Use ptid_t.tid to store thread ids instead of ptid_t.pid.
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43
44 static void target_info (char *, int);
45
46 static void maybe_kill_then_attach (char *, int);
47
48 static void kill_or_be_killed (int);
49
50 static void default_terminal_info (char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static int nosymbol (char *, CORE_ADDR *);
58
59 static void tcomplain (void) ATTR_NORETURN;
60
61 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
62
63 static int return_zero (void);
64
65 static int return_one (void);
66
67 static int return_minus_one (void);
68
69 void target_ignore (void);
70
71 static void target_command (char *, int);
72
73 static struct target_ops *find_default_run_target (char *);
74
75 static void nosupport_runtime (void);
76
77 static LONGEST default_xfer_partial (struct target_ops *ops,
78 enum target_object object,
79 const char *annex, gdb_byte *readbuf,
80 const gdb_byte *writebuf,
81 ULONGEST offset, LONGEST len);
82
83 static LONGEST current_xfer_partial (struct target_ops *ops,
84 enum target_object object,
85 const char *annex, gdb_byte *readbuf,
86 const gdb_byte *writebuf,
87 ULONGEST offset, LONGEST len);
88
89 static LONGEST target_xfer_partial (struct target_ops *ops,
90 enum target_object object,
91 const char *annex,
92 void *readbuf, const void *writebuf,
93 ULONGEST offset, LONGEST len);
94
95 static void init_dummy_target (void);
96
97 static struct target_ops debug_target;
98
99 static void debug_to_open (char *, int);
100
101 static void debug_to_close (int);
102
103 static void debug_to_attach (char *, int);
104
105 static void debug_to_detach (char *, int);
106
107 static void debug_to_resume (ptid_t, int, enum target_signal);
108
109 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
110
111 static void debug_to_fetch_registers (struct regcache *, int);
112
113 static void debug_to_store_registers (struct regcache *, int);
114
115 static void debug_to_prepare_to_store (struct regcache *);
116
117 static void debug_to_files_info (struct target_ops *);
118
119 static int debug_to_insert_breakpoint (struct bp_target_info *);
120
121 static int debug_to_remove_breakpoint (struct bp_target_info *);
122
123 static int debug_to_can_use_hw_breakpoint (int, int, int);
124
125 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
126
127 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
128
129 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
130
131 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
132
133 static int debug_to_stopped_by_watchpoint (void);
134
135 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
136
137 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
138 CORE_ADDR, CORE_ADDR, int);
139
140 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
141
142 static void debug_to_terminal_init (void);
143
144 static void debug_to_terminal_inferior (void);
145
146 static void debug_to_terminal_ours_for_output (void);
147
148 static void debug_to_terminal_save_ours (void);
149
150 static void debug_to_terminal_ours (void);
151
152 static void debug_to_terminal_info (char *, int);
153
154 static void debug_to_kill (void);
155
156 static void debug_to_load (char *, int);
157
158 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
159
160 static void debug_to_mourn_inferior (void);
161
162 static int debug_to_can_run (void);
163
164 static void debug_to_notice_signals (ptid_t);
165
166 static int debug_to_thread_alive (ptid_t);
167
168 static void debug_to_stop (void);
169
170 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
171 wierd and mysterious ways. Putting the variable here lets those
172 wierd and mysterious ways keep building while they are being
173 converted to the inferior inheritance structure. */
174 struct target_ops deprecated_child_ops;
175
176 /* Pointer to array of target architecture structures; the size of the
177 array; the current index into the array; the allocated size of the
178 array. */
179 struct target_ops **target_structs;
180 unsigned target_struct_size;
181 unsigned target_struct_index;
182 unsigned target_struct_allocsize;
183 #define DEFAULT_ALLOCSIZE 10
184
185 /* The initial current target, so that there is always a semi-valid
186 current target. */
187
188 static struct target_ops dummy_target;
189
190 /* Top of target stack. */
191
192 static struct target_ops *target_stack;
193
194 /* The target structure we are currently using to talk to a process
195 or file or whatever "inferior" we have. */
196
197 struct target_ops current_target;
198
199 /* Command list for target. */
200
201 static struct cmd_list_element *targetlist = NULL;
202
203 /* Nonzero if we are debugging an attached outside process
204 rather than an inferior. */
205
206 int attach_flag;
207
208 /* Nonzero if we should trust readonly sections from the
209 executable when reading memory. */
210
211 static int trust_readonly = 0;
212
213 /* Nonzero if we should show true memory content including
214 memory breakpoint inserted by gdb. */
215
216 static int show_memory_breakpoints = 0;
217
218 /* Non-zero if we want to see trace of target level stuff. */
219
220 static int targetdebug = 0;
221 static void
222 show_targetdebug (struct ui_file *file, int from_tty,
223 struct cmd_list_element *c, const char *value)
224 {
225 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
226 }
227
228 static void setup_target_debug (void);
229
230 DCACHE *target_dcache;
231
232 /* The user just typed 'target' without the name of a target. */
233
234 static void
235 target_command (char *arg, int from_tty)
236 {
237 fputs_filtered ("Argument required (target name). Try `help target'\n",
238 gdb_stdout);
239 }
240
241 /* Add a possible target architecture to the list. */
242
243 void
244 add_target (struct target_ops *t)
245 {
246 /* Provide default values for all "must have" methods. */
247 if (t->to_xfer_partial == NULL)
248 t->to_xfer_partial = default_xfer_partial;
249
250 if (!target_structs)
251 {
252 target_struct_allocsize = DEFAULT_ALLOCSIZE;
253 target_structs = (struct target_ops **) xmalloc
254 (target_struct_allocsize * sizeof (*target_structs));
255 }
256 if (target_struct_size >= target_struct_allocsize)
257 {
258 target_struct_allocsize *= 2;
259 target_structs = (struct target_ops **)
260 xrealloc ((char *) target_structs,
261 target_struct_allocsize * sizeof (*target_structs));
262 }
263 target_structs[target_struct_size++] = t;
264
265 if (targetlist == NULL)
266 add_prefix_cmd ("target", class_run, target_command, _("\
267 Connect to a target machine or process.\n\
268 The first argument is the type or protocol of the target machine.\n\
269 Remaining arguments are interpreted by the target protocol. For more\n\
270 information on the arguments for a particular protocol, type\n\
271 `help target ' followed by the protocol name."),
272 &targetlist, "target ", 0, &cmdlist);
273 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
274 }
275
276 /* Stub functions */
277
278 void
279 target_ignore (void)
280 {
281 }
282
283 void
284 target_load (char *arg, int from_tty)
285 {
286 dcache_invalidate (target_dcache);
287 (*current_target.to_load) (arg, from_tty);
288 }
289
290 static int
291 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
292 struct target_ops *t)
293 {
294 errno = EIO; /* Can't read/write this location */
295 return 0; /* No bytes handled */
296 }
297
298 static void
299 tcomplain (void)
300 {
301 error (_("You can't do that when your target is `%s'"),
302 current_target.to_shortname);
303 }
304
305 void
306 noprocess (void)
307 {
308 error (_("You can't do that without a process to debug."));
309 }
310
311 static int
312 nosymbol (char *name, CORE_ADDR *addrp)
313 {
314 return 1; /* Symbol does not exist in target env */
315 }
316
317 static void
318 nosupport_runtime (void)
319 {
320 if (ptid_equal (inferior_ptid, null_ptid))
321 noprocess ();
322 else
323 error (_("No run-time support for this"));
324 }
325
326
327 static void
328 default_terminal_info (char *args, int from_tty)
329 {
330 printf_unfiltered (_("No saved terminal information.\n"));
331 }
332
333 /* This is the default target_create_inferior and target_attach function.
334 If the current target is executing, it asks whether to kill it off.
335 If this function returns without calling error(), it has killed off
336 the target, and the operation should be attempted. */
337
338 static void
339 kill_or_be_killed (int from_tty)
340 {
341 if (target_has_execution)
342 {
343 printf_unfiltered (_("You are already running a program:\n"));
344 target_files_info ();
345 if (query ("Kill it? "))
346 {
347 target_kill ();
348 if (target_has_execution)
349 error (_("Killing the program did not help."));
350 return;
351 }
352 else
353 {
354 error (_("Program not killed."));
355 }
356 }
357 tcomplain ();
358 }
359
360 static void
361 maybe_kill_then_attach (char *args, int from_tty)
362 {
363 kill_or_be_killed (from_tty);
364 target_attach (args, from_tty);
365 }
366
367 static void
368 maybe_kill_then_create_inferior (char *exec, char *args, char **env,
369 int from_tty)
370 {
371 kill_or_be_killed (0);
372 target_create_inferior (exec, args, env, from_tty);
373 }
374
375 /* Go through the target stack from top to bottom, copying over zero
376 entries in current_target, then filling in still empty entries. In
377 effect, we are doing class inheritance through the pushed target
378 vectors.
379
380 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
381 is currently implemented, is that it discards any knowledge of
382 which target an inherited method originally belonged to.
