Plug target side conditions and commands leaks.
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (const char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static void tcomplain (void) ATTRIBUTE_NORETURN;
58
59 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
60
61 static int return_zero (void);
62
63 static int return_one (void);
64
65 static int return_minus_one (void);
66
67 void target_ignore (void);
68
69 static void target_command (char *, int);
70
71 static struct target_ops *find_default_run_target (char *);
72
73 static LONGEST default_xfer_partial (struct target_ops *ops,
74 enum target_object object,
75 const char *annex, gdb_byte *readbuf,
76 const gdb_byte *writebuf,
77 ULONGEST offset, LONGEST len);
78
79 static LONGEST current_xfer_partial (struct target_ops *ops,
80 enum target_object object,
81 const char *annex, gdb_byte *readbuf,
82 const gdb_byte *writebuf,
83 ULONGEST offset, LONGEST len);
84
85 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
86 ptid_t ptid);
87
88 static void init_dummy_target (void);
89
90 static struct target_ops debug_target;
91
92 static void debug_to_open (char *, int);
93
94 static void debug_to_prepare_to_store (struct regcache *);
95
96 static void debug_to_files_info (struct target_ops *);
97
98 static int debug_to_insert_breakpoint (struct gdbarch *,
99 struct bp_target_info *);
100
101 static int debug_to_remove_breakpoint (struct gdbarch *,
102 struct bp_target_info *);
103
104 static int debug_to_can_use_hw_breakpoint (int, int, int);
105
106 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
110 struct bp_target_info *);
111
112 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
113 struct expression *);
114
115 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
116 struct expression *);
117
118 static int debug_to_stopped_by_watchpoint (void);
119
120 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
121
122 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
123 CORE_ADDR, CORE_ADDR, int);
124
125 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
126
127 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
128 struct expression *);
129
130 static void debug_to_terminal_init (void);
131
132 static void debug_to_terminal_inferior (void);
133
134 static void debug_to_terminal_ours_for_output (void);
135
136 static void debug_to_terminal_save_ours (void);
137
138 static void debug_to_terminal_ours (void);
139
140 static void debug_to_load (char *, int);
141
142 static int debug_to_can_run (void);
143
144 static void debug_to_stop (ptid_t);
145
146 /* Pointer to array of target architecture structures; the size of the
147 array; the current index into the array; the allocated size of the
148 array. */
149 struct target_ops **target_structs;
150 unsigned target_struct_size;
151 unsigned target_struct_allocsize;
152 #define DEFAULT_ALLOCSIZE 10
153
154 /* The initial current target, so that there is always a semi-valid
155 current target. */
156
157 static struct target_ops dummy_target;
158
159 /* Top of target stack. */
160
161 static struct target_ops *target_stack;
162
163 /* The target structure we are currently using to talk to a process
164 or file or whatever "inferior" we have. */
165
166 struct target_ops current_target;
167
168 /* Command list for target. */
169
170 static struct cmd_list_element *targetlist = NULL;
171
172 /* Nonzero if we should trust readonly sections from the
173 executable when reading memory. */
174
175 static int trust_readonly = 0;
176
177 /* Nonzero if we should show true memory content including
178 memory breakpoint inserted by gdb. */
179
180 static int show_memory_breakpoints = 0;
181
182 /* These globals control whether GDB attempts to perform these
183 operations; they are useful for targets that need to prevent
184 inadvertant disruption, such as in non-stop mode. */
185
186 int may_write_registers = 1;
187
188 int may_write_memory = 1;
189
190 int may_insert_breakpoints = 1;
191
192 int may_insert_tracepoints = 1;
193
194 int may_insert_fast_tracepoints = 1;
195
196 int may_stop = 1;
197
198 /* Non-zero if we want to see trace of target level stuff. */
199
200 static unsigned int targetdebug = 0;
201 static void
202 show_targetdebug (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
206 }
207
208 static void setup_target_debug (void);
209
210 /* The user just typed 'target' without the name of a target. */
211
212 static void
213 target_command (char *arg, int from_tty)
214 {
215 fputs_filtered ("Argument required (target name). Try `help target'\n",
216 gdb_stdout);
217 }
218
219 /* Default target_has_* methods for process_stratum targets. */
220
221 int
222 default_child_has_all_memory (struct target_ops *ops)
223 {
224 /* If no inferior selected, then we can't read memory here. */
225 if (ptid_equal (inferior_ptid, null_ptid))
226 return 0;
227
228 return 1;
229 }
230
231 int
232 default_child_has_memory (struct target_ops *ops)
233 {
234 /* If no inferior selected, then we can't read memory here. */
235 if (ptid_equal (inferior_ptid, null_ptid))
236 return 0;
237
238 return 1;
239 }
240
241 int
242 default_child_has_stack (struct target_ops *ops)
243 {
244 /* If no inferior selected, there's no stack. */
245 if (ptid_equal (inferior_ptid, null_ptid))
246 return 0;
247
248 return 1;
249 }
250
251 int
252 default_child_has_registers (struct target_ops *ops)
253 {
254 /* Can't read registers from no inferior. */
255 if (ptid_equal (inferior_ptid, null_ptid))
256 return 0;
257
258 return 1;
259 }
260
261 int
262 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
263 {
264 /* If there's no thread selected, then we can't make it run through
265 hoops. */
266 if (ptid_equal (the_ptid, null_ptid))
267 return 0;
268
269 return 1;
270 }
271
272
273 int
274 target_has_all_memory_1 (void)
275 {
276 struct target_ops *t;
277
278 for (t = current_target.beneath; t != NULL; t = t->beneath)
279 if (t->to_has_all_memory (t))
280 return 1;
281
282 return 0;
283 }
284
285 int
286 target_has_memory_1 (void)
287 {
288 struct target_ops *t;
289
290 for (t = current_target.beneath; t != NULL; t = t->beneath)
291 if (t->to_has_memory (t))
292 return 1;
293
294 return 0;
295 }
296
297 int
298 target_has_stack_1 (void)
299 {
300 struct target_ops *t;
301
302 for (t = current_target.beneath; t != NULL; t = t->beneath)
303 if (t->to_has_stack (t))
304 return 1;
305
306 return 0;
307 }
308
309 int
310 target_has_registers_1 (void)
311 {
312 struct target_ops *t;
313
314 for (t = current_target.beneath; t != NULL; t = t->beneath)
315 if (t->to_has_registers (t))
316 return 1;
317
318 return 0;
319 }
320
321 int
322 target_has_execution_1 (ptid_t the_ptid)
323 {
324 struct target_ops *t;
325
326 for (t = current_target.beneath; t != NULL; t = t->beneath)
327 if (t->to_has_execution (t, the_ptid))
328 return 1;
329
330 return 0;
331 }
332
333 int
334 target_has_execution_current (void)
335 {
336 return target_has_execution_1 (inferior_ptid);
337 }
338
339 /* Complete initialization of T. This ensures that various fields in
340 T are set, if needed by the target implementation. */
341
342 void
343 complete_target_initialization (struct target_ops *t)
344 {
345 /* Provide default values for all "must have" methods. */
346 if (t->to_xfer_partial == NULL)
347 t->to_xfer_partial = default_xfer_partial;
348
349 if (t->to_has_all_memory == NULL)
350 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
351
352 if (t->to_has_memory == NULL)
353 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
354
355 if (t->to_has_stack == NULL)
356 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
357
358 if (t->to_has_registers == NULL)
359 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
360
361 if (t->to_has_execution == NULL)
362 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
363 }
364
365 /* Add possible target architecture T to the list and add a new
366 command 'target T->to_shortname'. Set COMPLETER as the command's
367 completer if not NULL. */
368
369 void
370 add_target_with_completer (struct target_ops *t,
371 completer_ftype *completer)
372 {
373 struct cmd_list_element *c;
374
375 complete_target_initialization (t);
376
377 if (!target_structs)
378 {
379 target_struct_allocsize = DEFAULT_ALLOCSIZE;
380 target_structs = (struct target_ops **) xmalloc
381 (target_struct_allocsize * sizeof (*target_structs));
382 }
383 if (target_struct_size >= target_struct_allocsize)
384 {
385 target_struct_allocsize *= 2;
386 target_structs = (struct target_ops **)
387 xrealloc ((char *) target_structs,
388 target_struct_allocsize * sizeof (*target_structs));
389 }
390 target_structs[target_struct_size++] = t;
391
392 if (targetlist == NULL)
393 add_prefix_cmd ("target", class_run, target_command, _("\
394 Connect to a target machine or process.\n\
395 The first argument is the type or protocol of the target machine.\n\
396 Remaining arguments are interpreted by the target protocol. For more\n\
397 information on the arguments for a particular protocol, type\n\
398 `help target ' followed by the protocol name."),
399 &targetlist, "target ", 0, &cmdlist);
400 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
401 &targetlist);
402 if (completer != NULL)
403 set_cmd_completer (c, completer);
404 }
405
406 /* Add a possible target architecture to the list. */
407
408 void
409 add_target (struct target_ops *t)
410 {
411 add_target_with_completer (t, NULL);
412 }
413
414 /* See target.h. */
415
416 void
417 add_deprecated_target_alias (struct target_ops *t, char *alias)
418 {
419 struct cmd_list_element *c;
420 char *alt;
421
422 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
423 see PR cli/15104. */
424 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
425 alt = xstrprintf ("target %s", t->to_shortname);
426 deprecate_cmd (c, alt);
427 }
428
429 /* Stub functions */
430
431 void
432 target_ignore (void)
433 {
434 }
435
436 void
437 target_kill (void)
438 {
439 struct target_ops *t;
440
441 for (t = current_target.beneath; t != NULL; t = t->beneath)
442 if (t->to_kill != NULL)
443 {
444 if (targetdebug)
445 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
446
447 t->to_kill (t);
448 return;
449 }
450
451 noprocess ();
452 }
453
454 void
455 target_load (char *arg, int from_tty)
456 {
457 target_dcache_invalidate ();
458 (*current_target.to_load) (arg, from_tty);
459 }
460
461 void
462 target_create_inferior (char *exec_file, char *args,
463 char **env, int from_tty)
464 {
465 struct target_ops *t;
466
467 for (t = current_target.beneath; t != NULL; t = t->beneath)
468 {
469 if (t->to_create_inferior != NULL)
470 {
471 t->to_create_inferior (t, exec_file, args, env, from_tty);
472 if (targetdebug)
473 fprintf_unfiltered (gdb_stdlog,
474 "target_create_inferior (%s, %s, xxx, %d)\n",
475 exec_file, args, from_tty);
476 return;
477 }
478 }
479
480 internal_error (__FILE__, __LINE__,
481 _("could not find a target to create inferior"));
482 }
483
484 void
485 target_terminal_inferior (void)
486 {
487 /* A background resume (``run&'') should leave GDB in control of the
488 terminal. Use target_can_async_p, not target_is_async_p, since at
489 this point the target is not async yet. However, if sync_execution
490 is not set, we know it will become async prior to resume. */
491 if (target_can_async_p () && !sync_execution)
492 return;
493
494 /* If GDB is resuming the inferior in the foreground, install
495 inferior's terminal modes. */
496 (*current_target.to_terminal_inferior) ();
497 }
498
499 static int
500 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
501 struct target_ops *t)
502 {
503 errno = EIO; /* Can't read/write this location. */
504 return 0; /* No bytes handled. */
505 }
506
507 static void
508 tcomplain (void)
509 {
510 error (_("You can't do that when your target is `%s'"),
511 current_target.to_shortname);
512 }
513
514 void
515 noprocess (void)
516 {
517 error (_("You can't do that without a process to debug."));
518 }
519
520 static void
521 default_terminal_info (const char *args, int from_tty)
522 {
523 printf_unfiltered (_("No saved terminal information.\n"));
524 }
525
526 /* A default implementation for the to_get_ada_task_ptid target method.
527
528 This function builds the PTID by using both LWP and TID as part of
529 the PTID lwp and tid elements. The pid used is the pid of the
530 inferior_ptid. */
531
532 static ptid_t
533 default_get_ada_task_ptid (long lwp, long tid)
534 {
535 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
536 }
537
538 static enum exec_direction_kind
539 default_execution_direction (void)
540 {
541 if (!target_can_execute_reverse)
542 return EXEC_FORWARD;
543 else if (!target_can_async_p ())
544 return EXEC_FORWARD;
545 else
546 gdb_assert_not_reached ("\
547 to_execution_direction must be implemented for reverse async");
548 }
549
550 /* Go through the target stack from top to bottom, copying over zero
551 entries in current_target, then filling in still empty entries. In
552 effect, we are doing class inheritance through the pushed target
553 vectors.
554
555 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
556 is currently implemented, is that it discards any knowledge of
557 which target an inherited method originally belonged to.
558 Consequently, new new target methods should instead explicitly and
559 locally search the target stack for the target that can handle the
560 request. */
561
562 static void
563 update_current_target (void)
564 {
565 struct target_ops *t;
566
567 /* First, reset current's contents. */
568 memset (&current_target, 0, sizeof (current_target));
569
570 #define INHERIT(FIELD, TARGET) \
571 if (!current_target.FIELD) \
572 current_target.FIELD = (TARGET)->FIELD
573
574 for (t = target_stack; t; t = t->beneath)
575 {
576 INHERIT (to_shortname, t);
577 INHERIT (to_longname, t);
578 INHERIT (to_doc, t);
579 /* Do not inherit to_open. */
580 /* Do not inherit to_close. */
581 /* Do not inherit to_attach. */
582 INHERIT (to_post_attach, t);
583 INHERIT (to_attach_no_wait, t);
584 /* Do not inherit to_detach. */
585 /* Do not inherit to_disconnect. */
586 /* Do not inherit to_resume. */
587 /* Do not inherit to_wait. */
588 /* Do not inherit to_fetch_registers. */
589 /* Do not inherit to_store_registers. */
590 INHERIT (to_prepare_to_store, t);
591 INHERIT (deprecated_xfer_memory, t);
592 INHERIT (to_files_info, t);
593 INHERIT (to_insert_breakpoint, t);
594 INHERIT (to_remove_breakpoint, t);
595 INHERIT (to_can_use_hw_breakpoint, t);
596 INHERIT (to_insert_hw_breakpoint, t);
597 INHERIT (to_remove_hw_breakpoint, t);
598 /* Do not inherit to_ranged_break_num_registers. */
599 INHERIT (to_insert_watchpoint, t);
600 INHERIT (to_remove_watchpoint, t);
601 /* Do not inherit to_insert_mask_watchpoint. */
602 /* Do not inherit to_remove_mask_watchpoint. */
603 INHERIT (to_stopped_data_address, t);
604 INHERIT (to_have_steppable_watchpoint, t);
605 INHERIT (to_have_continuable_watchpoint, t);
606 INHERIT (to_stopped_by_watchpoint, t);
607 INHERIT (to_watchpoint_addr_within_range, t);
608 INHERIT (to_region_ok_for_hw_watchpoint, t);
609 INHERIT (to_can_accel_watchpoint_condition, t);
610 /* Do not inherit to_masked_watch_num_registers. */
611 INHERIT (to_terminal_init, t);
612 INHERIT (to_terminal_inferior, t);
613 INHERIT (to_terminal_ours_for_output, t);
614 INHERIT (to_terminal_ours, t);
615 INHERIT (to_terminal_save_ours, t);
616 INHERIT (to_terminal_info, t);
617 /* Do not inherit to_kill. */
618 INHERIT (to_load, t);
619 /* Do no inherit to_create_inferior. */
620 INHERIT (to_post_startup_inferior, t);
621 INHERIT (to_insert_fork_catchpoint, t);
622 INHERIT (to_remove_fork_catchpoint, t);
623 INHERIT (to_insert_vfork_catchpoint, t);
624 INHERIT (to_remove_vfork_catchpoint, t);
625 /* Do not inherit to_follow_fork. */
626 INHERIT (to_insert_exec_catchpoint, t);
627 INHERIT (to_remove_exec_catchpoint, t);
628 INHERIT (to_set_syscall_catchpoint, t);
629 INHERIT (to_has_exited, t);
630 /* Do not inherit to_mourn_inferior. */
631 INHERIT (to_can_run, t);
632 /* Do not inherit to_pass_signals. */
633 /* Do not inherit to_program_signals. */
634 /* Do not inherit to_thread_alive. */
635 /* Do not inherit to_find_new_threads. */
636 /* Do not inherit to_pid_to_str. */
637 INHERIT (to_extra_thread_info, t);
638 INHERIT (to_thread_name, t);
639 INHERIT (to_stop, t);
640 /* Do not inherit to_xfer_partial. */
641 INHERIT (to_rcmd, t);
642 INHERIT (to_pid_to_exec_file, t);
643 INHERIT (to_log_command, t);
644 INHERIT (to_stratum, t);
645 /* Do not inherit to_has_all_memory. */
646 /* Do not inherit to_has_memory. */
647 /* Do not inherit to_has_stack. */
648 /* Do not inherit to_has_registers. */
649 /* Do not inherit to_has_execution. */
650 INHERIT (to_has_thread_control, t);
651 INHERIT (to_can_async_p, t);
652 INHERIT (to_is_async_p, t);
653 INHERIT (to_async, t);
654 INHERIT (to_find_memory_regions, t);
655 INHERIT (to_make_corefile_notes, t);
656 INHERIT (to_get_bookmark, t);
657 INHERIT (to_goto_bookmark, t);
658 /* Do not inherit to_get_thread_local_address. */
659 INHERIT (to_can_execute_reverse, t);
660 INHERIT (to_execution_direction, t);
661 INHERIT (to_thread_architecture, t);
662 /* Do not inherit to_read_description. */
663 INHERIT (to_get_ada_task_ptid, t);
664 /* Do not inherit to_search_memory. */
665 INHERIT (to_supports_multi_process, t);
666 INHERIT (to_supports_enable_disable_tracepoint, t);
667 INHERIT (to_supports_string_tracing, t);
668 INHERIT (to_trace_init, t);
669 INHERIT (to_download_tracepoint, t);
670 INHERIT (to_can_download_tracepoint, t);
671 INHERIT (to_download_trace_state_variable, t);
672 INHERIT (to_enable_tracepoint, t);
673 INHERIT (to_disable_tracepoint, t);
674 INHERIT (to_trace_set_readonly_regions, t);
675 INHERIT (to_trace_start, t);
676 INHERIT (to_get_trace_status, t);
677 INHERIT (to_get_tracepoint_status, t);
678 INHERIT (to_trace_stop, t);
679 INHERIT (to_trace_find, t);
680 INHERIT (to_get_trace_state_variable_value, t);
681 INHERIT (to_save_trace_data, t);
682 INHERIT (to_upload_tracepoints, t);
683 INHERIT (to_upload_trace_state_variables, t);
684 INHERIT (to_get_raw_trace_data, t);
685 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
686 INHERIT (to_set_disconnected_tracing, t);
687 INHERIT (to_set_circular_trace_buffer, t);
688 INHERIT (to_set_trace_buffer_size, t);
689 INHERIT (to_set_trace_notes, t);
690 INHERIT (to_get_tib_address, t);
691 INHERIT (to_set_permissions, t);
692 INHERIT (to_static_tracepoint_marker_at, t);
693 INHERIT (to_static_tracepoint_markers_by_strid, t);
694 INHERIT (to_traceframe_info, t);
