2010-07-07 Sergio Durigan Junior <sergiodj@linux.vnet.ibm.com>
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44 #include "exec.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static int nosymbol (char *, CORE_ADDR *);
58
59 static void tcomplain (void) ATTRIBUTE_NORETURN;
60
61 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
62
63 static int return_zero (void);
64
65 static int return_one (void);
66
67 static int return_minus_one (void);
68
69 void target_ignore (void);
70
71 static void target_command (char *, int);
72
73 static struct target_ops *find_default_run_target (char *);
74
75 static LONGEST default_xfer_partial (struct target_ops *ops,
76 enum target_object object,
77 const char *annex, gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, LONGEST len);
80
81 static LONGEST current_xfer_partial (struct target_ops *ops,
82 enum target_object object,
83 const char *annex, gdb_byte *readbuf,
84 const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 static LONGEST target_xfer_partial (struct target_ops *ops,
88 enum target_object object,
89 const char *annex,
90 void *readbuf, const void *writebuf,
91 ULONGEST offset, LONGEST len);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static void init_dummy_target (void);
97
98 static struct target_ops debug_target;
99
100 static void debug_to_open (char *, int);
101
102 static void debug_to_prepare_to_store (struct regcache *);
103
104 static void debug_to_files_info (struct target_ops *);
105
106 static int debug_to_insert_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_remove_breakpoint (struct gdbarch *,
110 struct bp_target_info *);
111
112 static int debug_to_can_use_hw_breakpoint (int, int, int);
113
114 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
118 struct bp_target_info *);
119
120 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
121 struct expression *);
122
123 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
124 struct expression *);
125
126 static int debug_to_stopped_by_watchpoint (void);
127
128 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
129
130 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
131 CORE_ADDR, CORE_ADDR, int);
132
133 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
134
135 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
136 struct expression *);
137
138 static void debug_to_terminal_init (void);
139
140 static void debug_to_terminal_inferior (void);
141
142 static void debug_to_terminal_ours_for_output (void);
143
144 static void debug_to_terminal_save_ours (void);
145
146 static void debug_to_terminal_ours (void);
147
148 static void debug_to_terminal_info (char *, int);
149
150 static void debug_to_load (char *, int);
151
152 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
153
154 static int debug_to_can_run (void);
155
156 static void debug_to_notice_signals (ptid_t);
157
158 static void debug_to_stop (ptid_t);
159
160 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
161 wierd and mysterious ways. Putting the variable here lets those
162 wierd and mysterious ways keep building while they are being
163 converted to the inferior inheritance structure. */
164 struct target_ops deprecated_child_ops;
165
166 /* Pointer to array of target architecture structures; the size of the
167 array; the current index into the array; the allocated size of the
168 array. */
169 struct target_ops **target_structs;
170 unsigned target_struct_size;
171 unsigned target_struct_index;
172 unsigned target_struct_allocsize;
173 #define DEFAULT_ALLOCSIZE 10
174
175 /* The initial current target, so that there is always a semi-valid
176 current target. */
177
178 static struct target_ops dummy_target;
179
180 /* Top of target stack. */
181
182 static struct target_ops *target_stack;
183
184 /* The target structure we are currently using to talk to a process
185 or file or whatever "inferior" we have. */
186
187 struct target_ops current_target;
188
189 /* Command list for target. */
190
191 static struct cmd_list_element *targetlist = NULL;
192
193 /* Nonzero if we should trust readonly sections from the
194 executable when reading memory. */
195
196 static int trust_readonly = 0;
197
198 /* Nonzero if we should show true memory content including
199 memory breakpoint inserted by gdb. */
200
201 static int show_memory_breakpoints = 0;
202
203 /* These globals control whether GDB attempts to perform these
204 operations; they are useful for targets that need to prevent
205 inadvertant disruption, such as in non-stop mode. */
206
207 int may_write_registers = 1;
208
209 int may_write_memory = 1;
210
211 int may_insert_breakpoints = 1;
212
213 int may_insert_tracepoints = 1;
214
215 int may_insert_fast_tracepoints = 1;
216
217 int may_stop = 1;
218
219 /* Non-zero if we want to see trace of target level stuff. */
220
221 static int targetdebug = 0;
222 static void
223 show_targetdebug (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
227 }
228
229 static void setup_target_debug (void);
230
231 /* The option sets this. */
232 static int stack_cache_enabled_p_1 = 1;
233 /* And set_stack_cache_enabled_p updates this.
234 The reason for the separation is so that we don't flush the cache for
235 on->on transitions. */
236 static int stack_cache_enabled_p = 1;
237
238 /* This is called *after* the stack-cache has been set.
239 Flush the cache for off->on and on->off transitions.
240 There's no real need to flush the cache for on->off transitions,
241 except cleanliness. */
242
243 static void
244 set_stack_cache_enabled_p (char *args, int from_tty,
245 struct cmd_list_element *c)
246 {
247 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
248 target_dcache_invalidate ();
249
250 stack_cache_enabled_p = stack_cache_enabled_p_1;
251 }
252
253 static void
254 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
255 struct cmd_list_element *c, const char *value)
256 {
257 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
258 }
259
260 /* Cache of memory operations, to speed up remote access. */
261 static DCACHE *target_dcache;
262
263 /* Invalidate the target dcache. */
264
265 void
266 target_dcache_invalidate (void)
267 {
268 dcache_invalidate (target_dcache);
269 }
270
271 /* The user just typed 'target' without the name of a target. */
272
273 static void
274 target_command (char *arg, int from_tty)
275 {
276 fputs_filtered ("Argument required (target name). Try `help target'\n",
277 gdb_stdout);
278 }
279
280 /* Default target_has_* methods for process_stratum targets. */
281
282 int
283 default_child_has_all_memory (struct target_ops *ops)
284 {
285 /* If no inferior selected, then we can't read memory here. */
286 if (ptid_equal (inferior_ptid, null_ptid))
287 return 0;
288
289 return 1;
290 }
291
292 int
293 default_child_has_memory (struct target_ops *ops)
294 {
295 /* If no inferior selected, then we can't read memory here. */
296 if (ptid_equal (inferior_ptid, null_ptid))
297 return 0;
298
299 return 1;
300 }
301
302 int
303 default_child_has_stack (struct target_ops *ops)
304 {
305 /* If no inferior selected, there's no stack. */
306 if (ptid_equal (inferior_ptid, null_ptid))
307 return 0;
308
309 return 1;
310 }
311
312 int
313 default_child_has_registers (struct target_ops *ops)
314 {
315 /* Can't read registers from no inferior. */
316 if (ptid_equal (inferior_ptid, null_ptid))
317 return 0;
318
319 return 1;
320 }
321
322 int
323 default_child_has_execution (struct target_ops *ops)
324 {
325 /* If there's no thread selected, then we can't make it run through
326 hoops. */
327 if (ptid_equal (inferior_ptid, null_ptid))
328 return 0;
329
330 return 1;
331 }
332
333
334 int
335 target_has_all_memory_1 (void)
336 {
337 struct target_ops *t;
338
339 for (t = current_target.beneath; t != NULL; t = t->beneath)
340 if (t->to_has_all_memory (t))
341 return 1;
342
343 return 0;
344 }
345
346 int
347 target_has_memory_1 (void)
348 {
349 struct target_ops *t;
350
351 for (t = current_target.beneath; t != NULL; t = t->beneath)
352 if (t->to_has_memory (t))
353 return 1;
354
355 return 0;
356 }
357
358 int
359 target_has_stack_1 (void)
360 {
361 struct target_ops *t;
362
363 for (t = current_target.beneath; t != NULL; t = t->beneath)
364 if (t->to_has_stack (t))
365 return 1;
366
367 return 0;
368 }
369
370 int
371 target_has_registers_1 (void)
372 {
373 struct target_ops *t;
374
375 for (t = current_target.beneath; t != NULL; t = t->beneath)
376 if (t->to_has_registers (t))
377 return 1;
378
379 return 0;
380 }
381
382 int
383 target_has_execution_1 (void)
384 {
385 struct target_ops *t;
386
387 for (t = current_target.beneath; t != NULL; t = t->beneath)
388 if (t->to_has_execution (t))
389 return 1;
390
391 return 0;
392 }
393
394 /* Add a possible target architecture to the list. */
395
396 void
397 add_target (struct target_ops *t)
398 {
399 /* Provide default values for all "must have" methods. */
400 if (t->to_xfer_partial == NULL)
401 t->to_xfer_partial = default_xfer_partial;
402
403 if (t->to_has_all_memory == NULL)
404 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
405
406 if (t->to_has_memory == NULL)
407 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
408
409 if (t->to_has_stack == NULL)
410 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
411
412 if (t->to_has_registers == NULL)
413 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
414
415 if (t->to_has_execution == NULL)
416 t->to_has_execution = (int (*) (struct target_ops *)) return_zero;
417
418 if (!target_structs)
419 {
420 target_struct_allocsize = DEFAULT_ALLOCSIZE;
421 target_structs = (struct target_ops **) xmalloc
422 (target_struct_allocsize * sizeof (*target_structs));
423 }
424 if (target_struct_size >= target_struct_allocsize)
425 {
426 target_struct_allocsize *= 2;
427 target_structs = (struct target_ops **)
428 xrealloc ((char *) target_structs,
429 target_struct_allocsize * sizeof (*target_structs));
430 }
431 target_structs[target_struct_size++] = t;
432
433 if (targetlist == NULL)
434 add_prefix_cmd ("target", class_run, target_command, _("\
435 Connect to a target machine or process.\n\
436 The first argument is the type or protocol of the target machine.\n\
437 Remaining arguments are interpreted by the target protocol. For more\n\
438 information on the arguments for a particular protocol, type\n\
439 `help target ' followed by the protocol name."),
440 &targetlist, "target ", 0, &cmdlist);
441 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
442 }
443
444 /* Stub functions */
445
446 void
447 target_ignore (void)
448 {
449 }
450
451 void
452 target_kill (void)
453 {
454 struct target_ops *t;
455
456 for (t = current_target.beneath; t != NULL; t = t->beneath)
457 if (t->to_kill != NULL)
458 {
459 if (targetdebug)
460 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
461
462 t->to_kill (t);
463 return;
464 }
465
466 noprocess ();
467 }
468
469 void
470 target_load (char *arg, int from_tty)
471 {
472 target_dcache_invalidate ();
473 (*current_target.to_load) (arg, from_tty);
474 }
475
476 void
477 target_create_inferior (char *exec_file, char *args,
478 char **env, int from_tty)
479 {
480 struct target_ops *t;
481
482 for (t = current_target.beneath; t != NULL; t = t->beneath)
483 {
484 if (t->to_create_inferior != NULL)
485 {
486 t->to_create_inferior (t, exec_file, args, env, from_tty);
487 if (targetdebug)
488 fprintf_unfiltered (gdb_stdlog,
489 "target_create_inferior (%s, %s, xxx, %d)\n",
490 exec_file, args, from_tty);
491 return;
492 }
493 }
494
495 internal_error (__FILE__, __LINE__,
496 "could not find a target to create inferior");
497 }
498
499 void
500 target_terminal_inferior (void)
501 {
502 /* A background resume (``run&'') should leave GDB in control of the
503 terminal. Use target_can_async_p, not target_is_async_p, since at
504 this point the target is not async yet. However, if sync_execution
505 is not set, we know it will become async prior to resume. */
506 if (target_can_async_p () && !sync_execution)
507 return;
508
509 /* If GDB is resuming the inferior in the foreground, install
510 inferior's terminal modes. */
511 (*current_target.to_terminal_inferior) ();
512 }
513
514 static int
515 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
516 struct target_ops *t)
517 {
518 errno = EIO; /* Can't read/write this location */
519 return 0; /* No bytes handled */
520 }
521
522 static void
523 tcomplain (void)
524 {
525 error (_("You can't do that when your target is `%s'"),
526 current_target.to_shortname);
527 }
528
529 void
530 noprocess (void)
531 {
532 error (_("You can't do that without a process to debug."));
533 }
534
535 static int
536 nosymbol (char *name, CORE_ADDR *addrp)
537 {
538 return 1; /* Symbol does not exist in target env */
539 }
540
541 static void
542 default_terminal_info (char *args, int from_tty)
543 {
544 printf_unfiltered (_("No saved terminal information.\n"));
545 }
546
547 /* A default implementation for the to_get_ada_task_ptid target method.
548
549 This function builds the PTID by using both LWP and TID as part of
550 the PTID lwp and tid elements. The pid used is the pid of the
551 inferior_ptid. */
552
553 static ptid_t
554 default_get_ada_task_ptid (long lwp, long tid)
555 {
556 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
557 }
558
559 /* Go through the target stack from top to bottom, copying over zero
560 entries in current_target, then filling in still empty entries. In
561 effect, we are doing class inheritance through the pushed target
562 vectors.
563
564 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
565 is currently implemented, is that it discards any knowledge of
566 which target an inherited method originally belonged to.
