Use target_continue{,_no_signal} instead of target_resume
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48
49 static void target_info (char *, int);
50
51 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
52
53 static void default_terminal_info (struct target_ops *, const char *, int);
54
55 static int default_watchpoint_addr_within_range (struct target_ops *,
56 CORE_ADDR, CORE_ADDR, int);
57
58 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
59 CORE_ADDR, int);
60
61 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
62
63 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
64 long lwp, long tid);
65
66 static int default_follow_fork (struct target_ops *self, int follow_child,
67 int detach_fork);
68
69 static void default_mourn_inferior (struct target_ops *self);
70
71 static int default_search_memory (struct target_ops *ops,
72 CORE_ADDR start_addr,
73 ULONGEST search_space_len,
74 const gdb_byte *pattern,
75 ULONGEST pattern_len,
76 CORE_ADDR *found_addrp);
77
78 static int default_verify_memory (struct target_ops *self,
79 const gdb_byte *data,
80 CORE_ADDR memaddr, ULONGEST size);
81
82 static struct address_space *default_thread_address_space
83 (struct target_ops *self, ptid_t ptid);
84
85 static void tcomplain (void) ATTRIBUTE_NORETURN;
86
87 static int return_zero (struct target_ops *);
88
89 static int return_zero_has_execution (struct target_ops *, ptid_t);
90
91 static void target_command (char *, int);
92
93 static struct target_ops *find_default_run_target (char *);
94
95 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
96 ptid_t ptid);
97
98 static int dummy_find_memory_regions (struct target_ops *self,
99 find_memory_region_ftype ignore1,
100 void *ignore2);
101
102 static char *dummy_make_corefile_notes (struct target_ops *self,
103 bfd *ignore1, int *ignore2);
104
105 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
106
107 static enum exec_direction_kind default_execution_direction
108 (struct target_ops *self);
109
110 static struct target_ops debug_target;
111
112 #include "target-delegates.c"
113
114 static void init_dummy_target (void);
115
116 static void update_current_target (void);
117
118 /* Vector of existing target structures. */
119 typedef struct target_ops *target_ops_p;
120 DEF_VEC_P (target_ops_p);
121 static VEC (target_ops_p) *target_structs;
122
123 /* The initial current target, so that there is always a semi-valid
124 current target. */
125
126 static struct target_ops dummy_target;
127
128 /* Top of target stack. */
129
130 static struct target_ops *target_stack;
131
132 /* The target structure we are currently using to talk to a process
133 or file or whatever "inferior" we have. */
134
135 struct target_ops current_target;
136
137 /* Command list for target. */
138
139 static struct cmd_list_element *targetlist = NULL;
140
141 /* Nonzero if we should trust readonly sections from the
142 executable when reading memory. */
143
144 static int trust_readonly = 0;
145
146 /* Nonzero if we should show true memory content including
147 memory breakpoint inserted by gdb. */
148
149 static int show_memory_breakpoints = 0;
150
151 /* These globals control whether GDB attempts to perform these
152 operations; they are useful for targets that need to prevent
153 inadvertant disruption, such as in non-stop mode. */
154
155 int may_write_registers = 1;
156
157 int may_write_memory = 1;
158
159 int may_insert_breakpoints = 1;
160
161 int may_insert_tracepoints = 1;
162
163 int may_insert_fast_tracepoints = 1;
164
165 int may_stop = 1;
166
167 /* Non-zero if we want to see trace of target level stuff. */
168
169 static unsigned int targetdebug = 0;
170
171 static void
172 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
173 {
174 update_current_target ();
175 }
176
177 static void