695 INHERIT (to_use_agent, t);
696 INHERIT (to_can_use_agent, t);
697 INHERIT (to_augmented_libraries_svr4_read, t);
698 INHERIT (to_magic, t);
699 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
700 INHERIT (to_can_run_breakpoint_commands, t);
701 /* Do not inherit to_memory_map. */
702 /* Do not inherit to_flash_erase. */
703 /* Do not inherit to_flash_done. */
704 }
705 #undef INHERIT
706
707 /* Clean up a target struct so it no longer has any zero pointers in
708 it. Some entries are defaulted to a method that print an error,
709 others are hard-wired to a standard recursive default. */
710
711 #define de_fault(field, value) \
712 if (!current_target.field) \
713 current_target.field = value
714
715 de_fault (to_open,
716 (void (*) (char *, int))
717 tcomplain);
718 de_fault (to_close,
719 (void (*) (void))
720 target_ignore);
721 de_fault (to_post_attach,
722 (void (*) (int))
723 target_ignore);
724 de_fault (to_prepare_to_store,
725 (void (*) (struct regcache *))
726 noprocess);
727 de_fault (deprecated_xfer_memory,
728 (int (*) (CORE_ADDR, gdb_byte *, int, int,
729 struct mem_attrib *, struct target_ops *))
730 nomemory);
731 de_fault (to_files_info,
732 (void (*) (struct target_ops *))
733 target_ignore);
734 de_fault (to_insert_breakpoint,
735 memory_insert_breakpoint);
736 de_fault (to_remove_breakpoint,
737 memory_remove_breakpoint);
738 de_fault (to_can_use_hw_breakpoint,
739 (int (*) (int, int, int))
740 return_zero);
741 de_fault (to_insert_hw_breakpoint,
742 (int (*) (struct gdbarch *, struct bp_target_info *))
743 return_minus_one);
744 de_fault (to_remove_hw_breakpoint,
745 (int (*) (struct gdbarch *, struct bp_target_info *))
746 return_minus_one);
747 de_fault (to_insert_watchpoint,
748 (int (*) (CORE_ADDR, int, int, struct expression *))
749 return_minus_one);
750 de_fault (to_remove_watchpoint,
751 (int (*) (CORE_ADDR, int, int, struct expression *))
752 return_minus_one);
753 de_fault (to_stopped_by_watchpoint,
754 (int (*) (void))
755 return_zero);
756 de_fault (to_stopped_data_address,
757 (int (*) (struct target_ops *, CORE_ADDR *))
758 return_zero);
759 de_fault (to_watchpoint_addr_within_range,
760 default_watchpoint_addr_within_range);
761 de_fault (to_region_ok_for_hw_watchpoint,
762 default_region_ok_for_hw_watchpoint);
763 de_fault (to_can_accel_watchpoint_condition,
764 (int (*) (CORE_ADDR, int, int, struct expression *))
765 return_zero);
766 de_fault (to_terminal_init,
767 (void (*) (void))
768 target_ignore);
769 de_fault (to_terminal_inferior,
770 (void (*) (void))
771 target_ignore);
772 de_fault (to_terminal_ours_for_output,
773 (void (*) (void))
774 target_ignore);
775 de_fault (to_terminal_ours,
776 (void (*) (void))
777 target_ignore);
778 de_fault (to_terminal_save_ours,
779 (void (*) (void))
780 target_ignore);
781 de_fault (to_terminal_info,
782 default_terminal_info);
783 de_fault (to_load,
784 (void (*) (char *, int))
785 tcomplain);
786 de_fault (to_post_startup_inferior,
787 (void (*) (ptid_t))
788 target_ignore);
789 de_fault (to_insert_fork_catchpoint,
790 (int (*) (int))
791 return_one);
792 de_fault (to_remove_fork_catchpoint,
793 (int (*) (int))
794 return_one);
795 de_fault (to_insert_vfork_catchpoint,
796 (int (*) (int))
797 return_one);
798 de_fault (to_remove_vfork_catchpoint,
799 (int (*) (int))
800 return_one);
801 de_fault (to_insert_exec_catchpoint,
802 (int (*) (int))
803 return_one);
804 de_fault (to_remove_exec_catchpoint,
805 (int (*) (int))
806 return_one);
807 de_fault (to_set_syscall_catchpoint,
808 (int (*) (int, int, int, int, int *))
809 return_one);
810 de_fault (to_has_exited,
811 (int (*) (int, int, int *))
812 return_zero);
813 de_fault (to_can_run,
814 return_zero);
815 de_fault (to_extra_thread_info,
816 (char *(*) (struct thread_info *))
817 return_zero);
818 de_fault (to_thread_name,
819 (char *(*) (struct thread_info *))
820 return_zero);
821 de_fault (to_stop,
822 (void (*) (ptid_t))
823 target_ignore);
824 current_target.to_xfer_partial = current_xfer_partial;
825 de_fault (to_rcmd,
826 (void (*) (char *, struct ui_file *))
827 tcomplain);
828 de_fault (to_pid_to_exec_file,
829 (char *(*) (int))
830 return_zero);
831 de_fault (to_async,
832 (void (*) (void (*) (enum inferior_event_type, void*), void*))
833 tcomplain);
834 de_fault (to_thread_architecture,
835 default_thread_architecture);
836 current_target.to_read_description = NULL;
837 de_fault (to_get_ada_task_ptid,
838 (ptid_t (*) (long, long))
839 default_get_ada_task_ptid);
840 de_fault (to_supports_multi_process,
841 (int (*) (void))
842 return_zero);
843 de_fault (to_supports_enable_disable_tracepoint,
844 (int (*) (void))
845 return_zero);
846 de_fault (to_supports_string_tracing,
847 (int (*) (void))
848 return_zero);
849 de_fault (to_trace_init,
850 (void (*) (void))
851 tcomplain);
852 de_fault (to_download_tracepoint,
853 (void (*) (struct bp_location *))
854 tcomplain);
855 de_fault (to_can_download_tracepoint,
856 (int (*) (void))
857 return_zero);
858 de_fault (to_download_trace_state_variable,
859 (void (*) (struct trace_state_variable *))
860 tcomplain);
861 de_fault (to_enable_tracepoint,
862 (void (*) (struct bp_location *))
863 tcomplain);
864 de_fault (to_disable_tracepoint,
865 (void (*) (struct bp_location *))
866 tcomplain);
867 de_fault (to_trace_set_readonly_regions,
868 (void (*) (void))
869 tcomplain);
870 de_fault (to_trace_start,
871 (void (*) (void))
872 tcomplain);
873 de_fault (to_get_trace_status,
874 (int (*) (struct trace_status *))
875 return_minus_one);
876 de_fault (to_get_tracepoint_status,
877 (void (*) (struct breakpoint *, struct uploaded_tp *))
878 tcomplain);
879 de_fault (to_trace_stop,
880 (void (*) (void))
881 tcomplain);
882 de_fault (to_trace_find,
883 (int (*) (enum trace_find_type, int, CORE_ADDR, CORE_ADDR, int *))
884 return_minus_one);
885 de_fault (to_get_trace_state_variable_value,
886 (int (*) (int, LONGEST *))
887 return_zero);
888 de_fault (to_save_trace_data,
889 (int (*) (const char *))
890 tcomplain);
891 de_fault (to_upload_tracepoints,
892 (int (*) (struct uploaded_tp **))
893 return_zero);
894 de_fault (to_upload_trace_state_variables,
895 (int (*) (struct uploaded_tsv **))
896 return_zero);
897 de_fault (to_get_raw_trace_data,
898 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
899 tcomplain);
900 de_fault (to_get_min_fast_tracepoint_insn_len,
901 (int (*) (void))
902 return_minus_one);
903 de_fault (to_set_disconnected_tracing,
904 (void (*) (int))
905 target_ignore);
906 de_fault (to_set_circular_trace_buffer,
907 (void (*) (int))
908 target_ignore);
909 de_fault (to_set_trace_buffer_size,
910 (void (*) (LONGEST))
911 target_ignore);
912 de_fault (to_set_trace_notes,
913 (int (*) (const char *, const char *, const char *))
914 return_zero);
915 de_fault (to_get_tib_address,
916 (int (*) (ptid_t, CORE_ADDR *))
917 tcomplain);
918 de_fault (to_set_permissions,
919 (void (*) (void))
920 target_ignore);
921 de_fault (to_static_tracepoint_marker_at,
922 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
923 return_zero);
924 de_fault (to_static_tracepoint_markers_by_strid,
925 (VEC(static_tracepoint_marker_p) * (*) (const char *))
926 tcomplain);
927 de_fault (to_traceframe_info,
928 (struct traceframe_info * (*) (void))
929 return_zero);
930 de_fault (to_supports_evaluation_of_breakpoint_conditions,
931 (int (*) (void))
932 return_zero);
933 de_fault (to_can_run_breakpoint_commands,
934 (int (*) (void))
935 return_zero);
936 de_fault (to_use_agent,
937 (int (*) (int))
938 tcomplain);
939 de_fault (to_can_use_agent,
940 (int (*) (void))
941 return_zero);
942 de_fault (to_augmented_libraries_svr4_read,
943 (int (*) (void))
944 return_zero);
945 de_fault (to_execution_direction, default_execution_direction);
946
947 #undef de_fault
948
949 /* Finally, position the target-stack beneath the squashed
950 "current_target". That way code looking for a non-inherited
951 target method can quickly and simply find it. */
952 current_target.beneath = target_stack;
953
954 if (targetdebug)
955 setup_target_debug ();
956 }
957
958 /* Push a new target type into the stack of the existing target accessors,
959 possibly superseding some of the existing accessors.
960
961 Rather than allow an empty stack, we always have the dummy target at
962 the bottom stratum, so we can call the function vectors without
963 checking them. */
964
965 void
966 push_target (struct target_ops *t)
967 {
968 struct target_ops **cur;
969
970 /* Check magic number. If wrong, it probably means someone changed
971 the struct definition, but not all the places that initialize one. */
972 if (t->to_magic != OPS_MAGIC)
973 {
974 fprintf_unfiltered (gdb_stderr,
975 "Magic number of %s target struct wrong\n",
976 t->to_shortname);
977 internal_error (__FILE__, __LINE__,
978 _("failed internal consistency check"));
979 }
980
981 /* Find the proper stratum to install this target in. */
982 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
983 {
984 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
985 break;
986 }
987
988 /* If there's already targets at this stratum, remove them. */
989 /* FIXME: cagney/2003-10-15: I think this should be popping all
990 targets to CUR, and not just those at this stratum level. */
991 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
992 {
993 /* There's already something at this stratum level. Close it,
994 and un-hook it from the stack. */
995 struct target_ops *tmp = (*cur);
996
997 (*cur) = (*cur)->beneath;
998 tmp->beneath = NULL;
999 target_close (tmp);
1000 }
1001
1002 /* We have removed all targets in our stratum, now add the new one. */
1003 t->beneath = (*cur);
1004 (*cur) = t;
1005
1006 update_current_target ();
1007 }
1008
1009 /* Remove a target_ops vector from the stack, wherever it may be.
1010 Return how many times it was removed (0 or 1). */
1011
1012 int
1013 unpush_target (struct target_ops *t)
1014 {
1015 struct target_ops **cur;
1016 struct target_ops *tmp;
1017
1018 if (t->to_stratum == dummy_stratum)
1019 internal_error (__FILE__, __LINE__,
1020 _("Attempt to unpush the dummy target"));
1021
1022 /* Look for the specified target. Note that we assume that a target
1023 can only occur once in the target stack. */
1024
1025 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1026 {
1027 if ((*cur) == t)
1028 break;
1029 }
1030
1031 /* If we don't find target_ops, quit. Only open targets should be
1032 closed. */
1033 if ((*cur) == NULL)
1034 return 0;
1035
1036 /* Unchain the target. */
1037 tmp = (*cur);
1038 (*cur) = (*cur)->beneath;
1039 tmp->beneath = NULL;
1040
1041 update_current_target ();
1042
1043 /* Finally close the target. Note we do this after unchaining, so
1044 any target method calls from within the target_close
1045 implementation don't end up in T anymore. */
1046 target_close (t);
1047
1048 return 1;
1049 }
1050
1051 void
1052 pop_all_targets_above (enum strata above_stratum)
1053 {
1054 while ((int) (current_target.to_stratum) > (int) above_stratum)
1055 {
1056 if (!unpush_target (target_stack))
1057 {
1058 fprintf_unfiltered (gdb_stderr,
1059 "pop_all_targets couldn't find target %s\n",
1060 target_stack->to_shortname);
1061 internal_error (__FILE__, __LINE__,
1062 _("failed internal consistency check"));
1063 break;
1064 }
1065 }
1066 }
1067
1068 void
1069 pop_all_targets (void)
1070 {
1071 pop_all_targets_above (dummy_stratum);
1072 }
1073
1074 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1075
1076 int
1077 target_is_pushed (struct target_ops *t)
1078 {
1079 struct target_ops **cur;
1080
1081 /* Check magic number. If wrong, it probably means someone changed
1082 the struct definition, but not all the places that initialize one. */
1083 if (t->to_magic != OPS_MAGIC)
1084 {
1085 fprintf_unfiltered (gdb_stderr,
1086 "Magic number of %s target struct wrong\n",
1087 t->to_shortname);
1088 internal_error (__FILE__, __LINE__,
1089 _("failed internal consistency check"));
1090 }
1091
1092 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1093 if (*cur == t)
1094 return 1;
1095
1096 return 0;
1097 }
1098
1099 /* Using the objfile specified in OBJFILE, find the address for the
1100 current thread's thread-local storage with offset OFFSET. */
1101 CORE_ADDR
1102 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1103 {
1104 volatile CORE_ADDR addr = 0;
1105 struct target_ops *target;
1106
1107 for (target = current_target.beneath;
1108 target != NULL;
1109 target = target->beneath)
1110 {
1111 if (target->to_get_thread_local_address != NULL)
1112 break;
1113 }
1114
1115 if (target != NULL
1116 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
1117 {
1118 ptid_t ptid = inferior_ptid;
1119 volatile struct gdb_exception ex;
1120
1121 TRY_CATCH (ex, RETURN_MASK_ALL)
1122 {
1123 CORE_ADDR lm_addr;
1124
1125 /* Fetch the load module address for this objfile. */
1126 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
1127 objfile);
1128 /* If it's 0, throw the appropriate exception. */
1129 if (lm_addr == 0)
1130 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1131 _("TLS load module not found"));
1132
1133 addr = target->to_get_thread_local_address (target, ptid,
1134 lm_addr, offset);
1135 }
1136 /* If an error occurred, print TLS related messages here. Otherwise,
1137 throw the error to some higher catcher. */
1138 if (ex.reason < 0)
1139 {
1140 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1141
1142 switch (ex.error)
1143 {
1144 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1145 error (_("Cannot find thread-local variables "
1146 "in this thread library."));
1147 break;
1148 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1149 if (objfile_is_library)
1150 error (_("Cannot find shared library `%s' in dynamic"
1151 " linker's load module list"), objfile_name (objfile));
1152 else
1153 error (_("Cannot find executable file `%s' in dynamic"
1154 " linker's load module list"), objfile_name (objfile));
1155 break;
1156 case TLS_NOT_ALLOCATED_YET_ERROR:
1157 if (objfile_is_library)
1158 error (_("The inferior has not yet allocated storage for"
1159 " thread-local variables in\n"
1160 "the shared library `%s'\n"
1161 "for %s"),
1162 objfile_name (objfile), target_pid_to_str (ptid));
1163 else
1164 error (_("The inferior has not yet allocated storage for"
1165 " thread-local variables in\n"
1166 "the executable `%s'\n"
1167 "for %s"),
1168 objfile_name (objfile), target_pid_to_str (ptid));
1169 break;
1170 case TLS_GENERIC_ERROR:
1171 if (objfile_is_library)
1172 error (_("Cannot find thread-local storage for %s, "
1173 "shared library %s:\n%s"),
1174 target_pid_to_str (ptid),
1175 objfile_name (objfile), ex.message);
1176 else
1177 error (_("Cannot find thread-local storage for %s, "
1178 "executable file %s:\n%s"),
1179 target_pid_to_str (ptid),
1180 objfile_name (objfile), ex.message);
1181 break;
1182 default:
1183 throw_exception (ex);
1184 break;
1185 }
1186 }
1187 }
1188 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1189 TLS is an ABI-specific thing. But we don't do that yet. */
1190 else
1191 error (_("Cannot find thread-local variables on this target"));
1192
1193 return addr;
1194 }
1195
1196 const char *
1197 target_xfer_error_to_string (enum target_xfer_error err)
1198 {
1199 #define CASE(X) case X: return #X
1200 switch (err)
1201 {
1202 CASE(TARGET_XFER_E_IO);
1203 CASE(TARGET_XFER_E_UNAVAILABLE);
1204 default:
1205 return "<unknown>";
1206 }
1207 #undef CASE
1208 };
1209
1210
1211 #undef MIN
1212 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1213
1214 /* target_read_string -- read a null terminated string, up to LEN bytes,
1215 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1216 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1217 is responsible for freeing it. Return the number of bytes successfully
1218 read. */
1219
1220 int
1221 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1222 {
1223 int tlen, offset, i;
1224 gdb_byte buf[4];
1225 int errcode = 0;
1226 char *buffer;
1227 int buffer_allocated;
1228 char *bufptr;
1229 unsigned int nbytes_read = 0;
1230
1231 gdb_assert (string);
1232
1233 /* Small for testing. */
1234 buffer_allocated = 4;
1235 buffer = xmalloc (buffer_allocated);
1236 bufptr = buffer;
1237
1238 while (len > 0)
1239 {
1240 tlen = MIN (len, 4 - (memaddr & 3));
1241 offset = memaddr & 3;
1242
1243 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1244 if (errcode != 0)
1245 {
1246 /* The transfer request might have crossed the boundary to an
1247 unallocated region of memory. Retry the transfer, requesting
1248 a single byte. */
1249 tlen = 1;
1250 offset = 0;
1251 errcode = target_read_memory (memaddr, buf, 1);
1252 if (errcode != 0)
1253 goto done;
1254 }
1255
1256 if (bufptr - buffer + tlen > buffer_allocated)
1257 {
1258 unsigned int bytes;
1259
1260 bytes = bufptr - buffer;
1261 buffer_allocated *= 2;
1262 buffer = xrealloc (buffer, buffer_allocated);
1263 bufptr = buffer + bytes;
1264 }
1265
1266 for (i = 0; i < tlen; i++)
1267 {
1268 *bufptr++ = buf[i + offset];
1269 if (buf[i + offset] == '\000')
1270 {
1271 nbytes_read += i + 1;
1272 goto done;
1273 }
1274 }
1275
1276 memaddr += tlen;
1277 len -= tlen;
1278 nbytes_read += tlen;
1279 }
1280 done:
1281 *string = buffer;
1282 if (errnop != NULL)
1283 *errnop = errcode;
1284 return nbytes_read;
1285 }
1286
1287 struct target_section_table *
1288 target_get_section_table (struct target_ops *target)
1289 {
1290 struct target_ops *t;
1291
1292 if (targetdebug)
1293 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1294
1295 for (t = target; t != NULL; t = t->beneath)
1296 if (t->to_get_section_table != NULL)
1297 return (*t->to_get_section_table) (t);
1298
1299 return NULL;
1300 }
1301
1302 /* Find a section containing ADDR. */
1303
1304 struct target_section *
1305 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1306 {
1307 struct target_section_table *table = target_get_section_table (target);
1308 struct target_section *secp;
1309
1310 if (table == NULL)
1311 return NULL;
1312
1313 for (secp = table->sections; secp < table->sections_end; secp++)
1314 {
1315 if (addr >= secp->addr && addr < secp->endaddr)
1316 return secp;
1317 }
1318 return NULL;
1319 }
1320
1321 /* Read memory from the live target, even if currently inspecting a
1322 traceframe. The return is the same as that of target_read. */
1323
1324 static LONGEST
1325 target_read_live_memory (enum target_object object,
1326 ULONGEST memaddr, gdb_byte *myaddr, LONGEST len)
1327 {
1328 LONGEST ret;
1329 struct cleanup *cleanup;
1330
1331 /* Switch momentarily out of tfind mode so to access live memory.
