2004-09-30 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include <errno.h>
27 #include "gdb_string.h"
28 #include "target.h"
29 #include "gdbcmd.h"
30 #include "symtab.h"
31 #include "inferior.h"
32 #include "bfd.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "gdb_wait.h"
36 #include "dcache.h"
37 #include <signal.h>
38 #include "regcache.h"
39 #include "gdb_assert.h"
40 #include "gdbcore.h"
41
42 static void target_info (char *, int);
43
44 static void maybe_kill_then_attach (char *, int);
45
46 static void kill_or_be_killed (int);
47
48 static void default_terminal_info (char *, int);
49
50 static int default_region_size_ok_for_hw_watchpoint (int);
51
52 static int nosymbol (char *, CORE_ADDR *);
53
54 static void tcomplain (void);
55
56 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
57
58 static int return_zero (void);
59
60 static int return_one (void);
61
62 static int return_minus_one (void);
63
64 void target_ignore (void);
65
66 static void target_command (char *, int);
67
68 static struct target_ops *find_default_run_target (char *);
69
70 static void nosupport_runtime (void);
71
72 static LONGEST default_xfer_partial (struct target_ops *ops,
73 enum target_object object,
74 const char *annex, void *readbuf,
75 const void *writebuf,
76 ULONGEST offset, LONGEST len);
77
78 /* Transfer LEN bytes between target address MEMADDR and GDB address
79 MYADDR. Returns 0 for success, errno code for failure (which
80 includes partial transfers -- if you want a more useful response to
81 partial transfers, try either target_read_memory_partial or
82 target_write_memory_partial). */
83
84 static int target_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
85 int write);
86
87 static void init_dummy_target (void);
88
89 static void debug_to_open (char *, int);
90
91 static void debug_to_close (int);
92
93 static void debug_to_attach (char *, int);
94
95 static void debug_to_detach (char *, int);
96
97 static void debug_to_disconnect (char *, int);
98
99 static void debug_to_resume (ptid_t, int, enum target_signal);
100
101 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
102
103 static void debug_to_fetch_registers (int);
104
105 static void debug_to_store_registers (int);
106
107 static void debug_to_prepare_to_store (void);
108
109 static int debug_to_xfer_memory (CORE_ADDR, char *, int, int,
110 struct mem_attrib *, struct target_ops *);
111
112 static void debug_to_files_info (struct target_ops *);
113
114 static int debug_to_insert_breakpoint (CORE_ADDR, char *);
115
116 static int debug_to_remove_breakpoint (CORE_ADDR, char *);
117
118 static int debug_to_can_use_hw_breakpoint (int, int, int);
119
120 static int debug_to_insert_hw_breakpoint (CORE_ADDR, char *);
121
122 static int debug_to_remove_hw_breakpoint (CORE_ADDR, char *);
123
124 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
125
126 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
127
128 static int debug_to_stopped_by_watchpoint (void);
129
130 static CORE_ADDR debug_to_stopped_data_address (void);
131
132 static int debug_to_region_size_ok_for_hw_watchpoint (int);
133
134 static void debug_to_terminal_init (void);
135
136 static void debug_to_terminal_inferior (void);
137
138 static void debug_to_terminal_ours_for_output (void);
139
140 static void debug_to_terminal_save_ours (void);
141
142 static void debug_to_terminal_ours (void);
143
144 static void debug_to_terminal_info (char *, int);
145
146 static void debug_to_kill (void);
147
148 static void debug_to_load (char *, int);
149
150 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
151
152 static void debug_to_mourn_inferior (void);
153
154 static int debug_to_can_run (void);
155
156 static void debug_to_notice_signals (ptid_t);
157
158 static int debug_to_thread_alive (ptid_t);
159
160 static void debug_to_stop (void);
161
162 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
163 wierd and mysterious ways. Putting the variable here lets those
164 wierd and mysterious ways keep building while they are being
165 converted to the inferior inheritance structure. */
166 struct target_ops child_ops;
167
168 /* Pointer to array of target architecture structures; the size of the
169 array; the current index into the array; the allocated size of the
170 array. */
171 struct target_ops **target_structs;
172 unsigned target_struct_size;
173 unsigned target_struct_index;
174 unsigned target_struct_allocsize;
175 #define DEFAULT_ALLOCSIZE 10
176
177 /* The initial current target, so that there is always a semi-valid
178 current target. */
179
180 static struct target_ops dummy_target;
181
182 /* Top of target stack. */
183
184 static struct target_ops *target_stack;
185
186 /* The target structure we are currently using to talk to a process
187 or file or whatever "inferior" we have. */
188
189 struct target_ops current_target;
190
191 /* Command list for target. */
192
193 static struct cmd_list_element *targetlist = NULL;
194
195 /* Nonzero if we are debugging an attached outside process
196 rather than an inferior. */
197
198 int attach_flag;
199
200 /* Non-zero if we want to see trace of target level stuff. */
201
202 static int targetdebug = 0;
203
204 static void setup_target_debug (void);
205
206 DCACHE *target_dcache;
207
208 /* The user just typed 'target' without the name of a target. */
209
210 static void
211 target_command (char *arg, int from_tty)
212 {
213 fputs_filtered ("Argument required (target name). Try `help target'\n",
214 gdb_stdout);
215 }
216
217 /* Add a possible target architecture to the list. */
218
219 void
220 add_target (struct target_ops *t)
221 {
222 /* Provide default values for all "must have" methods. */
223 if (t->to_xfer_partial == NULL)
224 t->to_xfer_partial = default_xfer_partial;
225
226 if (!target_structs)
227 {
228 target_struct_allocsize = DEFAULT_ALLOCSIZE;
229 target_structs = (struct target_ops **) xmalloc
230 (target_struct_allocsize * sizeof (*target_structs));
231 }
232 if (target_struct_size >= target_struct_allocsize)
233 {
234 target_struct_allocsize *= 2;
235 target_structs = (struct target_ops **)
236 xrealloc ((char *) target_structs,
237 target_struct_allocsize * sizeof (*target_structs));
238 }
239 target_structs[target_struct_size++] = t;
240
241 if (targetlist == NULL)
242 add_prefix_cmd ("target", class_run, target_command,
243 "Connect to a target machine or process.\n\
244 The first argument is the type or protocol of the target machine.\n\
245 Remaining arguments are interpreted by the target protocol. For more\n\
246 information on the arguments for a particular protocol, type\n\
247 `help target ' followed by the protocol name.",
248 &targetlist, "target ", 0, &cmdlist);
249 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
250 }
251
252 /* Stub functions */
253
254 void
255 target_ignore (void)
256 {
257 }
258
259 void
260 target_load (char *arg, int from_tty)
261 {
262 dcache_invalidate (target_dcache);
263 (*current_target.to_load) (arg, from_tty);
264 }
265
266 static int
267 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
268 struct target_ops *t)
269 {
270 errno = EIO; /* Can't read/write this location */
271 return 0; /* No bytes handled */
272 }
273
274 static void
275 tcomplain (void)
276 {
277 error ("You can't do that when your target is `%s'",
278 current_target.to_shortname);
279 }
280
281 void
282 noprocess (void)
283 {
284 error ("You can't do that without a process to debug.");
285 }
286
287 static int
288 nosymbol (char *name, CORE_ADDR *addrp)
289 {
290 return 1; /* Symbol does not exist in target env */
291 }
292
293 static void
294 nosupport_runtime (void)
295 {
296 if (ptid_equal (inferior_ptid, null_ptid))
297 noprocess ();
298 else
299 error ("No run-time support for this");
300 }
301
302
303 static void
304 default_terminal_info (char *args, int from_tty)
305 {
306 printf_unfiltered ("No saved terminal information.\n");
307 }
308
309 /* This is the default target_create_inferior and target_attach function.
310 If the current target is executing, it asks whether to kill it off.
311 If this function returns without calling error(), it has killed off
312 the target, and the operation should be attempted. */
313
314 static void
315 kill_or_be_killed (int from_tty)
316 {
317 if (target_has_execution)
318 {
319 printf_unfiltered ("You are already running a program:\n");
320 target_files_info ();
321 if (query ("Kill it? "))
322 {
323 target_kill ();
324 if (target_has_execution)
325 error ("Killing the program did not help.");
326 return;
327 }
328 else
329 {
330 error ("Program not killed.");
331 }
332 }
333 tcomplain ();
334 }
335
336 static void
337 maybe_kill_then_attach (char *args, int from_tty)
338 {
339 kill_or_be_killed (from_tty);
340 target_attach (args, from_tty);
341 }
342
343 static void
344 maybe_kill_then_create_inferior (char *exec, char *args, char **env,
345 int from_tty)
346 {
347 kill_or_be_killed (0);
348 target_create_inferior (exec, args, env, from_tty);
349 }
350
351 /* Go through the target stack from top to bottom, copying over zero
352 entries in current_target, then filling in still empty entries. In
353 effect, we are doing class inheritance through the pushed target
354 vectors.
355
356 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
357 is currently implemented, is that it discards any knowledge of
358 which target an inherited method originally belonged to.