178 show_targetdebug (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
182 }
183
184 static void setup_target_debug (void);
185
186 /* The user just typed 'target' without the name of a target. */
187
188 static void
189 target_command (char *arg, int from_tty)
190 {
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193 }
194
195 /* Default target_has_* methods for process_stratum targets. */
196
197 int
198 default_child_has_all_memory (struct target_ops *ops)
199 {
200 /* If no inferior selected, then we can't read memory here. */
201 if (ptid_equal (inferior_ptid, null_ptid))
202 return 0;
203
204 return 1;
205 }
206
207 int
208 default_child_has_memory (struct target_ops *ops)
209 {
210 /* If no inferior selected, then we can't read memory here. */
211 if (ptid_equal (inferior_ptid, null_ptid))
212 return 0;
213
214 return 1;
215 }
216
217 int
218 default_child_has_stack (struct target_ops *ops)
219 {
220 /* If no inferior selected, there's no stack. */
221 if (ptid_equal (inferior_ptid, null_ptid))
222 return 0;
223
224 return 1;
225 }
226
227 int
228 default_child_has_registers (struct target_ops *ops)
229 {
230 /* Can't read registers from no inferior. */
231 if (ptid_equal (inferior_ptid, null_ptid))
232 return 0;
233
234 return 1;
235 }
236
237 int
238 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
239 {
240 /* If there's no thread selected, then we can't make it run through
241 hoops. */
242 if (ptid_equal (the_ptid, null_ptid))
243 return 0;
244
245 return 1;
246 }
247
248
249 int
250 target_has_all_memory_1 (void)
251 {
252 struct target_ops *t;
253
254 for (t = current_target.beneath; t != NULL; t = t->beneath)
255 if (t->to_has_all_memory (t))
256 return 1;
257
258 return 0;
259 }
260
261 int
262 target_has_memory_1 (void)
263 {
264 struct target_ops *t;
265
266 for (t = current_target.beneath; t != NULL; t = t->beneath)
267 if (t->to_has_memory (t))
268 return 1;
269
270 return 0;
271 }
272
273 int
274 target_has_stack_1 (void)
275 {
276 struct target_ops *t;
277
278 for (t = current_target.beneath; t != NULL; t = t->beneath)
279 if (t->to_has_stack (t))
280 return 1;
281
282 return 0;
283 }
284
285 int
286 target_has_registers_1 (void)
287 {
288 struct target_ops *t;
289
290 for (t = current_target.beneath; t != NULL; t = t->beneath)
291 if (t->to_has_registers (t))
292 return 1;
293
294 return 0;
295 }
296
297 int
298 target_has_execution_1 (ptid_t the_ptid)
299 {
300 struct target_ops *t;
301
302 for (t = current_target.beneath; t != NULL; t = t->beneath)
303 if (t->to_has_execution (t, the_ptid))
304 return 1;
305
306 return 0;
307 }
308
309 int
310 target_has_execution_current (void)
311 {
312 return target_has_execution_1 (inferior_ptid);
313 }
314
315 /* Complete initialization of T. This ensures that various fields in
316 T are set, if needed by the target implementation. */
317
318 void
319 complete_target_initialization (struct target_ops *t)
320 {
321 /* Provide default values for all "must have" methods. */
322
323 if (t->to_has_all_memory == NULL)
324 t->to_has_all_memory = return_zero;
325
326 if (t->to_has_memory == NULL)
327 t->to_has_memory = return_zero;
328
329 if (t->to_has_stack == NULL)
330 t->to_has_stack = return_zero;
331
332 if (t->to_has_registers == NULL)
333 t->to_has_registers = return_zero;
334
335 if (t->to_has_execution == NULL)
336 t->to_has_execution = return_zero_has_execution;
337
338 /* These methods can be called on an unpushed target and so require
339 a default implementation if the target might plausibly be the
340 default run target. */
341 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
342 && t->to_supports_non_stop != NULL));
343
344 install_delegators (t);
345 }
346
347 /* This is used to implement the various target commands. */
348
349 static void
350 open_target (char *args, int from_tty, struct cmd_list_element *command)
