xfered_len);
1315
1316 do_cleanups (old_chain);
1317 }
1318
1319 return res;
1320 }
1321
1322 static void
1323 restore_show_memory_breakpoints (void *arg)
1324 {
1325 show_memory_breakpoints = (uintptr_t) arg;
1326 }
1327
1328 struct cleanup *
1329 make_show_memory_breakpoints_cleanup (int show)
1330 {
1331 int current = show_memory_breakpoints;
1332
1333 show_memory_breakpoints = show;
1334 return make_cleanup (restore_show_memory_breakpoints,
1335 (void *) (uintptr_t) current);
1336 }
1337
1338 /* For docs see target.h, to_xfer_partial. */
1339
1340 enum target_xfer_status
1341 target_xfer_partial (struct target_ops *ops,
1342 enum target_object object, const char *annex,
1343 gdb_byte *readbuf, const gdb_byte *writebuf,
1344 ULONGEST offset, ULONGEST len,
1345 ULONGEST *xfered_len)
1346 {
1347 enum target_xfer_status retval;
1348
1349 gdb_assert (ops->to_xfer_partial != NULL);
1350
1351 /* Transfer is done when LEN is zero. */
1352 if (len == 0)
1353 return TARGET_XFER_EOF;
1354
1355 if (writebuf && !may_write_memory)
1356 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1357 core_addr_to_string_nz (offset), plongest (len));
1358
1359 *xfered_len = 0;
1360
1361 /* If this is a memory transfer, let the memory-specific code
1362 have a look at it instead. Memory transfers are more
1363 complicated. */
1364 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1365 || object == TARGET_OBJECT_CODE_MEMORY)
1366 retval = memory_xfer_partial (ops, object, readbuf,
1367 writebuf, offset, len, xfered_len);
1368 else if (object == TARGET_OBJECT_RAW_MEMORY)
1369 {
1370 /* Skip/avoid accessing the target if the memory region
1371 attributes block the access. Check this here instead of in
1372 raw_memory_xfer_partial as otherwise we'd end up checking
1373 this twice in the case of the memory_xfer_partial path is
1374 taken; once before checking the dcache, and another in the
1375 tail call to raw_memory_xfer_partial. */
1376 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1377 NULL))
1378 return TARGET_XFER_E_IO;
1379
1380 /* Request the normal memory object from other layers. */
1381 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1382 xfered_len);
1383 }
1384 else
1385 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1386 writebuf, offset, len, xfered_len);
1387
1388 if (targetdebug)
1389 {
1390 const unsigned char *myaddr = NULL;
1391
1392 fprintf_unfiltered (gdb_stdlog,
1393 "%s:target_xfer_partial "
1394 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1395 ops->to_shortname,
1396 (int) object,
1397 (annex ? annex : "(null)"),
1398 host_address_to_string (readbuf),
1399 host_address_to_string (writebuf),
1400 core_addr_to_string_nz (offset),
1401 pulongest (len), retval,
1402 pulongest (*xfered_len));
1403
1404 if (readbuf)
1405 myaddr = readbuf;
1406 if (writebuf)
1407 myaddr = writebuf;
1408 if (retval == TARGET_XFER_OK && myaddr != NULL)
1409 {
1410 int i;
1411
1412 fputs_unfiltered (", bytes =", gdb_stdlog);
1413 for (i = 0; i < *xfered_len; i++)
1414 {
1415 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1416 {
1417 if (targetdebug < 2 && i > 0)
1418 {
1419 fprintf_unfiltered (gdb_stdlog, " ...");
1420 break;
1421 }
1422 fprintf_unfiltered (gdb_stdlog, "\n");
1423 }
1424
1425 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1426 }
1427 }
1428
1429 fputc_unfiltered ('\n', gdb_stdlog);
1430 }
1431
1432 /* Check implementations of to_xfer_partial update *XFERED_LEN
1433 properly. Do assertion after printing debug messages, so that we
1434 can find more clues on assertion failure from debugging messages. */
1435 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1436 gdb_assert (*xfered_len > 0);
1437
1438 return retval;
1439 }
1440
1441 /* Read LEN bytes of target memory at address MEMADDR, placing the
1442 results in GDB's memory at MYADDR. Returns either 0 for success or
1443 -1 if any error occurs.
1444
1445 If an error occurs, no guarantee is made about the contents of the data at
1446 MYADDR. In particular, the caller should not depend upon partial reads
1447 filling the buffer with good data. There is no way for the caller to know
1448 how much good data might have been transfered anyway. Callers that can
1449 deal with partial reads should call target_read (which will retry until
1450 it makes no progress, and then return how much was transferred). */
1451
1452 int
1453 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1454 {
1455 /* Dispatch to the topmost target, not the flattened current_target.
1456 Memory accesses check target->to_has_(all_)memory, and the
1457 flattened target doesn't inherit those. */
1458 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1459 myaddr, memaddr, len) == len)
1460 return 0;
1461 else
1462 return -1;
1463 }
1464
1465 /* See target/target.h. */
1466
1467 int
1468 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1469 {
1470 gdb_byte buf[4];
1471 int r;
1472
1473 r = target_read_memory (memaddr, buf, sizeof buf);
1474 if (r != 0)
1475 return r;
1476 *result = extract_unsigned_integer (buf, sizeof buf,
1477 gdbarch_byte_order (target_gdbarch ()));
1478 return 0;
1479 }
1480
1481 /* Like target_read_memory, but specify explicitly that this is a read
1482 from the target's raw memory. That is, this read bypasses the
1483 dcache, breakpoint shadowing, etc. */
1484
1485 int
1486 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1487 {
1488 /* See comment in target_read_memory about why the request starts at
1489 current_target.beneath. */
1490 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1491 myaddr, memaddr, len) == len)
1492 return 0;
1493 else
1494 return -1;
1495 }
1496
1497 /* Like target_read_memory, but specify explicitly that this is a read from
1498 the target's stack. This may trigger different cache behavior. */
1499
1500 int
1501 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1502 {
1503 /* See comment in target_read_memory about why the request starts at
1504 current_target.beneath. */
1505 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1506 myaddr, memaddr, len) == len)
1507 return 0;
1508 else
1509 return -1;
1510 }
1511
1512 /* Like target_read_memory, but specify explicitly that this is a read from
1513 the target's code. This may trigger different cache behavior. */
1514
1515 int
1516 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1517 {
1518 /* See comment in target_read_memory about why the request starts at
1519 current_target.beneath. */
1520 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1521 myaddr, memaddr, len) == len)
1522 return 0;
1523 else
1524 return -1;
1525 }
1526
1527 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1528 Returns either 0 for success or -1 if any error occurs. If an
1529 error occurs, no guarantee is made about how much data got written.
1530 Callers that can deal with partial writes should call
1531 target_write. */
1532
1533 int
1534 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1535 {
1536 /* See comment in target_read_memory about why the request starts at
1537 current_target.beneath. */
1538 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1539 myaddr, memaddr, len) == len)
1540 return 0;
1541 else
1542 return -1;
1543 }
1544
1545 /* Write LEN bytes from MYADDR to target raw memory at address
1546 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1547 If an error occurs, no guarantee is made about how much data got
1548 written. Callers that can deal with partial writes should call
1549 target_write. */
1550
1551 int
1552 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1553 {
1554 /* See comment in target_read_memory about why the request starts at
1555 current_target.beneath. */
1556 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1557 myaddr, memaddr, len) == len)
1558 return 0;
1559 else
1560 return -1;
1561 }
1562
1563 /* Fetch the target's memory map. */
1564
1565 VEC(mem_region_s) *
1566 target_memory_map (void)
1567 {
1568 VEC(mem_region_s) *result;
1569 struct mem_region *last_one, *this_one;
1570 int ix;
1571 result = current_target.to_memory_map (&current_target);
1572 if (result == NULL)
1573 return NULL;
1574
1575 qsort (VEC_address (mem_region_s, result),
1576 VEC_length (mem_region_s, result),
1577 sizeof (struct mem_region), mem_region_cmp);
1578
1579 /* Check that regions do not overlap. Simultaneously assign
1580 a numbering for the "mem" commands to use to refer to
1581 each region. */
1582 last_one = NULL;
1583 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1584 {
1585 this_one->number = ix;
1586
1587 if (last_one && last_one->hi > this_one->lo)
1588 {
1589 warning (_("Overlapping regions in memory map: ignoring"));
1590 VEC_free (mem_region_s, result);
1591 return NULL;
1592 }
1593 last_one = this_one;
1594 }
1595
1596 return result;
1597 }
1598
1599 void
1600 target_flash_erase (ULONGEST address, LONGEST length)
1601 {
1602 current_target.to_flash_erase (&current_target, address, length);
1603 }
1604
1605 void
1606 target_flash_done (void)
1607 {
1608 current_target.to_flash_done (&current_target);
1609 }
1610
1611 static void
1612 show_trust_readonly (struct ui_file *file, int from_tty,
1613 struct cmd_list_element *c, const char *value)
1614 {
1615 fprintf_filtered (file,
1616 _("Mode for reading from readonly sections is %s.\n"),
1617 value);
1618 }
1619
1620 /* Target vector read/write partial wrapper functions. */
1621
1622 static enum target_xfer_status
1623 target_read_partial (struct target_ops *ops,
1624 enum target_object object,
1625 const char *annex, gdb_byte *buf,
1626 ULONGEST offset, ULONGEST len,
1627 ULONGEST *xfered_len)
1628 {
1629 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1630 xfered_len);
1631 }
1632
1633 static enum target_xfer_status
1634 target_write_partial (struct target_ops *ops,
1635 enum target_object object,
1636 const char *annex, const gdb_byte *buf,
1637 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1638 {
1639 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1640 xfered_len);
1641 }
1642
1643 /* Wrappers to perform the full transfer. */
1644
1645 /* For docs on target_read see target.h. */
1646
1647 LONGEST
1648 target_read (struct target_ops *ops,
1649 enum target_object object,
1650 const char *annex, gdb_byte *buf,
1651 ULONGEST offset, LONGEST len)
1652 {
1653 LONGEST xfered_total = 0;
1654 int unit_size = 1;
1655
1656 /* If we are reading from a memory object, find the length of an addressable
1657 unit for that architecture. */
1658 if (object == TARGET_OBJECT_MEMORY
1659 || object == TARGET_OBJECT_STACK_MEMORY
1660 || object == TARGET_OBJECT_CODE_MEMORY
1661 || object == TARGET_OBJECT_RAW_MEMORY)
1662 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1663
1664 while (xfered_total < len)
1665 {
1666 ULONGEST xfered_partial;
1667 enum target_xfer_status status;
1668
1669 status = target_read_partial (ops, object, annex,
1670 buf + xfered_total * unit_size,
1671 offset + xfered_total, len - xfered_total,
1672 &xfered_partial);
1673
1674 /* Call an observer, notifying them of the xfer progress? */
1675 if (status == TARGET_XFER_EOF)
1676 return xfered_total;
1677 else if (status == TARGET_XFER_OK)
1678 {
1679 xfered_total += xfered_partial;
1680 QUIT;
1681 }
1682 else
1683 return TARGET_XFER_E_IO;
1684
1685 }
1686 return len;
1687 }
1688
1689 /* Assuming that the entire [begin, end) range of memory cannot be
1690 read, try to read whatever subrange is possible to read.