383 Consequently, new new target methods should instead explicitly and
384 locally search the target stack for the target that can handle the
385 request. */
386
387 static void
388 update_current_target (void)
389 {
390 struct target_ops *t;
391
392 /* First, reset current's contents. */
393 memset (&current_target, 0, sizeof (current_target));
394
395 #define INHERIT(FIELD, TARGET) \
396 if (!current_target.FIELD) \
397 current_target.FIELD = (TARGET)->FIELD
398
399 for (t = target_stack; t; t = t->beneath)
400 {
401 INHERIT (to_shortname, t);
402 INHERIT (to_longname, t);
403 INHERIT (to_doc, t);
404 INHERIT (to_open, t);
405 INHERIT (to_close, t);
406 INHERIT (to_attach, t);
407 INHERIT (to_post_attach, t);
408 INHERIT (to_detach, t);
409 /* Do not inherit to_disconnect. */
410 INHERIT (to_resume, t);
411 INHERIT (to_wait, t);
412 INHERIT (to_fetch_registers, t);
413 INHERIT (to_store_registers, t);
414 INHERIT (to_prepare_to_store, t);
415 INHERIT (deprecated_xfer_memory, t);
416 INHERIT (to_files_info, t);
417 INHERIT (to_insert_breakpoint, t);
418 INHERIT (to_remove_breakpoint, t);
419 INHERIT (to_can_use_hw_breakpoint, t);
420 INHERIT (to_insert_hw_breakpoint, t);
421 INHERIT (to_remove_hw_breakpoint, t);
422 INHERIT (to_insert_watchpoint, t);
423 INHERIT (to_remove_watchpoint, t);
424 INHERIT (to_stopped_data_address, t);
425 INHERIT (to_have_steppable_watchpoint, t);
426 INHERIT (to_have_continuable_watchpoint, t);
427 INHERIT (to_stopped_by_watchpoint, t);
428 INHERIT (to_watchpoint_addr_within_range, t);
429 INHERIT (to_region_ok_for_hw_watchpoint, t);
430 INHERIT (to_terminal_init, t);
431 INHERIT (to_terminal_inferior, t);
432 INHERIT (to_terminal_ours_for_output, t);
433 INHERIT (to_terminal_ours, t);
434 INHERIT (to_terminal_save_ours, t);
435 INHERIT (to_terminal_info, t);
436 INHERIT (to_kill, t);
437 INHERIT (to_load, t);
438 INHERIT (to_lookup_symbol, t);
439 INHERIT (to_create_inferior, t);
440 INHERIT (to_post_startup_inferior, t);
441 INHERIT (to_acknowledge_created_inferior, t);
442 INHERIT (to_insert_fork_catchpoint, t);
443 INHERIT (to_remove_fork_catchpoint, t);
444 INHERIT (to_insert_vfork_catchpoint, t);
445 INHERIT (to_remove_vfork_catchpoint, t);
446 /* Do not inherit to_follow_fork. */
447 INHERIT (to_insert_exec_catchpoint, t);
448 INHERIT (to_remove_exec_catchpoint, t);
449 INHERIT (to_has_exited, t);
450 INHERIT (to_mourn_inferior, t);
451 INHERIT (to_can_run, t);
452 INHERIT (to_notice_signals, t);
453 INHERIT (to_thread_alive, t);
454 INHERIT (to_find_new_threads, t);
455 INHERIT (to_pid_to_str, t);
456 INHERIT (to_extra_thread_info, t);
457 INHERIT (to_stop, t);
458 /* Do not inherit to_xfer_partial. */
459 INHERIT (to_rcmd, t);
460 INHERIT (to_pid_to_exec_file, t);
461 INHERIT (to_log_command, t);
462 INHERIT (to_stratum, t);
463 INHERIT (to_has_all_memory, t);
464 INHERIT (to_has_memory, t);
465 INHERIT (to_has_stack, t);
466 INHERIT (to_has_registers, t);
467 INHERIT (to_has_execution, t);
468 INHERIT (to_has_thread_control, t);
469 INHERIT (to_sections, t);
470 INHERIT (to_sections_end, t);
471 INHERIT (to_can_async_p, t);
472 INHERIT (to_is_async_p, t);
473 INHERIT (to_async, t);
474 INHERIT (to_async_mask, t);
475 INHERIT (to_find_memory_regions, t);
476 INHERIT (to_make_corefile_notes, t);
477 INHERIT (to_get_thread_local_address, t);
478 /* Do not inherit to_read_description. */
479 /* Do not inherit to_search_memory. */
480 INHERIT (to_magic, t);
481 /* Do not inherit to_memory_map. */
482 /* Do not inherit to_flash_erase. */
483 /* Do not inherit to_flash_done. */
484 }
485 #undef INHERIT
486
487 /* Clean up a target struct so it no longer has any zero pointers in
488 it. Some entries are defaulted to a method that print an error,
489 others are hard-wired to a standard recursive default. */
490
491 #define de_fault(field, value) \
492 if (!current_target.field) \
493 current_target.field = value
494
495 de_fault (to_open,
496 (void (*) (char *, int))
497 tcomplain);
498 de_fault (to_close,
499 (void (*) (int))
500 target_ignore);
501 de_fault (to_attach,
502 maybe_kill_then_attach);
503 de_fault (to_post_attach,
504 (void (*) (int))
505 target_ignore);
506 de_fault (to_detach,
507 (void (*) (char *, int))
508 target_ignore);
509 de_fault (to_resume,
510 (void (*) (ptid_t, int, enum target_signal))
511 noprocess);
512 de_fault (to_wait,
513 (ptid_t (*) (ptid_t, struct target_waitstatus *))
514 noprocess);
515 de_fault (to_fetch_registers,
516 (void (*) (struct regcache *, int))
517 target_ignore);
518 de_fault (to_store_registers,
519 (void (*) (struct regcache *, int))
520 noprocess);
521 de_fault (to_prepare_to_store,
522 (void (*) (struct regcache *))
523 noprocess);
524 de_fault (deprecated_xfer_memory,
525 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
526 nomemory);
527 de_fault (to_files_info,
528 (void (*) (struct target_ops *))
529 target_ignore);
530 de_fault (to_insert_breakpoint,
531 memory_insert_breakpoint);
532 de_fault (to_remove_breakpoint,
533 memory_remove_breakpoint);
534 de_fault (to_can_use_hw_breakpoint,
535 (int (*) (int, int, int))
536 return_zero);
537 de_fault (to_insert_hw_breakpoint,
538 (int (*) (struct bp_target_info *))
539 return_minus_one);
540 de_fault (to_remove_hw_breakpoint,
541 (int (*) (struct bp_target_info *))
542 return_minus_one);
543 de_fault (to_insert_watchpoint,
544 (int (*) (CORE_ADDR, int, int))
545 return_minus_one);
546 de_fault (to_remove_watchpoint,
547 (int (*) (CORE_ADDR, int, int))
548 return_minus_one);
549 de_fault (to_stopped_by_watchpoint,
550 (int (*) (void))
551 return_zero);
552 de_fault (to_stopped_data_address,
553 (int (*) (struct target_ops *, CORE_ADDR *))
554 return_zero);
555 de_fault (to_watchpoint_addr_within_range,
556 default_watchpoint_addr_within_range);
557 de_fault (to_region_ok_for_hw_watchpoint,
558 default_region_ok_for_hw_watchpoint);
559 de_fault (to_terminal_init,
560 (void (*) (void))
561 target_ignore);
562 de_fault (to_terminal_inferior,
563 (void (*) (void))
564 target_ignore);
565 de_fault (to_terminal_ours_for_output,
566 (void (*) (void))
567 target_ignore);
568 de_fault (to_terminal_ours,
569 (void (*) (void))
570 target_ignore);
571 de_fault (to_terminal_save_ours,
572 (void (*) (void))
573 target_ignore);
574 de_fault (to_terminal_info,
575 default_terminal_info);
576 de_fault (to_kill,
577 (void (*) (void))
578 noprocess);
579 de_fault (to_load,
580 (void (*) (char *, int))
581 tcomplain);
582 de_fault (to_lookup_symbol,
583 (int (*) (char *, CORE_ADDR *))
584 nosymbol);
585 de_fault (to_create_inferior,
586 maybe_kill_then_create_inferior);
587 de_fault (to_post_startup_inferior,
588 (void (*) (ptid_t))
589 target_ignore);
590 de_fault (to_acknowledge_created_inferior,
591 (void (*) (int))
592 target_ignore);
593 de_fault (to_insert_fork_catchpoint,
594 (void (*) (int))
595 tcomplain);
596 de_fault (to_remove_fork_catchpoint,
597 (int (*) (int))
598 tcomplain);
599 de_fault (to_insert_vfork_catchpoint,
600 (void (*) (int))
601 tcomplain);
602 de_fault (to_remove_vfork_catchpoint,
603 (int (*) (int))
604 tcomplain);
605 de_fault (to_insert_exec_catchpoint,
606 (void (*) (int))
607 tcomplain);
608 de_fault (to_remove_exec_catchpoint,
609 (int (*) (int))
610 tcomplain);
611 de_fault (to_has_exited,
612 (int (*) (int, int, int *))
613 return_zero);
614 de_fault (to_mourn_inferior,
615 (void (*) (void))
616 noprocess);
617 de_fault (to_can_run,
618 return_zero);
619 de_fault (to_notice_signals,
620 (void (*) (ptid_t))
621 target_ignore);
622 de_fault (to_thread_alive,
623 (int (*) (ptid_t))
624 return_zero);
625 de_fault (to_find_new_threads,
626 (void (*) (void))
627 target_ignore);
628 de_fault (to_extra_thread_info,
629 (char *(*) (struct thread_info *))
630 return_zero);
631 de_fault (to_stop,
632 (void (*) (void))
633 target_ignore);
634 current_target.to_xfer_partial = current_xfer_partial;
635 de_fault (to_rcmd,
636 (void (*) (char *, struct ui_file *))
637 tcomplain);
638 de_fault (to_pid_to_exec_file,
639 (char *(*) (int))
640 return_zero);
641 de_fault (to_can_async_p,
642 (int (*) (void))
643 return_zero);
644 de_fault (to_is_async_p,
645 (int (*) (void))
646 return_zero);
647 de_fault (to_async,
648 (void (*) (void (*) (enum inferior_event_type, void*), void*))
649 tcomplain);
650 de_fault (to_async_mask,
651 (int (*) (int))
652 return_one);
653 current_target.to_read_description = NULL;
654 #undef de_fault
655
656 /* Finally, position the target-stack beneath the squashed
657 "current_target". That way code looking for a non-inherited
658 target method can quickly and simply find it. */
659 current_target.beneath = target_stack;
660
661 if (targetdebug)
662 setup_target_debug ();
663 }
664
665 /* Mark OPS as a running target. This reverses the effect
666 of target_mark_exited. */
667
668 void
669 target_mark_running (struct target_ops *ops)
670 {
671 struct target_ops *t;
672
673 for (t = target_stack; t != NULL; t = t->beneath)
674 if (t == ops)
675 break;
676 if (t == NULL)
677 internal_error (__FILE__, __LINE__,
678 "Attempted to mark unpushed target \"%s\" as running",
679 ops->to_shortname);
680
681 ops->to_has_execution = 1;
682 ops->to_has_all_memory = 1;
683 ops->to_has_memory = 1;
684 ops->to_has_stack = 1;
685 ops->to_has_registers = 1;
686
687 update_current_target ();
688 }
689
690 /* Mark OPS as a non-running target. This reverses the effect
691 of target_mark_running. */
692
693 void
694 target_mark_exited (struct target_ops *ops)
695 {
696 struct target_ops *t;
697
698 for (t = target_stack; t != NULL; t = t->beneath)
699 if (t == ops)
700 break;
701 if (t == NULL)
702 internal_error (__FILE__, __LINE__,
703 "Attempted to mark unpushed target \"%s\" as running",
704 ops->to_shortname);
705
706 ops->to_has_execution = 0;
707 ops->to_has_all_memory = 0;
708 ops->to_has_memory = 0;
709 ops->to_has_stack = 0;
710 ops->to_has_registers = 0;
711
712 update_current_target ();
713 }
714
715 /* Push a new target type into the stack of the existing target accessors,
716 possibly superseding some of the existing accessors.
717
718 Result is zero if the pushed target ended up on top of the stack,
719 nonzero if at least one target is on top of it.
720
721 Rather than allow an empty stack, we always have the dummy target at
722 the bottom stratum, so we can call the function vectors without
723 checking them. */
724
725 int
726 push_target (struct target_ops *t)
727 {
728 struct target_ops **cur;
729
730 /* Check magic number. If wrong, it probably means someone changed
731 the struct definition, but not all the places that initialize one. */
732 if (t->to_magic != OPS_MAGIC)
733 {
734 fprintf_unfiltered (gdb_stderr,
735 "Magic number of %s target struct wrong\n",
736 t->to_shortname);
737 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
738 }
739
740 /* Find the proper stratum to install this target in. */
741 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
742 {
743 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
744 break;
745 }
746
747 /* If there's already targets at this stratum, remove them. */
748 /* FIXME: cagney/2003-10-15: I think this should be popping all
749 targets to CUR, and not just those at this stratum level. */
750 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
751 {
752 /* There's already something at this stratum level. Close it,
753 and un-hook it from the stack. */
754 struct target_ops *tmp = (*cur);
755 (*cur) = (*cur)->beneath;
756 tmp->beneath = NULL;
757 target_close (tmp, 0);
758 }
759
760 /* We have removed all targets in our stratum, now add the new one. */
761 t->beneath = (*cur);
762 (*cur) = t;
763
764 update_current_target ();
765
766 /* Not on top? */
767 return (t != target_stack);
768 }
769
770 /* Remove a target_ops vector from the stack, wherever it may be.