1332 Note that this must not clear global state, such as the frame
1333 cache, which must still remain valid for the previous traceframe.
1334 We may be _building_ the frame cache at this point. */
1335 cleanup = make_cleanup_restore_traceframe_number ();
1336 set_traceframe_number (-1);
1337
1338 ret = target_read (current_target.beneath, object, NULL,
1339 myaddr, memaddr, len);
1340
1341 do_cleanups (cleanup);
1342 return ret;
1343 }
1344
1345 /* Using the set of read-only target sections of OPS, read live
1346 read-only memory. Note that the actual reads start from the
1347 top-most target again.
1348
1349 For interface/parameters/return description see target.h,
1350 to_xfer_partial. */
1351
1352 static LONGEST
1353 memory_xfer_live_readonly_partial (struct target_ops *ops,
1354 enum target_object object,
1355 gdb_byte *readbuf, ULONGEST memaddr,
1356 LONGEST len)
1357 {
1358 struct target_section *secp;
1359 struct target_section_table *table;
1360
1361 secp = target_section_by_addr (ops, memaddr);
1362 if (secp != NULL
1363 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1364 secp->the_bfd_section)
1365 & SEC_READONLY))
1366 {
1367 struct target_section *p;
1368 ULONGEST memend = memaddr + len;
1369
1370 table = target_get_section_table (ops);
1371
1372 for (p = table->sections; p < table->sections_end; p++)
1373 {
1374 if (memaddr >= p->addr)
1375 {
1376 if (memend <= p->endaddr)
1377 {
1378 /* Entire transfer is within this section. */
1379 return target_read_live_memory (object, memaddr,
1380 readbuf, len);
1381 }
1382 else if (memaddr >= p->endaddr)
1383 {
1384 /* This section ends before the transfer starts. */
1385 continue;
1386 }
1387 else
1388 {
1389 /* This section overlaps the transfer. Just do half. */
1390 len = p->endaddr - memaddr;
1391 return target_read_live_memory (object, memaddr,
1392 readbuf, len);
1393 }
1394 }
1395 }
1396 }
1397
1398 return 0;
1399 }
1400
1401 /* Read memory from more than one valid target. A core file, for
1402 instance, could have some of memory but delegate other bits to
1403 the target below it. So, we must manually try all targets. */
1404
1405 static LONGEST
1406 raw_memory_xfer_partial (struct target_ops *ops, void *readbuf,
1407 const void *writebuf, ULONGEST memaddr, LONGEST len)
1408 {
1409 LONGEST res;
1410
1411 do
1412 {
1413 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1414 readbuf, writebuf, memaddr, len);
1415 if (res > 0)
1416 break;
1417
1418 /* We want to continue past core files to executables, but not
1419 past a running target's memory. */
1420 if (ops->to_has_all_memory (ops))
1421 break;
1422
1423 ops = ops->beneath;
1424 }
1425 while (ops != NULL);
1426
1427 return res;
1428 }
1429
1430 /* Perform a partial memory transfer.
1431 For docs see target.h, to_xfer_partial. */
1432
1433 static LONGEST
1434 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1435 void *readbuf, const void *writebuf, ULONGEST memaddr,
1436 LONGEST len)
1437 {
1438 LONGEST res;
1439 int reg_len;
1440 struct mem_region *region;
1441 struct inferior *inf;
1442
1443 /* For accesses to unmapped overlay sections, read directly from
1444 files. Must do this first, as MEMADDR may need adjustment. */
1445 if (readbuf != NULL && overlay_debugging)
1446 {
1447 struct obj_section *section = find_pc_overlay (memaddr);
1448
1449 if (pc_in_unmapped_range (memaddr, section))
1450 {
1451 struct target_section_table *table
1452 = target_get_section_table (ops);
1453 const char *section_name = section->the_bfd_section->name;
1454
1455 memaddr = overlay_mapped_address (memaddr, section);
1456 return section_table_xfer_memory_partial (readbuf, writebuf,
1457 memaddr, len,
1458 table->sections,
1459 table->sections_end,
1460 section_name);
1461 }
1462 }
1463
1464 /* Try the executable files, if "trust-readonly-sections" is set. */
1465 if (readbuf != NULL && trust_readonly)
1466 {
1467 struct target_section *secp;
1468 struct target_section_table *table;
1469
1470 secp = target_section_by_addr (ops, memaddr);
1471 if (secp != NULL
1472 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1473 secp->the_bfd_section)
1474 & SEC_READONLY))
1475 {
1476 table = target_get_section_table (ops);
1477 return section_table_xfer_memory_partial (readbuf, writebuf,
1478 memaddr, len,
1479 table->sections,
1480 table->sections_end,
1481 NULL);
1482 }
1483 }
1484
1485 /* If reading unavailable memory in the context of traceframes, and
1486 this address falls within a read-only section, fallback to
1487 reading from live memory. */
1488 if (readbuf != NULL && get_traceframe_number () != -1)
1489 {
1490 VEC(mem_range_s) *available;
1491
1492 /* If we fail to get the set of available memory, then the
1493 target does not support querying traceframe info, and so we
1494 attempt reading from the traceframe anyway (assuming the
1495 target implements the old QTro packet then). */
1496 if (traceframe_available_memory (&available, memaddr, len))
1497 {
1498 struct cleanup *old_chain;
1499
1500 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1501
1502 if (VEC_empty (mem_range_s, available)
1503 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1504 {
1505 /* Don't read into the traceframe's available
1506 memory. */
1507 if (!VEC_empty (mem_range_s, available))
1508 {
1509 LONGEST oldlen = len;
1510
1511 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1512 gdb_assert (len <= oldlen);
1513 }
1514
1515 do_cleanups (old_chain);
1516
1517 /* This goes through the topmost target again. */
1518 res = memory_xfer_live_readonly_partial (ops, object,
1519 readbuf, memaddr, len);
1520 if (res > 0)
1521 return res;
1522
1523 /* No use trying further, we know some memory starting
1524 at MEMADDR isn't available. */
1525 return TARGET_XFER_E_UNAVAILABLE;
1526 }
1527
1528 /* Don't try to read more than how much is available, in
1529 case the target implements the deprecated QTro packet to
1530 cater for older GDBs (the target's knowledge of read-only
1531 sections may be outdated by now). */
1532 len = VEC_index (mem_range_s, available, 0)->length;
1533
1534 do_cleanups (old_chain);
1535 }
1536 }
1537
1538 /* Try GDB's internal data cache. */
1539 region = lookup_mem_region (memaddr);
1540 /* region->hi == 0 means there's no upper bound. */
1541 if (memaddr + len < region->hi || region->hi == 0)
1542 reg_len = len;
1543 else
1544 reg_len = region->hi - memaddr;
1545
1546 switch (region->attrib.mode)
1547 {
1548 case MEM_RO:
1549 if (writebuf != NULL)
1550 return -1;
1551 break;
1552
1553 case MEM_WO:
1554 if (readbuf != NULL)
1555 return -1;
1556 break;
1557
1558 case MEM_FLASH:
1559 /* We only support writing to flash during "load" for now. */
1560 if (writebuf != NULL)
1561 error (_("Writing to flash memory forbidden in this context"));
1562 break;
1563
1564 case MEM_NONE:
1565 return -1;
1566 }
1567
1568 if (!ptid_equal (inferior_ptid, null_ptid))
1569 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1570 else
1571 inf = NULL;
1572
1573 if (inf != NULL
1574 /* The dcache reads whole cache lines; that doesn't play well
1575 with reading from a trace buffer, because reading outside of
1576 the collected memory range fails. */
1577 && get_traceframe_number () == -1
1578 && (region->attrib.cache
1579 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1580 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1581 {
1582 DCACHE *dcache = target_dcache_get_or_init ();
1583
1584 if (readbuf != NULL)
1585 res = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1586 else
1587 /* FIXME drow/2006-08-09: If we're going to preserve const
1588 correctness dcache_xfer_memory should take readbuf and
1589 writebuf. */
1590 res = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1591 reg_len, 1);
1592 if (res <= 0)
1593 return -1;
1594 else
1595 return res;
1596 }
1597
1598 /* If none of those methods found the memory we wanted, fall back
1599 to a target partial transfer. Normally a single call to
1600 to_xfer_partial is enough; if it doesn't recognize an object
1601 it will call the to_xfer_partial of the next target down.
1602 But for memory this won't do. Memory is the only target
1603 object which can be read from more than one valid target. */
1604 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len);
1605
1606 /* Make sure the cache gets updated no matter what - if we are writing
1607 to the stack. Even if this write is not tagged as such, we still need
1608 to update the cache. */
1609
1610 if (res > 0
1611 && inf != NULL
1612 && writebuf != NULL
1613 && target_dcache_init_p ()
1614 && !region->attrib.cache
1615 && ((stack_cache_enabled_p () && object != TARGET_OBJECT_STACK_MEMORY)
1616 || (code_cache_enabled_p () && object != TARGET_OBJECT_CODE_MEMORY)))
1617 {
1618 DCACHE *dcache = target_dcache_get ();
1619
1620 dcache_update (dcache, memaddr, (void *) writebuf, res);
1621 }
1622
1623 /* If we still haven't got anything, return the last error. We
1624 give up. */
1625 return res;
1626 }
1627
1628 /* Perform a partial memory transfer. For docs see target.h,
1629 to_xfer_partial. */
1630
1631 static LONGEST
1632 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1633 void *readbuf, const void *writebuf, ULONGEST memaddr,
1634 LONGEST len)
1635 {
1636 int res;
1637
1638 /* Zero length requests are ok and require no work. */
1639 if (len == 0)
1640 return 0;
1641
1642 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1643 breakpoint insns, thus hiding out from higher layers whether
1644 there are software breakpoints inserted in the code stream. */
1645 if (readbuf != NULL)
1646 {
1647 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len);
1648
1649 if (res > 0 && !show_memory_breakpoints)
1650 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1651 }
1652 else
1653 {
1654 void *buf;
1655 struct cleanup *old_chain;
1656
1657 /* A large write request is likely to be partially satisfied
1658 by memory_xfer_partial_1. We will continually malloc
1659 and free a copy of the entire write request for breakpoint
1660 shadow handling even though we only end up writing a small
1661 subset of it. Cap writes to 4KB to mitigate this. */
1662 len = min (4096, len);
1663
1664 buf = xmalloc (len);
1665 old_chain = make_cleanup (xfree, buf);
1666 memcpy (buf, writebuf, len);
1667
1668 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1669 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len);
1670
1671 do_cleanups (old_chain);
1672 }
1673
1674 return res;
1675 }
1676
1677 static void
1678 restore_show_memory_breakpoints (void *arg)
1679 {
1680 show_memory_breakpoints = (uintptr_t) arg;
1681 }
1682
1683 struct cleanup *
1684 make_show_memory_breakpoints_cleanup (int show)
1685 {
1686 int current = show_memory_breakpoints;
1687
1688 show_memory_breakpoints = show;
1689 return make_cleanup (restore_show_memory_breakpoints,
1690 (void *) (uintptr_t) current);
1691 }
1692
1693 /* For docs see target.h, to_xfer_partial. */
1694
1695 LONGEST
1696 target_xfer_partial (struct target_ops *ops,
1697 enum target_object object, const char *annex,
1698 void *readbuf, const void *writebuf,
1699 ULONGEST offset, LONGEST len)
1700 {
1701 LONGEST retval;
1702
1703 gdb_assert (ops->to_xfer_partial != NULL);
1704
1705 if (writebuf && !may_write_memory)
1706 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1707 core_addr_to_string_nz (offset), plongest (len));
1708
1709 /* If this is a memory transfer, let the memory-specific code
1710 have a look at it instead. Memory transfers are more
1711 complicated. */
1712 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1713 || object == TARGET_OBJECT_CODE_MEMORY)
1714 retval = memory_xfer_partial (ops, object, readbuf,
1715 writebuf, offset, len);
1716 else if (object == TARGET_OBJECT_RAW_MEMORY)
1717 {
1718 /* Request the normal memory object from other layers. */
1719 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1720 }
1721 else
1722 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1723 writebuf, offset, len);
1724
1725 if (targetdebug)
1726 {
1727 const unsigned char *myaddr = NULL;
1728
1729 fprintf_unfiltered (gdb_stdlog,
1730 "%s:target_xfer_partial "
1731 "(%d, %s, %s, %s, %s, %s) = %s",
1732 ops->to_shortname,
1733 (int) object,
1734 (annex ? annex : "(null)"),
1735 host_address_to_string (readbuf),
1736 host_address_to_string (writebuf),
1737 core_addr_to_string_nz (offset),
1738 plongest (len), plongest (retval));
1739
1740 if (readbuf)
1741 myaddr = readbuf;
1742 if (writebuf)
1743 myaddr = writebuf;
1744 if (retval > 0 && myaddr != NULL)
1745 {
1746 int i;
1747
1748 fputs_unfiltered (", bytes =", gdb_stdlog);
1749 for (i = 0; i < retval; i++)
1750 {
1751 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1752 {
1753 if (targetdebug < 2 && i > 0)
1754 {
1755 fprintf_unfiltered (gdb_stdlog, " ...");
1756 break;
1757 }
1758 fprintf_unfiltered (gdb_stdlog, "\n");
1759 }
1760
1761 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1762 }
1763 }
1764
1765 fputc_unfiltered ('\n', gdb_stdlog);
1766 }
1767 return retval;
1768 }
1769
1770 /* Read LEN bytes of target memory at address MEMADDR, placing the
1771 results in GDB's memory at MYADDR. Returns either 0 for success or
1772 a target_xfer_error value if any error occurs.
1773
1774 If an error occurs, no guarantee is made about the contents of the data at
1775 MYADDR. In particular, the caller should not depend upon partial reads
1776 filling the buffer with good data. There is no way for the caller to know
1777 how much good data might have been transfered anyway. Callers that can
1778 deal with partial reads should call target_read (which will retry until
1779 it makes no progress, and then return how much was transferred). */
1780
1781 int
1782 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1783 {
1784 /* Dispatch to the topmost target, not the flattened current_target.
1785 Memory accesses check target->to_has_(all_)memory, and the
1786 flattened target doesn't inherit those. */
1787 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1788 myaddr, memaddr, len) == len)
1789 return 0;
1790 else
1791 return TARGET_XFER_E_IO;
1792 }
1793
1794 /* Like target_read_memory, but specify explicitly that this is a read from
1795 the target's stack. This may trigger different cache behavior. */
1796
1797 int
1798 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1799 {
1800 /* Dispatch to the topmost target, not the flattened current_target.
1801 Memory accesses check target->to_has_(all_)memory, and the
1802 flattened target doesn't inherit those. */
1803
1804 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1805 myaddr, memaddr, len) == len)
1806 return 0;
1807 else
1808 return TARGET_XFER_E_IO;
1809 }
1810
1811 /* Like target_read_memory, but specify explicitly that this is a read from
1812 the target's code. This may trigger different cache behavior. */
1813
1814 int
1815 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1816 {
1817 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1818 myaddr, memaddr, len) == len)
1819 return 0;
1820 else
1821 return TARGET_XFER_E_IO;
1822 }
1823
1824 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1825 Returns either 0 for success or a target_xfer_error value if any
1826 error occurs. If an error occurs, no guarantee is made about how
1827 much data got written. Callers that can deal with partial writes
1828 should call target_write. */
1829
1830 int
1831 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1832 {
1833 /* Dispatch to the topmost target, not the flattened current_target.
1834 Memory accesses check target->to_has_(all_)memory, and the
1835 flattened target doesn't inherit those. */
1836 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1837 myaddr, memaddr, len) == len)
1838 return 0;
1839 else
1840 return TARGET_XFER_E_IO;
1841 }
1842
1843 /* Write LEN bytes from MYADDR to target raw memory at address
1844 MEMADDR. Returns either 0 for success or a target_xfer_error value
1845 if any error occurs. If an error occurs, no guarantee is made
1846 about how much data got written. Callers that can deal with
1847 partial writes should call target_write. */
1848
1849 int
1850 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1851 {
1852 /* Dispatch to the topmost target, not the flattened current_target.