567 Consequently, new new target methods should instead explicitly and
568 locally search the target stack for the target that can handle the
569 request. */
570
571 static void
572 update_current_target (void)
573 {
574 struct target_ops *t;
575
576 /* First, reset current's contents. */
577 memset (&current_target, 0, sizeof (current_target));
578
579 #define INHERIT(FIELD, TARGET) \
580 if (!current_target.FIELD) \
581 current_target.FIELD = (TARGET)->FIELD
582
583 for (t = target_stack; t; t = t->beneath)
584 {
585 INHERIT (to_shortname, t);
586 INHERIT (to_longname, t);
587 INHERIT (to_doc, t);
588 /* Do not inherit to_open. */
589 /* Do not inherit to_close. */
590 /* Do not inherit to_attach. */
591 INHERIT (to_post_attach, t);
592 INHERIT (to_attach_no_wait, t);
593 /* Do not inherit to_detach. */
594 /* Do not inherit to_disconnect. */
595 /* Do not inherit to_resume. */
596 /* Do not inherit to_wait. */
597 /* Do not inherit to_fetch_registers. */
598 /* Do not inherit to_store_registers. */
599 INHERIT (to_prepare_to_store, t);
600 INHERIT (deprecated_xfer_memory, t);
601 INHERIT (to_files_info, t);
602 INHERIT (to_insert_breakpoint, t);
603 INHERIT (to_remove_breakpoint, t);
604 INHERIT (to_can_use_hw_breakpoint, t);
605 INHERIT (to_insert_hw_breakpoint, t);
606 INHERIT (to_remove_hw_breakpoint, t);
607 INHERIT (to_insert_watchpoint, t);
608 INHERIT (to_remove_watchpoint, t);
609 INHERIT (to_stopped_data_address, t);
610 INHERIT (to_have_steppable_watchpoint, t);
611 INHERIT (to_have_continuable_watchpoint, t);
612 INHERIT (to_stopped_by_watchpoint, t);
613 INHERIT (to_watchpoint_addr_within_range, t);
614 INHERIT (to_region_ok_for_hw_watchpoint, t);
615 INHERIT (to_can_accel_watchpoint_condition, t);
616 INHERIT (to_terminal_init, t);
617 INHERIT (to_terminal_inferior, t);
618 INHERIT (to_terminal_ours_for_output, t);
619 INHERIT (to_terminal_ours, t);
620 INHERIT (to_terminal_save_ours, t);
621 INHERIT (to_terminal_info, t);
622 /* Do not inherit to_kill. */
623 INHERIT (to_load, t);
624 INHERIT (to_lookup_symbol, t);
625 /* Do no inherit to_create_inferior. */
626 INHERIT (to_post_startup_inferior, t);
627 INHERIT (to_acknowledge_created_inferior, t);
628 INHERIT (to_insert_fork_catchpoint, t);
629 INHERIT (to_remove_fork_catchpoint, t);
630 INHERIT (to_insert_vfork_catchpoint, t);
631 INHERIT (to_remove_vfork_catchpoint, t);
632 /* Do not inherit to_follow_fork. */
633 INHERIT (to_insert_exec_catchpoint, t);
634 INHERIT (to_remove_exec_catchpoint, t);
635 INHERIT (to_set_syscall_catchpoint, t);
636 INHERIT (to_has_exited, t);
637 /* Do not inherit to_mourn_inferior. */
638 INHERIT (to_can_run, t);
639 INHERIT (to_notice_signals, t);
640 /* Do not inherit to_thread_alive. */
641 /* Do not inherit to_find_new_threads. */
642 /* Do not inherit to_pid_to_str. */
643 INHERIT (to_extra_thread_info, t);
644 INHERIT (to_stop, t);
645 /* Do not inherit to_xfer_partial. */
646 INHERIT (to_rcmd, t);
647 INHERIT (to_pid_to_exec_file, t);
648 INHERIT (to_log_command, t);
649 INHERIT (to_stratum, t);
650 /* Do not inherit to_has_all_memory */
651 /* Do not inherit to_has_memory */
652 /* Do not inherit to_has_stack */
653 /* Do not inherit to_has_registers */
654 /* Do not inherit to_has_execution */
655 INHERIT (to_has_thread_control, t);
656 INHERIT (to_can_async_p, t);
657 INHERIT (to_is_async_p, t);
658 INHERIT (to_async, t);
659 INHERIT (to_async_mask, t);
660 INHERIT (to_find_memory_regions, t);
661 INHERIT (to_make_corefile_notes, t);
662 INHERIT (to_get_bookmark, t);
663 INHERIT (to_goto_bookmark, t);
664 /* Do not inherit to_get_thread_local_address. */
665 INHERIT (to_can_execute_reverse, t);
666 INHERIT (to_thread_architecture, t);
667 /* Do not inherit to_read_description. */
668 INHERIT (to_get_ada_task_ptid, t);
669 /* Do not inherit to_search_memory. */
670 INHERIT (to_supports_multi_process, t);
671 INHERIT (to_trace_init, t);
672 INHERIT (to_download_tracepoint, t);
673 INHERIT (to_download_trace_state_variable, t);
674 INHERIT (to_trace_set_readonly_regions, t);
675 INHERIT (to_trace_start, t);
676 INHERIT (to_get_trace_status, t);
677 INHERIT (to_trace_stop, t);
678 INHERIT (to_trace_find, t);
679 INHERIT (to_get_trace_state_variable_value, t);
680 INHERIT (to_save_trace_data, t);
681 INHERIT (to_upload_tracepoints, t);
682 INHERIT (to_upload_trace_state_variables, t);
683 INHERIT (to_get_raw_trace_data, t);
684 INHERIT (to_set_disconnected_tracing, t);
685 INHERIT (to_set_circular_trace_buffer, t);
686 INHERIT (to_get_tib_address, t);
687 INHERIT (to_set_permissions, t);
688 INHERIT (to_static_tracepoint_marker_at, t);
689 INHERIT (to_static_tracepoint_markers_by_strid, t);
690 INHERIT (to_magic, t);
691 /* Do not inherit to_memory_map. */
692 /* Do not inherit to_flash_erase. */
693 /* Do not inherit to_flash_done. */
694 }
695 #undef INHERIT
696
697 /* Clean up a target struct so it no longer has any zero pointers in
698 it. Some entries are defaulted to a method that print an error,
699 others are hard-wired to a standard recursive default. */
700
701 #define de_fault(field, value) \
702 if (!current_target.field) \
703 current_target.field = value
704
705 de_fault (to_open,
706 (void (*) (char *, int))
707 tcomplain);
708 de_fault (to_close,
709 (void (*) (int))
710 target_ignore);
711 de_fault (to_post_attach,
712 (void (*) (int))
713 target_ignore);
714 de_fault (to_prepare_to_store,
715 (void (*) (struct regcache *))
716 noprocess);
717 de_fault (deprecated_xfer_memory,
718 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
719 nomemory);
720 de_fault (to_files_info,
721 (void (*) (struct target_ops *))
722 target_ignore);
723 de_fault (to_insert_breakpoint,
724 memory_insert_breakpoint);
725 de_fault (to_remove_breakpoint,
726 memory_remove_breakpoint);
727 de_fault (to_can_use_hw_breakpoint,
728 (int (*) (int, int, int))
729 return_zero);
730 de_fault (to_insert_hw_breakpoint,
731 (int (*) (struct gdbarch *, struct bp_target_info *))
732 return_minus_one);
733 de_fault (to_remove_hw_breakpoint,
734 (int (*) (struct gdbarch *, struct bp_target_info *))
735 return_minus_one);
736 de_fault (to_insert_watchpoint,
737 (int (*) (CORE_ADDR, int, int, struct expression *))
738 return_minus_one);
739 de_fault (to_remove_watchpoint,
740 (int (*) (CORE_ADDR, int, int, struct expression *))
741 return_minus_one);
742 de_fault (to_stopped_by_watchpoint,
743 (int (*) (void))
744 return_zero);
745 de_fault (to_stopped_data_address,
746 (int (*) (struct target_ops *, CORE_ADDR *))
747 return_zero);
748 de_fault (to_watchpoint_addr_within_range,
749 default_watchpoint_addr_within_range);
750 de_fault (to_region_ok_for_hw_watchpoint,
751 default_region_ok_for_hw_watchpoint);
752 de_fault (to_can_accel_watchpoint_condition,
753 (int (*) (CORE_ADDR, int, int, struct expression *))
754 return_zero);
755 de_fault (to_terminal_init,
756 (void (*) (void))
757 target_ignore);
758 de_fault (to_terminal_inferior,
759 (void (*) (void))
760 target_ignore);
761 de_fault (to_terminal_ours_for_output,
762 (void (*) (void))
763 target_ignore);
764 de_fault (to_terminal_ours,
765 (void (*) (void))
766 target_ignore);
767 de_fault (to_terminal_save_ours,
768 (void (*) (void))
769 target_ignore);
770 de_fault (to_terminal_info,
771 default_terminal_info);
772 de_fault (to_load,
773 (void (*) (char *, int))
774 tcomplain);
775 de_fault (to_lookup_symbol,
776 (int (*) (char *, CORE_ADDR *))
777 nosymbol);
778 de_fault (to_post_startup_inferior,
779 (void (*) (ptid_t))
780 target_ignore);
781 de_fault (to_acknowledge_created_inferior,
782 (void (*) (int))
783 target_ignore);
784 de_fault (to_insert_fork_catchpoint,
785 (void (*) (int))
786 tcomplain);
787 de_fault (to_remove_fork_catchpoint,
788 (int (*) (int))
789 tcomplain);
790 de_fault (to_insert_vfork_catchpoint,
791 (void (*) (int))
792 tcomplain);
793 de_fault (to_remove_vfork_catchpoint,
794 (int (*) (int))
795 tcomplain);
796 de_fault (to_insert_exec_catchpoint,
797 (void (*) (int))
798 tcomplain);
799 de_fault (to_remove_exec_catchpoint,
800 (int (*) (int))
801 tcomplain);
802 de_fault (to_set_syscall_catchpoint,
803 (int (*) (int, int, int, int, int *))
804 tcomplain);
805 de_fault (to_has_exited,
806 (int (*) (int, int, int *))
807 return_zero);
808 de_fault (to_can_run,
809 return_zero);
810 de_fault (to_notice_signals,
811 (void (*) (ptid_t))
812 target_ignore);
813 de_fault (to_extra_thread_info,
814 (char *(*) (struct thread_info *))
815 return_zero);
816 de_fault (to_stop,
817 (void (*) (ptid_t))
818 target_ignore);
819 current_target.to_xfer_partial = current_xfer_partial;
820 de_fault (to_rcmd,
821 (void (*) (char *, struct ui_file *))
822 tcomplain);
823 de_fault (to_pid_to_exec_file,
824 (char *(*) (int))
825 return_zero);
826 de_fault (to_async,
827 (void (*) (void (*) (enum inferior_event_type, void*), void*))
828 tcomplain);
829 de_fault (to_async_mask,
830 (int (*) (int))
831 return_one);
832 de_fault (to_thread_architecture,
833 default_thread_architecture);
834 current_target.to_read_description = NULL;
835 de_fault (to_get_ada_task_ptid,
836 (ptid_t (*) (long, long))
837 default_get_ada_task_ptid);
838 de_fault (to_supports_multi_process,
839 (int (*) (void))
840 return_zero);
841 de_fault (to_trace_init,
842 (void (*) (void))
843 tcomplain);
844 de_fault (to_download_tracepoint,
845 (void (*) (struct breakpoint *))
846 tcomplain);
847 de_fault (to_download_trace_state_variable,
848 (void (*) (struct trace_state_variable *))
849 tcomplain);
850 de_fault (to_trace_set_readonly_regions,
851 (void (*) (void))
852 tcomplain);
853 de_fault (to_trace_start,
854 (void (*) (void))
855 tcomplain);
856 de_fault (to_get_trace_status,
857 (int (*) (struct trace_status *))
858 return_minus_one);
859 de_fault (to_trace_stop,
860 (void (*) (void))
861 tcomplain);
862 de_fault (to_trace_find,
863 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
864 return_minus_one);
865 de_fault (to_get_trace_state_variable_value,
866 (int (*) (int, LONGEST *))
867 return_zero);
868 de_fault (to_save_trace_data,
869 (int (*) (const char *))
870 tcomplain);
871 de_fault (to_upload_tracepoints,
872 (int (*) (struct uploaded_tp **))
873 return_zero);
874 de_fault (to_upload_trace_state_variables,
875 (int (*) (struct uploaded_tsv **))
876 return_zero);
877 de_fault (to_get_raw_trace_data,
878 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
879 tcomplain);
880 de_fault (to_set_disconnected_tracing,
881 (void (*) (int))
882 target_ignore);
883 de_fault (to_set_circular_trace_buffer,
884 (void (*) (int))
885 target_ignore);
886 de_fault (to_get_tib_address,
887 (int (*) (ptid_t, CORE_ADDR *))
888 tcomplain);
889 de_fault (to_set_permissions,
890 (void (*) (void))
891 target_ignore);
892 de_fault (to_static_tracepoint_marker_at,
893 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
894 return_zero);
895 de_fault (to_static_tracepoint_markers_by_strid,
896 (VEC(static_tracepoint_marker_p) * (*) (const char *))
897 tcomplain);
898 #undef de_fault
899
900 /* Finally, position the target-stack beneath the squashed
901 "current_target". That way code looking for a non-inherited
902 target method can quickly and simply find it. */
903 current_target.beneath = target_stack;
904
905 if (targetdebug)
906 setup_target_debug ();
907 }
908
909 /* Push a new target type into the stack of the existing target accessors,
910 possibly superseding some of the existing accessors.
911
912 Rather than allow an empty stack, we always have the dummy target at
913 the bottom stratum, so we can call the function vectors without
914 checking them. */
915
916 void
917 push_target (struct target_ops *t)
918 {
919 struct target_ops **cur;
920
921 /* Check magic number. If wrong, it probably means someone changed
922 the struct definition, but not all the places that initialize one. */
923 if (t->to_magic != OPS_MAGIC)
924 {
925 fprintf_unfiltered (gdb_stderr,
926 "Magic number of %s target struct wrong\n",
927 t->to_shortname);
928 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
929 }
930
931 /* Find the proper stratum to install this target in. */
932 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
933 {
934 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
935 break;
936 }
937
938 /* If there's already targets at this stratum, remove them. */
939 /* FIXME: cagney/2003-10-15: I think this should be popping all
940 targets to CUR, and not just those at this stratum level. */
941 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
942 {
943 /* There's already something at this stratum level. Close it,
944 and un-hook it from the stack. */
945 struct target_ops *tmp = (*cur);
946
947 (*cur) = (*cur)->beneath;
948 tmp->beneath = NULL;
949 target_close (tmp, 0);
950 }
951
952 /* We have removed all targets in our stratum, now add the new one. */
953 t->beneath = (*cur);
954 (*cur) = t;
955
956 update_current_target ();
957 }
958
959 /* Remove a target_ops vector from the stack, wherever it may be.