771 Return how many times it was removed (0 or 1). */
772
773 int
774 unpush_target (struct target_ops *t)
775 {
776 struct target_ops **cur;
777 struct target_ops *tmp;
778
779 /* Look for the specified target. Note that we assume that a target
780 can only occur once in the target stack. */
781
782 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
783 {
784 if ((*cur) == t)
785 break;
786 }
787
788 if ((*cur) == NULL)
789 return 0; /* Didn't find target_ops, quit now */
790
791 /* NOTE: cagney/2003-12-06: In '94 the close call was made
792 unconditional by moving it to before the above check that the
793 target was in the target stack (something about "Change the way
794 pushing and popping of targets work to support target overlays
795 and inheritance"). This doesn't make much sense - only open
796 targets should be closed. */
797 target_close (t, 0);
798
799 /* Unchain the target */
800 tmp = (*cur);
801 (*cur) = (*cur)->beneath;
802 tmp->beneath = NULL;
803
804 update_current_target ();
805
806 return 1;
807 }
808
809 void
810 pop_target (void)
811 {
812 target_close (&current_target, 0); /* Let it clean up */
813 if (unpush_target (target_stack) == 1)
814 return;
815
816 fprintf_unfiltered (gdb_stderr,
817 "pop_target couldn't find target %s\n",
818 current_target.to_shortname);
819 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
820 }
821
822 /* Using the objfile specified in OBJFILE, find the address for the
823 current thread's thread-local storage with offset OFFSET. */
824 CORE_ADDR
825 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
826 {
827 volatile CORE_ADDR addr = 0;
828
829 if (target_get_thread_local_address_p ()
830 && gdbarch_fetch_tls_load_module_address_p (current_gdbarch))
831 {
832 ptid_t ptid = inferior_ptid;
833 volatile struct gdb_exception ex;
834
835 TRY_CATCH (ex, RETURN_MASK_ALL)
836 {
837 CORE_ADDR lm_addr;
838
839 /* Fetch the load module address for this objfile. */
840 lm_addr = gdbarch_fetch_tls_load_module_address (current_gdbarch,
841 objfile);
842 /* If it's 0, throw the appropriate exception. */
843 if (lm_addr == 0)
844 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
845 _("TLS load module not found"));
846
847 addr = target_get_thread_local_address (ptid, lm_addr, offset);
848 }
849 /* If an error occurred, print TLS related messages here. Otherwise,
850 throw the error to some higher catcher. */
851 if (ex.reason < 0)
852 {
853 int objfile_is_library = (objfile->flags & OBJF_SHARED);
854
855 switch (ex.error)
856 {
857 case TLS_NO_LIBRARY_SUPPORT_ERROR:
858 error (_("Cannot find thread-local variables in this thread library."));
859 break;
860 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
861 if (objfile_is_library)
862 error (_("Cannot find shared library `%s' in dynamic"
863 " linker's load module list"), objfile->name);
864 else
865 error (_("Cannot find executable file `%s' in dynamic"
866 " linker's load module list"), objfile->name);
867 break;
868 case TLS_NOT_ALLOCATED_YET_ERROR:
869 if (objfile_is_library)
870 error (_("The inferior has not yet allocated storage for"
871 " thread-local variables in\n"
872 "the shared library `%s'\n"
873 "for %s"),
874 objfile->name, target_pid_to_str (ptid));
875 else
876 error (_("The inferior has not yet allocated storage for"
877 " thread-local variables in\n"
878 "the executable `%s'\n"
879 "for %s"),
880 objfile->name, target_pid_to_str (ptid));
881 break;
882 case TLS_GENERIC_ERROR:
883 if (objfile_is_library)
884 error (_("Cannot find thread-local storage for %s, "
885 "shared library %s:\n%s"),
886 target_pid_to_str (ptid),
887 objfile->name, ex.message);
888 else
889 error (_("Cannot find thread-local storage for %s, "
890 "executable file %s:\n%s"),
891 target_pid_to_str (ptid),
892 objfile->name, ex.message);
893 break;
894 default:
895 throw_exception (ex);
896 break;
897 }
898 }
899 }
900 /* It wouldn't be wrong here to try a gdbarch method, too; finding
901 TLS is an ABI-specific thing. But we don't do that yet. */
902 else
903 error (_("Cannot find thread-local variables on this target"));
904
905 return addr;
906 }
907
908 #undef MIN
909 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
910
911 /* target_read_string -- read a null terminated string, up to LEN bytes,
912 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
913 Set *STRING to a pointer to malloc'd memory containing the data; the caller
914 is responsible for freeing it. Return the number of bytes successfully
915 read. */
916
917 int
918 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
919 {
920 int tlen, origlen, offset, i;
921 gdb_byte buf[4];
922 int errcode = 0;
923 char *buffer;
924 int buffer_allocated;
925 char *bufptr;
926 unsigned int nbytes_read = 0;
927
928 gdb_assert (string);
929
930 /* Small for testing. */
931 buffer_allocated = 4;
932 buffer = xmalloc (buffer_allocated);
933 bufptr = buffer;
934
935 origlen = len;
936
937 while (len > 0)
938 {
939 tlen = MIN (len, 4 - (memaddr & 3));
940 offset = memaddr & 3;
941
942 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
943 if (errcode != 0)
944 {
945 /* The transfer request might have crossed the boundary to an
946 unallocated region of memory. Retry the transfer, requesting
947 a single byte. */
948 tlen = 1;
949 offset = 0;
950 errcode = target_read_memory (memaddr, buf, 1);
951 if (errcode != 0)
952 goto done;
953 }
954
955 if (bufptr - buffer + tlen > buffer_allocated)
956 {
957 unsigned int bytes;
958 bytes = bufptr - buffer;
959 buffer_allocated *= 2;
960 buffer = xrealloc (buffer, buffer_allocated);
961 bufptr = buffer + bytes;
962 }
963
964 for (i = 0; i < tlen; i++)
965 {
966 *bufptr++ = buf[i + offset];
967 if (buf[i + offset] == '\000')
968 {
969 nbytes_read += i + 1;
970 goto done;
971 }
972 }
973
974 memaddr += tlen;
975 len -= tlen;
976 nbytes_read += tlen;
977 }
978 done:
979 *string = buffer;
980 if (errnop != NULL)
981 *errnop = errcode;
982 return nbytes_read;
983 }
984
985 /* Find a section containing ADDR. */
986 struct section_table *
987 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
988 {
989 struct section_table *secp;
990 for (secp = target->to_sections;
991 secp < target->to_sections_end;
992 secp++)
993 {
994 if (addr >= secp->addr && addr < secp->endaddr)
995 return secp;
996 }
997 return NULL;
998 }
999
1000 /* Perform a partial memory transfer. The arguments and return
1001 value are just as for target_xfer_partial. */
1002
1003 static LONGEST
1004 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
1005 ULONGEST memaddr, LONGEST len)
1006 {
1007 LONGEST res;
1008 int reg_len;
1009 struct mem_region *region;
1010
1011 /* Zero length requests are ok and require no work. */
1012 if (len == 0)
1013 return 0;
1014
1015 /* Try the executable file, if "trust-readonly-sections" is set. */
1016 if (readbuf != NULL && trust_readonly)
1017 {
1018 struct section_table *secp;
1019
1020 secp = target_section_by_addr (ops, memaddr);
1021 if (secp != NULL
1022 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1023 & SEC_READONLY))
1024 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1025 }
1026
1027 /* Likewise for accesses to unmapped overlay sections. */
1028 if (readbuf != NULL && overlay_debugging)
1029 {
1030 asection *section = find_pc_overlay (memaddr);
1031 if (pc_in_unmapped_range (memaddr, section))
1032 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1033 }
1034
1035 /* Try GDB's internal data cache. */
1036 region = lookup_mem_region (memaddr);
1037 /* region->hi == 0 means there's no upper bound. */
1038 if (memaddr + len < region->hi || region->hi == 0)
1039 reg_len = len;
1040 else
1041 reg_len = region->hi - memaddr;
1042
1043 switch (region->attrib.mode)
1044 {
1045 case MEM_RO:
1046 if (writebuf != NULL)
1047 return -1;
1048 break;
1049
1050 case MEM_WO:
1051 if (readbuf != NULL)
1052 return -1;
1053 break;
1054
1055 case MEM_FLASH:
1056 /* We only support writing to flash during "load" for now. */
1057 if (writebuf != NULL)
1058 error (_("Writing to flash memory forbidden in this context"));
1059 break;
1060
1061 case MEM_NONE:
1062 return -1;
1063 }
1064
1065 if (region->attrib.cache)
1066 {
1067 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1068 memory request will start back at current_target. */
1069 if (readbuf != NULL)
1070 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1071 reg_len, 0);
1072 else
1073 /* FIXME drow/2006-08-09: If we're going to preserve const
1074 correctness dcache_xfer_memory should take readbuf and
1075 writebuf. */
1076 res = dcache_xfer_memory (target_dcache, memaddr,
1077 (void *) writebuf,
1078 reg_len, 1);
1079 if (res <= 0)
1080 return -1;
1081 else
1082 {
1083 if (readbuf && !show_memory_breakpoints)
1084 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1085 return res;
1086 }
1087 }
1088
1089 /* If none of those methods found the memory we wanted, fall back
1090 to a target partial transfer. Normally a single call to
1091 to_xfer_partial is enough; if it doesn't recognize an object
1092 it will call the to_xfer_partial of the next target down.
1093 But for memory this won't do. Memory is the only target
1094 object which can be read from more than one valid target.