359 Consequently, new new target methods should instead explicitly and
360 locally search the target stack for the target that can handle the
361 request. */
362
363 static void
364 update_current_target (void)
365 {
366 struct target_ops *t;
367
368 /* First, reset curren'ts contents. */
369 memset (&current_target, 0, sizeof (current_target));
370
371 #define INHERIT(FIELD, TARGET) \
372 if (!current_target.FIELD) \
373 current_target.FIELD = (TARGET)->FIELD
374
375 for (t = target_stack; t; t = t->beneath)
376 {
377 INHERIT (to_shortname, t);
378 INHERIT (to_longname, t);
379 INHERIT (to_doc, t);
380 INHERIT (to_open, t);
381 INHERIT (to_close, t);
382 INHERIT (to_attach, t);
383 INHERIT (to_post_attach, t);
384 INHERIT (to_detach, t);
385 INHERIT (to_disconnect, t);
386 INHERIT (to_resume, t);
387 INHERIT (to_wait, t);
388 INHERIT (to_fetch_registers, t);
389 INHERIT (to_store_registers, t);
390 INHERIT (to_prepare_to_store, t);
391 INHERIT (to_xfer_memory, t);
392 INHERIT (to_files_info, t);
393 INHERIT (to_insert_breakpoint, t);
394 INHERIT (to_remove_breakpoint, t);
395 INHERIT (to_can_use_hw_breakpoint, t);
396 INHERIT (to_insert_hw_breakpoint, t);
397 INHERIT (to_remove_hw_breakpoint, t);
398 INHERIT (to_insert_watchpoint, t);
399 INHERIT (to_remove_watchpoint, t);
400 INHERIT (to_stopped_data_address, t);
401 INHERIT (to_stopped_by_watchpoint, t);
402 INHERIT (to_have_continuable_watchpoint, t);
403 INHERIT (to_region_size_ok_for_hw_watchpoint, t);
404 INHERIT (to_terminal_init, t);
405 INHERIT (to_terminal_inferior, t);
406 INHERIT (to_terminal_ours_for_output, t);
407 INHERIT (to_terminal_ours, t);
408 INHERIT (to_terminal_save_ours, t);
409 INHERIT (to_terminal_info, t);
410 INHERIT (to_kill, t);
411 INHERIT (to_load, t);
412 INHERIT (to_lookup_symbol, t);
413 INHERIT (to_create_inferior, t);
414 INHERIT (to_post_startup_inferior, t);
415 INHERIT (to_acknowledge_created_inferior, t);
416 INHERIT (to_insert_fork_catchpoint, t);
417 INHERIT (to_remove_fork_catchpoint, t);
418 INHERIT (to_insert_vfork_catchpoint, t);
419 INHERIT (to_remove_vfork_catchpoint, t);
420 INHERIT (to_follow_fork, t);
421 INHERIT (to_insert_exec_catchpoint, t);
422 INHERIT (to_remove_exec_catchpoint, t);
423 INHERIT (to_reported_exec_events_per_exec_call, t);
424 INHERIT (to_has_exited, t);
425 INHERIT (to_mourn_inferior, t);
426 INHERIT (to_can_run, t);
427 INHERIT (to_notice_signals, t);
428 INHERIT (to_thread_alive, t);
429 INHERIT (to_find_new_threads, t);
430 INHERIT (to_pid_to_str, t);
431 INHERIT (to_extra_thread_info, t);
432 INHERIT (to_stop, t);
433 /* Do not inherit to_xfer_partial. */
434 INHERIT (to_rcmd, t);
435 INHERIT (to_enable_exception_callback, t);
436 INHERIT (to_get_current_exception_event, t);
437 INHERIT (to_pid_to_exec_file, t);
438 INHERIT (to_stratum, t);
439 INHERIT (to_has_all_memory, t);
440 INHERIT (to_has_memory, t);
441 INHERIT (to_has_stack, t);
442 INHERIT (to_has_registers, t);
443 INHERIT (to_has_execution, t);
444 INHERIT (to_has_thread_control, t);
445 INHERIT (to_sections, t);
446 INHERIT (to_sections_end, t);
447 INHERIT (to_can_async_p, t);
448 INHERIT (to_is_async_p, t);
449 INHERIT (to_async, t);
450 INHERIT (to_async_mask_value, t);
451 INHERIT (to_find_memory_regions, t);
452 INHERIT (to_make_corefile_notes, t);
453 INHERIT (to_get_thread_local_address, t);
454 INHERIT (to_magic, t);
455 }
456 #undef INHERIT
457
458 /* Clean up a target struct so it no longer has any zero pointers in
459 it. Some entries are defaulted to a method that print an error,
460 others are hard-wired to a standard recursive default. */
461
462 #define de_fault(field, value) \
463 if (!current_target.field) \
464 current_target.field = value
465
466 de_fault (to_open,
467 (void (*) (char *, int))
468 tcomplain);
469 de_fault (to_close,
470 (void (*) (int))
471 target_ignore);
472 de_fault (to_attach,
473 maybe_kill_then_attach);
474 de_fault (to_post_attach,
475 (void (*) (int))
476 target_ignore);
477 de_fault (to_detach,
478 (void (*) (char *, int))
479 target_ignore);
480 de_fault (to_disconnect,
481 (void (*) (char *, int))
482 tcomplain);
483 de_fault (to_resume,
484 (void (*) (ptid_t, int, enum target_signal))
485 noprocess);
486 de_fault (to_wait,
487 (ptid_t (*) (ptid_t, struct target_waitstatus *))
488 noprocess);
489 de_fault (to_fetch_registers,
490 (void (*) (int))
491 target_ignore);
492 de_fault (to_store_registers,
493 (void (*) (int))
494 noprocess);
495 de_fault (to_prepare_to_store,
496 (void (*) (void))
497 noprocess);
498 de_fault (to_xfer_memory,
499 (int (*) (CORE_ADDR, char *, int, int, struct mem_attrib *, struct target_ops *))
500 nomemory);
501 de_fault (to_files_info,
502 (void (*) (struct target_ops *))
503 target_ignore);
504 de_fault (to_insert_breakpoint,
505 memory_insert_breakpoint);
506 de_fault (to_remove_breakpoint,
507 memory_remove_breakpoint);
508 de_fault (to_can_use_hw_breakpoint,
509 (int (*) (int, int, int))
510 return_zero);
511 de_fault (to_insert_hw_breakpoint,
512 (int (*) (CORE_ADDR, char *))
513 return_minus_one);
514 de_fault (to_remove_hw_breakpoint,
515 (int (*) (CORE_ADDR, char *))
516 return_minus_one);
517 de_fault (to_insert_watchpoint,
518 (int (*) (CORE_ADDR, int, int))
519 return_minus_one);
520 de_fault (to_remove_watchpoint,
521 (int (*) (CORE_ADDR, int, int))
522 return_minus_one);
523 de_fault (to_stopped_by_watchpoint,
524 (int (*) (void))
525 return_zero);
526 de_fault (to_stopped_data_address,
527 (CORE_ADDR (*) (void))
528 return_zero);
529 de_fault (to_region_size_ok_for_hw_watchpoint,
530 default_region_size_ok_for_hw_watchpoint);
531 de_fault (to_terminal_init,
532 (void (*) (void))
533 target_ignore);
534 de_fault (to_terminal_inferior,
535 (void (*) (void))
536 target_ignore);
537 de_fault (to_terminal_ours_for_output,
538 (void (*) (void))
539 target_ignore);
540 de_fault (to_terminal_ours,
541 (void (*) (void))
542 target_ignore);
543 de_fault (to_terminal_save_ours,
544 (void (*) (void))
545 target_ignore);
546 de_fault (to_terminal_info,
547 default_terminal_info);
548 de_fault (to_kill,
549 (void (*) (void))
550 noprocess);
551 de_fault (to_load,
552 (void (*) (char *, int))
553 tcomplain);
554 de_fault (to_lookup_symbol,
555 (int (*) (char *, CORE_ADDR *))
556 nosymbol);
557 de_fault (to_create_inferior,
558 maybe_kill_then_create_inferior);
559 de_fault (to_post_startup_inferior,
560 (void (*) (ptid_t))
561 target_ignore);
562 de_fault (to_acknowledge_created_inferior,
563 (void (*) (int))
564 target_ignore);
565 de_fault (to_insert_fork_catchpoint,
566 (int (*) (int))
567 tcomplain);
568 de_fault (to_remove_fork_catchpoint,
569 (int (*) (int))
570 tcomplain);
571 de_fault (to_insert_vfork_catchpoint,
572 (int (*) (int))
573 tcomplain);
574 de_fault (to_remove_vfork_catchpoint,
575 (int (*) (int))
576 tcomplain);
577 de_fault (to_follow_fork,
578 (int (*) (int))
579 target_ignore);
580 de_fault (to_insert_exec_catchpoint,
581 (int (*) (int))
582 tcomplain);
583 de_fault (to_remove_exec_catchpoint,
584 (int (*) (int))
585 tcomplain);
586 de_fault (to_reported_exec_events_per_exec_call,
587 (int (*) (void))
588 return_one);
589 de_fault (to_has_exited,
590 (int (*) (int, int, int *))
591 return_zero);
592 de_fault (to_mourn_inferior,
593 (void (*) (void))
594 noprocess);
595 de_fault (to_can_run,
596 return_zero);
597 de_fault (to_notice_signals,
598 (void (*) (ptid_t))
599 target_ignore);
600 de_fault (to_thread_alive,
601 (int (*) (ptid_t))
602 return_zero);
603 de_fault (to_find_new_threads,
604 (void (*) (void))
605 target_ignore);
606 de_fault (to_extra_thread_info,
607 (char *(*) (struct thread_info *))
608 return_zero);
609 de_fault (to_stop,
610 (void (*) (void))
611 target_ignore);
612 current_target.to_xfer_partial = default_xfer_partial;
613 de_fault (to_rcmd,
614 (void (*) (char *, struct ui_file *))
615 tcomplain);
616 de_fault (to_enable_exception_callback,
617 (struct symtab_and_line * (*) (enum exception_event_kind, int))
618 nosupport_runtime);
619 de_fault (to_get_current_exception_event,
620 (struct exception_event_record * (*) (void))
621 nosupport_runtime);
622 de_fault (to_pid_to_exec_file,
623 (char *(*) (int))
624 return_zero);
625 de_fault (to_can_async_p,
626 (int (*) (void))
627 return_zero);
628 de_fault (to_is_async_p,
629 (int (*) (void))
630 return_zero);
631 de_fault (to_async,
632 (void (*) (void (*) (enum inferior_event_type, void*), void*))
633 tcomplain);
634 #undef de_fault
635
636 /* Finally, position the target-stack beneath the squashed
637 "current_target". That way code looking for a non-inherited
638 target method can quickly and simply find it. */
639 current_target.beneath = target_stack;
640 }
641
642 /* Push a new target type into the stack of the existing target accessors,
643 possibly superseding some of the existing accessors.