1853 Memory accesses check target->to_has_(all_)memory, and the
1854 flattened target doesn't inherit those. */
1855 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1856 myaddr, memaddr, len) == len)
1857 return 0;
1858 else
1859 return TARGET_XFER_E_IO;
1860 }
1861
1862 /* Fetch the target's memory map. */
1863
1864 VEC(mem_region_s) *
1865 target_memory_map (void)
1866 {
1867 VEC(mem_region_s) *result;
1868 struct mem_region *last_one, *this_one;
1869 int ix;
1870 struct target_ops *t;
1871
1872 if (targetdebug)
1873 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1874
1875 for (t = current_target.beneath; t != NULL; t = t->beneath)
1876 if (t->to_memory_map != NULL)
1877 break;
1878
1879 if (t == NULL)
1880 return NULL;
1881
1882 result = t->to_memory_map (t);
1883 if (result == NULL)
1884 return NULL;
1885
1886 qsort (VEC_address (mem_region_s, result),
1887 VEC_length (mem_region_s, result),
1888 sizeof (struct mem_region), mem_region_cmp);
1889
1890 /* Check that regions do not overlap. Simultaneously assign
1891 a numbering for the "mem" commands to use to refer to
1892 each region. */
1893 last_one = NULL;
1894 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1895 {
1896 this_one->number = ix;
1897
1898 if (last_one && last_one->hi > this_one->lo)
1899 {
1900 warning (_("Overlapping regions in memory map: ignoring"));
1901 VEC_free (mem_region_s, result);
1902 return NULL;
1903 }
1904 last_one = this_one;
1905 }
1906
1907 return result;
1908 }
1909
1910 void
1911 target_flash_erase (ULONGEST address, LONGEST length)
1912 {
1913 struct target_ops *t;
1914
1915 for (t = current_target.beneath; t != NULL; t = t->beneath)
1916 if (t->to_flash_erase != NULL)
1917 {
1918 if (targetdebug)
1919 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1920 hex_string (address), phex (length, 0));
1921 t->to_flash_erase (t, address, length);
1922 return;
1923 }
1924
1925 tcomplain ();
1926 }
1927
1928 void
1929 target_flash_done (void)
1930 {
1931 struct target_ops *t;
1932
1933 for (t = current_target.beneath; t != NULL; t = t->beneath)
1934 if (t->to_flash_done != NULL)
1935 {
1936 if (targetdebug)
1937 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1938 t->to_flash_done (t);
1939 return;
1940 }
1941
1942 tcomplain ();
1943 }
1944
1945 static void
1946 show_trust_readonly (struct ui_file *file, int from_tty,
1947 struct cmd_list_element *c, const char *value)
1948 {
1949 fprintf_filtered (file,
1950 _("Mode for reading from readonly sections is %s.\n"),
1951 value);
1952 }
1953
1954 /* More generic transfers. */
1955
1956 static LONGEST
1957 default_xfer_partial (struct target_ops *ops, enum target_object object,
1958 const char *annex, gdb_byte *readbuf,
1959 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1960 {
1961 if (object == TARGET_OBJECT_MEMORY
1962 && ops->deprecated_xfer_memory != NULL)
1963 /* If available, fall back to the target's
1964 "deprecated_xfer_memory" method. */
1965 {
1966 int xfered = -1;
1967
1968 errno = 0;
1969 if (writebuf != NULL)
1970 {
1971 void *buffer = xmalloc (len);
1972 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1973
1974 memcpy (buffer, writebuf, len);
1975 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1976 1/*write*/, NULL, ops);
1977 do_cleanups (cleanup);
1978 }
1979 if (readbuf != NULL)
1980 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1981 0/*read*/, NULL, ops);
1982 if (xfered > 0)
1983 return xfered;
1984 else if (xfered == 0 && errno == 0)
1985 /* "deprecated_xfer_memory" uses 0, cross checked against
1986 ERRNO as one indication of an error. */
1987 return 0;
1988 else
1989 return -1;
1990 }
1991 else if (ops->beneath != NULL)
1992 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1993 readbuf, writebuf, offset, len);
1994 else
1995 return -1;
1996 }
1997
1998 /* The xfer_partial handler for the topmost target. Unlike the default,
1999 it does not need to handle memory specially; it just passes all
2000 requests down the stack. */
2001
2002 static LONGEST
2003 current_xfer_partial (struct target_ops *ops, enum target_object object,
2004 const char *annex, gdb_byte *readbuf,
2005 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
2006 {
2007 if (ops->beneath != NULL)
2008 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
2009 readbuf, writebuf, offset, len);
2010 else
2011 return -1;
2012 }
2013
2014 /* Target vector read/write partial wrapper functions. */
2015
2016 static LONGEST
2017 target_read_partial (struct target_ops *ops,
2018 enum target_object object,
2019 const char *annex, gdb_byte *buf,
2020 ULONGEST offset, LONGEST len)
2021 {
2022 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
2023 }
2024
2025 static LONGEST
2026 target_write_partial (struct target_ops *ops,
2027 enum target_object object,
2028 const char *annex, const gdb_byte *buf,
2029 ULONGEST offset, LONGEST len)
2030 {
2031 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
2032 }
2033
2034 /* Wrappers to perform the full transfer. */
2035
2036 /* For docs on target_read see target.h. */
2037
2038 LONGEST
2039 target_read (struct target_ops *ops,
2040 enum target_object object,
2041 const char *annex, gdb_byte *buf,
2042 ULONGEST offset, LONGEST len)
2043 {
2044 LONGEST xfered = 0;
2045
2046 while (xfered < len)
2047 {
2048 LONGEST xfer = target_read_partial (ops, object, annex,
2049 (gdb_byte *) buf + xfered,
2050 offset + xfered, len - xfered);
2051
2052 /* Call an observer, notifying them of the xfer progress? */
2053 if (xfer == 0)
2054 return xfered;
2055 if (xfer < 0)
2056 return -1;
2057 xfered += xfer;
2058 QUIT;
2059 }
2060 return len;
2061 }
2062
2063 /* Assuming that the entire [begin, end) range of memory cannot be
2064 read, try to read whatever subrange is possible to read.
2065
2066 The function returns, in RESULT, either zero or one memory block.
2067 If there's a readable subrange at the beginning, it is completely
2068 read and returned. Any further readable subrange will not be read.
2069 Otherwise, if there's a readable subrange at the end, it will be
2070 completely read and returned. Any readable subranges before it
2071 (obviously, not starting at the beginning), will be ignored. In
2072 other cases -- either no readable subrange, or readable subrange(s)
2073 that is neither at the beginning, or end, nothing is returned.
2074
2075 The purpose of this function is to handle a read across a boundary
2076 of accessible memory in a case when memory map is not available.
2077 The above restrictions are fine for this case, but will give
2078 incorrect results if the memory is 'patchy'. However, supporting
2079 'patchy' memory would require trying to read every single byte,
2080 and it seems unacceptable solution. Explicit memory map is
2081 recommended for this case -- and target_read_memory_robust will
2082 take care of reading multiple ranges then. */
2083
2084 static void
2085 read_whatever_is_readable (struct target_ops *ops,
2086 ULONGEST begin, ULONGEST end,
2087 VEC(memory_read_result_s) **result)
2088 {
2089 gdb_byte *buf = xmalloc (end - begin);
2090 ULONGEST current_begin = begin;
2091 ULONGEST current_end = end;
2092 int forward;
2093 memory_read_result_s r;
2094
2095 /* If we previously failed to read 1 byte, nothing can be done here. */
2096 if (end - begin <= 1)
2097 {
2098 xfree (buf);
2099 return;
2100 }
2101
2102 /* Check that either first or the last byte is readable, and give up
2103 if not. This heuristic is meant to permit reading accessible memory
2104 at the boundary of accessible region. */
2105 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2106 buf, begin, 1) == 1)
2107 {
2108 forward = 1;
2109 ++current_begin;
2110 }
2111 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2112 buf + (end-begin) - 1, end - 1, 1) == 1)
2113 {
2114 forward = 0;
2115 --current_end;
2116 }
2117 else
2118 {
2119 xfree (buf);
2120 return;
2121 }
2122
2123 /* Loop invariant is that the [current_begin, current_end) was previously
2124 found to be not readable as a whole.
2125
2126 Note loop condition -- if the range has 1 byte, we can't divide the range
2127 so there's no point trying further. */
2128 while (current_end - current_begin > 1)
2129 {
2130 ULONGEST first_half_begin, first_half_end;
2131 ULONGEST second_half_begin, second_half_end;
2132 LONGEST xfer;
2133 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2134
2135 if (forward)
2136 {
2137 first_half_begin = current_begin;
2138 first_half_end = middle;
2139 second_half_begin = middle;
2140 second_half_end = current_end;
2141 }
2142 else
2143 {
2144 first_half_begin = middle;
2145 first_half_end = current_end;
2146 second_half_begin = current_begin;
2147 second_half_end = middle;
2148 }
2149
2150 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2151 buf + (first_half_begin - begin),
2152 first_half_begin,
2153 first_half_end - first_half_begin);
2154
2155 if (xfer == first_half_end - first_half_begin)
2156 {
2157 /* This half reads up fine. So, the error must be in the
2158 other half. */
2159 current_begin = second_half_begin;
2160 current_end = second_half_end;
2161 }
2162 else
2163 {
2164 /* This half is not readable. Because we've tried one byte, we
2165 know some part of this half if actually redable. Go to the next
2166 iteration to divide again and try to read.
2167
2168 We don't handle the other half, because this function only tries
2169 to read a single readable subrange. */
2170 current_begin = first_half_begin;
2171 current_end = first_half_end;
2172 }
2173 }
2174
2175 if (forward)
2176 {
2177 /* The [begin, current_begin) range has been read. */
2178 r.begin = begin;
2179 r.end = current_begin;
2180 r.data = buf;
2181 }
2182 else
2183 {
2184 /* The [current_end, end) range has been read. */
2185 LONGEST rlen = end - current_end;
2186
2187 r.data = xmalloc (rlen);
2188 memcpy (r.data, buf + current_end - begin, rlen);
2189 r.begin = current_end;
2190 r.end = end;
2191 xfree (buf);
2192 }
2193 VEC_safe_push(memory_read_result_s, (*result), &r);
2194 }
2195
2196 void
2197 free_memory_read_result_vector (void *x)
2198 {
2199 VEC(memory_read_result_s) *v = x;
2200 memory_read_result_s *current;
2201 int ix;
2202
2203 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2204 {
2205 xfree (current->data);
2206 }
2207 VEC_free (memory_read_result_s, v);
2208 }
2209
2210 VEC(memory_read_result_s) *
2211 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2212 {
2213 VEC(memory_read_result_s) *result = 0;
2214
2215 LONGEST xfered = 0;
2216 while (xfered < len)
2217 {
2218 struct mem_region *region = lookup_mem_region (offset + xfered);
2219 LONGEST rlen;
2220
2221 /* If there is no explicit region, a fake one should be created. */
2222 gdb_assert (region);
2223
2224 if (region->hi == 0)
2225 rlen = len - xfered;
2226 else
2227 rlen = region->hi - offset;
2228
2229 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2230 {
2231 /* Cannot read this region. Note that we can end up here only
2232 if the region is explicitly marked inaccessible, or
2233 'inaccessible-by-default' is in effect. */
2234 xfered += rlen;
2235 }
2236 else
2237 {
2238 LONGEST to_read = min (len - xfered, rlen);
2239 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2240
2241 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2242 (gdb_byte *) buffer,
2243 offset + xfered, to_read);
2244 /* Call an observer, notifying them of the xfer progress? */
2245 if (xfer <= 0)
2246 {
2247 /* Got an error reading full chunk. See if maybe we can read
2248 some subrange. */
2249 xfree (buffer);
2250 read_whatever_is_readable (ops, offset + xfered,
2251 offset + xfered + to_read, &result);
2252 xfered += to_read;
2253 }
2254 else
2255 {
2256 struct memory_read_result r;
2257 r.data = buffer;
2258 r.begin = offset + xfered;
2259 r.end = r.begin + xfer;
2260 VEC_safe_push (memory_read_result_s, result, &r);
2261 xfered += xfer;
2262 }
2263 QUIT;
2264 }
2265 }
2266 return result;
2267 }
2268
2269
2270 /* An alternative to target_write with progress callbacks. */
2271
2272 LONGEST
2273 target_write_with_progress (struct target_ops *ops,
2274 enum target_object object,
2275 const char *annex, const gdb_byte *buf,
2276 ULONGEST offset, LONGEST len,
2277 void (*progress) (ULONGEST, void *), void *baton)
2278 {
2279 LONGEST xfered = 0;
2280
2281 /* Give the progress callback a chance to set up. */
2282 if (progress)
2283 (*progress) (0, baton);
2284
2285 while (xfered < len)
2286 {
2287 LONGEST xfer = target_write_partial (ops, object, annex,
2288 (gdb_byte *) buf + xfered,
2289 offset + xfered, len - xfered);
2290
2291 if (xfer == 0)
2292 return xfered;
2293 if (xfer < 0)
2294 return -1;
2295
2296 if (progress)
2297 (*progress) (xfer, baton);
2298
2299 xfered += xfer;
2300 QUIT;
2301 }
2302 return len;
2303 }
2304
2305 /* For docs on target_write see target.h. */
2306
2307 LONGEST
2308 target_write (struct target_ops *ops,
2309 enum target_object object,
2310 const char *annex, const gdb_byte *buf,
2311 ULONGEST offset, LONGEST len)
2312 {
2313 return target_write_with_progress (ops, object, annex, buf, offset, len,
2314 NULL, NULL);
2315 }
2316
2317 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2318 the size of the transferred data. PADDING additional bytes are
2319 available in *BUF_P. This is a helper function for
2320 target_read_alloc; see the declaration of that function for more
2321 information. */
2322
2323 static LONGEST
2324 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2325 const char *annex, gdb_byte **buf_p, int padding)
2326 {
2327 size_t buf_alloc, buf_pos;
2328 gdb_byte *buf;
2329 LONGEST n;
2330
2331 /* This function does not have a length parameter; it reads the
2332 entire OBJECT). Also, it doesn't support objects fetched partly
2333 from one target and partly from another (in a different stratum,
2334 e.g. a core file and an executable). Both reasons make it
2335 unsuitable for reading memory. */
2336 gdb_assert (object != TARGET_OBJECT_MEMORY);
2337
2338 /* Start by reading up to 4K at a time. The target will throttle
2339 this number down if necessary. */
2340 buf_alloc = 4096;
2341 buf = xmalloc (buf_alloc);
2342 buf_pos = 0;
2343 while (1)
2344 {
2345 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2346 buf_pos, buf_alloc - buf_pos - padding);
2347 if (n < 0)
2348 {
2349 /* An error occurred. */
2350 xfree (buf);
2351 return -1;
2352 }
2353 else if (n == 0)
2354 {
2355 /* Read all there was. */
2356 if (buf_pos == 0)
2357 xfree (buf);
2358 else
2359 *buf_p = buf;
2360 return buf_pos;
2361 }
2362
2363 buf_pos += n;
2364
2365 /* If the buffer is filling up, expand it. */
2366 if (buf_alloc < buf_pos * 2)
2367 {
2368 buf_alloc *= 2;
2369 buf = xrealloc (buf, buf_alloc);
2370 }
2371
2372 QUIT;
2373 }
2374 }
2375
2376 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2377 the size of the transferred data. See the declaration in "target.h"
2378 function for more information about the return value. */
2379
2380 LONGEST
2381 target_read_alloc (struct target_ops *ops, enum target_object object,
2382 const char *annex, gdb_byte **buf_p)
2383 {
2384 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2385 }
2386
2387 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2388 returned as a string, allocated using xmalloc. If an error occurs
2389 or the transfer is unsupported, NULL is returned. Empty objects
2390 are returned as allocated but empty strings. A warning is issued
2391 if the result contains any embedded NUL bytes. */
2392
2393 char *
2394 target_read_stralloc (struct target_ops *ops, enum target_object object,
2395 const char *annex)
2396 {
2397 gdb_byte *buffer;
2398 char *bufstr;
2399 LONGEST i, transferred;
2400
2401 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2402 bufstr = (char *) buffer;
2403
2404 if (transferred < 0)
2405 return NULL;
2406
2407 if (transferred == 0)
2408 return xstrdup ("");
2409
2410 bufstr[transferred] = 0;
2411
2412 /* Check for embedded NUL bytes; but allow trailing NULs. */
2413 for (i = strlen (bufstr); i < transferred; i++)
2414 if (bufstr[i] != 0)
2415 {
2416 warning (_("target object %d, annex %s, "
2417 "contained unexpected null characters"),
2418 (int) object, annex ? annex : "(none)");
2419 break;
2420 }
2421
2422 return bufstr;
2423 }
2424
2425 /* Memory transfer methods. */
2426
2427 void
2428 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2429 LONGEST len)
2430 {
2431 /* This method is used to read from an alternate, non-current
2432 target. This read must bypass the overlay support (as symbols
2433 don't match this target), and GDB's internal cache (wrong cache
2434 for this target). */
2435 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2436 != len)
2437 memory_error (TARGET_XFER_E_IO, addr);
2438 }
2439
2440 ULONGEST
2441 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2442 int len, enum bfd_endian byte_order)
2443 {
2444 gdb_byte buf[sizeof (ULONGEST)];
2445
2446 gdb_assert (len <= sizeof (buf));
2447 get_target_memory (ops, addr, buf, len);
2448 return extract_unsigned_integer (buf, len, byte_order);
2449 }
2450
2451 int
2452 target_insert_breakpoint (struct gdbarch *gdbarch,
2453 struct bp_target_info *bp_tgt)
2454 {
2455 if (!may_insert_breakpoints)
2456 {
2457 warning (_("May not insert breakpoints"));
2458 return 1;
2459 }
2460
2461 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2462 }
2463
2464 int
2465 target_remove_breakpoint (struct gdbarch *gdbarch,
2466 struct bp_target_info *bp_tgt)
2467 {
2468 /* This is kind of a weird case to handle, but the permission might
2469 have been changed after breakpoints were inserted - in which case
2470 we should just take the user literally and assume that any
2471 breakpoints should be left in place. */
2472 if (!may_insert_breakpoints)
2473 {
2474 warning (_("May not remove breakpoints"));
2475 return 1;
2476 }
2477
2478 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2479 }
2480
2481 static void
2482 target_info (char *args, int from_tty)
2483 {
2484 struct target_ops *t;
2485 int has_all_mem = 0;
2486
2487 if (symfile_objfile != NULL)
2488 printf_unfiltered (_("Symbols from \"%s\".\n"),
2489 objfile_name (symfile_objfile));
2490
2491 for (t = target_stack; t != NULL; t = t->beneath)
2492 {
2493 if (!(*t->to_has_memory) (t))
2494 continue;
2495
2496 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2497 continue;
2498 if (has_all_mem)
2499 printf_unfiltered (_("\tWhile running this, "
2500 "GDB does not access memory from...\n"));
2501 printf_unfiltered ("%s:\n", t->to_longname);
2502 (t->to_files_info) (t);
2503 has_all_mem = (*t->to_has_all_memory) (t);
2504 }
2505 }
2506
2507 /* This function is called before any new inferior is created, e.g.