1691
1692 The function returns, in RESULT, either zero or one memory block.
1693 If there's a readable subrange at the beginning, it is completely
1694 read and returned. Any further readable subrange will not be read.
1695 Otherwise, if there's a readable subrange at the end, it will be
1696 completely read and returned. Any readable subranges before it
1697 (obviously, not starting at the beginning), will be ignored. In
1698 other cases -- either no readable subrange, or readable subrange(s)
1699 that is neither at the beginning, or end, nothing is returned.
1700
1701 The purpose of this function is to handle a read across a boundary
1702 of accessible memory in a case when memory map is not available.
1703 The above restrictions are fine for this case, but will give
1704 incorrect results if the memory is 'patchy'. However, supporting
1705 'patchy' memory would require trying to read every single byte,
1706 and it seems unacceptable solution. Explicit memory map is
1707 recommended for this case -- and target_read_memory_robust will
1708 take care of reading multiple ranges then. */
1709
1710 static void
1711 read_whatever_is_readable (struct target_ops *ops,
1712 const ULONGEST begin, const ULONGEST end,
1713 int unit_size,
1714 VEC(memory_read_result_s) **result)
1715 {
1716 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1717 ULONGEST current_begin = begin;
1718 ULONGEST current_end = end;
1719 int forward;
1720 memory_read_result_s r;
1721 ULONGEST xfered_len;
1722
1723 /* If we previously failed to read 1 byte, nothing can be done here. */
1724 if (end - begin <= 1)
1725 {
1726 xfree (buf);
1727 return;
1728 }
1729
1730 /* Check that either first or the last byte is readable, and give up
1731 if not. This heuristic is meant to permit reading accessible memory
1732 at the boundary of accessible region. */
1733 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1734 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1735 {
1736 forward = 1;
1737 ++current_begin;
1738 }
1739 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1740 buf + (end - begin) - 1, end - 1, 1,
1741 &xfered_len) == TARGET_XFER_OK)
1742 {
1743 forward = 0;
1744 --current_end;
1745 }
1746 else
1747 {
1748 xfree (buf);
1749 return;
1750 }
1751
1752 /* Loop invariant is that the [current_begin, current_end) was previously
1753 found to be not readable as a whole.
1754
1755 Note loop condition -- if the range has 1 byte, we can't divide the range
1756 so there's no point trying further. */
1757 while (current_end - current_begin > 1)
1758 {
1759 ULONGEST first_half_begin, first_half_end;
1760 ULONGEST second_half_begin, second_half_end;
1761 LONGEST xfer;
1762 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1763
1764 if (forward)
1765 {
1766 first_half_begin = current_begin;
1767 first_half_end = middle;
1768 second_half_begin = middle;
1769 second_half_end = current_end;
1770 }
1771 else
1772 {
1773 first_half_begin = middle;
1774 first_half_end = current_end;
1775 second_half_begin = current_begin;
1776 second_half_end = middle;
1777 }
1778
1779 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1780 buf + (first_half_begin - begin) * unit_size,
1781 first_half_begin,
1782 first_half_end - first_half_begin);
1783
1784 if (xfer == first_half_end - first_half_begin)
1785 {
1786 /* This half reads up fine. So, the error must be in the
1787 other half. */
1788 current_begin = second_half_begin;
1789 current_end = second_half_end;
1790 }
1791 else
1792 {
1793 /* This half is not readable. Because we've tried one byte, we
1794 know some part of this half if actually readable. Go to the next
1795 iteration to divide again and try to read.
1796
1797 We don't handle the other half, because this function only tries
1798 to read a single readable subrange. */
1799 current_begin = first_half_begin;
1800 current_end = first_half_end;
1801 }
1802 }
1803
1804 if (forward)
1805 {
1806 /* The [begin, current_begin) range has been read. */
1807 r.begin = begin;
1808 r.end = current_begin;
1809 r.data = buf;
1810 }
1811 else
1812 {
1813 /* The [current_end, end) range has been read. */
1814 LONGEST region_len = end - current_end;
1815
1816 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1817 memcpy (r.data, buf + (current_end - begin) * unit_size,
1818 region_len * unit_size);
1819 r.begin = current_end;
1820 r.end = end;
1821 xfree (buf);
1822 }
1823 VEC_safe_push(memory_read_result_s, (*result), &r);
1824 }
1825
1826 void
1827 free_memory_read_result_vector (void *x)
1828 {
1829 VEC(memory_read_result_s) **v = (VEC(memory_read_result_s) **) x;
1830 memory_read_result_s *current;
1831 int ix;
1832
1833 for (ix = 0; VEC_iterate (memory_read_result_s, *v, ix, current); ++ix)
1834 {
1835 xfree (current->data);
1836 }
1837 VEC_free (memory_read_result_s, *v);
1838 }
1839
1840 VEC(memory_read_result_s) *
1841 read_memory_robust (struct target_ops *ops,
1842 const ULONGEST offset, const LONGEST len)
1843 {
1844 VEC(memory_read_result_s) *result = 0;
1845 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1846 struct cleanup *cleanup = make_cleanup (free_memory_read_result_vector,
1847 &result);
1848
1849 LONGEST xfered_total = 0;
1850 while (xfered_total < len)
1851 {
1852 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1853 LONGEST region_len;
1854
1855 /* If there is no explicit region, a fake one should be created. */
1856 gdb_assert (region);
1857
1858 if (region->hi == 0)
1859 region_len = len - xfered_total;
1860 else
1861 region_len = region->hi - offset;
1862
1863 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1864 {
1865 /* Cannot read this region. Note that we can end up here only
1866 if the region is explicitly marked inaccessible, or
1867 'inaccessible-by-default' is in effect. */
1868 xfered_total += region_len;
1869 }
1870 else
1871 {
1872 LONGEST to_read = min (len - xfered_total, region_len);
1873 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1874 struct cleanup *inner_cleanup = make_cleanup (xfree, buffer);
1875
1876 LONGEST xfered_partial =
1877 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1878 (gdb_byte *) buffer,
1879 offset + xfered_total, to_read);
1880 /* Call an observer, notifying them of the xfer progress? */
1881 if (xfered_partial <= 0)
1882 {
1883 /* Got an error reading full chunk. See if maybe we can read
1884 some subrange. */
1885 do_cleanups (inner_cleanup);
1886 read_whatever_is_readable (ops, offset + xfered_total,
1887 offset + xfered_total + to_read,
1888 unit_size, &result);
1889 xfered_total += to_read;
1890 }
1891 else
1892 {
1893 struct memory_read_result r;
1894
1895 discard_cleanups (inner_cleanup);
1896 r.data = buffer;
1897 r.begin = offset + xfered_total;
1898 r.end = r.begin + xfered_partial;
1899 VEC_safe_push (memory_read_result_s, result, &r);
1900 xfered_total += xfered_partial;
1901 }
1902 QUIT;
1903 }
1904 }
1905
1906 discard_cleanups (cleanup);
1907 return result;
1908 }
1909
1910
1911 /* An alternative to target_write with progress callbacks. */
1912
1913 LONGEST
1914 target_write_with_progress (struct target_ops *ops,
1915 enum target_object object,
1916 const char *annex, const gdb_byte *buf,
1917 ULONGEST offset, LONGEST len,
1918 void (*progress) (ULONGEST, void *), void *baton)
1919 {
1920 LONGEST xfered_total = 0;
1921 int unit_size = 1;
1922
1923 /* If we are writing to a memory object, find the length of an addressable
1924 unit for that architecture. */
1925 if (object == TARGET_OBJECT_MEMORY
1926 || object == TARGET_OBJECT_STACK_MEMORY
1927 || object == TARGET_OBJECT_CODE_MEMORY
1928 || object == TARGET_OBJECT_RAW_MEMORY)
1929 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1930
1931 /* Give the progress callback a chance to set up. */
1932 if (progress)
1933 (*progress) (0, baton);
1934
1935 while (xfered_total < len)
1936 {
1937 ULONGEST xfered_partial;
1938 enum target_xfer_status status;
1939
1940 status = target_write_partial (ops, object, annex,
1941 buf + xfered_total * unit_size,
1942 offset + xfered_total, len - xfered_total,
1943 &xfered_partial);
1944
1945 if (status != TARGET_XFER_OK)
1946 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1947
1948 if (progress)
1949 (*progress) (xfered_partial, baton);
1950
1951 xfered_total += xfered_partial;
1952 QUIT;
1953 }
1954 return len;
1955 }
1956
1957 /* For docs on target_write see target.h. */
1958
1959 LONGEST
1960 target_write (struct target_ops *ops,
1961 enum target_object object,
1962 const char *annex, const gdb_byte *buf,
1963 ULONGEST offset, LONGEST len)
1964 {
1965 return target_write_with_progress (ops, object, annex, buf, offset, len,
1966 NULL, NULL);
1967 }
1968
1969 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1970 the size of the transferred data. PADDING additional bytes are
1971 available in *BUF_P. This is a helper function for
1972 target_read_alloc; see the declaration of that function for more
1973 information. */
1974
1975 static LONGEST
1976 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1977 const char *annex, gdb_byte **buf_p, int padding)
1978 {
1979 size_t buf_alloc, buf_pos;
1980 gdb_byte *buf;
1981
1982 /* This function does not have a length parameter; it reads the
1983 entire OBJECT). Also, it doesn't support objects fetched partly
1984 from one target and partly from another (in a different stratum,
1985 e.g. a core file and an executable). Both reasons make it
1986 unsuitable for reading memory. */
1987 gdb_assert (object != TARGET_OBJECT_MEMORY);
1988
1989 /* Start by reading up to 4K at a time. The target will throttle
1990 this number down if necessary. */
1991 buf_alloc = 4096;
1992 buf = (gdb_byte *) xmalloc (buf_alloc);
1993 buf_pos = 0;
1994 while (1)
1995 {
1996 ULONGEST xfered_len;
1997 enum target_xfer_status status;
1998
1999 status = target_read_partial (ops, object, annex, &buf[buf_pos],
2000 buf_pos, buf_alloc - buf_pos - padding,
2001 &xfered_len);
2002
2003 if (status == TARGET_XFER_EOF)
2004 {
2005 /* Read all there was. */
2006 if (buf_pos == 0)
2007 xfree (buf);
2008 else
2009 *buf_p = buf;
2010 return buf_pos;
2011 }
2012 else if (status != TARGET_XFER_OK)
2013 {
2014 /* An error occurred. */
2015 xfree (buf);
2016 return TARGET_XFER_E_IO;
2017 }
2018
2019 buf_pos += xfered_len;
2020
2021 /* If the buffer is filling up, expand it. */
2022 if (buf_alloc < buf_pos * 2)
2023 {
2024 buf_alloc *= 2;
2025 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