644
645 Result is zero if the pushed target ended up on top of the stack,
646 nonzero if at least one target is on top of it.
647
648 Rather than allow an empty stack, we always have the dummy target at
649 the bottom stratum, so we can call the function vectors without
650 checking them. */
651
652 int
653 push_target (struct target_ops *t)
654 {
655 struct target_ops **cur;
656
657 /* Check magic number. If wrong, it probably means someone changed
658 the struct definition, but not all the places that initialize one. */
659 if (t->to_magic != OPS_MAGIC)
660 {
661 fprintf_unfiltered (gdb_stderr,
662 "Magic number of %s target struct wrong\n",
663 t->to_shortname);
664 internal_error (__FILE__, __LINE__, "failed internal consistency check");
665 }
666
667 /* Find the proper stratum to install this target in. */
668 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
669 {
670 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
671 break;
672 }
673
674 /* If there's already targets at this stratum, remove them. */
675 /* FIXME: cagney/2003-10-15: I think this should be poping all
676 targets to CUR, and not just those at this stratum level. */
677 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
678 {
679 /* There's already something at this stratum level. Close it,
680 and un-hook it from the stack. */
681 struct target_ops *tmp = (*cur);
682 (*cur) = (*cur)->beneath;
683 tmp->beneath = NULL;
684 target_close (tmp, 0);
685 }
686
687 /* We have removed all targets in our stratum, now add the new one. */
688 t->beneath = (*cur);
689 (*cur) = t;
690
691 update_current_target ();
692
693 if (targetdebug)
694 setup_target_debug ();
695
696 /* Not on top? */
697 return (t != target_stack);
698 }
699
700 /* Remove a target_ops vector from the stack, wherever it may be.
701 Return how many times it was removed (0 or 1). */
702
703 int
704 unpush_target (struct target_ops *t)
705 {
706 struct target_ops **cur;
707 struct target_ops *tmp;
708
709 /* Look for the specified target. Note that we assume that a target
710 can only occur once in the target stack. */
711
712 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
713 {
714 if ((*cur) == t)
715 break;
716 }
717
718 if ((*cur) == NULL)
719 return 0; /* Didn't find target_ops, quit now */
720
721 /* NOTE: cagney/2003-12-06: In '94 the close call was made
722 unconditional by moving it to before the above check that the
723 target was in the target stack (something about "Change the way
724 pushing and popping of targets work to support target overlays
725 and inheritance"). This doesn't make much sense - only open
726 targets should be closed. */
727 target_close (t, 0);
728
729 /* Unchain the target */
730 tmp = (*cur);
731 (*cur) = (*cur)->beneath;
732 tmp->beneath = NULL;
733
734 update_current_target ();
735
736 return 1;
737 }
738
739 void
740 pop_target (void)
741 {
742 target_close (&current_target, 0); /* Let it clean up */
743 if (unpush_target (target_stack) == 1)
744 return;
745
746 fprintf_unfiltered (gdb_stderr,
747 "pop_target couldn't find target %s\n",
748 current_target.to_shortname);
749 internal_error (__FILE__, __LINE__, "failed internal consistency check");
750 }
751
752 #undef MIN
753 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
754
755 /* target_read_string -- read a null terminated string, up to LEN bytes,
756 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
757 Set *STRING to a pointer to malloc'd memory containing the data; the caller
758 is responsible for freeing it. Return the number of bytes successfully
759 read. */
760
761 int
762 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
763 {
764 int tlen, origlen, offset, i;
765 char buf[4];
766 int errcode = 0;
767 char *buffer;
768 int buffer_allocated;
769 char *bufptr;
770 unsigned int nbytes_read = 0;
771
772 /* Small for testing. */
773 buffer_allocated = 4;
774 buffer = xmalloc (buffer_allocated);
775 bufptr = buffer;
776
777 origlen = len;
778
779 while (len > 0)
780 {
781 tlen = MIN (len, 4 - (memaddr & 3));
782 offset = memaddr & 3;
783
784 errcode = target_read_memory (memaddr & ~3, buf, 4);
785 if (errcode != 0)
786 {
787 /* The transfer request might have crossed the boundary to an
788 unallocated region of memory. Retry the transfer, requesting
789 a single byte. */
790 tlen = 1;
791 offset = 0;
792 errcode = target_read_memory (memaddr, buf, 1);
793 if (errcode != 0)
794 goto done;
795 }
796
797 if (bufptr - buffer + tlen > buffer_allocated)
798 {
799 unsigned int bytes;
800 bytes = bufptr - buffer;
801 buffer_allocated *= 2;
802 buffer = xrealloc (buffer, buffer_allocated);
803 bufptr = buffer + bytes;
804 }
805
806 for (i = 0; i < tlen; i++)
807 {
808 *bufptr++ = buf[i + offset];
809 if (buf[i + offset] == '\000')
810 {
811 nbytes_read += i + 1;
812 goto done;
813 }
814 }
815
816 memaddr += tlen;
817 len -= tlen;
818 nbytes_read += tlen;
819 }
820 done:
821 if (errnop != NULL)
822 *errnop = errcode;
823 if (string != NULL)
824 *string = buffer;
825 return nbytes_read;
826 }
827
828 /* Find a section containing ADDR. */
829 struct section_table *
830 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
831 {
832 struct section_table *secp;
833 for (secp = target->to_sections;
834 secp < target->to_sections_end;
835 secp++)
836 {
837 if (addr >= secp->addr && addr < secp->endaddr)
838 return secp;
839 }
840 return NULL;
841 }
842
843 /* Return non-zero when the target vector has supplied an xfer_partial
844 method and it, rather than xfer_memory, should be used. */
845 static int
846 target_xfer_partial_p (void)
847 {
848 return (target_stack != NULL
849 && target_stack->to_xfer_partial != default_xfer_partial);
850 }
851
852 static LONGEST
853 target_xfer_partial (struct target_ops *ops,
854 enum target_object object, const char *annex,
855 void *readbuf, const void *writebuf,
856 ULONGEST offset, LONGEST len)
857 {
858 LONGEST retval;
859
860 gdb_assert (ops->to_xfer_partial != NULL);
861 retval = ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
862 offset, len);
863 if (targetdebug)
864 {
865 const unsigned char *myaddr = NULL;
866
867 fprintf_unfiltered (gdb_stdlog,
868 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
869 ops->to_shortname,
870 (int) object,
871 (annex ? annex : "(null)"),
872 (long) readbuf, (long) writebuf,
873 paddr_nz (offset), paddr_d (len), paddr_d (retval));
874
875 if (readbuf)
876 myaddr = readbuf;
877 if (writebuf)
878 myaddr = writebuf;
879 if (retval > 0 && myaddr != NULL)
880 {
881 int i;
882
883 fputs_unfiltered (", bytes =", gdb_stdlog);
884 for (i = 0; i < retval; i++)
885 {
886 if ((((long) &(myaddr[i])) & 0xf) == 0)
887 {
888 if (targetdebug < 2 && i > 0)
889 {
890 fprintf_unfiltered (gdb_stdlog, " ...");
891 break;
892 }
893 fprintf_unfiltered (gdb_stdlog, "\n");
894 }
895
896 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
897 }
898 }
899
900 fputc_unfiltered ('\n', gdb_stdlog);
901 }
902 return retval;
903 }
904
905 /* Attempt a transfer all LEN bytes starting at OFFSET between the
906 inferior's KIND:ANNEX space and GDB's READBUF/WRITEBUF buffer. If
907 the transfer succeeds, return zero, otherwize the host ERRNO is
908 returned.
909
910 The inferior is formed from several layers. In the case of
911 corefiles, inf-corefile is layered above inf-exec and a request for
912 text (corefiles do not include text pages) will be first sent to
913 the core-stratum, fail, and then sent to the object-file where it
914 will succeed.
915
916 NOTE: cagney/2004-09-30:
917
918 The old code tried to use four separate mechanisms for mapping an
919 object:offset:len tuple onto an inferior and its address space: the
920 target stack; the inferior's TO_SECTIONS; solib's SO_LIST;
921 overlays.
