Handle UI's terminal closing
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48
49 static void target_info (char *, int);
50
51 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
52
53 static void default_terminal_info (struct target_ops *, const char *, int);
54
55 static int default_watchpoint_addr_within_range (struct target_ops *,
56 CORE_ADDR, CORE_ADDR, int);
57
58 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
59 CORE_ADDR, int);
60
61 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
62
63 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
64 long lwp, long tid);
65
66 static int default_follow_fork (struct target_ops *self, int follow_child,
67 int detach_fork);
68
69 static void default_mourn_inferior (struct target_ops *self);
70
71 static int default_search_memory (struct target_ops *ops,
72 CORE_ADDR start_addr,
73 ULONGEST search_space_len,
74 const gdb_byte *pattern,
75 ULONGEST pattern_len,
76 CORE_ADDR *found_addrp);
77
78 static int default_verify_memory (struct target_ops *self,
79 const gdb_byte *data,
80 CORE_ADDR memaddr, ULONGEST size);
81
82 static struct address_space *default_thread_address_space
83 (struct target_ops *self, ptid_t ptid);
84
85 static void tcomplain (void) ATTRIBUTE_NORETURN;
86
87 static int return_zero (struct target_ops *);
88
89 static int return_zero_has_execution (struct target_ops *, ptid_t);
90
91 static void target_command (char *, int);
92
93 static struct target_ops *find_default_run_target (char *);
94
95 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
96 ptid_t ptid);
97
98 static int dummy_find_memory_regions (struct target_ops *self,
99 find_memory_region_ftype ignore1,
100 void *ignore2);
101
102 static char *dummy_make_corefile_notes (struct target_ops *self,
103 bfd *ignore1, int *ignore2);
104
105 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
106
107 static enum exec_direction_kind default_execution_direction
108 (struct target_ops *self);
109
110 static struct target_ops debug_target;
111
112 #include "target-delegates.c"
113
114 static void init_dummy_target (void);
115
116 static void update_current_target (void);
117
118 /* Vector of existing target structures. */
119 typedef struct target_ops *target_ops_p;
120 DEF_VEC_P (target_ops_p);
121 static VEC (target_ops_p) *target_structs;
122
123 /* The initial current target, so that there is always a semi-valid
124 current target. */
125
126 static struct target_ops dummy_target;
127
128 /* Top of target stack. */
129
130 static struct target_ops *target_stack;
131
132 /* The target structure we are currently using to talk to a process
133 or file or whatever "inferior" we have. */
134
135 struct target_ops current_target;
136
137 /* Command list for target. */
138
139 static struct cmd_list_element *targetlist = NULL;
140
141 /* Nonzero if we should trust readonly sections from the
142 executable when reading memory. */
143
144 static int trust_readonly = 0;
145
146 /* Nonzero if we should show true memory content including
147 memory breakpoint inserted by gdb. */
148
149 static int show_memory_breakpoints = 0;
150
151 /* These globals control whether GDB attempts to perform these
152 operations; they are useful for targets that need to prevent
153 inadvertant disruption, such as in non-stop mode. */
154
155 int may_write_registers = 1;
156
157 int may_write_memory = 1;
158
159 int may_insert_breakpoints = 1;
160
161 int may_insert_tracepoints = 1;
162
163 int may_insert_fast_tracepoints = 1;
164
165 int may_stop = 1;
166
167 /* Non-zero if we want to see trace of target level stuff. */
168
169 static unsigned int targetdebug = 0;
170
171 static void
172 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
173 {
174 update_current_target ();
175 }
176
177 static void
178 show_targetdebug (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
182 }
183
184 static void setup_target_debug (void);
185
186 /* The user just typed 'target' without the name of a target. */
187
188 static void
189 target_command (char *arg, int from_tty)
190 {
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193 }
194
195 /* Default target_has_* methods for process_stratum targets. */
196
197 int
198 default_child_has_all_memory (struct target_ops *ops)
199 {
200 /* If no inferior selected, then we can't read memory here. */
201 if (ptid_equal (inferior_ptid, null_ptid))
202 return 0;
203
204 return 1;
205 }
206
207 int
208 default_child_has_memory (struct target_ops *ops)
209 {
210 /* If no inferior selected, then we can't read memory here. */
211 if (ptid_equal (inferior_ptid, null_ptid))
212 return 0;
213
214 return 1;
215 }
216
217 int
218 default_child_has_stack (struct target_ops *ops)
219 {
220 /* If no inferior selected, there's no stack. */
221 if (ptid_equal (inferior_ptid, null_ptid))
222 return 0;
223
224 return 1;
225 }
226
227 int
228 default_child_has_registers (struct target_ops *ops)
229 {
230 /* Can't read registers from no inferior. */
231 if (ptid_equal (inferior_ptid, null_ptid))
232 return 0;
233
234 return 1;
235 }
236
237 int
238 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
239 {
240 /* If there's no thread selected, then we can't make it run through
241 hoops. */
242 if (ptid_equal (the_ptid, null_ptid))
243 return 0;
244
245 return 1;
246 }
247
248
249 int
250 target_has_all_memory_1 (void)
251 {
252 struct target_ops *t;
253
254 for (t = current_target.beneath; t != NULL; t = t->beneath)
255 if (t->to_has_all_memory (t))
256 return 1;
257
258 return 0;
259 }
260
261 int
262 target_has_memory_1 (void)
263 {
264 struct target_ops *t;
265
266 for (t = current_target.beneath; t != NULL; t = t->beneath)
267 if (t->to_has_memory (t))
268 return 1;
269
270 return 0;
271 }
272
273 int
274 target_has_stack_1 (void)
275 {
276 struct target_ops *t;
277
278 for (t = current_target.beneath; t != NULL; t = t->beneath)
279 if (t->to_has_stack (t))
280 return 1;
281
282 return 0;
283 }
284
285 int
286 target_has_registers_1 (void)
287 {
288 struct target_ops *t;
289
290 for (t = current_target.beneath; t != NULL; t = t->beneath)
291 if (t->to_has_registers (t))
292 return 1;
293
294 return 0;
295 }
296
297 int
298 target_has_execution_1 (ptid_t the_ptid)
299 {
300 struct target_ops *t;
301
302 for (t = current_target.beneath; t != NULL; t = t->beneath)
303 if (t->to_has_execution (t, the_ptid))
304 return 1;
305
306 return 0;
307 }
308
309 int
310 target_has_execution_current (void)
311 {
312 return target_has_execution_1 (inferior_ptid);
313 }
314
315 /* Complete initialization of T. This ensures that various fields in
316 T are set, if needed by the target implementation. */
317
318 void
319 complete_target_initialization (struct target_ops *t)
320 {
321 /* Provide default values for all "must have" methods. */
322
323 if (t->to_has_all_memory == NULL)
324 t->to_has_all_memory = return_zero;
325
326 if (t->to_has_memory == NULL)
327 t->to_has_memory = return_zero;
328
329 if (t->to_has_stack == NULL)
330 t->to_has_stack = return_zero;
331
332 if (t->to_has_registers == NULL)
333 t->to_has_registers = return_zero;
334
335 if (t->to_has_execution == NULL)
336 t->to_has_execution = return_zero_has_execution;
337
338 /* These methods can be called on an unpushed target and so require
339 a default implementation if the target might plausibly be the
340 default run target. */
341 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
342 && t->to_supports_non_stop != NULL));
343
344 install_delegators (t);
345 }
346
347 /* This is used to implement the various target commands. */
348
349 static void
350 open_target (char *args, int from_tty, struct cmd_list_element *command)
351 {
352 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
353
354 if (targetdebug)
355 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
356 ops->to_shortname);
357
358 ops->to_open (args, from_tty);
359
360 if (targetdebug)
361 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
362 ops->to_shortname, args, from_tty);
363 }
364
365 /* Add possible target architecture T to the list and add a new
366 command 'target T->to_shortname'. Set COMPLETER as the command's
367 completer if not NULL. */
368
369 void
370 add_target_with_completer (struct target_ops *t,
371 completer_ftype *completer)
372 {
373 struct cmd_list_element *c;
374
375 complete_target_initialization (t);
376
377 VEC_safe_push (target_ops_p, target_structs, t);
378
379 if (targetlist == NULL)
380 add_prefix_cmd ("target", class_run, target_command, _("\
381 Connect to a target machine or process.\n\
382 The first argument is the type or protocol of the target machine.\n\
383 Remaining arguments are interpreted by the target protocol. For more\n\
384 information on the arguments for a particular protocol, type\n\
385 `help target ' followed by the protocol name."),
386 &targetlist, "target ", 0, &cmdlist);
387 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
388 set_cmd_sfunc (c, open_target);
389 set_cmd_context (c, t);
390 if (completer != NULL)
391 set_cmd_completer (c, completer);
392 }
393
394 /* Add a possible target architecture to the list. */
395
396 void
397 add_target (struct target_ops *t)
398 {
399 add_target_with_completer (t, NULL);
400 }
401
402 /* See target.h. */
403
404 void
405 add_deprecated_target_alias (struct target_ops *t, char *alias)
406 {
407 struct cmd_list_element *c;
408 char *alt;
409
410 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
411 see PR cli/15104. */
412 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
413 set_cmd_sfunc (c, open_target);
414 set_cmd_context (c, t);
415 alt = xstrprintf ("target %s", t->to_shortname);
416 deprecate_cmd (c, alt);
417 }
418
419 /* Stub functions */
420
421 void
422 target_kill (void)
423 {
424 current_target.to_kill (&current_target);
425 }
426
427 void
428 target_load (const char *arg, int from_tty)
429 {
430 target_dcache_invalidate ();
431 (*current_target.to_load) (&current_target, arg, from_tty);
432 }
433
434 /* Possible terminal states. */
435
436 enum terminal_state
437 {
438 /* The inferior's terminal settings are in effect. */
439 terminal_is_inferior = 0,
440
441 /* Some of our terminal settings are in effect, enough to get
442 proper output. */
443 terminal_is_ours_for_output = 1,
444
445 /* Our terminal settings are in effect, for output and input. */
446 terminal_is_ours = 2
447 };
448
449 static enum terminal_state terminal_state = terminal_is_ours;
450
451 /* See target.h. */
452
453 void
454 target_terminal_init (void)
455 {
456 (*current_target.to_terminal_init) (&current_target);
457
458 terminal_state = terminal_is_ours;
459 }
460
461 /* See target.h. */
462
463 int
464 target_terminal_is_inferior (void)
465 {
466 return (terminal_state == terminal_is_inferior);
467 }
468
469 /* See target.h. */
470
471 int
472 target_terminal_is_ours (void)
473 {
474 return (terminal_state == terminal_is_ours);
475 }
476
477 /* See target.h. */
478
479 void
480 target_terminal_inferior (void)
481 {
482 struct ui *ui = current_ui;
483
484 /* A background resume (``run&'') should leave GDB in control of the
485 terminal. */
486 if (ui->prompt_state != PROMPT_BLOCKED)
487 return;
488
489 /* Always delete the current UI's input file handler, regardless of
490 terminal_state, because terminal_state is only valid for the main
491 UI. */
492 delete_file_handler (ui->input_fd);
493
494 /* Since we always run the inferior in the main console (unless "set
495 inferior-tty" is in effect), when some UI other than the main one
496 calls target_terminal_inferior/target_terminal_inferior, then we
497 only register/unregister the UI's input from the event loop, but
498 leave the main UI's terminal settings as is. */
499 if (ui != main_ui)
500 return;
501
502 if (terminal_state == terminal_is_inferior)
503 return;
504
505 /* If GDB is resuming the inferior in the foreground, install
506 inferior's terminal modes. */
507 (*current_target.to_terminal_inferior) (&current_target);
508 terminal_state = terminal_is_inferior;
509
510 /* If the user hit C-c before, pretend that it was hit right
511 here. */
512 if (check_quit_flag ())
513 target_pass_ctrlc ();
514 }
515
516 /* See target.h. */
517
518 void
519 target_terminal_ours (void)
520 {
521 struct ui *ui = current_ui;
522
523 /* Always add the current UI's input file handler, regardless of
524 terminal_state, because terminal_state is only valid for the main
525 UI. */
526 add_file_handler (ui->input_fd, stdin_event_handler, ui);
527
528 /* See target_terminal_inferior. */
529 if (ui != main_ui)
530 return;
531
532 if (terminal_state == terminal_is_ours)
533 return;
534
535 (*current_target.to_terminal_ours) (&current_target);
536 terminal_state = terminal_is_ours;
537 }
538
539 /* See target.h. */
540
541 void
542 target_terminal_ours_for_output (void)
543 {
544 struct ui *ui = current_ui;
545
546 /* See target_terminal_inferior. */
547 if (ui != main_ui)
548 return;
549
550 if (terminal_state != terminal_is_inferior)
551 return;
552 (*current_target.to_terminal_ours_for_output) (&current_target);
553 terminal_state = terminal_is_ours_for_output;
554 }
555
556 /* See target.h. */
557
558 int
559 target_supports_terminal_ours (void)
560 {
561 struct target_ops *t;
562
563 for (t = current_target.beneath; t != NULL; t = t->beneath)
564 {
565 if (t->to_terminal_ours != delegate_terminal_ours
566 && t->to_terminal_ours != tdefault_terminal_ours)
567 return 1;
568 }
569
570 return 0;
571 }
572
573 /* Restore the terminal to its previous state (helper for
574 make_cleanup_restore_target_terminal). */
575
576 static void
577 cleanup_restore_target_terminal (void *arg)
578 {
579 enum terminal_state *previous_state = (enum terminal_state *) arg;
580
581 switch (*previous_state)
582 {
583 case terminal_is_ours:
584 target_terminal_ours ();
585 break;
586 case terminal_is_ours_for_output:
587 target_terminal_ours_for_output ();
588 break;
589 case terminal_is_inferior:
590 target_terminal_inferior ();
591 break;
592 }
593 }
594
595 /* See target.h. */
596
597 struct cleanup *
598 make_cleanup_restore_target_terminal (void)
599 {
600 enum terminal_state *ts = XNEW (enum terminal_state);
601
602 *ts = terminal_state;
603
604 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
605 }
606
607 static void
608 tcomplain (void)
609 {
610 error (_("You can't do that when your target is `%s'"),
611 current_target.to_shortname);
612 }
613
614 void
615 noprocess (void)
616 {
617 error (_("You can't do that without a process to debug."));
618 }
619
620 static void
621 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
622 {
623 printf_unfiltered (_("No saved terminal information.\n"));
624 }
625
626 /* A default implementation for the to_get_ada_task_ptid target method.