2026 }
2027
2028 QUIT;
2029 }
2030 }
2031
2032 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2033 the size of the transferred data. See the declaration in "target.h"
2034 function for more information about the return value. */
2035
2036 LONGEST
2037 target_read_alloc (struct target_ops *ops, enum target_object object,
2038 const char *annex, gdb_byte **buf_p)
2039 {
2040 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2041 }
2042
2043 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2044 returned as a string, allocated using xmalloc. If an error occurs
2045 or the transfer is unsupported, NULL is returned. Empty objects
2046 are returned as allocated but empty strings. A warning is issued
2047 if the result contains any embedded NUL bytes. */
2048
2049 char *
2050 target_read_stralloc (struct target_ops *ops, enum target_object object,
2051 const char *annex)
2052 {
2053 gdb_byte *buffer;
2054 char *bufstr;
2055 LONGEST i, transferred;
2056
2057 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2058 bufstr = (char *) buffer;
2059
2060 if (transferred < 0)
2061 return NULL;
2062
2063 if (transferred == 0)
2064 return xstrdup ("");
2065
2066 bufstr[transferred] = 0;
2067
2068 /* Check for embedded NUL bytes; but allow trailing NULs. */
2069 for (i = strlen (bufstr); i < transferred; i++)
2070 if (bufstr[i] != 0)
2071 {
2072 warning (_("target object %d, annex %s, "
2073 "contained unexpected null characters"),
2074 (int) object, annex ? annex : "(none)");
2075 break;
2076 }
2077
2078 return bufstr;
2079 }
2080
2081 /* Memory transfer methods. */
2082
2083 void
2084 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2085 LONGEST len)
2086 {
2087 /* This method is used to read from an alternate, non-current
2088 target. This read must bypass the overlay support (as symbols
2089 don't match this target), and GDB's internal cache (wrong cache
2090 for this target). */
2091 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2092 != len)
2093 memory_error (TARGET_XFER_E_IO, addr);
2094 }
2095
2096 ULONGEST
2097 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2098 int len, enum bfd_endian byte_order)
2099 {
2100 gdb_byte buf[sizeof (ULONGEST)];
2101
2102 gdb_assert (len <= sizeof (buf));
2103 get_target_memory (ops, addr, buf, len);
2104 return extract_unsigned_integer (buf, len, byte_order);
2105 }
2106
2107 /* See target.h. */
2108
2109 int
2110 target_insert_breakpoint (struct gdbarch *gdbarch,
2111 struct bp_target_info *bp_tgt)
2112 {
2113 if (!may_insert_breakpoints)
2114 {
2115 warning (_("May not insert breakpoints"));
2116 return 1;
2117 }
2118
2119 return current_target.to_insert_breakpoint (&current_target,
2120 gdbarch, bp_tgt);
2121 }
2122
2123 /* See target.h. */
2124
2125 int
2126 target_remove_breakpoint (struct gdbarch *gdbarch,
2127 struct bp_target_info *bp_tgt)
2128 {
2129 /* This is kind of a weird case to handle, but the permission might
2130 have been changed after breakpoints were inserted - in which case
2131 we should just take the user literally and assume that any
2132 breakpoints should be left in place. */
2133 if (!may_insert_breakpoints)
2134 {
2135 warning (_("May not remove breakpoints"));
2136 return 1;
2137 }
2138
2139 return current_target.to_remove_breakpoint (&current_target,
2140 gdbarch, bp_tgt);
2141 }
2142
2143 static void
2144 target_info (char *args, int from_tty)
2145 {
2146 struct target_ops *t;
2147 int has_all_mem = 0;
2148
2149 if (symfile_objfile != NULL)
2150 printf_unfiltered (_("Symbols from \"%s\".\n"),
2151 objfile_name (symfile_objfile));
2152
2153 for (t = target_stack; t != NULL; t = t->beneath)
2154 {
2155 if (!(*t->to_has_memory) (t))
2156 continue;
2157
2158 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2159 continue;
2160 if (has_all_mem)
2161 printf_unfiltered (_("\tWhile running this, "
2162 "GDB does not access memory from...\n"));
2163 printf_unfiltered ("%s:\n", t->to_longname);
2164 (t->to_files_info) (t);
2165 has_all_mem = (*t->to_has_all_memory) (t);
2166 }
2167 }
2168
2169 /* This function is called before any new inferior is created, e.g.
2170 by running a program, attaching, or connecting to a target.
2171 It cleans up any state from previous invocations which might
2172 change between runs. This is a subset of what target_preopen
2173 resets (things which might change between targets). */
2174
2175 void
2176 target_pre_inferior (int from_tty)
2177 {
2178 /* Clear out solib state. Otherwise the solib state of the previous
2179 inferior might have survived and is entirely wrong for the new
2180 target. This has been observed on GNU/Linux using glibc 2.3. How
2181 to reproduce:
2182
2183 bash$ ./foo&
2184 [1] 4711
2185 bash$ ./foo&
2186 [1] 4712
2187 bash$ gdb ./foo
2188 [...]
2189 (gdb) attach 4711
2190 (gdb) detach
2191 (gdb) attach 4712
2192 Cannot access memory at address 0xdeadbeef
2193 */
2194
2195 /* In some OSs, the shared library list is the same/global/shared
2196 across inferiors. If code is shared between processes, so are
2197 memory regions and features. */
2198 if (!gdbarch_has_global_solist (target_gdbarch ()))
2199 {
2200 no_shared_libraries (NULL, from_tty);
2201
2202 invalidate_target_mem_regions ();
2203
2204 target_clear_description ();
2205 }
2206
2207 /* attach_flag may be set if the previous process associated with
2208 the inferior was attached to. */
2209 current_inferior ()->attach_flag = 0;
2210
2211 current_inferior ()->highest_thread_num = 0;
2212
2213 agent_capability_invalidate ();
2214 }
2215
2216 /* Callback for iterate_over_inferiors. Gets rid of the given
2217 inferior. */
2218
2219 static int
2220 dispose_inferior (struct inferior *inf, void *args)
2221 {
2222 struct thread_info *thread;
2223
2224 thread = any_thread_of_process (inf->pid);
2225 if (thread)
2226 {
2227 switch_to_thread (thread->ptid);
2228
2229 /* Core inferiors actually should be detached, not killed. */
2230 if (target_has_execution)
2231 target_kill ();
2232 else
2233 target_detach (NULL, 0);
2234 }
2235
2236 return 0;
2237 }
2238
2239 /* This is to be called by the open routine before it does
2240 anything. */
2241
2242 void
2243 target_preopen (int from_tty)
2244 {
2245 dont_repeat ();
2246
2247 if (have_inferiors ())
2248 {
2249 if (!from_tty
2250 || !have_live_inferiors ()
2251 || query (_("A program is being debugged already. Kill it? ")))
2252 iterate_over_inferiors (dispose_inferior, NULL);
2253 else
2254 error (_("Program not killed."));
2255 }
2256
2257 /* Calling target_kill may remove the target from the stack. But if
2258 it doesn't (which seems like a win for UDI), remove it now. */
2259 /* Leave the exec target, though. The user may be switching from a
2260 live process to a core of the same program. */
2261 pop_all_targets_above (file_stratum);
2262
2263 target_pre_inferior (from_tty);
2264 }
2265
2266 /* Detach a target after doing deferred register stores. */
2267
2268 void
2269 target_detach (const char *args, int from_tty)
2270 {
2271 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2272 /* Don't remove global breakpoints here. They're removed on
2273 disconnection from the target. */
2274 ;
2275 else
2276 /* If we're in breakpoints-always-inserted mode, have to remove
2277 them before detaching. */
2278 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2279
2280 prepare_for_detach ();
2281
2282 current_target.to_detach (&current_target, args, from_tty);
2283 }
2284
2285 void
2286 target_disconnect (const char *args, int from_tty)
2287 {
2288 /* If we're in breakpoints-always-inserted mode or if breakpoints
2289 are global across processes, we have to remove them before
2290 disconnecting. */
2291 remove_breakpoints ();
2292
2293 current_target.to_disconnect (&current_target, args, from_tty);
2294 }
2295
2296 ptid_t
2297 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2298 {
2299 return (current_target.to_wait) (&current_target, ptid, status, options);
2300 }
2301
2302 /* See target.h. */
2303
2304 ptid_t
2305 default_target_wait (struct target_ops *ops,
2306 ptid_t ptid, struct target_waitstatus *status,
2307 int options)
2308 {
2309 status->kind = TARGET_WAITKIND_IGNORE;
2310 return minus_one_ptid;
2311 }
2312
2313 char *
2314 target_pid_to_str (ptid_t ptid)
2315 {
2316 return (*current_target.to_pid_to_str) (&current_target, ptid);
2317 }
2318
2319 const char *
2320 target_thread_name (struct thread_info *info)
2321 {
2322 return current_target.to_thread_name (&current_target, info);
2323 }
2324
2325 void
2326 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2327 {
2328 target_dcache_invalidate ();
2329
2330 current_target.to_resume (&current_target, ptid, step, signal);
2331
2332 registers_changed_ptid (ptid);
2333 /* We only set the internal executing state here. The user/frontend
2334 running state is set at a higher level. */
2335 set_executing (ptid, 1);
2336 clear_inline_frame_state (ptid);
2337 }
2338
2339 void
2340 target_pass_signals (int numsigs, unsigned char *pass_signals)
2341 {
2342 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2343 }
2344
2345 void
2346 target_program_signals (int numsigs, unsigned char *program_signals)
2347 {
2348 (*current_target.to_program_signals) (&current_target,
2349 numsigs, program_signals);
2350 }
2351
2352 static int
2353 default_follow_fork (struct target_ops *self, int follow_child,
2354 int detach_fork)
2355 {
2356 /* Some target returned a fork event, but did not know how to follow it. */
2357 internal_error (__FILE__, __LINE__,
2358 _("could not find a target to follow fork"));
2359 }
2360
2361 /* Look through the list of possible targets for a target that can
2362 follow forks. */
2363
2364 int
2365 target_follow_fork (int follow_child, int detach_fork)
2366 {
2367 return current_target.to_follow_fork (&current_target,
2368 follow_child, detach_fork);
2369 }
2370
2371 /* Target wrapper for follow exec hook. */
2372
2373 void
2374 target_follow_exec (struct inferior *inf, char *execd_pathname)
2375 {
2376 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2377 }
2378
2379 static void
2380 default_mourn_inferior (struct target_ops *self)
2381 {
2382 internal_error (__FILE__, __LINE__,
2383 _("could not find a target to follow mourn inferior"));
2384 }
2385
2386 void
2387 target_mourn_inferior (void)
2388 {
2389 current_target.to_mourn_inferior (&current_target);
2390
2391 /* We no longer need to keep handles on any of the object files.