960 Return how many times it was removed (0 or 1). */
961
962 int
963 unpush_target (struct target_ops *t)
964 {
965 struct target_ops **cur;
966 struct target_ops *tmp;
967
968 if (t->to_stratum == dummy_stratum)
969 internal_error (__FILE__, __LINE__,
970 "Attempt to unpush the dummy target");
971
972 /* Look for the specified target. Note that we assume that a target
973 can only occur once in the target stack. */
974
975 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
976 {
977 if ((*cur) == t)
978 break;
979 }
980
981 if ((*cur) == NULL)
982 return 0; /* Didn't find target_ops, quit now */
983
984 /* NOTE: cagney/2003-12-06: In '94 the close call was made
985 unconditional by moving it to before the above check that the
986 target was in the target stack (something about "Change the way
987 pushing and popping of targets work to support target overlays
988 and inheritance"). This doesn't make much sense - only open
989 targets should be closed. */
990 target_close (t, 0);
991
992 /* Unchain the target */
993 tmp = (*cur);
994 (*cur) = (*cur)->beneath;
995 tmp->beneath = NULL;
996
997 update_current_target ();
998
999 return 1;
1000 }
1001
1002 void
1003 pop_target (void)
1004 {
1005 target_close (target_stack, 0); /* Let it clean up */
1006 if (unpush_target (target_stack) == 1)
1007 return;
1008
1009 fprintf_unfiltered (gdb_stderr,
1010 "pop_target couldn't find target %s\n",
1011 current_target.to_shortname);
1012 internal_error (__FILE__, __LINE__,
1013 _("failed internal consistency check"));
1014 }
1015
1016 void
1017 pop_all_targets_above (enum strata above_stratum, int quitting)
1018 {
1019 while ((int) (current_target.to_stratum) > (int) above_stratum)
1020 {
1021 target_close (target_stack, quitting);
1022 if (!unpush_target (target_stack))
1023 {
1024 fprintf_unfiltered (gdb_stderr,
1025 "pop_all_targets couldn't find target %s\n",
1026 target_stack->to_shortname);
1027 internal_error (__FILE__, __LINE__,
1028 _("failed internal consistency check"));
1029 break;
1030 }
1031 }
1032 }
1033
1034 void
1035 pop_all_targets (int quitting)
1036 {
1037 pop_all_targets_above (dummy_stratum, quitting);
1038 }
1039
1040 /* Using the objfile specified in OBJFILE, find the address for the
1041 current thread's thread-local storage with offset OFFSET. */
1042 CORE_ADDR
1043 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1044 {
1045 volatile CORE_ADDR addr = 0;
1046 struct target_ops *target;
1047
1048 for (target = current_target.beneath;
1049 target != NULL;
1050 target = target->beneath)
1051 {
1052 if (target->to_get_thread_local_address != NULL)
1053 break;
1054 }
1055
1056 if (target != NULL
1057 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1058 {
1059 ptid_t ptid = inferior_ptid;
1060 volatile struct gdb_exception ex;
1061
1062 TRY_CATCH (ex, RETURN_MASK_ALL)
1063 {
1064 CORE_ADDR lm_addr;
1065
1066 /* Fetch the load module address for this objfile. */
1067 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1068 objfile);
1069 /* If it's 0, throw the appropriate exception. */
1070 if (lm_addr == 0)
1071 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1072 _("TLS load module not found"));
1073
1074 addr = target->to_get_thread_local_address (target, ptid, lm_addr, offset);
1075 }
1076 /* If an error occurred, print TLS related messages here. Otherwise,
1077 throw the error to some higher catcher. */
1078 if (ex.reason < 0)
1079 {
1080 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1081
1082 switch (ex.error)
1083 {
1084 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1085 error (_("Cannot find thread-local variables in this thread library."));
1086 break;
1087 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1088 if (objfile_is_library)
1089 error (_("Cannot find shared library `%s' in dynamic"
1090 " linker's load module list"), objfile->name);
1091 else
1092 error (_("Cannot find executable file `%s' in dynamic"
1093 " linker's load module list"), objfile->name);
1094 break;
1095 case TLS_NOT_ALLOCATED_YET_ERROR:
1096 if (objfile_is_library)
1097 error (_("The inferior has not yet allocated storage for"
1098 " thread-local variables in\n"
1099 "the shared library `%s'\n"
1100 "for %s"),
1101 objfile->name, target_pid_to_str (ptid));
1102 else
1103 error (_("The inferior has not yet allocated storage for"
1104 " thread-local variables in\n"
1105 "the executable `%s'\n"
1106 "for %s"),
1107 objfile->name, target_pid_to_str (ptid));
1108 break;
1109 case TLS_GENERIC_ERROR:
1110 if (objfile_is_library)
1111 error (_("Cannot find thread-local storage for %s, "
1112 "shared library %s:\n%s"),
1113 target_pid_to_str (ptid),
1114 objfile->name, ex.message);
1115 else
1116 error (_("Cannot find thread-local storage for %s, "
1117 "executable file %s:\n%s"),
1118 target_pid_to_str (ptid),
1119 objfile->name, ex.message);
1120 break;
1121 default:
1122 throw_exception (ex);
1123 break;
1124 }
1125 }
1126 }
1127 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1128 TLS is an ABI-specific thing. But we don't do that yet. */
1129 else
1130 error (_("Cannot find thread-local variables on this target"));
1131
1132 return addr;
1133 }
1134
1135 #undef MIN
1136 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1137
1138 /* target_read_string -- read a null terminated string, up to LEN bytes,
1139 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1140 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1141 is responsible for freeing it. Return the number of bytes successfully
1142 read. */
1143
1144 int
1145 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1146 {
1147 int tlen, origlen, offset, i;
1148 gdb_byte buf[4];
1149 int errcode = 0;
1150 char *buffer;
1151 int buffer_allocated;
1152 char *bufptr;
1153 unsigned int nbytes_read = 0;
1154
1155 gdb_assert (string);
1156
1157 /* Small for testing. */
1158 buffer_allocated = 4;
1159 buffer = xmalloc (buffer_allocated);
1160 bufptr = buffer;
1161
1162 origlen = len;
1163
1164 while (len > 0)
1165 {
1166 tlen = MIN (len, 4 - (memaddr & 3));
1167 offset = memaddr & 3;
1168
1169 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1170 if (errcode != 0)
1171 {
1172 /* The transfer request might have crossed the boundary to an
1173 unallocated region of memory. Retry the transfer, requesting
1174 a single byte. */
1175 tlen = 1;
1176 offset = 0;
1177 errcode = target_read_memory (memaddr, buf, 1);
1178 if (errcode != 0)
1179 goto done;
1180 }
1181
1182 if (bufptr - buffer + tlen > buffer_allocated)
1183 {
1184 unsigned int bytes;
1185
1186 bytes = bufptr - buffer;
1187 buffer_allocated *= 2;
1188 buffer = xrealloc (buffer, buffer_allocated);
1189 bufptr = buffer + bytes;
1190 }
1191
1192 for (i = 0; i < tlen; i++)
1193 {
1194 *bufptr++ = buf[i + offset];
1195 if (buf[i + offset] == '\000')
1196 {
1197 nbytes_read += i + 1;
1198 goto done;
1199 }
1200 }
1201
1202 memaddr += tlen;
1203 len -= tlen;
1204 nbytes_read += tlen;
1205 }
1206 done:
1207 *string = buffer;
1208 if (errnop != NULL)
1209 *errnop = errcode;
1210 return nbytes_read;
1211 }
1212
1213 struct target_section_table *
1214 target_get_section_table (struct target_ops *target)
1215 {
1216 struct target_ops *t;
1217
1218 if (targetdebug)
1219 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1220
1221 for (t = target; t != NULL; t = t->beneath)
1222 if (t->to_get_section_table != NULL)
1223 return (*t->to_get_section_table) (t);
1224
1225 return NULL;
1226 }
1227
1228 /* Find a section containing ADDR. */
1229
1230 struct target_section *
1231 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1232 {
1233 struct target_section_table *table = target_get_section_table (target);
1234 struct target_section *secp;
1235
1236 if (table == NULL)
1237 return NULL;
1238
1239 for (secp = table->sections; secp < table->sections_end; secp++)
1240 {
1241 if (addr >= secp->addr && addr < secp->endaddr)
1242 return secp;
1243 }
1244 return NULL;
1245 }
1246
1247 /* Perform a partial memory transfer.
1248 For docs see target.h, to_xfer_partial. */
1249
1250 static LONGEST
1251 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1252 void *readbuf, const void *writebuf, ULONGEST memaddr,
1253 LONGEST len)
1254 {
1255 LONGEST res;
1256 int reg_len;
1257 struct mem_region *region;
1258 struct inferior *inf;
1259
1260 /* Zero length requests are ok and require no work. */
1261 if (len == 0)
1262 return 0;
1263
1264 /* For accesses to unmapped overlay sections, read directly from
1265 files. Must do this first, as MEMADDR may need adjustment. */
1266 if (readbuf != NULL && overlay_debugging)
1267 {
1268 struct obj_section *section = find_pc_overlay (memaddr);
1269
1270 if (pc_in_unmapped_range (memaddr, section))
1271 {
1272 struct target_section_table *table
1273 = target_get_section_table (ops);
1274 const char *section_name = section->the_bfd_section->name;
1275
1276 memaddr = overlay_mapped_address (memaddr, section);
1277 return section_table_xfer_memory_partial (readbuf, writebuf,
1278 memaddr, len,
1279 table->sections,
1280 table->sections_end,
1281 section_name);
1282 }
1283 }
1284
1285 /* Try the executable files, if "trust-readonly-sections" is set. */
1286 if (readbuf != NULL && trust_readonly)
1287 {
1288 struct target_section *secp;
1289 struct target_section_table *table;
1290
1291 secp = target_section_by_addr (ops, memaddr);
1292 if (secp != NULL
1293 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1294 & SEC_READONLY))
1295 {
1296 table = target_get_section_table (ops);
1297 return section_table_xfer_memory_partial (readbuf, writebuf,
1298 memaddr, len,
1299 table->sections,
1300 table->sections_end,
1301 NULL);
1302 }
1303 }
1304
1305 /* Try GDB's internal data cache. */
1306 region = lookup_mem_region (memaddr);
1307 /* region->hi == 0 means there's no upper bound. */
1308 if (memaddr + len < region->hi || region->hi == 0)
1309 reg_len = len;
1310 else
1311 reg_len = region->hi - memaddr;
1312
1313 switch (region->attrib.mode)
1314 {
1315 case MEM_RO:
1316 if (writebuf != NULL)
1317 return -1;
1318 break;
1319
1320 case MEM_WO:
1321 if (readbuf != NULL)
1322 return -1;
1323 break;
1324
1325 case MEM_FLASH:
1326 /* We only support writing to flash during "load" for now. */
1327 if (writebuf != NULL)
1328 error (_("Writing to flash memory forbidden in this context"));
1329 break;
1330
1331 case MEM_NONE:
1332 return -1;
1333 }
1334
1335 if (!ptid_equal (inferior_ptid, null_ptid))
1336 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1337 else
1338 inf = NULL;
1339
1340 if (inf != NULL
1341 /* The dcache reads whole cache lines; that doesn't play well
1342 with reading from a trace buffer, because reading outside of
1343 the collected memory range fails. */
1344 && get_traceframe_number () == -1
1345 && (region->attrib.cache
1346 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1347 {
1348 if (readbuf != NULL)
1349 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1350 reg_len, 0);
1351 else
1352 /* FIXME drow/2006-08-09: If we're going to preserve const
1353 correctness dcache_xfer_memory should take readbuf and
1354 writebuf. */
1355 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1356 (void *) writebuf,
1357 reg_len, 1);
1358 if (res <= 0)
1359 return -1;
1360 else
1361 {
1362 if (readbuf && !show_memory_breakpoints)
1363 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1364 return res;
1365 }
1366 }
1367
1368 /* If none of those methods found the memory we wanted, fall back
1369 to a target partial transfer. Normally a single call to
1370 to_xfer_partial is enough; if it doesn't recognize an object
1371 it will call the to_xfer_partial of the next target down.
1372 But for memory this won't do. Memory is the only target
1373 object which can be read from more than one valid target.
1374 A core file, for instance, could have some of memory but
1375 delegate other bits to the target below it. So, we must
1376 manually try all targets. */
1377
1378 do
1379 {
1380 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1381 readbuf, writebuf, memaddr, reg_len);
1382 if (res > 0)
1383 break;
1384
1385 /* We want to continue past core files to executables, but not
1386 past a running target's memory. */
1387 if (ops->to_has_all_memory (ops))
1388 break;
1389
1390 ops = ops->beneath;
1391 }
1392 while (ops != NULL);
1393
1394 if (readbuf && !show_memory_breakpoints)
1395 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1396
1397 /* Make sure the cache gets updated no matter what - if we are writing
1398 to the stack. Even if this write is not tagged as such, we still need
1399 to update the cache. */
1400
1401 if (res > 0
1402 && inf != NULL
1403 && writebuf != NULL
1404 && !region->attrib.cache
1405 && stack_cache_enabled_p
1406 && object != TARGET_OBJECT_STACK_MEMORY)
1407 {
1408 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1409 }
1410
1411 /* If we still haven't got anything, return the last error. We
1412 give up. */
1413 return res;
1414 }
1415
1416 static void
1417 restore_show_memory_breakpoints (void *arg)
1418 {
1419 show_memory_breakpoints = (uintptr_t) arg;
1420 }
1421
1422 struct cleanup *
1423 make_show_memory_breakpoints_cleanup (int show)
1424 {
1425 int current = show_memory_breakpoints;
1426
1427 show_memory_breakpoints = show;
1428 return make_cleanup (restore_show_memory_breakpoints,
1429 (void *) (uintptr_t) current);
1430 }
1431
1432 /* For docs see target.h, to_xfer_partial. */
1433
1434 static LONGEST
1435 target_xfer_partial (struct target_ops *ops,
1436 enum target_object object, const char *annex,
1437 void *readbuf, const void *writebuf,
1438 ULONGEST offset, LONGEST len)
1439 {
1440 LONGEST retval;
1441
1442 gdb_assert (ops->to_xfer_partial != NULL);
1443
1444 if (writebuf && !may_write_memory)
1445 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1446 core_addr_to_string_nz (offset), plongest (len));
1447
1448 /* If this is a memory transfer, let the memory-specific code
1449 have a look at it instead. Memory transfers are more
1450 complicated. */
1451 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1452 retval = memory_xfer_partial (ops, object, readbuf,
1453 writebuf, offset, len);
1454 else
1455 {
1456 enum target_object raw_object = object;
1457
1458 /* If this is a raw memory transfer, request the normal
1459 memory object from other layers. */
1460 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1461 raw_object = TARGET_OBJECT_MEMORY;
1462
1463 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1464 writebuf, offset, len);
1465 }
1466
1467 if (targetdebug)
1468 {
1469 const unsigned char *myaddr = NULL;
1470
1471 fprintf_unfiltered (gdb_stdlog,
1472 "%s:target_xfer_partial (%d, %s, %s, %s, %s, %s) = %s",
1473 ops->to_shortname,
1474 (int) object,
1475 (annex ? annex : "(null)"),
1476 host_address_to_string (readbuf),
1477 host_address_to_string (writebuf),
1478 core_addr_to_string_nz (offset),
1479 plongest (len), plongest (retval));
1480
1481 if (readbuf)
1482 myaddr = readbuf;
1483 if (writebuf)
1484 myaddr = writebuf;
1485 if (retval > 0 && myaddr != NULL)
1486 {
1487 int i;
1488
1489 fputs_unfiltered (", bytes =", gdb_stdlog);
1490 for (i = 0; i < retval; i++)
1491 {
1492 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1493 {
1494 if (targetdebug < 2 && i > 0)
1495 {
1496 fprintf_unfiltered (gdb_stdlog, " ...");
1497 break;
1498 }
1499 fprintf_unfiltered (gdb_stdlog, "\n");
1500 }
1501
1502 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1503 }
1504 }
1505
1506 fputc_unfiltered ('\n', gdb_stdlog);
1507 }
1508 return retval;
1509 }
1510
1511 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1512 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1513 if any error occurs.