627
628 This function builds the PTID by using both LWP and TID as part of
629 the PTID lwp and tid elements. The pid used is the pid of the
630 inferior_ptid. */
631
632 static ptid_t
633 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
634 {
635 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
636 }
637
638 static enum exec_direction_kind
639 default_execution_direction (struct target_ops *self)
640 {
641 if (!target_can_execute_reverse)
642 return EXEC_FORWARD;
643 else if (!target_can_async_p ())
644 return EXEC_FORWARD;
645 else
646 gdb_assert_not_reached ("\
647 to_execution_direction must be implemented for reverse async");
648 }
649
650 /* Go through the target stack from top to bottom, copying over zero
651 entries in current_target, then filling in still empty entries. In
652 effect, we are doing class inheritance through the pushed target
653 vectors.
654
655 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
656 is currently implemented, is that it discards any knowledge of
657 which target an inherited method originally belonged to.
658 Consequently, new new target methods should instead explicitly and
659 locally search the target stack for the target that can handle the
660 request. */
661
662 static void
663 update_current_target (void)
664 {
665 struct target_ops *t;
666
667 /* First, reset current's contents. */
668 memset (&current_target, 0, sizeof (current_target));
669
670 /* Install the delegators. */
671 install_delegators (&current_target);
672
673 current_target.to_stratum = target_stack->to_stratum;
674
675 #define INHERIT(FIELD, TARGET) \
676 if (!current_target.FIELD) \
677 current_target.FIELD = (TARGET)->FIELD
678
679 /* Do not add any new INHERITs here. Instead, use the delegation
680 mechanism provided by make-target-delegates. */
681 for (t = target_stack; t; t = t->beneath)
682 {
683 INHERIT (to_shortname, t);
684 INHERIT (to_longname, t);
685 INHERIT (to_attach_no_wait, t);
686 INHERIT (to_have_steppable_watchpoint, t);
687 INHERIT (to_have_continuable_watchpoint, t);
688 INHERIT (to_has_thread_control, t);
689 }
690 #undef INHERIT
691
692 /* Finally, position the target-stack beneath the squashed
693 "current_target". That way code looking for a non-inherited
694 target method can quickly and simply find it. */
695 current_target.beneath = target_stack;
696
697 if (targetdebug)
698 setup_target_debug ();
699 }
700
701 /* Push a new target type into the stack of the existing target accessors,
702 possibly superseding some of the existing accessors.
703
704 Rather than allow an empty stack, we always have the dummy target at
705 the bottom stratum, so we can call the function vectors without
706 checking them. */
707
708 void
709 push_target (struct target_ops *t)
710 {
711 struct target_ops **cur;
712
713 /* Check magic number. If wrong, it probably means someone changed
714 the struct definition, but not all the places that initialize one. */
715 if (t->to_magic != OPS_MAGIC)
716 {
717 fprintf_unfiltered (gdb_stderr,
718 "Magic number of %s target struct wrong\n",
719 t->to_shortname);
720 internal_error (__FILE__, __LINE__,
721 _("failed internal consistency check"));
722 }
723
724 /* Find the proper stratum to install this target in. */
725 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
726 {
727 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
728 break;
729 }
730
731 /* If there's already targets at this stratum, remove them. */
732 /* FIXME: cagney/2003-10-15: I think this should be popping all
733 targets to CUR, and not just those at this stratum level. */
734 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
735 {
736 /* There's already something at this stratum level. Close it,
737 and un-hook it from the stack. */
738 struct target_ops *tmp = (*cur);
739
740 (*cur) = (*cur)->beneath;
741 tmp->beneath = NULL;
742 target_close (tmp);
743 }
744
745 /* We have removed all targets in our stratum, now add the new one. */
746 t->beneath = (*cur);
747 (*cur) = t;
748
749 update_current_target ();
750 }
751
752 /* Remove a target_ops vector from the stack, wherever it may be.
753 Return how many times it was removed (0 or 1). */
754
755 int
756 unpush_target (struct target_ops *t)
757 {
758 struct target_ops **cur;
759 struct target_ops *tmp;
760
761 if (t->to_stratum == dummy_stratum)
762 internal_error (__FILE__, __LINE__,
763 _("Attempt to unpush the dummy target"));
764
765 /* Look for the specified target. Note that we assume that a target
766 can only occur once in the target stack. */
767
768 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
769 {
770 if ((*cur) == t)
771 break;
772 }
773
774 /* If we don't find target_ops, quit. Only open targets should be
775 closed. */
776 if ((*cur) == NULL)
777 return 0;
778
779 /* Unchain the target. */
780 tmp = (*cur);
781 (*cur) = (*cur)->beneath;
782 tmp->beneath = NULL;
783
784 update_current_target ();
785
786 /* Finally close the target. Note we do this after unchaining, so
787 any target method calls from within the target_close
788 implementation don't end up in T anymore. */
789 target_close (t);
790
791 return 1;
792 }
793
794 /* Unpush TARGET and assert that it worked. */
795
796 static void
797 unpush_target_and_assert (struct target_ops *target)
798 {
799 if (!unpush_target (target))
800 {
801 fprintf_unfiltered (gdb_stderr,
802 "pop_all_targets couldn't find target %s\n",
803 target->to_shortname);
804 internal_error (__FILE__, __LINE__,
805 _("failed internal consistency check"));
806 }
807 }
808
809 void
810 pop_all_targets_above (enum strata above_stratum)
811 {
812 while ((int) (current_target.to_stratum) > (int) above_stratum)
813 unpush_target_and_assert (target_stack);
814 }
815
816 /* See target.h. */
817
818 void
819 pop_all_targets_at_and_above (enum strata stratum)
820 {
821 while ((int) (current_target.to_stratum) >= (int) stratum)
822 unpush_target_and_assert (target_stack);
823 }
824
825 void
826 pop_all_targets (void)
827 {
828 pop_all_targets_above (dummy_stratum);
829 }
830
831 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
832
833 int
834 target_is_pushed (struct target_ops *t)
835 {
836 struct target_ops *cur;
837
838 /* Check magic number. If wrong, it probably means someone changed
839 the struct definition, but not all the places that initialize one. */
840 if (t->to_magic != OPS_MAGIC)
841 {
842 fprintf_unfiltered (gdb_stderr,
843 "Magic number of %s target struct wrong\n",
844 t->to_shortname);
845 internal_error (__FILE__, __LINE__,
846 _("failed internal consistency check"));
847 }
848
849 for (cur = target_stack; cur != NULL; cur = cur->beneath)
850 if (cur == t)
851 return 1;
852
853 return 0;
854 }
855
856 /* Default implementation of to_get_thread_local_address. */
857
858 static void
859 generic_tls_error (void)
860 {
861 throw_error (TLS_GENERIC_ERROR,
862 _("Cannot find thread-local variables on this target"));
863 }
864
865 /* Using the objfile specified in OBJFILE, find the address for the
866 current thread's thread-local storage with offset OFFSET. */
867 CORE_ADDR
868 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
869 {
870 volatile CORE_ADDR addr = 0;
871 struct target_ops *target = &current_target;
872
873 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
874 {
875 ptid_t ptid = inferior_ptid;
876
877 TRY
878 {
879 CORE_ADDR lm_addr;
880
881 /* Fetch the load module address for this objfile. */
882 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
883 objfile);
884
885 addr = target->to_get_thread_local_address (target, ptid,
886 lm_addr, offset);
887 }
888 /* If an error occurred, print TLS related messages here. Otherwise,
889 throw the error to some higher catcher. */
890 CATCH (ex, RETURN_MASK_ALL)
891 {
892 int objfile_is_library = (objfile->flags & OBJF_SHARED);
893
894 switch (ex.error)
895 {
896 case TLS_NO_LIBRARY_SUPPORT_ERROR:
897 error (_("Cannot find thread-local variables "
898 "in this thread library."));
899 break;
900 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
901 if (objfile_is_library)
902 error (_("Cannot find shared library `%s' in dynamic"
903 " linker's load module list"), objfile_name (objfile));
904 else
905 error (_("Cannot find executable file `%s' in dynamic"
906 " linker's load module list"), objfile_name (objfile));
907 break;
908 case TLS_NOT_ALLOCATED_YET_ERROR:
909 if (objfile_is_library)
910 error (_("The inferior has not yet allocated storage for"
911 " thread-local variables in\n"
912 "the shared library `%s'\n"
913 "for %s"),
914 objfile_name (objfile), target_pid_to_str (ptid));
915 else
916 error (_("The inferior has not yet allocated storage for"
917 " thread-local variables in\n"
918 "the executable `%s'\n"
919 "for %s"),
920 objfile_name (objfile), target_pid_to_str (ptid));
921 break;
922 case TLS_GENERIC_ERROR:
923 if (objfile_is_library)
924 error (_("Cannot find thread-local storage for %s, "
925 "shared library %s:\n%s"),
926 target_pid_to_str (ptid),
927 objfile_name (objfile), ex.message);
928 else
929 error (_("Cannot find thread-local storage for %s, "
930 "executable file %s:\n%s"),
931 target_pid_to_str (ptid),
932 objfile_name (objfile), ex.message);
933 break;
934 default:
935 throw_exception (ex);
936 break;
937 }
938 }
939 END_CATCH
940 }
941 /* It wouldn't be wrong here to try a gdbarch method, too; finding
942 TLS is an ABI-specific thing. But we don't do that yet. */
943 else
944 error (_("Cannot find thread-local variables on this target"));
945
946 return addr;
947 }
948
949 const char *
950 target_xfer_status_to_string (enum target_xfer_status status)
951 {
952 #define CASE(X) case X: return #X
953 switch (status)
954 {
955 CASE(TARGET_XFER_E_IO);
956 CASE(TARGET_XFER_UNAVAILABLE);
957 default:
958 return "<unknown>";
959 }
960 #undef CASE
961 };
962
963
964 #undef MIN
965 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
966
967 /* target_read_string -- read a null terminated string, up to LEN bytes,
968 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
969 Set *STRING to a pointer to malloc'd memory containing the data; the caller
970 is responsible for freeing it. Return the number of bytes successfully
971 read. */
972
973 int
974 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
975 {
976 int tlen, offset, i;
977 gdb_byte buf[4];
978 int errcode = 0;
979 char *buffer;
980 int buffer_allocated;
981 char *bufptr;
982 unsigned int nbytes_read = 0;
983
984 gdb_assert (string);
985
986 /* Small for testing. */
987 buffer_allocated = 4;
988 buffer = (char *) xmalloc (buffer_allocated);
989 bufptr = buffer;
990
991 while (len > 0)
992 {
993 tlen = MIN (len, 4 - (memaddr & 3));
994 offset = memaddr & 3;
995
996 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
997 if (errcode != 0)
998 {
999 /* The transfer request might have crossed the boundary to an
1000 unallocated region of memory. Retry the transfer, requesting
1001 a single byte. */
1002 tlen = 1;
1003 offset = 0;
1004 errcode = target_read_memory (memaddr, buf, 1);
1005 if (errcode != 0)
1006 goto done;
1007 }
1008
1009 if (bufptr - buffer + tlen > buffer_allocated)
1010 {
1011 unsigned int bytes;
1012
1013 bytes = bufptr - buffer;
1014 buffer_allocated *= 2;
1015 buffer = (char *) xrealloc (buffer, buffer_allocated);
1016 bufptr = buffer + bytes;
1017 }
1018
1019 for (i = 0; i < tlen; i++)
1020 {
1021 *bufptr++ = buf[i + offset];
1022 if (buf[i + offset] == '\000')
1023 {
1024 nbytes_read += i + 1;
1025 goto done;
1026 }
1027 }
1028
1029 memaddr += tlen;
1030 len -= tlen;
1031 nbytes_read += tlen;
1032 }
1033 done:
1034 *string = buffer;
1035 if (errnop != NULL)
1036 *errnop = errcode;
1037 return nbytes_read;
1038 }
1039
1040 struct target_section_table *
1041 target_get_section_table (struct target_ops *target)
1042 {
1043 return (*target->to_get_section_table) (target);
1044 }
1045
1046 /* Find a section containing ADDR. */
1047
1048 struct target_section *
1049 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1050 {
1051 struct target_section_table *table = target_get_section_table (target);
1052 struct target_section *secp;
1053
1054 if (table == NULL)
1055 return NULL;
1056
1057 for (secp = table->sections; secp < table->sections_end; secp++)
1058 {
1059 if (addr >= secp->addr && addr < secp->endaddr)
1060 return secp;
1061 }
1062 return NULL;
1063 }
1064
1065
1066 /* Helper for the memory xfer routines. Checks the attributes of the
1067 memory region of MEMADDR against the read or write being attempted.
1068 If the access is permitted returns true, otherwise returns false.
1069 REGION_P is an optional output parameter. If not-NULL, it is
1070 filled with a pointer to the memory region of MEMADDR. REG_LEN
1071 returns LEN trimmed to the end of the region. This is how much the
1072 caller can continue requesting, if the access is permitted. A
1073 single xfer request must not straddle memory region boundaries. */
1074
1075 static int
1076 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1077 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1078 struct mem_region **region_p)
1079 {
1080 struct mem_region *region;
1081
1082 region = lookup_mem_region (memaddr);
1083
1084 if (region_p != NULL)
1085 *region_p = region;
1086
1087 switch (region->attrib.mode)
1088 {
1089 case MEM_RO:
1090 if (writebuf != NULL)
1091 return 0;
1092 break;
1093
1094 case MEM_WO:
1095 if (readbuf != NULL)
1096 return 0;
1097 break;
1098
1099 case MEM_FLASH:
1100 /* We only support writing to flash during "load" for now. */
1101 if (writebuf != NULL)
1102 error (_("Writing to flash memory forbidden in this context"));
1103 break;
1104
1105 case MEM_NONE:
1106 return 0;
1107 }
1108
1109 /* region->hi == 0 means there's no upper bound. */
1110 if (memaddr + len < region->hi || region->hi == 0)
1111 *reg_len = len;
1112 else
1113 *reg_len = region->hi - memaddr;
1114
1115 return 1;
1116 }
1117
1118 /* Read memory from more than one valid target. A core file, for
1119 instance, could have some of memory but delegate other bits to
1120 the target below it. So, we must manually try all targets. */
1121
1122 enum target_xfer_status
1123 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1124 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1125 ULONGEST *xfered_len)
1126 {
1127 enum target_xfer_status res;
1128
1129 do
1130 {
1131 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1132 readbuf, writebuf, memaddr, len,
1133 xfered_len);
1134 if (res == TARGET_XFER_OK)
1135 break;
1136
1137 /* Stop if the target reports that the memory is not available. */
1138 if (res == TARGET_XFER_UNAVAILABLE)
1139 break;
1140
1141 /* We want to continue past core files to executables, but not
1142 past a running target's memory. */
1143 if (ops->to_has_all_memory (ops))
1144 break;
1145
1146 ops = ops->beneath;
1147 }
1148 while (ops != NULL);
1149
1150 /* The cache works at the raw memory level. Make sure the cache
1151 gets updated with raw contents no matter what kind of memory
1152 object was originally being written. Note we do write-through
1153 first, so that if it fails, we don't write to the cache contents
1154 that never made it to the target. */
1155 if (writebuf != NULL
1156 && !ptid_equal (inferior_ptid, null_ptid)
1157 && target_dcache_init_p ()
1158 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1159 {
1160 DCACHE *dcache = target_dcache_get ();
1161
1162 /* Note that writing to an area of memory which wasn't present
1163 in the cache doesn't cause it to be loaded in. */
1164 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1165 }
1166
1167 return res;
1168 }
1169
1170 /* Perform a partial memory transfer.