2392 Make sure to release them to avoid unnecessarily locking any
2393 of them while we're not actually debugging. */
2394 bfd_cache_close_all ();
2395 }
2396
2397 /* Look for a target which can describe architectural features, starting
2398 from TARGET. If we find one, return its description. */
2399
2400 const struct target_desc *
2401 target_read_description (struct target_ops *target)
2402 {
2403 return target->to_read_description (target);
2404 }
2405
2406 /* This implements a basic search of memory, reading target memory and
2407 performing the search here (as opposed to performing the search in on the
2408 target side with, for example, gdbserver). */
2409
2410 int
2411 simple_search_memory (struct target_ops *ops,
2412 CORE_ADDR start_addr, ULONGEST search_space_len,
2413 const gdb_byte *pattern, ULONGEST pattern_len,
2414 CORE_ADDR *found_addrp)
2415 {
2416 /* NOTE: also defined in find.c testcase. */
2417 #define SEARCH_CHUNK_SIZE 16000
2418 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2419 /* Buffer to hold memory contents for searching. */
2420 gdb_byte *search_buf;
2421 unsigned search_buf_size;
2422 struct cleanup *old_cleanups;
2423
2424 search_buf_size = chunk_size + pattern_len - 1;
2425
2426 /* No point in trying to allocate a buffer larger than the search space. */
2427 if (search_space_len < search_buf_size)
2428 search_buf_size = search_space_len;
2429
2430 search_buf = (gdb_byte *) malloc (search_buf_size);
2431 if (search_buf == NULL)
2432 error (_("Unable to allocate memory to perform the search."));
2433 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2434
2435 /* Prime the search buffer. */
2436
2437 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2438 search_buf, start_addr, search_buf_size) != search_buf_size)
2439 {
2440 warning (_("Unable to access %s bytes of target "
2441 "memory at %s, halting search."),
2442 pulongest (search_buf_size), hex_string (start_addr));
2443 do_cleanups (old_cleanups);
2444 return -1;
2445 }
2446
2447 /* Perform the search.
2448
2449 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2450 When we've scanned N bytes we copy the trailing bytes to the start and
2451 read in another N bytes. */
2452
2453 while (search_space_len >= pattern_len)
2454 {
2455 gdb_byte *found_ptr;
2456 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2457
2458 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2459 pattern, pattern_len);
2460
2461 if (found_ptr != NULL)
2462 {
2463 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2464
2465 *found_addrp = found_addr;
2466 do_cleanups (old_cleanups);
2467 return 1;
2468 }
2469
2470 /* Not found in this chunk, skip to next chunk. */
2471
2472 /* Don't let search_space_len wrap here, it's unsigned. */
2473 if (search_space_len >= chunk_size)
2474 search_space_len -= chunk_size;
2475 else
2476 search_space_len = 0;
2477
2478 if (search_space_len >= pattern_len)
2479 {
2480 unsigned keep_len = search_buf_size - chunk_size;
2481 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2482 int nr_to_read;
2483
2484 /* Copy the trailing part of the previous iteration to the front
2485 of the buffer for the next iteration. */
2486 gdb_assert (keep_len == pattern_len - 1);
2487 memcpy (search_buf, search_buf + chunk_size, keep_len);
2488
2489 nr_to_read = min (search_space_len - keep_len, chunk_size);
2490
2491 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2492 search_buf + keep_len, read_addr,
2493 nr_to_read) != nr_to_read)
2494 {
2495 warning (_("Unable to access %s bytes of target "
2496 "memory at %s, halting search."),
2497 plongest (nr_to_read),
2498 hex_string (read_addr));
2499 do_cleanups (old_cleanups);
2500 return -1;
2501 }
2502
2503 start_addr += chunk_size;
2504 }
2505 }
2506
2507 /* Not found. */
2508
2509 do_cleanups (old_cleanups);
2510 return 0;
2511 }
2512
2513 /* Default implementation of memory-searching. */
2514
2515 static int
2516 default_search_memory (struct target_ops *self,
2517 CORE_ADDR start_addr, ULONGEST search_space_len,
2518 const gdb_byte *pattern, ULONGEST pattern_len,
2519 CORE_ADDR *found_addrp)
2520 {
2521 /* Start over from the top of the target stack. */
2522 return simple_search_memory (current_target.beneath,
2523 start_addr, search_space_len,
2524 pattern, pattern_len, found_addrp);
2525 }
2526
2527 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2528 sequence of bytes in PATTERN with length PATTERN_LEN.
2529
2530 The result is 1 if found, 0 if not found, and -1 if there was an error
2531 requiring halting of the search (e.g. memory read error).
2532 If the pattern is found the address is recorded in FOUND_ADDRP. */
2533
2534 int
2535 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2536 const gdb_byte *pattern, ULONGEST pattern_len,
2537 CORE_ADDR *found_addrp)
2538 {
2539 return current_target.to_search_memory (&current_target, start_addr,
2540 search_space_len,
2541 pattern, pattern_len, found_addrp);
2542 }
2543
2544 /* Look through the currently pushed targets. If none of them will
2545 be able to restart the currently running process, issue an error
2546 message. */
2547
2548 void
2549 target_require_runnable (void)
2550 {
2551 struct target_ops *t;
2552
2553 for (t = target_stack; t != NULL; t = t->beneath)
2554 {
2555 /* If this target knows how to create a new program, then
2556 assume we will still be able to after killing the current
2557 one. Either killing and mourning will not pop T, or else
2558 find_default_run_target will find it again. */
2559 if (t->to_create_inferior != NULL)
2560 return;
2561
2562 /* Do not worry about targets at certain strata that can not
2563 create inferiors. Assume they will be pushed again if
2564 necessary, and continue to the process_stratum. */
2565 if (t->to_stratum == thread_stratum
2566 || t->to_stratum == record_stratum
2567 || t->to_stratum == arch_stratum)
2568 continue;
2569
2570 error (_("The \"%s\" target does not support \"run\". "
2571 "Try \"help target\" or \"continue\"."),
2572 t->to_shortname);
2573 }
2574
2575 /* This function is only called if the target is running. In that
2576 case there should have been a process_stratum target and it
2577 should either know how to create inferiors, or not... */
2578 internal_error (__FILE__, __LINE__, _("No targets found"));
2579 }
2580
2581 /* Whether GDB is allowed to fall back to the default run target for
2582 "run", "attach", etc. when no target is connected yet. */
2583 static int auto_connect_native_target = 1;
2584
2585 static void
2586 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2587 struct cmd_list_element *c, const char *value)
2588 {
2589 fprintf_filtered (file,
2590 _("Whether GDB may automatically connect to the "
2591 "native target is %s.\n"),
2592 value);
2593 }
2594
2595 /* Look through the list of possible targets for a target that can
2596 execute a run or attach command without any other data. This is
2597 used to locate the default process stratum.
