* remote.c (remote_open_1): Move acknowledging any pending ack,
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44
45 static void target_info (char *, int);
46
47 static void kill_or_be_killed (int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static int nosymbol (char *, CORE_ADDR *);
57
58 static void tcomplain (void) ATTR_NORETURN;
59
60 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
61
62 static int return_zero (void);
63
64 static int return_one (void);
65
66 static int return_minus_one (void);
67
68 void target_ignore (void);
69
70 static void target_command (char *, int);
71
72 static struct target_ops *find_default_run_target (char *);
73
74 static void nosupport_runtime (void);
75
76 static LONGEST default_xfer_partial (struct target_ops *ops,
77 enum target_object object,
78 const char *annex, gdb_byte *readbuf,
79 const gdb_byte *writebuf,
80 ULONGEST offset, LONGEST len);
81
82 static LONGEST current_xfer_partial (struct target_ops *ops,
83 enum target_object object,
84 const char *annex, gdb_byte *readbuf,
85 const gdb_byte *writebuf,
86 ULONGEST offset, LONGEST len);
87
88 static LONGEST target_xfer_partial (struct target_ops *ops,
89 enum target_object object,
90 const char *annex,
91 void *readbuf, const void *writebuf,
92 ULONGEST offset, LONGEST len);
93
94 static void init_dummy_target (void);
95
96 static struct target_ops debug_target;
97
98 static void debug_to_open (char *, int);
99
100 static void debug_to_close (int);
101
102 static void debug_to_attach (char *, int);
103
104 static void debug_to_detach (char *, int);
105
106 static void debug_to_resume (ptid_t, int, enum target_signal);
107
108 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
109
110 static void debug_to_fetch_registers (struct regcache *, int);
111
112 static void debug_to_store_registers (struct regcache *, int);
113
114 static void debug_to_prepare_to_store (struct regcache *);
115
116 static void debug_to_files_info (struct target_ops *);
117
118 static int debug_to_insert_breakpoint (struct bp_target_info *);
119
120 static int debug_to_remove_breakpoint (struct bp_target_info *);
121
122 static int debug_to_can_use_hw_breakpoint (int, int, int);
123
124 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
125
126 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
127
128 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
129
130 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
131
132 static int debug_to_stopped_by_watchpoint (void);
133
134 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
135
136 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
137 CORE_ADDR, CORE_ADDR, int);
138
139 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
140
141 static void debug_to_terminal_init (void);
142
143 static void debug_to_terminal_inferior (void);
144
145 static void debug_to_terminal_ours_for_output (void);
146
147 static void debug_to_terminal_save_ours (void);
148
149 static void debug_to_terminal_ours (void);
150
151 static void debug_to_terminal_info (char *, int);
152
153 static void debug_to_kill (void);
154
155 static void debug_to_load (char *, int);
156
157 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
158
159 static void debug_to_mourn_inferior (void);
160
161 static int debug_to_can_run (void);
162
163 static void debug_to_notice_signals (ptid_t);
164
165 static int debug_to_thread_alive (ptid_t);
166
167 static void debug_to_stop (ptid_t);
168
169 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
170 wierd and mysterious ways. Putting the variable here lets those
171 wierd and mysterious ways keep building while they are being
172 converted to the inferior inheritance structure. */
173 struct target_ops deprecated_child_ops;
174
175 /* Pointer to array of target architecture structures; the size of the
176 array; the current index into the array; the allocated size of the
177 array. */
178 struct target_ops **target_structs;
179 unsigned target_struct_size;
180 unsigned target_struct_index;
181 unsigned target_struct_allocsize;
182 #define DEFAULT_ALLOCSIZE 10
183
184 /* The initial current target, so that there is always a semi-valid
185 current target. */
186
187 static struct target_ops dummy_target;
188
189 /* Top of target stack. */
190
191 static struct target_ops *target_stack;
192
193 /* The target structure we are currently using to talk to a process
194 or file or whatever "inferior" we have. */
195
196 struct target_ops current_target;
197
198 /* Command list for target. */
199
200 static struct cmd_list_element *targetlist = NULL;
201
202 /* Nonzero if we should trust readonly sections from the
203 executable when reading memory. */
204
205 static int trust_readonly = 0;
206
207 /* Nonzero if we should show true memory content including
208 memory breakpoint inserted by gdb. */
209
210 static int show_memory_breakpoints = 0;
211
212 /* Non-zero if we want to see trace of target level stuff. */
213
214 static int targetdebug = 0;
215 static void
216 show_targetdebug (struct ui_file *file, int from_tty,
217 struct cmd_list_element *c, const char *value)
218 {
219 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
220 }
221
222 static void setup_target_debug (void);
223
224 DCACHE *target_dcache;
225
226 /* The user just typed 'target' without the name of a target. */
227
228 static void
229 target_command (char *arg, int from_tty)
230 {
231 fputs_filtered ("Argument required (target name). Try `help target'\n",
232 gdb_stdout);
233 }
234
235 /* Add a possible target architecture to the list. */
236
237 void
238 add_target (struct target_ops *t)
239 {
240 /* Provide default values for all "must have" methods. */
241 if (t->to_xfer_partial == NULL)
242 t->to_xfer_partial = default_xfer_partial;
243
244 if (!target_structs)
245 {
246 target_struct_allocsize = DEFAULT_ALLOCSIZE;
247 target_structs = (struct target_ops **) xmalloc
248 (target_struct_allocsize * sizeof (*target_structs));
249 }
250 if (target_struct_size >= target_struct_allocsize)
251 {
252 target_struct_allocsize *= 2;
253 target_structs = (struct target_ops **)
254 xrealloc ((char *) target_structs,
255 target_struct_allocsize * sizeof (*target_structs));
256 }
257 target_structs[target_struct_size++] = t;
258
259 if (targetlist == NULL)
260 add_prefix_cmd ("target", class_run, target_command, _("\
261 Connect to a target machine or process.\n\
262 The first argument is the type or protocol of the target machine.\n\
263 Remaining arguments are interpreted by the target protocol. For more\n\
264 information on the arguments for a particular protocol, type\n\
265 `help target ' followed by the protocol name."),
266 &targetlist, "target ", 0, &cmdlist);
267 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
268 }
269
270 /* Stub functions */
271
272 void
273 target_ignore (void)
274 {
275 }
276
277 void
278 target_load (char *arg, int from_tty)
279 {
280 dcache_invalidate (target_dcache);
281 (*current_target.to_load) (arg, from_tty);
282 }
283
284 static int
285 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
286 struct target_ops *t)
287 {
288 errno = EIO; /* Can't read/write this location */
289 return 0; /* No bytes handled */
290 }
291
292 static void
293 tcomplain (void)
294 {
295 error (_("You can't do that when your target is `%s'"),
296 current_target.to_shortname);
297 }
298
299 void
300 noprocess (void)
301 {
302 error (_("You can't do that without a process to debug."));
303 }
304
305 static int
306 nosymbol (char *name, CORE_ADDR *addrp)
307 {
308 return 1; /* Symbol does not exist in target env */
309 }
310
311 static void
312 nosupport_runtime (void)
313 {
314 if (ptid_equal (inferior_ptid, null_ptid))
315 noprocess ();
316 else
317 error (_("No run-time support for this"));
318 }
319
320
321 static void
322 default_terminal_info (char *args, int from_tty)
323 {
324 printf_unfiltered (_("No saved terminal information.\n"));
325 }
326
327 /* This is the default target_create_inferior and target_attach function.
328 If the current target is executing, it asks whether to kill it off.
329 If this function returns without calling error(), it has killed off
330 the target, and the operation should be attempted. */
331
332 static void
333 kill_or_be_killed (int from_tty)
334 {
335 if (target_has_execution)
336 {
337 printf_unfiltered (_("You are already running a program:\n"));
338 target_files_info ();
339 if (query ("Kill it? "))
340 {
341 target_kill ();
342 if (target_has_execution)
343 error (_("Killing the program did not help."));
344 return;
345 }
346 else
347 {
348 error (_("Program not killed."));
349 }
350 }
351 tcomplain ();
352 }
353
354 /* Go through the target stack from top to bottom, copying over zero
355 entries in current_target, then filling in still empty entries. In
356 effect, we are doing class inheritance through the pushed target
357 vectors.
358
359 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
360 is currently implemented, is that it discards any knowledge of
361 which target an inherited method originally belonged to.