351 {
352 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
353
354 if (targetdebug)
355 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
356 ops->to_shortname);
357
358 ops->to_open (args, from_tty);
359
360 if (targetdebug)
361 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
362 ops->to_shortname, args, from_tty);
363 }
364
365 /* Add possible target architecture T to the list and add a new
366 command 'target T->to_shortname'. Set COMPLETER as the command's
367 completer if not NULL. */
368
369 void
370 add_target_with_completer (struct target_ops *t,
371 completer_ftype *completer)
372 {
373 struct cmd_list_element *c;
374
375 complete_target_initialization (t);
376
377 VEC_safe_push (target_ops_p, target_structs, t);
378
379 if (targetlist == NULL)
380 add_prefix_cmd ("target", class_run, target_command, _("\
381 Connect to a target machine or process.\n\
382 The first argument is the type or protocol of the target machine.\n\
383 Remaining arguments are interpreted by the target protocol. For more\n\
384 information on the arguments for a particular protocol, type\n\
385 `help target ' followed by the protocol name."),
386 &targetlist, "target ", 0, &cmdlist);
387 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
388 set_cmd_sfunc (c, open_target);
389 set_cmd_context (c, t);
390 if (completer != NULL)
391 set_cmd_completer (c, completer);
392 }
393
394 /* Add a possible target architecture to the list. */
395
396 void
397 add_target (struct target_ops *t)
398 {
399 add_target_with_completer (t, NULL);
400 }
401
402 /* See target.h. */
403
404 void
405 add_deprecated_target_alias (struct target_ops *t, char *alias)
406 {
407 struct cmd_list_element *c;
408 char *alt;
409
410 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
411 see PR cli/15104. */
412 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
413 set_cmd_sfunc (c, open_target);
414 set_cmd_context (c, t);
415 alt = xstrprintf ("target %s", t->to_shortname);
416 deprecate_cmd (c, alt);
417 }
418
419 /* Stub functions */
420
421 void
422 target_kill (void)
423 {
424 current_target.to_kill (&current_target);
425 }
426
427 void
428 target_load (const char *arg, int from_tty)
429 {
430 target_dcache_invalidate ();
431 (*current_target.to_load) (&current_target, arg, from_tty);
432 }
433
434 /* Possible terminal states. */
435
436 enum terminal_state
437 {
438 /* The inferior's terminal settings are in effect. */
439 terminal_is_inferior = 0,
440
441 /* Some of our terminal settings are in effect, enough to get
442 proper output. */
443 terminal_is_ours_for_output = 1,
444
445 /* Our terminal settings are in effect, for output and input. */
446 terminal_is_ours = 2
447 };
448
449 static enum terminal_state terminal_state = terminal_is_ours;
450
451 /* See target.h. */
452
453 void
454 target_terminal_init (void)
455 {
456 (*current_target.to_terminal_init) (&current_target);
457
458 terminal_state = terminal_is_ours;
459 }
460
461 /* See target.h. */
462
463 int
464 target_terminal_is_inferior (void)
465 {
466 return (terminal_state == terminal_is_inferior);
467 }
468
469 /* See target.h. */
470
471 int
472 target_terminal_is_ours (void)
473 {
474 return (terminal_state == terminal_is_ours);
475 }
476
477 /* See target.h. */
478
479 void
480 target_terminal_inferior (void)
481 {
482 struct ui *ui = current_ui;
483
484 /* A background resume (``run&'') should leave GDB in control of the
485 terminal. */
486 if (ui->prompt_state != PROMPT_BLOCKED)
487 return;
488
489 /* Since we always run the inferior in the main console (unless "set
490 inferior-tty" is in effect), when some UI other than the main one
491 calls target_terminal_inferior/target_terminal_inferior, then we
492 leave the main UI's terminal settings as is. */
493 if (ui != main_ui)
494 return;
495
