Move test_target_ops to a separate file
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50 #include "terminal.h"
51 #include <algorithm>
52 #include <unordered_map>
53
54 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
55
56 static void default_terminal_info (struct target_ops *, const char *, int);
57
58 static int default_watchpoint_addr_within_range (struct target_ops *,
59 CORE_ADDR, CORE_ADDR, int);
60
61 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
62 CORE_ADDR, int);
63
64 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
65
66 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
67 long lwp, long tid);
68
69 static int default_follow_fork (struct target_ops *self, int follow_child,
70 int detach_fork);
71
72 static void default_mourn_inferior (struct target_ops *self);
73
74 static int default_search_memory (struct target_ops *ops,
75 CORE_ADDR start_addr,
76 ULONGEST search_space_len,
77 const gdb_byte *pattern,
78 ULONGEST pattern_len,
79 CORE_ADDR *found_addrp);
80
81 static int default_verify_memory (struct target_ops *self,
82 const gdb_byte *data,
83 CORE_ADDR memaddr, ULONGEST size);
84
85 static struct address_space *default_thread_address_space
86 (struct target_ops *self, ptid_t ptid);
87
88 static void tcomplain (void) ATTRIBUTE_NORETURN;
89
90 static struct target_ops *find_default_run_target (const char *);
91
92 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
93 ptid_t ptid);
94
95 static int dummy_find_memory_regions (struct target_ops *self,
96 find_memory_region_ftype ignore1,
97 void *ignore2);
98
99 static char *dummy_make_corefile_notes (struct target_ops *self,
100 bfd *ignore1, int *ignore2);
101
102 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
103
104 static enum exec_direction_kind default_execution_direction
105 (struct target_ops *self);
106
107 /* Mapping between target_info objects (which have address identity)
108 and corresponding open/factory function/callback. Each add_target
109 call adds one entry to this map, and registers a "target
110 TARGET_NAME" command that when invoked calls the factory registered
111 here. The target_info object is associated with the command via
112 the command's context. */
113 static std::unordered_map<const target_info *, target_open_ftype *>
114 target_factories;
115
116 /* The initial current target, so that there is always a semi-valid
117 current target. */
118
119 static struct target_ops *the_dummy_target;
120 static struct target_ops *the_debug_target;
121
122 /* The target stack. */
123
124 static target_stack g_target_stack;
125
126 /* Top of target stack. */
127 /* The target structure we are currently using to talk to a process
128 or file or whatever "inferior" we have. */
129
130 target_ops *
131 current_top_target ()
132 {
133 return g_target_stack.top ();
134 }
135
136 /* Command list for target. */
137
138 static struct cmd_list_element *targetlist = NULL;
139
140 /* Nonzero if we should trust readonly sections from the
141 executable when reading memory. */
142
143 static int trust_readonly = 0;
144
145 /* Nonzero if we should show true memory content including
146 memory breakpoint inserted by gdb. */
147
148 static int show_memory_breakpoints = 0;
149
150 /* These globals control whether GDB attempts to perform these
151 operations; they are useful for targets that need to prevent
152 inadvertant disruption, such as in non-stop mode. */
153
154 int may_write_registers = 1;
155
156 int may_write_memory = 1;
157
158 int may_insert_breakpoints = 1;
159
160 int may_insert_tracepoints = 1;
161
162 int may_insert_fast_tracepoints = 1;
163
164 int may_stop = 1;
165
166 /* Non-zero if we want to see trace of target level stuff. */
167
168 static unsigned int targetdebug = 0;
169
170 static void
171 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
172 {
173 if (targetdebug)
174 push_target (the_debug_target);
175 else
176 unpush_target (the_debug_target);
177 }
178
179 static void
180 show_targetdebug (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
184 }
185
186 /* The user just typed 'target' without the name of a target. */
187
188 static void
189 target_command (const char *arg, int from_tty)
190 {
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193 }
194
195 /* Default target_has_* methods for process_stratum targets. */
196
197 int
198 default_child_has_all_memory ()
199 {
200 /* If no inferior selected, then we can't read memory here. */
201 if (inferior_ptid == null_ptid)
202 return 0;
203
204 return 1;
205 }
206
207 int
208 default_child_has_memory ()
209 {
210 /* If no inferior selected, then we can't read memory here. */
211 if (inferior_ptid == null_ptid)
212 return 0;
213
214 return 1;
215 }
216
217 int
218 default_child_has_stack ()
219 {
220 /* If no inferior selected, there's no stack. */
221 if (inferior_ptid == null_ptid)
222 return 0;
223
224 return 1;
225 }
226
227 int
228 default_child_has_registers ()
229 {
230 /* Can't read registers from no inferior. */
231 if (inferior_ptid == null_ptid)
232 return 0;
233
234 return 1;
235 }
236
237 int
238 default_child_has_execution (ptid_t the_ptid)
239 {
240 /* If there's no thread selected, then we can't make it run through
241 hoops. */
242 if (the_ptid == null_ptid)
243 return 0;
244
245 return 1;
246 }
247
248
249 int
250 target_has_all_memory_1 (void)
251 {
252 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
253 if (t->has_all_memory ())
254 return 1;
255
256 return 0;
257 }
258
259 int
260 target_has_memory_1 (void)
261 {
262 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
263 if (t->has_memory ())
264 return 1;
265
266 return 0;
267 }
268
269 int
270 target_has_stack_1 (void)
271 {
272 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
273 if (t->has_stack ())
274 return 1;
275
276 return 0;
277 }
278
279 int
280 target_has_registers_1 (void)
281 {
282 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
283 if (t->has_registers ())
284 return 1;
285
286 return 0;
287 }
288
289 int
290 target_has_execution_1 (ptid_t the_ptid)
291 {
292 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
293 if (t->has_execution (the_ptid))
294 return 1;
295
296 return 0;
297 }
298
299 int
300 target_has_execution_current (void)
301 {
302 return target_has_execution_1 (inferior_ptid);
303 }
304
305 /* This is used to implement the various target commands. */
306
307 static void
308 open_target (const char *args, int from_tty, struct cmd_list_element *command)
309 {
310 auto *ti = static_cast<target_info *> (get_cmd_context (command));
311 target_open_ftype *func = target_factories[ti];
312
313 if (targetdebug)
314 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
315 ti->shortname);
316
317 func (args, from_tty);
318
319 if (targetdebug)
320 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
321 ti->shortname, args, from_tty);
322 }
323
324 /* See target.h. */
325
326 void
327 add_target (const target_info &t, target_open_ftype *func,
328 completer_ftype *completer)
329 {
330 struct cmd_list_element *c;
331
332 auto &func_slot = target_factories[&t];
333 if (func_slot != nullptr)
334 internal_error (__FILE__, __LINE__,
335 _("target already added (\"%s\")."), t.shortname);
336 func_slot = func;
337
338 if (targetlist == NULL)
339 add_prefix_cmd ("target", class_run, target_command, _("\
340 Connect to a target machine or process.\n\
341 The first argument is the type or protocol of the target machine.\n\
342 Remaining arguments are interpreted by the target protocol. For more\n\
343 information on the arguments for a particular protocol, type\n\
344 `help target ' followed by the protocol name."),
345 &targetlist, "target ", 0, &cmdlist);
346 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
347 set_cmd_context (c, (void *) &t);
348 set_cmd_sfunc (c, open_target);
349 if (completer != NULL)
350 set_cmd_completer (c, completer);
351 }
352
353 /* See target.h. */
354
355 void
356 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
357 {
358 struct cmd_list_element *c;
359 char *alt;
360
361 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
362 see PR cli/15104. */
363 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
364 set_cmd_sfunc (c, open_target);
365 set_cmd_context (c, (void *) &tinfo);
366 alt = xstrprintf ("target %s", tinfo.shortname);
367 deprecate_cmd (c, alt);
368 }
369
370 /* Stub functions */
371
372 void
373 target_kill (void)
374 {
375 current_top_target ()->kill ();
376 }
377
378 void
379 target_load (const char *arg, int from_tty)
380 {
381 target_dcache_invalidate ();
382 current_top_target ()->load (arg, from_tty);
383 }
384
385 /* Define it. */
386
387 target_terminal_state target_terminal::m_terminal_state
388 = target_terminal_state::is_ours;
389
390 /* See target/target.h. */
391
392 void
393 target_terminal::init (void)
394 {
395 current_top_target ()->terminal_init ();
396
397 m_terminal_state = target_terminal_state::is_ours;
398 }
399
400 /* See target/target.h. */
401
402 void
403 target_terminal::inferior (void)
404 {
405 struct ui *ui = current_ui;
406
407 /* A background resume (``run&'') should leave GDB in control of the
408 terminal. */
409 if (ui->prompt_state != PROMPT_BLOCKED)
410 return;
411
412 /* Since we always run the inferior in the main console (unless "set
413 inferior-tty" is in effect), when some UI other than the main one
414 calls target_terminal::inferior, then we leave the main UI's
415 terminal settings as is. */
416 if (ui != main_ui)
417 return;
418
419 /* If GDB is resuming the inferior in the foreground, install
420 inferior's terminal modes. */
421
422 struct inferior *inf = current_inferior ();
423
424 if (inf->terminal_state != target_terminal_state::is_inferior)
425 {
426 current_top_target ()->terminal_inferior ();
427 inf->terminal_state = target_terminal_state::is_inferior;
428 }
429
430 m_terminal_state = target_terminal_state::is_inferior;
431
432 /* If the user hit C-c before, pretend that it was hit right
433 here. */
434 if (check_quit_flag ())
435 target_pass_ctrlc ();
436 }
437
438 /* See target/target.h. */
439
440 void
441 target_terminal::restore_inferior (void)
442 {
443 struct ui *ui = current_ui;
444
445 /* See target_terminal::inferior(). */
446 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
447 return;
448
449 /* Restore the terminal settings of inferiors that were in the
450 foreground but are now ours_for_output due to a temporary
451 target_target::ours_for_output() call. */
452
453 {
454 scoped_restore_current_inferior restore_inferior;
455
456 for (struct inferior *inf : all_inferiors ())
457 {
458 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
459 {
460 set_current_inferior (inf);
461 current_top_target ()->terminal_inferior ();
462 inf->terminal_state = target_terminal_state::is_inferior;
463 }
464 }
465 }
466
467 m_terminal_state = target_terminal_state::is_inferior;
468
469 /* If the user hit C-c before, pretend that it was hit right
470 here. */
471 if (check_quit_flag ())
472 target_pass_ctrlc ();
473 }
474
475 /* Switch terminal state to DESIRED_STATE, either is_ours, or
476 is_ours_for_output. */
477
478 static void
479 target_terminal_is_ours_kind (target_terminal_state desired_state)
480 {
481 scoped_restore_current_inferior restore_inferior;
482
483 /* Must do this in two passes. First, have all inferiors save the
484 current terminal settings. Then, after all inferiors have add a
485 chance to safely save the terminal settings, restore GDB's
486 terminal settings. */
487
488 for (inferior *inf : all_inferiors ())
489 {
490 if (inf->terminal_state == target_terminal_state::is_inferior)
491 {
492 set_current_inferior (inf);
493 current_top_target ()->terminal_save_inferior ();
494 }
495 }
496
497 for (inferior *inf : all_inferiors ())
498 {
499 /* Note we don't check is_inferior here like above because we
500 need to handle 'is_ours_for_output -> is_ours' too. Careful
501 to never transition from 'is_ours' to 'is_ours_for_output',
502 though. */
503 if (inf->terminal_state != target_terminal_state::is_ours
504 && inf->terminal_state != desired_state)
505 {
506 set_current_inferior (inf);
507 if (desired_state == target_terminal_state::is_ours)
508 current_top_target ()->terminal_ours ();
509 else if (desired_state == target_terminal_state::is_ours_for_output)
510 current_top_target ()->terminal_ours_for_output ();
511 else
512 gdb_assert_not_reached ("unhandled desired state");
513 inf->terminal_state = desired_state;
514 }
515 }
516 }
517
518 /* See target/target.h. */
519
520 void
521 target_terminal::ours ()
522 {
523 struct ui *ui = current_ui;
524
525 /* See target_terminal::inferior. */
526 if (ui != main_ui)
527 return;
528
529 if (m_terminal_state == target_terminal_state::is_ours)
530 return;
531
532 target_terminal_is_ours_kind (target_terminal_state::is_ours);
533 m_terminal_state = target_terminal_state::is_ours;
534 }
535
536 /* See target/target.h. */
537
538 void
539 target_terminal::ours_for_output ()
540 {
541 struct ui *ui = current_ui;
542
543 /* See target_terminal::inferior. */
544 if (ui != main_ui)
545 return;
546
547 if (!target_terminal::is_inferior ())
548 return;
549
550 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
551 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
552 }
553
554 /* See target/target.h. */
555
556 void
557 target_terminal::info (const char *arg, int from_tty)
558 {
559 current_top_target ()->terminal_info (arg, from_tty);
560 }
561
562 /* See target.h. */
563
564 bool
565 target_supports_terminal_ours (void)
566 {
567 /* This can be called before there is any target, so we must check
568 for nullptr here. */
569 target_ops *top = current_top_target ();
570
571 if (top == nullptr)
572 return false;
573 return top->supports_terminal_ours ();
574 }
575
576 static void
577 tcomplain (void)
578 {
579 error (_("You can't do that when your target is `%s'"),
580 current_top_target ()->shortname ());
581 }
582
583 void
584 noprocess (void)
585 {
586 error (_("You can't do that without a process to debug."));
587 }
588
589 static void
590 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
591 {
592 printf_unfiltered (_("No saved terminal information.\n"));
593 }
594
595 /* A default implementation for the to_get_ada_task_ptid target method.