1095 A core file, for instance, could have some of memory but
1096 delegate other bits to the target below it. So, we must
1097 manually try all targets. */
1098
1099 do
1100 {
1101 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1102 readbuf, writebuf, memaddr, reg_len);
1103 if (res > 0)
1104 break;
1105
1106 /* We want to continue past core files to executables, but not
1107 past a running target's memory. */
1108 if (ops->to_has_all_memory)
1109 break;
1110
1111 ops = ops->beneath;
1112 }
1113 while (ops != NULL);
1114
1115 if (readbuf && !show_memory_breakpoints)
1116 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1117
1118 /* If we still haven't got anything, return the last error. We
1119 give up. */
1120 return res;
1121 }
1122
1123 static void
1124 restore_show_memory_breakpoints (void *arg)
1125 {
1126 show_memory_breakpoints = (uintptr_t) arg;
1127 }
1128
1129 struct cleanup *
1130 make_show_memory_breakpoints_cleanup (int show)
1131 {
1132 int current = show_memory_breakpoints;
1133 show_memory_breakpoints = show;
1134
1135 return make_cleanup (restore_show_memory_breakpoints,
1136 (void *) (uintptr_t) current);
1137 }
1138
1139 static LONGEST
1140 target_xfer_partial (struct target_ops *ops,
1141 enum target_object object, const char *annex,
1142 void *readbuf, const void *writebuf,
1143 ULONGEST offset, LONGEST len)
1144 {
1145 LONGEST retval;
1146
1147 gdb_assert (ops->to_xfer_partial != NULL);
1148
1149 /* If this is a memory transfer, let the memory-specific code
1150 have a look at it instead. Memory transfers are more
1151 complicated. */
1152 if (object == TARGET_OBJECT_MEMORY)
1153 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1154 else
1155 {
1156 enum target_object raw_object = object;
1157
1158 /* If this is a raw memory transfer, request the normal
1159 memory object from other layers. */
1160 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1161 raw_object = TARGET_OBJECT_MEMORY;
1162
1163 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1164 writebuf, offset, len);
1165 }
1166
1167 if (targetdebug)
1168 {
1169 const unsigned char *myaddr = NULL;
1170
1171 fprintf_unfiltered (gdb_stdlog,
1172 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
1173 ops->to_shortname,
1174 (int) object,
1175 (annex ? annex : "(null)"),
1176 (long) readbuf, (long) writebuf,
1177 paddr_nz (offset), paddr_d (len), paddr_d (retval));
1178
1179 if (readbuf)
1180 myaddr = readbuf;
1181 if (writebuf)
1182 myaddr = writebuf;
1183 if (retval > 0 && myaddr != NULL)
1184 {
1185 int i;
1186
1187 fputs_unfiltered (", bytes =", gdb_stdlog);
1188 for (i = 0; i < retval; i++)
1189 {
1190 if ((((long) &(myaddr[i])) & 0xf) == 0)
1191 {
1192 if (targetdebug < 2 && i > 0)
1193 {
1194 fprintf_unfiltered (gdb_stdlog, " ...");
1195 break;
1196 }
1197 fprintf_unfiltered (gdb_stdlog, "\n");
1198 }
1199
1200 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1201 }
1202 }
1203
1204 fputc_unfiltered ('\n', gdb_stdlog);
1205 }
1206 return retval;
1207 }
1208
1209 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1210 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1211 if any error occurs.
1212
1213 If an error occurs, no guarantee is made about the contents of the data at
1214 MYADDR. In particular, the caller should not depend upon partial reads
1215 filling the buffer with good data. There is no way for the caller to know
1216 how much good data might have been transfered anyway. Callers that can
1217 deal with partial reads should call target_read (which will retry until
1218 it makes no progress, and then return how much was transferred). */
1219
1220 int
1221 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1222 {
1223 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1224 myaddr, memaddr, len) == len)
1225 return 0;
1226 else
1227 return EIO;
1228 }
1229
1230 int
1231 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1232 {
1233 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1234 myaddr, memaddr, len) == len)
1235 return 0;
1236 else
1237 return EIO;
1238 }
1239
1240 /* Fetch the target's memory map. */
1241
1242 VEC(mem_region_s) *
1243 target_memory_map (void)
1244 {
1245 VEC(mem_region_s) *result;
1246 struct mem_region *last_one, *this_one;
1247 int ix;
1248 struct target_ops *t;
1249
1250 if (targetdebug)
1251 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1252
1253 for (t = current_target.beneath; t != NULL; t = t->beneath)
1254 if (t->to_memory_map != NULL)
1255 break;
1256
1257 if (t == NULL)
1258 return NULL;
1259
1260 result = t->to_memory_map (t);
1261 if (result == NULL)
1262 return NULL;
1263
1264 qsort (VEC_address (mem_region_s, result),
1265 VEC_length (mem_region_s, result),
1266 sizeof (struct mem_region), mem_region_cmp);
1267
1268 /* Check that regions do not overlap. Simultaneously assign
1269 a numbering for the "mem" commands to use to refer to
1270 each region. */
1271 last_one = NULL;
1272 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1273 {
1274 this_one->number = ix;
1275
1276 if (last_one && last_one->hi > this_one->lo)
1277 {
1278 warning (_("Overlapping regions in memory map: ignoring"));
1279 VEC_free (mem_region_s, result);
1280 return NULL;
1281 }
1282 last_one = this_one;
1283 }
1284
1285 return result;
1286 }
1287
1288 void
1289 target_flash_erase (ULONGEST address, LONGEST length)
1290 {
1291 struct target_ops *t;
1292
1293 for (t = current_target.beneath; t != NULL; t = t->beneath)
1294 if (t->to_flash_erase != NULL)
1295 {
1296 if (targetdebug)
1297 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1298 paddr (address), phex (length, 0));
1299 t->to_flash_erase (t, address, length);
1300 return;
1301 }
1302
1303 tcomplain ();
1304 }
1305
1306 void
1307 target_flash_done (void)
1308 {
1309 struct target_ops *t;
1310
1311 for (t = current_target.beneath; t != NULL; t = t->beneath)
1312 if (t->to_flash_done != NULL)
1313 {
1314 if (targetdebug)
1315 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1316 t->to_flash_done (t);
1317 return;
1318 }
1319
1320 tcomplain ();
1321 }
1322
1323 #ifndef target_stopped_data_address_p
1324 int
1325 target_stopped_data_address_p (struct target_ops *target)
1326 {
1327 if (target->to_stopped_data_address
1328 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1329 return 0;
1330 if (target->to_stopped_data_address == debug_to_stopped_data_address
1331 && (debug_target.to_stopped_data_address
1332 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1333 return 0;
1334 return 1;
1335 }
1336 #endif
1337
1338 static void
1339 show_trust_readonly (struct ui_file *file, int from_tty,
1340 struct cmd_list_element *c, const char *value)
1341 {
1342 fprintf_filtered (file, _("\
1343 Mode for reading from readonly sections is %s.\n"),
1344 value);
1345 }
1346
1347 /* More generic transfers. */
1348
1349 static LONGEST
1350 default_xfer_partial (struct target_ops *ops, enum target_object object,
1351 const char *annex, gdb_byte *readbuf,
1352 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1353 {
1354 if (object == TARGET_OBJECT_MEMORY
1355 && ops->deprecated_xfer_memory != NULL)
1356 /* If available, fall back to the target's
1357 "deprecated_xfer_memory" method. */
1358 {
1359 int xfered = -1;
1360 errno = 0;
1361 if (writebuf != NULL)
1362 {
1363 void *buffer = xmalloc (len);
1364 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1365 memcpy (buffer, writebuf, len);
1366 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1367 1/*write*/, NULL, ops);
1368 do_cleanups (cleanup);
1369 }
1370 if (readbuf != NULL)
1371 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1372 0/*read*/, NULL, ops);
1373 if (xfered > 0)
1374 return xfered;
1375 else if (xfered == 0 && errno == 0)
1376 /* "deprecated_xfer_memory" uses 0, cross checked against
1377 ERRNO as one indication of an error. */
1378 return 0;
1379 else
1380 return -1;
1381 }
1382 else if (ops->beneath != NULL)
1383 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1384 readbuf, writebuf, offset, len);
1385 else
1386 return -1;
1387 }
1388
1389 /* The xfer_partial handler for the topmost target. Unlike the default,
1390 it does not need to handle memory specially; it just passes all
1391 requests down the stack. */
1392
1393 static LONGEST
1394 current_xfer_partial (struct target_ops *ops, enum target_object object,
1395 const char *annex, gdb_byte *readbuf,
1396 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1397 {
1398 if (ops->beneath != NULL)
1399 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1400 readbuf, writebuf, offset, len);
1401 else
1402 return -1;
1403 }
1404
1405 /* Target vector read/write partial wrapper functions.
1406
1407 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1408 (inbuf, outbuf)", instead of separate read/write methods, make life
1409 easier. */
1410
1411 static LONGEST
1412 target_read_partial (struct target_ops *ops,
1413 enum target_object object,
1414 const char *annex, gdb_byte *buf,
1415 ULONGEST offset, LONGEST len)
1416 {
1417 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1418 }
1419
1420 static LONGEST
1421 target_write_partial (struct target_ops *ops,
1422 enum target_object object,
1423 const char *annex, const gdb_byte *buf,
1424 ULONGEST offset, LONGEST len)
1425 {
1426 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1427 }
1428
1429 /* Wrappers to perform the full transfer. */
1430 LONGEST
1431 target_read (struct target_ops *ops,
1432 enum target_object object,
1433 const char *annex, gdb_byte *buf,
1434 ULONGEST offset, LONGEST len)
1435 {
1436 LONGEST xfered = 0;
1437 while (xfered < len)
1438 {
1439 LONGEST xfer = target_read_partial (ops, object, annex,
1440 (gdb_byte *) buf + xfered,
1441 offset + xfered, len - xfered);
1442 /* Call an observer, notifying them of the xfer progress? */
1443 if (xfer == 0)
1444 return xfered;
1445 if (xfer < 0)
1446 return -1;
1447 xfered += xfer;
1448 QUIT;
1449 }
1450 return len;
1451 }
1452
1453 LONGEST
1454 target_read_until_error (struct target_ops *ops,
1455 enum target_object object,
1456 const char *annex, gdb_byte *buf,
1457 ULONGEST offset, LONGEST len)
1458 {
1459 LONGEST xfered = 0;
1460 while (xfered < len)
1461 {
1462 LONGEST xfer = target_read_partial (ops, object, annex,
1463 (gdb_byte *) buf + xfered,
1464 offset + xfered, len - xfered);
1465 /* Call an observer, notifying them of the xfer progress? */
1466 if (xfer == 0)
1467 return xfered;
1468 if (xfer < 0)
1469 {
1470 /* We've got an error. Try to read in smaller blocks. */
1471 ULONGEST start = offset + xfered;
1472 ULONGEST remaining = len - xfered;
1473 ULONGEST half;
1474
1475 /* If an attempt was made to read a random memory address,
1476 it's likely that the very first byte is not accessible.