1171 For docs see target.h, to_xfer_partial. */
1172
1173 static enum target_xfer_status
1174 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1175 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1176 ULONGEST len, ULONGEST *xfered_len)
1177 {
1178 enum target_xfer_status res;
1179 ULONGEST reg_len;
1180 struct mem_region *region;
1181 struct inferior *inf;
1182
1183 /* For accesses to unmapped overlay sections, read directly from
1184 files. Must do this first, as MEMADDR may need adjustment. */
1185 if (readbuf != NULL && overlay_debugging)
1186 {
1187 struct obj_section *section = find_pc_overlay (memaddr);
1188
1189 if (pc_in_unmapped_range (memaddr, section))
1190 {
1191 struct target_section_table *table
1192 = target_get_section_table (ops);
1193 const char *section_name = section->the_bfd_section->name;
1194
1195 memaddr = overlay_mapped_address (memaddr, section);
1196 return section_table_xfer_memory_partial (readbuf, writebuf,
1197 memaddr, len, xfered_len,
1198 table->sections,
1199 table->sections_end,
1200 section_name);
1201 }
1202 }
1203
1204 /* Try the executable files, if "trust-readonly-sections" is set. */
1205 if (readbuf != NULL && trust_readonly)
1206 {
1207 struct target_section *secp;
1208 struct target_section_table *table;
1209
1210 secp = target_section_by_addr (ops, memaddr);
1211 if (secp != NULL
1212 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1213 secp->the_bfd_section)
1214 & SEC_READONLY))
1215 {
1216 table = target_get_section_table (ops);
1217 return section_table_xfer_memory_partial (readbuf, writebuf,
1218 memaddr, len, xfered_len,
1219 table->sections,
1220 table->sections_end,
1221 NULL);
1222 }
1223 }
1224
1225 /* Try GDB's internal data cache. */
1226
1227 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1228 &region))
1229 return TARGET_XFER_E_IO;
1230
1231 if (!ptid_equal (inferior_ptid, null_ptid))
1232 inf = find_inferior_ptid (inferior_ptid);
1233 else
1234 inf = NULL;
1235
1236 if (inf != NULL
1237 && readbuf != NULL
1238 /* The dcache reads whole cache lines; that doesn't play well
1239 with reading from a trace buffer, because reading outside of
1240 the collected memory range fails. */
1241 && get_traceframe_number () == -1
1242 && (region->attrib.cache
1243 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1244 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1245 {
1246 DCACHE *dcache = target_dcache_get_or_init ();
1247
1248 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1249 reg_len, xfered_len);
1250 }
1251
1252 /* If none of those methods found the memory we wanted, fall back
1253 to a target partial transfer. Normally a single call to
1254 to_xfer_partial is enough; if it doesn't recognize an object
1255 it will call the to_xfer_partial of the next target down.
1256 But for memory this won't do. Memory is the only target
1257 object which can be read from more than one valid target.
1258 A core file, for instance, could have some of memory but
1259 delegate other bits to the target below it. So, we must
1260 manually try all targets. */
1261
1262 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1263 xfered_len);
1264
1265 /* If we still haven't got anything, return the last error. We
1266 give up. */
1267 return res;
1268 }
1269
1270 /* Perform a partial memory transfer. For docs see target.h,
1271 to_xfer_partial. */
1272
1273 static enum target_xfer_status
1274 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1275 gdb_byte *readbuf, const gdb_byte *writebuf,
1276 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1277 {
1278 enum target_xfer_status res;
1279
1280 /* Zero length requests are ok and require no work. */
1281 if (len == 0)
1282 return TARGET_XFER_EOF;
1283
1284 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1285 breakpoint insns, thus hiding out from higher layers whether
1286 there are software breakpoints inserted in the code stream. */
1287 if (readbuf != NULL)
1288 {
1289 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1290 xfered_len);
1291
1292 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1293 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1294 }
1295 else
1296 {
1297 gdb_byte *buf;
1298 struct cleanup *old_chain;
1299
1300 /* A large write request is likely to be partially satisfied
1301 by memory_xfer_partial_1. We will continually malloc
1302 and free a copy of the entire write request for breakpoint
1303 shadow handling even though we only end up writing a small
1304 subset of it. Cap writes to 4KB to mitigate this. */
1305 len = min (4096, len);
1306
1307 buf = (gdb_byte *) xmalloc (len);
1308 old_chain = make_cleanup (xfree, buf);
1309 memcpy (buf, writebuf, len);
1310
1311 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1312 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1313 xfered_len);
1314
1315 do_cleanups (old_chain);
1316 }
1317
1318 return res;
1319 }
1320
1321 static void
1322 restore_show_memory_breakpoints (void *arg)
1323 {
1324 show_memory_breakpoints = (uintptr_t) arg;
1325 }
1326
1327 struct cleanup *
1328 make_show_memory_breakpoints_cleanup (int show)
1329 {
1330 int current = show_memory_breakpoints;
1331
1332 show_memory_breakpoints = show;
1333 return make_cleanup (restore_show_memory_breakpoints,
1334 (void *) (uintptr_t) current);
1335 }
1336
1337 /* For docs see target.h, to_xfer_partial. */
1338
1339 enum target_xfer_status
1340 target_xfer_partial (struct target_ops *ops,
1341 enum target_object object, const char *annex,
1342 gdb_byte *readbuf, const gdb_byte *writebuf,
1343 ULONGEST offset, ULONGEST len,
1344 ULONGEST *xfered_len)
1345 {
1346 enum target_xfer_status retval;
1347
1348 gdb_assert (ops->to_xfer_partial != NULL);
1349
1350 /* Transfer is done when LEN is zero. */
1351 if (len == 0)
1352 return TARGET_XFER_EOF;
1353
1354 if (writebuf && !may_write_memory)
1355 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1356 core_addr_to_string_nz (offset), plongest (len));
1357
1358 *xfered_len = 0;
1359
1360 /* If this is a memory transfer, let the memory-specific code
1361 have a look at it instead. Memory transfers are more
1362 complicated. */
1363 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1364 || object == TARGET_OBJECT_CODE_MEMORY)
1365 retval = memory_xfer_partial (ops, object, readbuf,
1366 writebuf, offset, len, xfered_len);
1367 else if (object == TARGET_OBJECT_RAW_MEMORY)
1368 {
1369 /* Skip/avoid accessing the target if the memory region
1370 attributes block the access. Check this here instead of in
1371 raw_memory_xfer_partial as otherwise we'd end up checking
1372 this twice in the case of the memory_xfer_partial path is
1373 taken; once before checking the dcache, and another in the
1374 tail call to raw_memory_xfer_partial. */
1375 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1376 NULL))
1377 return TARGET_XFER_E_IO;
1378
1379 /* Request the normal memory object from other layers. */
1380 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1381 xfered_len);
1382 }
1383 else
1384 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1385 writebuf, offset, len, xfered_len);
1386
1387 if (targetdebug)
1388 {
1389 const unsigned char *myaddr = NULL;
1390
1391 fprintf_unfiltered (gdb_stdlog,
1392 "%s:target_xfer_partial "
1393 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1394 ops->to_shortname,
1395 (int) object,
1396 (annex ? annex : "(null)"),
1397 host_address_to_string (readbuf),
1398 host_address_to_string (writebuf),
1399 core_addr_to_string_nz (offset),
1400 pulongest (len), retval,
1401 pulongest (*xfered_len));
1402
1403 if (readbuf)
1404 myaddr = readbuf;
1405 if (writebuf)
1406 myaddr = writebuf;
1407 if (retval == TARGET_XFER_OK && myaddr != NULL)
1408 {
1409 int i;
1410
1411 fputs_unfiltered (", bytes =", gdb_stdlog);
1412 for (i = 0; i < *xfered_len; i++)
1413 {
1414 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1415 {
1416 if (targetdebug < 2 && i > 0)
1417 {
1418 fprintf_unfiltered (gdb_stdlog, " ...");
1419 break;
1420 }
1421 fprintf_unfiltered (gdb_stdlog, "\n");
1422 }
1423
1424 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1425 }
1426 }
1427
1428 fputc_unfiltered ('\n', gdb_stdlog);
1429 }
1430
1431 /* Check implementations of to_xfer_partial update *XFERED_LEN
1432 properly. Do assertion after printing debug messages, so that we
1433 can find more clues on assertion failure from debugging messages. */
1434 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1435 gdb_assert (*xfered_len > 0);
1436
1437 return retval;
1438 }
1439
1440 /* Read LEN bytes of target memory at address MEMADDR, placing the
1441 results in GDB's memory at MYADDR. Returns either 0 for success or
1442 -1 if any error occurs.
1443
1444 If an error occurs, no guarantee is made about the contents of the data at
1445 MYADDR. In particular, the caller should not depend upon partial reads
1446 filling the buffer with good data. There is no way for the caller to know
1447 how much good data might have been transfered anyway. Callers that can
1448 deal with partial reads should call target_read (which will retry until
1449 it makes no progress, and then return how much was transferred). */
1450
1451 int
1452 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1453 {
1454 /* Dispatch to the topmost target, not the flattened current_target.
1455 Memory accesses check target->to_has_(all_)memory, and the
1456 flattened target doesn't inherit those. */
1457 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1458 myaddr, memaddr, len) == len)
1459 return 0;
1460 else
1461 return -1;
1462 }
1463
1464 /* See target/target.h. */
1465
1466 int
1467 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1468 {
1469 gdb_byte buf[4];
1470 int r;
1471
1472 r = target_read_memory (memaddr, buf, sizeof buf);
1473 if (r != 0)
1474 return r;
1475 *result = extract_unsigned_integer (buf, sizeof buf,
1476 gdbarch_byte_order (target_gdbarch ()));
1477 return 0;
1478 }
1479
1480 /* Like target_read_memory, but specify explicitly that this is a read
1481 from the target's raw memory. That is, this read bypasses the
1482 dcache, breakpoint shadowing, etc. */
1483
1484 int
1485 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1486 {
1487 /* See comment in target_read_memory about why the request starts at
1488 current_target.beneath. */
1489 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1490 myaddr, memaddr, len) == len)
1491 return 0;
1492 else
1493 return -1;
1494 }
1495
1496 /* Like target_read_memory, but specify explicitly that this is a read from
1497 the target's stack. This may trigger different cache behavior. */
1498
1499 int
1500 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1501 {
1502 /* See comment in target_read_memory about why the request starts at
1503 current_target.beneath. */
1504 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1505 myaddr, memaddr, len) == len)
1506 return 0;
1507 else
1508 return -1;
1509 }
1510
1511 /* Like target_read_memory, but specify explicitly that this is a read from
1512 the target's code. This may trigger different cache behavior. */
1513
1514 int
1515 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1516 {
1517 /* See comment in target_read_memory about why the request starts at
1518 current_target.beneath. */
1519 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1520 myaddr, memaddr, len) == len)
1521 return 0;
1522 else
1523 return -1;
1524 }
1525
1526 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1527 Returns either 0 for success or -1 if any error occurs. If an
1528 error occurs, no guarantee is made about how much data got written.
1529 Callers that can deal with partial writes should call
1530 target_write. */
1531
1532 int
1533 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1534 {
1535 /* See comment in target_read_memory about why the request starts at
1536 current_target.beneath. */
1537 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1538 myaddr, memaddr, len) == len)
1539 return 0;
1540 else
1541 return -1;
1542 }
1543
1544 /* Write LEN bytes from MYADDR to target raw memory at address
1545 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1546 If an error occurs, no guarantee is made about how much data got
1547 written. Callers that can deal with partial writes should call
1548 target_write. */
1549
1550 int
1551 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1552 {
1553 /* See comment in target_read_memory about why the request starts at
1554 current_target.beneath. */
1555 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1556 myaddr, memaddr, len) == len)
1557 return 0;
1558 else
1559 return -1;
1560 }
1561
1562 /* Fetch the target's memory map. */
1563
1564 VEC(mem_region_s) *
1565 target_memory_map (void)
1566 {
1567 VEC(mem_region_s) *result;
1568 struct mem_region *last_one, *this_one;
1569 int ix;
1570 result = current_target.to_memory_map (&current_target);
1571 if (result == NULL)
1572 return NULL;
1573
1574 qsort (VEC_address (mem_region_s, result),
1575 VEC_length (mem_region_s, result),
1576 sizeof (struct mem_region), mem_region_cmp);
1577
1578 /* Check that regions do not overlap. Simultaneously assign
1579 a numbering for the "mem" commands to use to refer to
1580 each region. */
1581 last_one = NULL;
1582 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1583 {
1584 this_one->number = ix;
1585
1586 if (last_one && last_one->hi > this_one->lo)
1587 {
1588 warning (_("Overlapping regions in memory map: ignoring"));
1589 VEC_free (mem_region_s, result);
1590 return NULL;
1591 }
1592 last_one = this_one;
1593 }
1594
1595 return result;
1596 }
1597
1598 void
1599 target_flash_erase (ULONGEST address, LONGEST length)
1600 {
1601 current_target.to_flash_erase (&current_target, address, length);
1602 }
1603
1604 void
1605 target_flash_done (void)
1606 {
1607 current_target.to_flash_done (&current_target);
1608 }
1609
1610 static void
1611 show_trust_readonly (struct ui_file *file, int from_tty,
1612 struct cmd_list_element *c, const char *value)
1613 {
1614 fprintf_filtered (file,
1615 _("Mode for reading from readonly sections is %s.\n"),
1616 value);
1617 }
1618
1619 /* Target vector read/write partial wrapper functions. */
1620
1621 static enum target_xfer_status
1622 target_read_partial (struct target_ops *ops,
1623 enum target_object object,
1624 const char *annex, gdb_byte *buf,
1625 ULONGEST offset, ULONGEST len,
1626 ULONGEST *xfered_len)
1627 {
1628 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1629 xfered_len);
1630 }
1631
1632 static enum target_xfer_status
1633 target_write_partial (struct target_ops *ops,
1634 enum target_object object,
1635 const char *annex, const gdb_byte *buf,
1636 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1637 {
1638 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1639 xfered_len);
1640 }
1641
1642 /* Wrappers to perform the full transfer. */
1643
1644 /* For docs on target_read see target.h. */
1645
1646 LONGEST
1647 target_read (struct target_ops *ops,
1648 enum target_object object,
1649 const char *annex, gdb_byte *buf,
1650 ULONGEST offset, LONGEST len)
1651 {
1652 LONGEST xfered_total = 0;
1653 int unit_size = 1;
1654
1655 /* If we are reading from a memory object, find the length of an addressable
1656 unit for that architecture. */
1657 if (object == TARGET_OBJECT_MEMORY
1658 || object == TARGET_OBJECT_STACK_MEMORY
1659 || object == TARGET_OBJECT_CODE_MEMORY
1660 || object == TARGET_OBJECT_RAW_MEMORY)
1661 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1662
1663 while (xfered_total < len)
1664 {
1665 ULONGEST xfered_partial;
1666 enum target_xfer_status status;
1667
1668 status = target_read_partial (ops, object, annex,
1669 buf + xfered_total * unit_size,
1670 offset + xfered_total, len - xfered_total,
1671 &xfered_partial);
1672
1673 /* Call an observer, notifying them of the xfer progress? */
1674 if (status == TARGET_XFER_EOF)
1675 return xfered_total;
1676 else if (status == TARGET_XFER_OK)
1677 {
1678 xfered_total += xfered_partial;
1679 QUIT;
1680 }
1681 else
1682 return TARGET_XFER_E_IO;
1683
1684 }
1685 return len;
1686 }
1687
1688 /* Assuming that the entire [begin, end) range of memory cannot be
1689 read, try to read whatever subrange is possible to read.