596
597 This function builds the PTID by using both LWP and TID as part of
598 the PTID lwp and tid elements. The pid used is the pid of the
599 inferior_ptid. */
600
601 static ptid_t
602 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
603 {
604 return ptid_t (inferior_ptid.pid (), lwp, tid);
605 }
606
607 static enum exec_direction_kind
608 default_execution_direction (struct target_ops *self)
609 {
610 if (!target_can_execute_reverse)
611 return EXEC_FORWARD;
612 else if (!target_can_async_p ())
613 return EXEC_FORWARD;
614 else
615 gdb_assert_not_reached ("\
616 to_execution_direction must be implemented for reverse async");
617 }
618
619 /* See target.h. */
620
621 void
622 target_stack::push (target_ops *t)
623 {
624 /* If there's already a target at this stratum, remove it. */
625 if (m_stack[t->to_stratum] != NULL)
626 {
627 target_ops *prev = m_stack[t->to_stratum];
628 m_stack[t->to_stratum] = NULL;
629 target_close (prev);
630 }
631
632 /* Now add the new one. */
633 m_stack[t->to_stratum] = t;
634
635 if (m_top < t->to_stratum)
636 m_top = t->to_stratum;
637 }
638
639 /* See target.h. */
640
641 void
642 push_target (struct target_ops *t)
643 {
644 g_target_stack.push (t);
645 }
646
647 /* See target.h. */
648
649 int
650 unpush_target (struct target_ops *t)
651 {
652 return g_target_stack.unpush (t);
653 }
654
655 /* See target.h. */
656
657 bool
658 target_stack::unpush (target_ops *t)
659 {
660 if (t->to_stratum == dummy_stratum)
661 internal_error (__FILE__, __LINE__,
662 _("Attempt to unpush the dummy target"));
663
664 gdb_assert (t != NULL);
665
666 /* Look for the specified target. Note that a target can only occur
667 once in the target stack. */
668
669 if (m_stack[t->to_stratum] != t)
670 {
671 /* If T wasn't pushed, quit. Only open targets should be
672 closed. */
673 return false;
674 }
675
676 /* Unchain the target. */
677 m_stack[t->to_stratum] = NULL;
678
679 if (m_top == t->to_stratum)
680 m_top = t->beneath ()->to_stratum;
681
682 /* Finally close the target. Note we do this after unchaining, so
683 any target method calls from within the target_close
684 implementation don't end up in T anymore. */
685 target_close (t);
686
687 return true;
688 }
689
690 /* Unpush TARGET and assert that it worked. */
691
692 static void
693 unpush_target_and_assert (struct target_ops *target)
694 {
695 if (!unpush_target (target))
696 {
697 fprintf_unfiltered (gdb_stderr,
698 "pop_all_targets couldn't find target %s\n",
699 target->shortname ());
700 internal_error (__FILE__, __LINE__,
701 _("failed internal consistency check"));
702 }
703 }
704
705 void
706 pop_all_targets_above (enum strata above_stratum)
707 {
708 while ((int) (current_top_target ()->to_stratum) > (int) above_stratum)
709 unpush_target_and_assert (current_top_target ());
710 }
711
712 /* See target.h. */
713
714 void
715 pop_all_targets_at_and_above (enum strata stratum)
716 {
717 while ((int) (current_top_target ()->to_stratum) >= (int) stratum)
718 unpush_target_and_assert (current_top_target ());
719 }
720
721 void
722 pop_all_targets (void)
723 {
724 pop_all_targets_above (dummy_stratum);
725 }
726
727 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
728
729 int
730 target_is_pushed (struct target_ops *t)
731 {
732 return g_target_stack.is_pushed (t);
733 }
734
735 /* Default implementation of to_get_thread_local_address. */
736
737 static void
738 generic_tls_error (void)
739 {
740 throw_error (TLS_GENERIC_ERROR,
741 _("Cannot find thread-local variables on this target"));
742 }
743
744 /* Using the objfile specified in OBJFILE, find the address for the
745 current thread's thread-local storage with offset OFFSET. */
746 CORE_ADDR
747 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
748 {
749 volatile CORE_ADDR addr = 0;
750 struct target_ops *target = current_top_target ();
751
752 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
753 {
754 ptid_t ptid = inferior_ptid;
755
756 TRY
757 {
758 CORE_ADDR lm_addr;
759
760 /* Fetch the load module address for this objfile. */
761 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
762 objfile);
763
764 addr = target->get_thread_local_address (ptid, lm_addr, offset);
765 }
766 /* If an error occurred, print TLS related messages here. Otherwise,
767 throw the error to some higher catcher. */
768 CATCH (ex, RETURN_MASK_ALL)
769 {
770 int objfile_is_library = (objfile->flags & OBJF_SHARED);
771
772 switch (ex.error)
773 {
774 case TLS_NO_LIBRARY_SUPPORT_ERROR:
775 error (_("Cannot find thread-local variables "
776 "in this thread library."));
777 break;
778 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
779 if (objfile_is_library)
780 error (_("Cannot find shared library `%s' in dynamic"
781 " linker's load module list"), objfile_name (objfile));
782 else
783 error (_("Cannot find executable file `%s' in dynamic"
784 " linker's load module list"), objfile_name (objfile));
785 break;
786 case TLS_NOT_ALLOCATED_YET_ERROR:
787 if (objfile_is_library)
788 error (_("The inferior has not yet allocated storage for"
789 " thread-local variables in\n"
790 "the shared library `%s'\n"
791 "for %s"),
792 objfile_name (objfile), target_pid_to_str (ptid));
793 else
794 error (_("The inferior has not yet allocated storage for"
795 " thread-local variables in\n"
796 "the executable `%s'\n"
797 "for %s"),
798 objfile_name (objfile), target_pid_to_str (ptid));
799 break;
800 case TLS_GENERIC_ERROR:
801 if (objfile_is_library)
802 error (_("Cannot find thread-local storage for %s, "
803 "shared library %s:\n%s"),
804 target_pid_to_str (ptid),
805 objfile_name (objfile), ex.message);
806 else
807 error (_("Cannot find thread-local storage for %s, "
808 "executable file %s:\n%s"),
809 target_pid_to_str (ptid),
810 objfile_name (objfile), ex.message);
811 break;
812 default:
813 throw_exception (ex);
814 break;
815 }
816 }
817 END_CATCH
818 }
819 /* It wouldn't be wrong here to try a gdbarch method, too; finding
820 TLS is an ABI-specific thing. But we don't do that yet. */
821 else
822 error (_("Cannot find thread-local variables on this target"));
823
824 return addr;
825 }
826
827 const char *
828 target_xfer_status_to_string (enum target_xfer_status status)
829 {
830 #define CASE(X) case X: return #X
831 switch (status)
832 {
833 CASE(TARGET_XFER_E_IO);
834 CASE(TARGET_XFER_UNAVAILABLE);
835 default:
836 return "<unknown>";
837 }
838 #undef CASE
839 };
840
841
842 #undef MIN
843 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
844
845 /* target_read_string -- read a null terminated string, up to LEN bytes,
846 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
847 Set *STRING to a pointer to malloc'd memory containing the data; the caller
848 is responsible for freeing it. Return the number of bytes successfully
849 read. */
850
851 int
852 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
853 int len, int *errnop)
854 {
855 int tlen, offset, i;
856 gdb_byte buf[4];
857 int errcode = 0;
858 char *buffer;
859 int buffer_allocated;
860 char *bufptr;
861 unsigned int nbytes_read = 0;
862
863 gdb_assert (string);
864
865 /* Small for testing. */
866 buffer_allocated = 4;
867 buffer = (char *) xmalloc (buffer_allocated);
868 bufptr = buffer;
869
870 while (len > 0)
871 {
872 tlen = MIN (len, 4 - (memaddr & 3));
873 offset = memaddr & 3;
874
875 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
876 if (errcode != 0)
877 {
878 /* The transfer request might have crossed the boundary to an
879 unallocated region of memory. Retry the transfer, requesting
880 a single byte. */
881 tlen = 1;
882 offset = 0;
883 errcode = target_read_memory (memaddr, buf, 1);
884 if (errcode != 0)
885 goto done;
886 }
887
888 if (bufptr - buffer + tlen > buffer_allocated)
889 {
890 unsigned int bytes;
891
892 bytes = bufptr - buffer;
893 buffer_allocated *= 2;
894 buffer = (char *) xrealloc (buffer, buffer_allocated);
895 bufptr = buffer + bytes;
896 }
897
898 for (i = 0; i < tlen; i++)
899 {
900 *bufptr++ = buf[i + offset];
901 if (buf[i + offset] == '\000')
902 {
903 nbytes_read += i + 1;
904 goto done;
905 }
906 }
907
908 memaddr += tlen;
909 len -= tlen;
910 nbytes_read += tlen;
911 }
912 done:
913 string->reset (buffer);
914 if (errnop != NULL)
915 *errnop = errcode;
916 return nbytes_read;
917 }
918
919 struct target_section_table *
920 target_get_section_table (struct target_ops *target)
921 {
922 return target->get_section_table ();
923 }
924
925 /* Find a section containing ADDR. */
926
927 struct target_section *
928 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
929 {
930 struct target_section_table *table = target_get_section_table (target);
931 struct target_section *secp;
932
933 if (table == NULL)
934 return NULL;
935
936 for (secp = table->sections; secp < table->sections_end; secp++)
937 {
938 if (addr >= secp->addr && addr < secp->endaddr)
939 return secp;
940 }
941 return NULL;
942 }
943
944
945 /* Helper for the memory xfer routines. Checks the attributes of the
946 memory region of MEMADDR against the read or write being attempted.
947 If the access is permitted returns true, otherwise returns false.
948 REGION_P is an optional output parameter. If not-NULL, it is
949 filled with a pointer to the memory region of MEMADDR. REG_LEN
950 returns LEN trimmed to the end of the region. This is how much the
951 caller can continue requesting, if the access is permitted. A
952 single xfer request must not straddle memory region boundaries. */
953
954 static int
955 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
956 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
957 struct mem_region **region_p)
958 {
959 struct mem_region *region;
960
961 region = lookup_mem_region (memaddr);
962
963 if (region_p != NULL)
964 *region_p = region;
965
966 switch (region->attrib.mode)
967 {
968 case MEM_RO:
969 if (writebuf != NULL)
970 return 0;
971 break;
972
973 case MEM_WO:
974 if (readbuf != NULL)
975 return 0;
976 break;
977
978 case MEM_FLASH:
979 /* We only support writing to flash during "load" for now. */
980 if (writebuf != NULL)
981 error (_("Writing to flash memory forbidden in this context"));
982 break;
983
984 case MEM_NONE:
985 return 0;
986 }
987
988 /* region->hi == 0 means there's no upper bound. */
989 if (memaddr + len < region->hi || region->hi == 0)
990 *reg_len = len;
991 else
992 *reg_len = region->hi - memaddr;
993
994 return 1;
995 }
996
997 /* Read memory from more than one valid target. A core file, for
998 instance, could have some of memory but delegate other bits to
999 the target below it. So, we must manually try all targets. */
1000
1001 enum target_xfer_status
1002 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1003 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1004 ULONGEST *xfered_len)
1005 {
1006 enum target_xfer_status res;
1007
1008 do
1009 {
1010 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
1011 readbuf, writebuf, memaddr, len,
1012 xfered_len);
1013 if (res == TARGET_XFER_OK)
1014 break;
1015
1016 /* Stop if the target reports that the memory is not available. */
1017 if (res == TARGET_XFER_UNAVAILABLE)
1018 break;
1019
1020 /* We want to continue past core files to executables, but not
1021 past a running target's memory. */
1022 if (ops->has_all_memory ())
1023 break;
1024
1025 ops = ops->beneath ();
1026 }
1027 while (ops != NULL);
1028
1029 /* The cache works at the raw memory level. Make sure the cache
1030 gets updated with raw contents no matter what kind of memory
1031 object was originally being written. Note we do write-through
1032 first, so that if it fails, we don't write to the cache contents
1033 that never made it to the target. */
1034 if (writebuf != NULL
1035 && inferior_ptid != null_ptid
1036 && target_dcache_init_p ()
1037 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1038 {
1039 DCACHE *dcache = target_dcache_get ();
1040
1041 /* Note that writing to an area of memory which wasn't present
1042 in the cache doesn't cause it to be loaded in. */
1043 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1044 }
1045
1046 return res;
1047 }
1048
1049 /* Perform a partial memory transfer.
1050 For docs see target.h, to_xfer_partial. */
1051
1052 static enum target_xfer_status
1053 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1054 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1055 ULONGEST len, ULONGEST *xfered_len)
1056 {
1057 enum target_xfer_status res;
1058 ULONGEST reg_len;
1059 struct mem_region *region;
1060 struct inferior *inf;
1061
1062 /* For accesses to unmapped overlay sections, read directly from
1063 files. Must do this first, as MEMADDR may need adjustment. */
1064 if (readbuf != NULL && overlay_debugging)
1065 {
1066 struct obj_section *section = find_pc_overlay (memaddr);
1067
1068 if (pc_in_unmapped_range (memaddr, section))
1069 {
1070 struct target_section_table *table
1071 = target_get_section_table (ops);
1072 const char *section_name = section->the_bfd_section->name;
1073
1074 memaddr = overlay_mapped_address (memaddr, section);
1075 return section_table_xfer_memory_partial (readbuf, writebuf,
1076 memaddr, len, xfered_len,
1077 table->sections,
1078 table->sections_end,
1079 section_name);
1080 }
1081 }
1082
1083 /* Try the executable files, if "trust-readonly-sections" is set. */
1084 if (readbuf != NULL && trust_readonly)
1085 {
1086 struct target_section *secp;
1087 struct target_section_table *table;
1088
1089 secp = target_section_by_addr (ops, memaddr);
1090 if (secp != NULL
1091 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1092 secp->the_bfd_section)
1093 & SEC_READONLY))
1094 {
1095 table = target_get_section_table (ops);
1096 return section_table_xfer_memory_partial (readbuf, writebuf,
1097 memaddr, len, xfered_len,
1098 table->sections,
1099 table->sections_end,
1100 NULL);
1101 }
1102 }
1103
1104 /* Try GDB's internal data cache. */
1105
1106 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1107 &region))
1108 return TARGET_XFER_E_IO;
1109
1110 if (inferior_ptid != null_ptid)
1111 inf = current_inferior ();
1112 else
1113 inf = NULL;
1114
1115 if (inf != NULL
1116 && readbuf != NULL
1117 /* The dcache reads whole cache lines; that doesn't play well
1118 with reading from a trace buffer, because reading outside of
1119 the collected memory range fails. */
1120 && get_traceframe_number () == -1
1121 && (region->attrib.cache
1122 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1123 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1124 {
1125 DCACHE *dcache = target_dcache_get_or_init ();
1126
1127 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1128 reg_len, xfered_len);
1129 }
1130
1131 /* If none of those methods found the memory we wanted, fall back
1132 to a target partial transfer. Normally a single call to
1133 to_xfer_partial is enough; if it doesn't recognize an object
1134 it will call the to_xfer_partial of the next target down.