1477 Try reading the first byte, to avoid doing log N tries
1478 below. */
1479 xfer = target_read_partial (ops, object, annex,
1480 (gdb_byte *) buf + xfered, start, 1);
1481 if (xfer <= 0)
1482 return xfered;
1483 start += 1;
1484 remaining -= 1;
1485 half = remaining/2;
1486
1487 while (half > 0)
1488 {
1489 xfer = target_read_partial (ops, object, annex,
1490 (gdb_byte *) buf + xfered,
1491 start, half);
1492 if (xfer == 0)
1493 return xfered;
1494 if (xfer < 0)
1495 {
1496 remaining = half;
1497 }
1498 else
1499 {
1500 /* We have successfully read the first half. So, the
1501 error must be in the second half. Adjust start and
1502 remaining to point at the second half. */
1503 xfered += xfer;
1504 start += xfer;
1505 remaining -= xfer;
1506 }
1507 half = remaining/2;
1508 }
1509
1510 return xfered;
1511 }
1512 xfered += xfer;
1513 QUIT;
1514 }
1515 return len;
1516 }
1517
1518
1519 /* An alternative to target_write with progress callbacks. */
1520
1521 LONGEST
1522 target_write_with_progress (struct target_ops *ops,
1523 enum target_object object,
1524 const char *annex, const gdb_byte *buf,
1525 ULONGEST offset, LONGEST len,
1526 void (*progress) (ULONGEST, void *), void *baton)
1527 {
1528 LONGEST xfered = 0;
1529
1530 /* Give the progress callback a chance to set up. */
1531 if (progress)
1532 (*progress) (0, baton);
1533
1534 while (xfered < len)
1535 {
1536 LONGEST xfer = target_write_partial (ops, object, annex,
1537 (gdb_byte *) buf + xfered,
1538 offset + xfered, len - xfered);
1539
1540 if (xfer == 0)
1541 return xfered;
1542 if (xfer < 0)
1543 return -1;
1544
1545 if (progress)
1546 (*progress) (xfer, baton);
1547
1548 xfered += xfer;
1549 QUIT;
1550 }
1551 return len;
1552 }
1553
1554 LONGEST
1555 target_write (struct target_ops *ops,
1556 enum target_object object,
1557 const char *annex, const gdb_byte *buf,
1558 ULONGEST offset, LONGEST len)
1559 {
1560 return target_write_with_progress (ops, object, annex, buf, offset, len,
1561 NULL, NULL);
1562 }
1563
1564 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1565 the size of the transferred data. PADDING additional bytes are
1566 available in *BUF_P. This is a helper function for
1567 target_read_alloc; see the declaration of that function for more
1568 information. */
1569
1570 static LONGEST
1571 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1572 const char *annex, gdb_byte **buf_p, int padding)
1573 {
1574 size_t buf_alloc, buf_pos;
1575 gdb_byte *buf;
1576 LONGEST n;
1577
1578 /* This function does not have a length parameter; it reads the
1579 entire OBJECT). Also, it doesn't support objects fetched partly
1580 from one target and partly from another (in a different stratum,
1581 e.g. a core file and an executable). Both reasons make it
1582 unsuitable for reading memory. */
1583 gdb_assert (object != TARGET_OBJECT_MEMORY);
1584
1585 /* Start by reading up to 4K at a time. The target will throttle
1586 this number down if necessary. */
1587 buf_alloc = 4096;
1588 buf = xmalloc (buf_alloc);
1589 buf_pos = 0;
1590 while (1)
1591 {
1592 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1593 buf_pos, buf_alloc - buf_pos - padding);
1594 if (n < 0)
1595 {
1596 /* An error occurred. */
1597 xfree (buf);
1598 return -1;
1599 }
1600 else if (n == 0)
1601 {
1602 /* Read all there was. */
1603 if (buf_pos == 0)
1604 xfree (buf);
1605 else
1606 *buf_p = buf;
1607 return buf_pos;
1608 }
1609
1610 buf_pos += n;
1611
1612 /* If the buffer is filling up, expand it. */
1613 if (buf_alloc < buf_pos * 2)
1614 {
1615 buf_alloc *= 2;
1616 buf = xrealloc (buf, buf_alloc);
1617 }
1618
1619 QUIT;
1620 }
1621 }
1622
1623 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1624 the size of the transferred data. See the declaration in "target.h"
1625 function for more information about the return value. */
1626
1627 LONGEST
1628 target_read_alloc (struct target_ops *ops, enum target_object object,
1629 const char *annex, gdb_byte **buf_p)
1630 {
1631 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1632 }
1633
1634 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1635 returned as a string, allocated using xmalloc. If an error occurs
1636 or the transfer is unsupported, NULL is returned. Empty objects
1637 are returned as allocated but empty strings. A warning is issued
1638 if the result contains any embedded NUL bytes. */
1639
1640 char *
1641 target_read_stralloc (struct target_ops *ops, enum target_object object,
1642 const char *annex)
1643 {
1644 gdb_byte *buffer;
1645 LONGEST transferred;
1646
1647 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1648
1649 if (transferred < 0)
1650 return NULL;
1651
1652 if (transferred == 0)
1653 return xstrdup ("");
1654
1655 buffer[transferred] = 0;
1656 if (strlen (buffer) < transferred)
1657 warning (_("target object %d, annex %s, "
1658 "contained unexpected null characters"),
1659 (int) object, annex ? annex : "(none)");
1660
1661 return (char *) buffer;
1662 }
1663
1664 /* Memory transfer methods. */
1665
1666 void
1667 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1668 LONGEST len)
1669 {
1670 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1671 != len)
1672 memory_error (EIO, addr);
1673 }
1674
1675 ULONGEST
1676 get_target_memory_unsigned (struct target_ops *ops,
1677 CORE_ADDR addr, int len)
1678 {
1679 gdb_byte buf[sizeof (ULONGEST)];
1680
1681 gdb_assert (len <= sizeof (buf));
1682 get_target_memory (ops, addr, buf, len);
1683 return extract_unsigned_integer (buf, len);
1684 }
1685
1686 static void
1687 target_info (char *args, int from_tty)
1688 {
1689 struct target_ops *t;
1690 int has_all_mem = 0;
1691
1692 if (symfile_objfile != NULL)
1693 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1694
1695 for (t = target_stack; t != NULL; t = t->beneath)
1696 {
1697 if (!t->to_has_memory)
1698 continue;
1699
1700 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1701 continue;
1702 if (has_all_mem)
1703 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1704 printf_unfiltered ("%s:\n", t->to_longname);
1705 (t->to_files_info) (t);
1706 has_all_mem = t->to_has_all_memory;
1707 }
1708 }
1709
1710 /* This function is called before any new inferior is created, e.g.
1711 by running a program, attaching, or connecting to a target.
1712 It cleans up any state from previous invocations which might
1713 change between runs. This is a subset of what target_preopen
1714 resets (things which might change between targets). */
1715
1716 void
1717 target_pre_inferior (int from_tty)
1718 {
1719 invalidate_target_mem_regions ();
1720
1721 target_clear_description ();
1722 }
1723
1724 /* This is to be called by the open routine before it does
1725 anything. */
1726
1727 void
1728 target_preopen (int from_tty)
1729 {
1730 dont_repeat ();
1731
1732 if (target_has_execution)
1733 {
1734 if (!from_tty
1735 || query (_("A program is being debugged already. Kill it? ")))
1736 target_kill ();
1737 else
1738 error (_("Program not killed."));
1739 }
1740
1741 /* Calling target_kill may remove the target from the stack. But if
1742 it doesn't (which seems like a win for UDI), remove it now. */
1743
1744 if (target_has_execution)
1745 pop_target ();
1746
1747 target_pre_inferior (from_tty);
1748 }
1749
1750 /* Detach a target after doing deferred register stores. */
1751
1752 void
1753 target_detach (char *args, int from_tty)
1754 {
1755 /* If we're in breakpoints-always-inserted mode, have to
1756 remove them before detaching. */
1757 remove_breakpoints ();
1758
1759 (current_target.to_detach) (args, from_tty);
1760 }
1761
1762 void
1763 target_disconnect (char *args, int from_tty)
1764 {
1765 struct target_ops *t;
1766
1767 /* If we're in breakpoints-always-inserted mode, have to
1768 remove them before disconnecting. */
1769 remove_breakpoints ();
1770
1771 for (t = current_target.beneath; t != NULL; t = t->beneath)
1772 if (t->to_disconnect != NULL)
1773 {
1774 if (targetdebug)
1775 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1776 args, from_tty);
1777 t->to_disconnect (t, args, from_tty);
1778 return;
1779 }
1780
1781 tcomplain ();
1782 }
1783
1784 void
1785 target_resume (ptid_t ptid, int step, enum target_signal signal)
1786 {
1787 dcache_invalidate (target_dcache);
1788 (*current_target.to_resume) (ptid, step, signal);
1789 set_running (ptid, 1);
1790
1791 }
1792 /* Look through the list of possible targets for a target that can
1793 follow forks. */
1794
1795 int
1796 target_follow_fork (int follow_child)
1797 {
1798 struct target_ops *t;
1799
1800 for (t = current_target.beneath; t != NULL; t = t->beneath)
1801 {
1802 if (t->to_follow_fork != NULL)
1803 {
1804 int retval = t->to_follow_fork (t, follow_child);
1805 if (targetdebug)
1806 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1807 follow_child, retval);
1808 return retval;
1809 }
1810 }
1811
1812 /* Some target returned a fork event, but did not know how to follow it. */
1813 internal_error (__FILE__, __LINE__,
1814 "could not find a target to follow fork");
1815 }
1816
1817 /* Look for a target which can describe architectural features, starting
1818 from TARGET. If we find one, return its description. */
1819
1820 const struct target_desc *
1821 target_read_description (struct target_ops *target)
1822 {
1823 struct target_ops *t;
1824
1825 for (t = target; t != NULL; t = t->beneath)
1826 if (t->to_read_description != NULL)
1827 {
1828 const struct target_desc *tdesc;
1829
1830 tdesc = t->to_read_description (t);
1831 if (tdesc)
1832 return tdesc;
1833 }
1834
1835 return NULL;
1836 }
1837
1838 /* The default implementation of to_search_memory.
1839 This implements a basic search of memory, reading target memory and
1840 performing the search here (as opposed to performing the search in on the
1841 target side with, for example, gdbserver). */
1842
1843 int
1844 simple_search_memory (struct target_ops *ops,
1845 CORE_ADDR start_addr, ULONGEST search_space_len,
1846 const gdb_byte *pattern, ULONGEST pattern_len,
1847 CORE_ADDR *found_addrp)
1848 {
1849 /* NOTE: also defined in find.c testcase. */
1850 #define SEARCH_CHUNK_SIZE 16000
1851 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
1852 /* Buffer to hold memory contents for searching. */
1853 gdb_byte *search_buf;
1854 unsigned search_buf_size;
1855 struct cleanup *old_cleanups;
1856
1857 search_buf_size = chunk_size + pattern_len - 1;
1858
1859 /* No point in trying to allocate a buffer larger than the search space. */
1860 if (search_space_len < search_buf_size)
1861 search_buf_size = search_space_len;
1862
1863 search_buf = malloc (search_buf_size);
1864 if (search_buf == NULL)
1865 error (_("Unable to allocate memory to perform the search."));
1866 old_cleanups = make_cleanup (free_current_contents, &search_buf);
1867
1868 /* Prime the search buffer. */
1869
1870 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1871 search_buf, start_addr, search_buf_size) != search_buf_size)
1872 {
1873 warning (_("Unable to access target memory at %s, halting search."),
1874 hex_string (start_addr));
1875 do_cleanups (old_cleanups);
1876 return -1;
1877 }
1878
1879 /* Perform the search.