2598
2599 If DO_MESG is not NULL, the result is always valid (error() is
2600 called for errors); else, return NULL on error. */
2601
2602 static struct target_ops *
2603 find_default_run_target (char *do_mesg)
2604 {
2605 struct target_ops *runable = NULL;
2606
2607 if (auto_connect_native_target)
2608 {
2609 struct target_ops *t;
2610 int count = 0;
2611 int i;
2612
2613 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2614 {
2615 if (t->to_can_run != delegate_can_run && target_can_run (t))
2616 {
2617 runable = t;
2618 ++count;
2619 }
2620 }
2621
2622 if (count != 1)
2623 runable = NULL;
2624 }
2625
2626 if (runable == NULL)
2627 {
2628 if (do_mesg)
2629 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2630 else
2631 return NULL;
2632 }
2633
2634 return runable;
2635 }
2636
2637 /* See target.h. */
2638
2639 struct target_ops *
2640 find_attach_target (void)
2641 {
2642 struct target_ops *t;
2643
2644 /* If a target on the current stack can attach, use it. */
2645 for (t = current_target.beneath; t != NULL; t = t->beneath)
2646 {
2647 if (t->to_attach != NULL)
2648 break;
2649 }
2650
2651 /* Otherwise, use the default run target for attaching. */
2652 if (t == NULL)
2653 t = find_default_run_target ("attach");
2654
2655 return t;
2656 }
2657
2658 /* See target.h. */
2659
2660 struct target_ops *
2661 find_run_target (void)
2662 {
2663 struct target_ops *t;
2664
2665 /* If a target on the current stack can attach, use it. */
2666 for (t = current_target.beneath; t != NULL; t = t->beneath)
2667 {
2668 if (t->to_create_inferior != NULL)
2669 break;
2670 }
2671
2672 /* Otherwise, use the default run target. */
2673 if (t == NULL)
2674 t = find_default_run_target ("run");
2675
2676 return t;
2677 }
2678
2679 /* Implement the "info proc" command. */
2680
2681 int
2682 target_info_proc (const char *args, enum info_proc_what what)
2683 {
2684 struct target_ops *t;
2685
2686 /* If we're already connected to something that can get us OS
2687 related data, use it. Otherwise, try using the native
2688 target. */
2689 if (current_target.to_stratum >= process_stratum)
2690 t = current_target.beneath;
2691 else
2692 t = find_default_run_target (NULL);
2693
2694 for (; t != NULL; t = t->beneath)
2695 {
2696 if (t->to_info_proc != NULL)
2697 {
2698 t->to_info_proc (t, args, what);
2699
2700 if (targetdebug)
2701 fprintf_unfiltered (gdb_stdlog,
2702 "target_info_proc (\"%s\", %d)\n", args, what);
2703
2704 return 1;
2705 }
2706 }
2707
2708 return 0;
2709 }
2710
2711 static int
2712 find_default_supports_disable_randomization (struct target_ops *self)
2713 {
2714 struct target_ops *t;
2715
2716 t = find_default_run_target (NULL);
2717 if (t && t->to_supports_disable_randomization)
2718 return (t->to_supports_disable_randomization) (t);
2719 return 0;
2720 }
2721
2722 int
2723 target_supports_disable_randomization (void)
2724 {
2725 struct target_ops *t;
2726
2727 for (t = &current_target; t != NULL; t = t->beneath)
2728 if (t->to_supports_disable_randomization)
2729 return t->to_supports_disable_randomization (t);
2730
2731 return 0;
2732 }
2733
2734 char *
2735 target_get_osdata (const char *type)
2736 {
2737 struct target_ops *t;
2738
2739 /* If we're already connected to something that can get us OS
2740 related data, use it. Otherwise, try using the native
2741 target. */
2742 if (current_target.to_stratum >= process_stratum)
2743 t = current_target.beneath;
2744 else
2745 t = find_default_run_target ("get OS data");
2746
2747 if (!t)
2748 return NULL;
2749
2750 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2751 }
2752
2753 static struct address_space *
2754 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2755 {
2756 struct inferior *inf;
2757
2758 /* Fall-back to the "main" address space of the inferior. */
2759 inf = find_inferior_ptid (ptid);
2760
2761 if (inf == NULL || inf->aspace == NULL)
2762 internal_error (__FILE__, __LINE__,
2763 _("Can't determine the current "
2764 "address space of thread %s\n"),
2765 target_pid_to_str (ptid));
2766
2767 return inf->aspace;
2768 }
2769
2770 /* Determine the current address space of thread PTID. */
2771
2772 struct address_space *
2773 target_thread_address_space (ptid_t ptid)
2774 {
2775 struct address_space *aspace;
2776
2777 aspace = current_target.to_thread_address_space (&current_target, ptid);
2778 gdb_assert (aspace != NULL);
2779
2780 return aspace;
2781 }
2782
2783
2784 /* Target file operations. */
2785
2786 static struct target_ops *
2787 default_fileio_target (void)
2788 {
2789 /* If we're already connected to something that can perform
2790 file I/O, use it. Otherwise, try using the native target. */
2791 if (current_target.to_stratum >= process_stratum)
2792 return current_target.beneath;
2793 else
2794 return find_default_run_target ("file I/O");
2795 }
2796
2797 /* File handle for target file operations. */
2798
2799 typedef struct
2800 {
2801 /* The target on which this file is open. */
2802 struct target_ops *t;
2803
2804 /* The file descriptor on the target. */
2805 int fd;
2806 } fileio_fh_t;
2807
2808 DEF_VEC_O (fileio_fh_t);
2809
2810 /* Vector of currently open file handles. The value returned by
2811 target_fileio_open and passed as the FD argument to other
2812 target_fileio_* functions is an index into this vector. This
2813 vector's entries are never freed; instead, files are marked as
2814 closed, and the handle becomes available for reuse. */
2815 static VEC (fileio_fh_t) *fileio_fhandles;
2816
2817 /* Macro to check whether a fileio_fh_t represents a closed file. */
2818 #define is_closed_fileio_fh(fd) ((fd) < 0)
2819
2820 /* Index into fileio_fhandles of the lowest handle that might be
2821 closed. This permits handle reuse without searching the whole
2822 list each time a new file is opened. */
2823 static int lowest_closed_fd;
2824
2825 /* Acquire a target fileio file descriptor. */
2826
2827 static int
2828 acquire_fileio_fd (struct target_ops *t, int fd)
2829 {
2830 fileio_fh_t *fh;
2831
2832 gdb_assert (!is_closed_fileio_fh (fd));
2833
2834 /* Search for closed handles to reuse. */
2835 for (;
2836 VEC_iterate (fileio_fh_t, fileio_fhandles,
2837 lowest_closed_fd, fh);
2838 lowest_closed_fd++)
2839 if (is_closed_fileio_fh (fh->fd))
2840 break;
2841
2842 /* Push a new handle if no closed handles were found. */
2843 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2844 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2845
2846 /* Fill in the handle. */
2847 fh->t = t;
2848 fh->fd = fd;
2849
2850 /* Return its index, and start the next lookup at
2851 the next index. */
2852 return lowest_closed_fd++;
2853 }
2854
2855 /* Release a target fileio file descriptor. */
2856
2857 static void
2858 release_fileio_fd (int fd, fileio_fh_t *fh)
2859 {
2860 fh->fd = -1;
2861 lowest_closed_fd = min (lowest_closed_fd, fd);
2862 }
2863
2864 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2865
2866 #define fileio_fd_to_fh(fd) \
2867 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2868
2869 /* Helper for target_fileio_open and
2870 target_fileio_open_warn_if_slow. */
2871
2872 static int
2873 target_fileio_open_1 (struct inferior *inf, const char *filename,
2874 int flags, int mode, int warn_if_slow,
2875 int *target_errno)
2876 {
2877 struct target_ops *t;
2878
2879 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2880 {
2881 if (t->to_fileio_open != NULL)
2882 {
2883 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2884 warn_if_slow, target_errno);
2885
2886 if (fd < 0)
2887 fd = -1;
2888 else
2889 fd = acquire_fileio_fd (t, fd);
2890
2891 if (targetdebug)
2892 fprintf_unfiltered (gdb_stdlog,
2893 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2894 " = %d (%d)\n",
2895 inf == NULL ? 0 : inf->num,
2896 filename, flags, mode,
2897 warn_if_slow, fd,
2898 fd != -1 ? 0 : *target_errno);
2899 return fd;
2900 }
2901 }
2902
2903 *target_errno = FILEIO_ENOSYS;
2904 return -1;
2905 }
2906
2907 /* See target.h. */
2908
2909 int
2910 target_fileio_open (struct inferior *inf, const char *filename,
2911 int flags, int mode, int *target_errno)
2912 {
2913 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2914 target_errno);
2915 }
2916
2917 /* See target.h. */
2918
2919 int
2920 target_fileio_open_warn_if_slow (struct inferior *inf,
2921 const char *filename,
2922 int flags, int mode, int *target_errno)
2923 {
2924 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2925 target_errno);
2926 }
2927
2928 /* See target.h. */
2929
2930 int
2931 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2932 ULONGEST offset, int *target_errno)
2933 {
2934 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2935 int ret = -1;
2936
2937 if (is_closed_fileio_fh (fh->fd))
2938 *target_errno = EBADF;
2939 else
2940 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2941 len, offset, target_errno);
2942
2943 if (targetdebug)
2944 fprintf_unfiltered (gdb_stdlog,
2945 "target_fileio_pwrite (%d,...,%d,%s) "
2946 "= %d (%d)\n",
2947 fd, len, pulongest (offset),
2948 ret, ret != -1 ? 0 : *target_errno);
2949 return ret;
2950 }
2951
2952 /* See target.h. */
2953
2954 int
2955 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2956 ULONGEST offset, int *target_errno)
2957 {
2958 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2959 int ret = -1;
2960
2961 if (is_closed_fileio_fh (fh->fd))
2962 *target_errno = EBADF;
2963 else
2964 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2965 len, offset, target_errno);
2966
2967 if (targetdebug)
2968 fprintf_unfiltered (gdb_stdlog,
2969 "target_fileio_pread (%d,...,%d,%s) "
2970 "= %d (%d)\n",
2971 fd, len, pulongest (offset),
2972 ret, ret != -1 ? 0 : *target_errno);
2973 return ret;
2974 }
2975
2976 /* See target.h. */
2977
2978 int
2979 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2980 {
2981 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2982 int ret = -1;
2983
2984 if (is_closed_fileio_fh (fh->fd))
2985 *target_errno = EBADF;
2986 else
2987 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2988
2989 if (targetdebug)
2990 fprintf_unfiltered (gdb_stdlog,
2991 "target_fileio_fstat (%d) = %d (%d)\n",
2992 fd, ret, ret != -1 ? 0 : *target_errno);
2993 return ret;
2994 }
2995
2996 /* See target.h. */
2997
2998 int
2999 target_fileio_close (int fd, int *target_errno)
3000 {
3001 fileio_fh_t *fh = fileio_fd_to_fh (fd);
3002 int ret = -1;
3003
3004 if (is_closed_fileio_fh (fh->fd))
3005 *target_errno = EBADF;
3006 else
3007 {
3008 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
3009 release_fileio_fd (fd, fh);
3010 }
3011
3012 if (targetdebug)
3013 fprintf_unfiltered (gdb_stdlog,
3014 "target_fileio_close (%d) = %d (%d)\n",
3015 fd, ret, ret != -1 ? 0 : *target_errno);
3016 return ret;
3017 }
3018
3019 /* See target.h. */
3020
3021 int
3022 target_fileio_unlink (struct inferior *inf, const char *filename,