1135 But for memory this won't do. Memory is the only target
1136 object which can be read from more than one valid target.
1137 A core file, for instance, could have some of memory but
1138 delegate other bits to the target below it. So, we must
1139 manually try all targets. */
1140
1141 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1142 xfered_len);
1143
1144 /* If we still haven't got anything, return the last error. We
1145 give up. */
1146 return res;
1147 }
1148
1149 /* Perform a partial memory transfer. For docs see target.h,
1150 to_xfer_partial. */
1151
1152 static enum target_xfer_status
1153 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1154 gdb_byte *readbuf, const gdb_byte *writebuf,
1155 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1156 {
1157 enum target_xfer_status res;
1158
1159 /* Zero length requests are ok and require no work. */
1160 if (len == 0)
1161 return TARGET_XFER_EOF;
1162
1163 memaddr = address_significant (target_gdbarch (), memaddr);
1164
1165 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1166 breakpoint insns, thus hiding out from higher layers whether
1167 there are software breakpoints inserted in the code stream. */
1168 if (readbuf != NULL)
1169 {
1170 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1171 xfered_len);
1172
1173 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1174 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1175 }
1176 else
1177 {
1178 /* A large write request is likely to be partially satisfied
1179 by memory_xfer_partial_1. We will continually malloc
1180 and free a copy of the entire write request for breakpoint
1181 shadow handling even though we only end up writing a small
1182 subset of it. Cap writes to a limit specified by the target
1183 to mitigate this. */
1184 len = std::min (ops->get_memory_xfer_limit (), len);
1185
1186 gdb::byte_vector buf (writebuf, writebuf + len);
1187 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1188 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1189 xfered_len);
1190 }
1191
1192 return res;
1193 }
1194
1195 scoped_restore_tmpl<int>
1196 make_scoped_restore_show_memory_breakpoints (int show)
1197 {
1198 return make_scoped_restore (&show_memory_breakpoints, show);
1199 }
1200
1201 /* For docs see target.h, to_xfer_partial. */
1202
1203 enum target_xfer_status
1204 target_xfer_partial (struct target_ops *ops,
1205 enum target_object object, const char *annex,
1206 gdb_byte *readbuf, const gdb_byte *writebuf,
1207 ULONGEST offset, ULONGEST len,
1208 ULONGEST *xfered_len)
1209 {
1210 enum target_xfer_status retval;
1211
1212 /* Transfer is done when LEN is zero. */
1213 if (len == 0)
1214 return TARGET_XFER_EOF;
1215
1216 if (writebuf && !may_write_memory)
1217 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1218 core_addr_to_string_nz (offset), plongest (len));
1219
1220 *xfered_len = 0;
1221
1222 /* If this is a memory transfer, let the memory-specific code
1223 have a look at it instead. Memory transfers are more
1224 complicated. */
1225 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1226 || object == TARGET_OBJECT_CODE_MEMORY)
1227 retval = memory_xfer_partial (ops, object, readbuf,
1228 writebuf, offset, len, xfered_len);
1229 else if (object == TARGET_OBJECT_RAW_MEMORY)
1230 {
1231 /* Skip/avoid accessing the target if the memory region
1232 attributes block the access. Check this here instead of in
1233 raw_memory_xfer_partial as otherwise we'd end up checking
1234 this twice in the case of the memory_xfer_partial path is
1235 taken; once before checking the dcache, and another in the
1236 tail call to raw_memory_xfer_partial. */
1237 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1238 NULL))
1239 return TARGET_XFER_E_IO;
1240
1241 /* Request the normal memory object from other layers. */
1242 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1243 xfered_len);
1244 }
1245 else
1246 retval = ops->xfer_partial (object, annex, readbuf,
1247 writebuf, offset, len, xfered_len);
1248
1249 if (targetdebug)
1250 {
1251 const unsigned char *myaddr = NULL;
1252
1253 fprintf_unfiltered (gdb_stdlog,
1254 "%s:target_xfer_partial "
1255 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1256 ops->shortname (),
1257 (int) object,
1258 (annex ? annex : "(null)"),
1259 host_address_to_string (readbuf),
1260 host_address_to_string (writebuf),
1261 core_addr_to_string_nz (offset),
1262 pulongest (len), retval,
1263 pulongest (*xfered_len));
1264
1265 if (readbuf)
1266 myaddr = readbuf;
1267 if (writebuf)
1268 myaddr = writebuf;
1269 if (retval == TARGET_XFER_OK && myaddr != NULL)
1270 {
1271 int i;
1272
1273 fputs_unfiltered (", bytes =", gdb_stdlog);
1274 for (i = 0; i < *xfered_len; i++)
1275 {
1276 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1277 {
1278 if (targetdebug < 2 && i > 0)
1279 {
1280 fprintf_unfiltered (gdb_stdlog, " ...");
1281 break;
1282 }
1283 fprintf_unfiltered (gdb_stdlog, "\n");
1284 }
1285
1286 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1287 }
1288 }
1289
1290 fputc_unfiltered ('\n', gdb_stdlog);
1291 }
1292
1293 /* Check implementations of to_xfer_partial update *XFERED_LEN
1294 properly. Do assertion after printing debug messages, so that we
1295 can find more clues on assertion failure from debugging messages. */
1296 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1297 gdb_assert (*xfered_len > 0);
1298
1299 return retval;
1300 }
1301
1302 /* Read LEN bytes of target memory at address MEMADDR, placing the
1303 results in GDB's memory at MYADDR. Returns either 0 for success or
1304 -1 if any error occurs.
1305
1306 If an error occurs, no guarantee is made about the contents of the data at
1307 MYADDR. In particular, the caller should not depend upon partial reads
1308 filling the buffer with good data. There is no way for the caller to know
1309 how much good data might have been transfered anyway. Callers that can
1310 deal with partial reads should call target_read (which will retry until
1311 it makes no progress, and then return how much was transferred). */
1312
1313 int
1314 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1315 {
1316 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1317 myaddr, memaddr, len) == len)
1318 return 0;
1319 else
1320 return -1;
1321 }
1322
1323 /* See target/target.h. */
1324
1325 int
1326 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1327 {
1328 gdb_byte buf[4];
1329 int r;
1330
1331 r = target_read_memory (memaddr, buf, sizeof buf);
1332 if (r != 0)
1333 return r;
1334 *result = extract_unsigned_integer (buf, sizeof buf,
1335 gdbarch_byte_order (target_gdbarch ()));
1336 return 0;
1337 }
1338
1339 /* Like target_read_memory, but specify explicitly that this is a read
1340 from the target's raw memory. That is, this read bypasses the
1341 dcache, breakpoint shadowing, etc. */
1342
1343 int
1344 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1345 {
1346 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1347 myaddr, memaddr, len) == len)
1348 return 0;
1349 else
1350 return -1;
1351 }
1352
1353 /* Like target_read_memory, but specify explicitly that this is a read from
1354 the target's stack. This may trigger different cache behavior. */
1355
1356 int
1357 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1358 {
1359 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1360 myaddr, memaddr, len) == len)
1361 return 0;
1362 else
1363 return -1;
1364 }
1365
1366 /* Like target_read_memory, but specify explicitly that this is a read from
1367 the target's code. This may trigger different cache behavior. */
1368
1369 int
1370 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1371 {
1372 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1373 myaddr, memaddr, len) == len)
1374 return 0;
1375 else
1376 return -1;
1377 }
1378
1379 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1380 Returns either 0 for success or -1 if any error occurs. If an
1381 error occurs, no guarantee is made about how much data got written.
1382 Callers that can deal with partial writes should call
1383 target_write. */
1384
1385 int
1386 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1387 {
1388 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1389 myaddr, memaddr, len) == len)
1390 return 0;
1391 else
1392 return -1;
1393 }
1394
1395 /* Write LEN bytes from MYADDR to target raw memory at address
1396 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1397 If an error occurs, no guarantee is made about how much data got
1398 written. Callers that can deal with partial writes should call
1399 target_write. */
1400
1401 int
1402 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1403 {
1404 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1405 myaddr, memaddr, len) == len)
1406 return 0;
1407 else
1408 return -1;
1409 }
1410
1411 /* Fetch the target's memory map. */
1412
1413 std::vector<mem_region>
1414 target_memory_map (void)
1415 {
1416 std::vector<mem_region> result = current_top_target ()->memory_map ();
1417 if (result.empty ())
1418 return result;
1419
1420 std::sort (result.begin (), result.end ());
1421
1422 /* Check that regions do not overlap. Simultaneously assign
1423 a numbering for the "mem" commands to use to refer to
1424 each region. */
1425 mem_region *last_one = NULL;
1426 for (size_t ix = 0; ix < result.size (); ix++)
1427 {
1428 mem_region *this_one = &result[ix];
1429 this_one->number = ix;
1430
1431 if (last_one != NULL && last_one->hi > this_one->lo)
1432 {
1433 warning (_("Overlapping regions in memory map: ignoring"));
1434 return std::vector<mem_region> ();
1435 }
1436
1437 last_one = this_one;
1438 }
1439
1440 return result;
1441 }
1442
1443 void
1444 target_flash_erase (ULONGEST address, LONGEST length)
1445 {
1446 current_top_target ()->flash_erase (address, length);
1447 }
1448
1449 void
1450 target_flash_done (void)
1451 {
1452 current_top_target ()->flash_done ();
1453 }
1454
1455 static void
1456 show_trust_readonly (struct ui_file *file, int from_tty,
1457 struct cmd_list_element *c, const char *value)
1458 {
1459 fprintf_filtered (file,
1460 _("Mode for reading from readonly sections is %s.\n"),
1461 value);
1462 }
1463
1464 /* Target vector read/write partial wrapper functions. */
1465
1466 static enum target_xfer_status
1467 target_read_partial (struct target_ops *ops,
1468 enum target_object object,
1469 const char *annex, gdb_byte *buf,
1470 ULONGEST offset, ULONGEST len,
1471 ULONGEST *xfered_len)
1472 {
1473 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1474 xfered_len);
1475 }
1476
1477 static enum target_xfer_status
1478 target_write_partial (struct target_ops *ops,
1479 enum target_object object,
1480 const char *annex, const gdb_byte *buf,
1481 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1482 {
1483 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1484 xfered_len);
1485 }
1486
1487 /* Wrappers to perform the full transfer. */
1488
1489 /* For docs on target_read see target.h. */
1490
1491 LONGEST
1492 target_read (struct target_ops *ops,
1493 enum target_object object,
1494 const char *annex, gdb_byte *buf,
1495 ULONGEST offset, LONGEST len)
1496 {
1497 LONGEST xfered_total = 0;
1498 int unit_size = 1;
1499
1500 /* If we are reading from a memory object, find the length of an addressable
1501 unit for that architecture. */
1502 if (object == TARGET_OBJECT_MEMORY
1503 || object == TARGET_OBJECT_STACK_MEMORY
1504 || object == TARGET_OBJECT_CODE_MEMORY
1505 || object == TARGET_OBJECT_RAW_MEMORY)
1506 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1507
1508 while (xfered_total < len)
1509 {
1510 ULONGEST xfered_partial;
1511 enum target_xfer_status status;
1512
1513 status = target_read_partial (ops, object, annex,
1514 buf + xfered_total * unit_size,
1515 offset + xfered_total, len - xfered_total,
1516 &xfered_partial);
1517
1518 /* Call an observer, notifying them of the xfer progress? */
1519 if (status == TARGET_XFER_EOF)
1520 return xfered_total;
1521 else if (status == TARGET_XFER_OK)
1522 {
1523 xfered_total += xfered_partial;
1524 QUIT;
1525 }
1526 else
1527 return TARGET_XFER_E_IO;
1528
1529 }
1530 return len;
1531 }
1532
1533 /* Assuming that the entire [begin, end) range of memory cannot be
1534 read, try to read whatever subrange is possible to read.
1535
1536 The function returns, in RESULT, either zero or one memory block.
1537 If there's a readable subrange at the beginning, it is completely
1538 read and returned. Any further readable subrange will not be read.
1539 Otherwise, if there's a readable subrange at the end, it will be
1540 completely read and returned. Any readable subranges before it
1541 (obviously, not starting at the beginning), will be ignored. In
1542 other cases -- either no readable subrange, or readable subrange(s)
1543 that is neither at the beginning, or end, nothing is returned.
1544
1545 The purpose of this function is to handle a read across a boundary
1546 of accessible memory in a case when memory map is not available.
1547 The above restrictions are fine for this case, but will give
1548 incorrect results if the memory is 'patchy'. However, supporting
1549 'patchy' memory would require trying to read every single byte,
1550 and it seems unacceptable solution. Explicit memory map is
1551 recommended for this case -- and target_read_memory_robust will
1552 take care of reading multiple ranges then. */
1553
1554 static void
1555 read_whatever_is_readable (struct target_ops *ops,
1556 const ULONGEST begin, const ULONGEST end,
1557 int unit_size,
1558 std::vector<memory_read_result> *result)
1559 {
1560 ULONGEST current_begin = begin;
1561 ULONGEST current_end = end;
1562 int forward;
1563 ULONGEST xfered_len;
1564
1565 /* If we previously failed to read 1 byte, nothing can be done here. */
1566 if (end - begin <= 1)
1567 return;
1568
1569 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1570
1571 /* Check that either first or the last byte is readable, and give up
1572 if not. This heuristic is meant to permit reading accessible memory
1573 at the boundary of accessible region. */
1574 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1575 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1576 {
1577 forward = 1;
1578 ++current_begin;
1579 }
1580 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1581 buf.get () + (end - begin) - 1, end - 1, 1,
1582 &xfered_len) == TARGET_XFER_OK)
1583 {
1584 forward = 0;
1585 --current_end;
1586 }
1587 else
1588 return;
1589
1590 /* Loop invariant is that the [current_begin, current_end) was previously
1591 found to be not readable as a whole.