1690
1691 The function returns, in RESULT, either zero or one memory block.
1692 If there's a readable subrange at the beginning, it is completely
1693 read and returned. Any further readable subrange will not be read.
1694 Otherwise, if there's a readable subrange at the end, it will be
1695 completely read and returned. Any readable subranges before it
1696 (obviously, not starting at the beginning), will be ignored. In
1697 other cases -- either no readable subrange, or readable subrange(s)
1698 that is neither at the beginning, or end, nothing is returned.
1699
1700 The purpose of this function is to handle a read across a boundary
1701 of accessible memory in a case when memory map is not available.
1702 The above restrictions are fine for this case, but will give
1703 incorrect results if the memory is 'patchy'. However, supporting
1704 'patchy' memory would require trying to read every single byte,
1705 and it seems unacceptable solution. Explicit memory map is
1706 recommended for this case -- and target_read_memory_robust will
1707 take care of reading multiple ranges then. */
1708
1709 static void
1710 read_whatever_is_readable (struct target_ops *ops,
1711 const ULONGEST begin, const ULONGEST end,
1712 int unit_size,
1713 VEC(memory_read_result_s) **result)
1714 {
1715 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1716 ULONGEST current_begin = begin;
1717 ULONGEST current_end = end;
1718 int forward;
1719 memory_read_result_s r;
1720 ULONGEST xfered_len;
1721
1722 /* If we previously failed to read 1 byte, nothing can be done here. */
1723 if (end - begin <= 1)
1724 {
1725 xfree (buf);
1726 return;
1727 }
1728
1729 /* Check that either first or the last byte is readable, and give up
1730 if not. This heuristic is meant to permit reading accessible memory
1731 at the boundary of accessible region. */
1732 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1733 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1734 {
1735 forward = 1;
1736 ++current_begin;
1737 }
1738 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1739 buf + (end - begin) - 1, end - 1, 1,
1740 &xfered_len) == TARGET_XFER_OK)
1741 {
1742 forward = 0;
1743 --current_end;
1744 }
1745 else
1746 {
1747 xfree (buf);
1748 return;
1749 }
1750
1751 /* Loop invariant is that the [current_begin, current_end) was previously
1752 found to be not readable as a whole.
1753
1754 Note loop condition -- if the range has 1 byte, we can't divide the range
1755 so there's no point trying further. */
1756 while (current_end - current_begin > 1)
1757 {
1758 ULONGEST first_half_begin, first_half_end;
1759 ULONGEST second_half_begin, second_half_end;
1760 LONGEST xfer;
1761 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1762
1763 if (forward)
1764 {
1765 first_half_begin = current_begin;
1766 first_half_end = middle;
1767 second_half_begin = middle;
1768 second_half_end = current_end;
1769 }
1770 else
1771 {
1772 first_half_begin = middle;
1773 first_half_end = current_end;
1774 second_half_begin = current_begin;
1775 second_half_end = middle;
1776 }
1777
1778 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1779 buf + (first_half_begin - begin) * unit_size,
1780 first_half_begin,
1781 first_half_end - first_half_begin);
1782
1783 if (xfer == first_half_end - first_half_begin)
1784 {
1785 /* This half reads up fine. So, the error must be in the
1786 other half. */
1787 current_begin = second_half_begin;
1788 current_end = second_half_end;
1789 }
1790 else
1791 {
1792 /* This half is not readable. Because we've tried one byte, we
1793 know some part of this half if actually readable. Go to the next
1794 iteration to divide again and try to read.
1795
1796 We don't handle the other half, because this function only tries
1797 to read a single readable subrange. */
1798 current_begin = first_half_begin;
1799 current_end = first_half_end;
1800 }
1801 }
1802
1803 if (forward)
1804 {
1805 /* The [begin, current_begin) range has been read. */
1806 r.begin = begin;
1807 r.end = current_begin;
1808 r.data = buf;
1809 }
1810 else
1811 {
1812 /* The [current_end, end) range has been read. */
1813 LONGEST region_len = end - current_end;
1814
1815 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1816 memcpy (r.data, buf + (current_end - begin) * unit_size,
1817 region_len * unit_size);
1818 r.begin = current_end;
1819 r.end = end;
1820 xfree (buf);
1821 }
1822 VEC_safe_push(memory_read_result_s, (*result), &r);
1823 }
1824
1825 void
1826 free_memory_read_result_vector (void *x)
1827 {
1828 VEC(memory_read_result_s) *v = (VEC(memory_read_result_s) *) x;
1829 memory_read_result_s *current;
1830 int ix;
1831
1832 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1833 {
1834 xfree (current->data);
1835 }
1836 VEC_free (memory_read_result_s, v);
1837 }
1838
1839 VEC(memory_read_result_s) *
1840 read_memory_robust (struct target_ops *ops,
1841 const ULONGEST offset, const LONGEST len)
1842 {
1843 VEC(memory_read_result_s) *result = 0;
1844 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1845
1846 LONGEST xfered_total = 0;
1847 while (xfered_total < len)
1848 {
1849 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1850 LONGEST region_len;
1851
1852 /* If there is no explicit region, a fake one should be created. */
1853 gdb_assert (region);
1854
1855 if (region->hi == 0)
1856 region_len = len - xfered_total;
1857 else
1858 region_len = region->hi - offset;
1859
1860 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1861 {
1862 /* Cannot read this region. Note that we can end up here only
1863 if the region is explicitly marked inaccessible, or
1864 'inaccessible-by-default' is in effect. */
1865 xfered_total += region_len;
1866 }
1867 else
1868 {
1869 LONGEST to_read = min (len - xfered_total, region_len);
1870 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1871
1872 LONGEST xfered_partial =
1873 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1874 (gdb_byte *) buffer,
1875 offset + xfered_total, to_read);
1876 /* Call an observer, notifying them of the xfer progress? */
1877 if (xfered_partial <= 0)
1878 {
1879 /* Got an error reading full chunk. See if maybe we can read
1880 some subrange. */
1881 xfree (buffer);
1882 read_whatever_is_readable (ops, offset + xfered_total,
1883 offset + xfered_total + to_read,
1884 unit_size, &result);
1885 xfered_total += to_read;
1886 }
1887 else
1888 {
1889 struct memory_read_result r;
1890 r.data = buffer;
1891 r.begin = offset + xfered_total;
1892 r.end = r.begin + xfered_partial;
1893 VEC_safe_push (memory_read_result_s, result, &r);
1894 xfered_total += xfered_partial;
1895 }
1896 QUIT;
1897 }
1898 }
1899 return result;
1900 }
1901
1902
1903 /* An alternative to target_write with progress callbacks. */
1904
1905 LONGEST
1906 target_write_with_progress (struct target_ops *ops,
1907 enum target_object object,
1908 const char *annex, const gdb_byte *buf,
1909 ULONGEST offset, LONGEST len,
1910 void (*progress) (ULONGEST, void *), void *baton)
1911 {
1912 LONGEST xfered_total = 0;
1913 int unit_size = 1;
1914
1915 /* If we are writing to a memory object, find the length of an addressable
1916 unit for that architecture. */
1917 if (object == TARGET_OBJECT_MEMORY
1918 || object == TARGET_OBJECT_STACK_MEMORY
1919 || object == TARGET_OBJECT_CODE_MEMORY
1920 || object == TARGET_OBJECT_RAW_MEMORY)
1921 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1922
1923 /* Give the progress callback a chance to set up. */
1924 if (progress)
1925 (*progress) (0, baton);
1926
1927 while (xfered_total < len)
1928 {
1929 ULONGEST xfered_partial;
1930 enum target_xfer_status status;
1931
1932 status = target_write_partial (ops, object, annex,
1933 buf + xfered_total * unit_size,
1934 offset + xfered_total, len - xfered_total,
1935 &xfered_partial);
1936
1937 if (status != TARGET_XFER_OK)
1938 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1939
1940 if (progress)
1941 (*progress) (xfered_partial, baton);
1942
1943 xfered_total += xfered_partial;
1944 QUIT;
1945 }
1946 return len;
1947 }
1948
1949 /* For docs on target_write see target.h. */
1950
1951 LONGEST
1952 target_write (struct target_ops *ops,
1953 enum target_object object,
1954 const char *annex, const gdb_byte *buf,
1955 ULONGEST offset, LONGEST len)
1956 {
1957 return target_write_with_progress (ops, object, annex, buf, offset, len,
1958 NULL, NULL);
1959 }
1960
1961 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1962 the size of the transferred data. PADDING additional bytes are
1963 available in *BUF_P. This is a helper function for
1964 target_read_alloc; see the declaration of that function for more
1965 information. */
1966
1967 static LONGEST
1968 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1969 const char *annex, gdb_byte **buf_p, int padding)
1970 {
1971 size_t buf_alloc, buf_pos;
1972 gdb_byte *buf;
1973
1974 /* This function does not have a length parameter; it reads the
1975 entire OBJECT). Also, it doesn't support objects fetched partly
1976 from one target and partly from another (in a different stratum,
1977 e.g. a core file and an executable). Both reasons make it
1978 unsuitable for reading memory. */
1979 gdb_assert (object != TARGET_OBJECT_MEMORY);
1980
1981 /* Start by reading up to 4K at a time. The target will throttle
1982 this number down if necessary. */
1983 buf_alloc = 4096;
1984 buf = (gdb_byte *) xmalloc (buf_alloc);
1985 buf_pos = 0;
1986 while (1)
1987 {
1988 ULONGEST xfered_len;
1989 enum target_xfer_status status;
1990
1991 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1992 buf_pos, buf_alloc - buf_pos - padding,
1993 &xfered_len);
1994
1995 if (status == TARGET_XFER_EOF)
1996 {
1997 /* Read all there was. */
1998 if (buf_pos == 0)
1999 xfree (buf);
2000 else
2001 *buf_p = buf;
2002 return buf_pos;
2003 }
2004 else if (status != TARGET_XFER_OK)
2005 {
2006 /* An error occurred. */
2007 xfree (buf);
2008 return TARGET_XFER_E_IO;
2009 }
2010
2011 buf_pos += xfered_len;
2012
2013 /* If the buffer is filling up, expand it. */
2014 if (buf_alloc < buf_pos * 2)
2015 {
2016 buf_alloc *= 2;
2017 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
2018 }
2019
2020 QUIT;
2021 }
2022 }
2023
2024 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2025 the size of the transferred data. See the declaration in "target.h"
2026 function for more information about the return value. */
2027
2028 LONGEST
2029 target_read_alloc (struct target_ops *ops, enum target_object object,
2030 const char *annex, gdb_byte **buf_p)
2031 {
2032 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2033 }
2034
2035 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2036 returned as a string, allocated using xmalloc. If an error occurs
2037 or the transfer is unsupported, NULL is returned. Empty objects
2038 are returned as allocated but empty strings. A warning is issued
2039 if the result contains any embedded NUL bytes. */
2040
2041 char *
2042 target_read_stralloc (struct target_ops *ops, enum target_object object,
2043 const char *annex)
2044 {
2045 gdb_byte *buffer;
2046 char *bufstr;
2047 LONGEST i, transferred;
2048
2049 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2050 bufstr = (char *) buffer;
2051
2052 if (transferred < 0)
2053 return NULL;
2054
2055 if (transferred == 0)
2056 return xstrdup ("");
2057
2058 bufstr[transferred] = 0;
2059
2060 /* Check for embedded NUL bytes; but allow trailing NULs. */
2061 for (i = strlen (bufstr); i < transferred; i++)
2062 if (bufstr[i] != 0)
2063 {
2064 warning (_("target object %d, annex %s, "
2065 "contained unexpected null characters"),
2066 (int) object, annex ? annex : "(none)");
2067 break;
2068 }
2069
2070 return bufstr;
2071 }
2072
2073 /* Memory transfer methods. */
2074
2075 void
2076 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2077 LONGEST len)
2078 {
2079 /* This method is used to read from an alternate, non-current
2080 target. This read must bypass the overlay support (as symbols
2081 don't match this target), and GDB's internal cache (wrong cache
2082 for this target). */
2083 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2084 != len)
2085 memory_error (TARGET_XFER_E_IO, addr);
2086 }
2087
2088 ULONGEST
2089 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2090 int len, enum bfd_endian byte_order)
2091 {
2092 gdb_byte buf[sizeof (ULONGEST)];
2093
2094 gdb_assert (len <= sizeof (buf));
2095 get_target_memory (ops, addr, buf, len);
2096 return extract_unsigned_integer (buf, len, byte_order);
2097 }
2098
2099 /* See target.h. */
2100
2101 int
2102 target_insert_breakpoint (struct gdbarch *gdbarch,
2103 struct bp_target_info *bp_tgt)
2104 {
2105 if (!may_insert_breakpoints)
2106 {
2107 warning (_("May not insert breakpoints"));
2108 return 1;
2109 }
2110
2111 return current_target.to_insert_breakpoint (&current_target,
2112 gdbarch, bp_tgt);
2113 }
2114
2115 /* See target.h. */
2116
2117 int
2118 target_remove_breakpoint (struct gdbarch *gdbarch,
2119 struct bp_target_info *bp_tgt)
2120 {
2121 /* This is kind of a weird case to handle, but the permission might
2122 have been changed after breakpoints were inserted - in which case
2123 we should just take the user literally and assume that any
2124 breakpoints should be left in place. */
2125 if (!may_insert_breakpoints)
2126 {
2127 warning (_("May not remove breakpoints"));
2128 return 1;
2129 }
2130
2131 return current_target.to_remove_breakpoint (&current_target,
2132 gdbarch, bp_tgt);
2133 }
2134
2135 static void
2136 target_info (char *args, int from_tty)
2137 {
2138 struct target_ops *t;
2139 int has_all_mem = 0;
2140
2141 if (symfile_objfile != NULL)
2142 printf_unfiltered (_("Symbols from \"%s\".\n"),
2143 objfile_name (symfile_objfile));
2144
2145 for (t = target_stack; t != NULL; t = t->beneath)
2146 {
2147 if (!(*t->to_has_memory) (t))
2148 continue;
2149
2150 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2151 continue;
2152 if (has_all_mem)
2153 printf_unfiltered (_("\tWhile running this, "
2154 "GDB does not access memory from...\n"));
2155 printf_unfiltered ("%s:\n", t->to_longname);
2156 (t->to_files_info) (t);
2157 has_all_mem = (*t->to_has_all_memory) (t);
2158 }
2159 }
2160
2161 /* This function is called before any new inferior is created, e.g.