362 Consequently, new new target methods should instead explicitly and
363 locally search the target stack for the target that can handle the
364 request. */
365
366 static void
367 update_current_target (void)
368 {
369 struct target_ops *t;
370
371 /* First, reset current's contents. */
372 memset (&current_target, 0, sizeof (current_target));
373
374 #define INHERIT(FIELD, TARGET) \
375 if (!current_target.FIELD) \
376 current_target.FIELD = (TARGET)->FIELD
377
378 for (t = target_stack; t; t = t->beneath)
379 {
380 INHERIT (to_shortname, t);
381 INHERIT (to_longname, t);
382 INHERIT (to_doc, t);
383 /* Do not inherit to_open. */
384 /* Do not inherit to_close. */
385 INHERIT (to_attach, t);
386 INHERIT (to_post_attach, t);
387 INHERIT (to_attach_no_wait, t);
388 INHERIT (to_detach, t);
389 /* Do not inherit to_disconnect. */
390 INHERIT (to_resume, t);
391 INHERIT (to_wait, t);
392 INHERIT (to_fetch_registers, t);
393 INHERIT (to_store_registers, t);
394 INHERIT (to_prepare_to_store, t);
395 INHERIT (deprecated_xfer_memory, t);
396 INHERIT (to_files_info, t);
397 INHERIT (to_insert_breakpoint, t);
398 INHERIT (to_remove_breakpoint, t);
399 INHERIT (to_can_use_hw_breakpoint, t);
400 INHERIT (to_insert_hw_breakpoint, t);
401 INHERIT (to_remove_hw_breakpoint, t);
402 INHERIT (to_insert_watchpoint, t);
403 INHERIT (to_remove_watchpoint, t);
404 INHERIT (to_stopped_data_address, t);
405 INHERIT (to_have_steppable_watchpoint, t);
406 INHERIT (to_have_continuable_watchpoint, t);
407 INHERIT (to_stopped_by_watchpoint, t);
408 INHERIT (to_watchpoint_addr_within_range, t);
409 INHERIT (to_region_ok_for_hw_watchpoint, t);
410 INHERIT (to_terminal_init, t);
411 INHERIT (to_terminal_inferior, t);
412 INHERIT (to_terminal_ours_for_output, t);
413 INHERIT (to_terminal_ours, t);
414 INHERIT (to_terminal_save_ours, t);
415 INHERIT (to_terminal_info, t);
416 INHERIT (to_kill, t);
417 INHERIT (to_load, t);
418 INHERIT (to_lookup_symbol, t);
419 INHERIT (to_create_inferior, t);
420 INHERIT (to_post_startup_inferior, t);
421 INHERIT (to_acknowledge_created_inferior, t);
422 INHERIT (to_insert_fork_catchpoint, t);
423 INHERIT (to_remove_fork_catchpoint, t);
424 INHERIT (to_insert_vfork_catchpoint, t);
425 INHERIT (to_remove_vfork_catchpoint, t);
426 /* Do not inherit to_follow_fork. */
427 INHERIT (to_insert_exec_catchpoint, t);
428 INHERIT (to_remove_exec_catchpoint, t);
429 INHERIT (to_has_exited, t);
430 INHERIT (to_mourn_inferior, t);
431 INHERIT (to_can_run, t);
432 INHERIT (to_notice_signals, t);
433 INHERIT (to_thread_alive, t);
434 INHERIT (to_find_new_threads, t);
435 INHERIT (to_pid_to_str, t);
436 INHERIT (to_extra_thread_info, t);
437 INHERIT (to_stop, t);
438 /* Do not inherit to_xfer_partial. */
439 INHERIT (to_rcmd, t);
440 INHERIT (to_pid_to_exec_file, t);
441 INHERIT (to_log_command, t);
442 INHERIT (to_stratum, t);
443 INHERIT (to_has_all_memory, t);
444 INHERIT (to_has_memory, t);
445 INHERIT (to_has_stack, t);
446 INHERIT (to_has_registers, t);
447 INHERIT (to_has_execution, t);
448 INHERIT (to_has_thread_control, t);
449 INHERIT (to_sections, t);
450 INHERIT (to_sections_end, t);
451 INHERIT (to_can_async_p, t);
452 INHERIT (to_is_async_p, t);
453 INHERIT (to_async, t);
454 INHERIT (to_async_mask, t);
455 INHERIT (to_find_memory_regions, t);
456 INHERIT (to_make_corefile_notes, t);
457 INHERIT (to_get_thread_local_address, t);
458 /* Do not inherit to_read_description. */
459 /* Do not inherit to_search_memory. */
460 INHERIT (to_magic, t);
461 /* Do not inherit to_memory_map. */
462 /* Do not inherit to_flash_erase. */
463 /* Do not inherit to_flash_done. */
464 }
465 #undef INHERIT
466
467 /* Clean up a target struct so it no longer has any zero pointers in
468 it. Some entries are defaulted to a method that print an error,
469 others are hard-wired to a standard recursive default. */
470
471 #define de_fault(field, value) \
472 if (!current_target.field) \
473 current_target.field = value
474
475 de_fault (to_open,
476 (void (*) (char *, int))
477 tcomplain);
478 de_fault (to_close,
479 (void (*) (int))
480 target_ignore);
481 de_fault (to_post_attach,
482 (void (*) (int))
483 target_ignore);
484 de_fault (to_detach,
485 (void (*) (char *, int))
486 target_ignore);
487 de_fault (to_resume,
488 (void (*) (ptid_t, int, enum target_signal))
489 noprocess);
490 de_fault (to_wait,
491 (ptid_t (*) (ptid_t, struct target_waitstatus *))
492 noprocess);
493 de_fault (to_fetch_registers,
494 (void (*) (struct regcache *, int))
495 target_ignore);
496 de_fault (to_store_registers,
497 (void (*) (struct regcache *, int))
498 noprocess);
499 de_fault (to_prepare_to_store,
500 (void (*) (struct regcache *))
501 noprocess);
502 de_fault (deprecated_xfer_memory,
503 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
504 nomemory);
505 de_fault (to_files_info,
506 (void (*) (struct target_ops *))
507 target_ignore);
508 de_fault (to_insert_breakpoint,
509 memory_insert_breakpoint);
510 de_fault (to_remove_breakpoint,
511 memory_remove_breakpoint);
512 de_fault (to_can_use_hw_breakpoint,
513 (int (*) (int, int, int))
514 return_zero);
515 de_fault (to_insert_hw_breakpoint,
516 (int (*) (struct bp_target_info *))
517 return_minus_one);
518 de_fault (to_remove_hw_breakpoint,
519 (int (*) (struct bp_target_info *))
520 return_minus_one);
521 de_fault (to_insert_watchpoint,
522 (int (*) (CORE_ADDR, int, int))
523 return_minus_one);
524 de_fault (to_remove_watchpoint,
525 (int (*) (CORE_ADDR, int, int))
526 return_minus_one);
527 de_fault (to_stopped_by_watchpoint,
528 (int (*) (void))
529 return_zero);
530 de_fault (to_stopped_data_address,
531 (int (*) (struct target_ops *, CORE_ADDR *))
532 return_zero);
533 de_fault (to_watchpoint_addr_within_range,
534 default_watchpoint_addr_within_range);
535 de_fault (to_region_ok_for_hw_watchpoint,
536 default_region_ok_for_hw_watchpoint);
537 de_fault (to_terminal_init,
538 (void (*) (void))
539 target_ignore);
540 de_fault (to_terminal_inferior,
541 (void (*) (void))
542 target_ignore);
543 de_fault (to_terminal_ours_for_output,
544 (void (*) (void))
545 target_ignore);
546 de_fault (to_terminal_ours,
547 (void (*) (void))
548 target_ignore);
549 de_fault (to_terminal_save_ours,
550 (void (*) (void))
551 target_ignore);
552 de_fault (to_terminal_info,
553 default_terminal_info);
554 de_fault (to_kill,
555 (void (*) (void))
556 noprocess);
557 de_fault (to_load,
558 (void (*) (char *, int))
559 tcomplain);
560 de_fault (to_lookup_symbol,
561 (int (*) (char *, CORE_ADDR *))
562 nosymbol);
563 de_fault (to_post_startup_inferior,
564 (void (*) (ptid_t))
565 target_ignore);
566 de_fault (to_acknowledge_created_inferior,
567 (void (*) (int))
568 target_ignore);
569 de_fault (to_insert_fork_catchpoint,
570 (void (*) (int))
571 tcomplain);
572 de_fault (to_remove_fork_catchpoint,
573 (int (*) (int))
574 tcomplain);
575 de_fault (to_insert_vfork_catchpoint,
576 (void (*) (int))
577 tcomplain);
578 de_fault (to_remove_vfork_catchpoint,
579 (int (*) (int))
580 tcomplain);
581 de_fault (to_insert_exec_catchpoint,
582 (void (*) (int))
583 tcomplain);
584 de_fault (to_remove_exec_catchpoint,
585 (int (*) (int))
586 tcomplain);
587 de_fault (to_has_exited,
588 (int (*) (int, int, int *))
589 return_zero);
590 de_fault (to_mourn_inferior,
591 (void (*) (void))
592 noprocess);
593 de_fault (to_can_run,
594 return_zero);
595 de_fault (to_notice_signals,
596 (void (*) (ptid_t))
597 target_ignore);
598 de_fault (to_thread_alive,
599 (int (*) (ptid_t))
600 return_zero);
601 de_fault (to_find_new_threads,
602 (void (*) (void))
603 target_ignore);
604 de_fault (to_extra_thread_info,
605 (char *(*) (struct thread_info *))
606 return_zero);
607 de_fault (to_stop,
608 (void (*) (ptid_t))
609 target_ignore);
610 current_target.to_xfer_partial = current_xfer_partial;
611 de_fault (to_rcmd,
612 (void (*) (char *, struct ui_file *))
613 tcomplain);
614 de_fault (to_pid_to_exec_file,
615 (char *(*) (int))
616 return_zero);
617 de_fault (to_async,
618 (void (*) (void (*) (enum inferior_event_type, void*), void*))
619 tcomplain);
620 de_fault (to_async_mask,
621 (int (*) (int))
622 return_one);
623 current_target.to_read_description = NULL;
624 #undef de_fault
625
626 /* Finally, position the target-stack beneath the squashed
627 "current_target". That way code looking for a non-inherited
628 target method can quickly and simply find it. */
629 current_target.beneath = target_stack;
630
631 if (targetdebug)
632 setup_target_debug ();
633 }
634
635 /* Mark OPS as a running target. This reverses the effect
636 of target_mark_exited. */
637
638 void
639 target_mark_running (struct target_ops *ops)
640 {
641 struct target_ops *t;
642
643 for (t = target_stack; t != NULL; t = t->beneath)
644 if (t == ops)
645 break;
646 if (t == NULL)
647 internal_error (__FILE__, __LINE__,
648 "Attempted to mark unpushed target \"%s\" as running",
649 ops->to_shortname);
650
651 ops->to_has_execution = 1;
652 ops->to_has_all_memory = 1;
653 ops->to_has_memory = 1;
654 ops->to_has_stack = 1;
655 ops->to_has_registers = 1;
656
657 update_current_target ();
658 }
659
660 /* Mark OPS as a non-running target. This reverses the effect
661 of target_mark_running. */
662
663 void
664 target_mark_exited (struct target_ops *ops)
665 {
666 struct target_ops *t;
667
668 for (t = target_stack; t != NULL; t = t->beneath)
669 if (t == ops)
670 break;
671 if (t == NULL)
672 internal_error (__FILE__, __LINE__,
673 "Attempted to mark unpushed target \"%s\" as running",
674 ops->to_shortname);
675
676 ops->to_has_execution = 0;
677 ops->to_has_all_memory = 0;
678 ops->to_has_memory = 0;
679 ops->to_has_stack = 0;
680 ops->to_has_registers = 0;
681
682 update_current_target ();
683 }
684
685 /* Push a new target type into the stack of the existing target accessors,
686 possibly superseding some of the existing accessors.
687
688 Result is zero if the pushed target ended up on top of the stack,
689 nonzero if at least one target is on top of it.
690
691 Rather than allow an empty stack, we always have the dummy target at
692 the bottom stratum, so we can call the function vectors without
693 checking them. */
694
695 int
696 push_target (struct target_ops *t)
697 {
698 struct target_ops **cur;
699
700 /* Check magic number. If wrong, it probably means someone changed
701 the struct definition, but not all the places that initialize one. */
702 if (t->to_magic != OPS_MAGIC)
703 {
704 fprintf_unfiltered (gdb_stderr,
705 "Magic number of %s target struct wrong\n",
706 t->to_shortname);
707 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
708 }
709
710 /* Find the proper stratum to install this target in. */
711 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
712 {
713 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
714 break;
715 }
716
717 /* If there's already targets at this stratum, remove them. */
718 /* FIXME: cagney/2003-10-15: I think this should be popping all
719 targets to CUR, and not just those at this stratum level. */
720 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
721 {
722 /* There's already something at this stratum level. Close it,
723 and un-hook it from the stack. */
724 struct target_ops *tmp = (*cur);
725 (*cur) = (*cur)->beneath;
726 tmp->beneath = NULL;
727 target_close (tmp, 0);
728 }
729
730 /* We have removed all targets in our stratum, now add the new one. */
731 t->beneath = (*cur);
732 (*cur) = t;
733
734 update_current_target ();
735
736 /* Not on top? */
737 return (t != target_stack);
738 }
739
740 /* Remove a target_ops vector from the stack, wherever it may be.