922
923 This is stupid.
924
925 The code below is instead using a single mechanism (currently
926 strata). If that mechanism proves insufficient then re-factor it
927 implementing another singluar mechanism (for instance, a generic
928 object:annex onto inferior:object:annex say). */
929
930 static int
931 xfer_using_stratum (enum target_object object, const char *annex,
932 CORE_ADDR memaddr, int len, void *readbuf,
933 const void *writebuf)
934 {
935 LONGEST xfered;
936 struct target_ops *target;
937
938 /* Always successful. */
939 if (len == 0)
940 return 0;
941 /* Never successful. */
942 if (target_stack == NULL)
943 return EIO;
944
945 target = target_stack;
946 while (1)
947 {
948 xfered = target_xfer_partial (target, object, annex,
949 readbuf, writebuf, memaddr, len);
950 if (xfered > 0)
951 {
952 /* The partial xfer succeeded, update the counts, check that
953 the xfer hasn't finished and if it hasn't set things up
954 for the next round. */
955 len -= xfered;
956 if (len <= 0)
957 return 0;
958 target = target_stack;
959 }
960 else if (xfered < 0)
961 {
962 /* Something totally screwed up, abandon the attempt to
963 xfer. */
964 if (errno)
965 return errno;
966 else
967 return EIO;
968 }
969 else
970 {
971 /* This "stratum" didn't work, try the next one down. */
972 target = target->beneath;
973 if (target == NULL)
974 return EIO;
975 }
976 }
977 }
978
979 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
980 GDB's memory at MYADDR. Returns either 0 for success or an errno value
981 if any error occurs.
982
983 If an error occurs, no guarantee is made about the contents of the data at
984 MYADDR. In particular, the caller should not depend upon partial reads
985 filling the buffer with good data. There is no way for the caller to know
986 how much good data might have been transfered anyway. Callers that can
987 deal with partial reads should call target_read_memory_partial. */
988
989 int
990 target_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
991 {
992 if (target_xfer_partial_p ())
993 return xfer_using_stratum (TARGET_OBJECT_MEMORY, NULL,
994 memaddr, len, myaddr, NULL);
995 else
996 return target_xfer_memory (memaddr, myaddr, len, 0);
997 }
998
999 int
1000 target_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
1001 {
1002 if (target_xfer_partial_p ())
1003 return xfer_using_stratum (TARGET_OBJECT_MEMORY, NULL,
1004 memaddr, len, NULL, myaddr);
1005 else
1006 return target_xfer_memory (memaddr, myaddr, len, 1);
1007 }
1008
1009 static int trust_readonly = 0;
1010
1011 /* Move memory to or from the targets. The top target gets priority;
1012 if it cannot handle it, it is offered to the next one down, etc.
1013
1014 Result is -1 on error, or the number of bytes transfered. */
1015
1016 int
1017 do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
1018 struct mem_attrib *attrib)
1019 {
1020 int res;
1021 int done = 0;
1022 struct target_ops *t;
1023
1024 /* Zero length requests are ok and require no work. */
1025 if (len == 0)
1026 return 0;
1027
1028 /* to_xfer_memory is not guaranteed to set errno, even when it returns
1029 0. */
1030 errno = 0;
1031
1032 if (!write && trust_readonly)
1033 {
1034 struct section_table *secp;
1035 /* User-settable option, "trust-readonly-sections". If true,
1036 then memory from any SEC_READONLY bfd section may be read
1037 directly from the bfd file. */
1038 secp = target_section_by_addr (&current_target, memaddr);
1039 if (secp != NULL
1040 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1041 & SEC_READONLY))
1042 return xfer_memory (memaddr, myaddr, len, 0, attrib, &current_target);
1043 }
1044
1045 /* The quick case is that the top target can handle the transfer. */
1046 res = current_target.to_xfer_memory
1047 (memaddr, myaddr, len, write, attrib, &current_target);
1048
1049 /* If res <= 0 then we call it again in the loop. Ah well. */
1050 if (res <= 0)
1051 {
1052 for (t = target_stack; t != NULL; t = t->beneath)
1053 {
1054 if (!t->to_has_memory)
1055 continue;
1056
1057 res = t->to_xfer_memory (memaddr, myaddr, len, write, attrib, t);
1058 if (res > 0)
1059 break; /* Handled all or part of xfer */
1060 if (t->to_has_all_memory)
1061 break;
1062 }
1063
1064 if (res <= 0)
1065 return -1;
1066 }
1067
1068 return res;
1069 }
1070
1071
1072 /* Perform a memory transfer. Iterate until the entire region has
1073 been transfered.
1074
1075 Result is 0 or errno value. */
1076
1077 static int
1078 target_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write)
1079 {
1080 int res;
1081 int reg_len;
1082 struct mem_region *region;
1083
1084 /* Zero length requests are ok and require no work. */
1085 if (len == 0)
1086 {
1087 return 0;
1088 }
1089
1090 while (len > 0)
1091 {
1092 region = lookup_mem_region(memaddr);
1093 if (memaddr + len < region->hi)
1094 reg_len = len;
1095 else
1096 reg_len = region->hi - memaddr;
1097
1098 switch (region->attrib.mode)
1099 {
1100 case MEM_RO:
1101 if (write)
1102 return EIO;
1103 break;
1104
1105 case MEM_WO:
1106 if (!write)
1107 return EIO;
1108 break;
1109 }
1110
1111 while (reg_len > 0)
1112 {
1113 if (region->attrib.cache)
1114 res = dcache_xfer_memory (target_dcache, memaddr, myaddr,
1115 reg_len, write);
1116 else
1117 res = do_xfer_memory (memaddr, myaddr, reg_len, write,
1118 &region->attrib);
1119
1120 if (res <= 0)
1121 {
1122 /* If this address is for nonexistent memory, read zeros
1123 if reading, or do nothing if writing. Return
1124 error. */
1125 if (!write)
1126 memset (myaddr, 0, len);
1127 if (errno == 0)
1128 return EIO;
1129 else
1130 return errno;
1131 }
1132
1133 memaddr += res;
1134 myaddr += res;
1135 len -= res;
1136 reg_len -= res;
1137 }
1138 }
1139
1140 return 0; /* We managed to cover it all somehow. */
1141 }
1142
1143
1144 /* Perform a partial memory transfer.
1145
1146 Result is -1 on error, or the number of bytes transfered. */
1147
1148 static int
1149 target_xfer_memory_partial (CORE_ADDR memaddr, char *myaddr, int len,
1150 int write_p, int *err)
1151 {
1152 int res;
1153 int reg_len;
1154 struct mem_region *region;
1155
1156 /* Zero length requests are ok and require no work. */
1157 if (len == 0)
1158 {
1159 *err = 0;
1160 return 0;
1161 }
1162
1163 region = lookup_mem_region(memaddr);
1164 if (memaddr + len < region->hi)
1165 reg_len = len;
1166 else
1167 reg_len = region->hi - memaddr;
1168
1169 switch (region->attrib.mode)
1170 {
1171 case MEM_RO:
1172 if (write_p)
1173 {
1174 *err = EIO;
1175 return -1;
1176 }
1177 break;
1178
1179 case MEM_WO:
1180 if (write_p)
1181 {
1182 *err = EIO;
1183 return -1;
1184 }
1185 break;
1186 }
1187
1188 if (region->attrib.cache)
1189 res = dcache_xfer_memory (target_dcache, memaddr, myaddr,
1190 reg_len, write_p);
1191 else
1192 res = do_xfer_memory (memaddr, myaddr, reg_len, write_p,
1193 &region->attrib);
1194
1195 if (res <= 0)
1196 {
1197 if (errno != 0)
1198 *err = errno;
1199 else
1200 *err = EIO;
1201
1202 return -1;
1203 }
1204
1205 *err = 0;
1206 return res;
1207 }
1208
1209 int
1210 target_read_memory_partial (CORE_ADDR memaddr, char *buf, int len, int *err)
1211 {
1212 if (target_xfer_partial_p ())
1213 return target_xfer_partial (target_stack, TARGET_OBJECT_MEMORY, NULL,
1214 buf, NULL, memaddr, len);
1215 else
1216 return target_xfer_memory_partial (memaddr, buf, len, 0, err);
1217 }
1218
1219 int
1220 target_write_memory_partial (CORE_ADDR memaddr, char *buf, int len, int *err)
1221 {
1222 if (target_xfer_partial_p ())
1223 return target_xfer_partial (target_stack, TARGET_OBJECT_MEMORY, NULL,
1224 NULL, buf, memaddr, len);
1225 else
1226 return target_xfer_memory_partial (memaddr, buf, len, 1, err);
1227 }
1228
1229 /* More generic transfers. */
1230
1231 static LONGEST
1232 default_xfer_partial (struct target_ops *ops, enum target_object object,
1233 const char *annex, void *readbuf,
1234 const void *writebuf, ULONGEST offset, LONGEST len)
1235 {
1236 if (object == TARGET_OBJECT_MEMORY
1237 && ops->to_xfer_memory != NULL)
1238 /* If available, fall back to the target's "to_xfer_memory"
1239 method. */
1240 {
1241 int xfered = -1;
1242 errno = 0;
1243 if (writebuf != NULL)
1244 {
1245 void *buffer = xmalloc (len);
1246 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1247 memcpy (buffer, writebuf, len);
1248 xfered = ops->to_xfer_memory (offset, buffer, len, 1/*write*/, NULL,
1249 ops);
1250 do_cleanups (cleanup);
1251 }
1252 if (readbuf != NULL)
1253 xfered = ops->to_xfer_memory (offset, readbuf, len, 0/*read*/, NULL,
1254 ops);
1255 if (xfered > 0)
1256 return xfered;
1257 else if (xfered == 0 && errno == 0)
1258 /* "to_xfer_memory" uses 0, cross checked against ERRNO as one
1259 indication of an error. */
1260 return 0;
1261 else
1262 return -1;
1263 }
1264 else if (ops->beneath != NULL)
1265 return target_xfer_partial (ops->beneath, object, annex,
1266 readbuf, writebuf, offset, len);
1267 else
1268 return -1;
1269 }
1270
1271 /* Target vector read/write partial wrapper functions.