1592
1593 Note loop condition -- if the range has 1 byte, we can't divide the range
1594 so there's no point trying further. */
1595 while (current_end - current_begin > 1)
1596 {
1597 ULONGEST first_half_begin, first_half_end;
1598 ULONGEST second_half_begin, second_half_end;
1599 LONGEST xfer;
1600 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1601
1602 if (forward)
1603 {
1604 first_half_begin = current_begin;
1605 first_half_end = middle;
1606 second_half_begin = middle;
1607 second_half_end = current_end;
1608 }
1609 else
1610 {
1611 first_half_begin = middle;
1612 first_half_end = current_end;
1613 second_half_begin = current_begin;
1614 second_half_end = middle;
1615 }
1616
1617 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1618 buf.get () + (first_half_begin - begin) * unit_size,
1619 first_half_begin,
1620 first_half_end - first_half_begin);
1621
1622 if (xfer == first_half_end - first_half_begin)
1623 {
1624 /* This half reads up fine. So, the error must be in the
1625 other half. */
1626 current_begin = second_half_begin;
1627 current_end = second_half_end;
1628 }
1629 else
1630 {
1631 /* This half is not readable. Because we've tried one byte, we
1632 know some part of this half if actually readable. Go to the next
1633 iteration to divide again and try to read.
1634
1635 We don't handle the other half, because this function only tries
1636 to read a single readable subrange. */
1637 current_begin = first_half_begin;
1638 current_end = first_half_end;
1639 }
1640 }
1641
1642 if (forward)
1643 {
1644 /* The [begin, current_begin) range has been read. */
1645 result->emplace_back (begin, current_end, std::move (buf));
1646 }
1647 else
1648 {
1649 /* The [current_end, end) range has been read. */
1650 LONGEST region_len = end - current_end;
1651
1652 gdb::unique_xmalloc_ptr<gdb_byte> data
1653 ((gdb_byte *) xmalloc (region_len * unit_size));
1654 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1655 region_len * unit_size);
1656 result->emplace_back (current_end, end, std::move (data));
1657 }
1658 }
1659
1660 std::vector<memory_read_result>
1661 read_memory_robust (struct target_ops *ops,
1662 const ULONGEST offset, const LONGEST len)
1663 {
1664 std::vector<memory_read_result> result;
1665 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1666
1667 LONGEST xfered_total = 0;
1668 while (xfered_total < len)
1669 {
1670 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1671 LONGEST region_len;
1672
1673 /* If there is no explicit region, a fake one should be created. */
1674 gdb_assert (region);
1675
1676 if (region->hi == 0)
1677 region_len = len - xfered_total;
1678 else
1679 region_len = region->hi - offset;
1680
1681 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1682 {
1683 /* Cannot read this region. Note that we can end up here only
1684 if the region is explicitly marked inaccessible, or
1685 'inaccessible-by-default' is in effect. */
1686 xfered_total += region_len;
1687 }
1688 else
1689 {
1690 LONGEST to_read = std::min (len - xfered_total, region_len);
1691 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1692 ((gdb_byte *) xmalloc (to_read * unit_size));
1693
1694 LONGEST xfered_partial =
1695 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1696 offset + xfered_total, to_read);
1697 /* Call an observer, notifying them of the xfer progress? */
1698 if (xfered_partial <= 0)
1699 {
1700 /* Got an error reading full chunk. See if maybe we can read
1701 some subrange. */
1702 read_whatever_is_readable (ops, offset + xfered_total,
1703 offset + xfered_total + to_read,
1704 unit_size, &result);
1705 xfered_total += to_read;
1706 }
1707 else
1708 {
1709 result.emplace_back (offset + xfered_total,
1710 offset + xfered_total + xfered_partial,
1711 std::move (buffer));
1712 xfered_total += xfered_partial;
1713 }
1714 QUIT;
1715 }
1716 }
1717
1718 return result;
1719 }
1720
1721
1722 /* An alternative to target_write with progress callbacks. */
1723
1724 LONGEST
1725 target_write_with_progress (struct target_ops *ops,
1726 enum target_object object,
1727 const char *annex, const gdb_byte *buf,
1728 ULONGEST offset, LONGEST len,
1729 void (*progress) (ULONGEST, void *), void *baton)
1730 {
1731 LONGEST xfered_total = 0;
1732 int unit_size = 1;
1733
1734 /* If we are writing to a memory object, find the length of an addressable
1735 unit for that architecture. */
1736 if (object == TARGET_OBJECT_MEMORY
1737 || object == TARGET_OBJECT_STACK_MEMORY
1738 || object == TARGET_OBJECT_CODE_MEMORY
1739 || object == TARGET_OBJECT_RAW_MEMORY)
1740 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1741
1742 /* Give the progress callback a chance to set up. */
1743 if (progress)
1744 (*progress) (0, baton);
1745
1746 while (xfered_total < len)
1747 {
1748 ULONGEST xfered_partial;
1749 enum target_xfer_status status;
1750
1751 status = target_write_partial (ops, object, annex,
1752 buf + xfered_total * unit_size,
1753 offset + xfered_total, len - xfered_total,
1754 &xfered_partial);
1755
1756 if (status != TARGET_XFER_OK)
1757 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1758
1759 if (progress)
1760 (*progress) (xfered_partial, baton);
1761
1762 xfered_total += xfered_partial;
1763 QUIT;
1764 }
1765 return len;
1766 }
1767
1768 /* For docs on target_write see target.h. */
1769
1770 LONGEST
1771 target_write (struct target_ops *ops,
1772 enum target_object object,
1773 const char *annex, const gdb_byte *buf,
1774 ULONGEST offset, LONGEST len)
1775 {
1776 return target_write_with_progress (ops, object, annex, buf, offset, len,
1777 NULL, NULL);
1778 }
1779
1780 /* Help for target_read_alloc and target_read_stralloc. See their comments
1781 for details. */
1782
1783 template <typename T>
1784 gdb::optional<gdb::def_vector<T>>
1785 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1786 const char *annex)
1787 {
1788 gdb::def_vector<T> buf;
1789 size_t buf_pos = 0;
1790 const int chunk = 4096;
1791
1792 /* This function does not have a length parameter; it reads the
1793 entire OBJECT). Also, it doesn't support objects fetched partly
1794 from one target and partly from another (in a different stratum,
1795 e.g. a core file and an executable). Both reasons make it
1796 unsuitable for reading memory. */
1797 gdb_assert (object != TARGET_OBJECT_MEMORY);
1798
1799 /* Start by reading up to 4K at a time. The target will throttle
1800 this number down if necessary. */
1801 while (1)
1802 {
1803 ULONGEST xfered_len;
1804 enum target_xfer_status status;
1805
1806 buf.resize (buf_pos + chunk);
1807
1808 status = target_read_partial (ops, object, annex,
1809 (gdb_byte *) &buf[buf_pos],
1810 buf_pos, chunk,
1811 &xfered_len);
1812
1813 if (status == TARGET_XFER_EOF)
1814 {
1815 /* Read all there was. */
1816 buf.resize (buf_pos);
1817 return buf;
1818 }
1819 else if (status != TARGET_XFER_OK)
1820 {
1821 /* An error occurred. */
1822 return {};
1823 }
1824
1825 buf_pos += xfered_len;
1826
1827 QUIT;
1828 }
1829 }
1830
1831 /* See target.h */
1832
1833 gdb::optional<gdb::byte_vector>
1834 target_read_alloc (struct target_ops *ops, enum target_object object,
1835 const char *annex)
1836 {
1837 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1838 }
1839
1840 /* See target.h. */
1841
1842 gdb::optional<gdb::char_vector>
1843 target_read_stralloc (struct target_ops *ops, enum target_object object,
1844 const char *annex)
1845 {
1846 gdb::optional<gdb::char_vector> buf
1847 = target_read_alloc_1<char> (ops, object, annex);
1848
1849 if (!buf)
1850 return {};
1851
1852 if (buf->back () != '\0')
1853 buf->push_back ('\0');
1854
1855 /* Check for embedded NUL bytes; but allow trailing NULs. */
1856 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1857 it != buf->end (); it++)
1858 if (*it != '\0')
1859 {
1860 warning (_("target object %d, annex %s, "
1861 "contained unexpected null characters"),
1862 (int) object, annex ? annex : "(none)");
1863 break;
1864 }
1865
1866 return buf;
1867 }
1868
1869 /* Memory transfer methods. */
1870
1871 void
1872 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1873 LONGEST len)
1874 {
1875 /* This method is used to read from an alternate, non-current
1876 target. This read must bypass the overlay support (as symbols
1877 don't match this target), and GDB's internal cache (wrong cache
1878 for this target). */
1879 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1880 != len)
1881 memory_error (TARGET_XFER_E_IO, addr);
1882 }
1883
1884 ULONGEST
1885 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1886 int len, enum bfd_endian byte_order)
1887 {
1888 gdb_byte buf[sizeof (ULONGEST)];
1889
1890 gdb_assert (len <= sizeof (buf));
1891 get_target_memory (ops, addr, buf, len);
1892 return extract_unsigned_integer (buf, len, byte_order);
1893 }
1894
1895 /* See target.h. */
1896
1897 int
1898 target_insert_breakpoint (struct gdbarch *gdbarch,
1899 struct bp_target_info *bp_tgt)
1900 {
1901 if (!may_insert_breakpoints)
1902 {
1903 warning (_("May not insert breakpoints"));
1904 return 1;
1905 }
1906
1907 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1908 }
1909
1910 /* See target.h. */
1911
1912 int
1913 target_remove_breakpoint (struct gdbarch *gdbarch,
1914 struct bp_target_info *bp_tgt,
1915 enum remove_bp_reason reason)
1916 {
1917 /* This is kind of a weird case to handle, but the permission might
1918 have been changed after breakpoints were inserted - in which case
1919 we should just take the user literally and assume that any
1920 breakpoints should be left in place. */
1921 if (!may_insert_breakpoints)
1922 {
1923 warning (_("May not remove breakpoints"));
1924 return 1;
1925 }
1926
1927 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1928 }
1929
1930 static void
1931 info_target_command (const char *args, int from_tty)
1932 {
1933 int has_all_mem = 0;
1934
1935 if (symfile_objfile != NULL)
1936 printf_unfiltered (_("Symbols from \"%s\".\n"),
1937 objfile_name (symfile_objfile));
1938
1939 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1940 {
1941 if (!t->has_memory ())
1942 continue;
1943
1944 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1945 continue;
1946 if (has_all_mem)
1947 printf_unfiltered (_("\tWhile running this, "
1948 "GDB does not access memory from...\n"));
1949 printf_unfiltered ("%s:\n", t->longname ());
1950 t->files_info ();
1951 has_all_mem = t->has_all_memory ();
1952 }
1953 }
1954
1955 /* This function is called before any new inferior is created, e.g.
1956 by running a program, attaching, or connecting to a target.
1957 It cleans up any state from previous invocations which might
1958 change between runs. This is a subset of what target_preopen
1959 resets (things which might change between targets). */
1960
1961 void
1962 target_pre_inferior (int from_tty)
1963 {
1964 /* Clear out solib state. Otherwise the solib state of the previous
1965 inferior might have survived and is entirely wrong for the new
1966 target. This has been observed on GNU/Linux using glibc 2.3. How
1967 to reproduce:
1968
1969 bash$ ./foo&
1970 [1] 4711
1971 bash$ ./foo&
1972 [1] 4712
1973 bash$ gdb ./foo
1974 [...]