741 Return how many times it was removed (0 or 1). */
742
743 int
744 unpush_target (struct target_ops *t)
745 {
746 struct target_ops **cur;
747 struct target_ops *tmp;
748
749 if (t->to_stratum == dummy_stratum)
750 internal_error (__FILE__, __LINE__,
751 "Attempt to unpush the dummy target");
752
753 /* Look for the specified target. Note that we assume that a target
754 can only occur once in the target stack. */
755
756 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
757 {
758 if ((*cur) == t)
759 break;
760 }
761
762 if ((*cur) == NULL)
763 return 0; /* Didn't find target_ops, quit now */
764
765 /* NOTE: cagney/2003-12-06: In '94 the close call was made
766 unconditional by moving it to before the above check that the
767 target was in the target stack (something about "Change the way
768 pushing and popping of targets work to support target overlays
769 and inheritance"). This doesn't make much sense - only open
770 targets should be closed. */
771 target_close (t, 0);
772
773 /* Unchain the target */
774 tmp = (*cur);
775 (*cur) = (*cur)->beneath;
776 tmp->beneath = NULL;
777
778 update_current_target ();
779
780 return 1;
781 }
782
783 void
784 pop_target (void)
785 {
786 target_close (target_stack, 0); /* Let it clean up */
787 if (unpush_target (target_stack) == 1)
788 return;
789
790 fprintf_unfiltered (gdb_stderr,
791 "pop_target couldn't find target %s\n",
792 current_target.to_shortname);
793 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
794 }
795
796 void
797 pop_all_targets_above (enum strata above_stratum, int quitting)
798 {
799 while ((int) (current_target.to_stratum) > (int) above_stratum)
800 {
801 target_close (target_stack, quitting);
802 if (!unpush_target (target_stack))
803 {
804 fprintf_unfiltered (gdb_stderr,
805 "pop_all_targets couldn't find target %s\n",
806 target_stack->to_shortname);
807 internal_error (__FILE__, __LINE__,
808 _("failed internal consistency check"));
809 break;
810 }
811 }
812 }
813
814 void
815 pop_all_targets (int quitting)
816 {
817 pop_all_targets_above (dummy_stratum, quitting);
818 }
819
820 /* Using the objfile specified in OBJFILE, find the address for the
821 current thread's thread-local storage with offset OFFSET. */
822 CORE_ADDR
823 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
824 {
825 volatile CORE_ADDR addr = 0;
826
827 if (target_get_thread_local_address_p ()
828 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
829 {
830 ptid_t ptid = inferior_ptid;
831 volatile struct gdb_exception ex;
832
833 TRY_CATCH (ex, RETURN_MASK_ALL)
834 {
835 CORE_ADDR lm_addr;
836
837 /* Fetch the load module address for this objfile. */
838 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
839 objfile);
840 /* If it's 0, throw the appropriate exception. */
841 if (lm_addr == 0)
842 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
843 _("TLS load module not found"));
844
845 addr = target_get_thread_local_address (ptid, lm_addr, offset);
846 }
847 /* If an error occurred, print TLS related messages here. Otherwise,
848 throw the error to some higher catcher. */
849 if (ex.reason < 0)
850 {
851 int objfile_is_library = (objfile->flags & OBJF_SHARED);
852
853 switch (ex.error)
854 {
855 case TLS_NO_LIBRARY_SUPPORT_ERROR:
856 error (_("Cannot find thread-local variables in this thread library."));
857 break;
858 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
859 if (objfile_is_library)
860 error (_("Cannot find shared library `%s' in dynamic"
861 " linker's load module list"), objfile->name);
862 else
863 error (_("Cannot find executable file `%s' in dynamic"
864 " linker's load module list"), objfile->name);
865 break;
866 case TLS_NOT_ALLOCATED_YET_ERROR:
867 if (objfile_is_library)
868 error (_("The inferior has not yet allocated storage for"
869 " thread-local variables in\n"
870 "the shared library `%s'\n"
871 "for %s"),
872 objfile->name, target_pid_to_str (ptid));
873 else
874 error (_("The inferior has not yet allocated storage for"
875 " thread-local variables in\n"
876 "the executable `%s'\n"
877 "for %s"),
878 objfile->name, target_pid_to_str (ptid));
879 break;
880 case TLS_GENERIC_ERROR:
881 if (objfile_is_library)
882 error (_("Cannot find thread-local storage for %s, "
883 "shared library %s:\n%s"),
884 target_pid_to_str (ptid),
885 objfile->name, ex.message);
886 else
887 error (_("Cannot find thread-local storage for %s, "
888 "executable file %s:\n%s"),
889 target_pid_to_str (ptid),
890 objfile->name, ex.message);
891 break;
892 default:
893 throw_exception (ex);
894 break;
895 }
896 }
897 }
898 /* It wouldn't be wrong here to try a gdbarch method, too; finding
899 TLS is an ABI-specific thing. But we don't do that yet. */
900 else
901 error (_("Cannot find thread-local variables on this target"));
902
903 return addr;
904 }
905
906 #undef MIN
907 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
908
909 /* target_read_string -- read a null terminated string, up to LEN bytes,
910 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
911 Set *STRING to a pointer to malloc'd memory containing the data; the caller
912 is responsible for freeing it. Return the number of bytes successfully
913 read. */
914
915 int
916 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
917 {
918 int tlen, origlen, offset, i;
919 gdb_byte buf[4];
920 int errcode = 0;
921 char *buffer;
922 int buffer_allocated;
923 char *bufptr;
924 unsigned int nbytes_read = 0;
925
926 gdb_assert (string);
927
928 /* Small for testing. */
929 buffer_allocated = 4;
930 buffer = xmalloc (buffer_allocated);
931 bufptr = buffer;
932
933 origlen = len;
934
935 while (len > 0)
936 {
937 tlen = MIN (len, 4 - (memaddr & 3));
938 offset = memaddr & 3;
939
940 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
941 if (errcode != 0)
942 {
943 /* The transfer request might have crossed the boundary to an
944 unallocated region of memory. Retry the transfer, requesting
945 a single byte. */
946 tlen = 1;
947 offset = 0;
948 errcode = target_read_memory (memaddr, buf, 1);
949 if (errcode != 0)
950 goto done;
951 }
952
953 if (bufptr - buffer + tlen > buffer_allocated)
954 {
955 unsigned int bytes;
956 bytes = bufptr - buffer;
957 buffer_allocated *= 2;
958 buffer = xrealloc (buffer, buffer_allocated);
959 bufptr = buffer + bytes;
960 }
961
962 for (i = 0; i < tlen; i++)
963 {
964 *bufptr++ = buf[i + offset];
965 if (buf[i + offset] == '\000')
966 {
967 nbytes_read += i + 1;
968 goto done;
969 }
970 }
971
972 memaddr += tlen;
973 len -= tlen;
974 nbytes_read += tlen;
975 }
976 done:
977 *string = buffer;
978 if (errnop != NULL)
979 *errnop = errcode;
980 return nbytes_read;
981 }
982
983 /* Find a section containing ADDR. */
984 struct section_table *
985 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
986 {
987 struct section_table *secp;
988 for (secp = target->to_sections;
989 secp < target->to_sections_end;
990 secp++)
991 {
992 if (addr >= secp->addr && addr < secp->endaddr)
993 return secp;
994 }
995 return NULL;
996 }
997
998 /* Perform a partial memory transfer. The arguments and return
999 value are just as for target_xfer_partial. */
1000
1001 static LONGEST
1002 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
1003 ULONGEST memaddr, LONGEST len)
1004 {
1005 LONGEST res;
1006 int reg_len;
1007 struct mem_region *region;
1008
1009 /* Zero length requests are ok and require no work. */
1010 if (len == 0)
1011 return 0;
1012
1013 /* Try the executable file, if "trust-readonly-sections" is set. */
1014 if (readbuf != NULL && trust_readonly)
1015 {
1016 struct section_table *secp;
1017
1018 secp = target_section_by_addr (ops, memaddr);
1019 if (secp != NULL
1020 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1021 & SEC_READONLY))
1022 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1023 }
1024
1025 /* Likewise for accesses to unmapped overlay sections. */
1026 if (readbuf != NULL && overlay_debugging)
1027 {
1028 struct obj_section *section = find_pc_overlay (memaddr);
1029 if (pc_in_unmapped_range (memaddr, section))
1030 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1031 }
1032
1033 /* Try GDB's internal data cache. */
1034 region = lookup_mem_region (memaddr);
1035 /* region->hi == 0 means there's no upper bound. */
1036 if (memaddr + len < region->hi || region->hi == 0)
1037 reg_len = len;
1038 else
1039 reg_len = region->hi - memaddr;
1040
1041 switch (region->attrib.mode)
1042 {
1043 case MEM_RO:
1044 if (writebuf != NULL)
1045 return -1;
1046 break;
1047
1048 case MEM_WO:
1049 if (readbuf != NULL)
1050 return -1;
1051 break;
1052
1053 case MEM_FLASH:
1054 /* We only support writing to flash during "load" for now. */
1055 if (writebuf != NULL)
1056 error (_("Writing to flash memory forbidden in this context"));
1057 break;
1058
1059 case MEM_NONE:
1060 return -1;
1061 }
1062
1063 if (region->attrib.cache)
1064 {
1065 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1066 memory request will start back at current_target. */
1067 if (readbuf != NULL)
1068 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1069 reg_len, 0);
1070 else
1071 /* FIXME drow/2006-08-09: If we're going to preserve const
1072 correctness dcache_xfer_memory should take readbuf and
1073 writebuf. */
1074 res = dcache_xfer_memory (target_dcache, memaddr,
1075 (void *) writebuf,
1076 reg_len, 1);
1077 if (res <= 0)
1078 return -1;
1079 else
1080 {
1081 if (readbuf && !show_memory_breakpoints)
1082 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1083 return res;
1084 }
1085 }
1086
1087 /* If none of those methods found the memory we wanted, fall back
1088 to a target partial transfer. Normally a single call to
1089 to_xfer_partial is enough; if it doesn't recognize an object
1090 it will call the to_xfer_partial of the next target down.
1091 But for memory this won't do. Memory is the only target
1092 object which can be read from more than one valid target.
1093 A core file, for instance, could have some of memory but
1094 delegate other bits to the target below it. So, we must
1095 manually try all targets. */
1096
1097 do
1098 {
1099 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1100 readbuf, writebuf, memaddr, reg_len);
1101 if (res > 0)
1102 break;
1103
1104 /* We want to continue past core files to executables, but not
1105 past a running target's memory. */
1106 if (ops->to_has_all_memory)
1107 break;
1108
1109 ops = ops->beneath;
1110 }
1111 while (ops != NULL);
1112
1113 if (readbuf && !show_memory_breakpoints)
1114 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1115
1116 /* If we still haven't got anything, return the last error. We
1117 give up. */
1118 return res;
1119 }
1120
1121 static void
1122 restore_show_memory_breakpoints (void *arg)
1123 {
1124 show_memory_breakpoints = (uintptr_t) arg;
1125 }
1126
1127 struct cleanup *
1128 make_show_memory_breakpoints_cleanup (int show)
1129 {
1130 int current = show_memory_breakpoints;
1131 show_memory_breakpoints = show;
1132
1133 return make_cleanup (restore_show_memory_breakpoints,
1134 (void *) (uintptr_t) current);
1135 }
1136
1137 static LONGEST
1138 target_xfer_partial (struct target_ops *ops,
1139 enum target_object object, const char *annex,
1140 void *readbuf, const void *writebuf,
1141 ULONGEST offset, LONGEST len)
1142 {
1143 LONGEST retval;
1144
1145 gdb_assert (ops->to_xfer_partial != NULL);
1146
1147 /* If this is a memory transfer, let the memory-specific code
1148 have a look at it instead. Memory transfers are more
1149 complicated. */
1150 if (object == TARGET_OBJECT_MEMORY)
1151 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1152 else
1153 {
1154 enum target_object raw_object = object;
1155
1156 /* If this is a raw memory transfer, request the normal
1157 memory object from other layers. */
1158 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1159 raw_object = TARGET_OBJECT_MEMORY;
1160
1161 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1162 writebuf, offset, len);
1163 }
1164
1165 if (targetdebug)
1166 {
1167 const unsigned char *myaddr = NULL;
1168
1169 fprintf_unfiltered (gdb_stdlog,
1170 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, %s, %s) = %s",
1171 ops->to_shortname,
1172 (int) object,
1173 (annex ? annex : "(null)"),
1174 (long) readbuf, (long) writebuf,
1175 core_addr_to_string_nz (offset),
1176 plongest (len), plongest (retval));
1177
1178 if (readbuf)
1179 myaddr = readbuf;
1180 if (writebuf)
1181 myaddr = writebuf;
1182 if (retval > 0 && myaddr != NULL)
1183 {
1184 int i;
1185
1186 fputs_unfiltered (", bytes =", gdb_stdlog);
1187 for (i = 0; i < retval; i++)
1188 {
1189 if ((((long) &(myaddr[i])) & 0xf) == 0)
1190 {
1191 if (targetdebug < 2 && i > 0)
1192 {
1193 fprintf_unfiltered (gdb_stdlog, " ...");
1194 break;
1195 }
1196 fprintf_unfiltered (gdb_stdlog, "\n");
1197 }
1198
1199 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1200 }
1201 }
1202
1203 fputc_unfiltered ('\n', gdb_stdlog);
1204 }
1205 return retval;
1206 }
1207
1208 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1209 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1210 if any error occurs.