1880
1881 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
1882 When we've scanned N bytes we copy the trailing bytes to the start and
1883 read in another N bytes. */
1884
1885 while (search_space_len >= pattern_len)
1886 {
1887 gdb_byte *found_ptr;
1888 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
1889
1890 found_ptr = memmem (search_buf, nr_search_bytes,
1891 pattern, pattern_len);
1892
1893 if (found_ptr != NULL)
1894 {
1895 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
1896 *found_addrp = found_addr;
1897 do_cleanups (old_cleanups);
1898 return 1;
1899 }
1900
1901 /* Not found in this chunk, skip to next chunk. */
1902
1903 /* Don't let search_space_len wrap here, it's unsigned. */
1904 if (search_space_len >= chunk_size)
1905 search_space_len -= chunk_size;
1906 else
1907 search_space_len = 0;
1908
1909 if (search_space_len >= pattern_len)
1910 {
1911 unsigned keep_len = search_buf_size - chunk_size;
1912 CORE_ADDR read_addr = start_addr + keep_len;
1913 int nr_to_read;
1914
1915 /* Copy the trailing part of the previous iteration to the front
1916 of the buffer for the next iteration. */
1917 gdb_assert (keep_len == pattern_len - 1);
1918 memcpy (search_buf, search_buf + chunk_size, keep_len);
1919
1920 nr_to_read = min (search_space_len - keep_len, chunk_size);
1921
1922 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1923 search_buf + keep_len, read_addr,
1924 nr_to_read) != nr_to_read)
1925 {
1926 warning (_("Unable to access target memory at %s, halting search."),
1927 hex_string (read_addr));
1928 do_cleanups (old_cleanups);
1929 return -1;
1930 }
1931
1932 start_addr += chunk_size;
1933 }
1934 }
1935
1936 /* Not found. */
1937
1938 do_cleanups (old_cleanups);
1939 return 0;
1940 }
1941
1942 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
1943 sequence of bytes in PATTERN with length PATTERN_LEN.
1944
1945 The result is 1 if found, 0 if not found, and -1 if there was an error
1946 requiring halting of the search (e.g. memory read error).
1947 If the pattern is found the address is recorded in FOUND_ADDRP. */
1948
1949 int
1950 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
1951 const gdb_byte *pattern, ULONGEST pattern_len,
1952 CORE_ADDR *found_addrp)
1953 {
1954 struct target_ops *t;
1955 int found;
1956
1957 /* We don't use INHERIT to set current_target.to_search_memory,
1958 so we have to scan the target stack and handle targetdebug
1959 ourselves. */
1960
1961 if (targetdebug)
1962 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
1963 hex_string (start_addr));
1964
1965 for (t = current_target.beneath; t != NULL; t = t->beneath)
1966 if (t->to_search_memory != NULL)
1967 break;
1968
1969 if (t != NULL)
1970 {
1971 found = t->to_search_memory (t, start_addr, search_space_len,
1972 pattern, pattern_len, found_addrp);
1973 }
1974 else
1975 {
1976 /* If a special version of to_search_memory isn't available, use the
1977 simple version. */
1978 found = simple_search_memory (&current_target,
1979 start_addr, search_space_len,
1980 pattern, pattern_len, found_addrp);
1981 }
1982
1983 if (targetdebug)
1984 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
1985
1986 return found;
1987 }
1988
1989 /* Look through the currently pushed targets. If none of them will
1990 be able to restart the currently running process, issue an error
1991 message. */
1992
1993 void
1994 target_require_runnable (void)
1995 {
1996 struct target_ops *t;
1997
1998 for (t = target_stack; t != NULL; t = t->beneath)
1999 {
2000 /* If this target knows how to create a new program, then
2001 assume we will still be able to after killing the current
2002 one. Either killing and mourning will not pop T, or else
2003 find_default_run_target will find it again. */
2004 if (t->to_create_inferior != NULL)
2005 return;
2006
2007 /* Do not worry about thread_stratum targets that can not
2008 create inferiors. Assume they will be pushed again if
2009 necessary, and continue to the process_stratum. */
2010 if (t->to_stratum == thread_stratum)
2011 continue;
2012
2013 error (_("\
2014 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2015 t->to_shortname);
2016 }
2017
2018 /* This function is only called if the target is running. In that
2019 case there should have been a process_stratum target and it
2020 should either know how to create inferiors, or not... */
2021 internal_error (__FILE__, __LINE__, "No targets found");
2022 }
2023
2024 /* Look through the list of possible targets for a target that can
2025 execute a run or attach command without any other data. This is
2026 used to locate the default process stratum.
2027
2028 If DO_MESG is not NULL, the result is always valid (error() is
2029 called for errors); else, return NULL on error. */
2030
2031 static struct target_ops *
2032 find_default_run_target (char *do_mesg)
2033 {
2034 struct target_ops **t;
2035 struct target_ops *runable = NULL;
2036 int count;
2037
2038 count = 0;
2039
2040 for (t = target_structs; t < target_structs + target_struct_size;
2041 ++t)
2042 {
2043 if ((*t)->to_can_run && target_can_run (*t))
2044 {
2045 runable = *t;
2046 ++count;
2047 }
2048 }
2049
2050 if (count != 1)
2051 {
2052 if (do_mesg)
2053 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2054 else
2055 return NULL;
2056 }
2057
2058 return runable;
2059 }
2060
2061 void
2062 find_default_attach (char *args, int from_tty)
2063 {
2064 struct target_ops *t;
2065
2066 t = find_default_run_target ("attach");
2067 (t->to_attach) (args, from_tty);
2068 return;
2069 }
2070
2071 void
2072 find_default_create_inferior (char *exec_file, char *allargs, char **env,
2073 int from_tty)
2074 {
2075 struct target_ops *t;
2076
2077 t = find_default_run_target ("run");
2078 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
2079 return;
2080 }
2081
2082 int
2083 find_default_can_async_p (void)
2084 {
2085 struct target_ops *t;
2086
2087 /* This may be called before the target is pushed on the stack;
2088 look for the default process stratum. If there's none, gdb isn't
2089 configured with a native debugger, and target remote isn't
2090 connected yet. */
2091 t = find_default_run_target (NULL);
2092 if (t && t->to_can_async_p)
2093 return (t->to_can_async_p) ();
2094 return 0;
2095 }
2096
2097 int
2098 find_default_is_async_p (void)
2099 {
2100 struct target_ops *t;
2101
2102 /* This may be called before the target is pushed on the stack;
2103 look for the default process stratum. If there's none, gdb isn't
2104 configured with a native debugger, and target remote isn't
2105 connected yet. */
2106 t = find_default_run_target (NULL);
2107 if (t && t->to_is_async_p)
2108 return (t->to_is_async_p) ();
2109 return 0;
2110 }
2111
2112 static int
2113 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2114 {
2115 return (len <= TYPE_LENGTH (builtin_type_void_data_ptr));
2116 }
2117
2118 static int
2119 default_watchpoint_addr_within_range (struct target_ops *target,
2120 CORE_ADDR addr,
2121 CORE_ADDR start, int length)
2122 {
2123 return addr >= start && addr < start + length;
2124 }
2125
2126 static int
2127 return_zero (void)
2128 {
2129 return 0;
2130 }
2131
2132 static int
2133 return_one (void)
2134 {
2135 return 1;
2136 }
2137
2138 static int
2139 return_minus_one (void)
2140 {
2141 return -1;
2142 }
2143
2144 /*
2145 * Resize the to_sections pointer. Also make sure that anyone that
2146 * was holding on to an old value of it gets updated.
2147 * Returns the old size.
2148 */
2149
2150 int
2151 target_resize_to_sections (struct target_ops *target, int num_added)
2152 {
2153 struct target_ops **t;
2154 struct section_table *old_value;
2155 int old_count;
2156
2157 old_value = target->to_sections;
2158
2159 if (target->to_sections)
2160 {
2161 old_count = target->to_sections_end - target->to_sections;
2162 target->to_sections = (struct section_table *)
2163 xrealloc ((char *) target->to_sections,
2164 (sizeof (struct section_table)) * (num_added + old_count));
2165 }
2166 else
2167 {
2168 old_count = 0;
2169 target->to_sections = (struct section_table *)
2170 xmalloc ((sizeof (struct section_table)) * num_added);
2171 }
2172 target->to_sections_end = target->to_sections + (num_added + old_count);
2173
2174 /* Check to see if anyone else was pointing to this structure.
2175 If old_value was null, then no one was. */
2176
2177 if (old_value)
2178 {
2179 for (t = target_structs; t < target_structs + target_struct_size;
2180 ++t)
2181 {
2182 if ((*t)->to_sections == old_value)
2183 {
2184 (*t)->to_sections = target->to_sections;
2185 (*t)->to_sections_end = target->to_sections_end;
2186 }
2187 }
2188 /* There is a flattened view of the target stack in current_target,
2189 so its to_sections pointer might also need updating. */
2190 if (current_target.to_sections == old_value)
2191 {
2192 current_target.to_sections = target->to_sections;
2193 current_target.to_sections_end = target->to_sections_end;
2194 }
2195 }
2196
2197 return old_count;
2198
2199 }
2200
2201 /* Remove all target sections taken from ABFD.
2202
2203 Scan the current target stack for targets whose section tables
2204 refer to sections from BFD, and remove those sections. We use this
2205 when we notice that the inferior has unloaded a shared object, for
2206 example. */
2207 void
2208 remove_target_sections (bfd *abfd)
2209 {
2210 struct target_ops **t;
2211
2212 for (t = target_structs; t < target_structs + target_struct_size; t++)
2213 {
2214 struct section_table *src, *dest;
2215
2216 dest = (*t)->to_sections;
2217 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
2218 if (src->bfd != abfd)
2219 {
2220 /* Keep this section. */
2221 if (dest < src) *dest = *src;
2222 dest++;
2223 }
2224
2225 /* If we've dropped any sections, resize the section table. */
2226 if (dest < src)
2227 target_resize_to_sections (*t, dest - src);
2228 }
2229 }
2230
2231
2232
2233
2234 /* Find a single runnable target in the stack and return it. If for
2235 some reason there is more than one, return NULL. */
2236
2237 struct target_ops *
2238 find_run_target (void)
2239 {
2240 struct target_ops **t;
2241 struct target_ops *runable = NULL;
2242 int count;
2243
2244 count = 0;
2245
2246 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2247 {
2248 if ((*t)->to_can_run && target_can_run (*t))
2249 {
2250 runable = *t;
2251 ++count;
2252 }
2253 }
2254
2255 return (count == 1 ? runable : NULL);
2256 }
2257
2258 /* Find a single core_stratum target in the list of targets and return it.
2259 If for some reason there is more than one, return NULL. */
2260
2261 struct target_ops *
2262 find_core_target (void)
2263 {
2264 struct target_ops **t;
2265 struct target_ops *runable = NULL;
2266 int count;
2267
2268 count = 0;
2269
2270 for (t = target_structs; t < target_structs + target_struct_size;
2271 ++t)
2272 {
2273 if ((*t)->to_stratum == core_stratum)
2274 {
2275 runable = *t;
2276 ++count;
2277 }
2278 }
2279
2280 return (count == 1 ? runable : NULL);
2281 }
2282
2283 /*
2284 * Find the next target down the stack from the specified target.