1975 (gdb) attach 4711
1976 (gdb) detach
1977 (gdb) attach 4712
1978 Cannot access memory at address 0xdeadbeef
1979 */
1980
1981 /* In some OSs, the shared library list is the same/global/shared
1982 across inferiors. If code is shared between processes, so are
1983 memory regions and features. */
1984 if (!gdbarch_has_global_solist (target_gdbarch ()))
1985 {
1986 no_shared_libraries (NULL, from_tty);
1987
1988 invalidate_target_mem_regions ();
1989
1990 target_clear_description ();
1991 }
1992
1993 /* attach_flag may be set if the previous process associated with
1994 the inferior was attached to. */
1995 current_inferior ()->attach_flag = 0;
1996
1997 current_inferior ()->highest_thread_num = 0;
1998
1999 agent_capability_invalidate ();
2000 }
2001
2002 /* Callback for iterate_over_inferiors. Gets rid of the given
2003 inferior. */
2004
2005 static int
2006 dispose_inferior (struct inferior *inf, void *args)
2007 {
2008 /* Not all killed inferiors can, or will ever be, removed from the
2009 inferior list. Killed inferiors clearly don't need to be killed
2010 again, so, we're done. */
2011 if (inf->pid == 0)
2012 return 0;
2013
2014 thread_info *thread = any_thread_of_inferior (inf);
2015 if (thread != NULL)
2016 {
2017 switch_to_thread (thread);
2018
2019 /* Core inferiors actually should be detached, not killed. */
2020 if (target_has_execution)
2021 target_kill ();
2022 else
2023 target_detach (inf, 0);
2024 }
2025
2026 return 0;
2027 }
2028
2029 /* This is to be called by the open routine before it does
2030 anything. */
2031
2032 void
2033 target_preopen (int from_tty)
2034 {
2035 dont_repeat ();
2036
2037 if (have_inferiors ())
2038 {
2039 if (!from_tty
2040 || !have_live_inferiors ()
2041 || query (_("A program is being debugged already. Kill it? ")))
2042 iterate_over_inferiors (dispose_inferior, NULL);
2043 else
2044 error (_("Program not killed."));
2045 }
2046
2047 /* Calling target_kill may remove the target from the stack. But if
2048 it doesn't (which seems like a win for UDI), remove it now. */
2049 /* Leave the exec target, though. The user may be switching from a
2050 live process to a core of the same program. */
2051 pop_all_targets_above (file_stratum);
2052
2053 target_pre_inferior (from_tty);
2054 }
2055
2056 /* See target.h. */
2057
2058 void
2059 target_detach (inferior *inf, int from_tty)
2060 {
2061 /* As long as some to_detach implementations rely on the current_inferior
2062 (either directly, or indirectly, like through target_gdbarch or by
2063 reading memory), INF needs to be the current inferior. When that
2064 requirement will become no longer true, then we can remove this
2065 assertion. */
2066 gdb_assert (inf == current_inferior ());
2067
2068 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2069 /* Don't remove global breakpoints here. They're removed on
2070 disconnection from the target. */
2071 ;
2072 else
2073 /* If we're in breakpoints-always-inserted mode, have to remove
2074 breakpoints before detaching. */
2075 remove_breakpoints_inf (current_inferior ());
2076
2077 prepare_for_detach ();
2078
2079 current_top_target ()->detach (inf, from_tty);
2080 }
2081
2082 void
2083 target_disconnect (const char *args, int from_tty)
2084 {
2085 /* If we're in breakpoints-always-inserted mode or if breakpoints
2086 are global across processes, we have to remove them before
2087 disconnecting. */
2088 remove_breakpoints ();
2089
2090 current_top_target ()->disconnect (args, from_tty);
2091 }
2092
2093 /* See target/target.h. */
2094
2095 ptid_t
2096 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2097 {
2098 return current_top_target ()->wait (ptid, status, options);
2099 }
2100
2101 /* See target.h. */
2102
2103 ptid_t
2104 default_target_wait (struct target_ops *ops,
2105 ptid_t ptid, struct target_waitstatus *status,
2106 int options)
2107 {
2108 status->kind = TARGET_WAITKIND_IGNORE;
2109 return minus_one_ptid;
2110 }
2111
2112 const char *
2113 target_pid_to_str (ptid_t ptid)
2114 {
2115 return current_top_target ()->pid_to_str (ptid);
2116 }
2117
2118 const char *
2119 target_thread_name (struct thread_info *info)
2120 {
2121 return current_top_target ()->thread_name (info);
2122 }
2123
2124 struct thread_info *
2125 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2126 int handle_len,
2127 struct inferior *inf)
2128 {
2129 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2130 handle_len, inf);
2131 }
2132
2133 void
2134 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2135 {
2136 target_dcache_invalidate ();
2137
2138 current_top_target ()->resume (ptid, step, signal);
2139
2140 registers_changed_ptid (ptid);
2141 /* We only set the internal executing state here. The user/frontend
2142 running state is set at a higher level. This also clears the
2143 thread's stop_pc as side effect. */
2144 set_executing (ptid, 1);
2145 clear_inline_frame_state (ptid);
2146 }
2147
2148 /* If true, target_commit_resume is a nop. */
2149 static int defer_target_commit_resume;
2150
2151 /* See target.h. */
2152
2153 void
2154 target_commit_resume (void)
2155 {
2156 if (defer_target_commit_resume)
2157 return;
2158
2159 current_top_target ()->commit_resume ();
2160 }
2161
2162 /* See target.h. */
2163
2164 scoped_restore_tmpl<int>
2165 make_scoped_defer_target_commit_resume ()
2166 {
2167 return make_scoped_restore (&defer_target_commit_resume, 1);
2168 }
2169
2170 void
2171 target_pass_signals (int numsigs, unsigned char *pass_signals)
2172 {
2173 current_top_target ()->pass_signals (numsigs, pass_signals);
2174 }
2175
2176 void
2177 target_program_signals (int numsigs, unsigned char *program_signals)
2178 {
2179 current_top_target ()->program_signals (numsigs, program_signals);
2180 }
2181
2182 static int
2183 default_follow_fork (struct target_ops *self, int follow_child,
2184 int detach_fork)
2185 {
2186 /* Some target returned a fork event, but did not know how to follow it. */
2187 internal_error (__FILE__, __LINE__,
2188 _("could not find a target to follow fork"));
2189 }
2190
2191 /* Look through the list of possible targets for a target that can
2192 follow forks. */
2193
2194 int
2195 target_follow_fork (int follow_child, int detach_fork)
2196 {
2197 return current_top_target ()->follow_fork (follow_child, detach_fork);
2198 }
2199
2200 /* Target wrapper for follow exec hook. */
2201
2202 void
2203 target_follow_exec (struct inferior *inf, char *execd_pathname)
2204 {
2205 current_top_target ()->follow_exec (inf, execd_pathname);
2206 }
2207
2208 static void
2209 default_mourn_inferior (struct target_ops *self)
2210 {
2211 internal_error (__FILE__, __LINE__,
2212 _("could not find a target to follow mourn inferior"));
2213 }
2214
2215 void
2216 target_mourn_inferior (ptid_t ptid)
2217 {
2218 gdb_assert (ptid == inferior_ptid);
2219 current_top_target ()->mourn_inferior ();
2220
2221 /* We no longer need to keep handles on any of the object files.
2222 Make sure to release them to avoid unnecessarily locking any
2223 of them while we're not actually debugging. */
2224 bfd_cache_close_all ();
2225 }
2226
2227 /* Look for a target which can describe architectural features, starting
2228 from TARGET. If we find one, return its description. */
2229
2230 const struct target_desc *
2231 target_read_description (struct target_ops *target)
2232 {
2233 return target->read_description ();
2234 }
2235
2236 /* This implements a basic search of memory, reading target memory and
2237 performing the search here (as opposed to performing the search in on the
2238 target side with, for example, gdbserver). */
2239
2240 int
2241 simple_search_memory (struct target_ops *ops,
2242 CORE_ADDR start_addr, ULONGEST search_space_len,
2243 const gdb_byte *pattern, ULONGEST pattern_len,
2244 CORE_ADDR *found_addrp)
2245 {
2246 /* NOTE: also defined in find.c testcase. */
2247 #define SEARCH_CHUNK_SIZE 16000
2248 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2249 /* Buffer to hold memory contents for searching. */
2250 unsigned search_buf_size;
2251
2252 search_buf_size = chunk_size + pattern_len - 1;
2253
2254 /* No point in trying to allocate a buffer larger than the search space. */
2255 if (search_space_len < search_buf_size)
2256 search_buf_size = search_space_len;
2257
2258 gdb::byte_vector search_buf (search_buf_size);
2259
2260 /* Prime the search buffer. */
2261
2262 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2263 search_buf.data (), start_addr, search_buf_size)
2264 != search_buf_size)
2265 {
2266 warning (_("Unable to access %s bytes of target "
2267 "memory at %s, halting search."),
2268 pulongest (search_buf_size), hex_string (start_addr));
2269 return -1;
2270 }
2271
2272 /* Perform the search.
2273
2274 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2275 When we've scanned N bytes we copy the trailing bytes to the start and
2276 read in another N bytes. */
2277
2278 while (search_space_len >= pattern_len)
2279 {
2280 gdb_byte *found_ptr;
2281 unsigned nr_search_bytes
2282 = std::min (search_space_len, (ULONGEST) search_buf_size);
2283
2284 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2285 pattern, pattern_len);
2286
2287 if (found_ptr != NULL)
2288 {
2289 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2290
2291 *found_addrp = found_addr;
2292 return 1;
2293 }
2294
2295 /* Not found in this chunk, skip to next chunk. */
2296
2297 /* Don't let search_space_len wrap here, it's unsigned. */
2298 if (search_space_len >= chunk_size)
2299 search_space_len -= chunk_size;
2300 else
2301 search_space_len = 0;
2302
2303 if (search_space_len >= pattern_len)
2304 {
2305 unsigned keep_len = search_buf_size - chunk_size;
2306 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2307 int nr_to_read;
2308
2309 /* Copy the trailing part of the previous iteration to the front
2310 of the buffer for the next iteration. */
2311 gdb_assert (keep_len == pattern_len - 1);
2312 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2313
2314 nr_to_read = std::min (search_space_len - keep_len,
2315 (ULONGEST) chunk_size);
2316
2317 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2318 &search_buf[keep_len], read_addr,
2319 nr_to_read) != nr_to_read)
2320 {
2321 warning (_("Unable to access %s bytes of target "
2322 "memory at %s, halting search."),
2323 plongest (nr_to_read),
2324 hex_string (read_addr));
2325 return -1;
2326 }
2327
2328 start_addr += chunk_size;
2329 }
2330 }
2331
2332 /* Not found. */
2333
2334 return 0;
2335 }
2336
2337 /* Default implementation of memory-searching. */
2338
2339 static int
2340 default_search_memory (struct target_ops *self,
2341 CORE_ADDR start_addr, ULONGEST search_space_len,
2342 const gdb_byte *pattern, ULONGEST pattern_len,
2343 CORE_ADDR *found_addrp)
2344 {
2345 /* Start over from the top of the target stack. */
2346 return simple_search_memory (current_top_target (),
2347 start_addr, search_space_len,
2348 pattern, pattern_len, found_addrp);
2349 }
2350
2351 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2352 sequence of bytes in PATTERN with length PATTERN_LEN.
2353
2354 The result is 1 if found, 0 if not found, and -1 if there was an error
2355 requiring halting of the search (e.g. memory read error).
2356 If the pattern is found the address is recorded in FOUND_ADDRP. */
2357
2358 int
2359 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2360 const gdb_byte *pattern, ULONGEST pattern_len,
2361 CORE_ADDR *found_addrp)
2362 {
2363 return current_top_target ()->search_memory (start_addr, search_space_len,
2364 pattern, pattern_len, found_addrp);
2365 }
2366
2367 /* Look through the currently pushed targets. If none of them will
2368 be able to restart the currently running process, issue an error
2369 message. */
2370
2371 void
2372 target_require_runnable (void)
2373 {
2374 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2375 {
2376 /* If this target knows how to create a new program, then
2377 assume we will still be able to after killing the current
2378 one. Either killing and mourning will not pop T, or else
2379 find_default_run_target will find it again. */
2380 if (t->can_create_inferior ())
2381 return;
2382
2383 /* Do not worry about targets at certain strata that can not
2384 create inferiors. Assume they will be pushed again if
2385 necessary, and continue to the process_stratum. */
2386 if (t->to_stratum > process_stratum)
2387 continue;
2388
2389 error (_("The \"%s\" target does not support \"run\". "
2390 "Try \"help target\" or \"continue\"."),
2391 t->shortname ());
2392 }
2393
2394 /* This function is only called if the target is running. In that
2395 case there should have been a process_stratum target and it
2396 should either know how to create inferiors, or not... */
2397 internal_error (__FILE__, __LINE__, _("No targets found"));
2398 }
2399
2400 /* Whether GDB is allowed to fall back to the default run target for
2401 "run", "attach", etc. when no target is connected yet. */
2402 static int auto_connect_native_target = 1;
2403
2404 static void
2405 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2406 struct cmd_list_element *c, const char *value)
2407 {
2408 fprintf_filtered (file,
2409 _("Whether GDB may automatically connect to the "
2410 "native target is %s.\n"),
2411 value);
2412 }
2413
2414 /* A pointer to the target that can respond to "run" or "attach".
2415 Native targets are always singletons and instantiated early at GDB
2416 startup. */
2417 static target_ops *the_native_target;
2418
2419 /* See target.h. */
2420
2421 void
2422 set_native_target (target_ops *target)
2423 {
2424 if (the_native_target != NULL)
2425 internal_error (__FILE__, __LINE__,
2426 _("native target already set (\"%s\")."),
2427 the_native_target->longname ());
2428
2429 the_native_target = target;
2430 }
2431
2432 /* See target.h. */
2433
2434 target_ops *
2435 get_native_target ()
2436 {
2437 return the_native_target;
2438 }
2439
2440 /* Look through the list of possible targets for a target that can
2441 execute a run or attach command without any other data. This is
2442 used to locate the default process stratum.