3023 int *target_errno)
3024 {
3025 struct target_ops *t;
3026
3027 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3028 {
3029 if (t->to_fileio_unlink != NULL)
3030 {
3031 int ret = t->to_fileio_unlink (t, inf, filename,
3032 target_errno);
3033
3034 if (targetdebug)
3035 fprintf_unfiltered (gdb_stdlog,
3036 "target_fileio_unlink (%d,%s)"
3037 " = %d (%d)\n",
3038 inf == NULL ? 0 : inf->num, filename,
3039 ret, ret != -1 ? 0 : *target_errno);
3040 return ret;
3041 }
3042 }
3043
3044 *target_errno = FILEIO_ENOSYS;
3045 return -1;
3046 }
3047
3048 /* See target.h. */
3049
3050 char *
3051 target_fileio_readlink (struct inferior *inf, const char *filename,
3052 int *target_errno)
3053 {
3054 struct target_ops *t;
3055
3056 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3057 {
3058 if (t->to_fileio_readlink != NULL)
3059 {
3060 char *ret = t->to_fileio_readlink (t, inf, filename,
3061 target_errno);
3062
3063 if (targetdebug)
3064 fprintf_unfiltered (gdb_stdlog,
3065 "target_fileio_readlink (%d,%s)"
3066 " = %s (%d)\n",
3067 inf == NULL ? 0 : inf->num,
3068 filename, ret? ret : "(nil)",
3069 ret? 0 : *target_errno);
3070 return ret;
3071 }
3072 }
3073
3074 *target_errno = FILEIO_ENOSYS;
3075 return NULL;
3076 }
3077
3078 static void
3079 target_fileio_close_cleanup (void *opaque)
3080 {
3081 int fd = *(int *) opaque;
3082 int target_errno;
3083
3084 target_fileio_close (fd, &target_errno);
3085 }
3086
3087 /* Read target file FILENAME, in the filesystem as seen by INF. If
3088 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3089 remote targets, the remote stub). Store the result in *BUF_P and
3090 return the size of the transferred data. PADDING additional bytes
3091 are available in *BUF_P. This is a helper function for
3092 target_fileio_read_alloc; see the declaration of that function for
3093 more information. */
3094
3095 static LONGEST
3096 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3097 gdb_byte **buf_p, int padding)
3098 {
3099 struct cleanup *close_cleanup;
3100 size_t buf_alloc, buf_pos;
3101 gdb_byte *buf;
3102 LONGEST n;
3103 int fd;
3104 int target_errno;
3105
3106 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3107 &target_errno);
3108 if (fd == -1)
3109 return -1;
3110
3111 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3112
3113 /* Start by reading up to 4K at a time. The target will throttle
3114 this number down if necessary. */
3115 buf_alloc = 4096;
3116 buf = (gdb_byte *) xmalloc (buf_alloc);
3117 buf_pos = 0;
3118 while (1)
3119 {
3120 n = target_fileio_pread (fd, &buf[buf_pos],
3121 buf_alloc - buf_pos - padding, buf_pos,
3122 &target_errno);
3123 if (n < 0)
3124 {
3125 /* An error occurred. */
3126 do_cleanups (close_cleanup);
3127 xfree (buf);
3128 return -1;
3129 }
3130 else if (n == 0)
3131 {
3132 /* Read all there was. */
3133 do_cleanups (close_cleanup);
3134 if (buf_pos == 0)
3135 xfree (buf);
3136 else
3137 *buf_p = buf;
3138 return buf_pos;
3139 }
3140
3141 buf_pos += n;
3142
3143 /* If the buffer is filling up, expand it. */
3144 if (buf_alloc < buf_pos * 2)
3145 {
3146 buf_alloc *= 2;
3147 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3148 }
3149
3150 QUIT;
3151 }
3152 }
3153
3154 /* See target.h. */
3155
3156 LONGEST
3157 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3158 gdb_byte **buf_p)
3159 {
3160 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3161 }
3162
3163 /* See target.h. */
3164
3165 char *
3166 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3167 {
3168 gdb_byte *buffer;
3169 char *bufstr;
3170 LONGEST i, transferred;
3171
3172 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3173 bufstr = (char *) buffer;
3174
3175 if (transferred < 0)
3176 return NULL;
3177
3178 if (transferred == 0)
3179 return xstrdup ("");
3180
3181 bufstr[transferred] = 0;
3182
3183 /* Check for embedded NUL bytes; but allow trailing NULs. */
3184 for (i = strlen (bufstr); i < transferred; i++)
3185 if (bufstr[i] != 0)
3186 {
3187 warning (_("target file %s "
3188 "contained unexpected null characters"),
3189 filename);
3190 break;
3191 }
3192
3193 return bufstr;
3194 }
3195
3196
3197 static int
3198 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3199 CORE_ADDR addr, int len)
3200 {
3201 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3202 }
3203
3204 static int
3205 default_watchpoint_addr_within_range (struct target_ops *target,
3206 CORE_ADDR addr,
3207 CORE_ADDR start, int length)
3208 {
3209 return addr >= start && addr < start + length;
3210 }
3211
3212 static struct gdbarch *
3213 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3214 {
3215 return target_gdbarch ();
3216 }
3217
3218 static int
3219 return_zero (struct target_ops *ignore)
3220 {
3221 return 0;
3222 }
3223
3224 static int
3225 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3226 {
3227 return 0;
3228 }
3229
3230 /*
3231 * Find the next target down the stack from the specified target.
3232 */
3233
3234 struct target_ops *
3235 find_target_beneath (struct target_ops *t)
3236 {
3237 return t->beneath;
3238 }
3239
3240 /* See target.h. */
3241
3242 struct target_ops *
3243 find_target_at (enum strata stratum)
3244 {
3245 struct target_ops *t;
3246
3247 for (t = current_target.beneath; t != NULL; t = t->beneath)
3248 if (t->to_stratum == stratum)
3249 return t;
3250
3251 return NULL;
3252 }
3253
3254 \f
3255
3256 /* See target.h */
3257
3258 void
3259 target_announce_detach (int from_tty)
3260 {
3261 pid_t pid;
3262 char *exec_file;
3263
3264 if (!from_tty)
3265 return;
3266
3267 exec_file = get_exec_file (0);
3268 if (exec_file == NULL)
3269 exec_file = "";
3270
3271 pid = ptid_get_pid (inferior_ptid);
3272 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3273 target_pid_to_str (pid_to_ptid (pid)));
3274 gdb_flush (gdb_stdout);
3275 }
3276
3277 /* The inferior process has died. Long live the inferior! */
3278
3279 void
3280 generic_mourn_inferior (void)
3281 {
3282 ptid_t ptid;
3283
3284 ptid = inferior_ptid;
3285 inferior_ptid = null_ptid;
3286
3287 /* Mark breakpoints uninserted in case something tries to delete a
3288 breakpoint while we delete the inferior's threads (which would
3289 fail, since the inferior is long gone). */
3290 mark_breakpoints_out ();
3291
3292 if (!ptid_equal (ptid, null_ptid))
3293 {
3294 int pid = ptid_get_pid (ptid);
3295 exit_inferior (pid);
3296 }
3297
3298 /* Note this wipes step-resume breakpoints, so needs to be done
3299 after exit_inferior, which ends up referencing the step-resume
3300 breakpoints through clear_thread_inferior_resources. */
3301 breakpoint_init_inferior (inf_exited);
3302
3303 registers_changed ();
3304
3305 reopen_exec_file ();
3306 reinit_frame_cache ();
3307
3308 if (deprecated_detach_hook)
3309 deprecated_detach_hook ();
3310 }
3311 \f
3312 /* Convert a normal process ID to a string. Returns the string in a
3313 static buffer. */
3314
3315 char *
3316 normal_pid_to_str (ptid_t ptid)
3317 {
3318 static char buf[32];
3319
3320 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3321 return buf;
3322 }
3323
3324 static char *
3325 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3326 {
3327 return normal_pid_to_str (ptid);
3328 }
3329
3330 /* Error-catcher for target_find_memory_regions. */
3331 static int
3332 dummy_find_memory_regions (struct target_ops *self,
3333 find_memory_region_ftype ignore1, void *ignore2)
3334 {
3335 error (_("Command not implemented for this target."));
3336 return 0;
3337 }
3338
3339 /* Error-catcher for target_make_corefile_notes. */
3340 static char *
3341 dummy_make_corefile_notes (struct target_ops *self,
3342 bfd *ignore1, int *ignore2)
3343 {
3344 error (_("Command not implemented for this target."));
3345 return NULL;
3346 }
3347
3348 /* Set up the handful of non-empty slots needed by the dummy target
3349 vector. */
3350
3351 static void
3352 init_dummy_target (void)
3353 {
3354 dummy_target.to_shortname = "None";
3355 dummy_target.to_longname = "None";
3356 dummy_target.to_doc = "";
3357 dummy_target.to_supports_disable_randomization
3358 = find_default_supports_disable_randomization;
3359 dummy_target.to_stratum = dummy_stratum;
3360 dummy_target.to_has_all_memory = return_zero;
3361 dummy_target.to_has_memory = return_zero;
3362 dummy_target.to_has_stack = return_zero;
3363 dummy_target.to_has_registers = return_zero;
3364 dummy_target.to_has_execution = return_zero_has_execution;
3365 dummy_target.to_magic = OPS_MAGIC;
3366
3367 install_dummy_methods (&dummy_target);
3368 }
3369 \f
3370
3371 void
3372 target_close (struct target_ops *targ)
3373 {
3374 gdb_assert (!target_is_pushed (targ));
3375
3376 if (targ->to_xclose != NULL)
3377 targ->to_xclose (targ);
3378 else if (targ->to_close != NULL)
3379 targ->to_close (targ);
3380
3381 if (targetdebug)
3382 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3383 }
3384
3385 int
3386 target_thread_alive (ptid_t ptid)
3387 {
3388 return current_target.to_thread_alive (&current_target, ptid);
3389 }
3390
3391 void
3392 target_update_thread_list (void)
3393 {
3394 current_target.to_update_thread_list (&current_target);
3395 }
3396
3397 void
3398 target_stop (ptid_t ptid)
3399 {
3400 if (!may_stop)
3401 {
3402 warning (_("May not interrupt or stop the target, ignoring attempt"));
3403 return;
3404 }
3405
3406 (*current_target.to_stop) (&current_target, ptid);
3407 }
3408
3409 void
3410 target_interrupt (ptid_t ptid)
3411 {
3412 if (!may_stop)
3413 {
3414 warning (_("May not interrupt or stop the target, ignoring attempt"));
3415 return;
3416 }
3417
3418 (*current_target.to_interrupt) (&current_target, ptid);
3419 }
3420
3421 /* See target.h. */
3422
3423 void
3424 target_pass_ctrlc (void)
3425 {
3426 (*current_target.to_pass_ctrlc) (&current_target);
3427 }
3428
3429 /* See target.h. */
3430
3431 void
3432 default_target_pass_ctrlc (struct target_ops *ops)
3433 {
3434 target_interrupt (inferior_ptid);
3435 }
3436
3437 /* See target/target.h. */
3438
3439 void
3440 target_stop_and_wait (ptid_t ptid)
3441 {
3442 struct target_waitstatus status;
3443 int was_non_stop = non_stop;
3444
3445 non_stop = 1;
3446 target_stop (ptid);
3447
3448 memset (&status, 0, sizeof (status));
3449 target_wait (ptid, &status, 0);
3450
3451 non_stop = was_non_stop;
3452 }
3453
3454 /* See target/target.h. */
3455
3456 void
3457 target_continue_no_signal (ptid_t ptid)
3458 {
3459 target_resume (ptid, 0, GDB_SIGNAL_0);
3460 }
3461
3462 /* Concatenate ELEM to LIST, a comma separate list, and return the
3463 result. The LIST incoming argument is released. */
3464
3465 static char *
3466 str_comma_list_concat_elem (char *list, const char *elem)
3467 {
3468 if (list == NULL)
3469 return xstrdup (elem);
3470 else
3471 return reconcat (list, list, ", ", elem, (char *) NULL);
3472 }
3473
3474 /* Helper for target_options_to_string. If OPT is present in