496 if (terminal_state == terminal_is_inferior)
497 return;
498
499 /* If GDB is resuming the inferior in the foreground, install
500 inferior's terminal modes. */
501 (*current_target.to_terminal_inferior) (&current_target);
502 terminal_state = terminal_is_inferior;
503
504 /* If the user hit C-c before, pretend that it was hit right
505 here. */
506 if (check_quit_flag ())
507 target_pass_ctrlc ();
508 }
509
510 /* See target.h. */
511
512 void
513 target_terminal_ours (void)
514 {
515 struct ui *ui = current_ui;
516
517 /* See target_terminal_inferior. */
518 if (ui != main_ui)
519 return;
520
521 if (terminal_state == terminal_is_ours)
522 return;
523
524 (*current_target.to_terminal_ours) (&current_target);
525 terminal_state = terminal_is_ours;
526 }
527
528 /* See target.h. */
529
530 void
531 target_terminal_ours_for_output (void)
532 {
533 struct ui *ui = current_ui;
534
535 /* See target_terminal_inferior. */
536 if (ui != main_ui)
537 return;
538
539 if (terminal_state != terminal_is_inferior)
540 return;
541 (*current_target.to_terminal_ours_for_output) (&current_target);
542 terminal_state = terminal_is_ours_for_output;
543 }
544
545 /* See target.h. */
546
547 int
548 target_supports_terminal_ours (void)
549 {
550 struct target_ops *t;
551
552 for (t = current_target.beneath; t != NULL; t = t->beneath)
553 {
554 if (t->to_terminal_ours != delegate_terminal_ours
555 && t->to_terminal_ours != tdefault_terminal_ours)
556 return 1;
557 }
558
559 return 0;
560 }
561
562 /* Restore the terminal to its previous state (helper for
563 make_cleanup_restore_target_terminal). */
564
565 static void
566 cleanup_restore_target_terminal (void *arg)
567 {
568 enum terminal_state *previous_state = (enum terminal_state *) arg;
569
570 switch (*previous_state)
571 {
572 case terminal_is_ours:
573 target_terminal_ours ();
574 break;
575 case terminal_is_ours_for_output:
576 target_terminal_ours_for_output ();
577 break;
578 case terminal_is_inferior:
579 target_terminal_inferior ();
580 break;
581 }
582 }
583
584 /* See target.h. */
585
586 struct cleanup *
587 make_cleanup_restore_target_terminal (void)
588 {
589 enum terminal_state *ts = XNEW (enum terminal_state);
590
591 *ts = terminal_state;
592
593 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
594 }
595
596 static void
597 tcomplain (void)
598 {
599 error (_("You can't do that when your target is `%s'"),
600 current_target.to_shortname);
601 }
602
603 void
604 noprocess (void)
605 {
606 error (_("You can't do that without a process to debug."));
607 }
608
609 static void
610 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
611 {
612 printf_unfiltered (_("No saved terminal information.\n"));
613 }
614
615 /* A default implementation for the to_get_ada_task_ptid target method.
616
617 This function builds the PTID by using both LWP and TID as part of
618 the PTID lwp and tid elements. The pid used is the pid of the
619 inferior_ptid. */
620
621 static ptid_t
622 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
623 {
624 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
625 }
626
627 static enum exec_direction_kind
628 default_execution_direction (struct target_ops *self)
629 {
630 if (!target_can_execute_reverse)
631 return EXEC_FORWARD;
632 else if (!target_can_async_p ())
633 return EXEC_FORWARD;
634 else
635 gdb_assert_not_reached ("\
636 to_execution_direction must be implemented for reverse async");
637 }
638
639 /* Go through the target stack from top to bottom, copying over zero
640 entries in current_target, then filling in still empty entries. In
641 effect, we are doing class inheritance through the pushed target
642 vectors.
643
644 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
645 is currently implemented, is that it discards any knowledge of
646 which target an inherited method originally belonged to.