1272
1273 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1274 (inbuf, outbuf)", instead of separate read/write methods, make life
1275 easier. */
1276
1277 LONGEST
1278 target_read_partial (struct target_ops *ops,
1279 enum target_object object,
1280 const char *annex, void *buf,
1281 ULONGEST offset, LONGEST len)
1282 {
1283 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1284 }
1285
1286 LONGEST
1287 target_write_partial (struct target_ops *ops,
1288 enum target_object object,
1289 const char *annex, const void *buf,
1290 ULONGEST offset, LONGEST len)
1291 {
1292 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1293 }
1294
1295 /* Wrappers to perform the full transfer. */
1296 LONGEST
1297 target_read (struct target_ops *ops,
1298 enum target_object object,
1299 const char *annex, void *buf,
1300 ULONGEST offset, LONGEST len)
1301 {
1302 LONGEST xfered = 0;
1303 while (xfered < len)
1304 {
1305 LONGEST xfer = target_read_partial (ops, object, annex,
1306 (bfd_byte *) buf + xfered,
1307 offset + xfered, len - xfered);
1308 /* Call an observer, notifying them of the xfer progress? */
1309 if (xfer <= 0)
1310 /* Call memory_error? */
1311 return -1;
1312 xfered += xfer;
1313 QUIT;
1314 }
1315 return len;
1316 }
1317
1318 LONGEST
1319 target_write (struct target_ops *ops,
1320 enum target_object object,
1321 const char *annex, const void *buf,
1322 ULONGEST offset, LONGEST len)
1323 {
1324 LONGEST xfered = 0;
1325 while (xfered < len)
1326 {
1327 LONGEST xfer = target_write_partial (ops, object, annex,
1328 (bfd_byte *) buf + xfered,
1329 offset + xfered, len - xfered);
1330 /* Call an observer, notifying them of the xfer progress? */
1331 if (xfer <= 0)
1332 /* Call memory_error? */
1333 return -1;
1334 xfered += xfer;
1335 QUIT;
1336 }
1337 return len;
1338 }
1339
1340 /* Memory transfer methods. */
1341
1342 void
1343 get_target_memory (struct target_ops *ops, CORE_ADDR addr, void *buf,
1344 LONGEST len)
1345 {
1346 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1347 != len)
1348 memory_error (EIO, addr);
1349 }
1350
1351 ULONGEST
1352 get_target_memory_unsigned (struct target_ops *ops,
1353 CORE_ADDR addr, int len)
1354 {
1355 char buf[sizeof (ULONGEST)];
1356
1357 gdb_assert (len <= sizeof (buf));
1358 get_target_memory (ops, addr, buf, len);
1359 return extract_unsigned_integer (buf, len);
1360 }
1361
1362 static void
1363 target_info (char *args, int from_tty)
1364 {
1365 struct target_ops *t;
1366 int has_all_mem = 0;
1367
1368 if (symfile_objfile != NULL)
1369 printf_unfiltered ("Symbols from \"%s\".\n", symfile_objfile->name);
1370
1371 for (t = target_stack; t != NULL; t = t->beneath)
1372 {
1373 if (!t->to_has_memory)
1374 continue;
1375
1376 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1377 continue;
1378 if (has_all_mem)
1379 printf_unfiltered ("\tWhile running this, GDB does not access memory from...\n");
1380 printf_unfiltered ("%s:\n", t->to_longname);
1381 (t->to_files_info) (t);
1382 has_all_mem = t->to_has_all_memory;
1383 }
1384 }
1385
1386 /* This is to be called by the open routine before it does
1387 anything. */
1388
1389 void
1390 target_preopen (int from_tty)
1391 {
1392 dont_repeat ();
1393
1394 if (target_has_execution)
1395 {
1396 if (!from_tty
1397 || query ("A program is being debugged already. Kill it? "))
1398 target_kill ();
1399 else
1400 error ("Program not killed.");
1401 }
1402
1403 /* Calling target_kill may remove the target from the stack. But if
1404 it doesn't (which seems like a win for UDI), remove it now. */
1405
1406 if (target_has_execution)
1407 pop_target ();
1408 }
1409
1410 /* Detach a target after doing deferred register stores. */
1411
1412 void
1413 target_detach (char *args, int from_tty)
1414 {
1415 (current_target.to_detach) (args, from_tty);
1416 }
1417
1418 void
1419 target_disconnect (char *args, int from_tty)
1420 {
1421 (current_target.to_disconnect) (args, from_tty);
1422 }
1423
1424 void
1425 target_link (char *modname, CORE_ADDR *t_reloc)
1426 {
1427 if (DEPRECATED_STREQ (current_target.to_shortname, "rombug"))
1428 {
1429 (current_target.to_lookup_symbol) (modname, t_reloc);
1430 if (*t_reloc == 0)
1431 error ("Unable to link to %s and get relocation in rombug", modname);
1432 }
1433 else
1434 *t_reloc = (CORE_ADDR) -1;
1435 }
1436
1437 int
1438 target_async_mask (int mask)
1439 {
1440 int saved_async_masked_status = target_async_mask_value;
1441 target_async_mask_value = mask;
1442 return saved_async_masked_status;
1443 }
1444
1445 /* Look through the list of possible targets for a target that can
1446 execute a run or attach command without any other data. This is
1447 used to locate the default process stratum.
1448
1449 Result is always valid (error() is called for errors). */
1450
1451 static struct target_ops *
1452 find_default_run_target (char *do_mesg)
1453 {
1454 struct target_ops **t;
1455 struct target_ops *runable = NULL;
1456 int count;
1457
1458 count = 0;
1459
1460 for (t = target_structs; t < target_structs + target_struct_size;
1461 ++t)
1462 {
1463 if ((*t)->to_can_run && target_can_run (*t))
1464 {
1465 runable = *t;
1466 ++count;
1467 }
1468 }
1469
1470 if (count != 1)
1471 error ("Don't know how to %s. Try \"help target\".", do_mesg);
1472
1473 return runable;
1474 }
1475
1476 void
1477 find_default_attach (char *args, int from_tty)
1478 {
1479 struct target_ops *t;
1480
1481 t = find_default_run_target ("attach");
1482 (t->to_attach) (args, from_tty);
1483 return;
1484 }
1485
1486 void
1487 find_default_create_inferior (char *exec_file, char *allargs, char **env,
1488 int from_tty)
1489 {
1490 struct target_ops *t;
1491
1492 t = find_default_run_target ("run");
1493 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
1494 return;
1495 }
1496
1497 static int
1498 default_region_size_ok_for_hw_watchpoint (int byte_count)
1499 {
1500 return (byte_count <= TYPE_LENGTH (builtin_type_void_data_ptr));
1501 }
1502
1503 static int
1504 return_zero (void)
1505 {
1506 return 0;
1507 }
1508
1509 static int
1510 return_one (void)
1511 {
1512 return 1;
1513 }
1514
1515 static int
1516 return_minus_one (void)
1517 {
1518 return -1;
1519 }
1520
1521 /*
1522 * Resize the to_sections pointer. Also make sure that anyone that
1523 * was holding on to an old value of it gets updated.
1524 * Returns the old size.
1525 */
1526
1527 int
1528 target_resize_to_sections (struct target_ops *target, int num_added)
1529 {
1530 struct target_ops **t;
1531 struct section_table *old_value;
1532 int old_count;
1533
1534 old_value = target->to_sections;
1535
1536 if (target->to_sections)
1537 {
1538 old_count = target->to_sections_end - target->to_sections;
1539 target->to_sections = (struct section_table *)
1540 xrealloc ((char *) target->to_sections,
1541 (sizeof (struct section_table)) * (num_added + old_count));
1542 }
1543 else
1544 {
1545 old_count = 0;
1546 target->to_sections = (struct section_table *)
1547 xmalloc ((sizeof (struct section_table)) * num_added);
1548 }
1549 target->to_sections_end = target->to_sections + (num_added + old_count);
1550
1551 /* Check to see if anyone else was pointing to this structure.
1552 If old_value was null, then no one was. */
1553
1554 if (old_value)
1555 {
1556 for (t = target_structs; t < target_structs + target_struct_size;
1557 ++t)
1558 {
1559 if ((*t)->to_sections == old_value)
1560 {
1561 (*t)->to_sections = target->to_sections;
1562 (*t)->to_sections_end = target->to_sections_end;
1563 }
1564 }
1565 /* There is a flattened view of the target stack in current_target,
1566 so its to_sections pointer might also need updating. */
1567 if (current_target.to_sections == old_value)
1568 {
1569 current_target.to_sections = target->to_sections;
1570 current_target.to_sections_end = target->to_sections_end;
1571 }
1572 }
1573
1574 return old_count;
1575
1576 }
1577
1578 /* Remove all target sections taken from ABFD.