2162 by running a program, attaching, or connecting to a target.
2163 It cleans up any state from previous invocations which might
2164 change between runs. This is a subset of what target_preopen
2165 resets (things which might change between targets). */
2166
2167 void
2168 target_pre_inferior (int from_tty)
2169 {
2170 /* Clear out solib state. Otherwise the solib state of the previous
2171 inferior might have survived and is entirely wrong for the new
2172 target. This has been observed on GNU/Linux using glibc 2.3. How
2173 to reproduce:
2174
2175 bash$ ./foo&
2176 [1] 4711
2177 bash$ ./foo&
2178 [1] 4712
2179 bash$ gdb ./foo
2180 [...]
2181 (gdb) attach 4711
2182 (gdb) detach
2183 (gdb) attach 4712
2184 Cannot access memory at address 0xdeadbeef
2185 */
2186
2187 /* In some OSs, the shared library list is the same/global/shared
2188 across inferiors. If code is shared between processes, so are
2189 memory regions and features. */
2190 if (!gdbarch_has_global_solist (target_gdbarch ()))
2191 {
2192 no_shared_libraries (NULL, from_tty);
2193
2194 invalidate_target_mem_regions ();
2195
2196 target_clear_description ();
2197 }
2198
2199 /* attach_flag may be set if the previous process associated with
2200 the inferior was attached to. */
2201 current_inferior ()->attach_flag = 0;
2202
2203 current_inferior ()->highest_thread_num = 0;
2204
2205 agent_capability_invalidate ();
2206 }
2207
2208 /* Callback for iterate_over_inferiors. Gets rid of the given
2209 inferior. */
2210
2211 static int
2212 dispose_inferior (struct inferior *inf, void *args)
2213 {
2214 struct thread_info *thread;
2215
2216 thread = any_thread_of_process (inf->pid);
2217 if (thread)
2218 {
2219 switch_to_thread (thread->ptid);
2220
2221 /* Core inferiors actually should be detached, not killed. */
2222 if (target_has_execution)
2223 target_kill ();
2224 else
2225 target_detach (NULL, 0);
2226 }
2227
2228 return 0;
2229 }
2230
2231 /* This is to be called by the open routine before it does
2232 anything. */
2233
2234 void
2235 target_preopen (int from_tty)
2236 {
2237 dont_repeat ();
2238
2239 if (have_inferiors ())
2240 {
2241 if (!from_tty
2242 || !have_live_inferiors ()
2243 || query (_("A program is being debugged already. Kill it? ")))
2244 iterate_over_inferiors (dispose_inferior, NULL);
2245 else
2246 error (_("Program not killed."));
2247 }
2248
2249 /* Calling target_kill may remove the target from the stack. But if
2250 it doesn't (which seems like a win for UDI), remove it now. */
2251 /* Leave the exec target, though. The user may be switching from a
2252 live process to a core of the same program. */
2253 pop_all_targets_above (file_stratum);
2254
2255 target_pre_inferior (from_tty);
2256 }
2257
2258 /* Detach a target after doing deferred register stores. */
2259
2260 void
2261 target_detach (const char *args, int from_tty)
2262 {
2263 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2264 /* Don't remove global breakpoints here. They're removed on
2265 disconnection from the target. */
2266 ;
2267 else
2268 /* If we're in breakpoints-always-inserted mode, have to remove
2269 them before detaching. */
2270 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2271
2272 prepare_for_detach ();
2273
2274 current_target.to_detach (&current_target, args, from_tty);
2275 }
2276
2277 void
2278 target_disconnect (const char *args, int from_tty)
2279 {
2280 /* If we're in breakpoints-always-inserted mode or if breakpoints
2281 are global across processes, we have to remove them before
2282 disconnecting. */
2283 remove_breakpoints ();
2284
2285 current_target.to_disconnect (&current_target, args, from_tty);
2286 }
2287
2288 ptid_t
2289 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2290 {
2291 return (current_target.to_wait) (&current_target, ptid, status, options);
2292 }
2293
2294 /* See target.h. */
2295
2296 ptid_t
2297 default_target_wait (struct target_ops *ops,
2298 ptid_t ptid, struct target_waitstatus *status,
2299 int options)
2300 {
2301 status->kind = TARGET_WAITKIND_IGNORE;
2302 return minus_one_ptid;
2303 }
2304
2305 char *
2306 target_pid_to_str (ptid_t ptid)
2307 {
2308 return (*current_target.to_pid_to_str) (&current_target, ptid);
2309 }
2310
2311 const char *
2312 target_thread_name (struct thread_info *info)
2313 {
2314 return current_target.to_thread_name (&current_target, info);
2315 }
2316
2317 void
2318 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2319 {
2320 target_dcache_invalidate ();
2321
2322 current_target.to_resume (&current_target, ptid, step, signal);
2323
2324 registers_changed_ptid (ptid);
2325 /* We only set the internal executing state here. The user/frontend
2326 running state is set at a higher level. */
2327 set_executing (ptid, 1);
2328 clear_inline_frame_state (ptid);
2329 }
2330
2331 void
2332 target_pass_signals (int numsigs, unsigned char *pass_signals)
2333 {
2334 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2335 }
2336
2337 void
2338 target_program_signals (int numsigs, unsigned char *program_signals)
2339 {
2340 (*current_target.to_program_signals) (&current_target,
2341 numsigs, program_signals);
2342 }
2343
2344 static int
2345 default_follow_fork (struct target_ops *self, int follow_child,
2346 int detach_fork)
2347 {
2348 /* Some target returned a fork event, but did not know how to follow it. */
2349 internal_error (__FILE__, __LINE__,
2350 _("could not find a target to follow fork"));
2351 }
2352
2353 /* Look through the list of possible targets for a target that can
2354 follow forks. */
2355
2356 int
2357 target_follow_fork (int follow_child, int detach_fork)
2358 {
2359 return current_target.to_follow_fork (&current_target,
2360 follow_child, detach_fork);
2361 }
2362
2363 /* Target wrapper for follow exec hook. */
2364
2365 void
2366 target_follow_exec (struct inferior *inf, char *execd_pathname)
2367 {
2368 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2369 }
2370
2371 static void
2372 default_mourn_inferior (struct target_ops *self)
2373 {
2374 internal_error (__FILE__, __LINE__,
2375 _("could not find a target to follow mourn inferior"));
2376 }
2377
2378 void
2379 target_mourn_inferior (void)
2380 {
2381 current_target.to_mourn_inferior (&current_target);
2382
2383 /* We no longer need to keep handles on any of the object files.
2384 Make sure to release them to avoid unnecessarily locking any
2385 of them while we're not actually debugging. */
2386 bfd_cache_close_all ();
2387 }
2388
2389 /* Look for a target which can describe architectural features, starting
2390 from TARGET. If we find one, return its description. */
2391
2392 const struct target_desc *
2393 target_read_description (struct target_ops *target)
2394 {
2395 return target->to_read_description (target);
2396 }
2397
2398 /* This implements a basic search of memory, reading target memory and
2399 performing the search here (as opposed to performing the search in on the
2400 target side with, for example, gdbserver). */
2401
2402 int
2403 simple_search_memory (struct target_ops *ops,
2404 CORE_ADDR start_addr, ULONGEST search_space_len,
2405 const gdb_byte *pattern, ULONGEST pattern_len,
2406 CORE_ADDR *found_addrp)
2407 {
2408 /* NOTE: also defined in find.c testcase. */
2409 #define SEARCH_CHUNK_SIZE 16000
2410 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2411 /* Buffer to hold memory contents for searching. */
2412 gdb_byte *search_buf;
2413 unsigned search_buf_size;
2414 struct cleanup *old_cleanups;
2415
2416 search_buf_size = chunk_size + pattern_len - 1;
2417
2418 /* No point in trying to allocate a buffer larger than the search space. */
2419 if (search_space_len < search_buf_size)
2420 search_buf_size = search_space_len;
2421
2422 search_buf = (gdb_byte *) malloc (search_buf_size);
2423 if (search_buf == NULL)
2424 error (_("Unable to allocate memory to perform the search."));
2425 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2426
2427 /* Prime the search buffer. */
2428
2429 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2430 search_buf, start_addr, search_buf_size) != search_buf_size)
2431 {
2432 warning (_("Unable to access %s bytes of target "
2433 "memory at %s, halting search."),
2434 pulongest (search_buf_size), hex_string (start_addr));
2435 do_cleanups (old_cleanups);
2436 return -1;
2437 }
2438
2439 /* Perform the search.
2440
2441 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2442 When we've scanned N bytes we copy the trailing bytes to the start and
2443 read in another N bytes. */
2444
2445 while (search_space_len >= pattern_len)
2446 {
2447 gdb_byte *found_ptr;
2448 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2449
2450 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2451 pattern, pattern_len);
2452
2453 if (found_ptr != NULL)
2454 {
2455 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2456
2457 *found_addrp = found_addr;
2458 do_cleanups (old_cleanups);
2459 return 1;
2460 }
2461
2462 /* Not found in this chunk, skip to next chunk. */
2463
2464 /* Don't let search_space_len wrap here, it's unsigned. */
2465 if (search_space_len >= chunk_size)
2466 search_space_len -= chunk_size;
2467 else
2468 search_space_len = 0;
2469
2470 if (search_space_len >= pattern_len)
2471 {
2472 unsigned keep_len = search_buf_size - chunk_size;
2473 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2474 int nr_to_read;
2475
2476 /* Copy the trailing part of the previous iteration to the front
2477 of the buffer for the next iteration. */
2478 gdb_assert (keep_len == pattern_len - 1);
2479 memcpy (search_buf, search_buf + chunk_size, keep_len);
2480
2481 nr_to_read = min (search_space_len - keep_len, chunk_size);
2482
2483 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2484 search_buf + keep_len, read_addr,
2485 nr_to_read) != nr_to_read)
2486 {
2487 warning (_("Unable to access %s bytes of target "
2488 "memory at %s, halting search."),
2489 plongest (nr_to_read),
2490 hex_string (read_addr));
2491 do_cleanups (old_cleanups);
2492 return -1;
2493 }
2494
2495 start_addr += chunk_size;
2496 }
2497 }
2498
2499 /* Not found. */
2500
2501 do_cleanups (old_cleanups);
2502 return 0;
2503 }
2504
2505 /* Default implementation of memory-searching. */
2506
2507 static int
2508 default_search_memory (struct target_ops *self,
2509 CORE_ADDR start_addr, ULONGEST search_space_len,
2510 const gdb_byte *pattern, ULONGEST pattern_len,
2511 CORE_ADDR *found_addrp)
2512 {
2513 /* Start over from the top of the target stack. */
2514 return simple_search_memory (current_target.beneath,
2515 start_addr, search_space_len,
2516 pattern, pattern_len, found_addrp);
2517 }
2518
2519 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2520 sequence of bytes in PATTERN with length PATTERN_LEN.
2521
2522 The result is 1 if found, 0 if not found, and -1 if there was an error
2523 requiring halting of the search (e.g. memory read error).
2524 If the pattern is found the address is recorded in FOUND_ADDRP. */
2525
2526 int
2527 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2528 const gdb_byte *pattern, ULONGEST pattern_len,
2529 CORE_ADDR *found_addrp)
2530 {
2531 return current_target.to_search_memory (&current_target, start_addr,
2532 search_space_len,
2533 pattern, pattern_len, found_addrp);
2534 }
2535
2536 /* Look through the currently pushed targets. If none of them will
2537 be able to restart the currently running process, issue an error
2538 message. */
2539
2540 void
2541 target_require_runnable (void)
2542 {
2543 struct target_ops *t;
2544
2545 for (t = target_stack; t != NULL; t = t->beneath)
2546 {
2547 /* If this target knows how to create a new program, then
2548 assume we will still be able to after killing the current
2549 one. Either killing and mourning will not pop T, or else
2550 find_default_run_target will find it again. */
2551 if (t->to_create_inferior != NULL)
2552 return;
2553
2554 /* Do not worry about targets at certain strata that can not
2555 create inferiors. Assume they will be pushed again if
2556 necessary, and continue to the process_stratum. */
2557 if (t->to_stratum == thread_stratum
2558 || t->to_stratum == record_stratum
2559 || t->to_stratum == arch_stratum)
2560 continue;
2561
2562 error (_("The \"%s\" target does not support \"run\". "
2563 "Try \"help target\" or \"continue\"."),
2564 t->to_shortname);
2565 }
2566
2567 /* This function is only called if the target is running. In that
2568 case there should have been a process_stratum target and it
2569 should either know how to create inferiors, or not... */
2570 internal_error (__FILE__, __LINE__, _("No targets found"));
2571 }
2572
2573 /* Whether GDB is allowed to fall back to the default run target for
2574 "run", "attach", etc. when no target is connected yet. */
2575 static int auto_connect_native_target = 1;
2576
2577 static void
2578 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2579 struct cmd_list_element *c, const char *value)
2580 {
2581 fprintf_filtered (file,
2582 _("Whether GDB may automatically connect to the "
2583 "native target is %s.\n"),
2584 value);
2585 }
2586
2587 /* Look through the list of possible targets for a target that can
2588 execute a run or attach command without any other data. This is
2589 used to locate the default process stratum.