647 Consequently, new new target methods should instead explicitly and
648 locally search the target stack for the target that can handle the
649 request. */
650
651 static void
652 update_current_target (void)
653 {
654 struct target_ops *t;
655
656 /* First, reset current's contents. */
657 memset (&current_target, 0, sizeof (current_target));
658
659 /* Install the delegators. */
660 install_delegators (&current_target);
661
662 current_target.to_stratum = target_stack->to_stratum;
663
664 #define INHERIT(FIELD, TARGET) \
665 if (!current_target.FIELD) \
666 current_target.FIELD = (TARGET)->FIELD
667
668 /* Do not add any new INHERITs here. Instead, use the delegation
669 mechanism provided by make-target-delegates. */
670 for (t = target_stack; t; t = t->beneath)
671 {
672 INHERIT (to_shortname, t);
673 INHERIT (to_longname, t);
674 INHERIT (to_attach_no_wait, t);
675 INHERIT (to_have_steppable_watchpoint, t);
676 INHERIT (to_have_continuable_watchpoint, t);
677 INHERIT (to_has_thread_control, t);
678 }
679 #undef INHERIT
680
681 /* Finally, position the target-stack beneath the squashed
682 "current_target". That way code looking for a non-inherited
683 target method can quickly and simply find it. */
684 current_target.beneath = target_stack;
685
686 if (targetdebug)
687 setup_target_debug ();
688 }
689
690 /* Push a new target type into the stack of the existing target accessors,
691 possibly superseding some of the existing accessors.
692
693 Rather than allow an empty stack, we always have the dummy target at
694 the bottom stratum, so we can call the function vectors without
695 checking them. */
696
697 void
698 push_target (struct target_ops *t)
699 {
700 struct target_ops **cur;
701
702 /* Check magic number. If wrong, it probably means someone changed
703 the struct definition, but not all the places that initialize one. */
704 if (t->to_magic != OPS_MAGIC)
705 {
706 fprintf_unfiltered (gdb_stderr,
707 "Magic number of %s target struct wrong\n",
708 t->to_shortname);
709 internal_error (__FILE__, __LINE__,
710 _("failed internal consistency check"));
711 }
712
713 /* Find the proper stratum to install this target in. */
714 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
715 {
716 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
717 break;
718 }
719
720 /* If there's already targets at this stratum, remove them. */
721 /* FIXME: cagney/2003-10-15: I think this should be popping all
722 targets to CUR, and not just those at this stratum level. */
723 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
724 {
725 /* There's already something at this stratum level. Close it,
726 and un-hook it from the stack. */
727 struct target_ops *tmp = (*cur);
728
729 (*cur) = (*cur)->beneath;
730 tmp->beneath = NULL;
731 target_close (tmp);
732 }
733
734 /* We have removed all targets in our stratum, now add the new one. */
735 t->beneath = (*cur);
736 (*cur) = t;
737
738 update_current_target ();
739 }
740
741 /* Remove a target_ops vector from the stack, wherever it may be.
742 Return how many times it was removed (0 or 1). */
743
744 int
745 unpush_target (struct target_ops *t)
746 {
747 struct target_ops **cur;
748 struct target_ops *tmp;
749
750 if (t->to_stratum == dummy_stratum)
751 internal_error (__FILE__, __LINE__,
752 _("Attempt to unpush the dummy target"));
753
754 /* Look for the specified target. Note that we assume that a target
755 can only occur once in the target stack. */
756
757 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
758 {
759 if ((*cur) == t)
760 break;
761 }
762
763 /* If we don't find target_ops, quit. Only open targets should be
764 closed. */
765 if ((*cur) == NULL)
766 return 0;
767
768 /* Unchain the target. */
769 tmp = (*cur);
770 (*cur) = (*cur)->beneath;
771 tmp->beneath = NULL;