1211
1212 If an error occurs, no guarantee is made about the contents of the data at
1213 MYADDR. In particular, the caller should not depend upon partial reads
1214 filling the buffer with good data. There is no way for the caller to know
1215 how much good data might have been transfered anyway. Callers that can
1216 deal with partial reads should call target_read (which will retry until
1217 it makes no progress, and then return how much was transferred). */
1218
1219 int
1220 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1221 {
1222 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1223 myaddr, memaddr, len) == len)
1224 return 0;
1225 else
1226 return EIO;
1227 }
1228
1229 int
1230 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1231 {
1232 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1233 myaddr, memaddr, len) == len)
1234 return 0;
1235 else
1236 return EIO;
1237 }
1238
1239 /* Fetch the target's memory map. */
1240
1241 VEC(mem_region_s) *
1242 target_memory_map (void)
1243 {
1244 VEC(mem_region_s) *result;
1245 struct mem_region *last_one, *this_one;
1246 int ix;
1247 struct target_ops *t;
1248
1249 if (targetdebug)
1250 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1251
1252 for (t = current_target.beneath; t != NULL; t = t->beneath)
1253 if (t->to_memory_map != NULL)
1254 break;
1255
1256 if (t == NULL)
1257 return NULL;
1258
1259 result = t->to_memory_map (t);
1260 if (result == NULL)
1261 return NULL;
1262
1263 qsort (VEC_address (mem_region_s, result),
1264 VEC_length (mem_region_s, result),
1265 sizeof (struct mem_region), mem_region_cmp);
1266
1267 /* Check that regions do not overlap. Simultaneously assign
1268 a numbering for the "mem" commands to use to refer to
1269 each region. */
1270 last_one = NULL;
1271 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1272 {
1273 this_one->number = ix;
1274
1275 if (last_one && last_one->hi > this_one->lo)
1276 {
1277 warning (_("Overlapping regions in memory map: ignoring"));
1278 VEC_free (mem_region_s, result);
1279 return NULL;
1280 }
1281 last_one = this_one;
1282 }
1283
1284 return result;
1285 }
1286
1287 void
1288 target_flash_erase (ULONGEST address, LONGEST length)
1289 {
1290 struct target_ops *t;
1291
1292 for (t = current_target.beneath; t != NULL; t = t->beneath)
1293 if (t->to_flash_erase != NULL)
1294 {
1295 if (targetdebug)
1296 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1297 paddr (address), phex (length, 0));
1298 t->to_flash_erase (t, address, length);
1299 return;
1300 }
1301
1302 tcomplain ();
1303 }
1304
1305 void
1306 target_flash_done (void)
1307 {
1308 struct target_ops *t;
1309
1310 for (t = current_target.beneath; t != NULL; t = t->beneath)
1311 if (t->to_flash_done != NULL)
1312 {
1313 if (targetdebug)
1314 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1315 t->to_flash_done (t);
1316 return;
1317 }
1318
1319 tcomplain ();
1320 }
1321
1322 #ifndef target_stopped_data_address_p
1323 int
1324 target_stopped_data_address_p (struct target_ops *target)
1325 {
1326 if (target->to_stopped_data_address
1327 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1328 return 0;
1329 if (target->to_stopped_data_address == debug_to_stopped_data_address
1330 && (debug_target.to_stopped_data_address
1331 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1332 return 0;
1333 return 1;
1334 }
1335 #endif
1336
1337 static void
1338 show_trust_readonly (struct ui_file *file, int from_tty,
1339 struct cmd_list_element *c, const char *value)
1340 {
1341 fprintf_filtered (file, _("\
1342 Mode for reading from readonly sections is %s.\n"),
1343 value);
1344 }
1345
1346 /* More generic transfers. */
1347
1348 static LONGEST
1349 default_xfer_partial (struct target_ops *ops, enum target_object object,
1350 const char *annex, gdb_byte *readbuf,
1351 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1352 {
1353 if (object == TARGET_OBJECT_MEMORY
1354 && ops->deprecated_xfer_memory != NULL)
1355 /* If available, fall back to the target's
1356 "deprecated_xfer_memory" method. */
1357 {
1358 int xfered = -1;
1359 errno = 0;
1360 if (writebuf != NULL)
1361 {
1362 void *buffer = xmalloc (len);
1363 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1364 memcpy (buffer, writebuf, len);
1365 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1366 1/*write*/, NULL, ops);
1367 do_cleanups (cleanup);
1368 }
1369 if (readbuf != NULL)
1370 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1371 0/*read*/, NULL, ops);
1372 if (xfered > 0)
1373 return xfered;
1374 else if (xfered == 0 && errno == 0)
1375 /* "deprecated_xfer_memory" uses 0, cross checked against
1376 ERRNO as one indication of an error. */
1377 return 0;
1378 else
1379 return -1;
1380 }
1381 else if (ops->beneath != NULL)
1382 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1383 readbuf, writebuf, offset, len);
1384 else
1385 return -1;
1386 }
1387
1388 /* The xfer_partial handler for the topmost target. Unlike the default,
1389 it does not need to handle memory specially; it just passes all
1390 requests down the stack. */
1391
1392 static LONGEST
1393 current_xfer_partial (struct target_ops *ops, enum target_object object,
1394 const char *annex, gdb_byte *readbuf,
1395 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1396 {
1397 if (ops->beneath != NULL)
1398 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1399 readbuf, writebuf, offset, len);
1400 else
1401 return -1;
1402 }
1403
1404 /* Target vector read/write partial wrapper functions.
1405
1406 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1407 (inbuf, outbuf)", instead of separate read/write methods, make life
1408 easier. */
1409
1410 static LONGEST
1411 target_read_partial (struct target_ops *ops,
1412 enum target_object object,
1413 const char *annex, gdb_byte *buf,
1414 ULONGEST offset, LONGEST len)
1415 {
1416 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1417 }
1418
1419 static LONGEST
1420 target_write_partial (struct target_ops *ops,
1421 enum target_object object,
1422 const char *annex, const gdb_byte *buf,
1423 ULONGEST offset, LONGEST len)
1424 {
1425 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1426 }
1427
1428 /* Wrappers to perform the full transfer. */
1429 LONGEST
1430 target_read (struct target_ops *ops,
1431 enum target_object object,
1432 const char *annex, gdb_byte *buf,
1433 ULONGEST offset, LONGEST len)
1434 {
1435 LONGEST xfered = 0;
1436 while (xfered < len)
1437 {
1438 LONGEST xfer = target_read_partial (ops, object, annex,
1439 (gdb_byte *) buf + xfered,
1440 offset + xfered, len - xfered);
1441 /* Call an observer, notifying them of the xfer progress? */
1442 if (xfer == 0)
1443 return xfered;
1444 if (xfer < 0)
1445 return -1;
1446 xfered += xfer;
1447 QUIT;
1448 }
1449 return len;
1450 }
1451
1452 LONGEST
1453 target_read_until_error (struct target_ops *ops,
1454 enum target_object object,
1455 const char *annex, gdb_byte *buf,
1456 ULONGEST offset, LONGEST len)
1457 {
1458 LONGEST xfered = 0;
1459 while (xfered < len)
1460 {
1461 LONGEST xfer = target_read_partial (ops, object, annex,
1462 (gdb_byte *) buf + xfered,
1463 offset + xfered, len - xfered);
1464 /* Call an observer, notifying them of the xfer progress? */
1465 if (xfer == 0)
1466 return xfered;
1467 if (xfer < 0)
1468 {
1469 /* We've got an error. Try to read in smaller blocks. */
1470 ULONGEST start = offset + xfered;
1471 ULONGEST remaining = len - xfered;
1472 ULONGEST half;
1473
1474 /* If an attempt was made to read a random memory address,
1475 it's likely that the very first byte is not accessible.