2443
2444 If DO_MESG is not NULL, the result is always valid (error() is
2445 called for errors); else, return NULL on error. */
2446
2447 static struct target_ops *
2448 find_default_run_target (const char *do_mesg)
2449 {
2450 if (auto_connect_native_target && the_native_target != NULL)
2451 return the_native_target;
2452
2453 if (do_mesg != NULL)
2454 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2455 return NULL;
2456 }
2457
2458 /* See target.h. */
2459
2460 struct target_ops *
2461 find_attach_target (void)
2462 {
2463 /* If a target on the current stack can attach, use it. */
2464 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2465 {
2466 if (t->can_attach ())
2467 return t;
2468 }
2469
2470 /* Otherwise, use the default run target for attaching. */
2471 return find_default_run_target ("attach");
2472 }
2473
2474 /* See target.h. */
2475
2476 struct target_ops *
2477 find_run_target (void)
2478 {
2479 /* If a target on the current stack can run, use it. */
2480 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2481 {
2482 if (t->can_create_inferior ())
2483 return t;
2484 }
2485
2486 /* Otherwise, use the default run target. */
2487 return find_default_run_target ("run");
2488 }
2489
2490 bool
2491 target_ops::info_proc (const char *args, enum info_proc_what what)
2492 {
2493 return false;
2494 }
2495
2496 /* Implement the "info proc" command. */
2497
2498 int
2499 target_info_proc (const char *args, enum info_proc_what what)
2500 {
2501 struct target_ops *t;
2502
2503 /* If we're already connected to something that can get us OS
2504 related data, use it. Otherwise, try using the native
2505 target. */
2506 t = find_target_at (process_stratum);
2507 if (t == NULL)
2508 t = find_default_run_target (NULL);
2509
2510 for (; t != NULL; t = t->beneath ())
2511 {
2512 if (t->info_proc (args, what))
2513 {
2514 if (targetdebug)
2515 fprintf_unfiltered (gdb_stdlog,
2516 "target_info_proc (\"%s\", %d)\n", args, what);
2517
2518 return 1;
2519 }
2520 }
2521
2522 return 0;
2523 }
2524
2525 static int
2526 find_default_supports_disable_randomization (struct target_ops *self)
2527 {
2528 struct target_ops *t;
2529
2530 t = find_default_run_target (NULL);
2531 if (t != NULL)
2532 return t->supports_disable_randomization ();
2533 return 0;
2534 }
2535
2536 int
2537 target_supports_disable_randomization (void)
2538 {
2539 return current_top_target ()->supports_disable_randomization ();
2540 }
2541
2542 /* See target/target.h. */
2543
2544 int
2545 target_supports_multi_process (void)
2546 {
2547 return current_top_target ()->supports_multi_process ();
2548 }
2549
2550 /* See target.h. */
2551
2552 gdb::optional<gdb::char_vector>
2553 target_get_osdata (const char *type)
2554 {
2555 struct target_ops *t;
2556
2557 /* If we're already connected to something that can get us OS
2558 related data, use it. Otherwise, try using the native
2559 target. */
2560 t = find_target_at (process_stratum);
2561 if (t == NULL)
2562 t = find_default_run_target ("get OS data");
2563
2564 if (!t)
2565 return {};
2566
2567 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2568 }
2569
2570 static struct address_space *
2571 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2572 {
2573 struct inferior *inf;
2574
2575 /* Fall-back to the "main" address space of the inferior. */
2576 inf = find_inferior_ptid (ptid);
2577
2578 if (inf == NULL || inf->aspace == NULL)
2579 internal_error (__FILE__, __LINE__,
2580 _("Can't determine the current "
2581 "address space of thread %s\n"),
2582 target_pid_to_str (ptid));
2583
2584 return inf->aspace;
2585 }
2586
2587 /* Determine the current address space of thread PTID. */
2588
2589 struct address_space *
2590 target_thread_address_space (ptid_t ptid)
2591 {
2592 struct address_space *aspace;
2593
2594 aspace = current_top_target ()->thread_address_space (ptid);
2595 gdb_assert (aspace != NULL);
2596
2597 return aspace;
2598 }
2599
2600 /* See target.h. */
2601
2602 target_ops *
2603 target_ops::beneath () const
2604 {
2605 return g_target_stack.find_beneath (this);
2606 }
2607
2608 void
2609 target_ops::close ()
2610 {
2611 }
2612
2613 bool
2614 target_ops::can_attach ()
2615 {
2616 return 0;
2617 }
2618
2619 void
2620 target_ops::attach (const char *, int)
2621 {
2622 gdb_assert_not_reached ("target_ops::attach called");
2623 }
2624
2625 bool
2626 target_ops::can_create_inferior ()
2627 {
2628 return 0;
2629 }
2630
2631 void
2632 target_ops::create_inferior (const char *, const std::string &,
2633 char **, int)
2634 {
2635 gdb_assert_not_reached ("target_ops::create_inferior called");
2636 }
2637
2638 bool
2639 target_ops::can_run ()
2640 {
2641 return false;
2642 }
2643
2644 int
2645 target_can_run ()
2646 {
2647 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2648 {
2649 if (t->can_run ())
2650 return 1;
2651 }
2652
2653 return 0;
2654 }
2655
2656 /* Target file operations. */
2657
2658 static struct target_ops *
2659 default_fileio_target (void)
2660 {
2661 struct target_ops *t;
2662
2663 /* If we're already connected to something that can perform
2664 file I/O, use it. Otherwise, try using the native target. */
2665 t = find_target_at (process_stratum);
2666 if (t != NULL)
2667 return t;
2668 return find_default_run_target ("file I/O");
2669 }
2670
2671 /* File handle for target file operations. */
2672
2673 struct fileio_fh_t
2674 {
2675 /* The target on which this file is open. NULL if the target is
2676 meanwhile closed while the handle is open. */
2677 target_ops *target;
2678
2679 /* The file descriptor on the target. */
2680 int target_fd;
2681
2682 /* Check whether this fileio_fh_t represents a closed file. */
2683 bool is_closed ()
2684 {
2685 return target_fd < 0;
2686 }
2687 };
2688
2689 /* Vector of currently open file handles. The value returned by
2690 target_fileio_open and passed as the FD argument to other
2691 target_fileio_* functions is an index into this vector. This
2692 vector's entries are never freed; instead, files are marked as
2693 closed, and the handle becomes available for reuse. */
2694 static std::vector<fileio_fh_t> fileio_fhandles;
2695
2696 /* Index into fileio_fhandles of the lowest handle that might be
2697 closed. This permits handle reuse without searching the whole
2698 list each time a new file is opened. */
2699 static int lowest_closed_fd;
2700
2701 /* Invalidate the target associated with open handles that were open
2702 on target TARG, since we're about to close (and maybe destroy) the
2703 target. The handles remain open from the client's perspective, but
2704 trying to do anything with them other than closing them will fail
2705 with EIO. */
2706
2707 static void
2708 fileio_handles_invalidate_target (target_ops *targ)
2709 {
2710 for (fileio_fh_t &fh : fileio_fhandles)
2711 if (fh.target == targ)
2712 fh.target = NULL;
2713 }
2714
2715 /* Acquire a target fileio file descriptor. */
2716
2717 static int
2718 acquire_fileio_fd (target_ops *target, int target_fd)
2719 {
2720 /* Search for closed handles to reuse. */
2721 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2722 {
2723 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2724
2725 if (fh.is_closed ())
2726 break;
2727 }
2728
2729 /* Push a new handle if no closed handles were found. */
2730 if (lowest_closed_fd == fileio_fhandles.size ())
2731 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2732 else
2733 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2734
2735 /* Should no longer be marked closed. */
2736 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2737
2738 /* Return its index, and start the next lookup at
2739 the next index. */
2740 return lowest_closed_fd++;
2741 }
2742
2743 /* Release a target fileio file descriptor. */
2744
2745 static void
2746 release_fileio_fd (int fd, fileio_fh_t *fh)
2747 {
2748 fh->target_fd = -1;
2749 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2750 }
2751
2752 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2753
2754 static fileio_fh_t *
2755 fileio_fd_to_fh (int fd)
2756 {
2757 return &fileio_fhandles[fd];
2758 }
2759
2760
2761 /* Default implementations of file i/o methods. We don't want these
2762 to delegate automatically, because we need to know which target
2763 supported the method, in order to call it directly from within
2764 pread/pwrite, etc. */
2765
2766 int
2767 target_ops::fileio_open (struct inferior *inf, const char *filename,
2768 int flags, int mode, int warn_if_slow,
2769 int *target_errno)
2770 {
2771 *target_errno = FILEIO_ENOSYS;
2772 return -1;
2773 }
2774
2775 int
2776 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2777 ULONGEST offset, int *target_errno)
2778 {
2779 *target_errno = FILEIO_ENOSYS;
2780 return -1;
2781 }
2782
2783 int
2784 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2785 ULONGEST offset, int *target_errno)
2786 {
2787 *target_errno = FILEIO_ENOSYS;
2788 return -1;
2789 }
2790
2791 int
2792 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2793 {
2794 *target_errno = FILEIO_ENOSYS;
2795 return -1;
2796 }
2797
2798 int
2799 target_ops::fileio_close (int fd, int *target_errno)
2800 {
2801 *target_errno = FILEIO_ENOSYS;
2802 return -1;
2803 }
2804
2805 int
2806 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2807 int *target_errno)
2808 {
2809 *target_errno = FILEIO_ENOSYS;
2810 return -1;
2811 }
2812
2813 gdb::optional<std::string>
2814 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2815 int *target_errno)
2816 {
2817 *target_errno = FILEIO_ENOSYS;
2818 return {};
2819 }
2820
2821 /* Helper for target_fileio_open and
2822 target_fileio_open_warn_if_slow. */
2823
2824 static int
2825 target_fileio_open_1 (struct inferior *inf, const char *filename,
2826 int flags, int mode, int warn_if_slow,
2827 int *target_errno)
2828 {
2829 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2830 {
2831 int fd = t->fileio_open (inf, filename, flags, mode,
2832 warn_if_slow, target_errno);
2833
2834 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2835 continue;
2836
2837 if (fd < 0)
2838 fd = -1;
2839 else
2840 fd = acquire_fileio_fd (t, fd);
2841
2842 if (targetdebug)
2843 fprintf_unfiltered (gdb_stdlog,
2844 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2845 " = %d (%d)\n",
2846 inf == NULL ? 0 : inf->num,
2847 filename, flags, mode,
2848 warn_if_slow, fd,
2849 fd != -1 ? 0 : *target_errno);
2850 return fd;
2851 }
2852
2853 *target_errno = FILEIO_ENOSYS;
2854 return -1;
2855 }
2856
2857 /* See target.h. */
2858
2859 int
2860 target_fileio_open (struct inferior *inf, const char *filename,
2861 int flags, int mode, int *target_errno)
2862 {
2863 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2864 target_errno);
2865 }
2866
2867 /* See target.h. */
2868
2869 int
2870 target_fileio_open_warn_if_slow (struct inferior *inf,
2871 const char *filename,
2872 int flags, int mode, int *target_errno)
2873 {
2874 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2875 target_errno);
2876 }
2877
2878 /* See target.h. */
2879
2880 int
2881 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2882 ULONGEST offset, int *target_errno)
2883 {
2884 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2885 int ret = -1;
2886
2887 if (fh->is_closed ())
2888 *target_errno = EBADF;
2889 else if (fh->target == NULL)
2890 *target_errno = EIO;
2891 else
2892 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2893 len, offset, target_errno);
2894
2895 if (targetdebug)
2896 fprintf_unfiltered (gdb_stdlog,
2897 "target_fileio_pwrite (%d,...,%d,%s) "
2898 "= %d (%d)\n",
2899 fd, len, pulongest (offset),
2900 ret, ret != -1 ? 0 : *target_errno);
2901 return ret;
2902 }
2903
2904 /* See target.h. */
2905
2906 int
2907 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2908 ULONGEST offset, int *target_errno)
2909 {
2910 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2911 int ret = -1;
2912
2913 if (fh->is_closed ())
2914 *target_errno = EBADF;
2915 else if (fh->target == NULL)
2916 *target_errno = EIO;
2917 else
2918 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2919 len, offset, target_errno);
2920
2921 if (targetdebug)
2922 fprintf_unfiltered (gdb_stdlog,
2923 "target_fileio_pread (%d,...,%d,%s) "
2924 "= %d (%d)\n",
2925 fd, len, pulongest (offset),
2926 ret, ret != -1 ? 0 : *target_errno);
2927 return ret;
2928 }
2929
2930 /* See target.h. */
2931
2932 int
2933 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2934 {
2935 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2936 int ret = -1;
2937
2938 if (fh->is_closed ())
2939 *target_errno = EBADF;
2940 else if (fh->target == NULL)
2941 *target_errno = EIO;
2942 else
2943 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2944
2945 if (targetdebug)
2946 fprintf_unfiltered (gdb_stdlog,
2947 "target_fileio_fstat (%d) = %d (%d)\n",
2948 fd, ret, ret != -1 ? 0 : *target_errno);
2949 return ret;
2950 }
2951
2952 /* See target.h. */
2953
2954 int
2955 target_fileio_close (int fd, int *target_errno)
2956 {
2957 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2958 int ret = -1;
2959
2960 if (fh->is_closed ())
2961 *target_errno = EBADF;
2962 else
2963 {
2964 if (fh->target != NULL)
2965 ret = fh->target->fileio_close (fh->target_fd,
2966 target_errno);
2967 else
2968 ret = 0;
2969 release_fileio_fd (fd, fh);
2970 }
2971
2972 if (targetdebug)
2973 fprintf_unfiltered (gdb_stdlog,
2974 "target_fileio_close (%d) = %d (%d)\n",
2975 fd, ret, ret != -1 ? 0 : *target_errno);
2976 return ret;
2977 }
2978
2979 /* See target.h. */
2980
2981 int
2982 target_fileio_unlink (struct inferior *inf, const char *filename,
2983 int *target_errno)
2984 {
2985 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2986 {
2987 int ret = t->fileio_unlink (inf, filename, target_errno);
2988
2989 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2990 continue;
2991
2992 if (targetdebug)
2993 fprintf_unfiltered (gdb_stdlog,
2994 "target_fileio_unlink (%d,%s)"
2995 " = %d (%d)\n",
2996 inf == NULL ? 0 : inf->num, filename,
2997 ret, ret != -1 ? 0 : *target_errno);
2998 return ret;
2999 }
3000
3001 *target_errno = FILEIO_ENOSYS;
3002 return -1;
3003 }
3004
3005 /* See target.h. */
3006
3007 gdb::optional<std::string>
3008 target_fileio_readlink (struct inferior *inf, const char *filename,
3009 int *target_errno)
3010 {
3011 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3012 {
3013 gdb::optional<std::string> ret
3014 = t->fileio_readlink (inf, filename, target_errno);
3015
3016 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
3017 continue;
3018
3019 if (targetdebug)
3020 fprintf_unfiltered (gdb_stdlog,
3021 "target_fileio_readlink (%d,%s)"
3022 " = %s (%d)\n",
3023 inf == NULL ? 0 : inf->num,
3024 filename, ret ? ret->c_str () : "(nil)",
3025 ret ? 0 : *target_errno);
3026 return ret;
3027 }
3028
3029 *target_errno = FILEIO_ENOSYS;
3030 return {};
3031 }
3032
3033 /* Like scoped_fd, but specific to target fileio. */
3034
3035 class scoped_target_fd
3036 {
3037 public:
3038 explicit scoped_target_fd (int fd) noexcept
3039 : m_fd (fd)
3040 {
3041 }
3042
3043 ~scoped_target_fd ()
3044 {
3045 if (m_fd >= 0)
3046 {
3047 int target_errno;
3048