1579
1580 Scan the current target stack for targets whose section tables
1581 refer to sections from BFD, and remove those sections. We use this
1582 when we notice that the inferior has unloaded a shared object, for
1583 example. */
1584 void
1585 remove_target_sections (bfd *abfd)
1586 {
1587 struct target_ops **t;
1588
1589 for (t = target_structs; t < target_structs + target_struct_size; t++)
1590 {
1591 struct section_table *src, *dest;
1592
1593 dest = (*t)->to_sections;
1594 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
1595 if (src->bfd != abfd)
1596 {
1597 /* Keep this section. */
1598 if (dest < src) *dest = *src;
1599 dest++;
1600 }
1601
1602 /* If we've dropped any sections, resize the section table. */
1603 if (dest < src)
1604 target_resize_to_sections (*t, dest - src);
1605 }
1606 }
1607
1608
1609
1610
1611 /* Find a single runnable target in the stack and return it. If for
1612 some reason there is more than one, return NULL. */
1613
1614 struct target_ops *
1615 find_run_target (void)
1616 {
1617 struct target_ops **t;
1618 struct target_ops *runable = NULL;
1619 int count;
1620
1621 count = 0;
1622
1623 for (t = target_structs; t < target_structs + target_struct_size; ++t)
1624 {
1625 if ((*t)->to_can_run && target_can_run (*t))
1626 {
1627 runable = *t;
1628 ++count;
1629 }
1630 }
1631
1632 return (count == 1 ? runable : NULL);
1633 }
1634
1635 /* Find a single core_stratum target in the list of targets and return it.
1636 If for some reason there is more than one, return NULL. */
1637
1638 struct target_ops *
1639 find_core_target (void)
1640 {
1641 struct target_ops **t;
1642 struct target_ops *runable = NULL;
1643 int count;
1644
1645 count = 0;
1646
1647 for (t = target_structs; t < target_structs + target_struct_size;
1648 ++t)
1649 {
1650 if ((*t)->to_stratum == core_stratum)
1651 {
1652 runable = *t;
1653 ++count;
1654 }
1655 }
1656
1657 return (count == 1 ? runable : NULL);
1658 }
1659
1660 /*
1661 * Find the next target down the stack from the specified target.
1662 */
1663
1664 struct target_ops *
1665 find_target_beneath (struct target_ops *t)
1666 {
1667 return t->beneath;
1668 }
1669
1670 \f
1671 /* The inferior process has died. Long live the inferior! */
1672
1673 void
1674 generic_mourn_inferior (void)
1675 {
1676 extern int show_breakpoint_hit_counts;
1677
1678 inferior_ptid = null_ptid;
1679 attach_flag = 0;
1680 breakpoint_init_inferior (inf_exited);
1681 registers_changed ();
1682
1683 reopen_exec_file ();
1684 reinit_frame_cache ();
1685
1686 /* It is confusing to the user for ignore counts to stick around
1687 from previous runs of the inferior. So clear them. */
1688 /* However, it is more confusing for the ignore counts to disappear when
1689 using hit counts. So don't clear them if we're counting hits. */
1690 if (!show_breakpoint_hit_counts)
1691 breakpoint_clear_ignore_counts ();
1692
1693 if (deprecated_detach_hook)
1694 deprecated_detach_hook ();
1695 }
1696 \f
1697 /* Helper function for child_wait and the Lynx derivatives of child_wait.
1698 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
1699 translation of that in OURSTATUS. */
1700 void
1701 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
1702 {
1703 #ifdef CHILD_SPECIAL_WAITSTATUS
1704 /* CHILD_SPECIAL_WAITSTATUS should return nonzero and set *OURSTATUS
1705 if it wants to deal with hoststatus. */
1706 if (CHILD_SPECIAL_WAITSTATUS (ourstatus, hoststatus))
1707 return;
1708 #endif
1709
1710 if (WIFEXITED (hoststatus))
1711 {
1712 ourstatus->kind = TARGET_WAITKIND_EXITED;
1713 ourstatus->value.integer = WEXITSTATUS (hoststatus);
1714 }
1715 else if (!WIFSTOPPED (hoststatus))
1716 {
1717 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
1718 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
1719 }
1720 else
1721 {
1722 ourstatus->kind = TARGET_WAITKIND_STOPPED;
1723 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
1724 }
1725 }
1726 \f
1727 /* Returns zero to leave the inferior alone, one to interrupt it. */
1728 int (*target_activity_function) (void);
1729 int target_activity_fd;
1730 \f
1731 /* Convert a normal process ID to a string. Returns the string in a static
1732 buffer. */
1733
1734 char *
1735 normal_pid_to_str (ptid_t ptid)
1736 {
1737 static char buf[30];
1738
1739 sprintf (buf, "process %d", PIDGET (ptid));
1740 return buf;
1741 }
1742
1743 /* Error-catcher for target_find_memory_regions */
1744 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
1745 {
1746 error ("No target.");
1747 return 0;
1748 }
1749
1750 /* Error-catcher for target_make_corefile_notes */
1751 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
1752 {
1753 error ("No target.");
1754 return NULL;
1755 }
1756
1757 /* Set up the handful of non-empty slots needed by the dummy target
1758 vector. */
1759
1760 static void
1761 init_dummy_target (void)
1762 {
1763 dummy_target.to_shortname = "None";
1764 dummy_target.to_longname = "None";
1765 dummy_target.to_doc = "";
1766 dummy_target.to_attach = find_default_attach;
1767 dummy_target.to_create_inferior = find_default_create_inferior;
1768 dummy_target.to_pid_to_str = normal_pid_to_str;
1769 dummy_target.to_stratum = dummy_stratum;
1770 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
1771 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
1772 dummy_target.to_xfer_partial = default_xfer_partial;
1773 dummy_target.to_magic = OPS_MAGIC;
1774 }
1775 \f
1776
1777 static struct target_ops debug_target;
1778
1779 static void
1780 debug_to_open (char *args, int from_tty)
1781 {
1782 debug_target.to_open (args, from_tty);
1783
1784 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
1785 }
1786
1787 static void
1788 debug_to_close (int quitting)
1789 {
1790 target_close (&debug_target, quitting);
1791 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
1792 }
1793
1794 void
1795 target_close (struct target_ops *targ, int quitting)
1796 {
1797 if (targ->to_xclose != NULL)
1798 targ->to_xclose (targ, quitting);
1799 else if (targ->to_close != NULL)
1800 targ->to_close (quitting);
1801 }
1802
1803 static void
1804 debug_to_attach (char *args, int from_tty)
1805 {
1806 debug_target.to_attach (args, from_tty);
1807
1808 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
1809 }
1810
1811
1812 static void
1813 debug_to_post_attach (int pid)
1814 {
1815 debug_target.to_post_attach (pid);
1816
1817 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
1818 }
1819
1820 static void
1821 debug_to_detach (char *args, int from_tty)
1822 {
1823 debug_target.to_detach (args, from_tty);
1824
1825 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
1826 }
1827
1828 static void
1829 debug_to_disconnect (char *args, int from_tty)
1830 {
1831 debug_target.to_disconnect (args, from_tty);
1832
1833 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1834 args, from_tty);
1835 }
1836
1837 static void
1838 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
1839 {
1840 debug_target.to_resume (ptid, step, siggnal);
1841
1842 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
1843 step ? "step" : "continue",
1844 target_signal_to_name (siggnal));
1845 }
1846
1847 static ptid_t
1848 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
1849 {
1850 ptid_t retval;
1851
1852 retval = debug_target.to_wait (ptid, status);
1853
1854 fprintf_unfiltered (gdb_stdlog,
1855 "target_wait (%d, status) = %d, ", PIDGET (ptid),
1856 PIDGET (retval));
1857 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
1858 switch (status->kind)
1859 {
1860 case TARGET_WAITKIND_EXITED:
1861 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
1862 status->value.integer);
1863 break;
1864 case TARGET_WAITKIND_STOPPED:
1865 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
1866 target_signal_to_name (status->value.sig));
1867 break;
1868 case TARGET_WAITKIND_SIGNALLED:
1869 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
1870 target_signal_to_name (status->value.sig));
1871 break;
1872 case TARGET_WAITKIND_LOADED:
1873 fprintf_unfiltered (gdb_stdlog, "loaded\n");
1874 break;
1875 case TARGET_WAITKIND_FORKED:
1876 fprintf_unfiltered (gdb_stdlog, "forked\n");
1877 break;
1878 case TARGET_WAITKIND_VFORKED:
1879 fprintf_unfiltered (gdb_stdlog, "vforked\n");
1880 break;
1881 case TARGET_WAITKIND_EXECD:
1882 fprintf_unfiltered (gdb_stdlog, "execd\n");
1883 break;
1884 case TARGET_WAITKIND_SPURIOUS:
1885 fprintf_unfiltered (gdb_stdlog, "spurious\n");
1886 break;
1887 default:
1888 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
1889 break;
1890 }
1891
1892 return retval;
1893 }
1894
1895 static void
1896 debug_print_register (const char * func, int regno)
1897 {
1898 fprintf_unfiltered (gdb_stdlog, "%s ", func);
1899 if (regno >= 0 && regno < NUM_REGS + NUM_PSEUDO_REGS
1900 && REGISTER_NAME (regno) != NULL && REGISTER_NAME (regno)[0] != '\0')
1901 fprintf_unfiltered (gdb_stdlog, "(%s)", REGISTER_NAME (regno));
1902 else
1903 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
1904 if (regno >= 0)
1905 {
1906 int i;
1907 unsigned char buf[MAX_REGISTER_SIZE];
1908 deprecated_read_register_gen (regno, buf);
1909 fprintf_unfiltered (gdb_stdlog, " = ");
1910 for (i = 0; i < register_size (current_gdbarch, regno); i++)
1911 {
1912 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1913 }