1476 Try reading the first byte, to avoid doing log N tries
1477 below. */
1478 xfer = target_read_partial (ops, object, annex,
1479 (gdb_byte *) buf + xfered, start, 1);
1480 if (xfer <= 0)
1481 return xfered;
1482 start += 1;
1483 remaining -= 1;
1484 half = remaining/2;
1485
1486 while (half > 0)
1487 {
1488 xfer = target_read_partial (ops, object, annex,
1489 (gdb_byte *) buf + xfered,
1490 start, half);
1491 if (xfer == 0)
1492 return xfered;
1493 if (xfer < 0)
1494 {
1495 remaining = half;
1496 }
1497 else
1498 {
1499 /* We have successfully read the first half. So, the
1500 error must be in the second half. Adjust start and
1501 remaining to point at the second half. */
1502 xfered += xfer;
1503 start += xfer;
1504 remaining -= xfer;
1505 }
1506 half = remaining/2;
1507 }
1508
1509 return xfered;
1510 }
1511 xfered += xfer;
1512 QUIT;
1513 }
1514 return len;
1515 }
1516
1517
1518 /* An alternative to target_write with progress callbacks. */
1519
1520 LONGEST
1521 target_write_with_progress (struct target_ops *ops,
1522 enum target_object object,
1523 const char *annex, const gdb_byte *buf,
1524 ULONGEST offset, LONGEST len,
1525 void (*progress) (ULONGEST, void *), void *baton)
1526 {
1527 LONGEST xfered = 0;
1528
1529 /* Give the progress callback a chance to set up. */
1530 if (progress)
1531 (*progress) (0, baton);
1532
1533 while (xfered < len)
1534 {
1535 LONGEST xfer = target_write_partial (ops, object, annex,
1536 (gdb_byte *) buf + xfered,
1537 offset + xfered, len - xfered);
1538
1539 if (xfer == 0)
1540 return xfered;
1541 if (xfer < 0)
1542 return -1;
1543
1544 if (progress)
1545 (*progress) (xfer, baton);
1546
1547 xfered += xfer;
1548 QUIT;
1549 }
1550 return len;
1551 }
1552
1553 LONGEST
1554 target_write (struct target_ops *ops,
1555 enum target_object object,
1556 const char *annex, const gdb_byte *buf,
1557 ULONGEST offset, LONGEST len)
1558 {
1559 return target_write_with_progress (ops, object, annex, buf, offset, len,
1560 NULL, NULL);
1561 }
1562
1563 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1564 the size of the transferred data. PADDING additional bytes are
1565 available in *BUF_P. This is a helper function for
1566 target_read_alloc; see the declaration of that function for more
1567 information. */
1568
1569 static LONGEST
1570 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1571 const char *annex, gdb_byte **buf_p, int padding)
1572 {
1573 size_t buf_alloc, buf_pos;
1574 gdb_byte *buf;
1575 LONGEST n;
1576
1577 /* This function does not have a length parameter; it reads the
1578 entire OBJECT). Also, it doesn't support objects fetched partly
1579 from one target and partly from another (in a different stratum,
1580 e.g. a core file and an executable). Both reasons make it
1581 unsuitable for reading memory. */
1582 gdb_assert (object != TARGET_OBJECT_MEMORY);
1583
1584 /* Start by reading up to 4K at a time. The target will throttle
1585 this number down if necessary. */
1586 buf_alloc = 4096;
1587 buf = xmalloc (buf_alloc);
1588 buf_pos = 0;
1589 while (1)
1590 {
1591 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1592 buf_pos, buf_alloc - buf_pos - padding);
1593 if (n < 0)
1594 {
1595 /* An error occurred. */
1596 xfree (buf);
1597 return -1;
1598 }
1599 else if (n == 0)
1600 {
1601 /* Read all there was. */
1602 if (buf_pos == 0)
1603 xfree (buf);
1604 else
1605 *buf_p = buf;
1606 return buf_pos;
1607 }
1608
1609 buf_pos += n;
1610
1611 /* If the buffer is filling up, expand it. */
1612 if (buf_alloc < buf_pos * 2)
1613 {
1614 buf_alloc *= 2;
1615 buf = xrealloc (buf, buf_alloc);
1616 }
1617
1618 QUIT;
1619 }
1620 }
1621
1622 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1623 the size of the transferred data. See the declaration in "target.h"
1624 function for more information about the return value. */
1625
1626 LONGEST
1627 target_read_alloc (struct target_ops *ops, enum target_object object,
1628 const char *annex, gdb_byte **buf_p)
1629 {
1630 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1631 }
1632
1633 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1634 returned as a string, allocated using xmalloc. If an error occurs
1635 or the transfer is unsupported, NULL is returned. Empty objects
1636 are returned as allocated but empty strings. A warning is issued
1637 if the result contains any embedded NUL bytes. */
1638
1639 char *
1640 target_read_stralloc (struct target_ops *ops, enum target_object object,
1641 const char *annex)
1642 {
1643 gdb_byte *buffer;
1644 LONGEST transferred;
1645
1646 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1647
1648 if (transferred < 0)
1649 return NULL;
1650
1651 if (transferred == 0)
1652 return xstrdup ("");
1653
1654 buffer[transferred] = 0;
1655 if (strlen (buffer) < transferred)
1656 warning (_("target object %d, annex %s, "
1657 "contained unexpected null characters"),
1658 (int) object, annex ? annex : "(none)");
1659
1660 return (char *) buffer;
1661 }
1662
1663 /* Memory transfer methods. */
1664
1665 void
1666 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1667 LONGEST len)
1668 {
1669 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1670 != len)
1671 memory_error (EIO, addr);
1672 }
1673
1674 ULONGEST
1675 get_target_memory_unsigned (struct target_ops *ops,
1676 CORE_ADDR addr, int len)
1677 {
1678 gdb_byte buf[sizeof (ULONGEST)];
1679
1680 gdb_assert (len <= sizeof (buf));
1681 get_target_memory (ops, addr, buf, len);
1682 return extract_unsigned_integer (buf, len);
1683 }
1684
1685 static void
1686 target_info (char *args, int from_tty)
1687 {
1688 struct target_ops *t;
1689 int has_all_mem = 0;
1690
1691 if (symfile_objfile != NULL)
1692 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1693
1694 for (t = target_stack; t != NULL; t = t->beneath)
1695 {
1696 if (!t->to_has_memory)
1697 continue;
1698
1699 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1700 continue;
1701 if (has_all_mem)
1702 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1703 printf_unfiltered ("%s:\n", t->to_longname);
1704 (t->to_files_info) (t);
1705 has_all_mem = t->to_has_all_memory;
1706 }
1707 }
1708
1709 /* This function is called before any new inferior is created, e.g.
1710 by running a program, attaching, or connecting to a target.
1711 It cleans up any state from previous invocations which might
1712 change between runs. This is a subset of what target_preopen
1713 resets (things which might change between targets). */
1714
1715 void
1716 target_pre_inferior (int from_tty)
1717 {
1718 /* Clear out solib state. Otherwise the solib state of the previous
1719 inferior might have survived and is entirely wrong for the new
1720 target. This has been observed on GNU/Linux using glibc 2.3. How
1721 to reproduce:
1722
1723 bash$ ./foo&
1724 [1] 4711
1725 bash$ ./foo&
1726 [1] 4712
1727 bash$ gdb ./foo
1728 [...]
1729 (gdb) attach 4711
1730 (gdb) detach
1731 (gdb) attach 4712
1732 Cannot access memory at address 0xdeadbeef
1733 */
1734 no_shared_libraries (NULL, from_tty);
1735
1736 invalidate_target_mem_regions ();
1737
1738 target_clear_description ();
1739 }
1740
1741 /* This is to be called by the open routine before it does
1742 anything. */
1743
1744 void
1745 target_preopen (int from_tty)
1746 {
1747 dont_repeat ();
1748
1749 if (target_has_execution)
1750 {
1751 if (!from_tty
1752 || query (_("A program is being debugged already. Kill it? ")))
1753 target_kill ();
1754 else
1755 error (_("Program not killed."));
1756 }
1757
1758 /* Calling target_kill may remove the target from the stack. But if
1759 it doesn't (which seems like a win for UDI), remove it now. */
1760 /* Leave the exec target, though. The user may be switching from a
1761 live process to a core of the same program. */
1762 pop_all_targets_above (file_stratum, 0);
1763
1764 target_pre_inferior (from_tty);
1765 }
1766
1767 /* Detach a target after doing deferred register stores. */
1768
1769 void
1770 target_detach (char *args, int from_tty)
1771 {
1772 /* If we're in breakpoints-always-inserted mode, have to
1773 remove them before detaching. */
1774 remove_breakpoints ();
1775
1776 (current_target.to_detach) (args, from_tty);
1777 }
1778
1779 void
1780 target_disconnect (char *args, int from_tty)
1781 {
1782 struct target_ops *t;
1783
1784 /* If we're in breakpoints-always-inserted mode, have to
1785 remove them before disconnecting. */
1786 remove_breakpoints ();
1787
1788 for (t = current_target.beneath; t != NULL; t = t->beneath)
1789 if (t->to_disconnect != NULL)
1790 {
1791 if (targetdebug)
1792 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1793 args, from_tty);
1794 t->to_disconnect (t, args, from_tty);
1795 return;
1796 }
1797
1798 tcomplain ();
1799 }
1800
1801 void
1802 target_resume (ptid_t ptid, int step, enum target_signal signal)
1803 {
1804 dcache_invalidate (target_dcache);
1805 (*current_target.to_resume) (ptid, step, signal);
1806 set_executing (ptid, 1);
1807 set_running (ptid, 1);
1808 }
1809 /* Look through the list of possible targets for a target that can
1810 follow forks. */
1811
1812 int
1813 target_follow_fork (int follow_child)
1814 {
1815 struct target_ops *t;
1816
1817 for (t = current_target.beneath; t != NULL; t = t->beneath)
1818 {
1819 if (t->to_follow_fork != NULL)
1820 {
1821 int retval = t->to_follow_fork (t, follow_child);
1822 if (targetdebug)
1823 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1824 follow_child, retval);
1825 return retval;
1826 }
1827 }
1828
1829 /* Some target returned a fork event, but did not know how to follow it. */
1830 internal_error (__FILE__, __LINE__,
1831 "could not find a target to follow fork");
1832 }
1833
1834 /* Look for a target which can describe architectural features, starting
1835 from TARGET. If we find one, return its description. */
1836
1837 const struct target_desc *
1838 target_read_description (struct target_ops *target)
1839 {
1840 struct target_ops *t;
1841
1842 for (t = target; t != NULL; t = t->beneath)
1843 if (t->to_read_description != NULL)
1844 {
1845 const struct target_desc *tdesc;
1846
1847 tdesc = t->to_read_description (t);
1848 if (tdesc)
1849 return tdesc;
1850 }
1851
1852 return NULL;
1853 }
1854
1855 /* The default implementation of to_search_memory.
1856 This implements a basic search of memory, reading target memory and
1857 performing the search here (as opposed to performing the search in on the
1858 target side with, for example, gdbserver). */
1859
1860 int
1861 simple_search_memory (struct target_ops *ops,
1862 CORE_ADDR start_addr, ULONGEST search_space_len,
1863 const gdb_byte *pattern, ULONGEST pattern_len,
1864 CORE_ADDR *found_addrp)
1865 {
1866 /* NOTE: also defined in find.c testcase. */
1867 #define SEARCH_CHUNK_SIZE 16000
1868 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
1869 /* Buffer to hold memory contents for searching. */
1870 gdb_byte *search_buf;
1871 unsigned search_buf_size;
1872 struct cleanup *old_cleanups;
1873
1874 search_buf_size = chunk_size + pattern_len - 1;
1875
1876 /* No point in trying to allocate a buffer larger than the search space. */
1877 if (search_space_len < search_buf_size)
1878 search_buf_size = search_space_len;
1879
1880 search_buf = malloc (search_buf_size);
1881 if (search_buf == NULL)
1882 error (_("Unable to allocate memory to perform the search."));
1883 old_cleanups = make_cleanup (free_current_contents, &search_buf);
1884
1885 /* Prime the search buffer. */
1886
1887 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1888 search_buf, start_addr, search_buf_size) != search_buf_size)
1889 {
1890 warning (_("Unable to access target memory at %s, halting search."),
1891 hex_string (start_addr));
1892 do_cleanups (old_cleanups);
1893 return -1;
1894 }
1895
1896 /* Perform the search.
1897
1898 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
1899 When we've scanned N bytes we copy the trailing bytes to the start and
1900 read in another N bytes. */
1901
1902 while (search_space_len >= pattern_len)
1903 {
1904 gdb_byte *found_ptr;
1905 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
1906
1907 found_ptr = memmem (search_buf, nr_search_bytes,
1908 pattern, pattern_len);
1909
1910 if (found_ptr != NULL)
1911 {
1912 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
1913 *found_addrp = found_addr;
1914 do_cleanups (old_cleanups);
1915 return 1;
1916 }
1917
1918 /* Not found in this chunk, skip to next chunk. */
1919
1920 /* Don't let search_space_len wrap here, it's unsigned. */
1921 if (search_space_len >= chunk_size)
1922 search_space_len -= chunk_size;
1923 else
1924 search_space_len = 0;
1925
1926 if (search_space_len >= pattern_len)
1927 {
1928 unsigned keep_len = search_buf_size - chunk_size;
1929 CORE_ADDR read_addr = start_addr + keep_len;
1930 int nr_to_read;
1931
1932 /* Copy the trailing part of the previous iteration to the front
1933 of the buffer for the next iteration. */
1934 gdb_assert (keep_len == pattern_len - 1);
1935 memcpy (search_buf, search_buf + chunk_size, keep_len);
1936
1937 nr_to_read = min (search_space_len - keep_len, chunk_size);
1938
1939 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1940 search_buf + keep_len, read_addr,
1941 nr_to_read) != nr_to_read)
1942 {
1943 warning (_("Unable to access target memory at %s, halting search."),
1944 hex_string (read_addr));
1945 do_cleanups (old_cleanups);
1946 return -1;
1947 }
1948
1949 start_addr += chunk_size;
1950 }
1951 }
1952
1953 /* Not found. */
1954
1955 do_cleanups (old_cleanups);
1956 return 0;
1957 }
1958
1959 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
1960 sequence of bytes in PATTERN with length PATTERN_LEN.