1514
1515 If an error occurs, no guarantee is made about the contents of the data at
1516 MYADDR. In particular, the caller should not depend upon partial reads
1517 filling the buffer with good data. There is no way for the caller to know
1518 how much good data might have been transfered anyway. Callers that can
1519 deal with partial reads should call target_read (which will retry until
1520 it makes no progress, and then return how much was transferred). */
1521
1522 int
1523 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1524 {
1525 /* Dispatch to the topmost target, not the flattened current_target.
1526 Memory accesses check target->to_has_(all_)memory, and the
1527 flattened target doesn't inherit those. */
1528 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1529 myaddr, memaddr, len) == len)
1530 return 0;
1531 else
1532 return EIO;
1533 }
1534
1535 /* Like target_read_memory, but specify explicitly that this is a read from
1536 the target's stack. This may trigger different cache behavior. */
1537
1538 int
1539 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1540 {
1541 /* Dispatch to the topmost target, not the flattened current_target.
1542 Memory accesses check target->to_has_(all_)memory, and the
1543 flattened target doesn't inherit those. */
1544
1545 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1546 myaddr, memaddr, len) == len)
1547 return 0;
1548 else
1549 return EIO;
1550 }
1551
1552 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1553 Returns either 0 for success or an errno value if any error occurs.
1554 If an error occurs, no guarantee is made about how much data got written.
1555 Callers that can deal with partial writes should call target_write. */
1556
1557 int
1558 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1559 {
1560 /* Dispatch to the topmost target, not the flattened current_target.
1561 Memory accesses check target->to_has_(all_)memory, and the
1562 flattened target doesn't inherit those. */
1563 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1564 myaddr, memaddr, len) == len)
1565 return 0;
1566 else
1567 return EIO;
1568 }
1569
1570 /* Fetch the target's memory map. */
1571
1572 VEC(mem_region_s) *
1573 target_memory_map (void)
1574 {
1575 VEC(mem_region_s) *result;
1576 struct mem_region *last_one, *this_one;
1577 int ix;
1578 struct target_ops *t;
1579
1580 if (targetdebug)
1581 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1582
1583 for (t = current_target.beneath; t != NULL; t = t->beneath)
1584 if (t->to_memory_map != NULL)
1585 break;
1586
1587 if (t == NULL)
1588 return NULL;
1589
1590 result = t->to_memory_map (t);
1591 if (result == NULL)
1592 return NULL;
1593
1594 qsort (VEC_address (mem_region_s, result),
1595 VEC_length (mem_region_s, result),
1596 sizeof (struct mem_region), mem_region_cmp);
1597
1598 /* Check that regions do not overlap. Simultaneously assign
1599 a numbering for the "mem" commands to use to refer to
1600 each region. */
1601 last_one = NULL;
1602 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1603 {
1604 this_one->number = ix;
1605
1606 if (last_one && last_one->hi > this_one->lo)
1607 {
1608 warning (_("Overlapping regions in memory map: ignoring"));
1609 VEC_free (mem_region_s, result);
1610 return NULL;
1611 }
1612 last_one = this_one;
1613 }
1614
1615 return result;
1616 }
1617
1618 void
1619 target_flash_erase (ULONGEST address, LONGEST length)
1620 {
1621 struct target_ops *t;
1622
1623 for (t = current_target.beneath; t != NULL; t = t->beneath)
1624 if (t->to_flash_erase != NULL)
1625 {
1626 if (targetdebug)
1627 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1628 hex_string (address), phex (length, 0));
1629 t->to_flash_erase (t, address, length);
1630 return;
1631 }
1632
1633 tcomplain ();
1634 }
1635
1636 void
1637 target_flash_done (void)
1638 {
1639 struct target_ops *t;
1640
1641 for (t = current_target.beneath; t != NULL; t = t->beneath)
1642 if (t->to_flash_done != NULL)
1643 {
1644 if (targetdebug)
1645 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1646 t->to_flash_done (t);
1647 return;
1648 }
1649
1650 tcomplain ();
1651 }
1652
1653 static void
1654 show_trust_readonly (struct ui_file *file, int from_tty,
1655 struct cmd_list_element *c, const char *value)
1656 {
1657 fprintf_filtered (file, _("\
1658 Mode for reading from readonly sections is %s.\n"),
1659 value);
1660 }
1661
1662 /* More generic transfers. */
1663
1664 static LONGEST
1665 default_xfer_partial (struct target_ops *ops, enum target_object object,
1666 const char *annex, gdb_byte *readbuf,
1667 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1668 {
1669 if (object == TARGET_OBJECT_MEMORY
1670 && ops->deprecated_xfer_memory != NULL)
1671 /* If available, fall back to the target's
1672 "deprecated_xfer_memory" method. */
1673 {
1674 int xfered = -1;
1675
1676 errno = 0;
1677 if (writebuf != NULL)
1678 {
1679 void *buffer = xmalloc (len);
1680 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1681
1682 memcpy (buffer, writebuf, len);
1683 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1684 1/*write*/, NULL, ops);
1685 do_cleanups (cleanup);
1686 }
1687 if (readbuf != NULL)
1688 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1689 0/*read*/, NULL, ops);
1690 if (xfered > 0)
1691 return xfered;
1692 else if (xfered == 0 && errno == 0)
1693 /* "deprecated_xfer_memory" uses 0, cross checked against
1694 ERRNO as one indication of an error. */
1695 return 0;
1696 else
1697 return -1;
1698 }
1699 else if (ops->beneath != NULL)
1700 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1701 readbuf, writebuf, offset, len);
1702 else
1703 return -1;
1704 }
1705
1706 /* The xfer_partial handler for the topmost target. Unlike the default,
1707 it does not need to handle memory specially; it just passes all
1708 requests down the stack. */
1709
1710 static LONGEST
1711 current_xfer_partial (struct target_ops *ops, enum target_object object,
1712 const char *annex, gdb_byte *readbuf,
1713 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1714 {
1715 if (ops->beneath != NULL)
1716 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1717 readbuf, writebuf, offset, len);
1718 else
1719 return -1;
1720 }
1721
1722 /* Target vector read/write partial wrapper functions. */
1723
1724 static LONGEST
1725 target_read_partial (struct target_ops *ops,
1726 enum target_object object,
1727 const char *annex, gdb_byte *buf,
1728 ULONGEST offset, LONGEST len)
1729 {
1730 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1731 }
1732
1733 static LONGEST
1734 target_write_partial (struct target_ops *ops,
1735 enum target_object object,
1736 const char *annex, const gdb_byte *buf,
1737 ULONGEST offset, LONGEST len)
1738 {
1739 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1740 }
1741
1742 /* Wrappers to perform the full transfer. */
1743
1744 /* For docs on target_read see target.h. */
1745
1746 LONGEST
1747 target_read (struct target_ops *ops,
1748 enum target_object object,
1749 const char *annex, gdb_byte *buf,
1750 ULONGEST offset, LONGEST len)
1751 {
1752 LONGEST xfered = 0;
1753
1754 while (xfered < len)
1755 {
1756 LONGEST xfer = target_read_partial (ops, object, annex,
1757 (gdb_byte *) buf + xfered,
1758 offset + xfered, len - xfered);
1759
1760 /* Call an observer, notifying them of the xfer progress? */
1761 if (xfer == 0)
1762 return xfered;
1763 if (xfer < 0)
1764 return -1;
1765 xfered += xfer;
1766 QUIT;
1767 }
1768 return len;
1769 }
1770
1771 LONGEST
1772 target_read_until_error (struct target_ops *ops,
1773 enum target_object object,
1774 const char *annex, gdb_byte *buf,
1775 ULONGEST offset, LONGEST len)
1776 {
1777 LONGEST xfered = 0;
1778
1779 while (xfered < len)
1780 {
1781 LONGEST xfer = target_read_partial (ops, object, annex,
1782 (gdb_byte *) buf + xfered,
1783 offset + xfered, len - xfered);
1784
1785 /* Call an observer, notifying them of the xfer progress? */
1786 if (xfer == 0)
1787 return xfered;
1788 if (xfer < 0)
1789 {
1790 /* We've got an error. Try to read in smaller blocks. */
1791 ULONGEST start = offset + xfered;
1792 ULONGEST remaining = len - xfered;
1793 ULONGEST half;
1794
1795 /* If an attempt was made to read a random memory address,
1796 it's likely that the very first byte is not accessible.
1797 Try reading the first byte, to avoid doing log N tries
1798 below. */
1799 xfer = target_read_partial (ops, object, annex,
1800 (gdb_byte *) buf + xfered, start, 1);
1801 if (xfer <= 0)
1802 return xfered;
1803 start += 1;
1804 remaining -= 1;
1805 half = remaining/2;
1806
1807 while (half > 0)
1808 {
1809 xfer = target_read_partial (ops, object, annex,
1810 (gdb_byte *) buf + xfered,
1811 start, half);
1812 if (xfer == 0)
1813 return xfered;
1814 if (xfer < 0)
1815 {
1816 remaining = half;
1817 }
1818 else
1819 {
1820 /* We have successfully read the first half. So, the
1821 error must be in the second half. Adjust start and
1822 remaining to point at the second half. */
1823 xfered += xfer;
1824 start += xfer;
1825 remaining -= xfer;
1826 }
1827 half = remaining/2;
1828 }
1829
1830 return xfered;
1831 }
1832 xfered += xfer;
1833 QUIT;
1834 }
1835 return len;
1836 }
1837
1838 /* An alternative to target_write with progress callbacks. */
1839
1840 LONGEST
1841 target_write_with_progress (struct target_ops *ops,
1842 enum target_object object,
1843 const char *annex, const gdb_byte *buf,
1844 ULONGEST offset, LONGEST len,
1845 void (*progress) (ULONGEST, void *), void *baton)
1846 {
1847 LONGEST xfered = 0;
1848
1849 /* Give the progress callback a chance to set up. */
1850 if (progress)
1851 (*progress) (0, baton);
1852
1853 while (xfered < len)
1854 {
1855 LONGEST xfer = target_write_partial (ops, object, annex,
1856 (gdb_byte *) buf + xfered,
1857 offset + xfered, len - xfered);
1858
1859 if (xfer == 0)
1860 return xfered;
1861 if (xfer < 0)
1862 return -1;
1863
1864 if (progress)
1865 (*progress) (xfer, baton);
1866
1867 xfered += xfer;
1868 QUIT;
1869 }
1870 return len;
1871 }
1872
1873 /* For docs on target_write see target.h. */
1874
1875 LONGEST
1876 target_write (struct target_ops *ops,
1877 enum target_object object,
1878 const char *annex, const gdb_byte *buf,
1879 ULONGEST offset, LONGEST len)
1880 {
1881 return target_write_with_progress (ops, object, annex, buf, offset, len,
1882 NULL, NULL);
1883 }
1884
1885 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1886 the size of the transferred data. PADDING additional bytes are
1887 available in *BUF_P. This is a helper function for
1888 target_read_alloc; see the declaration of that function for more
1889 information. */
1890
1891 static LONGEST
1892 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1893 const char *annex, gdb_byte **buf_p, int padding)
1894 {
1895 size_t buf_alloc, buf_pos;
1896 gdb_byte *buf;
1897 LONGEST n;
1898
1899 /* This function does not have a length parameter; it reads the
1900 entire OBJECT). Also, it doesn't support objects fetched partly
1901 from one target and partly from another (in a different stratum,
1902 e.g. a core file and an executable). Both reasons make it
1903 unsuitable for reading memory. */
1904 gdb_assert (object != TARGET_OBJECT_MEMORY);
1905
1906 /* Start by reading up to 4K at a time. The target will throttle
1907 this number down if necessary. */
1908 buf_alloc = 4096;
1909 buf = xmalloc (buf_alloc);
1910 buf_pos = 0;
1911 while (1)
1912 {
1913 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1914 buf_pos, buf_alloc - buf_pos - padding);
1915 if (n < 0)
1916 {
1917 /* An error occurred. */
1918 xfree (buf);
1919 return -1;
1920 }
1921 else if (n == 0)
1922 {
1923 /* Read all there was. */
1924 if (buf_pos == 0)
1925 xfree (buf);
1926 else
1927 *buf_p = buf;
1928 return buf_pos;
1929 }
1930
1931 buf_pos += n;
1932
1933 /* If the buffer is filling up, expand it. */
1934 if (buf_alloc < buf_pos * 2)
1935 {
1936 buf_alloc *= 2;
1937 buf = xrealloc (buf, buf_alloc);
1938 }
1939
1940 QUIT;
1941 }
1942 }
1943
1944 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1945 the size of the transferred data. See the declaration in "target.h"
1946 function for more information about the return value. */
1947
1948 LONGEST
1949 target_read_alloc (struct target_ops *ops, enum target_object object,
1950 const char *annex, gdb_byte **buf_p)
1951 {
1952 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1953 }
1954
1955 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1956 returned as a string, allocated using xmalloc. If an error occurs
1957 or the transfer is unsupported, NULL is returned. Empty objects
1958 are returned as allocated but empty strings. A warning is issued
1959 if the result contains any embedded NUL bytes. */
1960
1961 char *
1962 target_read_stralloc (struct target_ops *ops, enum target_object object,
1963 const char *annex)
1964 {
1965 gdb_byte *buffer;
1966 LONGEST transferred;
1967
1968 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1969
1970 if (transferred < 0)
1971 return NULL;
1972
1973 if (transferred == 0)
1974 return xstrdup ("");
1975
1976 buffer[transferred] = 0;
1977 if (strlen (buffer) < transferred)
1978 warning (_("target object %d, annex %s, "
1979 "contained unexpected null characters"),
1980 (int) object, annex ? annex : "(none)");
1981
1982 return (char *) buffer;
1983 }
1984
1985 /* Memory transfer methods. */
1986
1987 void
1988 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1989 LONGEST len)
1990 {
1991 /* This method is used to read from an alternate, non-current
1992 target. This read must bypass the overlay support (as symbols
1993 don't match this target), and GDB's internal cache (wrong cache
1994 for this target). */
1995 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1996 != len)
1997 memory_error (EIO, addr);
1998 }
1999
2000 ULONGEST
2001 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2002 int len, enum bfd_endian byte_order)
2003 {
2004 gdb_byte buf[sizeof (ULONGEST)];
2005
2006 gdb_assert (len <= sizeof (buf));
2007 get_target_memory (ops, addr, buf, len);
2008 return extract_unsigned_integer (buf, len, byte_order);
2009 }
2010
2011 int
2012 target_insert_breakpoint (struct gdbarch *gdbarch,
2013 struct bp_target_info *bp_tgt)
2014 {
2015 if (!may_insert_breakpoints)
2016 {
2017 warning (_("May not insert breakpoints"));
2018 return 1;
2019 }
2020
2021 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2022 }
2023
2024 int
2025 target_remove_breakpoint (struct gdbarch *gdbarch,
2026 struct bp_target_info *bp_tgt)
2027 {
2028 /* This is kind of a weird case to handle, but the permission might
2029 have been changed after breakpoints were inserted - in which case
2030 we should just take the user literally and assume that any
2031 breakpoints should be left in place. */
2032 if (!may_insert_breakpoints)
2033 {
2034 warning (_("May not remove breakpoints"));
2035 return 1;
2036 }
2037
2038 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2039 }
2040
2041 static void
2042 target_info (char *args, int from_tty)
2043 {
2044 struct target_ops *t;
2045 int has_all_mem = 0;
2046
2047 if (symfile_objfile != NULL)
2048 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2049
2050 for (t = target_stack; t != NULL; t = t->beneath)
2051 {
2052 if (!(*t->to_has_memory) (t))
2053 continue;
2054
2055 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2056 continue;
2057 if (has_all_mem)
2058 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
2059 printf_unfiltered ("%s:\n", t->to_longname);
2060 (t->to_files_info) (t);
2061 has_all_mem = (*t->to_has_all_memory) (t);
2062 }
2063 }
2064
2065 /* This function is called before any new inferior is created, e.g.