772
773 update_current_target ();
774
775 /* Finally close the target. Note we do this after unchaining, so
776 any target method calls from within the target_close
777 implementation don't end up in T anymore. */
778 target_close (t);
779
780 return 1;
781 }
782
783 /* Unpush TARGET and assert that it worked. */
784
785 static void
786 unpush_target_and_assert (struct target_ops *target)
787 {
788 if (!unpush_target (target))
789 {
790 fprintf_unfiltered (gdb_stderr,
791 "pop_all_targets couldn't find target %s\n",
792 target->to_shortname);
793 internal_error (__FILE__, __LINE__,
794 _("failed internal consistency check"));
795 }
796 }
797
798 void
799 pop_all_targets_above (enum strata above_stratum)
800 {
801 while ((int) (current_target.to_stratum) > (int) above_stratum)
802 unpush_target_and_assert (target_stack);
803 }
804
805 /* See target.h. */
806
807 void
808 pop_all_targets_at_and_above (enum strata stratum)
809 {
810 while ((int) (current_target.to_stratum) >= (int) stratum)
811 unpush_target_and_assert (target_stack);
812 }
813
814 void
815 pop_all_targets (void)
816 {
817 pop_all_targets_above (dummy_stratum);
818 }
819
820 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
821
822 int
823 target_is_pushed (struct target_ops *t)
824 {
825 struct target_ops *cur;
826
827 /* Check magic number. If wrong, it probably means someone changed
828 the struct definition, but not all the places that initialize one. */
829 if (t->to_magic != OPS_MAGIC)
830 {
831 fprintf_unfiltered (gdb_stderr,
832 "Magic number of %s target struct wrong\n",
833 t->to_shortname);
834 internal_error (__FILE__, __LINE__,
835 _("failed internal consistency check"));
836 }
837
838 for (cur = target_stack; cur != NULL; cur = cur->beneath)
839 if (cur == t)
840 return 1;
841
842 return 0;
843 }
844
845 /* Default implementation of to_get_thread_local_address. */
846
847 static void
848 generic_tls_error (void)
849 {
850 throw_error (TLS_GENERIC_ERROR,
851 _("Cannot find thread-local variables on this target"));
852 }
853
854 /* Using the objfile specified in OBJFILE, find the address for the
855 current thread's thread-local storage with offset OFFSET. */
856 CORE_ADDR
857 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
858 {
859 volatile CORE_ADDR addr = 0;
860 struct target_ops *target = &current_target;
861
862 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
863 {
864 ptid_t ptid = inferior_ptid;
865
866 TRY
867 {
868 CORE_ADDR lm_addr;
869
870 /* Fetch the load module address for this objfile. */
871 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
872 objfile);
873
874 addr = target->to_get_thread_local_address (target, ptid,
875 lm_addr, offset);
876 }
877 /* If an error occurred, print TLS related messages here. Otherwise,
878 throw the error to some higher catcher. */
879 CATCH (ex, RETURN_MASK_ALL)
880 {
881 int objfile_is_library = (objfile->flags & OBJF_SHARED);
882
883 switch (ex.error)
884 {
885 case TLS_NO_LIBRARY_SUPPORT_ERROR:
886 error (_("Cannot find thread-local variables "
887 "in this thread library."));
888 break;
889 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
890 if (objfile_is_library)
891 error (_("Cannot find shared library `%s' in dynamic"
892 " linker's load module list"), objfile_name (objfile));
893 else
894 error (_("Cannot find executable file `%s' in dynamic"
895 " linker's load module list"), objfile_name (objfile));
896 break;
897 case TLS_NOT_ALLOCATED_YET_ERROR:
898 if (objfile_is_library)
899 error (_("The inferior has not yet allocated storage for"
900 " thread-local variables in\n"
901 "the shared library `%s'\n"
902 "for %s"),
903 objfile_name (objfile), target_pid_to_str (ptid));
904 else
905 error (_("The inferior has not yet allocated storage for"
906 " thread-local variables in\n"