2508 by running a program, attaching, or connecting to a target.
2509 It cleans up any state from previous invocations which might
2510 change between runs. This is a subset of what target_preopen
2511 resets (things which might change between targets). */
2512
2513 void
2514 target_pre_inferior (int from_tty)
2515 {
2516 /* Clear out solib state. Otherwise the solib state of the previous
2517 inferior might have survived and is entirely wrong for the new
2518 target. This has been observed on GNU/Linux using glibc 2.3. How
2519 to reproduce:
2520
2521 bash$ ./foo&
2522 [1] 4711
2523 bash$ ./foo&
2524 [1] 4712
2525 bash$ gdb ./foo
2526 [...]
2527 (gdb) attach 4711
2528 (gdb) detach
2529 (gdb) attach 4712
2530 Cannot access memory at address 0xdeadbeef
2531 */
2532
2533 /* In some OSs, the shared library list is the same/global/shared
2534 across inferiors. If code is shared between processes, so are
2535 memory regions and features. */
2536 if (!gdbarch_has_global_solist (target_gdbarch ()))
2537 {
2538 no_shared_libraries (NULL, from_tty);
2539
2540 invalidate_target_mem_regions ();
2541
2542 target_clear_description ();
2543 }
2544
2545 agent_capability_invalidate ();
2546 }
2547
2548 /* Callback for iterate_over_inferiors. Gets rid of the given
2549 inferior. */
2550
2551 static int
2552 dispose_inferior (struct inferior *inf, void *args)
2553 {
2554 struct thread_info *thread;
2555
2556 thread = any_thread_of_process (inf->pid);
2557 if (thread)
2558 {
2559 switch_to_thread (thread->ptid);
2560
2561 /* Core inferiors actually should be detached, not killed. */
2562 if (target_has_execution)
2563 target_kill ();
2564 else
2565 target_detach (NULL, 0);
2566 }
2567
2568 return 0;
2569 }
2570
2571 /* This is to be called by the open routine before it does
2572 anything. */
2573
2574 void
2575 target_preopen (int from_tty)
2576 {
2577 dont_repeat ();
2578
2579 if (have_inferiors ())
2580 {
2581 if (!from_tty
2582 || !have_live_inferiors ()
2583 || query (_("A program is being debugged already. Kill it? ")))
2584 iterate_over_inferiors (dispose_inferior, NULL);
2585 else
2586 error (_("Program not killed."));
2587 }
2588
2589 /* Calling target_kill may remove the target from the stack. But if
2590 it doesn't (which seems like a win for UDI), remove it now. */
2591 /* Leave the exec target, though. The user may be switching from a
2592 live process to a core of the same program. */
2593 pop_all_targets_above (file_stratum);
2594
2595 target_pre_inferior (from_tty);
2596 }
2597
2598 /* Detach a target after doing deferred register stores. */
2599
2600 void
2601 target_detach (const char *args, int from_tty)
2602 {
2603 struct target_ops* t;
2604
2605 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2606 /* Don't remove global breakpoints here. They're removed on
2607 disconnection from the target. */
2608 ;
2609 else
2610 /* If we're in breakpoints-always-inserted mode, have to remove
2611 them before detaching. */
2612 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2613
2614 prepare_for_detach ();
2615
2616 for (t = current_target.beneath; t != NULL; t = t->beneath)
2617 {
2618 if (t->to_detach != NULL)
2619 {
2620 t->to_detach (t, args, from_tty);
2621 if (targetdebug)
2622 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2623 args, from_tty);
2624 return;
2625 }
2626 }
2627
2628 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2629 }
2630
2631 void
2632 target_disconnect (char *args, int from_tty)
2633 {
2634 struct target_ops *t;
2635
2636 /* If we're in breakpoints-always-inserted mode or if breakpoints
2637 are global across processes, we have to remove them before
2638 disconnecting. */
2639 remove_breakpoints ();
2640
2641 for (t = current_target.beneath; t != NULL; t = t->beneath)
2642 if (t->to_disconnect != NULL)
2643 {
2644 if (targetdebug)
2645 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2646 args, from_tty);
2647 t->to_disconnect (t, args, from_tty);
2648 return;
2649 }
2650
2651 tcomplain ();
2652 }
2653
2654 ptid_t
2655 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2656 {
2657 struct target_ops *t;
2658
2659 for (t = current_target.beneath; t != NULL; t = t->beneath)
2660 {
2661 if (t->to_wait != NULL)
2662 {
2663 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2664
2665 if (targetdebug)
2666 {
2667 char *status_string;
2668 char *options_string;
2669
2670 status_string = target_waitstatus_to_string (status);
2671 options_string = target_options_to_string (options);
2672 fprintf_unfiltered (gdb_stdlog,
2673 "target_wait (%d, status, options={%s})"
2674 " = %d, %s\n",
2675 ptid_get_pid (ptid), options_string,
2676 ptid_get_pid (retval), status_string);
2677 xfree (status_string);
2678 xfree (options_string);
2679 }
2680
2681 return retval;
2682 }
2683 }
2684
2685 noprocess ();
2686 }
2687
2688 char *
2689 target_pid_to_str (ptid_t ptid)
2690 {
2691 struct target_ops *t;
2692
2693 for (t = current_target.beneath; t != NULL; t = t->beneath)
2694 {
2695 if (t->to_pid_to_str != NULL)
2696 return (*t->to_pid_to_str) (t, ptid);
2697 }
2698
2699 return normal_pid_to_str (ptid);
2700 }
2701
2702 char *
2703 target_thread_name (struct thread_info *info)
2704 {
2705 struct target_ops *t;
2706
2707 for (t = current_target.beneath; t != NULL; t = t->beneath)
2708 {
2709 if (t->to_thread_name != NULL)
2710 return (*t->to_thread_name) (info);
2711 }
2712
2713 return NULL;
2714 }
2715
2716 void
2717 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2718 {
2719 struct target_ops *t;
2720
2721 target_dcache_invalidate ();
2722
2723 for (t = current_target.beneath; t != NULL; t = t->beneath)
2724 {
2725 if (t->to_resume != NULL)
2726 {
2727 t->to_resume (t, ptid, step, signal);
2728 if (targetdebug)
2729 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2730 ptid_get_pid (ptid),
2731 step ? "step" : "continue",
2732 gdb_signal_to_name (signal));
2733
2734 registers_changed_ptid (ptid);
2735 set_executing (ptid, 1);
2736 set_running (ptid, 1);
2737 clear_inline_frame_state (ptid);
2738 return;
2739 }
2740 }
2741
2742 noprocess ();
2743 }
2744
2745 void
2746 target_pass_signals (int numsigs, unsigned char *pass_signals)
2747 {
2748 struct target_ops *t;
2749
2750 for (t = current_target.beneath; t != NULL; t = t->beneath)
2751 {
2752 if (t->to_pass_signals != NULL)
2753 {
2754 if (targetdebug)
2755 {
2756 int i;
2757
2758 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2759 numsigs);
2760
2761 for (i = 0; i < numsigs; i++)
2762 if (pass_signals[i])
2763 fprintf_unfiltered (gdb_stdlog, " %s",
2764 gdb_signal_to_name (i));
2765
2766 fprintf_unfiltered (gdb_stdlog, " })\n");
2767 }
2768
2769 (*t->to_pass_signals) (numsigs, pass_signals);
2770 return;
2771 }
2772 }
2773 }
2774
2775 void
2776 target_program_signals (int numsigs, unsigned char *program_signals)
2777 {
2778 struct target_ops *t;
2779
2780 for (t = current_target.beneath; t != NULL; t = t->beneath)
2781 {
2782 if (t->to_program_signals != NULL)
2783 {
2784 if (targetdebug)
2785 {
2786 int i;
2787
2788 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2789 numsigs);
2790
2791 for (i = 0; i < numsigs; i++)
2792 if (program_signals[i])
2793 fprintf_unfiltered (gdb_stdlog, " %s",
2794 gdb_signal_to_name (i));
2795
2796 fprintf_unfiltered (gdb_stdlog, " })\n");
2797 }
2798
2799 (*t->to_program_signals) (numsigs, program_signals);
2800 return;
2801 }
2802 }
2803 }
2804
2805 /* Look through the list of possible targets for a target that can
2806 follow forks. */
2807
2808 int
2809 target_follow_fork (int follow_child, int detach_fork)
2810 {
2811 struct target_ops *t;
2812
2813 for (t = current_target.beneath; t != NULL; t = t->beneath)
2814 {
2815 if (t->to_follow_fork != NULL)
2816 {
2817 int retval = t->to_follow_fork (t, follow_child, detach_fork);
2818
2819 if (targetdebug)
2820 fprintf_unfiltered (gdb_stdlog,
2821 "target_follow_fork (%d, %d) = %d\n",
2822 follow_child, detach_fork, retval);
2823 return retval;
2824 }
2825 }
2826
2827 /* Some target returned a fork event, but did not know how to follow it. */
2828 internal_error (__FILE__, __LINE__,
2829 _("could not find a target to follow fork"));
2830 }
2831
2832 void
2833 target_mourn_inferior (void)
2834 {
2835 struct target_ops *t;
2836
2837 for (t = current_target.beneath; t != NULL; t = t->beneath)
2838 {
2839 if (t->to_mourn_inferior != NULL)
2840 {
2841 t->to_mourn_inferior (t);
2842 if (targetdebug)
2843 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2844
2845 /* We no longer need to keep handles on any of the object files.
2846 Make sure to release them to avoid unnecessarily locking any
2847 of them while we're not actually debugging. */
2848 bfd_cache_close_all ();
2849
2850 return;
2851 }
2852 }
2853
2854 internal_error (__FILE__, __LINE__,
2855 _("could not find a target to follow mourn inferior"));
2856 }
2857
2858 /* Look for a target which can describe architectural features, starting
2859 from TARGET. If we find one, return its description. */
2860
2861 const struct target_desc *
2862 target_read_description (struct target_ops *target)
2863 {
2864 struct target_ops *t;
2865
2866 for (t = target; t != NULL; t = t->beneath)
2867 if (t->to_read_description != NULL)
2868 {
2869 const struct target_desc *tdesc;
2870
2871 tdesc = t->to_read_description (t);
2872 if (tdesc)
2873 return tdesc;
2874 }
2875
2876 return NULL;
2877 }
2878
2879 /* The default implementation of to_search_memory.
2880 This implements a basic search of memory, reading target memory and
2881 performing the search here (as opposed to performing the search in on the
2882 target side with, for example, gdbserver). */
2883
2884 int
2885 simple_search_memory (struct target_ops *ops,
2886 CORE_ADDR start_addr, ULONGEST search_space_len,
2887 const gdb_byte *pattern, ULONGEST pattern_len,
2888 CORE_ADDR *found_addrp)
2889 {
2890 /* NOTE: also defined in find.c testcase. */
2891 #define SEARCH_CHUNK_SIZE 16000
2892 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2893 /* Buffer to hold memory contents for searching. */
2894 gdb_byte *search_buf;
2895 unsigned search_buf_size;
2896 struct cleanup *old_cleanups;
2897
2898 search_buf_size = chunk_size + pattern_len - 1;
2899
2900 /* No point in trying to allocate a buffer larger than the search space. */
2901 if (search_space_len < search_buf_size)
2902 search_buf_size = search_space_len;
2903
2904 search_buf = malloc (search_buf_size);
2905 if (search_buf == NULL)
2906 error (_("Unable to allocate memory to perform the search."));
2907 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2908
2909 /* Prime the search buffer. */
2910
2911 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2912 search_buf, start_addr, search_buf_size) != search_buf_size)
2913 {
2914 warning (_("Unable to access %s bytes of target "
2915 "memory at %s, halting search."),
2916 pulongest (search_buf_size), hex_string (start_addr));
2917 do_cleanups (old_cleanups);
2918 return -1;
2919 }
2920
2921 /* Perform the search.
2922
2923 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2924 When we've scanned N bytes we copy the trailing bytes to the start and
2925 read in another N bytes. */
2926
2927 while (search_space_len >= pattern_len)
2928 {
2929 gdb_byte *found_ptr;
2930 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2931
2932 found_ptr = memmem (search_buf, nr_search_bytes,
2933 pattern, pattern_len);
2934
2935 if (found_ptr != NULL)
2936 {
2937 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2938
2939 *found_addrp = found_addr;
2940 do_cleanups (old_cleanups);
2941 return 1;
2942 }
2943
2944 /* Not found in this chunk, skip to next chunk. */
2945
2946 /* Don't let search_space_len wrap here, it's unsigned. */
2947 if (search_space_len >= chunk_size)
2948 search_space_len -= chunk_size;
2949 else
2950 search_space_len = 0;
2951
2952 if (search_space_len >= pattern_len)
2953 {
2954 unsigned keep_len = search_buf_size - chunk_size;
2955 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2956 int nr_to_read;
2957
2958 /* Copy the trailing part of the previous iteration to the front
2959 of the buffer for the next iteration. */
2960 gdb_assert (keep_len == pattern_len - 1);
2961 memcpy (search_buf, search_buf + chunk_size, keep_len);
2962
2963 nr_to_read = min (search_space_len - keep_len, chunk_size);
2964
2965 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2966 search_buf + keep_len, read_addr,
2967 nr_to_read) != nr_to_read)
2968 {
2969 warning (_("Unable to access %s bytes of target "
2970 "memory at %s, halting search."),
2971 plongest (nr_to_read),
2972 hex_string (read_addr));
2973 do_cleanups (old_cleanups);
2974 return -1;
2975 }
2976
2977 start_addr += chunk_size;
2978 }
2979 }
2980
2981 /* Not found. */
2982
2983 do_cleanups (old_cleanups);
2984 return 0;
2985 }
2986
2987 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2988 sequence of bytes in PATTERN with length PATTERN_LEN.
2989
2990 The result is 1 if found, 0 if not found, and -1 if there was an error
2991 requiring halting of the search (e.g. memory read error).
2992 If the pattern is found the address is recorded in FOUND_ADDRP. */
2993
2994 int
2995 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2996 const gdb_byte *pattern, ULONGEST pattern_len,
2997 CORE_ADDR *found_addrp)
2998 {
2999 struct target_ops *t;
3000 int found;
3001
3002 /* We don't use INHERIT to set current_target.to_search_memory,
3003 so we have to scan the target stack and handle targetdebug
3004 ourselves. */
3005
3006 if (targetdebug)
3007 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
3008 hex_string (start_addr));
3009
3010 for (t = current_target.beneath; t != NULL; t = t->beneath)
3011 if (t->to_search_memory != NULL)
3012 break;
3013
3014 if (t != NULL)
3015 {
3016 found = t->to_search_memory (t, start_addr, search_space_len,
3017 pattern, pattern_len, found_addrp);
3018 }
3019 else
3020 {
3021 /* If a special version of to_search_memory isn't available, use the
3022 simple version. */
3023 found = simple_search_memory (current_target.beneath,
3024 start_addr, search_space_len,
3025 pattern, pattern_len, found_addrp);
3026 }
3027
3028 if (targetdebug)
3029 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
3030
3031 return found;
3032 }
3033
3034 /* Look through the currently pushed targets. If none of them will
3035 be able to restart the currently running process, issue an error
3036 message. */
3037
3038 void
3039 target_require_runnable (void)
3040 {
3041 struct target_ops *t;
3042
3043 for (t = target_stack; t != NULL; t = t->beneath)
3044 {
3045 /* If this target knows how to create a new program, then
3046 assume we will still be able to after killing the current
3047 one. Either killing and mourning will not pop T, or else
3048 find_default_run_target will find it again. */
3049 if (t->to_create_inferior != NULL)
3050 return;
3051
3052 /* Do not worry about thread_stratum targets that can not
3053 create inferiors. Assume they will be pushed again if
3054 necessary, and continue to the process_stratum. */
3055 if (t->to_stratum == thread_stratum
3056 || t->to_stratum == arch_stratum)
3057 continue;
3058
3059 error (_("The \"%s\" target does not support \"run\". "
3060 "Try \"help target\" or \"continue\"."),
3061 t->to_shortname);
3062 }
3063
3064 /* This function is only called if the target is running. In that
3065 case there should have been a process_stratum target and it
3066 should either know how to create inferiors, or not... */
3067 internal_error (__FILE__, __LINE__, _("No targets found"));
3068 }
3069
3070 /* Look through the list of possible targets for a target that can
3071 execute a run or attach command without any other data. This is
3072 used to locate the default process stratum.