2066 by running a program, attaching, or connecting to a target.
2067 It cleans up any state from previous invocations which might
2068 change between runs. This is a subset of what target_preopen
2069 resets (things which might change between targets). */
2070
2071 void
2072 target_pre_inferior (int from_tty)
2073 {
2074 /* Clear out solib state. Otherwise the solib state of the previous
2075 inferior might have survived and is entirely wrong for the new
2076 target. This has been observed on GNU/Linux using glibc 2.3. How
2077 to reproduce:
2078
2079 bash$ ./foo&
2080 [1] 4711
2081 bash$ ./foo&
2082 [1] 4712
2083 bash$ gdb ./foo
2084 [...]
2085 (gdb) attach 4711
2086 (gdb) detach
2087 (gdb) attach 4712
2088 Cannot access memory at address 0xdeadbeef
2089 */
2090
2091 /* In some OSs, the shared library list is the same/global/shared
2092 across inferiors. If code is shared between processes, so are
2093 memory regions and features. */
2094 if (!gdbarch_has_global_solist (target_gdbarch))
2095 {
2096 no_shared_libraries (NULL, from_tty);
2097
2098 invalidate_target_mem_regions ();
2099
2100 target_clear_description ();
2101 }
2102 }
2103
2104 /* Callback for iterate_over_inferiors. Gets rid of the given
2105 inferior. */
2106
2107 static int
2108 dispose_inferior (struct inferior *inf, void *args)
2109 {
2110 struct thread_info *thread;
2111
2112 thread = any_thread_of_process (inf->pid);
2113 if (thread)
2114 {
2115 switch_to_thread (thread->ptid);
2116
2117 /* Core inferiors actually should be detached, not killed. */
2118 if (target_has_execution)
2119 target_kill ();
2120 else
2121 target_detach (NULL, 0);
2122 }
2123
2124 return 0;
2125 }
2126
2127 /* This is to be called by the open routine before it does
2128 anything. */
2129
2130 void
2131 target_preopen (int from_tty)
2132 {
2133 dont_repeat ();
2134
2135 if (have_inferiors ())
2136 {
2137 if (!from_tty
2138 || !have_live_inferiors ()
2139 || query (_("A program is being debugged already. Kill it? ")))
2140 iterate_over_inferiors (dispose_inferior, NULL);
2141 else
2142 error (_("Program not killed."));
2143 }
2144
2145 /* Calling target_kill may remove the target from the stack. But if
2146 it doesn't (which seems like a win for UDI), remove it now. */
2147 /* Leave the exec target, though. The user may be switching from a
2148 live process to a core of the same program. */
2149 pop_all_targets_above (file_stratum, 0);
2150
2151 target_pre_inferior (from_tty);
2152 }
2153
2154 /* Detach a target after doing deferred register stores. */
2155
2156 void
2157 target_detach (char *args, int from_tty)
2158 {
2159 struct target_ops* t;
2160
2161 if (gdbarch_has_global_breakpoints (target_gdbarch))
2162 /* Don't remove global breakpoints here. They're removed on
2163 disconnection from the target. */
2164 ;
2165 else
2166 /* If we're in breakpoints-always-inserted mode, have to remove
2167 them before detaching. */
2168 remove_breakpoints_pid (PIDGET (inferior_ptid));
2169
2170 prepare_for_detach ();
2171
2172 for (t = current_target.beneath; t != NULL; t = t->beneath)
2173 {
2174 if (t->to_detach != NULL)
2175 {
2176 t->to_detach (t, args, from_tty);
2177 if (targetdebug)
2178 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2179 args, from_tty);
2180 return;
2181 }
2182 }
2183
2184 internal_error (__FILE__, __LINE__, "could not find a target to detach");
2185 }
2186
2187 void
2188 target_disconnect (char *args, int from_tty)
2189 {
2190 struct target_ops *t;
2191
2192 /* If we're in breakpoints-always-inserted mode or if breakpoints
2193 are global across processes, we have to remove them before
2194 disconnecting. */
2195 remove_breakpoints ();
2196
2197 for (t = current_target.beneath; t != NULL; t = t->beneath)
2198 if (t->to_disconnect != NULL)
2199 {
2200 if (targetdebug)
2201 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2202 args, from_tty);
2203 t->to_disconnect (t, args, from_tty);
2204 return;
2205 }
2206
2207 tcomplain ();
2208 }
2209
2210 ptid_t
2211 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2212 {
2213 struct target_ops *t;
2214
2215 for (t = current_target.beneath; t != NULL; t = t->beneath)
2216 {
2217 if (t->to_wait != NULL)
2218 {
2219 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2220
2221 if (targetdebug)
2222 {
2223 char *status_string;
2224
2225 status_string = target_waitstatus_to_string (status);
2226 fprintf_unfiltered (gdb_stdlog,
2227 "target_wait (%d, status) = %d, %s\n",
2228 PIDGET (ptid), PIDGET (retval),
2229 status_string);
2230 xfree (status_string);
2231 }
2232
2233 return retval;
2234 }
2235 }
2236
2237 noprocess ();
2238 }
2239
2240 char *
2241 target_pid_to_str (ptid_t ptid)
2242 {
2243 struct target_ops *t;
2244
2245 for (t = current_target.beneath; t != NULL; t = t->beneath)
2246 {
2247 if (t->to_pid_to_str != NULL)
2248 return (*t->to_pid_to_str) (t, ptid);
2249 }
2250
2251 return normal_pid_to_str (ptid);
2252 }
2253
2254 void
2255 target_resume (ptid_t ptid, int step, enum target_signal signal)
2256 {
2257 struct target_ops *t;
2258
2259 target_dcache_invalidate ();
2260
2261 for (t = current_target.beneath; t != NULL; t = t->beneath)
2262 {
2263 if (t->to_resume != NULL)
2264 {
2265 t->to_resume (t, ptid, step, signal);
2266 if (targetdebug)
2267 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2268 PIDGET (ptid),
2269 step ? "step" : "continue",
2270 target_signal_to_name (signal));
2271
2272 registers_changed_ptid (ptid);
2273 set_executing (ptid, 1);
2274 set_running (ptid, 1);
2275 clear_inline_frame_state (ptid);
2276 return;
2277 }
2278 }
2279
2280 noprocess ();
2281 }
2282 /* Look through the list of possible targets for a target that can
2283 follow forks. */
2284
2285 int
2286 target_follow_fork (int follow_child)
2287 {
2288 struct target_ops *t;
2289
2290 for (t = current_target.beneath; t != NULL; t = t->beneath)
2291 {
2292 if (t->to_follow_fork != NULL)
2293 {
2294 int retval = t->to_follow_fork (t, follow_child);
2295
2296 if (targetdebug)
2297 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2298 follow_child, retval);
2299 return retval;
2300 }
2301 }
2302
2303 /* Some target returned a fork event, but did not know how to follow it. */
2304 internal_error (__FILE__, __LINE__,
2305 "could not find a target to follow fork");
2306 }
2307
2308 void
2309 target_mourn_inferior (void)
2310 {
2311 struct target_ops *t;
2312
2313 for (t = current_target.beneath; t != NULL; t = t->beneath)
2314 {
2315 if (t->to_mourn_inferior != NULL)
2316 {
2317 t->to_mourn_inferior (t);
2318 if (targetdebug)
2319 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2320
2321 /* We no longer need to keep handles on any of the object files.
2322 Make sure to release them to avoid unnecessarily locking any
2323 of them while we're not actually debugging. */
2324 bfd_cache_close_all ();
2325
2326 return;
2327 }
2328 }
2329
2330 internal_error (__FILE__, __LINE__,
2331 "could not find a target to follow mourn inferior");
2332 }
2333
2334 /* Look for a target which can describe architectural features, starting
2335 from TARGET. If we find one, return its description. */
2336
2337 const struct target_desc *
2338 target_read_description (struct target_ops *target)
2339 {
2340 struct target_ops *t;
2341
2342 for (t = target; t != NULL; t = t->beneath)
2343 if (t->to_read_description != NULL)
2344 {
2345 const struct target_desc *tdesc;
2346
2347 tdesc = t->to_read_description (t);
2348 if (tdesc)
2349 return tdesc;
2350 }
2351
2352 return NULL;
2353 }
2354
2355 /* The default implementation of to_search_memory.
2356 This implements a basic search of memory, reading target memory and
2357 performing the search here (as opposed to performing the search in on the
2358 target side with, for example, gdbserver). */
2359
2360 int
2361 simple_search_memory (struct target_ops *ops,
2362 CORE_ADDR start_addr, ULONGEST search_space_len,
2363 const gdb_byte *pattern, ULONGEST pattern_len,
2364 CORE_ADDR *found_addrp)
2365 {
2366 /* NOTE: also defined in find.c testcase. */
2367 #define SEARCH_CHUNK_SIZE 16000
2368 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2369 /* Buffer to hold memory contents for searching. */
2370 gdb_byte *search_buf;
2371 unsigned search_buf_size;
2372 struct cleanup *old_cleanups;
2373
2374 search_buf_size = chunk_size + pattern_len - 1;
2375
2376 /* No point in trying to allocate a buffer larger than the search space. */
2377 if (search_space_len < search_buf_size)
2378 search_buf_size = search_space_len;
2379
2380 search_buf = malloc (search_buf_size);
2381 if (search_buf == NULL)
2382 error (_("Unable to allocate memory to perform the search."));
2383 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2384
2385 /* Prime the search buffer. */
2386
2387 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2388 search_buf, start_addr, search_buf_size) != search_buf_size)
2389 {
2390 warning (_("Unable to access target memory at %s, halting search."),
2391 hex_string (start_addr));
2392 do_cleanups (old_cleanups);
2393 return -1;
2394 }
2395
2396 /* Perform the search.
2397
2398 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2399 When we've scanned N bytes we copy the trailing bytes to the start and
2400 read in another N bytes. */
2401
2402 while (search_space_len >= pattern_len)
2403 {
2404 gdb_byte *found_ptr;
2405 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2406
2407 found_ptr = memmem (search_buf, nr_search_bytes,
2408 pattern, pattern_len);
2409
2410 if (found_ptr != NULL)
2411 {
2412 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2413
2414 *found_addrp = found_addr;
2415 do_cleanups (old_cleanups);
2416 return 1;
2417 }
2418
2419 /* Not found in this chunk, skip to next chunk. */
2420
2421 /* Don't let search_space_len wrap here, it's unsigned. */
2422 if (search_space_len >= chunk_size)
2423 search_space_len -= chunk_size;
2424 else
2425 search_space_len = 0;
2426
2427 if (search_space_len >= pattern_len)
2428 {
2429 unsigned keep_len = search_buf_size - chunk_size;
2430 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2431 int nr_to_read;
2432
2433 /* Copy the trailing part of the previous iteration to the front
2434 of the buffer for the next iteration. */
2435 gdb_assert (keep_len == pattern_len - 1);
2436 memcpy (search_buf, search_buf + chunk_size, keep_len);
2437
2438 nr_to_read = min (search_space_len - keep_len, chunk_size);
2439
2440 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2441 search_buf + keep_len, read_addr,
2442 nr_to_read) != nr_to_read)
2443 {
2444 warning (_("Unable to access target memory at %s, halting search."),
2445 hex_string (read_addr));
2446 do_cleanups (old_cleanups);
2447 return -1;
2448 }
2449
2450 start_addr += chunk_size;
2451 }
2452 }
2453
2454 /* Not found. */
2455
2456 do_cleanups (old_cleanups);
2457 return 0;
2458 }
2459
2460 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2461 sequence of bytes in PATTERN with length PATTERN_LEN.