2285 */
2286
2287 struct target_ops *
2288 find_target_beneath (struct target_ops *t)
2289 {
2290 return t->beneath;
2291 }
2292
2293 \f
2294 /* The inferior process has died. Long live the inferior! */
2295
2296 void
2297 generic_mourn_inferior (void)
2298 {
2299 extern int show_breakpoint_hit_counts;
2300
2301 inferior_ptid = null_ptid;
2302 attach_flag = 0;
2303 breakpoint_init_inferior (inf_exited);
2304 registers_changed ();
2305
2306 reopen_exec_file ();
2307 reinit_frame_cache ();
2308
2309 /* It is confusing to the user for ignore counts to stick around
2310 from previous runs of the inferior. So clear them. */
2311 /* However, it is more confusing for the ignore counts to disappear when
2312 using hit counts. So don't clear them if we're counting hits. */
2313 if (!show_breakpoint_hit_counts)
2314 breakpoint_clear_ignore_counts ();
2315
2316 if (deprecated_detach_hook)
2317 deprecated_detach_hook ();
2318 }
2319 \f
2320 /* Helper function for child_wait and the derivatives of child_wait.
2321 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2322 translation of that in OURSTATUS. */
2323 void
2324 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2325 {
2326 if (WIFEXITED (hoststatus))
2327 {
2328 ourstatus->kind = TARGET_WAITKIND_EXITED;
2329 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2330 }
2331 else if (!WIFSTOPPED (hoststatus))
2332 {
2333 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2334 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2335 }
2336 else
2337 {
2338 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2339 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2340 }
2341 }
2342 \f
2343 /* Returns zero to leave the inferior alone, one to interrupt it. */
2344 int (*target_activity_function) (void);
2345 int target_activity_fd;
2346 \f
2347 /* Convert a normal process ID to a string. Returns the string in a
2348 static buffer. */
2349
2350 char *
2351 normal_pid_to_str (ptid_t ptid)
2352 {
2353 static char buf[32];
2354
2355 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2356 return buf;
2357 }
2358
2359 /* Error-catcher for target_find_memory_regions */
2360 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2361 {
2362 error (_("No target."));
2363 return 0;
2364 }
2365
2366 /* Error-catcher for target_make_corefile_notes */
2367 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2368 {
2369 error (_("No target."));
2370 return NULL;
2371 }
2372
2373 /* Set up the handful of non-empty slots needed by the dummy target
2374 vector. */
2375
2376 static void
2377 init_dummy_target (void)
2378 {
2379 dummy_target.to_shortname = "None";
2380 dummy_target.to_longname = "None";
2381 dummy_target.to_doc = "";
2382 dummy_target.to_attach = find_default_attach;
2383 dummy_target.to_create_inferior = find_default_create_inferior;
2384 dummy_target.to_can_async_p = find_default_can_async_p;
2385 dummy_target.to_is_async_p = find_default_is_async_p;
2386 dummy_target.to_pid_to_str = normal_pid_to_str;
2387 dummy_target.to_stratum = dummy_stratum;
2388 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2389 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2390 dummy_target.to_xfer_partial = default_xfer_partial;
2391 dummy_target.to_magic = OPS_MAGIC;
2392 }
2393 \f
2394 static void
2395 debug_to_open (char *args, int from_tty)
2396 {
2397 debug_target.to_open (args, from_tty);
2398
2399 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2400 }
2401
2402 static void
2403 debug_to_close (int quitting)
2404 {
2405 target_close (&debug_target, quitting);
2406 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2407 }
2408
2409 void
2410 target_close (struct target_ops *targ, int quitting)
2411 {
2412 if (targ->to_xclose != NULL)
2413 targ->to_xclose (targ, quitting);
2414 else if (targ->to_close != NULL)
2415 targ->to_close (quitting);
2416 }
2417
2418 static void
2419 debug_to_attach (char *args, int from_tty)
2420 {
2421 debug_target.to_attach (args, from_tty);
2422
2423 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2424 }
2425
2426
2427 static void
2428 debug_to_post_attach (int pid)
2429 {
2430 debug_target.to_post_attach (pid);
2431
2432 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2433 }
2434
2435 static void
2436 debug_to_detach (char *args, int from_tty)
2437 {
2438 debug_target.to_detach (args, from_tty);
2439
2440 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2441 }
2442
2443 static void
2444 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2445 {
2446 debug_target.to_resume (ptid, step, siggnal);
2447
2448 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2449 step ? "step" : "continue",
2450 target_signal_to_name (siggnal));
2451 }
2452
2453 static ptid_t
2454 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2455 {
2456 ptid_t retval;
2457
2458 retval = debug_target.to_wait (ptid, status);
2459
2460 fprintf_unfiltered (gdb_stdlog,
2461 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2462 PIDGET (retval));
2463 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2464 switch (status->kind)
2465 {
2466 case TARGET_WAITKIND_EXITED:
2467 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2468 status->value.integer);
2469 break;
2470 case TARGET_WAITKIND_STOPPED:
2471 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2472 target_signal_to_name (status->value.sig));
2473 break;
2474 case TARGET_WAITKIND_SIGNALLED:
2475 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2476 target_signal_to_name (status->value.sig));
2477 break;
2478 case TARGET_WAITKIND_LOADED:
2479 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2480 break;
2481 case TARGET_WAITKIND_FORKED:
2482 fprintf_unfiltered (gdb_stdlog, "forked\n");
2483 break;
2484 case TARGET_WAITKIND_VFORKED:
2485 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2486 break;
2487 case TARGET_WAITKIND_EXECD:
2488 fprintf_unfiltered (gdb_stdlog, "execd\n");
2489 break;
2490 case TARGET_WAITKIND_SPURIOUS:
2491 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2492 break;
2493 default:
2494 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2495 break;
2496 }
2497
2498 return retval;
2499 }
2500
2501 static void
2502 debug_print_register (const char * func,
2503 struct regcache *regcache, int regno)
2504 {
2505 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2506 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2507 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2508 + gdbarch_num_pseudo_regs (gdbarch)
2509 && gdbarch_register_name (gdbarch, regno) != NULL
2510 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2511 fprintf_unfiltered (gdb_stdlog, "(%s)",
2512 gdbarch_register_name (gdbarch, regno));
2513 else
2514 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2515 if (regno >= 0)
2516 {
2517 int i, size = register_size (gdbarch, regno);
2518 unsigned char buf[MAX_REGISTER_SIZE];
2519 regcache_cooked_read (regcache, regno, buf);
2520 fprintf_unfiltered (gdb_stdlog, " = ");
2521 for (i = 0; i < size; i++)
2522 {
2523 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2524 }
2525 if (size <= sizeof (LONGEST))
2526 {
2527 ULONGEST val = extract_unsigned_integer (buf, size);
2528 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
2529 paddr_nz (val), paddr_d (val));
2530 }
2531 }
2532 fprintf_unfiltered (gdb_stdlog, "\n");
2533 }
2534
2535 static void
2536 debug_to_fetch_registers (struct regcache *regcache, int regno)
2537 {
2538 debug_target.to_fetch_registers (regcache, regno);
2539 debug_print_register ("target_fetch_registers", regcache, regno);
2540 }
2541
2542 static void
2543 debug_to_store_registers (struct regcache *regcache, int regno)
2544 {
2545 debug_target.to_store_registers (regcache, regno);
2546 debug_print_register ("target_store_registers", regcache, regno);
2547 fprintf_unfiltered (gdb_stdlog, "\n");
2548 }
2549
2550 static void
2551 debug_to_prepare_to_store (struct regcache *regcache)
2552 {
2553 debug_target.to_prepare_to_store (regcache);
2554
2555 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2556 }
2557
2558 static int
2559 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2560 int write, struct mem_attrib *attrib,
2561 struct target_ops *target)
2562 {
2563 int retval;
2564
2565 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2566 attrib, target);
2567
2568 fprintf_unfiltered (gdb_stdlog,
2569 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2570 (unsigned int) memaddr, /* possable truncate long long */
2571 len, write ? "write" : "read", retval);
2572
2573 if (retval > 0)
2574 {
2575 int i;
2576
2577 fputs_unfiltered (", bytes =", gdb_stdlog);
2578 for (i = 0; i < retval; i++)
2579 {
2580 if ((((long) &(myaddr[i])) & 0xf) == 0)
2581 {
2582 if (targetdebug < 2 && i > 0)
2583 {
2584 fprintf_unfiltered (gdb_stdlog, " ...");
2585 break;
2586 }
2587 fprintf_unfiltered (gdb_stdlog, "\n");
2588 }
2589
2590 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2591 }
2592 }
2593
2594 fputc_unfiltered ('\n', gdb_stdlog);
2595
2596 return retval;
2597 }
2598
2599 static void
2600 debug_to_files_info (struct target_ops *target)
2601 {
2602 debug_target.to_files_info (target);
2603
2604 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2605 }
2606
2607 static int
2608 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2609 {
2610 int retval;
2611
2612 retval = debug_target.to_insert_breakpoint (bp_tgt);
2613
2614 fprintf_unfiltered (gdb_stdlog,
2615 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2616 (unsigned long) bp_tgt->placed_address,
2617 (unsigned long) retval);
2618 return retval;
2619 }
2620
2621 static int
2622 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2623 {
2624 int retval;
2625
2626 retval = debug_target.to_remove_breakpoint (bp_tgt);
2627
2628 fprintf_unfiltered (gdb_stdlog,
2629 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2630 (unsigned long) bp_tgt->placed_address,
2631 (unsigned long) retval);
2632 return retval;
2633 }
2634
2635 static int
2636 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2637 {
2638 int retval;
2639
2640 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2641
2642 fprintf_unfiltered (gdb_stdlog,
2643 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2644 (unsigned long) type,
2645 (unsigned long) cnt,
2646 (unsigned long) from_tty,
2647 (unsigned long) retval);
2648 return retval;
2649 }
2650
2651 static int
2652 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2653 {
2654 CORE_ADDR retval;
2655
2656 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2657
2658 fprintf_unfiltered (gdb_stdlog,
2659 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2660 (unsigned long) addr,
2661 (unsigned long) len,
2662 (unsigned long) retval);
2663 return retval;
2664 }
2665
2666 static int
2667 debug_to_stopped_by_watchpoint (void)
2668 {
2669 int retval;
2670
2671 retval = debug_target.to_stopped_by_watchpoint ();
2672
2673 fprintf_unfiltered (gdb_stdlog,
2674 "STOPPED_BY_WATCHPOINT () = %ld\n",
2675 (unsigned long) retval);
2676 return retval;
2677 }
2678
2679 static int
2680 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2681 {
2682 int retval;
2683
2684 retval = debug_target.to_stopped_data_address (target, addr);
2685
2686 fprintf_unfiltered (gdb_stdlog,
2687 "target_stopped_data_address ([0x%lx]) = %ld\n",
2688 (unsigned long)*addr,
2689 (unsigned long)retval);
2690 return retval;
2691 }
2692
2693 static int
2694 debug_to_watchpoint_addr_within_range (struct target_ops *target,
2695 CORE_ADDR addr,
2696 CORE_ADDR start, int length)
2697 {
2698 int retval;
2699
2700 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
2701 start, length);
2702
2703 fprintf_filtered (gdb_stdlog,
2704 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
2705 (unsigned long) addr, (unsigned long) start, length,
2706 retval);
2707 return retval;
2708 }
2709
2710 static int
2711 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2712 {
2713 int retval;
2714
2715 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2716
2717 fprintf_unfiltered (gdb_stdlog,
2718 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2719 (unsigned long) bp_tgt->placed_address,
2720 (unsigned long) retval);
2721 return retval;
2722 }
2723
2724 static int
2725 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2726 {
2727 int retval;
2728
2729 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2730