3073
3074 If DO_MESG is not NULL, the result is always valid (error() is
3075 called for errors); else, return NULL on error. */
3076
3077 static struct target_ops *
3078 find_default_run_target (char *do_mesg)
3079 {
3080 struct target_ops **t;
3081 struct target_ops *runable = NULL;
3082 int count;
3083
3084 count = 0;
3085
3086 for (t = target_structs; t < target_structs + target_struct_size;
3087 ++t)
3088 {
3089 if ((*t)->to_can_run && target_can_run (*t))
3090 {
3091 runable = *t;
3092 ++count;
3093 }
3094 }
3095
3096 if (count != 1)
3097 {
3098 if (do_mesg)
3099 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3100 else
3101 return NULL;
3102 }
3103
3104 return runable;
3105 }
3106
3107 void
3108 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3109 {
3110 struct target_ops *t;
3111
3112 t = find_default_run_target ("attach");
3113 (t->to_attach) (t, args, from_tty);
3114 return;
3115 }
3116
3117 void
3118 find_default_create_inferior (struct target_ops *ops,
3119 char *exec_file, char *allargs, char **env,
3120 int from_tty)
3121 {
3122 struct target_ops *t;
3123
3124 t = find_default_run_target ("run");
3125 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3126 return;
3127 }
3128
3129 static int
3130 find_default_can_async_p (void)
3131 {
3132 struct target_ops *t;
3133
3134 /* This may be called before the target is pushed on the stack;
3135 look for the default process stratum. If there's none, gdb isn't
3136 configured with a native debugger, and target remote isn't
3137 connected yet. */
3138 t = find_default_run_target (NULL);
3139 if (t && t->to_can_async_p)
3140 return (t->to_can_async_p) ();
3141 return 0;
3142 }
3143
3144 static int
3145 find_default_is_async_p (void)
3146 {
3147 struct target_ops *t;
3148
3149 /* This may be called before the target is pushed on the stack;
3150 look for the default process stratum. If there's none, gdb isn't
3151 configured with a native debugger, and target remote isn't
3152 connected yet. */
3153 t = find_default_run_target (NULL);
3154 if (t && t->to_is_async_p)
3155 return (t->to_is_async_p) ();
3156 return 0;
3157 }
3158
3159 static int
3160 find_default_supports_non_stop (void)
3161 {
3162 struct target_ops *t;
3163
3164 t = find_default_run_target (NULL);
3165 if (t && t->to_supports_non_stop)
3166 return (t->to_supports_non_stop) ();
3167 return 0;
3168 }
3169
3170 int
3171 target_supports_non_stop (void)
3172 {
3173 struct target_ops *t;
3174
3175 for (t = &current_target; t != NULL; t = t->beneath)
3176 if (t->to_supports_non_stop)
3177 return t->to_supports_non_stop ();
3178
3179 return 0;
3180 }
3181
3182 /* Implement the "info proc" command. */
3183
3184 int
3185 target_info_proc (char *args, enum info_proc_what what)
3186 {
3187 struct target_ops *t;
3188
3189 /* If we're already connected to something that can get us OS
3190 related data, use it. Otherwise, try using the native
3191 target. */
3192 if (current_target.to_stratum >= process_stratum)
3193 t = current_target.beneath;
3194 else
3195 t = find_default_run_target (NULL);
3196
3197 for (; t != NULL; t = t->beneath)
3198 {
3199 if (t->to_info_proc != NULL)
3200 {
3201 t->to_info_proc (t, args, what);
3202
3203 if (targetdebug)
3204 fprintf_unfiltered (gdb_stdlog,
3205 "target_info_proc (\"%s\", %d)\n", args, what);
3206
3207 return 1;
3208 }
3209 }
3210
3211 return 0;
3212 }
3213
3214 static int
3215 find_default_supports_disable_randomization (void)
3216 {
3217 struct target_ops *t;
3218
3219 t = find_default_run_target (NULL);
3220 if (t && t->to_supports_disable_randomization)
3221 return (t->to_supports_disable_randomization) ();
3222 return 0;
3223 }
3224
3225 int
3226 target_supports_disable_randomization (void)
3227 {
3228 struct target_ops *t;
3229
3230 for (t = &current_target; t != NULL; t = t->beneath)
3231 if (t->to_supports_disable_randomization)
3232 return t->to_supports_disable_randomization ();
3233
3234 return 0;
3235 }
3236
3237 char *
3238 target_get_osdata (const char *type)
3239 {
3240 struct target_ops *t;
3241
3242 /* If we're already connected to something that can get us OS
3243 related data, use it. Otherwise, try using the native
3244 target. */
3245 if (current_target.to_stratum >= process_stratum)
3246 t = current_target.beneath;
3247 else
3248 t = find_default_run_target ("get OS data");
3249
3250 if (!t)
3251 return NULL;
3252
3253 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3254 }
3255
3256 /* Determine the current address space of thread PTID. */
3257
3258 struct address_space *
3259 target_thread_address_space (ptid_t ptid)
3260 {
3261 struct address_space *aspace;
3262 struct inferior *inf;
3263 struct target_ops *t;
3264
3265 for (t = current_target.beneath; t != NULL; t = t->beneath)
3266 {
3267 if (t->to_thread_address_space != NULL)
3268 {
3269 aspace = t->to_thread_address_space (t, ptid);
3270 gdb_assert (aspace);
3271
3272 if (targetdebug)
3273 fprintf_unfiltered (gdb_stdlog,
3274 "target_thread_address_space (%s) = %d\n",
3275 target_pid_to_str (ptid),
3276 address_space_num (aspace));
3277 return aspace;
3278 }
3279 }
3280
3281 /* Fall-back to the "main" address space of the inferior. */
3282 inf = find_inferior_pid (ptid_get_pid (ptid));
3283
3284 if (inf == NULL || inf->aspace == NULL)
3285 internal_error (__FILE__, __LINE__,
3286 _("Can't determine the current "
3287 "address space of thread %s\n"),
3288 target_pid_to_str (ptid));
3289
3290 return inf->aspace;
3291 }
3292
3293
3294 /* Target file operations. */
3295
3296 static struct target_ops *
3297 default_fileio_target (void)
3298 {
3299 /* If we're already connected to something that can perform
3300 file I/O, use it. Otherwise, try using the native target. */
3301 if (current_target.to_stratum >= process_stratum)
3302 return current_target.beneath;
3303 else
3304 return find_default_run_target ("file I/O");
3305 }
3306
3307 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3308 target file descriptor, or -1 if an error occurs (and set
3309 *TARGET_ERRNO). */
3310 int
3311 target_fileio_open (const char *filename, int flags, int mode,
3312 int *target_errno)
3313 {
3314 struct target_ops *t;
3315
3316 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3317 {
3318 if (t->to_fileio_open != NULL)
3319 {
3320 int fd = t->to_fileio_open (filename, flags, mode, target_errno);
3321
3322 if (targetdebug)
3323 fprintf_unfiltered (gdb_stdlog,
3324 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3325 filename, flags, mode,
3326 fd, fd != -1 ? 0 : *target_errno);
3327 return fd;
3328 }
3329 }
3330
3331 *target_errno = FILEIO_ENOSYS;
3332 return -1;
3333 }
3334
3335 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3336 Return the number of bytes written, or -1 if an error occurs
3337 (and set *TARGET_ERRNO). */
3338 int
3339 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3340 ULONGEST offset, int *target_errno)
3341 {
3342 struct target_ops *t;
3343
3344 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3345 {
3346 if (t->to_fileio_pwrite != NULL)
3347 {
3348 int ret = t->to_fileio_pwrite (fd, write_buf, len, offset,
3349 target_errno);
3350
3351 if (targetdebug)
3352 fprintf_unfiltered (gdb_stdlog,
3353 "target_fileio_pwrite (%d,...,%d,%s) "
3354 "= %d (%d)\n",
3355 fd, len, pulongest (offset),
3356 ret, ret != -1 ? 0 : *target_errno);
3357 return ret;
3358 }
3359 }
3360
3361 *target_errno = FILEIO_ENOSYS;
3362 return -1;
3363 }
3364
3365 /* Read up to LEN bytes FD on the target into READ_BUF.
3366 Return the number of bytes read, or -1 if an error occurs
3367 (and set *TARGET_ERRNO). */
3368 int
3369 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3370 ULONGEST offset, int *target_errno)
3371 {
3372 struct target_ops *t;
3373
3374 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3375 {
3376 if (t->to_fileio_pread != NULL)
3377 {
3378 int ret = t->to_fileio_pread (fd, read_buf, len, offset,
3379 target_errno);
3380
3381 if (targetdebug)
3382 fprintf_unfiltered (gdb_stdlog,
3383 "target_fileio_pread (%d,...,%d,%s) "
3384 "= %d (%d)\n",
3385 fd, len, pulongest (offset),
3386 ret, ret != -1 ? 0 : *target_errno);
3387 return ret;
3388 }
3389 }
3390
3391 *target_errno = FILEIO_ENOSYS;
3392 return -1;
3393 }
3394
3395 /* Close FD on the target. Return 0, or -1 if an error occurs
3396 (and set *TARGET_ERRNO). */
3397 int
3398 target_fileio_close (int fd, int *target_errno)
3399 {
3400 struct target_ops *t;
3401
3402 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3403 {
3404 if (t->to_fileio_close != NULL)
3405 {
3406 int ret = t->to_fileio_close (fd, target_errno);
3407
3408 if (targetdebug)
3409 fprintf_unfiltered (gdb_stdlog,
3410 "target_fileio_close (%d) = %d (%d)\n",
3411 fd, ret, ret != -1 ? 0 : *target_errno);
3412 return ret;
3413 }
3414 }
3415
3416 *target_errno = FILEIO_ENOSYS;
3417 return -1;
3418 }
3419
3420 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3421 occurs (and set *TARGET_ERRNO). */
3422 int
3423 target_fileio_unlink (const char *filename, int *target_errno)
3424 {
3425 struct target_ops *t;
3426
3427 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3428 {
3429 if (t->to_fileio_unlink != NULL)
3430 {
3431 int ret = t->to_fileio_unlink (filename, target_errno);
3432
3433 if (targetdebug)
3434 fprintf_unfiltered (gdb_stdlog,
3435 "target_fileio_unlink (%s) = %d (%d)\n",
3436 filename, ret, ret != -1 ? 0 : *target_errno);
3437 return ret;
3438 }
3439 }
3440
3441 *target_errno = FILEIO_ENOSYS;
3442 return -1;
3443 }
3444
3445 /* Read value of symbolic link FILENAME on the target. Return a
3446 null-terminated string allocated via xmalloc, or NULL if an error
3447 occurs (and set *TARGET_ERRNO). */
3448 char *
3449 target_fileio_readlink (const char *filename, int *target_errno)
3450 {
3451 struct target_ops *t;
3452
3453 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3454 {
3455 if (t->to_fileio_readlink != NULL)
3456 {
3457 char *ret = t->to_fileio_readlink (filename, target_errno);
3458
3459 if (targetdebug)
3460 fprintf_unfiltered (gdb_stdlog,
3461 "target_fileio_readlink (%s) = %s (%d)\n",
3462 filename, ret? ret : "(nil)",
3463 ret? 0 : *target_errno);
3464 return ret;
3465 }
3466 }
3467
3468 *target_errno = FILEIO_ENOSYS;
3469 return NULL;
3470 }
3471
3472 static void
3473 target_fileio_close_cleanup (void *opaque)
3474 {
3475 int fd = *(int *) opaque;
3476 int target_errno;
3477
3478 target_fileio_close (fd, &target_errno);
3479 }
3480
3481 /* Read target file FILENAME. Store the result in *BUF_P and
3482 return the size of the transferred data. PADDING additional bytes are
3483 available in *BUF_P. This is a helper function for
3484 target_fileio_read_alloc; see the declaration of that function for more
3485 information. */
3486
3487 static LONGEST
3488 target_fileio_read_alloc_1 (const char *filename,
3489 gdb_byte **buf_p, int padding)
3490 {
3491 struct cleanup *close_cleanup;
3492 size_t buf_alloc, buf_pos;
3493 gdb_byte *buf;
3494 LONGEST n;
3495 int fd;
3496 int target_errno;
3497
3498 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3499 if (fd == -1)
3500 return -1;
3501
3502 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3503
3504 /* Start by reading up to 4K at a time. The target will throttle
3505 this number down if necessary. */
3506 buf_alloc = 4096;
3507 buf = xmalloc (buf_alloc);
3508 buf_pos = 0;
3509 while (1)
3510 {
3511 n = target_fileio_pread (fd, &buf[buf_pos],
3512 buf_alloc - buf_pos - padding, buf_pos,
3513 &target_errno);
3514 if (n < 0)
3515 {
3516 /* An error occurred. */
3517 do_cleanups (close_cleanup);
3518 xfree (buf);
3519 return -1;
3520 }
3521 else if (n == 0)
3522 {
3523 /* Read all there was. */
3524 do_cleanups (close_cleanup);
3525 if (buf_pos == 0)
3526 xfree (buf);
3527 else
3528 *buf_p = buf;
3529 return buf_pos;
3530 }
3531
3532 buf_pos += n;
3533
3534 /* If the buffer is filling up, expand it. */
3535 if (buf_alloc < buf_pos * 2)
3536 {
3537 buf_alloc *= 2;
3538 buf = xrealloc (buf, buf_alloc);
3539 }
3540
3541 QUIT;
3542 }
3543 }
3544
3545 /* Read target file FILENAME. Store the result in *BUF_P and return
3546 the size of the transferred data. See the declaration in "target.h"
3547 function for more information about the return value. */
3548
3549 LONGEST
3550 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3551 {
3552 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3553 }
3554
3555 /* Read target file FILENAME. The result is NUL-terminated and
3556 returned as a string, allocated using xmalloc. If an error occurs
3557 or the transfer is unsupported, NULL is returned. Empty objects
3558 are returned as allocated but empty strings. A warning is issued
3559 if the result contains any embedded NUL bytes. */
3560
3561 char *
3562 target_fileio_read_stralloc (const char *filename)
3563 {
3564 gdb_byte *buffer;
3565 char *bufstr;
3566 LONGEST i, transferred;
3567
3568 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3569 bufstr = (char *) buffer;
3570
3571 if (transferred < 0)
3572 return NULL;
3573
3574 if (transferred == 0)
3575 return xstrdup ("");
3576
3577 bufstr[transferred] = 0;
3578
3579 /* Check for embedded NUL bytes; but allow trailing NULs. */
3580 for (i = strlen (bufstr); i < transferred; i++)
3581 if (bufstr[i] != 0)
3582 {
3583 warning (_("target file %s "
3584 "contained unexpected null characters"),
3585 filename);
3586 break;
3587 }
3588
3589 return bufstr;
3590 }
3591
3592
3593 static int
3594 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3595 {
3596 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3597 }
3598
3599 static int
3600 default_watchpoint_addr_within_range (struct target_ops *target,
3601 CORE_ADDR addr,
3602 CORE_ADDR start, int length)
3603 {
3604 return addr >= start && addr < start + length;
3605 }
3606
3607 static struct gdbarch *
3608 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3609 {
3610 return target_gdbarch ();
3611 }
3612
3613 static int
3614 return_zero (void)
3615 {
3616 return 0;
3617 }
3618
3619 static int
3620 return_one (void)
3621 {
3622 return 1;
3623 }
3624
3625 static int
3626 return_minus_one (void)
3627 {
3628 return -1;
3629 }
3630
3631 /*
3632 * Find the next target down the stack from the specified target.