2462
2463 The result is 1 if found, 0 if not found, and -1 if there was an error
2464 requiring halting of the search (e.g. memory read error).
2465 If the pattern is found the address is recorded in FOUND_ADDRP. */
2466
2467 int
2468 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2469 const gdb_byte *pattern, ULONGEST pattern_len,
2470 CORE_ADDR *found_addrp)
2471 {
2472 struct target_ops *t;
2473 int found;
2474
2475 /* We don't use INHERIT to set current_target.to_search_memory,
2476 so we have to scan the target stack and handle targetdebug
2477 ourselves. */
2478
2479 if (targetdebug)
2480 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2481 hex_string (start_addr));
2482
2483 for (t = current_target.beneath; t != NULL; t = t->beneath)
2484 if (t->to_search_memory != NULL)
2485 break;
2486
2487 if (t != NULL)
2488 {
2489 found = t->to_search_memory (t, start_addr, search_space_len,
2490 pattern, pattern_len, found_addrp);
2491 }
2492 else
2493 {
2494 /* If a special version of to_search_memory isn't available, use the
2495 simple version. */
2496 found = simple_search_memory (current_target.beneath,
2497 start_addr, search_space_len,
2498 pattern, pattern_len, found_addrp);
2499 }
2500
2501 if (targetdebug)
2502 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2503
2504 return found;
2505 }
2506
2507 /* Look through the currently pushed targets. If none of them will
2508 be able to restart the currently running process, issue an error
2509 message. */
2510
2511 void
2512 target_require_runnable (void)
2513 {
2514 struct target_ops *t;
2515
2516 for (t = target_stack; t != NULL; t = t->beneath)
2517 {
2518 /* If this target knows how to create a new program, then
2519 assume we will still be able to after killing the current
2520 one. Either killing and mourning will not pop T, or else
2521 find_default_run_target will find it again. */
2522 if (t->to_create_inferior != NULL)
2523 return;
2524
2525 /* Do not worry about thread_stratum targets that can not
2526 create inferiors. Assume they will be pushed again if
2527 necessary, and continue to the process_stratum. */
2528 if (t->to_stratum == thread_stratum
2529 || t->to_stratum == arch_stratum)
2530 continue;
2531
2532 error (_("\
2533 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2534 t->to_shortname);
2535 }
2536
2537 /* This function is only called if the target is running. In that
2538 case there should have been a process_stratum target and it
2539 should either know how to create inferiors, or not... */
2540 internal_error (__FILE__, __LINE__, "No targets found");
2541 }
2542
2543 /* Look through the list of possible targets for a target that can
2544 execute a run or attach command without any other data. This is
2545 used to locate the default process stratum.
2546
2547 If DO_MESG is not NULL, the result is always valid (error() is
2548 called for errors); else, return NULL on error. */
2549
2550 static struct target_ops *
2551 find_default_run_target (char *do_mesg)
2552 {
2553 struct target_ops **t;
2554 struct target_ops *runable = NULL;
2555 int count;
2556
2557 count = 0;
2558
2559 for (t = target_structs; t < target_structs + target_struct_size;
2560 ++t)
2561 {
2562 if ((*t)->to_can_run && target_can_run (*t))
2563 {
2564 runable = *t;
2565 ++count;
2566 }
2567 }
2568
2569 if (count != 1)
2570 {
2571 if (do_mesg)
2572 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2573 else
2574 return NULL;
2575 }
2576
2577 return runable;
2578 }
2579
2580 void
2581 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2582 {
2583 struct target_ops *t;
2584
2585 t = find_default_run_target ("attach");
2586 (t->to_attach) (t, args, from_tty);
2587 return;
2588 }
2589
2590 void
2591 find_default_create_inferior (struct target_ops *ops,
2592 char *exec_file, char *allargs, char **env,
2593 int from_tty)
2594 {
2595 struct target_ops *t;
2596
2597 t = find_default_run_target ("run");
2598 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2599 return;
2600 }
2601
2602 static int
2603 find_default_can_async_p (void)
2604 {
2605 struct target_ops *t;
2606
2607 /* This may be called before the target is pushed on the stack;
2608 look for the default process stratum. If there's none, gdb isn't
2609 configured with a native debugger, and target remote isn't
2610 connected yet. */
2611 t = find_default_run_target (NULL);
2612 if (t && t->to_can_async_p)
2613 return (t->to_can_async_p) ();
2614 return 0;
2615 }
2616
2617 static int
2618 find_default_is_async_p (void)
2619 {
2620 struct target_ops *t;
2621
2622 /* This may be called before the target is pushed on the stack;
2623 look for the default process stratum. If there's none, gdb isn't
2624 configured with a native debugger, and target remote isn't
2625 connected yet. */
2626 t = find_default_run_target (NULL);
2627 if (t && t->to_is_async_p)
2628 return (t->to_is_async_p) ();
2629 return 0;
2630 }
2631
2632 static int
2633 find_default_supports_non_stop (void)
2634 {
2635 struct target_ops *t;
2636
2637 t = find_default_run_target (NULL);
2638 if (t && t->to_supports_non_stop)
2639 return (t->to_supports_non_stop) ();
2640 return 0;
2641 }
2642
2643 int
2644 target_supports_non_stop (void)
2645 {
2646 struct target_ops *t;
2647
2648 for (t = &current_target; t != NULL; t = t->beneath)
2649 if (t->to_supports_non_stop)
2650 return t->to_supports_non_stop ();
2651
2652 return 0;
2653 }
2654
2655
2656 char *
2657 target_get_osdata (const char *type)
2658 {
2659 struct target_ops *t;
2660
2661 /* If we're already connected to something that can get us OS
2662 related data, use it. Otherwise, try using the native
2663 target. */
2664 if (current_target.to_stratum >= process_stratum)
2665 t = current_target.beneath;
2666 else
2667 t = find_default_run_target ("get OS data");
2668
2669 if (!t)
2670 return NULL;
2671
2672 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2673 }
2674
2675 /* Determine the current address space of thread PTID. */
2676
2677 struct address_space *
2678 target_thread_address_space (ptid_t ptid)
2679 {
2680 struct address_space *aspace;
2681 struct inferior *inf;
2682 struct target_ops *t;
2683
2684 for (t = current_target.beneath; t != NULL; t = t->beneath)
2685 {
2686 if (t->to_thread_address_space != NULL)
2687 {
2688 aspace = t->to_thread_address_space (t, ptid);
2689 gdb_assert (aspace);
2690
2691 if (targetdebug)
2692 fprintf_unfiltered (gdb_stdlog,
2693 "target_thread_address_space (%s) = %d\n",
2694 target_pid_to_str (ptid),
2695 address_space_num (aspace));
2696 return aspace;
2697 }
2698 }
2699
2700 /* Fall-back to the "main" address space of the inferior. */
2701 inf = find_inferior_pid (ptid_get_pid (ptid));
2702
2703 if (inf == NULL || inf->aspace == NULL)
2704 internal_error (__FILE__, __LINE__, "\
2705 Can't determine the current address space of thread %s\n",
2706 target_pid_to_str (ptid));
2707
2708 return inf->aspace;
2709 }
2710
2711 static int
2712 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2713 {
2714 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2715 }
2716
2717 static int
2718 default_watchpoint_addr_within_range (struct target_ops *target,
2719 CORE_ADDR addr,
2720 CORE_ADDR start, int length)
2721 {
2722 return addr >= start && addr < start + length;
2723 }
2724
2725 static struct gdbarch *
2726 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2727 {
2728 return target_gdbarch;
2729 }
2730
2731 static int
2732 return_zero (void)
2733 {
2734 return 0;
2735 }
2736
2737 static int
2738 return_one (void)
2739 {
2740 return 1;
2741 }
2742
2743 static int
2744 return_minus_one (void)
2745 {
2746 return -1;
2747 }
2748
2749 /* Find a single runnable target in the stack and return it. If for
2750 some reason there is more than one, return NULL. */
2751
2752 struct target_ops *
2753 find_run_target (void)
2754 {
2755 struct target_ops **t;
2756 struct target_ops *runable = NULL;
2757 int count;
2758
2759 count = 0;
2760
2761 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2762 {
2763 if ((*t)->to_can_run && target_can_run (*t))
2764 {
2765 runable = *t;
2766 ++count;
2767 }
2768 }
2769
2770 return (count == 1 ? runable : NULL);
2771 }
2772
2773 /* Find a single core_stratum target in the list of targets and return it.
2774 If for some reason there is more than one, return NULL. */
2775
2776 struct target_ops *
2777 find_core_target (void)
2778 {
2779 struct target_ops **t;
2780 struct target_ops *runable = NULL;
2781 int count;
2782
2783 count = 0;
2784
2785 for (t = target_structs; t < target_structs + target_struct_size;
2786 ++t)
2787 {
2788 if ((*t)->to_stratum == core_stratum)
2789 {
2790 runable = *t;
2791 ++count;
2792 }
2793 }
2794
2795 return (count == 1 ? runable : NULL);
2796 }
2797
2798 /*
2799 * Find the next target down the stack from the specified target.
2800 */
2801
2802 struct target_ops *
2803 find_target_beneath (struct target_ops *t)
2804 {
2805 return t->beneath;
2806 }
2807
2808 \f
2809 /* The inferior process has died. Long live the inferior! */
2810
2811 void
2812 generic_mourn_inferior (void)
2813 {
2814 ptid_t ptid;
2815
2816 ptid = inferior_ptid;
2817 inferior_ptid = null_ptid;
2818
2819 if (!ptid_equal (ptid, null_ptid))
2820 {
2821 int pid = ptid_get_pid (ptid);
2822 exit_inferior (pid);
2823 }
2824
2825 breakpoint_init_inferior (inf_exited);
2826 registers_changed ();
2827
2828 reopen_exec_file ();
2829 reinit_frame_cache ();
2830
2831 if (deprecated_detach_hook)
2832 deprecated_detach_hook ();
2833 }
2834 \f
2835 /* Helper function for child_wait and the derivatives of child_wait.
2836 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2837 translation of that in OURSTATUS. */
2838 void
2839 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2840 {
2841 if (WIFEXITED (hoststatus))
2842 {
2843 ourstatus->kind = TARGET_WAITKIND_EXITED;
2844 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2845 }
2846 else if (!WIFSTOPPED (hoststatus))
2847 {
2848 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2849 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2850 }
2851 else
2852 {
2853 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2854 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2855 }
2856 }
2857 \f
2858 /* Convert a normal process ID to a string. Returns the string in a
2859 static buffer. */
2860
2861 char *
2862 normal_pid_to_str (ptid_t ptid)
2863 {
2864 static char buf[32];
2865
2866 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2867 return buf;
2868 }
2869
2870 static char *
2871 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
2872 {
2873 return normal_pid_to_str (ptid);
2874 }
2875
2876 /* Error-catcher for target_find_memory_regions. */
2877 static int
2878 dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2879 {
2880 error (_("Command not implemented for this target."));
2881 return 0;
2882 }
2883
2884 /* Error-catcher for target_make_corefile_notes. */
2885 static char *
2886 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2887 {
2888 error (_("Command not implemented for this target."));
2889 return NULL;
2890 }
2891
2892 /* Error-catcher for target_get_bookmark. */
2893 static gdb_byte *
2894 dummy_get_bookmark (char *ignore1, int ignore2)
2895 {
2896 tcomplain ();
2897 return NULL;
2898 }
2899
2900 /* Error-catcher for target_goto_bookmark. */
2901 static void
2902 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
2903 {
2904 tcomplain ();
2905 }
2906
2907 /* Set up the handful of non-empty slots needed by the dummy target
2908 vector. */
2909
2910 static void
2911 init_dummy_target (void)
2912 {
2913 dummy_target.to_shortname = "None";
2914 dummy_target.to_longname = "None";
2915 dummy_target.to_doc = "";
2916 dummy_target.to_attach = find_default_attach;
2917 dummy_target.to_detach =
2918 (void (*)(struct target_ops *, char *, int))target_ignore;
2919 dummy_target.to_create_inferior = find_default_create_inferior;
2920 dummy_target.to_can_async_p = find_default_can_async_p;
2921 dummy_target.to_is_async_p = find_default_is_async_p;
2922 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
2923 dummy_target.to_pid_to_str = dummy_pid_to_str;
2924 dummy_target.to_stratum = dummy_stratum;
2925 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2926 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2927 dummy_target.to_get_bookmark = dummy_get_bookmark;
2928 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
2929 dummy_target.to_xfer_partial = default_xfer_partial;
2930 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
2931 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
2932 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
2933 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
2934 dummy_target.to_has_execution = (int (*) (struct target_ops *)) return_zero;
2935 dummy_target.to_stopped_by_watchpoint = return_zero;
2936 dummy_target.to_stopped_data_address =
2937 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
2938 dummy_target.to_magic = OPS_MAGIC;
2939 }
2940 \f
2941 static void
2942 debug_to_open (char *args, int from_tty)
2943 {
2944 debug_target.to_open (args, from_tty);
2945
2946 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2947 }
2948
2949 void
2950 target_close (struct target_ops *targ, int quitting)
2951 {
2952 if (targ->to_xclose != NULL)
2953 targ->to_xclose (targ, quitting);
2954 else if (targ->to_close != NULL)
2955 targ->to_close (quitting);
2956
2957 if (targetdebug)
2958 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2959 }
2960
2961 void
2962 target_attach (char *args, int from_tty)
2963 {
2964 struct target_ops *t;
2965
2966 for (t = current_target.beneath; t != NULL; t = t->beneath)
2967 {
2968 if (t->to_attach != NULL)
2969 {
2970 t->to_attach (t, args, from_tty);
2971 if (targetdebug)
2972 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
2973 args, from_tty);
2974 return;
2975 }
2976 }
2977
2978 internal_error (__FILE__, __LINE__,
2979 "could not find a target to attach");
2980 }
2981
2982 int
2983 target_thread_alive (ptid_t ptid)
2984 {
2985 struct target_ops *t;
2986
2987 for (t = current_target.beneath; t != NULL; t = t->beneath)
2988 {
2989 if (t->to_thread_alive != NULL)
2990 {
2991 int retval;
2992
2993 retval = t->to_thread_alive (t, ptid);
2994 if (targetdebug)
2995 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2996 PIDGET (ptid), retval);
2997
2998 return retval;
2999 }
3000 }
3001
3002 return 0;
3003 }
3004
3005 void
3006 target_find_new_threads (void)
3007 {
3008 struct target_ops *t;
3009
3010 for (t = current_target.beneath; t != NULL; t = t->beneath)
3011 {
3012 if (t->to_find_new_threads != NULL)
3013 {
3014 t->to_find_new_threads (t);
3015 if (targetdebug)
3016 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3017
3018 return;
3019 }
3020 }
3021 }
3022
3023 void
3024 target_stop (ptid_t ptid)
3025 {
3026 if (!may_stop)
3027 {
3028 warning (_("May not interrupt or stop the target, ignoring attempt"));
3029 return;
3030 }
3031
3032 (*current_target.to_stop) (ptid);
3033 }
3034
3035 static void
3036 debug_to_post_attach (int pid)
3037 {
3038 debug_target.to_post_attach (pid);
3039
3040 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3041 }
3042
3043 /* Return a pretty printed form of target_waitstatus.