907 "the executable `%s'\n"
908 "for %s"),
909 objfile_name (objfile), target_pid_to_str (ptid));
910 break;
911 case TLS_GENERIC_ERROR:
912 if (objfile_is_library)
913 error (_("Cannot find thread-local storage for %s, "
914 "shared library %s:\n%s"),
915 target_pid_to_str (ptid),
916 objfile_name (objfile), ex.message);
917 else
918 error (_("Cannot find thread-local storage for %s, "
919 "executable file %s:\n%s"),
920 target_pid_to_str (ptid),
921 objfile_name (objfile), ex.message);
922 break;
923 default:
924 throw_exception (ex);
925 break;
926 }
927 }
928 END_CATCH
929 }
930 /* It wouldn't be wrong here to try a gdbarch method, too; finding
931 TLS is an ABI-specific thing. But we don't do that yet. */
932 else
933 error (_("Cannot find thread-local variables on this target"));
934
935 return addr;
936 }
937
938 const char *
939 target_xfer_status_to_string (enum target_xfer_status status)
940 {
941 #define CASE(X) case X: return #X
942 switch (status)
943 {
944 CASE(TARGET_XFER_E_IO);
945 CASE(TARGET_XFER_UNAVAILABLE);
946 default:
947 return "<unknown>";
948 }
949 #undef CASE
950 };
951
952
953 #undef MIN
954 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
955
956 /* target_read_string -- read a null terminated string, up to LEN bytes,
957 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
958 Set *STRING to a pointer to malloc'd memory containing the data; the caller
959 is responsible for freeing it. Return the number of bytes successfully
960 read. */
961
962 int
963 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
964 {
965 int tlen, offset, i;
966 gdb_byte buf[4];
967 int errcode = 0;
968 char *buffer;
969 int buffer_allocated;
970 char *bufptr;
971 unsigned int nbytes_read = 0;
972
973 gdb_assert (string);
974
975 /* Small for testing. */
976 buffer_allocated = 4;
977 buffer = (char *) xmalloc (buffer_allocated);
978 bufptr = buffer;
979
980 while (len > 0)
981 {
982 tlen = MIN (len, 4 - (memaddr & 3));
983 offset = memaddr & 3;
984
985 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
986 if (errcode != 0)
987 {
988 /* The transfer request might have crossed the boundary to an
989 unallocated region of memory. Retry the transfer, requesting
990 a single byte. */
991 tlen = 1;
992 offset = 0;
993 errcode = target_read_memory (memaddr, buf, 1);
994 if (errcode != 0)
995 goto done;
996 }
997
998 if (bufptr - buffer + tlen > buffer_allocated)
999 {
1000 unsigned int bytes;
1001
1002 bytes = bufptr - buffer;
1003 buffer_allocated *= 2;
1004 buffer = (char *) xrealloc (buffer, buffer_allocated);
1005 bufptr = buffer + bytes;
1006 }
1007
1008 for (i = 0; i < tlen; i++)
1009 {
1010 *bufptr++ = buf[i + offset];
1011 if (buf[i + offset] == '\000')
1012 {
1013 nbytes_read += i + 1;
1014 goto done;
1015 }
1016 }
1017
1018 memaddr += tlen;
1019 len -= tlen;
1020 nbytes_read += tlen;
1021 }
1022 done:
1023 *string = buffer;
1024 if (errnop != NULL)
1025 *errnop = errcode;
1026 return nbytes_read;
1027 }
1028
1029 struct target_section_table *
1030 target_get_section_table (struct target_ops *target)
1031 {
1032 return (*target->to_get_section_table) (target);
1033 }
1034
1035 /* Find a section containing ADDR. */
1036
1037 struct target_section *
1038 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1039 {
1040 struct target_section_table *table = target_get_section_table (target);
1041 struct target_section *secp;
1042
1043 if (table == NULL)
1044 return NULL;
1045
1046 for (secp = table->sections; secp < table->sections_end; secp++)
1047 {
1048 if (addr >= secp->addr && addr < secp->endaddr)
1049 return secp;
1050 }
1051 return NULL;
1052 }
1053
1054
1055 /* Helper for the memory xfer routines. Checks the attributes of the
1056 memory region of MEMADDR against the read or write being attempted.