2731 fprintf_unfiltered (gdb_stdlog,
2732 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2733 (unsigned long) bp_tgt->placed_address,
2734 (unsigned long) retval);
2735 return retval;
2736 }
2737
2738 static int
2739 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2740 {
2741 int retval;
2742
2743 retval = debug_target.to_insert_watchpoint (addr, len, type);
2744
2745 fprintf_unfiltered (gdb_stdlog,
2746 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2747 (unsigned long) addr, len, type, (unsigned long) retval);
2748 return retval;
2749 }
2750
2751 static int
2752 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2753 {
2754 int retval;
2755
2756 retval = debug_target.to_remove_watchpoint (addr, len, type);
2757
2758 fprintf_unfiltered (gdb_stdlog,
2759 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2760 (unsigned long) addr, len, type, (unsigned long) retval);
2761 return retval;
2762 }
2763
2764 static void
2765 debug_to_terminal_init (void)
2766 {
2767 debug_target.to_terminal_init ();
2768
2769 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2770 }
2771
2772 static void
2773 debug_to_terminal_inferior (void)
2774 {
2775 debug_target.to_terminal_inferior ();
2776
2777 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2778 }
2779
2780 static void
2781 debug_to_terminal_ours_for_output (void)
2782 {
2783 debug_target.to_terminal_ours_for_output ();
2784
2785 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2786 }
2787
2788 static void
2789 debug_to_terminal_ours (void)
2790 {
2791 debug_target.to_terminal_ours ();
2792
2793 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2794 }
2795
2796 static void
2797 debug_to_terminal_save_ours (void)
2798 {
2799 debug_target.to_terminal_save_ours ();
2800
2801 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2802 }
2803
2804 static void
2805 debug_to_terminal_info (char *arg, int from_tty)
2806 {
2807 debug_target.to_terminal_info (arg, from_tty);
2808
2809 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2810 from_tty);
2811 }
2812
2813 static void
2814 debug_to_kill (void)
2815 {
2816 debug_target.to_kill ();
2817
2818 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2819 }
2820
2821 static void
2822 debug_to_load (char *args, int from_tty)
2823 {
2824 debug_target.to_load (args, from_tty);
2825
2826 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2827 }
2828
2829 static int
2830 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2831 {
2832 int retval;
2833
2834 retval = debug_target.to_lookup_symbol (name, addrp);
2835
2836 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2837
2838 return retval;
2839 }
2840
2841 static void
2842 debug_to_create_inferior (char *exec_file, char *args, char **env,
2843 int from_tty)
2844 {
2845 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2846
2847 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2848 exec_file, args, from_tty);
2849 }
2850
2851 static void
2852 debug_to_post_startup_inferior (ptid_t ptid)
2853 {
2854 debug_target.to_post_startup_inferior (ptid);
2855
2856 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2857 PIDGET (ptid));
2858 }
2859
2860 static void
2861 debug_to_acknowledge_created_inferior (int pid)
2862 {
2863 debug_target.to_acknowledge_created_inferior (pid);
2864
2865 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2866 pid);
2867 }
2868
2869 static void
2870 debug_to_insert_fork_catchpoint (int pid)
2871 {
2872 debug_target.to_insert_fork_catchpoint (pid);
2873
2874 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2875 pid);
2876 }
2877
2878 static int
2879 debug_to_remove_fork_catchpoint (int pid)
2880 {
2881 int retval;
2882
2883 retval = debug_target.to_remove_fork_catchpoint (pid);
2884
2885 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2886 pid, retval);
2887
2888 return retval;
2889 }
2890
2891 static void
2892 debug_to_insert_vfork_catchpoint (int pid)
2893 {
2894 debug_target.to_insert_vfork_catchpoint (pid);
2895
2896 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2897 pid);
2898 }
2899
2900 static int
2901 debug_to_remove_vfork_catchpoint (int pid)
2902 {
2903 int retval;
2904
2905 retval = debug_target.to_remove_vfork_catchpoint (pid);
2906
2907 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2908 pid, retval);
2909
2910 return retval;
2911 }
2912
2913 static void
2914 debug_to_insert_exec_catchpoint (int pid)
2915 {
2916 debug_target.to_insert_exec_catchpoint (pid);
2917
2918 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2919 pid);
2920 }
2921
2922 static int
2923 debug_to_remove_exec_catchpoint (int pid)
2924 {
2925 int retval;
2926
2927 retval = debug_target.to_remove_exec_catchpoint (pid);
2928
2929 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2930 pid, retval);
2931
2932 return retval;
2933 }
2934
2935 static int
2936 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2937 {
2938 int has_exited;
2939
2940 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2941
2942 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2943 pid, wait_status, *exit_status, has_exited);
2944
2945 return has_exited;
2946 }
2947
2948 static void
2949 debug_to_mourn_inferior (void)
2950 {
2951 debug_target.to_mourn_inferior ();
2952
2953 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2954 }
2955
2956 static int
2957 debug_to_can_run (void)
2958 {
2959 int retval;
2960
2961 retval = debug_target.to_can_run ();
2962
2963 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2964
2965 return retval;
2966 }
2967
2968 static void
2969 debug_to_notice_signals (ptid_t ptid)
2970 {
2971 debug_target.to_notice_signals (ptid);
2972
2973 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2974 PIDGET (ptid));
2975 }
2976
2977 static int
2978 debug_to_thread_alive (ptid_t ptid)
2979 {
2980 int retval;
2981
2982 retval = debug_target.to_thread_alive (ptid);
2983
2984 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2985 PIDGET (ptid), retval);
2986
2987 return retval;
2988 }
2989
2990 static void
2991 debug_to_find_new_threads (void)
2992 {
2993 debug_target.to_find_new_threads ();
2994
2995 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2996 }
2997
2998 static void
2999 debug_to_stop (void)
3000 {
3001 debug_target.to_stop ();
3002
3003 fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
3004 }
3005
3006 static void
3007 debug_to_rcmd (char *command,
3008 struct ui_file *outbuf)
3009 {
3010 debug_target.to_rcmd (command, outbuf);
3011 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3012 }
3013
3014 static char *
3015 debug_to_pid_to_exec_file (int pid)
3016 {
3017 char *exec_file;
3018
3019 exec_file = debug_target.to_pid_to_exec_file (pid);
3020
3021 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3022 pid, exec_file);
3023
3024 return exec_file;
3025 }
3026
3027 static void
3028 setup_target_debug (void)
3029 {
3030 memcpy (&debug_target, &current_target, sizeof debug_target);
3031
3032 current_target.to_open = debug_to_open;
3033 current_target.to_close = debug_to_close;
3034 current_target.to_attach = debug_to_attach;
3035 current_target.to_post_attach = debug_to_post_attach;
3036 current_target.to_detach = debug_to_detach;
3037 current_target.to_resume = debug_to_resume;
3038 current_target.to_wait = debug_to_wait;
3039 current_target.to_fetch_registers = debug_to_fetch_registers;
3040 current_target.to_store_registers = debug_to_store_registers;
3041 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3042 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3043 current_target.to_files_info = debug_to_files_info;
3044 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3045 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3046 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3047 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3048 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3049 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3050 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3051 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3052 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3053 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3054 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3055 current_target.to_terminal_init = debug_to_terminal_init;
3056 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3057 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3058 current_target.to_terminal_ours = debug_to_terminal_ours;
3059 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3060 current_target.to_terminal_info = debug_to_terminal_info;
3061 current_target.to_kill = debug_to_kill;
3062 current_target.to_load = debug_to_load;
3063 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3064 current_target.to_create_inferior = debug_to_create_inferior;
3065 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3066 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3067 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3068 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3069 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3070 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3071 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3072 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3073 current_target.to_has_exited = debug_to_has_exited;
3074 current_target.to_mourn_inferior = debug_to_mourn_inferior;
3075 current_target.to_can_run = debug_to_can_run;
3076 current_target.to_notice_signals = debug_to_notice_signals;
3077 current_target.to_thread_alive = debug_to_thread_alive;
3078 current_target.to_find_new_threads = debug_to_find_new_threads;
3079 current_target.to_stop = debug_to_stop;
3080 current_target.to_rcmd = debug_to_rcmd;
3081 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3082 }
3083 \f
3084
3085 static char targ_desc[] =
3086 "Names of targets and files being debugged.\n\
3087 Shows the entire stack of targets currently in use (including the exec-file,\n\
3088 core-file, and process, if any), as well as the symbol file name.";
3089
3090 static void
3091 do_monitor_command (char *cmd,
3092 int from_tty)
3093 {
3094 if ((current_target.to_rcmd
3095 == (void (*) (char *, struct ui_file *)) tcomplain)
3096 || (current_target.to_rcmd == debug_to_rcmd
3097 && (debug_target.to_rcmd
3098 == (void (*) (char *, struct ui_file *)) tcomplain)))
3099 error (_("\"monitor\" command not supported by this target."));
3100 target_rcmd (cmd, gdb_stdtarg);
3101 }
3102
3103 /* Print the name of each layers of our target stack. */
3104
3105 static void
3106 maintenance_print_target_stack (char *cmd, int from_tty)
3107 {
3108 struct target_ops *t;
3109
3110 printf_filtered (_("The current target stack is:\n"));
3111
3112 for (t = target_stack; t != NULL; t = t->beneath)
3113 {
3114 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3115 }
3116 }
3117
3118 void
3119 initialize_targets (void)
3120 {
3121 init_dummy_target ();
3122 push_target (&dummy_target);
3123
3124 add_info ("target", target_info, targ_desc);
3125 add_info ("files", target_info, targ_desc);
3126
3127 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3128 Set target debugging."), _("\
3129 Show target debugging."), _("\
3130 When non-zero, target debugging is enabled. Higher numbers are more\n\
3131 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3132 command."),
3133 NULL,
3134 show_targetdebug,
3135 &setdebuglist, &showdebuglist);
3136
3137 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3138 &trust_readonly, _("\
3139 Set mode for reading from readonly sections."), _("\
3140 Show mode for reading from readonly sections."), _("\
3141 When this mode is on, memory reads from readonly sections (such as .text)\n\
3142 will be read from the object file instead of from the target. This will\n\
3143 result in significant performance improvement for remote targets."),
3144 NULL,
3145 show_trust_readonly,
3146 &setlist, &showlist);
3147
3148 add_com ("monitor", class_obscure, do_monitor_command,
3149 _("Send a command to the remote monitor (remote targets only)."));
3150
3151 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3152 _("Print the name of each layer of the internal target stack."),
3153 &maintenanceprintlist);
3154
3155 target_dcache = dcache_init ();
3156 }
This page took 0.097119 seconds and 4 git commands to generate.