3044 Space for the result is malloc'd, caller must free. */
3045
3046 char *
3047 target_waitstatus_to_string (const struct target_waitstatus *ws)
3048 {
3049 const char *kind_str = "status->kind = ";
3050
3051 switch (ws->kind)
3052 {
3053 case TARGET_WAITKIND_EXITED:
3054 return xstrprintf ("%sexited, status = %d",
3055 kind_str, ws->value.integer);
3056 case TARGET_WAITKIND_STOPPED:
3057 return xstrprintf ("%sstopped, signal = %s",
3058 kind_str, target_signal_to_name (ws->value.sig));
3059 case TARGET_WAITKIND_SIGNALLED:
3060 return xstrprintf ("%ssignalled, signal = %s",
3061 kind_str, target_signal_to_name (ws->value.sig));
3062 case TARGET_WAITKIND_LOADED:
3063 return xstrprintf ("%sloaded", kind_str);
3064 case TARGET_WAITKIND_FORKED:
3065 return xstrprintf ("%sforked", kind_str);
3066 case TARGET_WAITKIND_VFORKED:
3067 return xstrprintf ("%svforked", kind_str);
3068 case TARGET_WAITKIND_EXECD:
3069 return xstrprintf ("%sexecd", kind_str);
3070 case TARGET_WAITKIND_SYSCALL_ENTRY:
3071 return xstrprintf ("%sentered syscall", kind_str);
3072 case TARGET_WAITKIND_SYSCALL_RETURN:
3073 return xstrprintf ("%sexited syscall", kind_str);
3074 case TARGET_WAITKIND_SPURIOUS:
3075 return xstrprintf ("%sspurious", kind_str);
3076 case TARGET_WAITKIND_IGNORE:
3077 return xstrprintf ("%signore", kind_str);
3078 case TARGET_WAITKIND_NO_HISTORY:
3079 return xstrprintf ("%sno-history", kind_str);
3080 default:
3081 return xstrprintf ("%sunknown???", kind_str);
3082 }
3083 }
3084
3085 static void
3086 debug_print_register (const char * func,
3087 struct regcache *regcache, int regno)
3088 {
3089 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3090
3091 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3092 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3093 && gdbarch_register_name (gdbarch, regno) != NULL
3094 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3095 fprintf_unfiltered (gdb_stdlog, "(%s)",
3096 gdbarch_register_name (gdbarch, regno));
3097 else
3098 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3099 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3100 {
3101 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3102 int i, size = register_size (gdbarch, regno);
3103 unsigned char buf[MAX_REGISTER_SIZE];
3104
3105 regcache_raw_collect (regcache, regno, buf);
3106 fprintf_unfiltered (gdb_stdlog, " = ");
3107 for (i = 0; i < size; i++)
3108 {
3109 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3110 }
3111 if (size <= sizeof (LONGEST))
3112 {
3113 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3114
3115 fprintf_unfiltered (gdb_stdlog, " %s %s",
3116 core_addr_to_string_nz (val), plongest (val));
3117 }
3118 }
3119 fprintf_unfiltered (gdb_stdlog, "\n");
3120 }
3121
3122 void
3123 target_fetch_registers (struct regcache *regcache, int regno)
3124 {
3125 struct target_ops *t;
3126
3127 for (t = current_target.beneath; t != NULL; t = t->beneath)
3128 {
3129 if (t->to_fetch_registers != NULL)
3130 {
3131 t->to_fetch_registers (t, regcache, regno);
3132 if (targetdebug)
3133 debug_print_register ("target_fetch_registers", regcache, regno);
3134 return;
3135 }
3136 }
3137 }
3138
3139 void
3140 target_store_registers (struct regcache *regcache, int regno)
3141 {
3142 struct target_ops *t;
3143
3144 if (!may_write_registers)
3145 error (_("Writing to registers is not allowed (regno %d)"), regno);
3146
3147 for (t = current_target.beneath; t != NULL; t = t->beneath)
3148 {
3149 if (t->to_store_registers != NULL)
3150 {
3151 t->to_store_registers (t, regcache, regno);
3152 if (targetdebug)
3153 {
3154 debug_print_register ("target_store_registers", regcache, regno);
3155 }
3156 return;
3157 }
3158 }
3159
3160 noprocess ();
3161 }
3162
3163 int
3164 target_core_of_thread (ptid_t ptid)
3165 {
3166 struct target_ops *t;
3167
3168 for (t = current_target.beneath; t != NULL; t = t->beneath)
3169 {
3170 if (t->to_core_of_thread != NULL)
3171 {
3172 int retval = t->to_core_of_thread (t, ptid);
3173
3174 if (targetdebug)
3175 fprintf_unfiltered (gdb_stdlog, "target_core_of_thread (%d) = %d\n",
3176 PIDGET (ptid), retval);
3177 return retval;
3178 }
3179 }
3180
3181 return -1;
3182 }
3183
3184 int
3185 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3186 {
3187 struct target_ops *t;
3188
3189 for (t = current_target.beneath; t != NULL; t = t->beneath)
3190 {
3191 if (t->to_verify_memory != NULL)
3192 {
3193 int retval = t->to_verify_memory (t, data, memaddr, size);
3194
3195 if (targetdebug)
3196 fprintf_unfiltered (gdb_stdlog, "target_verify_memory (%s, %s) = %d\n",
3197 paddress (target_gdbarch, memaddr),
3198 pulongest (size),
3199 retval);
3200 return retval;
3201 }
3202 }
3203
3204 tcomplain ();
3205 }
3206
3207 static void
3208 debug_to_prepare_to_store (struct regcache *regcache)
3209 {
3210 debug_target.to_prepare_to_store (regcache);
3211
3212 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3213 }
3214
3215 static int
3216 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
3217 int write, struct mem_attrib *attrib,
3218 struct target_ops *target)
3219 {
3220 int retval;
3221
3222 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
3223 attrib, target);
3224
3225 fprintf_unfiltered (gdb_stdlog,
3226 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
3227 paddress (target_gdbarch, memaddr), len,
3228 write ? "write" : "read", retval);
3229
3230 if (retval > 0)
3231 {
3232 int i;
3233
3234 fputs_unfiltered (", bytes =", gdb_stdlog);
3235 for (i = 0; i < retval; i++)
3236 {
3237 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
3238 {
3239 if (targetdebug < 2 && i > 0)
3240 {
3241 fprintf_unfiltered (gdb_stdlog, " ...");
3242 break;
3243 }
3244 fprintf_unfiltered (gdb_stdlog, "\n");
3245 }
3246
3247 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
3248 }
3249 }
3250
3251 fputc_unfiltered ('\n', gdb_stdlog);
3252
3253 return retval;
3254 }
3255
3256 static void
3257 debug_to_files_info (struct target_ops *target)
3258 {
3259 debug_target.to_files_info (target);
3260
3261 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3262 }
3263
3264 static int
3265 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
3266 struct bp_target_info *bp_tgt)
3267 {
3268 int retval;
3269
3270 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
3271
3272 fprintf_unfiltered (gdb_stdlog,
3273 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
3274 (unsigned long) bp_tgt->placed_address,
3275 (unsigned long) retval);
3276 return retval;
3277 }
3278
3279 static int
3280 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
3281 struct bp_target_info *bp_tgt)
3282 {
3283 int retval;
3284
3285 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
3286
3287 fprintf_unfiltered (gdb_stdlog,
3288 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
3289 (unsigned long) bp_tgt->placed_address,
3290 (unsigned long) retval);
3291 return retval;
3292 }
3293
3294 static int
3295 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
3296 {
3297 int retval;
3298
3299 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
3300
3301 fprintf_unfiltered (gdb_stdlog,
3302 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3303 (unsigned long) type,
3304 (unsigned long) cnt,
3305 (unsigned long) from_tty,
3306 (unsigned long) retval);
3307 return retval;
3308 }
3309
3310 static int
3311 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3312 {
3313 CORE_ADDR retval;
3314
3315 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
3316
3317 fprintf_unfiltered (gdb_stdlog,
3318 "target_region_ok_for_hw_watchpoint (%ld, %ld) = 0x%lx\n",
3319 (unsigned long) addr,
3320 (unsigned long) len,
3321 (unsigned long) retval);
3322 return retval;
3323 }
3324
3325 static int
3326 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
3327 struct expression *cond)
3328 {
3329 int retval;
3330
3331 retval = debug_target.to_can_accel_watchpoint_condition (addr, len, rw, cond);
3332
3333 fprintf_unfiltered (gdb_stdlog,
3334 "target_can_accel_watchpoint_condition (0x%lx, %d, %d, 0x%lx) = %ld\n",
3335 (unsigned long) addr, len, rw, (unsigned long) cond,
3336 (unsigned long) retval);
3337 return retval;
3338 }
3339
3340 static int
3341 debug_to_stopped_by_watchpoint (void)
3342 {
3343 int retval;
3344
3345 retval = debug_target.to_stopped_by_watchpoint ();
3346
3347 fprintf_unfiltered (gdb_stdlog,
3348 "target_stopped_by_watchpoint () = %ld\n",
3349 (unsigned long) retval);
3350 return retval;
3351 }
3352
3353 static int
3354 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3355 {
3356 int retval;
3357
3358 retval = debug_target.to_stopped_data_address (target, addr);
3359
3360 fprintf_unfiltered (gdb_stdlog,
3361 "target_stopped_data_address ([0x%lx]) = %ld\n",
3362 (unsigned long)*addr,
3363 (unsigned long)retval);
3364 return retval;
3365 }
3366
3367 static int
3368 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3369 CORE_ADDR addr,
3370 CORE_ADDR start, int length)
3371 {
3372 int retval;
3373
3374 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3375 start, length);
3376
3377 fprintf_filtered (gdb_stdlog,
3378 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
3379 (unsigned long) addr, (unsigned long) start, length,
3380 retval);
3381 return retval;
3382 }
3383
3384 static int
3385 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
3386 struct bp_target_info *bp_tgt)
3387 {
3388 int retval;
3389
3390 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
3391
3392 fprintf_unfiltered (gdb_stdlog,
3393 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
3394 (unsigned long) bp_tgt->placed_address,
3395 (unsigned long) retval);
3396 return retval;
3397 }
3398
3399 static int
3400 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
3401 struct bp_target_info *bp_tgt)
3402 {
3403 int retval;
3404
3405 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
3406
3407 fprintf_unfiltered (gdb_stdlog,
3408 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
3409 (unsigned long) bp_tgt->placed_address,
3410 (unsigned long) retval);
3411 return retval;
3412 }
3413
3414 static int
3415 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
3416 struct expression *cond)
3417 {
3418 int retval;
3419
3420 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
3421
3422 fprintf_unfiltered (gdb_stdlog,
3423 "target_insert_watchpoint (0x%lx, %d, %d, 0x%ld) = %ld\n",
3424 (unsigned long) addr, len, type, (unsigned long) cond,
3425 (unsigned long) retval);
3426 return retval;
3427 }
3428
3429 static int
3430 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
3431 struct expression *cond)
3432 {
3433 int retval;
3434
3435 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
3436
3437 fprintf_unfiltered (gdb_stdlog,
3438 "target_remove_watchpoint (0x%lx, %d, %d, 0x%ld) = %ld\n",
3439 (unsigned long) addr, len, type, (unsigned long) cond,
3440 (unsigned long) retval);
3441 return retval;
3442 }
3443
3444 static void
3445 debug_to_terminal_init (void)
3446 {
3447 debug_target.to_terminal_init ();
3448
3449 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3450 }
3451
3452 static void
3453 debug_to_terminal_inferior (void)
3454 {
3455 debug_target.to_terminal_inferior ();
3456
3457 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3458 }
3459
3460 static void
3461 debug_to_terminal_ours_for_output (void)
3462 {
3463 debug_target.to_terminal_ours_for_output ();
3464
3465 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3466 }
3467
3468 static void
3469 debug_to_terminal_ours (void)
3470 {
3471 debug_target.to_terminal_ours ();
3472
3473 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3474 }
3475
3476 static void
3477 debug_to_terminal_save_ours (void)
3478 {
3479 debug_target.to_terminal_save_ours ();
3480
3481 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3482 }
3483
3484 static void
3485 debug_to_terminal_info (char *arg, int from_tty)
3486 {
3487 debug_target.to_terminal_info (arg, from_tty);
3488
3489 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3490 from_tty);
3491 }
3492
3493 static void
3494 debug_to_load (char *args, int from_tty)
3495 {
3496 debug_target.to_load (args, from_tty);
3497
3498 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3499 }
3500
3501 static int
3502 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
3503 {
3504 int retval;
3505
3506 retval = debug_target.to_lookup_symbol (name, addrp);
3507
3508 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
3509
3510 return retval;
3511 }
3512
3513 static void
3514 debug_to_post_startup_inferior (ptid_t ptid)
3515 {
3516 debug_target.to_post_startup_inferior (ptid);
3517
3518 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3519 PIDGET (ptid));
3520 }
3521
3522 static void
3523 debug_to_acknowledge_created_inferior (int pid)
3524 {
3525 debug_target.to_acknowledge_created_inferior (pid);
3526
3527 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
3528 pid);
3529 }
3530
3531 static void
3532 debug_to_insert_fork_catchpoint (int pid)
3533 {
3534 debug_target.to_insert_fork_catchpoint (pid);
3535
3536 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
3537 pid);
3538 }
3539
3540 static int
3541 debug_to_remove_fork_catchpoint (int pid)
3542 {
3543 int retval;
3544
3545 retval = debug_target.to_remove_fork_catchpoint (pid);
3546
3547 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3548 pid, retval);
3549
3550 return retval;
3551 }
3552
3553 static void
3554 debug_to_insert_vfork_catchpoint (int pid)
3555 {
3556 debug_target.to_insert_vfork_catchpoint (pid);
3557
3558 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
3559 pid);
3560 }
3561
3562 static int
3563 debug_to_remove_vfork_catchpoint (int pid)
3564 {
3565 int retval;
3566
3567 retval = debug_target.to_remove_vfork_catchpoint (pid);