3049 target_fileio_close (m_fd, &target_errno);
3050 }
3051 }
3052
3053 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3054
3055 int get () const noexcept
3056 {
3057 return m_fd;
3058 }
3059
3060 private:
3061 int m_fd;
3062 };
3063
3064 /* Read target file FILENAME, in the filesystem as seen by INF. If
3065 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3066 remote targets, the remote stub). Store the result in *BUF_P and
3067 return the size of the transferred data. PADDING additional bytes
3068 are available in *BUF_P. This is a helper function for
3069 target_fileio_read_alloc; see the declaration of that function for
3070 more information. */
3071
3072 static LONGEST
3073 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3074 gdb_byte **buf_p, int padding)
3075 {
3076 size_t buf_alloc, buf_pos;
3077 gdb_byte *buf;
3078 LONGEST n;
3079 int target_errno;
3080
3081 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3082 0700, &target_errno));
3083 if (fd.get () == -1)
3084 return -1;
3085
3086 /* Start by reading up to 4K at a time. The target will throttle
3087 this number down if necessary. */
3088 buf_alloc = 4096;
3089 buf = (gdb_byte *) xmalloc (buf_alloc);
3090 buf_pos = 0;
3091 while (1)
3092 {
3093 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3094 buf_alloc - buf_pos - padding, buf_pos,
3095 &target_errno);
3096 if (n < 0)
3097 {
3098 /* An error occurred. */
3099 xfree (buf);
3100 return -1;
3101 }
3102 else if (n == 0)
3103 {
3104 /* Read all there was. */
3105 if (buf_pos == 0)
3106 xfree (buf);
3107 else
3108 *buf_p = buf;
3109 return buf_pos;
3110 }
3111
3112 buf_pos += n;
3113
3114 /* If the buffer is filling up, expand it. */
3115 if (buf_alloc < buf_pos * 2)
3116 {
3117 buf_alloc *= 2;
3118 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3119 }
3120
3121 QUIT;
3122 }
3123 }
3124
3125 /* See target.h. */
3126
3127 LONGEST
3128 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3129 gdb_byte **buf_p)
3130 {
3131 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3132 }
3133
3134 /* See target.h. */
3135
3136 gdb::unique_xmalloc_ptr<char>
3137 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3138 {
3139 gdb_byte *buffer;
3140 char *bufstr;
3141 LONGEST i, transferred;
3142
3143 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3144 bufstr = (char *) buffer;
3145
3146 if (transferred < 0)
3147 return gdb::unique_xmalloc_ptr<char> (nullptr);
3148
3149 if (transferred == 0)
3150 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3151
3152 bufstr[transferred] = 0;
3153
3154 /* Check for embedded NUL bytes; but allow trailing NULs. */
3155 for (i = strlen (bufstr); i < transferred; i++)
3156 if (bufstr[i] != 0)
3157 {
3158 warning (_("target file %s "
3159 "contained unexpected null characters"),
3160 filename);
3161 break;
3162 }
3163
3164 return gdb::unique_xmalloc_ptr<char> (bufstr);
3165 }
3166
3167
3168 static int
3169 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3170 CORE_ADDR addr, int len)
3171 {
3172 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3173 }
3174
3175 static int
3176 default_watchpoint_addr_within_range (struct target_ops *target,
3177 CORE_ADDR addr,
3178 CORE_ADDR start, int length)
3179 {
3180 return addr >= start && addr < start + length;
3181 }
3182
3183 static struct gdbarch *
3184 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3185 {
3186 inferior *inf = find_inferior_ptid (ptid);
3187 gdb_assert (inf != NULL);
3188 return inf->gdbarch;
3189 }
3190
3191 /* See target.h. */
3192
3193 target_ops *
3194 target_stack::find_beneath (const target_ops *t) const
3195 {
3196 /* Look for a non-empty slot at stratum levels beneath T's. */
3197 for (int stratum = t->to_stratum - 1; stratum >= 0; --stratum)
3198 if (m_stack[stratum] != NULL)
3199 return m_stack[stratum];
3200
3201 return NULL;
3202 }
3203
3204 /* See target.h. */
3205
3206 struct target_ops *
3207 find_target_at (enum strata stratum)
3208 {
3209 return g_target_stack.at (stratum);
3210 }
3211
3212 \f
3213
3214 /* See target.h */
3215
3216 void
3217 target_announce_detach (int from_tty)
3218 {
3219 pid_t pid;
3220 const char *exec_file;
3221
3222 if (!from_tty)
3223 return;
3224
3225 exec_file = get_exec_file (0);
3226 if (exec_file == NULL)
3227 exec_file = "";
3228
3229 pid = inferior_ptid.pid ();
3230 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3231 target_pid_to_str (ptid_t (pid)));
3232 gdb_flush (gdb_stdout);
3233 }
3234
3235 /* The inferior process has died. Long live the inferior! */
3236
3237 void
3238 generic_mourn_inferior (void)
3239 {
3240 inferior *inf = current_inferior ();
3241
3242 inferior_ptid = null_ptid;
3243
3244 /* Mark breakpoints uninserted in case something tries to delete a
3245 breakpoint while we delete the inferior's threads (which would
3246 fail, since the inferior is long gone). */
3247 mark_breakpoints_out ();
3248
3249 if (inf->pid != 0)
3250 exit_inferior (inf);
3251
3252 /* Note this wipes step-resume breakpoints, so needs to be done
3253 after exit_inferior, which ends up referencing the step-resume
3254 breakpoints through clear_thread_inferior_resources. */
3255 breakpoint_init_inferior (inf_exited);
3256
3257 registers_changed ();
3258
3259 reopen_exec_file ();
3260 reinit_frame_cache ();
3261
3262 if (deprecated_detach_hook)
3263 deprecated_detach_hook ();
3264 }
3265 \f
3266 /* Convert a normal process ID to a string. Returns the string in a
3267 static buffer. */
3268
3269 const char *
3270 normal_pid_to_str (ptid_t ptid)
3271 {
3272 static char buf[32];
3273
3274 xsnprintf (buf, sizeof buf, "process %d", ptid.pid ());
3275 return buf;
3276 }
3277
3278 static const char *
3279 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3280 {
3281 return normal_pid_to_str (ptid);
3282 }
3283
3284 /* Error-catcher for target_find_memory_regions. */
3285 static int
3286 dummy_find_memory_regions (struct target_ops *self,
3287 find_memory_region_ftype ignore1, void *ignore2)
3288 {
3289 error (_("Command not implemented for this target."));
3290 return 0;
3291 }
3292
3293 /* Error-catcher for target_make_corefile_notes. */
3294 static char *
3295 dummy_make_corefile_notes (struct target_ops *self,
3296 bfd *ignore1, int *ignore2)
3297 {
3298 error (_("Command not implemented for this target."));
3299 return NULL;
3300 }
3301
3302 #include "target-delegates.c"
3303
3304
3305 static const target_info dummy_target_info = {
3306 "None",
3307 N_("None"),
3308 ""
3309 };
3310
3311 dummy_target::dummy_target ()
3312 {
3313 to_stratum = dummy_stratum;
3314 }
3315
3316 debug_target::debug_target ()
3317 {
3318 to_stratum = debug_stratum;
3319 }
3320
3321 const target_info &
3322 dummy_target::info () const
3323 {
3324 return dummy_target_info;
3325 }
3326
3327 const target_info &
3328 debug_target::info () const
3329 {
3330 return beneath ()->info ();
3331 }
3332
3333 \f
3334
3335 void
3336 target_close (struct target_ops *targ)
3337 {
3338 gdb_assert (!target_is_pushed (targ));
3339
3340 fileio_handles_invalidate_target (targ);
3341
3342 targ->close ();
3343
3344 if (targetdebug)
3345 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3346 }
3347
3348 int
3349 target_thread_alive (ptid_t ptid)
3350 {
3351 return current_top_target ()->thread_alive (ptid);
3352 }
3353
3354 void
3355 target_update_thread_list (void)
3356 {
3357 current_top_target ()->update_thread_list ();
3358 }
3359
3360 void
3361 target_stop (ptid_t ptid)
3362 {
3363 if (!may_stop)
3364 {
3365 warning (_("May not interrupt or stop the target, ignoring attempt"));
3366 return;
3367 }
3368
3369 current_top_target ()->stop (ptid);
3370 }
3371
3372 void
3373 target_interrupt ()
3374 {
3375 if (!may_stop)
3376 {
3377 warning (_("May not interrupt or stop the target, ignoring attempt"));
3378 return;
3379 }
3380
3381 current_top_target ()->interrupt ();
3382 }
3383
3384 /* See target.h. */
3385
3386 void
3387 target_pass_ctrlc (void)
3388 {
3389 current_top_target ()->pass_ctrlc ();
3390 }
3391
3392 /* See target.h. */
3393
3394 void
3395 default_target_pass_ctrlc (struct target_ops *ops)
3396 {
3397 target_interrupt ();
3398 }
3399
3400 /* See target/target.h. */
3401
3402 void
3403 target_stop_and_wait (ptid_t ptid)
3404 {
3405 struct target_waitstatus status;
3406 int was_non_stop = non_stop;
3407
3408 non_stop = 1;
3409 target_stop (ptid);
3410
3411 memset (&status, 0, sizeof (status));
3412 target_wait (ptid, &status, 0);
3413
3414 non_stop = was_non_stop;
3415 }
3416
3417 /* See target/target.h. */
3418
3419 void
3420 target_continue_no_signal (ptid_t ptid)
3421 {
3422 target_resume (ptid, 0, GDB_SIGNAL_0);
3423 }
3424
3425 /* See target/target.h. */
3426
3427 void
3428 target_continue (ptid_t ptid, enum gdb_signal signal)
3429 {
3430 target_resume (ptid, 0, signal);
3431 }
3432
3433 /* Concatenate ELEM to LIST, a comma-separated list. */
3434
3435 static void
3436 str_comma_list_concat_elem (std::string *list, const char *elem)
3437 {
3438 if (!list->empty ())
3439 list->append (", ");
3440
3441 list->append (elem);
3442 }
3443
3444 /* Helper for target_options_to_string. If OPT is present in
3445 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3446 OPT is removed from TARGET_OPTIONS. */
3447
3448 static void
3449 do_option (int *target_options, std::string *ret,
3450 int opt, const char *opt_str)
3451 {
3452 if ((*target_options & opt) != 0)
3453 {
3454 str_comma_list_concat_elem (ret, opt_str);
3455 *target_options &= ~opt;
3456 }
3457 }
3458
3459 /* See target.h. */
3460
3461 std::string
3462 target_options_to_string (int target_options)
3463 {
3464 std::string ret;
3465
3466 #define DO_TARG_OPTION(OPT) \
3467 do_option (&target_options, &ret, OPT, #OPT)
3468
3469 DO_TARG_OPTION (TARGET_WNOHANG);
3470
3471 if (target_options != 0)
3472 str_comma_list_concat_elem (&ret, "unknown???");
3473
3474 return ret;
3475 }
3476
3477 void
3478 target_fetch_registers (struct regcache *regcache, int regno)
3479 {
3480 current_top_target ()->fetch_registers (regcache, regno);
3481 if (targetdebug)
3482 regcache->debug_print_register ("target_fetch_registers", regno);
3483 }
3484
3485 void
3486 target_store_registers (struct regcache *regcache, int regno)
3487 {
3488 if (!may_write_registers)
3489 error (_("Writing to registers is not allowed (regno %d)"), regno);
3490
3491 current_top_target ()->store_registers (regcache, regno);
3492 if (targetdebug)
3493 {
3494 regcache->debug_print_register ("target_store_registers", regno);
3495 }
3496 }
3497
3498 int
3499 target_core_of_thread (ptid_t ptid)
3500 {
3501 return current_top_target ()->core_of_thread (ptid);
3502 }
3503
3504 int
3505 simple_verify_memory (struct target_ops *ops,
3506 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3507 {
3508 LONGEST total_xfered = 0;
3509
3510 while (total_xfered < size)
3511 {
3512 ULONGEST xfered_len;
3513 enum target_xfer_status status;
3514 gdb_byte buf[1024];
3515 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3516
3517 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3518 buf, NULL, lma + total_xfered, howmuch,
3519 &xfered_len);
3520 if (status == TARGET_XFER_OK
3521 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3522 {
3523 total_xfered += xfered_len;
3524 QUIT;
3525 }
3526 else
3527 return 0;
3528 }
3529 return 1;
3530 }
3531
3532 /* Default implementation of memory verification. */
3533
3534 static int
3535 default_verify_memory (struct target_ops *self,
3536 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3537 {
3538 /* Start over from the top of the target stack. */
3539 return simple_verify_memory (current_top_target (),
3540 data, memaddr, size);
3541 }
3542
3543 int
3544 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3545 {
3546 return current_top_target ()->verify_memory (data, memaddr, size);
3547 }
3548
3549 /* The documentation for this function is in its prototype declaration in
3550 target.h. */
3551
3552 int
3553 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3554 enum target_hw_bp_type rw)
3555 {
3556 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3557 }
3558
3559 /* The documentation for this function is in its prototype declaration in
3560 target.h. */
3561
3562 int
3563 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3564 enum target_hw_bp_type rw)
3565 {
3566 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3567 }
3568
3569 /* The documentation for this function is in its prototype declaration
3570 in target.h. */
3571
3572 int
3573 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3574 {
3575 return current_top_target ()->masked_watch_num_registers (addr, mask);
3576 }
3577
3578 /* The documentation for this function is in its prototype declaration
3579 in target.h. */
3580
3581 int
3582 target_ranged_break_num_registers (void)
3583 {
3584 return current_top_target ()->ranged_break_num_registers ();
3585 }
3586
3587 /* See target.h. */
3588
3589 struct btrace_target_info *
3590 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3591 {
3592 return current_top_target ()->enable_btrace (ptid, conf);
3593 }
3594
3595 /* See target.h. */
3596
3597 void
3598 target_disable_btrace (struct btrace_target_info *btinfo)
3599 {
3600 current_top_target ()->disable_btrace (btinfo);
3601 }
3602
3603 /* See target.h. */
3604
3605 void
3606 target_teardown_btrace (struct btrace_target_info *btinfo)
3607 {
3608 current_top_target ()->teardown_btrace (btinfo);
3609 }
3610
3611 /* See target.h. */
3612
3613 enum btrace_error
3614 target_read_btrace (struct btrace_data *btrace,
3615 struct btrace_target_info *btinfo,
3616 enum btrace_read_type type)
3617 {
3618 return current_top_target ()->read_btrace (btrace, btinfo, type);
3619 }
3620
3621 /* See target.h. */
3622
3623 const struct btrace_config *
3624 target_btrace_conf (const struct btrace_target_info *btinfo)
3625 {
3626 return current_top_target ()->btrace_conf (btinfo);
3627 }
3628
3629 /* See target.h. */
3630
3631 void
3632 target_stop_recording (void)
3633 {
3634 current_top_target ()->stop_recording ();
3635 }
3636
3637 /* See target.h. */
3638
3639 void
3640 target_save_record (const char *filename)
3641 {
3642 current_top_target ()->save_record (filename);
3643 }
3644
3645 /* See target.h. */
3646
3647 int
3648 target_supports_delete_record ()
3649 {
3650 return current_top_target ()->supports_delete_record ();
3651 }
3652
3653 /* See target.h. */
3654
3655 void
3656 target_delete_record (void)
3657 {
3658 current_top_target ()->delete_record ();
3659 }
3660
3661 /* See target.h. */
3662
3663 enum record_method
3664 target_record_method (ptid_t ptid)
3665 {
3666 return current_top_target ()->record_method (ptid);
3667 }
3668
3669 /* See target.h. */
3670
3671 int
3672 target_record_is_replaying (ptid_t ptid)
3673 {
3674 return current_top_target ()->record_is_replaying (ptid);
3675 }
3676
3677 /* See target.h. */
3678
3679 int
3680 target_record_will_replay (ptid_t ptid, int dir)
3681 {
3682 return current_top_target ()->record_will_replay (ptid, dir);
3683 }
3684
3685 /* See target.h. */
3686
3687 void
3688 target_record_stop_replaying (void)
3689 {
3690 current_top_target ()->record_stop_replaying ();