1961
1962 The result is 1 if found, 0 if not found, and -1 if there was an error
1963 requiring halting of the search (e.g. memory read error).
1964 If the pattern is found the address is recorded in FOUND_ADDRP. */
1965
1966 int
1967 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
1968 const gdb_byte *pattern, ULONGEST pattern_len,
1969 CORE_ADDR *found_addrp)
1970 {
1971 struct target_ops *t;
1972 int found;
1973
1974 /* We don't use INHERIT to set current_target.to_search_memory,
1975 so we have to scan the target stack and handle targetdebug
1976 ourselves. */
1977
1978 if (targetdebug)
1979 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
1980 hex_string (start_addr));
1981
1982 for (t = current_target.beneath; t != NULL; t = t->beneath)
1983 if (t->to_search_memory != NULL)
1984 break;
1985
1986 if (t != NULL)
1987 {
1988 found = t->to_search_memory (t, start_addr, search_space_len,
1989 pattern, pattern_len, found_addrp);
1990 }
1991 else
1992 {
1993 /* If a special version of to_search_memory isn't available, use the
1994 simple version. */
1995 found = simple_search_memory (&current_target,
1996 start_addr, search_space_len,
1997 pattern, pattern_len, found_addrp);
1998 }
1999
2000 if (targetdebug)
2001 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2002
2003 return found;
2004 }
2005
2006 /* Look through the currently pushed targets. If none of them will
2007 be able to restart the currently running process, issue an error
2008 message. */
2009
2010 void
2011 target_require_runnable (void)
2012 {
2013 struct target_ops *t;
2014
2015 for (t = target_stack; t != NULL; t = t->beneath)
2016 {
2017 /* If this target knows how to create a new program, then
2018 assume we will still be able to after killing the current
2019 one. Either killing and mourning will not pop T, or else
2020 find_default_run_target will find it again. */
2021 if (t->to_create_inferior != NULL)
2022 return;
2023
2024 /* Do not worry about thread_stratum targets that can not
2025 create inferiors. Assume they will be pushed again if
2026 necessary, and continue to the process_stratum. */
2027 if (t->to_stratum == thread_stratum)
2028 continue;
2029
2030 error (_("\
2031 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2032 t->to_shortname);
2033 }
2034
2035 /* This function is only called if the target is running. In that
2036 case there should have been a process_stratum target and it
2037 should either know how to create inferiors, or not... */
2038 internal_error (__FILE__, __LINE__, "No targets found");
2039 }
2040
2041 /* Look through the list of possible targets for a target that can
2042 execute a run or attach command without any other data. This is
2043 used to locate the default process stratum.
2044
2045 If DO_MESG is not NULL, the result is always valid (error() is
2046 called for errors); else, return NULL on error. */
2047
2048 static struct target_ops *
2049 find_default_run_target (char *do_mesg)
2050 {
2051 struct target_ops **t;
2052 struct target_ops *runable = NULL;
2053 int count;
2054
2055 count = 0;
2056
2057 for (t = target_structs; t < target_structs + target_struct_size;
2058 ++t)
2059 {
2060 if ((*t)->to_can_run && target_can_run (*t))
2061 {
2062 runable = *t;
2063 ++count;
2064 }
2065 }
2066
2067 if (count != 1)
2068 {
2069 if (do_mesg)
2070 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2071 else
2072 return NULL;
2073 }
2074
2075 return runable;
2076 }
2077
2078 void
2079 find_default_attach (char *args, int from_tty)
2080 {
2081 struct target_ops *t;
2082
2083 t = find_default_run_target ("attach");
2084 (t->to_attach) (args, from_tty);
2085 return;
2086 }
2087
2088 void
2089 find_default_create_inferior (char *exec_file, char *allargs, char **env,
2090 int from_tty)
2091 {
2092 struct target_ops *t;
2093
2094 t = find_default_run_target ("run");
2095 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
2096 return;
2097 }
2098
2099 int
2100 find_default_can_async_p (void)
2101 {
2102 struct target_ops *t;
2103
2104 /* This may be called before the target is pushed on the stack;
2105 look for the default process stratum. If there's none, gdb isn't
2106 configured with a native debugger, and target remote isn't
2107 connected yet. */
2108 t = find_default_run_target (NULL);
2109 if (t && t->to_can_async_p)
2110 return (t->to_can_async_p) ();
2111 return 0;
2112 }
2113
2114 int
2115 find_default_is_async_p (void)
2116 {
2117 struct target_ops *t;
2118
2119 /* This may be called before the target is pushed on the stack;
2120 look for the default process stratum. If there's none, gdb isn't
2121 configured with a native debugger, and target remote isn't
2122 connected yet. */
2123 t = find_default_run_target (NULL);
2124 if (t && t->to_is_async_p)
2125 return (t->to_is_async_p) ();
2126 return 0;
2127 }
2128
2129 int
2130 find_default_supports_non_stop (void)
2131 {
2132 struct target_ops *t;
2133
2134 t = find_default_run_target (NULL);
2135 if (t && t->to_supports_non_stop)
2136 return (t->to_supports_non_stop) ();
2137 return 0;
2138 }
2139
2140 int
2141 target_supports_non_stop ()
2142 {
2143 struct target_ops *t;
2144 for (t = &current_target; t != NULL; t = t->beneath)
2145 if (t->to_supports_non_stop)
2146 return t->to_supports_non_stop ();
2147
2148 return 0;
2149 }
2150
2151
2152 static int
2153 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2154 {
2155 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2156 }
2157
2158 static int
2159 default_watchpoint_addr_within_range (struct target_ops *target,
2160 CORE_ADDR addr,
2161 CORE_ADDR start, int length)
2162 {
2163 return addr >= start && addr < start + length;
2164 }
2165
2166 static int
2167 return_zero (void)
2168 {
2169 return 0;
2170 }
2171
2172 static int
2173 return_one (void)
2174 {
2175 return 1;
2176 }
2177
2178 static int
2179 return_minus_one (void)
2180 {
2181 return -1;
2182 }
2183
2184 /*
2185 * Resize the to_sections pointer. Also make sure that anyone that
2186 * was holding on to an old value of it gets updated.
2187 * Returns the old size.
2188 */
2189
2190 int
2191 target_resize_to_sections (struct target_ops *target, int num_added)
2192 {
2193 struct target_ops **t;
2194 struct section_table *old_value;
2195 int old_count;
2196
2197 old_value = target->to_sections;
2198
2199 if (target->to_sections)
2200 {
2201 old_count = target->to_sections_end - target->to_sections;
2202 target->to_sections = (struct section_table *)
2203 xrealloc ((char *) target->to_sections,
2204 (sizeof (struct section_table)) * (num_added + old_count));
2205 }
2206 else
2207 {
2208 old_count = 0;
2209 target->to_sections = (struct section_table *)
2210 xmalloc ((sizeof (struct section_table)) * num_added);
2211 }
2212 target->to_sections_end = target->to_sections + (num_added + old_count);
2213
2214 /* Check to see if anyone else was pointing to this structure.
2215 If old_value was null, then no one was. */
2216
2217 if (old_value)
2218 {
2219 for (t = target_structs; t < target_structs + target_struct_size;
2220 ++t)
2221 {
2222 if ((*t)->to_sections == old_value)
2223 {
2224 (*t)->to_sections = target->to_sections;
2225 (*t)->to_sections_end = target->to_sections_end;
2226 }
2227 }
2228 /* There is a flattened view of the target stack in current_target,
2229 so its to_sections pointer might also need updating. */
2230 if (current_target.to_sections == old_value)
2231 {
2232 current_target.to_sections = target->to_sections;
2233 current_target.to_sections_end = target->to_sections_end;
2234 }
2235 }
2236
2237 return old_count;
2238
2239 }
2240
2241 /* Remove all target sections taken from ABFD.
2242
2243 Scan the current target stack for targets whose section tables
2244 refer to sections from BFD, and remove those sections. We use this
2245 when we notice that the inferior has unloaded a shared object, for
2246 example. */
2247 void
2248 remove_target_sections (bfd *abfd)
2249 {
2250 struct target_ops **t;
2251
2252 for (t = target_structs; t < target_structs + target_struct_size; t++)
2253 {
2254 struct section_table *src, *dest;
2255
2256 dest = (*t)->to_sections;
2257 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
2258 if (src->bfd != abfd)
2259 {
2260 /* Keep this section. */
2261 if (dest < src) *dest = *src;
2262 dest++;
2263 }
2264
2265 /* If we've dropped any sections, resize the section table. */
2266 if (dest < src)
2267 target_resize_to_sections (*t, dest - src);
2268 }
2269 }
2270
2271
2272
2273
2274 /* Find a single runnable target in the stack and return it. If for
2275 some reason there is more than one, return NULL. */
2276
2277 struct target_ops *
2278 find_run_target (void)
2279 {
2280 struct target_ops **t;
2281 struct target_ops *runable = NULL;
2282 int count;
2283
2284 count = 0;
2285
2286 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2287 {
2288 if ((*t)->to_can_run && target_can_run (*t))
2289 {
2290 runable = *t;
2291 ++count;
2292 }
2293 }
2294
2295 return (count == 1 ? runable : NULL);
2296 }
2297
2298 /* Find a single core_stratum target in the list of targets and return it.
2299 If for some reason there is more than one, return NULL. */
2300
2301 struct target_ops *
2302 find_core_target (void)
2303 {
2304 struct target_ops **t;
2305 struct target_ops *runable = NULL;
2306 int count;
2307
2308 count = 0;
2309
2310 for (t = target_structs; t < target_structs + target_struct_size;
2311 ++t)
2312 {
2313 if ((*t)->to_stratum == core_stratum)
2314 {
2315 runable = *t;
2316 ++count;
2317 }
2318 }
2319
2320 return (count == 1 ? runable : NULL);
2321 }
2322
2323 /*
2324 * Find the next target down the stack from the specified target.
2325 */
2326
2327 struct target_ops *
2328 find_target_beneath (struct target_ops *t)
2329 {
2330 return t->beneath;
2331 }
2332
2333 \f
2334 /* The inferior process has died. Long live the inferior! */
2335
2336 void
2337 generic_mourn_inferior (void)
2338 {
2339 extern int show_breakpoint_hit_counts;
2340 ptid_t ptid;
2341
2342 ptid = inferior_ptid;
2343 inferior_ptid = null_ptid;
2344
2345 if (!ptid_equal (ptid, null_ptid))
2346 {
2347 int pid = ptid_get_pid (ptid);
2348 delete_inferior (pid);
2349 }
2350
2351 breakpoint_init_inferior (inf_exited);
2352 registers_changed ();
2353
2354 reopen_exec_file ();
2355 reinit_frame_cache ();
2356
2357 /* It is confusing to the user for ignore counts to stick around
2358 from previous runs of the inferior. So clear them. */
2359 /* However, it is more confusing for the ignore counts to disappear when
2360 using hit counts. So don't clear them if we're counting hits. */
2361 if (!show_breakpoint_hit_counts)
2362 breakpoint_clear_ignore_counts ();
2363
2364 if (deprecated_detach_hook)
2365 deprecated_detach_hook ();
2366 }
2367 \f
2368 /* Helper function for child_wait and the derivatives of child_wait.