1914 if (register_size (current_gdbarch, regno) <= sizeof (LONGEST))
1915 {
1916 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
1917 paddr_nz (read_register (regno)),
1918 paddr_d (read_register (regno)));
1919 }
1920 }
1921 fprintf_unfiltered (gdb_stdlog, "\n");
1922 }
1923
1924 static void
1925 debug_to_fetch_registers (int regno)
1926 {
1927 debug_target.to_fetch_registers (regno);
1928 debug_print_register ("target_fetch_registers", regno);
1929 }
1930
1931 static void
1932 debug_to_store_registers (int regno)
1933 {
1934 debug_target.to_store_registers (regno);
1935 debug_print_register ("target_store_registers", regno);
1936 fprintf_unfiltered (gdb_stdlog, "\n");
1937 }
1938
1939 static void
1940 debug_to_prepare_to_store (void)
1941 {
1942 debug_target.to_prepare_to_store ();
1943
1944 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
1945 }
1946
1947 static int
1948 debug_to_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
1949 struct mem_attrib *attrib,
1950 struct target_ops *target)
1951 {
1952 int retval;
1953
1954 retval = debug_target.to_xfer_memory (memaddr, myaddr, len, write,
1955 attrib, target);
1956
1957 fprintf_unfiltered (gdb_stdlog,
1958 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
1959 (unsigned int) memaddr, /* possable truncate long long */
1960 len, write ? "write" : "read", retval);
1961
1962 if (retval > 0)
1963 {
1964 int i;
1965
1966 fputs_unfiltered (", bytes =", gdb_stdlog);
1967 for (i = 0; i < retval; i++)
1968 {
1969 if ((((long) &(myaddr[i])) & 0xf) == 0)
1970 {
1971 if (targetdebug < 2 && i > 0)
1972 {
1973 fprintf_unfiltered (gdb_stdlog, " ...");
1974 break;
1975 }
1976 fprintf_unfiltered (gdb_stdlog, "\n");
1977 }
1978
1979 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1980 }
1981 }
1982
1983 fputc_unfiltered ('\n', gdb_stdlog);
1984
1985 return retval;
1986 }
1987
1988 static void
1989 debug_to_files_info (struct target_ops *target)
1990 {
1991 debug_target.to_files_info (target);
1992
1993 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
1994 }
1995
1996 static int
1997 debug_to_insert_breakpoint (CORE_ADDR addr, char *save)
1998 {
1999 int retval;
2000
2001 retval = debug_target.to_insert_breakpoint (addr, save);
2002
2003 fprintf_unfiltered (gdb_stdlog,
2004 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2005 (unsigned long) addr,
2006 (unsigned long) retval);
2007 return retval;
2008 }
2009
2010 static int
2011 debug_to_remove_breakpoint (CORE_ADDR addr, char *save)
2012 {
2013 int retval;
2014
2015 retval = debug_target.to_remove_breakpoint (addr, save);
2016
2017 fprintf_unfiltered (gdb_stdlog,
2018 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2019 (unsigned long) addr,
2020 (unsigned long) retval);
2021 return retval;
2022 }
2023
2024 static int
2025 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2026 {
2027 int retval;
2028
2029 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2030
2031 fprintf_unfiltered (gdb_stdlog,
2032 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2033 (unsigned long) type,
2034 (unsigned long) cnt,
2035 (unsigned long) from_tty,
2036 (unsigned long) retval);
2037 return retval;
2038 }
2039
2040 static int
2041 debug_to_region_size_ok_for_hw_watchpoint (int byte_count)
2042 {
2043 CORE_ADDR retval;
2044
2045 retval = debug_target.to_region_size_ok_for_hw_watchpoint (byte_count);
2046
2047 fprintf_unfiltered (gdb_stdlog,
2048 "TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT (%ld) = 0x%lx\n",
2049 (unsigned long) byte_count,
2050 (unsigned long) retval);
2051 return retval;
2052 }
2053
2054 static int
2055 debug_to_stopped_by_watchpoint (void)
2056 {
2057 int retval;
2058
2059 retval = debug_target.to_stopped_by_watchpoint ();
2060
2061 fprintf_unfiltered (gdb_stdlog,
2062 "STOPPED_BY_WATCHPOINT () = %ld\n",
2063 (unsigned long) retval);
2064 return retval;
2065 }
2066
2067 static CORE_ADDR
2068 debug_to_stopped_data_address (void)
2069 {
2070 CORE_ADDR retval;
2071
2072 retval = debug_target.to_stopped_data_address ();
2073
2074 fprintf_unfiltered (gdb_stdlog,
2075 "target_stopped_data_address () = 0x%lx\n",
2076 (unsigned long) retval);
2077 return retval;
2078 }
2079
2080 static int
2081 debug_to_insert_hw_breakpoint (CORE_ADDR addr, char *save)
2082 {
2083 int retval;
2084
2085 retval = debug_target.to_insert_hw_breakpoint (addr, save);
2086
2087 fprintf_unfiltered (gdb_stdlog,
2088 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2089 (unsigned long) addr,
2090 (unsigned long) retval);
2091 return retval;
2092 }
2093
2094 static int
2095 debug_to_remove_hw_breakpoint (CORE_ADDR addr, char *save)
2096 {
2097 int retval;
2098
2099 retval = debug_target.to_remove_hw_breakpoint (addr, save);
2100
2101 fprintf_unfiltered (gdb_stdlog,
2102 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2103 (unsigned long) addr,
2104 (unsigned long) retval);
2105 return retval;
2106 }
2107
2108 static int
2109 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2110 {
2111 int retval;
2112
2113 retval = debug_target.to_insert_watchpoint (addr, len, type);
2114
2115 fprintf_unfiltered (gdb_stdlog,
2116 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2117 (unsigned long) addr, len, type, (unsigned long) retval);
2118 return retval;
2119 }
2120
2121 static int
2122 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2123 {
2124 int retval;
2125
2126 retval = debug_target.to_insert_watchpoint (addr, len, type);
2127
2128 fprintf_unfiltered (gdb_stdlog,
2129 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2130 (unsigned long) addr, len, type, (unsigned long) retval);
2131 return retval;
2132 }
2133
2134 static void
2135 debug_to_terminal_init (void)
2136 {
2137 debug_target.to_terminal_init ();
2138
2139 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2140 }
2141
2142 static void
2143 debug_to_terminal_inferior (void)
2144 {
2145 debug_target.to_terminal_inferior ();
2146
2147 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2148 }
2149
2150 static void
2151 debug_to_terminal_ours_for_output (void)
2152 {
2153 debug_target.to_terminal_ours_for_output ();
2154
2155 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2156 }
2157
2158 static void
2159 debug_to_terminal_ours (void)
2160 {
2161 debug_target.to_terminal_ours ();
2162
2163 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2164 }
2165
2166 static void
2167 debug_to_terminal_save_ours (void)
2168 {
2169 debug_target.to_terminal_save_ours ();
2170
2171 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2172 }
2173
2174 static void
2175 debug_to_terminal_info (char *arg, int from_tty)
2176 {
2177 debug_target.to_terminal_info (arg, from_tty);
2178
2179 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2180 from_tty);
2181 }
2182
2183 static void
2184 debug_to_kill (void)
2185 {
2186 debug_target.to_kill ();
2187
2188 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2189 }
2190
2191 static void
2192 debug_to_load (char *args, int from_tty)
2193 {
2194 debug_target.to_load (args, from_tty);
2195
2196 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2197 }
2198
2199 static int
2200 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2201 {
2202 int retval;
2203
2204 retval = debug_target.to_lookup_symbol (name, addrp);
2205
2206 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2207
2208 return retval;
2209 }
2210
2211 static void
2212 debug_to_create_inferior (char *exec_file, char *args, char **env,
2213 int from_tty)
2214 {
2215 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2216
2217 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2218 exec_file, args, from_tty);
2219 }
2220
2221 static void
2222 debug_to_post_startup_inferior (ptid_t ptid)
2223 {
2224 debug_target.to_post_startup_inferior (ptid);
2225
2226 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2227 PIDGET (ptid));
2228 }
2229
2230 static void
2231 debug_to_acknowledge_created_inferior (int pid)
2232 {
2233 debug_target.to_acknowledge_created_inferior (pid);
2234
2235 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2236 pid);
2237 }
2238
2239 static int
2240 debug_to_insert_fork_catchpoint (int pid)
2241 {
2242 int retval;
2243
2244 retval = debug_target.to_insert_fork_catchpoint (pid);
2245
2246 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
2247 pid, retval);
2248
2249 return retval;
2250 }
2251
2252 static int
2253 debug_to_remove_fork_catchpoint (int pid)
2254 {
2255 int retval;
2256
2257 retval = debug_target.to_remove_fork_catchpoint (pid);
2258
2259 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2260 pid, retval);
2261
2262 return retval;
2263 }
2264
2265 static int
2266 debug_to_insert_vfork_catchpoint (int pid)
2267 {
2268 int retval;
2269
2270 retval = debug_target.to_insert_vfork_catchpoint (pid);
2271
2272 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)= %d\n",
2273 pid, retval);
2274
2275 return retval;
2276 }
2277
2278 static int
2279 debug_to_remove_vfork_catchpoint (int pid)
2280 {
2281 int retval;
2282
2283 retval = debug_target.to_remove_vfork_catchpoint (pid);
2284
2285 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2286 pid, retval);
2287
2288 return retval;
2289 }
2290
2291 static int
2292 debug_to_follow_fork (int follow_child)
2293 {