2590
2591 If DO_MESG is not NULL, the result is always valid (error() is
2592 called for errors); else, return NULL on error. */
2593
2594 static struct target_ops *
2595 find_default_run_target (char *do_mesg)
2596 {
2597 struct target_ops *runable = NULL;
2598
2599 if (auto_connect_native_target)
2600 {
2601 struct target_ops *t;
2602 int count = 0;
2603 int i;
2604
2605 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2606 {
2607 if (t->to_can_run != delegate_can_run && target_can_run (t))
2608 {
2609 runable = t;
2610 ++count;
2611 }
2612 }
2613
2614 if (count != 1)
2615 runable = NULL;
2616 }
2617
2618 if (runable == NULL)
2619 {
2620 if (do_mesg)
2621 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2622 else
2623 return NULL;
2624 }
2625
2626 return runable;
2627 }
2628
2629 /* See target.h. */
2630
2631 struct target_ops *
2632 find_attach_target (void)
2633 {
2634 struct target_ops *t;
2635
2636 /* If a target on the current stack can attach, use it. */
2637 for (t = current_target.beneath; t != NULL; t = t->beneath)
2638 {
2639 if (t->to_attach != NULL)
2640 break;
2641 }
2642
2643 /* Otherwise, use the default run target for attaching. */
2644 if (t == NULL)
2645 t = find_default_run_target ("attach");
2646
2647 return t;
2648 }
2649
2650 /* See target.h. */
2651
2652 struct target_ops *
2653 find_run_target (void)
2654 {
2655 struct target_ops *t;
2656
2657 /* If a target on the current stack can attach, use it. */
2658 for (t = current_target.beneath; t != NULL; t = t->beneath)
2659 {
2660 if (t->to_create_inferior != NULL)
2661 break;
2662 }
2663
2664 /* Otherwise, use the default run target. */
2665 if (t == NULL)
2666 t = find_default_run_target ("run");
2667
2668 return t;
2669 }
2670
2671 /* Implement the "info proc" command. */
2672
2673 int
2674 target_info_proc (const char *args, enum info_proc_what what)
2675 {
2676 struct target_ops *t;
2677
2678 /* If we're already connected to something that can get us OS
2679 related data, use it. Otherwise, try using the native
2680 target. */
2681 if (current_target.to_stratum >= process_stratum)
2682 t = current_target.beneath;
2683 else
2684 t = find_default_run_target (NULL);
2685
2686 for (; t != NULL; t = t->beneath)
2687 {
2688 if (t->to_info_proc != NULL)
2689 {
2690 t->to_info_proc (t, args, what);
2691
2692 if (targetdebug)
2693 fprintf_unfiltered (gdb_stdlog,
2694 "target_info_proc (\"%s\", %d)\n", args, what);
2695
2696 return 1;
2697 }
2698 }
2699
2700 return 0;
2701 }
2702
2703 static int
2704 find_default_supports_disable_randomization (struct target_ops *self)
2705 {
2706 struct target_ops *t;
2707
2708 t = find_default_run_target (NULL);
2709 if (t && t->to_supports_disable_randomization)
2710 return (t->to_supports_disable_randomization) (t);
2711 return 0;
2712 }
2713
2714 int
2715 target_supports_disable_randomization (void)
2716 {
2717 struct target_ops *t;
2718
2719 for (t = &current_target; t != NULL; t = t->beneath)
2720 if (t->to_supports_disable_randomization)
2721 return t->to_supports_disable_randomization (t);
2722
2723 return 0;
2724 }
2725
2726 char *
2727 target_get_osdata (const char *type)
2728 {
2729 struct target_ops *t;
2730
2731 /* If we're already connected to something that can get us OS
2732 related data, use it. Otherwise, try using the native
2733 target. */
2734 if (current_target.to_stratum >= process_stratum)
2735 t = current_target.beneath;
2736 else
2737 t = find_default_run_target ("get OS data");
2738
2739 if (!t)
2740 return NULL;
2741
2742 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2743 }
2744
2745 static struct address_space *
2746 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2747 {
2748 struct inferior *inf;
2749
2750 /* Fall-back to the "main" address space of the inferior. */
2751 inf = find_inferior_ptid (ptid);
2752
2753 if (inf == NULL || inf->aspace == NULL)
2754 internal_error (__FILE__, __LINE__,
2755 _("Can't determine the current "
2756 "address space of thread %s\n"),
2757 target_pid_to_str (ptid));
2758
2759 return inf->aspace;
2760 }
2761
2762 /* Determine the current address space of thread PTID. */
2763
2764 struct address_space *
2765 target_thread_address_space (ptid_t ptid)
2766 {
2767 struct address_space *aspace;
2768
2769 aspace = current_target.to_thread_address_space (&current_target, ptid);
2770 gdb_assert (aspace != NULL);
2771
2772 return aspace;
2773 }
2774
2775
2776 /* Target file operations. */
2777
2778 static struct target_ops *
2779 default_fileio_target (void)
2780 {
2781 /* If we're already connected to something that can perform
2782 file I/O, use it. Otherwise, try using the native target. */
2783 if (current_target.to_stratum >= process_stratum)
2784 return current_target.beneath;
2785 else
2786 return find_default_run_target ("file I/O");
2787 }
2788
2789 /* File handle for target file operations. */
2790
2791 typedef struct
2792 {
2793 /* The target on which this file is open. */
2794 struct target_ops *t;
2795
2796 /* The file descriptor on the target. */
2797 int fd;
2798 } fileio_fh_t;
2799
2800 DEF_VEC_O (fileio_fh_t);
2801
2802 /* Vector of currently open file handles. The value returned by
2803 target_fileio_open and passed as the FD argument to other
2804 target_fileio_* functions is an index into this vector. This
2805 vector's entries are never freed; instead, files are marked as
2806 closed, and the handle becomes available for reuse. */
2807 static VEC (fileio_fh_t) *fileio_fhandles;
2808
2809 /* Macro to check whether a fileio_fh_t represents a closed file. */
2810 #define is_closed_fileio_fh(fd) ((fd) < 0)
2811
2812 /* Index into fileio_fhandles of the lowest handle that might be
2813 closed. This permits handle reuse without searching the whole
2814 list each time a new file is opened. */
2815 static int lowest_closed_fd;
2816
2817 /* Acquire a target fileio file descriptor. */
2818
2819 static int
2820 acquire_fileio_fd (struct target_ops *t, int fd)
2821 {
2822 fileio_fh_t *fh;
2823
2824 gdb_assert (!is_closed_fileio_fh (fd));
2825
2826 /* Search for closed handles to reuse. */
2827 for (;
2828 VEC_iterate (fileio_fh_t, fileio_fhandles,
2829 lowest_closed_fd, fh);
2830 lowest_closed_fd++)
2831 if (is_closed_fileio_fh (fh->fd))
2832 break;
2833
2834 /* Push a new handle if no closed handles were found. */
2835 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2836 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2837
2838 /* Fill in the handle. */
2839 fh->t = t;
2840 fh->fd = fd;
2841
2842 /* Return its index, and start the next lookup at
2843 the next index. */
2844 return lowest_closed_fd++;
2845 }
2846
2847 /* Release a target fileio file descriptor. */
2848
2849 static void
2850 release_fileio_fd (int fd, fileio_fh_t *fh)
2851 {
2852 fh->fd = -1;
2853 lowest_closed_fd = min (lowest_closed_fd, fd);
2854 }
2855
2856 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2857
2858 #define fileio_fd_to_fh(fd) \
2859 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2860
2861 /* Helper for target_fileio_open and
2862 target_fileio_open_warn_if_slow. */
2863
2864 static int
2865 target_fileio_open_1 (struct inferior *inf, const char *filename,
2866 int flags, int mode, int warn_if_slow,
2867 int *target_errno)
2868 {
2869 struct target_ops *t;
2870
2871 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2872 {
2873 if (t->to_fileio_open != NULL)
2874 {
2875 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2876 warn_if_slow, target_errno);
2877
2878 if (fd < 0)
2879 fd = -1;
2880 else
2881 fd = acquire_fileio_fd (t, fd);
2882
2883 if (targetdebug)
2884 fprintf_unfiltered (gdb_stdlog,
2885 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2886 " = %d (%d)\n",
2887 inf == NULL ? 0 : inf->num,
2888 filename, flags, mode,
2889 warn_if_slow, fd,
2890 fd != -1 ? 0 : *target_errno);
2891 return fd;
2892 }
2893 }
2894
2895 *target_errno = FILEIO_ENOSYS;
2896 return -1;
2897 }
2898
2899 /* See target.h. */
2900
2901 int
2902 target_fileio_open (struct inferior *inf, const char *filename,
2903 int flags, int mode, int *target_errno)
2904 {
2905 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2906 target_errno);
2907 }
2908
2909 /* See target.h. */
2910
2911 int
2912 target_fileio_open_warn_if_slow (struct inferior *inf,
2913 const char *filename,
2914 int flags, int mode, int *target_errno)
2915 {
2916 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2917 target_errno);
2918 }
2919
2920 /* See target.h. */
2921
2922 int
2923 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2924 ULONGEST offset, int *target_errno)
2925 {
2926 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2927 int ret = -1;
2928
2929 if (is_closed_fileio_fh (fh->fd))
2930 *target_errno = EBADF;
2931 else
2932 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2933 len, offset, target_errno);
2934
2935 if (targetdebug)
2936 fprintf_unfiltered (gdb_stdlog,
2937 "target_fileio_pwrite (%d,...,%d,%s) "
2938 "= %d (%d)\n",
2939 fd, len, pulongest (offset),
2940 ret, ret != -1 ? 0 : *target_errno);
2941 return ret;
2942 }
2943
2944 /* See target.h. */
2945
2946 int
2947 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2948 ULONGEST offset, int *target_errno)
2949 {
2950 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2951 int ret = -1;
2952
2953 if (is_closed_fileio_fh (fh->fd))
2954 *target_errno = EBADF;
2955 else
2956 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2957 len, offset, target_errno);
2958
2959 if (targetdebug)
2960 fprintf_unfiltered (gdb_stdlog,
2961 "target_fileio_pread (%d,...,%d,%s) "
2962 "= %d (%d)\n",
2963 fd, len, pulongest (offset),
2964 ret, ret != -1 ? 0 : *target_errno);
2965 return ret;
2966 }
2967
2968 /* See target.h. */
2969
2970 int
2971 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2972 {
2973 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2974 int ret = -1;
2975
2976 if (is_closed_fileio_fh (fh->fd))
2977 *target_errno = EBADF;
2978 else
2979 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2980
2981 if (targetdebug)
2982 fprintf_unfiltered (gdb_stdlog,
2983 "target_fileio_fstat (%d) = %d (%d)\n",
2984 fd, ret, ret != -1 ? 0 : *target_errno);
2985 return ret;
2986 }
2987
2988 /* See target.h. */
2989
2990 int
2991 target_fileio_close (int fd, int *target_errno)
2992 {
2993 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2994 int ret = -1;
2995
2996 if (is_closed_fileio_fh (fh->fd))
2997 *target_errno = EBADF;
2998 else
2999 {
3000 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
3001 release_fileio_fd (fd, fh);
3002 }
3003
3004 if (targetdebug)
3005 fprintf_unfiltered (gdb_stdlog,
3006 "target_fileio_close (%d) = %d (%d)\n",
3007 fd, ret, ret != -1 ? 0 : *target_errno);
3008 return ret;
3009 }
3010
3011 /* See target.h. */
3012
3013 int
3014 target_fileio_unlink (struct inferior *inf, const char *filename,
3015 int *target_errno)
3016 {
3017 struct target_ops *t;
3018
3019 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3020 {
3021 if (t->to_fileio_unlink != NULL)
3022 {
3023 int ret = t->to_fileio_unlink (t, inf, filename,
3024 target_errno);
3025
3026 if (targetdebug)
3027 fprintf_unfiltered (gdb_stdlog,
3028 "target_fileio_unlink (%d,%s)"
3029 " = %d (%d)\n",
3030 inf == NULL ? 0 : inf->num, filename,
3031 ret, ret != -1 ? 0 : *target_errno);
3032 return ret;
3033 }
3034 }
3035
3036 *target_errno = FILEIO_ENOSYS;
3037 return -1;
3038 }
3039
3040 /* See target.h. */
3041
3042 char *
3043 target_fileio_readlink (struct inferior *inf, const char *filename,
3044 int *target_errno)
3045 {
3046 struct target_ops *t;
3047
3048 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3049 {
3050 if (t->to_fileio_readlink != NULL)
3051 {
3052 char *ret = t->to_fileio_readlink (t, inf, filename,
3053 target_errno);
3054
3055 if (targetdebug)
3056 fprintf_unfiltered (gdb_stdlog,
3057 "target_fileio_readlink (%d,%s)"
3058 " = %s (%d)\n",
3059 inf == NULL ? 0 : inf->num,
3060 filename, ret? ret : "(nil)",
3061 ret? 0 : *target_errno);
3062 return ret;
3063 }
3064 }
3065
3066 *target_errno = FILEIO_ENOSYS;
3067 return NULL;
3068 }
3069
3070 static void
3071 target_fileio_close_cleanup (void *opaque)
3072 {
3073 int fd = *(int *) opaque;
3074 int target_errno;
3075
3076 target_fileio_close (fd, &target_errno);
3077 }
3078
3079 /* Read target file FILENAME, in the filesystem as seen by INF. If
3080 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3081 remote targets, the remote stub). Store the result in *BUF_P and
3082 return the size of the transferred data. PADDING additional bytes
3083 are available in *BUF_P. This is a helper function for
3084 target_fileio_read_alloc; see the declaration of that function for
3085 more information. */
3086
3087 static LONGEST
3088 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3089 gdb_byte **buf_p, int padding)
3090 {
3091 struct cleanup *close_cleanup;
3092 size_t buf_alloc, buf_pos;
3093 gdb_byte *buf;
3094 LONGEST n;
3095 int fd;
3096 int target_errno;
3097
3098 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3099 &target_errno);
3100 if (fd == -1)
3101 return -1;
3102
3103 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3104
3105 /* Start by reading up to 4K at a time. The target will throttle
3106 this number down if necessary. */
3107 buf_alloc = 4096;
3108 buf = (gdb_byte *) xmalloc (buf_alloc);
3109 buf_pos = 0;
3110 while (1)
3111 {
3112 n = target_fileio_pread (fd, &buf[buf_pos],
3113 buf_alloc - buf_pos - padding, buf_pos,
3114 &target_errno);
3115 if (n < 0)
3116 {
3117 /* An error occurred. */
3118 do_cleanups (close_cleanup);
3119 xfree (buf);
3120 return -1;
3121 }
3122 else if (n == 0)
3123 {
3124 /* Read all there was. */
3125 do_cleanups (close_cleanup);
3126 if (buf_pos == 0)
3127 xfree (buf);
3128 else
3129 *buf_p = buf;
3130 return buf_pos;
3131 }
3132
3133 buf_pos += n;
3134
3135 /* If the buffer is filling up, expand it. */
3136 if (buf_alloc < buf_pos * 2)
3137 {
3138 buf_alloc *= 2;
3139 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3140 }
3141
3142 QUIT;
3143 }
3144 }
3145
3146 /* See target.h. */
3147
3148 LONGEST
3149 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3150 gdb_byte **buf_p)
3151 {
3152 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3153 }
3154
3155 /* See target.h. */
3156
3157 char *
3158 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3159 {
3160 gdb_byte *buffer;
3161 char *bufstr;
3162 LONGEST i, transferred;
3163
3164 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3165 bufstr = (char *) buffer;
3166
3167 if (transferred < 0)
3168 return NULL;
3169
3170 if (transferred == 0)
3171 return xstrdup ("");
3172
3173 bufstr[transferred] = 0;
3174
3175 /* Check for embedded NUL bytes; but allow trailing NULs. */
3176 for (i = strlen (bufstr); i < transferred; i++)
3177 if (bufstr[i] != 0)
3178 {
3179 warning (_("target file %s "
3180 "contained unexpected null characters"),
3181 filename);
3182 break;
3183 }
3184
3185 return bufstr;
3186 }
3187
3188
3189 static int
3190 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3191 CORE_ADDR addr, int len)
3192 {
3193 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3194 }
3195
3196 static int
3197 default_watchpoint_addr_within_range (struct target_ops *target,
3198 CORE_ADDR addr,
3199 CORE_ADDR start, int length)
3200 {
3201 return addr >= start && addr < start + length;
3202 }
3203
3204 static struct gdbarch *
3205 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3206 {
3207 return target_gdbarch ();
3208 }
3209
3210 static int
3211 return_zero (struct target_ops *ignore)
3212 {
3213 return 0;
3214 }
3215
3216 static int
3217 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3218 {
3219 return 0;
3220 }
3221
3222 /*
3223 * Find the next target down the stack from the specified target.