2369 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2370 translation of that in OURSTATUS. */
2371 void
2372 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2373 {
2374 if (WIFEXITED (hoststatus))
2375 {
2376 ourstatus->kind = TARGET_WAITKIND_EXITED;
2377 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2378 }
2379 else if (!WIFSTOPPED (hoststatus))
2380 {
2381 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2382 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2383 }
2384 else
2385 {
2386 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2387 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2388 }
2389 }
2390 \f
2391 /* Returns zero to leave the inferior alone, one to interrupt it. */
2392 int (*target_activity_function) (void);
2393 int target_activity_fd;
2394 \f
2395 /* Convert a normal process ID to a string. Returns the string in a
2396 static buffer. */
2397
2398 char *
2399 normal_pid_to_str (ptid_t ptid)
2400 {
2401 static char buf[32];
2402
2403 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2404 return buf;
2405 }
2406
2407 /* Error-catcher for target_find_memory_regions */
2408 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2409 {
2410 error (_("No target."));
2411 return 0;
2412 }
2413
2414 /* Error-catcher for target_make_corefile_notes */
2415 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2416 {
2417 error (_("No target."));
2418 return NULL;
2419 }
2420
2421 /* Set up the handful of non-empty slots needed by the dummy target
2422 vector. */
2423
2424 static void
2425 init_dummy_target (void)
2426 {
2427 dummy_target.to_shortname = "None";
2428 dummy_target.to_longname = "None";
2429 dummy_target.to_doc = "";
2430 dummy_target.to_attach = find_default_attach;
2431 dummy_target.to_create_inferior = find_default_create_inferior;
2432 dummy_target.to_can_async_p = find_default_can_async_p;
2433 dummy_target.to_is_async_p = find_default_is_async_p;
2434 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
2435 dummy_target.to_pid_to_str = normal_pid_to_str;
2436 dummy_target.to_stratum = dummy_stratum;
2437 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2438 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2439 dummy_target.to_xfer_partial = default_xfer_partial;
2440 dummy_target.to_magic = OPS_MAGIC;
2441 }
2442 \f
2443 static void
2444 debug_to_open (char *args, int from_tty)
2445 {
2446 debug_target.to_open (args, from_tty);
2447
2448 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2449 }
2450
2451 static void
2452 debug_to_close (int quitting)
2453 {
2454 target_close (&debug_target, quitting);
2455 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2456 }
2457
2458 void
2459 target_close (struct target_ops *targ, int quitting)
2460 {
2461 if (targ->to_xclose != NULL)
2462 targ->to_xclose (targ, quitting);
2463 else if (targ->to_close != NULL)
2464 targ->to_close (quitting);
2465 }
2466
2467 static void
2468 debug_to_attach (char *args, int from_tty)
2469 {
2470 debug_target.to_attach (args, from_tty);
2471
2472 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2473 }
2474
2475
2476 static void
2477 debug_to_post_attach (int pid)
2478 {
2479 debug_target.to_post_attach (pid);
2480
2481 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2482 }
2483
2484 static void
2485 debug_to_detach (char *args, int from_tty)
2486 {
2487 debug_target.to_detach (args, from_tty);
2488
2489 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2490 }
2491
2492 static void
2493 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2494 {
2495 debug_target.to_resume (ptid, step, siggnal);
2496
2497 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2498 step ? "step" : "continue",
2499 target_signal_to_name (siggnal));
2500 }
2501
2502 static ptid_t
2503 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2504 {
2505 ptid_t retval;
2506
2507 retval = debug_target.to_wait (ptid, status);
2508
2509 fprintf_unfiltered (gdb_stdlog,
2510 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2511 PIDGET (retval));
2512 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2513 switch (status->kind)
2514 {
2515 case TARGET_WAITKIND_EXITED:
2516 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2517 status->value.integer);
2518 break;
2519 case TARGET_WAITKIND_STOPPED:
2520 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2521 target_signal_to_name (status->value.sig));
2522 break;
2523 case TARGET_WAITKIND_SIGNALLED:
2524 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2525 target_signal_to_name (status->value.sig));
2526 break;
2527 case TARGET_WAITKIND_LOADED:
2528 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2529 break;
2530 case TARGET_WAITKIND_FORKED:
2531 fprintf_unfiltered (gdb_stdlog, "forked\n");
2532 break;
2533 case TARGET_WAITKIND_VFORKED:
2534 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2535 break;
2536 case TARGET_WAITKIND_EXECD:
2537 fprintf_unfiltered (gdb_stdlog, "execd\n");
2538 break;
2539 case TARGET_WAITKIND_SPURIOUS:
2540 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2541 break;
2542 default:
2543 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2544 break;
2545 }
2546
2547 return retval;
2548 }
2549
2550 static void
2551 debug_print_register (const char * func,
2552 struct regcache *regcache, int regno)
2553 {
2554 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2555 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2556 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2557 && gdbarch_register_name (gdbarch, regno) != NULL
2558 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2559 fprintf_unfiltered (gdb_stdlog, "(%s)",
2560 gdbarch_register_name (gdbarch, regno));
2561 else
2562 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2563 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
2564 {
2565 int i, size = register_size (gdbarch, regno);
2566 unsigned char buf[MAX_REGISTER_SIZE];
2567 regcache_raw_collect (regcache, regno, buf);
2568 fprintf_unfiltered (gdb_stdlog, " = ");
2569 for (i = 0; i < size; i++)
2570 {
2571 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2572 }
2573 if (size <= sizeof (LONGEST))
2574 {
2575 ULONGEST val = extract_unsigned_integer (buf, size);
2576 fprintf_unfiltered (gdb_stdlog, " %s %s",
2577 core_addr_to_string_nz (val), plongest (val));
2578 }
2579 }
2580 fprintf_unfiltered (gdb_stdlog, "\n");
2581 }
2582
2583 static void
2584 debug_to_fetch_registers (struct regcache *regcache, int regno)
2585 {
2586 debug_target.to_fetch_registers (regcache, regno);
2587 debug_print_register ("target_fetch_registers", regcache, regno);
2588 }
2589
2590 static void
2591 debug_to_store_registers (struct regcache *regcache, int regno)
2592 {
2593 debug_target.to_store_registers (regcache, regno);
2594 debug_print_register ("target_store_registers", regcache, regno);
2595 fprintf_unfiltered (gdb_stdlog, "\n");
2596 }
2597
2598 static void
2599 debug_to_prepare_to_store (struct regcache *regcache)
2600 {
2601 debug_target.to_prepare_to_store (regcache);
2602
2603 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2604 }
2605
2606 static int
2607 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2608 int write, struct mem_attrib *attrib,
2609 struct target_ops *target)
2610 {
2611 int retval;
2612
2613 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2614 attrib, target);
2615
2616 fprintf_unfiltered (gdb_stdlog,
2617 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2618 (unsigned int) memaddr, /* possable truncate long long */
2619 len, write ? "write" : "read", retval);
2620
2621 if (retval > 0)
2622 {
2623 int i;
2624
2625 fputs_unfiltered (", bytes =", gdb_stdlog);
2626 for (i = 0; i < retval; i++)
2627 {
2628 if ((((long) &(myaddr[i])) & 0xf) == 0)
2629 {
2630 if (targetdebug < 2 && i > 0)
2631 {
2632 fprintf_unfiltered (gdb_stdlog, " ...");
2633 break;
2634 }
2635 fprintf_unfiltered (gdb_stdlog, "\n");
2636 }
2637
2638 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2639 }
2640 }
2641
2642 fputc_unfiltered ('\n', gdb_stdlog);
2643
2644 return retval;
2645 }
2646
2647 static void
2648 debug_to_files_info (struct target_ops *target)
2649 {
2650 debug_target.to_files_info (target);
2651
2652 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2653 }
2654
2655 static int
2656 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2657 {
2658 int retval;
2659
2660 retval = debug_target.to_insert_breakpoint (bp_tgt);
2661
2662 fprintf_unfiltered (gdb_stdlog,
2663 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2664 (unsigned long) bp_tgt->placed_address,
2665 (unsigned long) retval);
2666 return retval;
2667 }
2668
2669 static int
2670 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2671 {
2672 int retval;
2673
2674 retval = debug_target.to_remove_breakpoint (bp_tgt);
2675
2676 fprintf_unfiltered (gdb_stdlog,
2677 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2678 (unsigned long) bp_tgt->placed_address,
2679 (unsigned long) retval);
2680 return retval;
2681 }
2682
2683 static int
2684 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2685 {
2686 int retval;
2687
2688 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2689
2690 fprintf_unfiltered (gdb_stdlog,
2691 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2692 (unsigned long) type,
2693 (unsigned long) cnt,
2694 (unsigned long) from_tty,
2695 (unsigned long) retval);
2696 return retval;
2697 }
2698
2699 static int
2700 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2701 {
2702 CORE_ADDR retval;
2703
2704 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2705
2706 fprintf_unfiltered (gdb_stdlog,
2707 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2708 (unsigned long) addr,
2709 (unsigned long) len,
2710 (unsigned long) retval);
2711 return retval;
2712 }
2713
2714 static int
2715 debug_to_stopped_by_watchpoint (void)
2716 {
2717 int retval;
2718
2719 retval = debug_target.to_stopped_by_watchpoint ();
2720
2721 fprintf_unfiltered (gdb_stdlog,
2722 "STOPPED_BY_WATCHPOINT () = %ld\n",
2723 (unsigned long) retval);
2724 return retval;
2725 }
2726
2727 static int
2728 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2729 {
2730 int retval;
2731
2732 retval = debug_target.to_stopped_data_address (target, addr);
2733
2734 fprintf_unfiltered (gdb_stdlog,
2735 "target_stopped_data_address ([0x%lx]) = %ld\n",
2736 (unsigned long)*addr,
2737 (unsigned long)retval);
2738 return retval;
2739 }
2740
2741 static int
2742 debug_to_watchpoint_addr_within_range (struct target_ops *target,
2743 CORE_ADDR addr,
2744 CORE_ADDR start, int length)
2745 {
2746 int retval;
2747
2748 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
2749 start, length);
2750
2751 fprintf_filtered (gdb_stdlog,
2752 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
2753 (unsigned long) addr, (unsigned long) start, length,
2754 retval);
2755 return retval;
2756 }
2757
2758 static int
2759 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2760 {
2761 int retval;
2762
2763 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2764
2765 fprintf_unfiltered (gdb_stdlog,
2766 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2767 (unsigned long) bp_tgt->placed_address,
2768 (unsigned long) retval);
2769 return retval;
2770 }
2771
2772 static int
2773 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2774 {
2775 int retval;
2776
2777 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2778
2779 fprintf_unfiltered (gdb_stdlog,
2780 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2781 (unsigned long) bp_tgt->placed_address,
2782 (unsigned long) retval);
2783 return retval;
2784 }
2785
2786 static int
2787 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2788 {
2789 int retval;
2790
2791 retval = debug_target.to_insert_watchpoint (addr, len, type);
2792
2793 fprintf_unfiltered (gdb_stdlog,
2794 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2795 (unsigned long) addr, len, type, (unsigned long) retval);
2796 return retval;
2797 }
2798
2799 static int
2800 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2801 {
2802 int retval;
2803
2804 retval = debug_target.to_remove_watchpoint (addr, len, type);
2805
2806 fprintf_unfiltered (gdb_stdlog,
2807 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2808 (unsigned long) addr, len, type, (unsigned long) retval);
2809 return retval;
2810 }
2811
2812 static void
2813 debug_to_terminal_init (void)
2814 {
2815 debug_target.to_terminal_init ();
2816
2817 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2818 }
2819
2820 static void
2821 debug_to_terminal_inferior (void)