2294 int retval = debug_target.to_follow_fork (follow_child);
2295
2296 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2297 follow_child, retval);
2298
2299 return retval;
2300 }
2301
2302 static int
2303 debug_to_insert_exec_catchpoint (int pid)
2304 {
2305 int retval;
2306
2307 retval = debug_target.to_insert_exec_catchpoint (pid);
2308
2309 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
2310 pid, retval);
2311
2312 return retval;
2313 }
2314
2315 static int
2316 debug_to_remove_exec_catchpoint (int pid)
2317 {
2318 int retval;
2319
2320 retval = debug_target.to_remove_exec_catchpoint (pid);
2321
2322 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2323 pid, retval);
2324
2325 return retval;
2326 }
2327
2328 static int
2329 debug_to_reported_exec_events_per_exec_call (void)
2330 {
2331 int reported_exec_events;
2332
2333 reported_exec_events = debug_target.to_reported_exec_events_per_exec_call ();
2334
2335 fprintf_unfiltered (gdb_stdlog,
2336 "target_reported_exec_events_per_exec_call () = %d\n",
2337 reported_exec_events);
2338
2339 return reported_exec_events;
2340 }
2341
2342 static int
2343 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2344 {
2345 int has_exited;
2346
2347 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2348
2349 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2350 pid, wait_status, *exit_status, has_exited);
2351
2352 return has_exited;
2353 }
2354
2355 static void
2356 debug_to_mourn_inferior (void)
2357 {
2358 debug_target.to_mourn_inferior ();
2359
2360 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2361 }
2362
2363 static int
2364 debug_to_can_run (void)
2365 {
2366 int retval;
2367
2368 retval = debug_target.to_can_run ();
2369
2370 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2371
2372 return retval;
2373 }
2374
2375 static void
2376 debug_to_notice_signals (ptid_t ptid)
2377 {
2378 debug_target.to_notice_signals (ptid);
2379
2380 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2381 PIDGET (ptid));
2382 }
2383
2384 static int
2385 debug_to_thread_alive (ptid_t ptid)
2386 {
2387 int retval;
2388
2389 retval = debug_target.to_thread_alive (ptid);
2390
2391 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2392 PIDGET (ptid), retval);
2393
2394 return retval;
2395 }
2396
2397 static void
2398 debug_to_find_new_threads (void)
2399 {
2400 debug_target.to_find_new_threads ();
2401
2402 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2403 }
2404
2405 static void
2406 debug_to_stop (void)
2407 {
2408 debug_target.to_stop ();
2409
2410 fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
2411 }
2412
2413 static void
2414 debug_to_rcmd (char *command,
2415 struct ui_file *outbuf)
2416 {
2417 debug_target.to_rcmd (command, outbuf);
2418 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
2419 }
2420
2421 static struct symtab_and_line *
2422 debug_to_enable_exception_callback (enum exception_event_kind kind, int enable)
2423 {
2424 struct symtab_and_line *result;
2425 result = debug_target.to_enable_exception_callback (kind, enable);
2426 fprintf_unfiltered (gdb_stdlog,
2427 "target get_exception_callback_sal (%d, %d)\n",
2428 kind, enable);
2429 return result;
2430 }
2431
2432 static struct exception_event_record *
2433 debug_to_get_current_exception_event (void)
2434 {
2435 struct exception_event_record *result;
2436 result = debug_target.to_get_current_exception_event ();
2437 fprintf_unfiltered (gdb_stdlog, "target get_current_exception_event ()\n");
2438 return result;
2439 }
2440
2441 static char *
2442 debug_to_pid_to_exec_file (int pid)
2443 {
2444 char *exec_file;
2445
2446 exec_file = debug_target.to_pid_to_exec_file (pid);
2447
2448 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
2449 pid, exec_file);
2450
2451 return exec_file;
2452 }
2453
2454 static void
2455 setup_target_debug (void)
2456 {
2457 memcpy (&debug_target, &current_target, sizeof debug_target);
2458
2459 current_target.to_open = debug_to_open;
2460 current_target.to_close = debug_to_close;
2461 current_target.to_attach = debug_to_attach;
2462 current_target.to_post_attach = debug_to_post_attach;
2463 current_target.to_detach = debug_to_detach;
2464 current_target.to_disconnect = debug_to_disconnect;
2465 current_target.to_resume = debug_to_resume;
2466 current_target.to_wait = debug_to_wait;
2467 current_target.to_fetch_registers = debug_to_fetch_registers;
2468 current_target.to_store_registers = debug_to_store_registers;
2469 current_target.to_prepare_to_store = debug_to_prepare_to_store;
2470 current_target.to_xfer_memory = debug_to_xfer_memory;
2471 current_target.to_files_info = debug_to_files_info;
2472 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
2473 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
2474 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
2475 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
2476 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
2477 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
2478 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
2479 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
2480 current_target.to_stopped_data_address = debug_to_stopped_data_address;
2481 current_target.to_region_size_ok_for_hw_watchpoint = debug_to_region_size_ok_for_hw_watchpoint;
2482 current_target.to_terminal_init = debug_to_terminal_init;
2483 current_target.to_terminal_inferior = debug_to_terminal_inferior;
2484 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
2485 current_target.to_terminal_ours = debug_to_terminal_ours;
2486 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
2487 current_target.to_terminal_info = debug_to_terminal_info;
2488 current_target.to_kill = debug_to_kill;
2489 current_target.to_load = debug_to_load;
2490 current_target.to_lookup_symbol = debug_to_lookup_symbol;
2491 current_target.to_create_inferior = debug_to_create_inferior;
2492 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
2493 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
2494 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
2495 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
2496 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
2497 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
2498 current_target.to_follow_fork = debug_to_follow_fork;
2499 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
2500 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
2501 current_target.to_reported_exec_events_per_exec_call = debug_to_reported_exec_events_per_exec_call;
2502 current_target.to_has_exited = debug_to_has_exited;
2503 current_target.to_mourn_inferior = debug_to_mourn_inferior;
2504 current_target.to_can_run = debug_to_can_run;
2505 current_target.to_notice_signals = debug_to_notice_signals;
2506 current_target.to_thread_alive = debug_to_thread_alive;
2507 current_target.to_find_new_threads = debug_to_find_new_threads;
2508 current_target.to_stop = debug_to_stop;
2509 current_target.to_rcmd = debug_to_rcmd;
2510 current_target.to_enable_exception_callback = debug_to_enable_exception_callback;
2511 current_target.to_get_current_exception_event = debug_to_get_current_exception_event;
2512 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
2513
2514 }
2515 \f
2516
2517 static char targ_desc[] =
2518 "Names of targets and files being debugged.\n\
2519 Shows the entire stack of targets currently in use (including the exec-file,\n\
2520 core-file, and process, if any), as well as the symbol file name.";
2521
2522 static void
2523 do_monitor_command (char *cmd,
2524 int from_tty)
2525 {
2526 if ((current_target.to_rcmd
2527 == (void (*) (char *, struct ui_file *)) tcomplain)
2528 || (current_target.to_rcmd == debug_to_rcmd
2529 && (debug_target.to_rcmd
2530 == (void (*) (char *, struct ui_file *)) tcomplain)))
2531 {
2532 error ("\"monitor\" command not supported by this target.\n");
2533 }
2534 target_rcmd (cmd, gdb_stdtarg);
2535 }
2536
2537 void
2538 initialize_targets (void)
2539 {
2540 init_dummy_target ();
2541 push_target (&dummy_target);
2542
2543 add_info ("target", target_info, targ_desc);
2544 add_info ("files", target_info, targ_desc);
2545
2546 deprecated_add_show_from_set
2547 (add_set_cmd ("target", class_maintenance, var_zinteger,
2548 (char *) &targetdebug,
2549 "Set target debugging.\n\
2550 When non-zero, target debugging is enabled. Higher numbers are more\n\
2551 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
2552 command.", &setdebuglist),
2553 &showdebuglist);
2554
2555 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
2556 &trust_readonly, "\
2557 Set mode for reading from readonly sections.", "\
2558 Show mode for reading from readonly sections.", "\
2559 When this mode is on, memory reads from readonly sections (such as .text)\n\
2560 will be read from the object file instead of from the target. This will\n\
2561 result in significant performance improvement for remote targets.", "\
2562 Mode for reading from readonly sections is %s.",
2563 NULL, NULL,
2564 &setlist, &showlist);
2565
2566 add_com ("monitor", class_obscure, do_monitor_command,
2567 "Send a command to the remote monitor (remote targets only).");
2568
2569 target_dcache = dcache_init ();
2570 }
This page took 0.086729 seconds and 4 git commands to generate.