3224 */
3225
3226 struct target_ops *
3227 find_target_beneath (struct target_ops *t)
3228 {
3229 return t->beneath;
3230 }
3231
3232 /* See target.h. */
3233
3234 struct target_ops *
3235 find_target_at (enum strata stratum)
3236 {
3237 struct target_ops *t;
3238
3239 for (t = current_target.beneath; t != NULL; t = t->beneath)
3240 if (t->to_stratum == stratum)
3241 return t;
3242
3243 return NULL;
3244 }
3245
3246 \f
3247 /* The inferior process has died. Long live the inferior! */
3248
3249 void
3250 generic_mourn_inferior (void)
3251 {
3252 ptid_t ptid;
3253
3254 ptid = inferior_ptid;
3255 inferior_ptid = null_ptid;
3256
3257 /* Mark breakpoints uninserted in case something tries to delete a
3258 breakpoint while we delete the inferior's threads (which would
3259 fail, since the inferior is long gone). */
3260 mark_breakpoints_out ();
3261
3262 if (!ptid_equal (ptid, null_ptid))
3263 {
3264 int pid = ptid_get_pid (ptid);
3265 exit_inferior (pid);
3266 }
3267
3268 /* Note this wipes step-resume breakpoints, so needs to be done
3269 after exit_inferior, which ends up referencing the step-resume
3270 breakpoints through clear_thread_inferior_resources. */
3271 breakpoint_init_inferior (inf_exited);
3272
3273 registers_changed ();
3274
3275 reopen_exec_file ();
3276 reinit_frame_cache ();
3277
3278 if (deprecated_detach_hook)
3279 deprecated_detach_hook ();
3280 }
3281 \f
3282 /* Convert a normal process ID to a string. Returns the string in a
3283 static buffer. */
3284
3285 char *
3286 normal_pid_to_str (ptid_t ptid)
3287 {
3288 static char buf[32];
3289
3290 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3291 return buf;
3292 }
3293
3294 static char *
3295 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3296 {
3297 return normal_pid_to_str (ptid);
3298 }
3299
3300 /* Error-catcher for target_find_memory_regions. */
3301 static int
3302 dummy_find_memory_regions (struct target_ops *self,
3303 find_memory_region_ftype ignore1, void *ignore2)
3304 {
3305 error (_("Command not implemented for this target."));
3306 return 0;
3307 }
3308
3309 /* Error-catcher for target_make_corefile_notes. */
3310 static char *
3311 dummy_make_corefile_notes (struct target_ops *self,
3312 bfd *ignore1, int *ignore2)
3313 {
3314 error (_("Command not implemented for this target."));
3315 return NULL;
3316 }
3317
3318 /* Set up the handful of non-empty slots needed by the dummy target
3319 vector. */
3320
3321 static void
3322 init_dummy_target (void)
3323 {
3324 dummy_target.to_shortname = "None";
3325 dummy_target.to_longname = "None";
3326 dummy_target.to_doc = "";
3327 dummy_target.to_supports_disable_randomization
3328 = find_default_supports_disable_randomization;
3329 dummy_target.to_stratum = dummy_stratum;
3330 dummy_target.to_has_all_memory = return_zero;
3331 dummy_target.to_has_memory = return_zero;
3332 dummy_target.to_has_stack = return_zero;
3333 dummy_target.to_has_registers = return_zero;
3334 dummy_target.to_has_execution = return_zero_has_execution;
3335 dummy_target.to_magic = OPS_MAGIC;
3336
3337 install_dummy_methods (&dummy_target);
3338 }
3339 \f
3340
3341 void
3342 target_close (struct target_ops *targ)
3343 {
3344 gdb_assert (!target_is_pushed (targ));
3345
3346 if (targ->to_xclose != NULL)
3347 targ->to_xclose (targ);
3348 else if (targ->to_close != NULL)
3349 targ->to_close (targ);
3350
3351 if (targetdebug)
3352 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3353 }
3354
3355 int
3356 target_thread_alive (ptid_t ptid)
3357 {
3358 return current_target.to_thread_alive (&current_target, ptid);
3359 }
3360
3361 void
3362 target_update_thread_list (void)
3363 {
3364 current_target.to_update_thread_list (&current_target);
3365 }
3366
3367 void
3368 target_stop (ptid_t ptid)
3369 {
3370 if (!may_stop)
3371 {
3372 warning (_("May not interrupt or stop the target, ignoring attempt"));
3373 return;
3374 }
3375
3376 (*current_target.to_stop) (&current_target, ptid);
3377 }
3378
3379 void
3380 target_interrupt (ptid_t ptid)
3381 {
3382 if (!may_stop)
3383 {
3384 warning (_("May not interrupt or stop the target, ignoring attempt"));
3385 return;
3386 }
3387
3388 (*current_target.to_interrupt) (&current_target, ptid);
3389 }
3390
3391 /* See target.h. */
3392
3393 void
3394 target_pass_ctrlc (void)
3395 {
3396 (*current_target.to_pass_ctrlc) (&current_target);
3397 }
3398
3399 /* See target.h. */
3400
3401 void
3402 default_target_pass_ctrlc (struct target_ops *ops)
3403 {
3404 target_interrupt (inferior_ptid);
3405 }
3406
3407 /* See target/target.h. */
3408
3409 void
3410 target_stop_and_wait (ptid_t ptid)
3411 {
3412 struct target_waitstatus status;
3413 int was_non_stop = non_stop;
3414
3415 non_stop = 1;
3416 target_stop (ptid);
3417
3418 memset (&status, 0, sizeof (status));
3419 target_wait (ptid, &status, 0);
3420
3421 non_stop = was_non_stop;
3422 }
3423
3424 /* See target/target.h. */
3425
3426 void
3427 target_continue_no_signal (ptid_t ptid)
3428 {
3429 target_resume (ptid, 0, GDB_SIGNAL_0);
3430 }
3431
3432 /* Concatenate ELEM to LIST, a comma separate list, and return the
3433 result. The LIST incoming argument is released. */
3434
3435 static char *
3436 str_comma_list_concat_elem (char *list, const char *elem)
3437 {
3438 if (list == NULL)
3439 return xstrdup (elem);
3440 else
3441 return reconcat (list, list, ", ", elem, (char *) NULL);
3442 }
3443
3444 /* Helper for target_options_to_string. If OPT is present in
3445 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3446 Returns the new resulting string. OPT is removed from
3447 TARGET_OPTIONS. */
3448
3449 static char *
3450 do_option (int *target_options, char *ret,
3451 int opt, char *opt_str)
3452 {
3453 if ((*target_options & opt) != 0)
3454 {
3455 ret = str_comma_list_concat_elem (ret, opt_str);
3456 *target_options &= ~opt;
3457 }
3458
3459 return ret;
3460 }
3461
3462 char *
3463 target_options_to_string (int target_options)
3464 {
3465 char *ret = NULL;
3466
3467 #define DO_TARG_OPTION(OPT) \
3468 ret = do_option (&target_options, ret, OPT, #OPT)
3469
3470 DO_TARG_OPTION (TARGET_WNOHANG);
3471
3472 if (target_options != 0)
3473 ret = str_comma_list_concat_elem (ret, "unknown???");
3474
3475 if (ret == NULL)
3476 ret = xstrdup ("");
3477 return ret;
3478 }
3479
3480 static void
3481 debug_print_register (const char * func,
3482 struct regcache *regcache, int regno)
3483 {
3484 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3485
3486 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3487 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3488 && gdbarch_register_name (gdbarch, regno) != NULL
3489 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3490 fprintf_unfiltered (gdb_stdlog, "(%s)",
3491 gdbarch_register_name (gdbarch, regno));
3492 else
3493 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3494 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3495 {
3496 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3497 int i, size = register_size (gdbarch, regno);
3498 gdb_byte buf[MAX_REGISTER_SIZE];
3499
3500 regcache_raw_collect (regcache, regno, buf);
3501 fprintf_unfiltered (gdb_stdlog, " = ");
3502 for (i = 0; i < size; i++)
3503 {
3504 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3505 }
3506 if (size <= sizeof (LONGEST))
3507 {
3508 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3509
3510 fprintf_unfiltered (gdb_stdlog, " %s %s",
3511 core_addr_to_string_nz (val), plongest (val));
3512 }
3513 }
3514 fprintf_unfiltered (gdb_stdlog, "\n");
3515 }
3516
3517 void
3518 target_fetch_registers (struct regcache *regcache, int regno)
3519 {
3520 current_target.to_fetch_registers (&current_target, regcache, regno);
3521 if (targetdebug)
3522 debug_print_register ("target_fetch_registers", regcache, regno);
3523 }
3524
3525 void
3526 target_store_registers (struct regcache *regcache, int regno)
3527 {
3528 if (!may_write_registers)
3529 error (_("Writing to registers is not allowed (regno %d)"), regno);
3530
3531 current_target.to_store_registers (&current_target, regcache, regno);
3532 if (targetdebug)
3533 {
3534 debug_print_register ("target_store_registers", regcache, regno);
3535 }
3536 }
3537
3538 int
3539 target_core_of_thread (ptid_t ptid)
3540 {
3541 return current_target.to_core_of_thread (&current_target, ptid);
3542 }
3543
3544 int
3545 simple_verify_memory (struct target_ops *ops,
3546 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3547 {
3548 LONGEST total_xfered = 0;
3549
3550 while (total_xfered < size)
3551 {
3552 ULONGEST xfered_len;
3553 enum target_xfer_status status;
3554 gdb_byte buf[1024];
3555 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3556
3557 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3558 buf, NULL, lma + total_xfered, howmuch,
3559 &xfered_len);
3560 if (status == TARGET_XFER_OK
3561 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3562 {
3563 total_xfered += xfered_len;
3564 QUIT;
3565 }
3566 else
3567 return 0;
3568 }
3569 return 1;
3570 }
3571
3572 /* Default implementation of memory verification. */
3573
3574 static int
3575 default_verify_memory (struct target_ops *self,
3576 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3577 {
3578 /* Start over from the top of the target stack. */
3579 return simple_verify_memory (current_target.beneath,
3580 data, memaddr, size);
3581 }
3582
3583 int
3584 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3585 {
3586 return current_target.to_verify_memory (&current_target,
3587 data, memaddr, size);
3588 }
3589
3590 /* The documentation for this function is in its prototype declaration in
3591 target.h. */
3592
3593 int
3594 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3595 enum target_hw_bp_type rw)
3596 {
3597 return current_target.to_insert_mask_watchpoint (&current_target,
3598 addr, mask, rw);
3599 }
3600
3601 /* The documentation for this function is in its prototype declaration in
3602 target.h. */
3603
3604 int
3605 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3606 enum target_hw_bp_type rw)
3607 {
3608 return current_target.to_remove_mask_watchpoint (&current_target,
3609 addr, mask, rw);
3610 }
3611
3612 /* The documentation for this function is in its prototype declaration
3613 in target.h. */
3614
3615 int
3616 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3617 {
3618 return current_target.to_masked_watch_num_registers (&current_target,
3619 addr, mask);
3620 }
3621
3622 /* The documentation for this function is in its prototype declaration
3623 in target.h. */
3624
3625 int
3626 target_ranged_break_num_registers (void)
3627 {
3628 return current_target.to_ranged_break_num_registers (&current_target);
3629 }
3630
3631 /* See target.h. */
3632
3633 int
3634 target_supports_btrace (enum btrace_format format)
3635 {
3636 return current_target.to_supports_btrace (&current_target, format);
3637 }
3638
3639 /* See target.h. */
3640
3641 struct btrace_target_info *
3642 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3643 {
3644 return current_target.to_enable_btrace (&current_target, ptid, conf);
3645 }
3646
3647 /* See target.h. */
3648
3649 void
3650 target_disable_btrace (struct btrace_target_info *btinfo)
3651 {
3652 current_target.to_disable_btrace (&current_target, btinfo);
3653 }
3654
3655 /* See target.h. */
3656
3657 void
3658 target_teardown_btrace (struct btrace_target_info *btinfo)
3659 {
3660 current_target.to_teardown_btrace (&current_target, btinfo);
3661 }
3662
3663 /* See target.h. */
3664
3665 enum btrace_error
3666 target_read_btrace (struct btrace_data *btrace,
3667 struct btrace_target_info *btinfo,
3668 enum btrace_read_type type)
3669 {
3670 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3671 }
3672
3673 /* See target.h. */
3674
3675 const struct btrace_config *
3676 target_btrace_conf (const struct btrace_target_info *btinfo)
3677 {
3678 return current_target.to_btrace_conf (&current_target, btinfo);
3679 }
3680
3681 /* See target.h. */
3682
3683 void
3684 target_stop_recording (void)
3685 {
3686 current_target.to_stop_recording (&current_target);
3687 }
3688
3689 /* See target.h. */
3690
3691 void
3692 target_save_record (const char *filename)
3693 {
3694 current_target.to_save_record (&current_target, filename);
3695 }
3696
3697 /* See target.h. */
3698
3699 int
3700 target_supports_delete_record (void)
3701 {
3702 struct target_ops *t;
3703
3704 for (t = current_target.beneath; t != NULL; t = t->beneath)
3705 if (t->to_delete_record != delegate_delete_record
3706 && t->to_delete_record != tdefault_delete_record)
3707 return 1;
3708
3709 return 0;
3710 }
3711
3712 /* See target.h. */
3713
3714 void
3715 target_delete_record (void)
3716 {
3717 current_target.to_delete_record (&current_target);
3718 }
3719
3720 /* See target.h. */
3721
3722 int
3723 target_record_is_replaying (ptid_t ptid)
3724 {
3725 return current_target.to_record_is_replaying (&current_target, ptid);
3726 }
3727
3728 /* See target.h. */
3729
3730 int
3731 target_record_will_replay (ptid_t ptid, int dir)
3732 {
3733 return current_target.to_record_will_replay (&current_target, ptid, dir);
3734 }
3735
3736 /* See target.h. */
3737
3738 void
3739 target_record_stop_replaying (void)
3740 {
3741 current_target.to_record_stop_replaying (&current_target);
3742 }
3743
3744 /* See target.h. */
3745
3746 void
3747 target_goto_record_begin (void)
3748 {
3749 current_target.to_goto_record_begin (&current_target);
3750 }
3751
3752 /* See target.h. */
3753
3754 void
3755 target_goto_record_end (void)
3756 {
3757 current_target.to_goto_record_end (&current_target);
3758 }
3759
3760 /* See target.h. */