3475 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3476 Returns the new resulting string. OPT is removed from
3477 TARGET_OPTIONS. */
3478
3479 static char *
3480 do_option (int *target_options, char *ret,
3481 int opt, char *opt_str)
3482 {
3483 if ((*target_options & opt) != 0)
3484 {
3485 ret = str_comma_list_concat_elem (ret, opt_str);
3486 *target_options &= ~opt;
3487 }
3488
3489 return ret;
3490 }
3491
3492 char *
3493 target_options_to_string (int target_options)
3494 {
3495 char *ret = NULL;
3496
3497 #define DO_TARG_OPTION(OPT) \
3498 ret = do_option (&target_options, ret, OPT, #OPT)
3499
3500 DO_TARG_OPTION (TARGET_WNOHANG);
3501
3502 if (target_options != 0)
3503 ret = str_comma_list_concat_elem (ret, "unknown???");
3504
3505 if (ret == NULL)
3506 ret = xstrdup ("");
3507 return ret;
3508 }
3509
3510 static void
3511 debug_print_register (const char * func,
3512 struct regcache *regcache, int regno)
3513 {
3514 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3515
3516 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3517 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3518 && gdbarch_register_name (gdbarch, regno) != NULL
3519 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3520 fprintf_unfiltered (gdb_stdlog, "(%s)",
3521 gdbarch_register_name (gdbarch, regno));
3522 else
3523 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3524 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3525 {
3526 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3527 int i, size = register_size (gdbarch, regno);
3528 gdb_byte buf[MAX_REGISTER_SIZE];
3529
3530 regcache_raw_collect (regcache, regno, buf);
3531 fprintf_unfiltered (gdb_stdlog, " = ");
3532 for (i = 0; i < size; i++)
3533 {
3534 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3535 }
3536 if (size <= sizeof (LONGEST))
3537 {
3538 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3539
3540 fprintf_unfiltered (gdb_stdlog, " %s %s",
3541 core_addr_to_string_nz (val), plongest (val));
3542 }
3543 }
3544 fprintf_unfiltered (gdb_stdlog, "\n");
3545 }
3546
3547 void
3548 target_fetch_registers (struct regcache *regcache, int regno)
3549 {
3550 current_target.to_fetch_registers (&current_target, regcache, regno);
3551 if (targetdebug)
3552 debug_print_register ("target_fetch_registers", regcache, regno);
3553 }
3554
3555 void
3556 target_store_registers (struct regcache *regcache, int regno)
3557 {
3558 if (!may_write_registers)
3559 error (_("Writing to registers is not allowed (regno %d)"), regno);
3560
3561 current_target.to_store_registers (&current_target, regcache, regno);
3562 if (targetdebug)
3563 {
3564 debug_print_register ("target_store_registers", regcache, regno);
3565 }
3566 }
3567
3568 int
3569 target_core_of_thread (ptid_t ptid)
3570 {
3571 return current_target.to_core_of_thread (&current_target, ptid);
3572 }
3573
3574 int
3575 simple_verify_memory (struct target_ops *ops,
3576 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3577 {
3578 LONGEST total_xfered = 0;
3579
3580 while (total_xfered < size)
3581 {
3582 ULONGEST xfered_len;
3583 enum target_xfer_status status;
3584 gdb_byte buf[1024];
3585 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3586
3587 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3588 buf, NULL, lma + total_xfered, howmuch,
3589 &xfered_len);
3590 if (status == TARGET_XFER_OK
3591 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3592 {
3593 total_xfered += xfered_len;
3594 QUIT;
3595 }
3596 else
3597 return 0;
3598 }
3599 return 1;
3600 }
3601
3602 /* Default implementation of memory verification. */
3603
3604 static int
3605 default_verify_memory (struct target_ops *self,
3606 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3607 {
3608 /* Start over from the top of the target stack. */
3609 return simple_verify_memory (current_target.beneath,
3610 data, memaddr, size);
3611 }
3612
3613 int
3614 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3615 {
3616 return current_target.to_verify_memory (&current_target,
3617 data, memaddr, size);
3618 }
3619
3620 /* The documentation for this function is in its prototype declaration in
3621 target.h. */
3622
3623 int
3624 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3625 enum target_hw_bp_type rw)
3626 {
3627 return current_target.to_insert_mask_watchpoint (&current_target,
3628 addr, mask, rw);
3629 }
3630
3631 /* The documentation for this function is in its prototype declaration in
3632 target.h. */
3633
3634 int
3635 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3636 enum target_hw_bp_type rw)
3637 {
3638 return current_target.to_remove_mask_watchpoint (&current_target,
3639 addr, mask, rw);
3640 }
3641
3642 /* The documentation for this function is in its prototype declaration
3643 in target.h. */
3644
3645 int
3646 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3647 {
3648 return current_target.to_masked_watch_num_registers (&current_target,
3649 addr, mask);
3650 }
3651
3652 /* The documentation for this function is in its prototype declaration
3653 in target.h. */
3654
3655 int
3656 target_ranged_break_num_registers (void)
3657 {
3658 return current_target.to_ranged_break_num_registers (&current_target);
3659 }
3660
3661 /* See target.h. */
3662
3663 int
3664 target_supports_btrace (enum btrace_format format)
3665 {
3666 return current_target.to_supports_btrace (&current_target, format);
3667 }
3668
3669 /* See target.h. */
3670
3671 struct btrace_target_info *
3672 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3673 {
3674 return current_target.to_enable_btrace (&current_target, ptid, conf);
3675 }
3676
3677 /* See target.h. */
3678
3679 void
3680 target_disable_btrace (struct btrace_target_info *btinfo)
3681 {
3682 current_target.to_disable_btrace (&current_target, btinfo);
3683 }
3684
3685 /* See target.h. */
3686
3687 void
3688 target_teardown_btrace (struct btrace_target_info *btinfo)
3689 {
3690 current_target.to_teardown_btrace (&current_target, btinfo);
3691 }
3692
3693 /* See target.h. */
3694
3695 enum btrace_error
3696 target_read_btrace (struct btrace_data *btrace,
3697 struct btrace_target_info *btinfo,
3698 enum btrace_read_type type)
3699 {
3700 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3701 }
3702
3703 /* See target.h. */
3704
3705 const struct btrace_config *
3706 target_btrace_conf (const struct btrace_target_info *btinfo)
3707 {
3708 return current_target.to_btrace_conf (&current_target, btinfo);
3709 }
3710
3711 /* See target.h. */
3712
3713 void
3714 target_stop_recording (void)
3715 {
3716 current_target.to_stop_recording (&current_target);
3717 }
3718
3719 /* See target.h. */
3720
3721 void
3722 target_save_record (const char *filename)
3723 {
3724 current_target.to_save_record (&current_target, filename);
3725 }
3726
3727 /* See target.h. */
3728
3729 int
3730 target_supports_delete_record (void)
3731 {
3732 struct target_ops *t;
3733
3734 for (t = current_target.beneath; t != NULL; t = t->beneath)
3735 if (t->to_delete_record != delegate_delete_record
3736 && t->to_delete_record != tdefault_delete_record)
3737 return 1;
3738
3739 return 0;
3740 }
3741
3742 /* See target.h. */
3743
3744 void
3745 target_delete_record (void)
3746 {
3747 current_target.to_delete_record (&current_target);
3748 }
3749
3750 /* See target.h. */
3751
3752 int
3753 target_record_is_replaying (ptid_t ptid)
3754 {
3755 return current_target.to_record_is_replaying (&current_target, ptid);
3756 }
3757
3758 /* See target.h. */
3759
3760 int
3761 target_record_will_replay (ptid_t ptid, int dir)
3762 {
3763 return current_target.to_record_will_replay (&current_target, ptid, dir);
3764 }
3765
3766 /* See target.h. */
3767
3768 void
3769 target_record_stop_replaying (void)
3770 {
3771 current_target.to_record_stop_replaying (&current_target);
3772 }
3773
3774 /* See target.h. */
3775
3776 void
3777 target_goto_record_begin (void)
3778 {
3779 current_target.to_goto_record_begin (&current_target);
3780 }
3781
3782 /* See target.h. */
3783
3784 void
3785 target_goto_record_end (void)
3786 {
3787 current_target.to_goto_record_end (&current_target);
3788 }
3789
3790 /* See target.h. */
3791
3792 void
3793 target_goto_record (ULONGEST insn)
3794 {
3795 current_target.to_goto_record (&current_target, insn);
3796 }
3797
3798 /* See target.h. */
3799
3800 void
3801 target_insn_history (int size, int flags)
3802 {
3803 current_target.to_insn_history (&current_target, size, flags);
3804 }
3805
3806 /* See target.h. */
3807
3808 void
3809 target_insn_history_from (ULONGEST from, int size, int flags)
3810 {
3811 current_target.to_insn_history_from (&current_target, from, size, flags);
3812 }
3813
3814 /* See target.h. */
3815
3816 void
3817 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3818 {
3819 current_target.to_insn_history_range (&current_target, begin, end, flags);
3820 }
3821
3822 /* See target.h. */
3823
3824 void
3825 target_call_history (int size, int flags)
3826 {
3827 current_target.to_call_history (&current_target, size, flags);
3828 }
3829
3830 /* See target.h. */
3831
3832 void
3833 target_call_history_from (ULONGEST begin, int size, int flags)
3834 {
3835 current_target.to_call_history_from (&current_target, begin, size, flags);
3836 }
3837
3838 /* See target.h. */
3839
3840 void
3841 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3842 {
3843 current_target.to_call_history_range (&current_target, begin, end, flags);
3844 }
3845
3846 /* See target.h. */
3847
3848 const struct frame_unwind *
3849 target_get_unwinder (void)
3850 {
3851 return current_target.to_get_unwinder (&current_target);
3852 }
3853
3854 /* See target.h. */
3855
3856 const struct frame_unwind *
3857 target_get_tailcall_unwinder (void)
3858 {
3859 return current_target.to_get_tailcall_unwinder (&current_target);
3860 }
3861
3862 /* See target.h. */
3863
3864 void
3865 target_prepare_to_generate_core (void)
3866 {
3867 current_target.to_prepare_to_generate_core (&current_target);
3868 }
3869
3870 /* See target.h. */
3871
3872 void
3873 target_done_generating_core (void)
3874 {
3875 current_target.to_done_generating_core (&current_target);
3876 }
3877
3878 static void
3879 setup_target_debug (void)
3880 {
3881 memcpy (&debug_target, &current_target, sizeof debug_target);
3882
3883 init_debug_target (&current_target);
3884 }
3885 \f
3886
3887 static char targ_desc[] =
3888 "Names of targets and files being debugged.\nShows the entire \
3889 stack of targets currently in use (including the exec-file,\n\
3890 core-file, and process, if any), as well as the symbol file name.";
3891
3892 static void
3893 default_rcmd (struct target_ops *self, const char *command,
3894 struct ui_file *output)
3895 {
3896 error (_("\"monitor\" command not supported by this target."));
3897 }
3898
3899 static void
3900 do_monitor_command (char *cmd,
3901 int from_tty)
3902 {
3903 target_rcmd (cmd, gdb_stdtarg);