3633 */
3634
3635 struct target_ops *
3636 find_target_beneath (struct target_ops *t)
3637 {
3638 return t->beneath;
3639 }
3640
3641 \f
3642 /* The inferior process has died. Long live the inferior! */
3643
3644 void
3645 generic_mourn_inferior (void)
3646 {
3647 ptid_t ptid;
3648
3649 ptid = inferior_ptid;
3650 inferior_ptid = null_ptid;
3651
3652 /* Mark breakpoints uninserted in case something tries to delete a
3653 breakpoint while we delete the inferior's threads (which would
3654 fail, since the inferior is long gone). */
3655 mark_breakpoints_out ();
3656
3657 if (!ptid_equal (ptid, null_ptid))
3658 {
3659 int pid = ptid_get_pid (ptid);
3660 exit_inferior (pid);
3661 }
3662
3663 /* Note this wipes step-resume breakpoints, so needs to be done
3664 after exit_inferior, which ends up referencing the step-resume
3665 breakpoints through clear_thread_inferior_resources. */
3666 breakpoint_init_inferior (inf_exited);
3667
3668 registers_changed ();
3669
3670 reopen_exec_file ();
3671 reinit_frame_cache ();
3672
3673 if (deprecated_detach_hook)
3674 deprecated_detach_hook ();
3675 }
3676 \f
3677 /* Convert a normal process ID to a string. Returns the string in a
3678 static buffer. */
3679
3680 char *
3681 normal_pid_to_str (ptid_t ptid)
3682 {
3683 static char buf[32];
3684
3685 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3686 return buf;
3687 }
3688
3689 static char *
3690 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3691 {
3692 return normal_pid_to_str (ptid);
3693 }
3694
3695 /* Error-catcher for target_find_memory_regions. */
3696 static int
3697 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3698 {
3699 error (_("Command not implemented for this target."));
3700 return 0;
3701 }
3702
3703 /* Error-catcher for target_make_corefile_notes. */
3704 static char *
3705 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3706 {
3707 error (_("Command not implemented for this target."));
3708 return NULL;
3709 }
3710
3711 /* Error-catcher for target_get_bookmark. */
3712 static gdb_byte *
3713 dummy_get_bookmark (char *ignore1, int ignore2)
3714 {
3715 tcomplain ();
3716 return NULL;
3717 }
3718
3719 /* Error-catcher for target_goto_bookmark. */
3720 static void
3721 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3722 {
3723 tcomplain ();
3724 }
3725
3726 /* Set up the handful of non-empty slots needed by the dummy target
3727 vector. */
3728
3729 static void
3730 init_dummy_target (void)
3731 {
3732 dummy_target.to_shortname = "None";
3733 dummy_target.to_longname = "None";
3734 dummy_target.to_doc = "";
3735 dummy_target.to_attach = find_default_attach;
3736 dummy_target.to_detach =
3737 (void (*)(struct target_ops *, const char *, int))target_ignore;
3738 dummy_target.to_create_inferior = find_default_create_inferior;
3739 dummy_target.to_can_async_p = find_default_can_async_p;
3740 dummy_target.to_is_async_p = find_default_is_async_p;
3741 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3742 dummy_target.to_supports_disable_randomization
3743 = find_default_supports_disable_randomization;
3744 dummy_target.to_pid_to_str = dummy_pid_to_str;
3745 dummy_target.to_stratum = dummy_stratum;
3746 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3747 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3748 dummy_target.to_get_bookmark = dummy_get_bookmark;
3749 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3750 dummy_target.to_xfer_partial = default_xfer_partial;
3751 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3752 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3753 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3754 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3755 dummy_target.to_has_execution
3756 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3757 dummy_target.to_stopped_by_watchpoint = return_zero;
3758 dummy_target.to_stopped_data_address =
3759 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3760 dummy_target.to_magic = OPS_MAGIC;
3761 }
3762 \f
3763 static void
3764 debug_to_open (char *args, int from_tty)
3765 {
3766 debug_target.to_open (args, from_tty);
3767
3768 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3769 }
3770
3771 void
3772 target_close (struct target_ops *targ)
3773 {
3774 gdb_assert (!target_is_pushed (targ));
3775
3776 if (targ->to_xclose != NULL)
3777 targ->to_xclose (targ);
3778 else if (targ->to_close != NULL)
3779 targ->to_close ();
3780
3781 if (targetdebug)
3782 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3783 }
3784
3785 void
3786 target_attach (char *args, int from_tty)
3787 {
3788 struct target_ops *t;
3789
3790 for (t = current_target.beneath; t != NULL; t = t->beneath)
3791 {
3792 if (t->to_attach != NULL)
3793 {
3794 t->to_attach (t, args, from_tty);
3795 if (targetdebug)
3796 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3797 args, from_tty);
3798 return;
3799 }
3800 }
3801
3802 internal_error (__FILE__, __LINE__,
3803 _("could not find a target to attach"));
3804 }
3805
3806 int
3807 target_thread_alive (ptid_t ptid)
3808 {
3809 struct target_ops *t;
3810
3811 for (t = current_target.beneath; t != NULL; t = t->beneath)
3812 {
3813 if (t->to_thread_alive != NULL)
3814 {
3815 int retval;
3816
3817 retval = t->to_thread_alive (t, ptid);
3818 if (targetdebug)
3819 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3820 ptid_get_pid (ptid), retval);
3821
3822 return retval;
3823 }
3824 }
3825
3826 return 0;
3827 }
3828
3829 void
3830 target_find_new_threads (void)
3831 {
3832 struct target_ops *t;
3833
3834 for (t = current_target.beneath; t != NULL; t = t->beneath)
3835 {
3836 if (t->to_find_new_threads != NULL)
3837 {
3838 t->to_find_new_threads (t);
3839 if (targetdebug)
3840 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3841
3842 return;
3843 }
3844 }
3845 }
3846
3847 void
3848 target_stop (ptid_t ptid)
3849 {
3850 if (!may_stop)
3851 {
3852 warning (_("May not interrupt or stop the target, ignoring attempt"));
3853 return;
3854 }
3855
3856 (*current_target.to_stop) (ptid);
3857 }
3858
3859 static void
3860 debug_to_post_attach (int pid)
3861 {
3862 debug_target.to_post_attach (pid);
3863
3864 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3865 }
3866
3867 /* Concatenate ELEM to LIST, a comma separate list, and return the
3868 result. The LIST incoming argument is released. */
3869
3870 static char *
3871 str_comma_list_concat_elem (char *list, const char *elem)
3872 {
3873 if (list == NULL)
3874 return xstrdup (elem);
3875 else
3876 return reconcat (list, list, ", ", elem, (char *) NULL);
3877 }
3878
3879 /* Helper for target_options_to_string. If OPT is present in
3880 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3881 Returns the new resulting string. OPT is removed from
3882 TARGET_OPTIONS. */
3883
3884 static char *
3885 do_option (int *target_options, char *ret,
3886 int opt, char *opt_str)
3887 {
3888 if ((*target_options & opt) != 0)
3889 {
3890 ret = str_comma_list_concat_elem (ret, opt_str);
3891 *target_options &= ~opt;
3892 }
3893
3894 return ret;
3895 }
3896
3897 char *
3898 target_options_to_string (int target_options)
3899 {
3900 char *ret = NULL;
3901
3902 #define DO_TARG_OPTION(OPT) \
3903 ret = do_option (&target_options, ret, OPT, #OPT)
3904
3905 DO_TARG_OPTION (TARGET_WNOHANG);
3906
3907 if (target_options != 0)
3908 ret = str_comma_list_concat_elem (ret, "unknown???");
3909
3910 if (ret == NULL)
3911 ret = xstrdup ("");
3912 return ret;
3913 }
3914
3915 static void
3916 debug_print_register (const char * func,
3917 struct regcache *regcache, int regno)
3918 {
3919 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3920
3921 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3922 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3923 && gdbarch_register_name (gdbarch, regno) != NULL
3924 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3925 fprintf_unfiltered (gdb_stdlog, "(%s)",
3926 gdbarch_register_name (gdbarch, regno));
3927 else
3928 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3929 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3930 {
3931 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3932 int i, size = register_size (gdbarch, regno);
3933 gdb_byte buf[MAX_REGISTER_SIZE];
3934
3935 regcache_raw_collect (regcache, regno, buf);
3936 fprintf_unfiltered (gdb_stdlog, " = ");
3937 for (i = 0; i < size; i++)
3938 {
3939 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3940 }
3941 if (size <= sizeof (LONGEST))
3942 {
3943 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3944
3945 fprintf_unfiltered (gdb_stdlog, " %s %s",
3946 core_addr_to_string_nz (val), plongest (val));
3947 }
3948 }
3949 fprintf_unfiltered (gdb_stdlog, "\n");
3950 }
3951
3952 void
3953 target_fetch_registers (struct regcache *regcache, int regno)
3954 {
3955 struct target_ops *t;
3956
3957 for (t = current_target.beneath; t != NULL; t = t->beneath)
3958 {
3959 if (t->to_fetch_registers != NULL)
3960 {
3961 t->to_fetch_registers (t, regcache, regno);
3962 if (targetdebug)
3963 debug_print_register ("target_fetch_registers", regcache, regno);
3964 return;
3965 }
3966 }
3967 }
3968
3969 void
3970 target_store_registers (struct regcache *regcache, int regno)
3971 {
3972 struct target_ops *t;
3973
3974 if (!may_write_registers)
3975 error (_("Writing to registers is not allowed (regno %d)"), regno);
3976
3977 for (t = current_target.beneath; t != NULL; t = t->beneath)
3978 {
3979 if (t->to_store_registers != NULL)
3980 {
3981 t->to_store_registers (t, regcache, regno);
3982 if (targetdebug)
3983 {
3984 debug_print_register ("target_store_registers", regcache, regno);
3985 }
3986 return;
3987 }
3988 }
3989
3990 noprocess ();
3991 }
3992
3993 int
3994 target_core_of_thread (ptid_t ptid)
3995 {
3996 struct target_ops *t;
3997
3998 for (t = current_target.beneath; t != NULL; t = t->beneath)
3999 {
4000 if (t->to_core_of_thread != NULL)
4001 {
4002 int retval = t->to_core_of_thread (t, ptid);
4003
4004 if (targetdebug)
4005 fprintf_unfiltered (gdb_stdlog,
4006 "target_core_of_thread (%d) = %d\n",
4007 ptid_get_pid (ptid), retval);
4008 return retval;
4009 }
4010 }
4011
4012 return -1;
4013 }
4014
4015 int
4016 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
4017 {
4018 struct target_ops *t;
4019
4020 for (t = current_target.beneath; t != NULL; t = t->beneath)
4021 {
4022 if (t->to_verify_memory != NULL)
4023 {
4024 int retval = t->to_verify_memory (t, data, memaddr, size);
4025
4026 if (targetdebug)
4027 fprintf_unfiltered (gdb_stdlog,
4028 "target_verify_memory (%s, %s) = %d\n",
4029 paddress (target_gdbarch (), memaddr),
4030 pulongest (size),
4031 retval);
4032 return retval;
4033 }
4034 }
4035
4036 tcomplain ();
4037 }
4038
4039 /* The documentation for this function is in its prototype declaration in
4040 target.h. */
4041
4042 int
4043 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4044 {
4045 struct target_ops *t;
4046
4047 for (t = current_target.beneath; t != NULL; t = t->beneath)
4048 if (t->to_insert_mask_watchpoint != NULL)
4049 {
4050 int ret;
4051
4052 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
4053
4054 if (targetdebug)
4055 fprintf_unfiltered (gdb_stdlog, "\
4056 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
4057 core_addr_to_string (addr),
4058 core_addr_to_string (mask), rw, ret);
4059
4060 return ret;
4061 }
4062
4063 return 1;
4064 }
4065
4066 /* The documentation for this function is in its prototype declaration in
4067 target.h. */
4068
4069 int
4070 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4071 {
4072 struct target_ops *t;
4073
4074 for (t = current_target.beneath; t != NULL; t = t->beneath)
4075 if (t->to_remove_mask_watchpoint != NULL)
4076 {
4077 int ret;
4078
4079 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
4080
4081 if (targetdebug)
4082 fprintf_unfiltered (gdb_stdlog, "\
4083 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
4084 core_addr_to_string (addr),
4085 core_addr_to_string (mask), rw, ret);
4086
4087 return ret;
4088 }
4089
4090 return 1;
4091 }
4092
4093 /* The documentation for this function is in its prototype declaration
4094 in target.h. */
4095
4096 int
4097 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4098 {
4099 struct target_ops *t;
4100
4101 for (t = current_target.beneath; t != NULL; t = t->beneath)
4102 if (t->to_masked_watch_num_registers != NULL)
4103 return t->to_masked_watch_num_registers (t, addr, mask);
4104
4105 return -1;
4106 }
4107
4108 /* The documentation for this function is in its prototype declaration
4109 in target.h. */
4110
4111 int
4112 target_ranged_break_num_registers (void)
4113 {
4114 struct target_ops *t;
4115
4116 for (t = current_target.beneath; t != NULL; t = t->beneath)
4117 if (t->to_ranged_break_num_registers != NULL)
4118 return t->to_ranged_break_num_registers (t);
4119
4120 return -1;
4121 }
4122
4123 /* See target.h. */
4124
4125 int
4126 target_supports_btrace (void)
4127 {
4128 struct target_ops *t;
4129
4130 for (t = current_target.beneath; t != NULL; t = t->beneath)
4131 if (t->to_supports_btrace != NULL)
4132 return t->to_supports_btrace ();
4133
4134 return 0;
4135 }
4136
4137 /* See target.h. */
4138
4139 struct btrace_target_info *
4140 target_enable_btrace (ptid_t ptid)
4141 {
4142 struct target_ops *t;
4143
4144 for (t = current_target.beneath; t != NULL; t = t->beneath)
4145 if (t->to_enable_btrace != NULL)
4146 return t->to_enable_btrace (ptid);
4147
4148 tcomplain ();
4149 return NULL;
4150 }
4151
4152 /* See target.h. */
4153
4154 void
4155 target_disable_btrace (struct btrace_target_info *btinfo)
4156 {
4157 struct target_ops *t;
4158
4159 for (t = current_target.beneath; t != NULL; t = t->beneath)
4160 if (t->to_disable_btrace != NULL)
4161 {
4162 t->to_disable_btrace (btinfo);
4163 return;
4164 }
4165
4166 tcomplain ();
4167 }
4168
4169 /* See target.h. */
4170
4171 void
4172 target_teardown_btrace (struct btrace_target_info *btinfo)
4173 {
4174 struct target_ops *t;
4175
4176 for (t = current_target.beneath; t != NULL; t = t->beneath)
4177 if (t->to_teardown_btrace != NULL)
4178 {
4179 t->to_teardown_btrace (btinfo);
4180 return;
4181 }
4182
4183 tcomplain ();
4184 }
4185
4186 /* See target.h. */
4187
4188 VEC (btrace_block_s) *
4189 target_read_btrace (struct btrace_target_info *btinfo,
4190 enum btrace_read_type type)
4191 {
4192 struct target_ops *t;
4193
4194 for (t = current_target.beneath; t != NULL; t = t->beneath)
4195 if (t->to_read_btrace != NULL)
4196 return t->to_read_btrace (btinfo, type);
4197
4198 tcomplain ();
4199 return NULL;
4200 }
4201
4202 /* See target.h. */
4203
4204 void
4205 target_stop_recording (void)
4206 {
4207 struct target_ops *t;
4208
4209 for (t = current_target.beneath; t != NULL; t = t->beneath)
4210 if (t->to_stop_recording != NULL)
4211 {
4212 t->to_stop_recording ();
4213 return;
4214 }
4215
4216 /* This is optional. */
4217 }
4218
4219 /* See target.h. */
4220
4221 void
4222 target_info_record (void)
4223 {
4224 struct target_ops *t;
4225
4226 for (t = current_target.beneath; t != NULL; t = t->beneath)
4227 if (t->to_info_record != NULL)
4228 {
4229 t->to_info_record ();
4230 return;
4231 }
4232
4233 tcomplain ();
4234 }
4235
4236 /* See target.h. */
4237
4238 void
4239 target_save_record (const char *filename)
4240 {
4241 struct target_ops *t;
4242
4243 for (t = current_target.beneath; t != NULL; t = t->beneath)
4244 if (t->to_save_record != NULL)
4245 {
4246 t->to_save_record (filename);
4247 return;
4248 }
4249
4250 tcomplain ();
4251 }
4252
4253 /* See target.h. */
4254
4255 int
4256 target_supports_delete_record (void)
4257 {
4258 struct target_ops *t;
4259
4260 for (t = current_target.beneath; t != NULL; t = t->beneath)
4261 if (t->to_delete_record != NULL)
4262 return 1;
4263
4264 return 0;
4265 }
4266
4267 /* See target.h. */
4268
4269 void
4270 target_delete_record (void)
4271 {
4272 struct target_ops *t;
4273
4274 for (t = current_target.beneath; t != NULL; t = t->beneath)
4275 if (t->to_delete_record != NULL)
4276 {
4277 t->to_delete_record ();
4278 return;
4279 }
4280
4281 tcomplain ();
4282 }
4283
4284 /* See target.h. */
4285
4286 int
4287 target_record_is_replaying (void)
4288 {
4289 struct target_ops *t;
4290
4291 for (t = current_target.beneath; t != NULL; t = t->beneath)
4292 if (t->to_record_is_replaying != NULL)
4293 return t->to_record_is_replaying ();
4294
4295 return 0;
4296 }
4297
4298 /* See target.h. */
4299
4300 void
4301 target_goto_record_begin (void)
4302 {
4303 struct target_ops *t;
4304
4305 for (t = current_target.beneath; t != NULL; t = t->beneath)
4306 if (t->to_goto_record_begin != NULL)
4307 {
4308 t->to_goto_record_begin ();
4309 return;
4310 }
4311
4312 tcomplain ();
4313 }
4314
4315 /* See target.h. */
4316
4317 void
4318 target_goto_record_end (void)
4319 {
4320 struct target_ops *t;
4321
4322 for (t = current_target.beneath; t != NULL; t = t->beneath)
4323 if (t->to_goto_record_end != NULL)
4324 {
4325 t->to_goto_record_end ();
4326 return;
4327 }
4328
4329 tcomplain ();
4330 }
4331
4332 /* See target.h. */
4333
4334 void
4335 target_goto_record (ULONGEST insn)
4336 {
4337 struct target_ops *t;
4338
4339 for (t = current_target.beneath; t != NULL; t = t->beneath)
4340 if (t->to_goto_record != NULL)
4341 {
4342 t->to_goto_record (insn);
4343 return;
4344 }
4345
4346 tcomplain ();
4347 }
4348
4349 /* See target.h. */
4350
4351 void
4352 target_insn_history (int size, int flags)
4353 {
4354 struct target_ops *t;
4355
4356 for (t = current_target.beneath; t != NULL; t = t->beneath)
4357 if (t->to_insn_history != NULL)
4358 {
4359 t->to_insn_history (size, flags);
4360 return;
4361 }
4362
4363 tcomplain ();
4364 }
4365
4366 /* See target.h. */
4367
4368 void
4369 target_insn_history_from (ULONGEST from, int size, int flags)
4370 {
4371 struct target_ops *t;
4372
4373 for (t = current_target.beneath; t != NULL; t = t->beneath)
4374 if (t->to_insn_history_from != NULL)
4375 {
4376 t->to_insn_history_from (from, size, flags);
4377 return;
4378 }
4379
4380 tcomplain ();
4381 }
4382
4383 /* See target.h. */
4384
4385 void
4386 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4387 {
4388 struct target_ops *t;
4389
4390 for (t = current_target.beneath; t != NULL; t = t->beneath)
4391 if (t->to_insn_history_range != NULL)
4392 {
4393 t->to_insn_history_range (begin, end, flags);
4394 return;
4395 }
4396
4397 tcomplain ();
4398 }
4399
4400 /* See target.h. */
4401
4402 void
4403 target_call_history (int size, int flags)
4404 {
4405 struct target_ops *t;
4406
4407 for (t = current_target.beneath; t != NULL; t = t->beneath)
4408 if (t->to_call_history != NULL)
4409 {
4410 t->to_call_history (size, flags);
4411 return;
4412 }
4413
4414 tcomplain ();
4415 }
4416
4417 /* See target.h. */
4418
4419 void
4420 target_call_history_from (ULONGEST begin, int size, int flags)
4421 {
4422 struct target_ops *t;
4423
4424 for (t = current_target.beneath; t != NULL; t = t->beneath)
4425 if (t->to_call_history_from != NULL)
4426 {
4427 t->to_call_history_from (begin, size, flags);
4428 return;
4429 }
4430
4431 tcomplain ();
4432 }
4433
4434 /* See target.h. */
4435
4436 void
4437 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4438 {
4439 struct target_ops *t;
4440
4441 for (t = current_target.beneath; t != NULL; t = t->beneath)
4442 if (t->to_call_history_range != NULL)
4443 {
4444 t->to_call_history_range (begin, end, flags);
4445 return;
4446 }
4447
4448 tcomplain ();
4449 }
4450
4451 static void
4452 debug_to_prepare_to_store (struct regcache *regcache)
4453 {
4454 debug_target.to_prepare_to_store (regcache);
4455
4456 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4457 }
4458
4459 static int
4460 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4461 int write, struct mem_attrib *attrib,
4462 struct target_ops *target)
4463 {
4464 int retval;
4465
4466 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4467 attrib, target);
4468
4469 fprintf_unfiltered (gdb_stdlog,
4470 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4471 paddress (target_gdbarch (), memaddr), len,
4472 write ? "write" : "read", retval);
4473
4474 if (retval > 0)
4475 {
4476 int i;
4477
4478 fputs_unfiltered (", bytes =", gdb_stdlog);
4479 for (i = 0; i < retval; i++)
4480 {
4481 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4482 {
4483 if (targetdebug < 2 && i > 0)
4484 {
4485 fprintf_unfiltered (gdb_stdlog, " ...");
4486 break;
4487 }
4488 fprintf_unfiltered (gdb_stdlog, "\n");
4489 }
4490
4491 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4492 }
4493 }
4494
4495 fputc_unfiltered ('\n', gdb_stdlog);
4496