3691 }
3692
3693 /* See target.h. */
3694
3695 void
3696 target_goto_record_begin (void)
3697 {
3698 current_top_target ()->goto_record_begin ();
3699 }
3700
3701 /* See target.h. */
3702
3703 void
3704 target_goto_record_end (void)
3705 {
3706 current_top_target ()->goto_record_end ();
3707 }
3708
3709 /* See target.h. */
3710
3711 void
3712 target_goto_record (ULONGEST insn)
3713 {
3714 current_top_target ()->goto_record (insn);
3715 }
3716
3717 /* See target.h. */
3718
3719 void
3720 target_insn_history (int size, gdb_disassembly_flags flags)
3721 {
3722 current_top_target ()->insn_history (size, flags);
3723 }
3724
3725 /* See target.h. */
3726
3727 void
3728 target_insn_history_from (ULONGEST from, int size,
3729 gdb_disassembly_flags flags)
3730 {
3731 current_top_target ()->insn_history_from (from, size, flags);
3732 }
3733
3734 /* See target.h. */
3735
3736 void
3737 target_insn_history_range (ULONGEST begin, ULONGEST end,
3738 gdb_disassembly_flags flags)
3739 {
3740 current_top_target ()->insn_history_range (begin, end, flags);
3741 }
3742
3743 /* See target.h. */
3744
3745 void
3746 target_call_history (int size, record_print_flags flags)
3747 {
3748 current_top_target ()->call_history (size, flags);
3749 }
3750
3751 /* See target.h. */
3752
3753 void
3754 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3755 {
3756 current_top_target ()->call_history_from (begin, size, flags);
3757 }
3758
3759 /* See target.h. */
3760
3761 void
3762 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3763 {
3764 current_top_target ()->call_history_range (begin, end, flags);
3765 }
3766
3767 /* See target.h. */
3768
3769 const struct frame_unwind *
3770 target_get_unwinder (void)
3771 {
3772 return current_top_target ()->get_unwinder ();
3773 }
3774
3775 /* See target.h. */
3776
3777 const struct frame_unwind *
3778 target_get_tailcall_unwinder (void)
3779 {
3780 return current_top_target ()->get_tailcall_unwinder ();
3781 }
3782
3783 /* See target.h. */
3784
3785 void
3786 target_prepare_to_generate_core (void)
3787 {
3788 current_top_target ()->prepare_to_generate_core ();
3789 }
3790
3791 /* See target.h. */
3792
3793 void
3794 target_done_generating_core (void)
3795 {
3796 current_top_target ()->done_generating_core ();
3797 }
3798
3799 \f
3800
3801 static char targ_desc[] =
3802 "Names of targets and files being debugged.\nShows the entire \
3803 stack of targets currently in use (including the exec-file,\n\
3804 core-file, and process, if any), as well as the symbol file name.";
3805
3806 static void
3807 default_rcmd (struct target_ops *self, const char *command,
3808 struct ui_file *output)
3809 {
3810 error (_("\"monitor\" command not supported by this target."));
3811 }
3812
3813 static void
3814 do_monitor_command (const char *cmd, int from_tty)
3815 {
3816 target_rcmd (cmd, gdb_stdtarg);
3817 }
3818
3819 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3820 ignored. */
3821
3822 void
3823 flash_erase_command (const char *cmd, int from_tty)
3824 {
3825 /* Used to communicate termination of flash operations to the target. */
3826 bool found_flash_region = false;
3827 struct gdbarch *gdbarch = target_gdbarch ();
3828
3829 std::vector<mem_region> mem_regions = target_memory_map ();
3830
3831 /* Iterate over all memory regions. */
3832 for (const mem_region &m : mem_regions)
3833 {
3834 /* Is this a flash memory region? */
3835 if (m.attrib.mode == MEM_FLASH)
3836 {
3837 found_flash_region = true;
3838 target_flash_erase (m.lo, m.hi - m.lo);
3839
3840 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3841
3842 current_uiout->message (_("Erasing flash memory region at address "));
3843 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3844 current_uiout->message (", size = ");
3845 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3846 current_uiout->message ("\n");
3847 }
3848 }
3849
3850 /* Did we do any flash operations? If so, we need to finalize them. */
3851 if (found_flash_region)
3852 target_flash_done ();
3853 else
3854 current_uiout->message (_("No flash memory regions found.\n"));
3855 }
3856
3857 /* Print the name of each layers of our target stack. */
3858
3859 static void
3860 maintenance_print_target_stack (const char *cmd, int from_tty)
3861 {
3862 printf_filtered (_("The current target stack is:\n"));
3863
3864 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3865 {
3866 if (t->to_stratum == debug_stratum)
3867 continue;
3868 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3869 }
3870 }
3871
3872 /* See target.h. */
3873
3874 void
3875 target_async (int enable)
3876 {
3877 infrun_async (enable);
3878 current_top_target ()->async (enable);
3879 }
3880
3881 /* See target.h. */
3882
3883 void
3884 target_thread_events (int enable)
3885 {
3886 current_top_target ()->thread_events (enable);
3887 }
3888
3889 /* Controls if targets can report that they can/are async. This is
3890 just for maintainers to use when debugging gdb. */
3891 int target_async_permitted = 1;
3892
3893 /* The set command writes to this variable. If the inferior is
3894 executing, target_async_permitted is *not* updated. */
3895 static int target_async_permitted_1 = 1;
3896
3897 static void
3898 maint_set_target_async_command (const char *args, int from_tty,
3899 struct cmd_list_element *c)
3900 {
3901 if (have_live_inferiors ())
3902 {
3903 target_async_permitted_1 = target_async_permitted;
3904 error (_("Cannot change this setting while the inferior is running."));
3905 }
3906
3907 target_async_permitted = target_async_permitted_1;
3908 }
3909
3910 static void
3911 maint_show_target_async_command (struct ui_file *file, int from_tty,
3912 struct cmd_list_element *c,
3913 const char *value)
3914 {
3915 fprintf_filtered (file,
3916 _("Controlling the inferior in "
3917 "asynchronous mode is %s.\n"), value);
3918 }
3919
3920 /* Return true if the target operates in non-stop mode even with "set
3921 non-stop off". */
3922
3923 static int
3924 target_always_non_stop_p (void)
3925 {
3926 return current_top_target ()->always_non_stop_p ();
3927 }
3928
3929 /* See target.h. */
3930
3931 int
3932 target_is_non_stop_p (void)
3933 {
3934 return (non_stop
3935 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3936 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3937 && target_always_non_stop_p ()));
3938 }
3939
3940 /* Controls if targets can report that they always run in non-stop
3941 mode. This is just for maintainers to use when debugging gdb. */
3942 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3943
3944 /* The set command writes to this variable. If the inferior is
3945 executing, target_non_stop_enabled is *not* updated. */
3946 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3947
3948 /* Implementation of "maint set target-non-stop". */
3949
3950 static void
3951 maint_set_target_non_stop_command (const char *args, int from_tty,
3952 struct cmd_list_element *c)
3953 {
3954 if (have_live_inferiors ())
3955 {
3956 target_non_stop_enabled_1 = target_non_stop_enabled;
3957 error (_("Cannot change this setting while the inferior is running."));
3958 }
3959
3960 target_non_stop_enabled = target_non_stop_enabled_1;
3961 }
3962
3963 /* Implementation of "maint show target-non-stop". */
3964
3965 static void
3966 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3967 struct cmd_list_element *c,
3968 const char *value)
3969 {
3970 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3971 fprintf_filtered (file,
3972 _("Whether the target is always in non-stop mode "
3973 "is %s (currently %s).\n"), value,
3974 target_always_non_stop_p () ? "on" : "off");
3975 else
3976 fprintf_filtered (file,
3977 _("Whether the target is always in non-stop mode "
3978 "is %s.\n"), value);
3979 }
3980
3981 /* Temporary copies of permission settings. */
3982
3983 static int may_write_registers_1 = 1;
3984 static int may_write_memory_1 = 1;
3985 static int may_insert_breakpoints_1 = 1;
3986 static int may_insert_tracepoints_1 = 1;
3987 static int may_insert_fast_tracepoints_1 = 1;
3988 static int may_stop_1 = 1;
3989
3990 /* Make the user-set values match the real values again. */
3991
3992 void
3993 update_target_permissions (void)
3994 {
3995 may_write_registers_1 = may_write_registers;
3996 may_write_memory_1 = may_write_memory;
3997 may_insert_breakpoints_1 = may_insert_breakpoints;
3998 may_insert_tracepoints_1 = may_insert_tracepoints;
3999 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4000 may_stop_1 = may_stop;
4001 }
4002
4003 /* The one function handles (most of) the permission flags in the same
4004 way. */
4005
4006 static void
4007 set_target_permissions (const char *args, int from_tty,
4008 struct cmd_list_element *c)
4009 {
4010 if (target_has_execution)
4011 {
4012 update_target_permissions ();
4013 error (_("Cannot change this setting while the inferior is running."));
4014 }
4015
4016 /* Make the real values match the user-changed values. */
4017 may_write_registers = may_write_registers_1;
4018 may_insert_breakpoints = may_insert_breakpoints_1;
4019 may_insert_tracepoints = may_insert_tracepoints_1;
4020 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4021 may_stop = may_stop_1;
4022 update_observer_mode ();
4023 }
4024
4025 /* Set memory write permission independently of observer mode. */
4026
4027 static void
4028 set_write_memory_permission (const char *args, int from_tty,
4029 struct cmd_list_element *c)
4030 {
4031 /* Make the real values match the user-changed values. */
4032 may_write_memory = may_write_memory_1;
4033 update_observer_mode ();
4034 }
4035
4036 void
4037 initialize_targets (void)
4038 {
4039 the_dummy_target = new dummy_target ();
4040 push_target (the_dummy_target);
4041
4042 the_debug_target = new debug_target ();
4043
4044 add_info ("target", info_target_command, targ_desc);
4045 add_info ("files", info_target_command, targ_desc);
4046
4047 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4048 Set target debugging."), _("\
4049 Show target debugging."), _("\
4050 When non-zero, target debugging is enabled. Higher numbers are more\n\
4051 verbose."),
4052 set_targetdebug,
4053 show_targetdebug,
4054 &setdebuglist, &showdebuglist);
4055
4056 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4057 &trust_readonly, _("\
4058 Set mode for reading from readonly sections."), _("\
4059 Show mode for reading from readonly sections."), _("\
4060 When this mode is on, memory reads from readonly sections (such as .text)\n\
4061 will be read from the object file instead of from the target. This will\n\
4062 result in significant performance improvement for remote targets."),
4063 NULL,
4064 show_trust_readonly,
4065 &setlist, &showlist);
4066
4067 add_com ("monitor", class_obscure, do_monitor_command,
4068 _("Send a command to the remote monitor (remote targets only)."));
4069
4070 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4071 _("Print the name of each layer of the internal target stack."),
4072 &maintenanceprintlist);
4073
4074 add_setshow_boolean_cmd ("target-async", no_class,
4075 &target_async_permitted_1, _("\
4076 Set whether gdb controls the inferior in asynchronous mode."), _("\
4077 Show whether gdb controls the inferior in asynchronous mode."), _("\
4078 Tells gdb whether to control the inferior in asynchronous mode."),
4079 maint_set_target_async_command,
4080 maint_show_target_async_command,
4081 &maintenance_set_cmdlist,
4082 &maintenance_show_cmdlist);
4083
4084 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4085 &target_non_stop_enabled_1, _("\
4086 Set whether gdb always controls the inferior in non-stop mode."), _("\
4087 Show whether gdb always controls the inferior in non-stop mode."), _("\
4088 Tells gdb whether to control the inferior in non-stop mode."),
4089 maint_set_target_non_stop_command,
4090 maint_show_target_non_stop_command,
4091 &maintenance_set_cmdlist,
4092 &maintenance_show_cmdlist);
4093
4094 add_setshow_boolean_cmd ("may-write-registers", class_support,
4095 &may_write_registers_1, _("\
4096 Set permission to write into registers."), _("\
4097 Show permission to write into registers."), _("\
4098 When this permission is on, GDB may write into the target's registers.\n\
4099 Otherwise, any sort of write attempt will result in an error."),
4100 set_target_permissions, NULL,
4101 &setlist, &showlist);
4102
4103 add_setshow_boolean_cmd ("may-write-memory", class_support,
4104 &may_write_memory_1, _("\
4105 Set permission to write into target memory."), _("\
4106 Show permission to write into target memory."), _("\
4107 When this permission is on, GDB may write into the target's memory.\n\
4108 Otherwise, any sort of write attempt will result in an error."),
4109 set_write_memory_permission, NULL,
4110 &setlist, &showlist);
4111
4112 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4113 &may_insert_breakpoints_1, _("\
4114 Set permission to insert breakpoints in the target."), _("\
4115 Show permission to insert breakpoints in the target."), _("\
4116 When this permission is on, GDB may insert breakpoints in the program.\n\
4117 Otherwise, any sort of insertion attempt will result in an error."),
4118 set_target_permissions, NULL,
4119 &setlist, &showlist);
4120
4121 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4122 &may_insert_tracepoints_1, _("\
4123 Set permission to insert tracepoints in the target."), _("\
4124 Show permission to insert tracepoints in the target."), _("\
4125 When this permission is on, GDB may insert tracepoints in the program.\n\
4126 Otherwise, any sort of insertion attempt will result in an error."),
4127 set_target_permissions, NULL,
4128 &setlist, &showlist);
4129
4130 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4131 &may_insert_fast_tracepoints_1, _("\
4132 Set permission to insert fast tracepoints in the target."), _("\
4133 Show permission to insert fast tracepoints in the target."), _("\
4134 When this permission is on, GDB may insert fast tracepoints.\n\
4135 Otherwise, any sort of insertion attempt will result in an error."),
4136 set_target_permissions, NULL,
4137 &setlist, &showlist);
4138
4139 add_setshow_boolean_cmd ("may-interrupt", class_support,
4140 &may_stop_1, _("\
4141 Set permission to interrupt or signal the target."), _("\
4142 Show permission to interrupt or signal the target."), _("\
4143 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4144 Otherwise, any attempt to interrupt or stop will be ignored."),
4145 set_target_permissions, NULL,
4146 &setlist, &showlist);
4147
4148 add_com ("flash-erase", no_class, flash_erase_command,
4149 _("Erase all flash memory regions."));
4150
4151 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4152 &auto_connect_native_target, _("\
4153 Set whether GDB may automatically connect to the native target."), _("\
4154 Show whether GDB may automatically connect to the native target."), _("\
4155 When on, and GDB is not connected to a target yet, GDB\n\
4156 attempts \"run\" and other commands with the native target."),
4157 NULL, show_auto_connect_native_target,
4158 &setlist, &showlist);
4159 }
This page took 0.115515 seconds and 4 git commands to generate.