3568
3569 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3570 pid, retval);
3571
3572 return retval;
3573 }
3574
3575 static void
3576 debug_to_insert_exec_catchpoint (int pid)
3577 {
3578 debug_target.to_insert_exec_catchpoint (pid);
3579
3580 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
3581 pid);
3582 }
3583
3584 static int
3585 debug_to_remove_exec_catchpoint (int pid)
3586 {
3587 int retval;
3588
3589 retval = debug_target.to_remove_exec_catchpoint (pid);
3590
3591 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3592 pid, retval);
3593
3594 return retval;
3595 }
3596
3597 static int
3598 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3599 {
3600 int has_exited;
3601
3602 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3603
3604 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3605 pid, wait_status, *exit_status, has_exited);
3606
3607 return has_exited;
3608 }
3609
3610 static int
3611 debug_to_can_run (void)
3612 {
3613 int retval;
3614
3615 retval = debug_target.to_can_run ();
3616
3617 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3618
3619 return retval;
3620 }
3621
3622 static void
3623 debug_to_notice_signals (ptid_t ptid)
3624 {
3625 debug_target.to_notice_signals (ptid);
3626
3627 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3628 PIDGET (ptid));
3629 }
3630
3631 static struct gdbarch *
3632 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
3633 {
3634 struct gdbarch *retval;
3635
3636 retval = debug_target.to_thread_architecture (ops, ptid);
3637
3638 fprintf_unfiltered (gdb_stdlog, "target_thread_architecture (%s) = %s [%s]\n",
3639 target_pid_to_str (ptid), host_address_to_string (retval),
3640 gdbarch_bfd_arch_info (retval)->printable_name);
3641 return retval;
3642 }
3643
3644 static void
3645 debug_to_stop (ptid_t ptid)
3646 {
3647 debug_target.to_stop (ptid);
3648
3649 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3650 target_pid_to_str (ptid));
3651 }
3652
3653 static void
3654 debug_to_rcmd (char *command,
3655 struct ui_file *outbuf)
3656 {
3657 debug_target.to_rcmd (command, outbuf);
3658 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3659 }
3660
3661 static char *
3662 debug_to_pid_to_exec_file (int pid)
3663 {
3664 char *exec_file;
3665
3666 exec_file = debug_target.to_pid_to_exec_file (pid);
3667
3668 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3669 pid, exec_file);
3670
3671 return exec_file;
3672 }
3673
3674 static void
3675 setup_target_debug (void)
3676 {
3677 memcpy (&debug_target, &current_target, sizeof debug_target);
3678
3679 current_target.to_open = debug_to_open;
3680 current_target.to_post_attach = debug_to_post_attach;
3681 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3682 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3683 current_target.to_files_info = debug_to_files_info;
3684 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3685 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3686 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3687 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3688 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3689 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3690 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3691 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3692 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3693 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3694 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3695 current_target.to_can_accel_watchpoint_condition = debug_to_can_accel_watchpoint_condition;
3696 current_target.to_terminal_init = debug_to_terminal_init;
3697 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3698 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3699 current_target.to_terminal_ours = debug_to_terminal_ours;
3700 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3701 current_target.to_terminal_info = debug_to_terminal_info;
3702 current_target.to_load = debug_to_load;
3703 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3704 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3705 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3706 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3707 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3708 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3709 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3710 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3711 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3712 current_target.to_has_exited = debug_to_has_exited;
3713 current_target.to_can_run = debug_to_can_run;
3714 current_target.to_notice_signals = debug_to_notice_signals;
3715 current_target.to_stop = debug_to_stop;
3716 current_target.to_rcmd = debug_to_rcmd;
3717 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3718 current_target.to_thread_architecture = debug_to_thread_architecture;
3719 }
3720 \f
3721
3722 static char targ_desc[] =
3723 "Names of targets and files being debugged.\n\
3724 Shows the entire stack of targets currently in use (including the exec-file,\n\
3725 core-file, and process, if any), as well as the symbol file name.";
3726
3727 static void
3728 do_monitor_command (char *cmd,
3729 int from_tty)
3730 {
3731 if ((current_target.to_rcmd
3732 == (void (*) (char *, struct ui_file *)) tcomplain)
3733 || (current_target.to_rcmd == debug_to_rcmd
3734 && (debug_target.to_rcmd
3735 == (void (*) (char *, struct ui_file *)) tcomplain)))
3736 error (_("\"monitor\" command not supported by this target."));
3737 target_rcmd (cmd, gdb_stdtarg);
3738 }
3739
3740 /* Print the name of each layers of our target stack. */
3741
3742 static void
3743 maintenance_print_target_stack (char *cmd, int from_tty)
3744 {
3745 struct target_ops *t;
3746
3747 printf_filtered (_("The current target stack is:\n"));
3748
3749 for (t = target_stack; t != NULL; t = t->beneath)
3750 {
3751 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3752 }
3753 }
3754
3755 /* Controls if async mode is permitted. */
3756 int target_async_permitted = 0;
3757
3758 /* The set command writes to this variable. If the inferior is
3759 executing, linux_nat_async_permitted is *not* updated. */
3760 static int target_async_permitted_1 = 0;
3761
3762 static void
3763 set_maintenance_target_async_permitted (char *args, int from_tty,
3764 struct cmd_list_element *c)
3765 {
3766 if (have_live_inferiors ())
3767 {
3768 target_async_permitted_1 = target_async_permitted;
3769 error (_("Cannot change this setting while the inferior is running."));
3770 }
3771
3772 target_async_permitted = target_async_permitted_1;
3773 }
3774
3775 static void
3776 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3777 struct cmd_list_element *c,
3778 const char *value)
3779 {
3780 fprintf_filtered (file, _("\
3781 Controlling the inferior in asynchronous mode is %s.\n"), value);
3782 }
3783
3784 /* Temporary copies of permission settings. */
3785
3786 static int may_write_registers_1 = 1;
3787 static int may_write_memory_1 = 1;
3788 static int may_insert_breakpoints_1 = 1;
3789 static int may_insert_tracepoints_1 = 1;
3790 static int may_insert_fast_tracepoints_1 = 1;
3791 static int may_stop_1 = 1;
3792
3793 /* Make the user-set values match the real values again. */
3794
3795 void
3796 update_target_permissions (void)
3797 {
3798 may_write_registers_1 = may_write_registers;
3799 may_write_memory_1 = may_write_memory;
3800 may_insert_breakpoints_1 = may_insert_breakpoints;
3801 may_insert_tracepoints_1 = may_insert_tracepoints;
3802 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3803 may_stop_1 = may_stop;
3804 }
3805
3806 /* The one function handles (most of) the permission flags in the same
3807 way. */
3808
3809 static void
3810 set_target_permissions (char *args, int from_tty,
3811 struct cmd_list_element *c)
3812 {
3813 if (target_has_execution)
3814 {
3815 update_target_permissions ();
3816 error (_("Cannot change this setting while the inferior is running."));
3817 }
3818
3819 /* Make the real values match the user-changed values. */
3820 may_write_registers = may_write_registers_1;
3821 may_insert_breakpoints = may_insert_breakpoints_1;
3822 may_insert_tracepoints = may_insert_tracepoints_1;
3823 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3824 may_stop = may_stop_1;
3825 update_observer_mode ();
3826 }
3827
3828 /* Set memory write permission independently of observer mode. */
3829
3830 static void
3831 set_write_memory_permission (char *args, int from_tty,
3832 struct cmd_list_element *c)
3833 {
3834 /* Make the real values match the user-changed values. */
3835 may_write_memory = may_write_memory_1;
3836 update_observer_mode ();
3837 }
3838
3839
3840 void
3841 initialize_targets (void)
3842 {
3843 init_dummy_target ();
3844 push_target (&dummy_target);
3845
3846 add_info ("target", target_info, targ_desc);
3847 add_info ("files", target_info, targ_desc);
3848
3849 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3850 Set target debugging."), _("\
3851 Show target debugging."), _("\
3852 When non-zero, target debugging is enabled. Higher numbers are more\n\
3853 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3854 command."),
3855 NULL,
3856 show_targetdebug,
3857 &setdebuglist, &showdebuglist);
3858
3859 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3860 &trust_readonly, _("\
3861 Set mode for reading from readonly sections."), _("\
3862 Show mode for reading from readonly sections."), _("\
3863 When this mode is on, memory reads from readonly sections (such as .text)\n\
3864 will be read from the object file instead of from the target. This will\n\
3865 result in significant performance improvement for remote targets."),
3866 NULL,
3867 show_trust_readonly,
3868 &setlist, &showlist);
3869
3870 add_com ("monitor", class_obscure, do_monitor_command,
3871 _("Send a command to the remote monitor (remote targets only)."));
3872
3873 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3874 _("Print the name of each layer of the internal target stack."),
3875 &maintenanceprintlist);
3876
3877 add_setshow_boolean_cmd ("target-async", no_class,
3878 &target_async_permitted_1, _("\
3879 Set whether gdb controls the inferior in asynchronous mode."), _("\
3880 Show whether gdb controls the inferior in asynchronous mode."), _("\
3881 Tells gdb whether to control the inferior in asynchronous mode."),
3882 set_maintenance_target_async_permitted,
3883 show_maintenance_target_async_permitted,
3884 &setlist,
3885 &showlist);
3886
3887 add_setshow_boolean_cmd ("stack-cache", class_support,
3888 &stack_cache_enabled_p_1, _("\
3889 Set cache use for stack access."), _("\
3890 Show cache use for stack access."), _("\
3891 When on, use the data cache for all stack access, regardless of any\n\
3892 configured memory regions. This improves remote performance significantly.\n\
3893 By default, caching for stack access is on."),
3894 set_stack_cache_enabled_p,
3895 show_stack_cache_enabled_p,
3896 &setlist, &showlist);
3897
3898 add_setshow_boolean_cmd ("may-write-registers", class_support,
3899 &may_write_registers_1, _("\
3900 Set permission to write into registers."), _("\
3901 Show permission to write into registers."), _("\
3902 When this permission is on, GDB may write into the target's registers.\n\
3903 Otherwise, any sort of write attempt will result in an error."),
3904 set_target_permissions, NULL,
3905 &setlist, &showlist);
3906
3907 add_setshow_boolean_cmd ("may-write-memory", class_support,
3908 &may_write_memory_1, _("\
3909 Set permission to write into target memory."), _("\
3910 Show permission to write into target memory."), _("\
3911 When this permission is on, GDB may write into the target's memory.\n\
3912 Otherwise, any sort of write attempt will result in an error."),
3913 set_write_memory_permission, NULL,
3914 &setlist, &showlist);
3915
3916 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3917 &may_insert_breakpoints_1, _("\
3918 Set permission to insert breakpoints in the target."), _("\
3919 Show permission to insert breakpoints in the target."), _("\
3920 When this permission is on, GDB may insert breakpoints in the program.\n\
3921 Otherwise, any sort of insertion attempt will result in an error."),
3922 set_target_permissions, NULL,
3923 &setlist, &showlist);
3924
3925 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3926 &may_insert_tracepoints_1, _("\
3927 Set permission to insert tracepoints in the target."), _("\
3928 Show permission to insert tracepoints in the target."), _("\
3929 When this permission is on, GDB may insert tracepoints in the program.\n\
3930 Otherwise, any sort of insertion attempt will result in an error."),
3931 set_target_permissions, NULL,
3932 &setlist, &showlist);
3933
3934 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3935 &may_insert_fast_tracepoints_1, _("\
3936 Set permission to insert fast tracepoints in the target."), _("\
3937 Show permission to insert fast tracepoints in the target."), _("\
3938 When this permission is on, GDB may insert fast tracepoints.\n\
3939 Otherwise, any sort of insertion attempt will result in an error."),
3940 set_target_permissions, NULL,
3941 &setlist, &showlist);
3942
3943 add_setshow_boolean_cmd ("may-interrupt", class_support,
3944 &may_stop_1, _("\
3945 Set permission to interrupt or signal the target."), _("\
3946 Show permission to interrupt or signal the target."), _("\
3947 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3948 Otherwise, any attempt to interrupt or stop will be ignored."),
3949 set_target_permissions, NULL,
3950 &setlist, &showlist);
3951
3952
3953 target_dcache = dcache_init ();
3954 }
This page took 0.179664 seconds and 4 git commands to generate.