4497 return retval;
4498 }
4499
4500 static void
4501 debug_to_files_info (struct target_ops *target)
4502 {
4503 debug_target.to_files_info (target);
4504
4505 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4506 }
4507
4508 static int
4509 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
4510 struct bp_target_info *bp_tgt)
4511 {
4512 int retval;
4513
4514 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
4515
4516 fprintf_unfiltered (gdb_stdlog,
4517 "target_insert_breakpoint (%s, xxx) = %ld\n",
4518 core_addr_to_string (bp_tgt->placed_address),
4519 (unsigned long) retval);
4520 return retval;
4521 }
4522
4523 static int
4524 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
4525 struct bp_target_info *bp_tgt)
4526 {
4527 int retval;
4528
4529 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
4530
4531 fprintf_unfiltered (gdb_stdlog,
4532 "target_remove_breakpoint (%s, xxx) = %ld\n",
4533 core_addr_to_string (bp_tgt->placed_address),
4534 (unsigned long) retval);
4535 return retval;
4536 }
4537
4538 static int
4539 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
4540 {
4541 int retval;
4542
4543 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
4544
4545 fprintf_unfiltered (gdb_stdlog,
4546 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4547 (unsigned long) type,
4548 (unsigned long) cnt,
4549 (unsigned long) from_tty,
4550 (unsigned long) retval);
4551 return retval;
4552 }
4553
4554 static int
4555 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
4556 {
4557 CORE_ADDR retval;
4558
4559 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
4560
4561 fprintf_unfiltered (gdb_stdlog,
4562 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4563 core_addr_to_string (addr), (unsigned long) len,
4564 core_addr_to_string (retval));
4565 return retval;
4566 }
4567
4568 static int
4569 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
4570 struct expression *cond)
4571 {
4572 int retval;
4573
4574 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
4575 rw, cond);
4576
4577 fprintf_unfiltered (gdb_stdlog,
4578 "target_can_accel_watchpoint_condition "
4579 "(%s, %d, %d, %s) = %ld\n",
4580 core_addr_to_string (addr), len, rw,
4581 host_address_to_string (cond), (unsigned long) retval);
4582 return retval;
4583 }
4584
4585 static int
4586 debug_to_stopped_by_watchpoint (void)
4587 {
4588 int retval;
4589
4590 retval = debug_target.to_stopped_by_watchpoint ();
4591
4592 fprintf_unfiltered (gdb_stdlog,
4593 "target_stopped_by_watchpoint () = %ld\n",
4594 (unsigned long) retval);
4595 return retval;
4596 }
4597
4598 static int
4599 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4600 {
4601 int retval;
4602
4603 retval = debug_target.to_stopped_data_address (target, addr);
4604
4605 fprintf_unfiltered (gdb_stdlog,
4606 "target_stopped_data_address ([%s]) = %ld\n",
4607 core_addr_to_string (*addr),
4608 (unsigned long)retval);
4609 return retval;
4610 }
4611
4612 static int
4613 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4614 CORE_ADDR addr,
4615 CORE_ADDR start, int length)
4616 {
4617 int retval;
4618
4619 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4620 start, length);
4621
4622 fprintf_filtered (gdb_stdlog,
4623 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4624 core_addr_to_string (addr), core_addr_to_string (start),
4625 length, retval);
4626 return retval;
4627 }
4628
4629 static int
4630 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
4631 struct bp_target_info *bp_tgt)
4632 {
4633 int retval;
4634
4635 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
4636
4637 fprintf_unfiltered (gdb_stdlog,
4638 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4639 core_addr_to_string (bp_tgt->placed_address),
4640 (unsigned long) retval);
4641 return retval;
4642 }
4643
4644 static int
4645 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
4646 struct bp_target_info *bp_tgt)
4647 {
4648 int retval;
4649
4650 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
4651
4652 fprintf_unfiltered (gdb_stdlog,
4653 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4654 core_addr_to_string (bp_tgt->placed_address),
4655 (unsigned long) retval);
4656 return retval;
4657 }
4658
4659 static int
4660 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
4661 struct expression *cond)
4662 {
4663 int retval;
4664
4665 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
4666
4667 fprintf_unfiltered (gdb_stdlog,
4668 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4669 core_addr_to_string (addr), len, type,
4670 host_address_to_string (cond), (unsigned long) retval);
4671 return retval;
4672 }
4673
4674 static int
4675 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
4676 struct expression *cond)
4677 {
4678 int retval;
4679
4680 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
4681
4682 fprintf_unfiltered (gdb_stdlog,
4683 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4684 core_addr_to_string (addr), len, type,
4685 host_address_to_string (cond), (unsigned long) retval);
4686 return retval;
4687 }
4688
4689 static void
4690 debug_to_terminal_init (void)
4691 {
4692 debug_target.to_terminal_init ();
4693
4694 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4695 }
4696
4697 static void
4698 debug_to_terminal_inferior (void)
4699 {
4700 debug_target.to_terminal_inferior ();
4701
4702 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4703 }
4704
4705 static void
4706 debug_to_terminal_ours_for_output (void)
4707 {
4708 debug_target.to_terminal_ours_for_output ();
4709
4710 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4711 }
4712
4713 static void
4714 debug_to_terminal_ours (void)
4715 {
4716 debug_target.to_terminal_ours ();
4717
4718 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4719 }
4720
4721 static void
4722 debug_to_terminal_save_ours (void)
4723 {
4724 debug_target.to_terminal_save_ours ();
4725
4726 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4727 }
4728
4729 static void
4730 debug_to_terminal_info (const char *arg, int from_tty)
4731 {
4732 debug_target.to_terminal_info (arg, from_tty);
4733
4734 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4735 from_tty);
4736 }
4737
4738 static void
4739 debug_to_load (char *args, int from_tty)
4740 {
4741 debug_target.to_load (args, from_tty);
4742
4743 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4744 }
4745
4746 static void
4747 debug_to_post_startup_inferior (ptid_t ptid)
4748 {
4749 debug_target.to_post_startup_inferior (ptid);
4750
4751 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4752 ptid_get_pid (ptid));
4753 }
4754
4755 static int
4756 debug_to_insert_fork_catchpoint (int pid)
4757 {
4758 int retval;
4759
4760 retval = debug_target.to_insert_fork_catchpoint (pid);
4761
4762 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4763 pid, retval);
4764
4765 return retval;
4766 }
4767
4768 static int
4769 debug_to_remove_fork_catchpoint (int pid)
4770 {
4771 int retval;
4772
4773 retval = debug_target.to_remove_fork_catchpoint (pid);
4774
4775 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4776 pid, retval);
4777
4778 return retval;
4779 }
4780
4781 static int
4782 debug_to_insert_vfork_catchpoint (int pid)
4783 {
4784 int retval;
4785
4786 retval = debug_target.to_insert_vfork_catchpoint (pid);
4787
4788 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4789 pid, retval);
4790
4791 return retval;
4792 }
4793
4794 static int
4795 debug_to_remove_vfork_catchpoint (int pid)
4796 {
4797 int retval;
4798
4799 retval = debug_target.to_remove_vfork_catchpoint (pid);
4800
4801 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4802 pid, retval);
4803
4804 return retval;
4805 }
4806
4807 static int
4808 debug_to_insert_exec_catchpoint (int pid)
4809 {
4810 int retval;
4811
4812 retval = debug_target.to_insert_exec_catchpoint (pid);
4813
4814 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4815 pid, retval);
4816
4817 return retval;
4818 }
4819
4820 static int
4821 debug_to_remove_exec_catchpoint (int pid)
4822 {
4823 int retval;
4824
4825 retval = debug_target.to_remove_exec_catchpoint (pid);
4826
4827 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4828 pid, retval);
4829
4830 return retval;
4831 }
4832
4833 static int
4834 debug_to_has_exited (int pid, int wait_status, int *exit_status)
4835 {
4836 int has_exited;
4837
4838 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
4839
4840 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4841 pid, wait_status, *exit_status, has_exited);
4842
4843 return has_exited;
4844 }
4845
4846 static int
4847 debug_to_can_run (void)
4848 {
4849 int retval;
4850
4851 retval = debug_target.to_can_run ();
4852
4853 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4854
4855 return retval;
4856 }
4857
4858 static struct gdbarch *
4859 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4860 {
4861 struct gdbarch *retval;
4862
4863 retval = debug_target.to_thread_architecture (ops, ptid);
4864
4865 fprintf_unfiltered (gdb_stdlog,
4866 "target_thread_architecture (%s) = %s [%s]\n",
4867 target_pid_to_str (ptid),
4868 host_address_to_string (retval),
4869 gdbarch_bfd_arch_info (retval)->printable_name);
4870 return retval;
4871 }
4872
4873 static void
4874 debug_to_stop (ptid_t ptid)
4875 {
4876 debug_target.to_stop (ptid);
4877
4878 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4879 target_pid_to_str (ptid));
4880 }
4881
4882 static void
4883 debug_to_rcmd (char *command,
4884 struct ui_file *outbuf)
4885 {
4886 debug_target.to_rcmd (command, outbuf);
4887 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4888 }
4889
4890 static char *
4891 debug_to_pid_to_exec_file (int pid)
4892 {
4893 char *exec_file;
4894
4895 exec_file = debug_target.to_pid_to_exec_file (pid);
4896
4897 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4898 pid, exec_file);
4899
4900 return exec_file;
4901 }
4902
4903 static void
4904 setup_target_debug (void)
4905 {
4906 memcpy (&debug_target, &current_target, sizeof debug_target);
4907
4908 current_target.to_open = debug_to_open;
4909 current_target.to_post_attach = debug_to_post_attach;
4910 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4911 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4912 current_target.to_files_info = debug_to_files_info;
4913 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4914 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4915 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4916 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4917 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4918 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4919 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4920 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4921 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4922 current_target.to_watchpoint_addr_within_range
4923 = debug_to_watchpoint_addr_within_range;
4924 current_target.to_region_ok_for_hw_watchpoint
4925 = debug_to_region_ok_for_hw_watchpoint;
4926 current_target.to_can_accel_watchpoint_condition
4927 = debug_to_can_accel_watchpoint_condition;
4928 current_target.to_terminal_init = debug_to_terminal_init;
4929 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4930 current_target.to_terminal_ours_for_output
4931 = debug_to_terminal_ours_for_output;
4932 current_target.to_terminal_ours = debug_to_terminal_ours;
4933 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4934 current_target.to_terminal_info = debug_to_terminal_info;
4935 current_target.to_load = debug_to_load;
4936 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4937 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4938 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4939 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4940 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4941 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4942 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4943 current_target.to_has_exited = debug_to_has_exited;
4944 current_target.to_can_run = debug_to_can_run;
4945 current_target.to_stop = debug_to_stop;
4946 current_target.to_rcmd = debug_to_rcmd;
4947 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4948 current_target.to_thread_architecture = debug_to_thread_architecture;
4949 }
4950 \f
4951
4952 static char targ_desc[] =
4953 "Names of targets and files being debugged.\nShows the entire \
4954 stack of targets currently in use (including the exec-file,\n\
4955 core-file, and process, if any), as well as the symbol file name.";
4956
4957 static void
4958 do_monitor_command (char *cmd,
4959 int from_tty)
4960 {
4961 if ((current_target.to_rcmd
4962 == (void (*) (char *, struct ui_file *)) tcomplain)
4963 || (current_target.to_rcmd == debug_to_rcmd
4964 && (debug_target.to_rcmd
4965 == (void (*) (char *, struct ui_file *)) tcomplain)))
4966 error (_("\"monitor\" command not supported by this target."));
4967 target_rcmd (cmd, gdb_stdtarg);
4968 }
4969
4970 /* Print the name of each layers of our target stack. */
4971
4972 static void
4973 maintenance_print_target_stack (char *cmd, int from_tty)
4974 {
4975 struct target_ops *t;
4976
4977 printf_filtered (_("The current target stack is:\n"));
4978
4979 for (t = target_stack; t != NULL; t = t->beneath)
4980 {
4981 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4982 }
4983 }
4984
4985 /* Controls if async mode is permitted. */
4986 int target_async_permitted = 0;
4987
4988 /* The set command writes to this variable. If the inferior is
4989 executing, target_async_permitted is *not* updated. */
4990 static int target_async_permitted_1 = 0;
4991
4992 static void
4993 set_target_async_command (char *args, int from_tty,
4994 struct cmd_list_element *c)
4995 {
4996 if (have_live_inferiors ())
4997 {
4998 target_async_permitted_1 = target_async_permitted;
4999 error (_("Cannot change this setting while the inferior is running."));
5000 }
5001
5002 target_async_permitted = target_async_permitted_1;
5003 }
5004
5005 static void
5006 show_target_async_command (struct ui_file *file, int from_tty,
5007 struct cmd_list_element *c,
5008 const char *value)
5009 {
5010 fprintf_filtered (file,
5011 _("Controlling the inferior in "
5012 "asynchronous mode is %s.\n"), value);
5013 }
5014
5015 /* Temporary copies of permission settings. */
5016
5017 static int may_write_registers_1 = 1;
5018 static int may_write_memory_1 = 1;
5019 static int may_insert_breakpoints_1 = 1;
5020 static int may_insert_tracepoints_1 = 1;
5021 static int may_insert_fast_tracepoints_1 = 1;
5022 static int may_stop_1 = 1;
5023
5024 /* Make the user-set values match the real values again. */
5025
5026 void
5027 update_target_permissions (void)
5028 {
5029 may_write_registers_1 = may_write_registers;
5030 may_write_memory_1 = may_write_memory;
5031 may_insert_breakpoints_1 = may_insert_breakpoints;
5032 may_insert_tracepoints_1 = may_insert_tracepoints;
5033 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
5034 may_stop_1 = may_stop;
5035 }
5036
5037 /* The one function handles (most of) the permission flags in the same
5038 way. */
5039
5040 static void
5041 set_target_permissions (char *args, int from_tty,
5042 struct cmd_list_element *c)
5043 {
5044 if (target_has_execution)
5045 {
5046 update_target_permissions ();
5047 error (_("Cannot change this setting while the inferior is running."));
5048 }
5049
5050 /* Make the real values match the user-changed values. */
5051 may_write_registers = may_write_registers_1;
5052 may_insert_breakpoints = may_insert_breakpoints_1;
5053 may_insert_tracepoints = may_insert_tracepoints_1;
5054 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
5055 may_stop = may_stop_1;
5056 update_observer_mode ();
5057 }
5058
5059 /* Set memory write permission independently of observer mode. */
5060
5061 static void
5062 set_write_memory_permission (char *args, int from_tty,
5063 struct cmd_list_element *c)
5064 {
5065 /* Make the real values match the user-changed values. */
5066 may_write_memory = may_write_memory_1;
5067 update_observer_mode ();
5068 }
5069
5070
5071 void
5072 initialize_targets (void)
5073 {
5074 init_dummy_target ();
5075 push_target (&dummy_target);
5076
5077 add_info ("target", target_info, targ_desc);
5078 add_info ("files", target_info, targ_desc);
5079
5080 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
5081 Set target debugging."), _("\
5082 Show target debugging."), _("\
5083 When non-zero, target debugging is enabled. Higher numbers are more\n\
5084 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
5085 command."),
5086 NULL,
5087 show_targetdebug,
5088 &setdebuglist, &showdebuglist);
5089
5090 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
5091 &trust_readonly, _("\
5092 Set mode for reading from readonly sections."), _("\
5093 Show mode for reading from readonly sections."), _("\
5094 When this mode is on, memory reads from readonly sections (such as .text)\n\
5095 will be read from the object file instead of from the target. This will\n\
5096 result in significant performance improvement for remote targets."),
5097 NULL,
5098 show_trust_readonly,
5099 &setlist, &showlist);
5100
5101 add_com ("monitor", class_obscure, do_monitor_command,
5102 _("Send a command to the remote monitor (remote targets only)."));
5103
5104 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
5105 _("Print the name of each layer of the internal target stack."),
5106 &maintenanceprintlist);
5107
5108 add_setshow_boolean_cmd ("target-async", no_class,
5109 &target_async_permitted_1, _("\
5110 Set whether gdb controls the inferior in asynchronous mode."), _("\
5111 Show whether gdb controls the inferior in asynchronous mode."), _("\
5112 Tells gdb whether to control the inferior in asynchronous mode."),
5113 set_target_async_command,
5114 show_target_async_command,
5115 &setlist,
5116 &showlist);
5117
5118 add_setshow_boolean_cmd ("may-write-registers", class_support,
5119 &may_write_registers_1, _("\
5120 Set permission to write into registers."), _("\
5121 Show permission to write into registers."), _("\
5122 When this permission is on, GDB may write into the target's registers.\n\
5123 Otherwise, any sort of write attempt will result in an error."),
5124 set_target_permissions, NULL,
5125 &setlist, &showlist);
5126
5127 add_setshow_boolean_cmd ("may-write-memory", class_support,
5128 &may_write_memory_1, _("\
5129 Set permission to write into target memory."), _("\
5130 Show permission to write into target memory."), _("\
5131 When this permission is on, GDB may write into the target's memory.\n\
5132 Otherwise, any sort of write attempt will result in an error."),
5133 set_write_memory_permission, NULL,
5134 &setlist, &showlist);
5135
5136 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
5137 &may_insert_breakpoints_1, _("\
5138 Set permission to insert breakpoints in the target."), _("\
5139 Show permission to insert breakpoints in the target."), _("\
5140 When this permission is on, GDB may insert breakpoints in the program.\n\
5141 Otherwise, any sort of insertion attempt will result in an error."),
5142 set_target_permissions, NULL,
5143 &setlist, &showlist);
5144
5145 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
5146 &may_insert_tracepoints_1, _("\
5147 Set permission to insert tracepoints in the target."), _("\
5148 Show permission to insert tracepoints in the target."), _("\
5149 When this permission is on, GDB may insert tracepoints in the program.\n\
5150 Otherwise, any sort of insertion attempt will result in an error."),
5151 set_target_permissions, NULL,
5152 &setlist, &showlist);
5153
5154 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
5155 &may_insert_fast_tracepoints_1, _("\
5156 Set permission to insert fast tracepoints in the target."), _("\
5157 Show permission to insert fast tracepoints in the target."), _("\
5158 When this permission is on, GDB may insert fast tracepoints.\n\
5159 Otherwise, any sort of insertion attempt will result in an error."),
5160 set_target_permissions, NULL,
5161 &setlist, &showlist);
5162
5163 add_setshow_boolean_cmd ("may-interrupt", class_support,
5164 &may_stop_1, _("\
5165 Set permission to interrupt or signal the target."), _("\
5166 Show permission to interrupt or signal the target."), _("\
5167 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5168 Otherwise, any attempt to interrupt or stop will be ignored."),
5169 set_target_permissions, NULL,
5170 &setlist, &showlist);
5171 }
This page took 0.13492 seconds and 4 git commands to generate.