3761
3762 void
3763 target_goto_record (ULONGEST insn)
3764 {
3765 current_target.to_goto_record (&current_target, insn);
3766 }
3767
3768 /* See target.h. */
3769
3770 void
3771 target_insn_history (int size, int flags)
3772 {
3773 current_target.to_insn_history (&current_target, size, flags);
3774 }
3775
3776 /* See target.h. */
3777
3778 void
3779 target_insn_history_from (ULONGEST from, int size, int flags)
3780 {
3781 current_target.to_insn_history_from (&current_target, from, size, flags);
3782 }
3783
3784 /* See target.h. */
3785
3786 void
3787 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3788 {
3789 current_target.to_insn_history_range (&current_target, begin, end, flags);
3790 }
3791
3792 /* See target.h. */
3793
3794 void
3795 target_call_history (int size, int flags)
3796 {
3797 current_target.to_call_history (&current_target, size, flags);
3798 }
3799
3800 /* See target.h. */
3801
3802 void
3803 target_call_history_from (ULONGEST begin, int size, int flags)
3804 {
3805 current_target.to_call_history_from (&current_target, begin, size, flags);
3806 }
3807
3808 /* See target.h. */
3809
3810 void
3811 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3812 {
3813 current_target.to_call_history_range (&current_target, begin, end, flags);
3814 }
3815
3816 /* See target.h. */
3817
3818 const struct frame_unwind *
3819 target_get_unwinder (void)
3820 {
3821 return current_target.to_get_unwinder (&current_target);
3822 }
3823
3824 /* See target.h. */
3825
3826 const struct frame_unwind *
3827 target_get_tailcall_unwinder (void)
3828 {
3829 return current_target.to_get_tailcall_unwinder (&current_target);
3830 }
3831
3832 /* See target.h. */
3833
3834 void
3835 target_prepare_to_generate_core (void)
3836 {
3837 current_target.to_prepare_to_generate_core (&current_target);
3838 }
3839
3840 /* See target.h. */
3841
3842 void
3843 target_done_generating_core (void)
3844 {
3845 current_target.to_done_generating_core (&current_target);
3846 }
3847
3848 static void
3849 setup_target_debug (void)
3850 {
3851 memcpy (&debug_target, &current_target, sizeof debug_target);
3852
3853 init_debug_target (&current_target);
3854 }
3855 \f
3856
3857 static char targ_desc[] =
3858 "Names of targets and files being debugged.\nShows the entire \
3859 stack of targets currently in use (including the exec-file,\n\
3860 core-file, and process, if any), as well as the symbol file name.";
3861
3862 static void
3863 default_rcmd (struct target_ops *self, const char *command,
3864 struct ui_file *output)
3865 {
3866 error (_("\"monitor\" command not supported by this target."));
3867 }
3868
3869 static void
3870 do_monitor_command (char *cmd,
3871 int from_tty)
3872 {
3873 target_rcmd (cmd, gdb_stdtarg);
3874 }
3875
3876 /* Print the name of each layers of our target stack. */
3877
3878 static void
3879 maintenance_print_target_stack (char *cmd, int from_tty)
3880 {
3881 struct target_ops *t;
3882
3883 printf_filtered (_("The current target stack is:\n"));
3884
3885 for (t = target_stack; t != NULL; t = t->beneath)
3886 {
3887 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3888 }
3889 }
3890
3891 /* See target.h. */
3892
3893 void
3894 target_async (int enable)
3895 {
3896 infrun_async (enable);
3897 current_target.to_async (&current_target, enable);
3898 }
3899
3900 /* See target.h. */
3901
3902 void
3903 target_thread_events (int enable)
3904 {
3905 current_target.to_thread_events (&current_target, enable);
3906 }
3907
3908 /* Controls if targets can report that they can/are async. This is
3909 just for maintainers to use when debugging gdb. */
3910 int target_async_permitted = 1;
3911
3912 /* The set command writes to this variable. If the inferior is
3913 executing, target_async_permitted is *not* updated. */
3914 static int target_async_permitted_1 = 1;
3915
3916 static void
3917 maint_set_target_async_command (char *args, int from_tty,
3918 struct cmd_list_element *c)
3919 {
3920 if (have_live_inferiors ())
3921 {
3922 target_async_permitted_1 = target_async_permitted;
3923 error (_("Cannot change this setting while the inferior is running."));
3924 }
3925
3926 target_async_permitted = target_async_permitted_1;
3927 }
3928
3929 static void
3930 maint_show_target_async_command (struct ui_file *file, int from_tty,
3931 struct cmd_list_element *c,
3932 const char *value)
3933 {
3934 fprintf_filtered (file,
3935 _("Controlling the inferior in "
3936 "asynchronous mode is %s.\n"), value);
3937 }
3938
3939 /* Return true if the target operates in non-stop mode even with "set
3940 non-stop off". */
3941
3942 static int
3943 target_always_non_stop_p (void)
3944 {
3945 return current_target.to_always_non_stop_p (&current_target);
3946 }
3947
3948 /* See target.h. */
3949
3950 int
3951 target_is_non_stop_p (void)
3952 {
3953 return (non_stop
3954 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3955 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3956 && target_always_non_stop_p ()));
3957 }
3958
3959 /* Controls if targets can report that they always run in non-stop
3960 mode. This is just for maintainers to use when debugging gdb. */
3961 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3962
3963 /* The set command writes to this variable. If the inferior is
3964 executing, target_non_stop_enabled is *not* updated. */
3965 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3966
3967 /* Implementation of "maint set target-non-stop". */
3968
3969 static void
3970 maint_set_target_non_stop_command (char *args, int from_tty,
3971 struct cmd_list_element *c)
3972 {
3973 if (have_live_inferiors ())
3974 {
3975 target_non_stop_enabled_1 = target_non_stop_enabled;
3976 error (_("Cannot change this setting while the inferior is running."));
3977 }
3978
3979 target_non_stop_enabled = target_non_stop_enabled_1;
3980 }
3981
3982 /* Implementation of "maint show target-non-stop". */
3983
3984 static void
3985 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3986 struct cmd_list_element *c,
3987 const char *value)
3988 {
3989 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3990 fprintf_filtered (file,
3991 _("Whether the target is always in non-stop mode "
3992 "is %s (currently %s).\n"), value,
3993 target_always_non_stop_p () ? "on" : "off");
3994 else
3995 fprintf_filtered (file,
3996 _("Whether the target is always in non-stop mode "
3997 "is %s.\n"), value);
3998 }
3999
4000 /* Temporary copies of permission settings. */
4001
4002 static int may_write_registers_1 = 1;
4003 static int may_write_memory_1 = 1;
4004 static int may_insert_breakpoints_1 = 1;
4005 static int may_insert_tracepoints_1 = 1;
4006 static int may_insert_fast_tracepoints_1 = 1;
4007 static int may_stop_1 = 1;
4008
4009 /* Make the user-set values match the real values again. */
4010
4011 void
4012 update_target_permissions (void)
4013 {
4014 may_write_registers_1 = may_write_registers;
4015 may_write_memory_1 = may_write_memory;
4016 may_insert_breakpoints_1 = may_insert_breakpoints;
4017 may_insert_tracepoints_1 = may_insert_tracepoints;
4018 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4019 may_stop_1 = may_stop;
4020 }
4021
4022 /* The one function handles (most of) the permission flags in the same
4023 way. */
4024
4025 static void
4026 set_target_permissions (char *args, int from_tty,
4027 struct cmd_list_element *c)
4028 {
4029 if (target_has_execution)
4030 {
4031 update_target_permissions ();
4032 error (_("Cannot change this setting while the inferior is running."));
4033 }
4034
4035 /* Make the real values match the user-changed values. */
4036 may_write_registers = may_write_registers_1;
4037 may_insert_breakpoints = may_insert_breakpoints_1;
4038 may_insert_tracepoints = may_insert_tracepoints_1;
4039 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4040 may_stop = may_stop_1;
4041 update_observer_mode ();
4042 }
4043
4044 /* Set memory write permission independently of observer mode. */
4045
4046 static void
4047 set_write_memory_permission (char *args, int from_tty,
4048 struct cmd_list_element *c)
4049 {
4050 /* Make the real values match the user-changed values. */
4051 may_write_memory = may_write_memory_1;
4052 update_observer_mode ();
4053 }
4054
4055
4056 void
4057 initialize_targets (void)
4058 {
4059 init_dummy_target ();
4060 push_target (&dummy_target);
4061
4062 add_info ("target", target_info, targ_desc);
4063 add_info ("files", target_info, targ_desc);
4064
4065 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4066 Set target debugging."), _("\
4067 Show target debugging."), _("\
4068 When non-zero, target debugging is enabled. Higher numbers are more\n\
4069 verbose."),
4070 set_targetdebug,
4071 show_targetdebug,
4072 &setdebuglist, &showdebuglist);
4073
4074 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4075 &trust_readonly, _("\
4076 Set mode for reading from readonly sections."), _("\
4077 Show mode for reading from readonly sections."), _("\
4078 When this mode is on, memory reads from readonly sections (such as .text)\n\
4079 will be read from the object file instead of from the target. This will\n\
4080 result in significant performance improvement for remote targets."),
4081 NULL,
4082 show_trust_readonly,
4083 &setlist, &showlist);
4084
4085 add_com ("monitor", class_obscure, do_monitor_command,
4086 _("Send a command to the remote monitor (remote targets only)."));
4087
4088 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4089 _("Print the name of each layer of the internal target stack."),
4090 &maintenanceprintlist);
4091
4092 add_setshow_boolean_cmd ("target-async", no_class,
4093 &target_async_permitted_1, _("\
4094 Set whether gdb controls the inferior in asynchronous mode."), _("\
4095 Show whether gdb controls the inferior in asynchronous mode."), _("\
4096 Tells gdb whether to control the inferior in asynchronous mode."),
4097 maint_set_target_async_command,
4098 maint_show_target_async_command,
4099 &maintenance_set_cmdlist,
4100 &maintenance_show_cmdlist);
4101
4102 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4103 &target_non_stop_enabled_1, _("\
4104 Set whether gdb always controls the inferior in non-stop mode."), _("\
4105 Show whether gdb always controls the inferior in non-stop mode."), _("\
4106 Tells gdb whether to control the inferior in non-stop mode."),
4107 maint_set_target_non_stop_command,
4108 maint_show_target_non_stop_command,
4109 &maintenance_set_cmdlist,
4110 &maintenance_show_cmdlist);
4111
4112 add_setshow_boolean_cmd ("may-write-registers", class_support,
4113 &may_write_registers_1, _("\
4114 Set permission to write into registers."), _("\
4115 Show permission to write into registers."), _("\
4116 When this permission is on, GDB may write into the target's registers.\n\
4117 Otherwise, any sort of write attempt will result in an error."),
4118 set_target_permissions, NULL,
4119 &setlist, &showlist);
4120
4121 add_setshow_boolean_cmd ("may-write-memory", class_support,
4122 &may_write_memory_1, _("\
4123 Set permission to write into target memory."), _("\
4124 Show permission to write into target memory."), _("\
4125 When this permission is on, GDB may write into the target's memory.\n\
4126 Otherwise, any sort of write attempt will result in an error."),
4127 set_write_memory_permission, NULL,
4128 &setlist, &showlist);
4129
4130 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4131 &may_insert_breakpoints_1, _("\
4132 Set permission to insert breakpoints in the target."), _("\
4133 Show permission to insert breakpoints in the target."), _("\
4134 When this permission is on, GDB may insert breakpoints in the program.\n\
4135 Otherwise, any sort of insertion attempt will result in an error."),
4136 set_target_permissions, NULL,
4137 &setlist, &showlist);
4138
4139 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4140 &may_insert_tracepoints_1, _("\
4141 Set permission to insert tracepoints in the target."), _("\
4142 Show permission to insert tracepoints in the target."), _("\
4143 When this permission is on, GDB may insert tracepoints in the program.\n\
4144 Otherwise, any sort of insertion attempt will result in an error."),
4145 set_target_permissions, NULL,
4146 &setlist, &showlist);
4147
4148 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4149 &may_insert_fast_tracepoints_1, _("\
4150 Set permission to insert fast tracepoints in the target."), _("\
4151 Show permission to insert fast tracepoints in the target."), _("\
4152 When this permission is on, GDB may insert fast tracepoints.\n\
4153 Otherwise, any sort of insertion attempt will result in an error."),
4154 set_target_permissions, NULL,
4155 &setlist, &showlist);
4156
4157 add_setshow_boolean_cmd ("may-interrupt", class_support,
4158 &may_stop_1, _("\
4159 Set permission to interrupt or signal the target."), _("\
4160 Show permission to interrupt or signal the target."), _("\
4161 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4162 Otherwise, any attempt to interrupt or stop will be ignored."),
4163 set_target_permissions, NULL,
4164 &setlist, &showlist);
4165
4166 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4167 &auto_connect_native_target, _("\
4168 Set whether GDB may automatically connect to the native target."), _("\
4169 Show whether GDB may automatically connect to the native target."), _("\
4170 When on, and GDB is not connected to a target yet, GDB\n\
4171 attempts \"run\" and other commands with the native target."),
4172 NULL, show_auto_connect_native_target,
4173 &setlist, &showlist);
4174 }
This page took 0.115173 seconds and 4 git commands to generate.