3904 }
3905
3906 /* Print the name of each layers of our target stack. */
3907
3908 static void
3909 maintenance_print_target_stack (char *cmd, int from_tty)
3910 {
3911 struct target_ops *t;
3912
3913 printf_filtered (_("The current target stack is:\n"));
3914
3915 for (t = target_stack; t != NULL; t = t->beneath)
3916 {
3917 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3918 }
3919 }
3920
3921 /* See target.h. */
3922
3923 void
3924 target_async (int enable)
3925 {
3926 infrun_async (enable);
3927 current_target.to_async (&current_target, enable);
3928 }
3929
3930 /* See target.h. */
3931
3932 void
3933 target_thread_events (int enable)
3934 {
3935 current_target.to_thread_events (&current_target, enable);
3936 }
3937
3938 /* Controls if targets can report that they can/are async. This is
3939 just for maintainers to use when debugging gdb. */
3940 int target_async_permitted = 1;
3941
3942 /* The set command writes to this variable. If the inferior is
3943 executing, target_async_permitted is *not* updated. */
3944 static int target_async_permitted_1 = 1;
3945
3946 static void
3947 maint_set_target_async_command (char *args, int from_tty,
3948 struct cmd_list_element *c)
3949 {
3950 if (have_live_inferiors ())
3951 {
3952 target_async_permitted_1 = target_async_permitted;
3953 error (_("Cannot change this setting while the inferior is running."));
3954 }
3955
3956 target_async_permitted = target_async_permitted_1;
3957 }
3958
3959 static void
3960 maint_show_target_async_command (struct ui_file *file, int from_tty,
3961 struct cmd_list_element *c,
3962 const char *value)
3963 {
3964 fprintf_filtered (file,
3965 _("Controlling the inferior in "
3966 "asynchronous mode is %s.\n"), value);
3967 }
3968
3969 /* Return true if the target operates in non-stop mode even with "set
3970 non-stop off". */
3971
3972 static int
3973 target_always_non_stop_p (void)
3974 {
3975 return current_target.to_always_non_stop_p (&current_target);
3976 }
3977
3978 /* See target.h. */
3979
3980 int
3981 target_is_non_stop_p (void)
3982 {
3983 return (non_stop
3984 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3985 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3986 && target_always_non_stop_p ()));
3987 }
3988
3989 /* Controls if targets can report that they always run in non-stop
3990 mode. This is just for maintainers to use when debugging gdb. */
3991 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3992
3993 /* The set command writes to this variable. If the inferior is
3994 executing, target_non_stop_enabled is *not* updated. */
3995 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3996
3997 /* Implementation of "maint set target-non-stop". */
3998
3999 static void
4000 maint_set_target_non_stop_command (char *args, int from_tty,
4001 struct cmd_list_element *c)
4002 {
4003 if (have_live_inferiors ())
4004 {
4005 target_non_stop_enabled_1 = target_non_stop_enabled;
4006 error (_("Cannot change this setting while the inferior is running."));
4007 }
4008
4009 target_non_stop_enabled = target_non_stop_enabled_1;
4010 }
4011
4012 /* Implementation of "maint show target-non-stop". */
4013
4014 static void
4015 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
4016 struct cmd_list_element *c,
4017 const char *value)
4018 {
4019 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4020 fprintf_filtered (file,
4021 _("Whether the target is always in non-stop mode "
4022 "is %s (currently %s).\n"), value,
4023 target_always_non_stop_p () ? "on" : "off");
4024 else
4025 fprintf_filtered (file,
4026 _("Whether the target is always in non-stop mode "
4027 "is %s.\n"), value);
4028 }
4029
4030 /* Temporary copies of permission settings. */
4031
4032 static int may_write_registers_1 = 1;
4033 static int may_write_memory_1 = 1;
4034 static int may_insert_breakpoints_1 = 1;
4035 static int may_insert_tracepoints_1 = 1;
4036 static int may_insert_fast_tracepoints_1 = 1;
4037 static int may_stop_1 = 1;
4038
4039 /* Make the user-set values match the real values again. */
4040
4041 void
4042 update_target_permissions (void)
4043 {
4044 may_write_registers_1 = may_write_registers;
4045 may_write_memory_1 = may_write_memory;
4046 may_insert_breakpoints_1 = may_insert_breakpoints;
4047 may_insert_tracepoints_1 = may_insert_tracepoints;
4048 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4049 may_stop_1 = may_stop;
4050 }
4051
4052 /* The one function handles (most of) the permission flags in the same
4053 way. */
4054
4055 static void
4056 set_target_permissions (char *args, int from_tty,
4057 struct cmd_list_element *c)
4058 {
4059 if (target_has_execution)
4060 {
4061 update_target_permissions ();
4062 error (_("Cannot change this setting while the inferior is running."));
4063 }
4064
4065 /* Make the real values match the user-changed values. */
4066 may_write_registers = may_write_registers_1;
4067 may_insert_breakpoints = may_insert_breakpoints_1;
4068 may_insert_tracepoints = may_insert_tracepoints_1;
4069 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4070 may_stop = may_stop_1;
4071 update_observer_mode ();
4072 }
4073
4074 /* Set memory write permission independently of observer mode. */
4075
4076 static void
4077 set_write_memory_permission (char *args, int from_tty,
4078 struct cmd_list_element *c)
4079 {
4080 /* Make the real values match the user-changed values. */
4081 may_write_memory = may_write_memory_1;
4082 update_observer_mode ();
4083 }
4084
4085
4086 void
4087 initialize_targets (void)
4088 {
4089 init_dummy_target ();
4090 push_target (&dummy_target);
4091
4092 add_info ("target", target_info, targ_desc);
4093 add_info ("files", target_info, targ_desc);
4094
4095 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4096 Set target debugging."), _("\
4097 Show target debugging."), _("\
4098 When non-zero, target debugging is enabled. Higher numbers are more\n\
4099 verbose."),
4100 set_targetdebug,
4101 show_targetdebug,
4102 &setdebuglist, &showdebuglist);
4103
4104 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4105 &trust_readonly, _("\
4106 Set mode for reading from readonly sections."), _("\
4107 Show mode for reading from readonly sections."), _("\
4108 When this mode is on, memory reads from readonly sections (such as .text)\n\
4109 will be read from the object file instead of from the target. This will\n\
4110 result in significant performance improvement for remote targets."),
4111 NULL,
4112 show_trust_readonly,
4113 &setlist, &showlist);
4114
4115 add_com ("monitor", class_obscure, do_monitor_command,
4116 _("Send a command to the remote monitor (remote targets only)."));
4117
4118 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4119 _("Print the name of each layer of the internal target stack."),
4120 &maintenanceprintlist);
4121
4122 add_setshow_boolean_cmd ("target-async", no_class,
4123 &target_async_permitted_1, _("\
4124 Set whether gdb controls the inferior in asynchronous mode."), _("\
4125 Show whether gdb controls the inferior in asynchronous mode."), _("\
4126 Tells gdb whether to control the inferior in asynchronous mode."),
4127 maint_set_target_async_command,
4128 maint_show_target_async_command,
4129 &maintenance_set_cmdlist,
4130 &maintenance_show_cmdlist);
4131
4132 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4133 &target_non_stop_enabled_1, _("\
4134 Set whether gdb always controls the inferior in non-stop mode."), _("\
4135 Show whether gdb always controls the inferior in non-stop mode."), _("\
4136 Tells gdb whether to control the inferior in non-stop mode."),
4137 maint_set_target_non_stop_command,
4138 maint_show_target_non_stop_command,
4139 &maintenance_set_cmdlist,
4140 &maintenance_show_cmdlist);
4141
4142 add_setshow_boolean_cmd ("may-write-registers", class_support,
4143 &may_write_registers_1, _("\
4144 Set permission to write into registers."), _("\
4145 Show permission to write into registers."), _("\
4146 When this permission is on, GDB may write into the target's registers.\n\
4147 Otherwise, any sort of write attempt will result in an error."),
4148 set_target_permissions, NULL,
4149 &setlist, &showlist);
4150
4151 add_setshow_boolean_cmd ("may-write-memory", class_support,
4152 &may_write_memory_1, _("\
4153 Set permission to write into target memory."), _("\
4154 Show permission to write into target memory."), _("\
4155 When this permission is on, GDB may write into the target's memory.\n\
4156 Otherwise, any sort of write attempt will result in an error."),
4157 set_write_memory_permission, NULL,
4158 &setlist, &showlist);
4159
4160 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4161 &may_insert_breakpoints_1, _("\
4162 Set permission to insert breakpoints in the target."), _("\
4163 Show permission to insert breakpoints in the target."), _("\
4164 When this permission is on, GDB may insert breakpoints in the program.\n\
4165 Otherwise, any sort of insertion attempt will result in an error."),
4166 set_target_permissions, NULL,
4167 &setlist, &showlist);
4168
4169 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4170 &may_insert_tracepoints_1, _("\
4171 Set permission to insert tracepoints in the target."), _("\
4172 Show permission to insert tracepoints in the target."), _("\
4173 When this permission is on, GDB may insert tracepoints in the program.\n\
4174 Otherwise, any sort of insertion attempt will result in an error."),
4175 set_target_permissions, NULL,
4176 &setlist, &showlist);
4177
4178 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4179 &may_insert_fast_tracepoints_1, _("\
4180 Set permission to insert fast tracepoints in the target."), _("\
4181 Show permission to insert fast tracepoints in the target."), _("\
4182 When this permission is on, GDB may insert fast tracepoints.\n\
4183 Otherwise, any sort of insertion attempt will result in an error."),
4184 set_target_permissions, NULL,
4185 &setlist, &showlist);
4186
4187 add_setshow_boolean_cmd ("may-interrupt", class_support,
4188 &may_stop_1, _("\
4189 Set permission to interrupt or signal the target."), _("\
4190 Show permission to interrupt or signal the target."), _("\
4191 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4192 Otherwise, any attempt to interrupt or stop will be ignored."),
4193 set_target_permissions, NULL,
4194 &setlist, &showlist);
4195
4196 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4197 &auto_connect_native_target, _("\
4198 Set whether GDB may automatically connect to the native target."), _("\
4199 Show whether GDB may automatically connect to the native target."), _("\
4200 When on, and GDB is not connected to a target yet, GDB\n\
4201 attempts \"run\" and other commands with the native target."),
4202 NULL, show_auto_connect_native_target,
4203 &setlist, &showlist);
4204 }
This page took 0.118362 seconds and 4 git commands to generate.