2822 {
2823 debug_target.to_terminal_inferior ();
2824
2825 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2826 }
2827
2828 static void
2829 debug_to_terminal_ours_for_output (void)
2830 {
2831 debug_target.to_terminal_ours_for_output ();
2832
2833 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2834 }
2835
2836 static void
2837 debug_to_terminal_ours (void)
2838 {
2839 debug_target.to_terminal_ours ();
2840
2841 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2842 }
2843
2844 static void
2845 debug_to_terminal_save_ours (void)
2846 {
2847 debug_target.to_terminal_save_ours ();
2848
2849 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2850 }
2851
2852 static void
2853 debug_to_terminal_info (char *arg, int from_tty)
2854 {
2855 debug_target.to_terminal_info (arg, from_tty);
2856
2857 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2858 from_tty);
2859 }
2860
2861 static void
2862 debug_to_kill (void)
2863 {
2864 debug_target.to_kill ();
2865
2866 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2867 }
2868
2869 static void
2870 debug_to_load (char *args, int from_tty)
2871 {
2872 debug_target.to_load (args, from_tty);
2873
2874 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2875 }
2876
2877 static int
2878 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2879 {
2880 int retval;
2881
2882 retval = debug_target.to_lookup_symbol (name, addrp);
2883
2884 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2885
2886 return retval;
2887 }
2888
2889 static void
2890 debug_to_create_inferior (char *exec_file, char *args, char **env,
2891 int from_tty)
2892 {
2893 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2894
2895 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2896 exec_file, args, from_tty);
2897 }
2898
2899 static void
2900 debug_to_post_startup_inferior (ptid_t ptid)
2901 {
2902 debug_target.to_post_startup_inferior (ptid);
2903
2904 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2905 PIDGET (ptid));
2906 }
2907
2908 static void
2909 debug_to_acknowledge_created_inferior (int pid)
2910 {
2911 debug_target.to_acknowledge_created_inferior (pid);
2912
2913 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2914 pid);
2915 }
2916
2917 static void
2918 debug_to_insert_fork_catchpoint (int pid)
2919 {
2920 debug_target.to_insert_fork_catchpoint (pid);
2921
2922 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2923 pid);
2924 }
2925
2926 static int
2927 debug_to_remove_fork_catchpoint (int pid)
2928 {
2929 int retval;
2930
2931 retval = debug_target.to_remove_fork_catchpoint (pid);
2932
2933 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2934 pid, retval);
2935
2936 return retval;
2937 }
2938
2939 static void
2940 debug_to_insert_vfork_catchpoint (int pid)
2941 {
2942 debug_target.to_insert_vfork_catchpoint (pid);
2943
2944 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2945 pid);
2946 }
2947
2948 static int
2949 debug_to_remove_vfork_catchpoint (int pid)
2950 {
2951 int retval;
2952
2953 retval = debug_target.to_remove_vfork_catchpoint (pid);
2954
2955 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2956 pid, retval);
2957
2958 return retval;
2959 }
2960
2961 static void
2962 debug_to_insert_exec_catchpoint (int pid)
2963 {
2964 debug_target.to_insert_exec_catchpoint (pid);
2965
2966 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2967 pid);
2968 }
2969
2970 static int
2971 debug_to_remove_exec_catchpoint (int pid)
2972 {
2973 int retval;
2974
2975 retval = debug_target.to_remove_exec_catchpoint (pid);
2976
2977 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2978 pid, retval);
2979
2980 return retval;
2981 }
2982
2983 static int
2984 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2985 {
2986 int has_exited;
2987
2988 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2989
2990 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2991 pid, wait_status, *exit_status, has_exited);
2992
2993 return has_exited;
2994 }
2995
2996 static void
2997 debug_to_mourn_inferior (void)
2998 {
2999 debug_target.to_mourn_inferior ();
3000
3001 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
3002 }
3003
3004 static int
3005 debug_to_can_run (void)
3006 {
3007 int retval;
3008
3009 retval = debug_target.to_can_run ();
3010
3011 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3012
3013 return retval;
3014 }
3015
3016 static void
3017 debug_to_notice_signals (ptid_t ptid)
3018 {
3019 debug_target.to_notice_signals (ptid);
3020
3021 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3022 PIDGET (ptid));
3023 }
3024
3025 static int
3026 debug_to_thread_alive (ptid_t ptid)
3027 {
3028 int retval;
3029
3030 retval = debug_target.to_thread_alive (ptid);
3031
3032 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3033 PIDGET (ptid), retval);
3034
3035 return retval;
3036 }
3037
3038 static void
3039 debug_to_find_new_threads (void)
3040 {
3041 debug_target.to_find_new_threads ();
3042
3043 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
3044 }
3045
3046 static void
3047 debug_to_stop (ptid_t ptid)
3048 {
3049 debug_target.to_stop (ptid);
3050
3051 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3052 target_pid_to_str (ptid));
3053 }
3054
3055 static void
3056 debug_to_rcmd (char *command,
3057 struct ui_file *outbuf)
3058 {
3059 debug_target.to_rcmd (command, outbuf);
3060 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3061 }
3062
3063 static char *
3064 debug_to_pid_to_exec_file (int pid)
3065 {
3066 char *exec_file;
3067
3068 exec_file = debug_target.to_pid_to_exec_file (pid);
3069
3070 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3071 pid, exec_file);
3072
3073 return exec_file;
3074 }
3075
3076 static void
3077 setup_target_debug (void)
3078 {
3079 memcpy (&debug_target, &current_target, sizeof debug_target);
3080
3081 current_target.to_open = debug_to_open;
3082 current_target.to_close = debug_to_close;
3083 current_target.to_attach = debug_to_attach;
3084 current_target.to_post_attach = debug_to_post_attach;
3085 current_target.to_detach = debug_to_detach;
3086 current_target.to_resume = debug_to_resume;
3087 current_target.to_wait = debug_to_wait;
3088 current_target.to_fetch_registers = debug_to_fetch_registers;
3089 current_target.to_store_registers = debug_to_store_registers;
3090 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3091 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3092 current_target.to_files_info = debug_to_files_info;
3093 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3094 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3095 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3096 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3097 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3098 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3099 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3100 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3101 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3102 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3103 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3104 current_target.to_terminal_init = debug_to_terminal_init;
3105 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3106 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3107 current_target.to_terminal_ours = debug_to_terminal_ours;
3108 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3109 current_target.to_terminal_info = debug_to_terminal_info;
3110 current_target.to_kill = debug_to_kill;
3111 current_target.to_load = debug_to_load;
3112 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3113 current_target.to_create_inferior = debug_to_create_inferior;
3114 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3115 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3116 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3117 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3118 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3119 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3120 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3121 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3122 current_target.to_has_exited = debug_to_has_exited;
3123 current_target.to_mourn_inferior = debug_to_mourn_inferior;
3124 current_target.to_can_run = debug_to_can_run;
3125 current_target.to_notice_signals = debug_to_notice_signals;
3126 current_target.to_thread_alive = debug_to_thread_alive;
3127 current_target.to_find_new_threads = debug_to_find_new_threads;
3128 current_target.to_stop = debug_to_stop;
3129 current_target.to_rcmd = debug_to_rcmd;
3130 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3131 }
3132 \f
3133
3134 static char targ_desc[] =
3135 "Names of targets and files being debugged.\n\
3136 Shows the entire stack of targets currently in use (including the exec-file,\n\
3137 core-file, and process, if any), as well as the symbol file name.";
3138
3139 static void
3140 do_monitor_command (char *cmd,
3141 int from_tty)
3142 {
3143 if ((current_target.to_rcmd
3144 == (void (*) (char *, struct ui_file *)) tcomplain)
3145 || (current_target.to_rcmd == debug_to_rcmd
3146 && (debug_target.to_rcmd
3147 == (void (*) (char *, struct ui_file *)) tcomplain)))
3148 error (_("\"monitor\" command not supported by this target."));
3149 target_rcmd (cmd, gdb_stdtarg);
3150 }
3151
3152 /* Print the name of each layers of our target stack. */
3153
3154 static void
3155 maintenance_print_target_stack (char *cmd, int from_tty)
3156 {
3157 struct target_ops *t;
3158
3159 printf_filtered (_("The current target stack is:\n"));
3160
3161 for (t = target_stack; t != NULL; t = t->beneath)
3162 {
3163 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3164 }
3165 }
3166
3167 /* Controls if async mode is permitted. */
3168 int target_async_permitted = 0;
3169
3170 /* The set command writes to this variable. If the inferior is
3171 executing, linux_nat_async_permitted is *not* updated. */
3172 static int target_async_permitted_1 = 0;
3173
3174 static void
3175 set_maintenance_target_async_permitted (char *args, int from_tty,
3176 struct cmd_list_element *c)
3177 {
3178 if (target_has_execution)
3179 {
3180 target_async_permitted_1 = target_async_permitted;
3181 error (_("Cannot change this setting while the inferior is running."));
3182 }
3183
3184 target_async_permitted = target_async_permitted_1;
3185 }
3186
3187 static void
3188 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3189 struct cmd_list_element *c,
3190 const char *value)
3191 {
3192 fprintf_filtered (file, _("\
3193 Controlling the inferior in asynchronous mode is %s.\n"), value);
3194 }
3195
3196 void
3197 initialize_targets (void)
3198 {
3199 init_dummy_target ();
3200 push_target (&dummy_target);
3201
3202 add_info ("target", target_info, targ_desc);
3203 add_info ("files", target_info, targ_desc);
3204
3205 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3206 Set target debugging."), _("\
3207 Show target debugging."), _("\
3208 When non-zero, target debugging is enabled. Higher numbers are more\n\
3209 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3210 command."),
3211 NULL,
3212 show_targetdebug,
3213 &setdebuglist, &showdebuglist);
3214
3215 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3216 &trust_readonly, _("\
3217 Set mode for reading from readonly sections."), _("\
3218 Show mode for reading from readonly sections."), _("\
3219 When this mode is on, memory reads from readonly sections (such as .text)\n\
3220 will be read from the object file instead of from the target. This will\n\
3221 result in significant performance improvement for remote targets."),
3222 NULL,
3223 show_trust_readonly,
3224 &setlist, &showlist);
3225
3226 add_com ("monitor", class_obscure, do_monitor_command,
3227 _("Send a command to the remote monitor (remote targets only)."));
3228
3229 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3230 _("Print the name of each layer of the internal target stack."),
3231 &maintenanceprintlist);
3232
3233 add_setshow_boolean_cmd ("target-async", no_class,
3234 &target_async_permitted_1, _("\
3235 Set whether gdb controls the inferior in asynchronous mode."), _("\
3236 Show whether gdb controls the inferior in asynchronous mode."), _("\
3237 Tells gdb whether to control the inferior in asynchronous mode."),
3238 set_maintenance_target_async_permitted,
3239 show_maintenance_target_async_permitted,
3240 &setlist,
3241 &showlist);
3242
3243 target_dcache = dcache_init ();
3244 }
This page took 0.140468 seconds and 4 git commands to generate.