1057 If the access is permitted returns true, otherwise returns false.
1058 REGION_P is an optional output parameter. If not-NULL, it is
1059 filled with a pointer to the memory region of MEMADDR. REG_LEN
1060 returns LEN trimmed to the end of the region. This is how much the
1061 caller can continue requesting, if the access is permitted. A
1062 single xfer request must not straddle memory region boundaries. */
1063
1064 static int
1065 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1066 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1067 struct mem_region **region_p)
1068 {
1069 struct mem_region *region;
1070
1071 region = lookup_mem_region (memaddr);
1072
1073 if (region_p != NULL)
1074 *region_p = region;
1075
1076 switch (region->attrib.mode)
1077 {
1078 case MEM_RO:
1079 if (writebuf != NULL)
1080 return 0;
1081 break;
1082
1083 case MEM_WO:
1084 if (readbuf != NULL)
1085 return 0;
1086 break;
1087
1088 case MEM_FLASH:
1089 /* We only support writing to flash during "load" for now. */
1090 if (writebuf != NULL)
1091 error (_("Writing to flash memory forbidden in this context"));
1092 break;
1093
1094 case MEM_NONE:
1095 return 0;
1096 }
1097
1098 /* region->hi == 0 means there's no upper bound. */
1099 if (memaddr + len < region->hi || region->hi == 0)
1100 *reg_len = len;
1101 else
1102 *reg_len = region->hi - memaddr;
1103
1104 return 1;
1105 }
1106
1107 /* Read memory from more than one valid target. A core file, for
1108 instance, could have some of memory but delegate other bits to
1109 the target below it. So, we must manually try all targets. */
1110
1111 enum target_xfer_status
1112 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1113 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1114 ULONGEST *xfered_len)
1115 {
1116 enum target_xfer_status res;
1117
1118 do
1119 {
1120 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1121 readbuf, writebuf, memaddr, len,
1122 xfered_len);
1123 if (res == TARGET_XFER_OK)
1124 break;
1125
1126 /* Stop if the target reports that the memory is not available. */
1127 if (res == TARGET_XFER_UNAVAILABLE)
1128 break;
1129
1130 /* We want to continue past core files to executables, but not
1131 past a running target's memory. */
1132 if (ops->to_has_all_memory (ops))
1133 break;
1134
1135 ops = ops->beneath;
1136 }
1137 while (ops != NULL);
1138
1139 /* The cache works at the raw memory level. Make sure the cache
1140 gets updated with raw contents no matter what kind of memory
1141 object was originally being written. Note we do write-through
1142 first, so that if it fails, we don't write to the cache contents
1143 that never made it to the target. */
1144 if (writebuf != NULL
1145 && !ptid_equal (inferior_ptid, null_ptid)
1146 && target_dcache_init_p ()
1147 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1148 {
1149 DCACHE *dcache = target_dcache_get ();
1150
1151 /* Note that writing to an area of memory which wasn't present
1152 in the cache doesn't cause it to be loaded in. */
1153 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1154 }
1155
1156 return res;
1157 }
1158
1159 /* Perform a partial memory transfer.
1160 For docs see target.h, to_xfer_partial. */
1161
1162 static enum target_xfer_status
1163 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1164 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1165 ULONGEST len, ULONGEST *xfered_len)
1166 {
1167 enum target_xfer_status res;
1168 ULONGEST reg_len;
1169 struct mem_region *region;
1170 struct inferior *inf;
1171
1172 /* For accesses to unmapped overlay sections, read directly from
1173 files. Must do this first, as MEMADDR may need adjustment. */
1174 if (readbuf != NULL && overlay_debugging)
1175 {
1176 struct obj_section *section = find_pc_overlay (memaddr);
1177
1178 if (pc_in_unmapped_range (memaddr, section))
1179 {
1180 struct target_section_table *table
1181 = target_get_section_table (ops);
1182 const char *section_name = section->the_bfd_section->name;
1183
1184 memaddr = overlay_mapped_address (memaddr, section);
1185 return section_table_xfer_memory_partial (readbuf, writebuf,
1186 memaddr, len, xfered_len,
1187 table->sections,
1188 table->sections_end,
1189 section_name);
1190 }
1191 }
1192
1193 /* Try the executable files, if "trust-readonly-sections" is set. */
1194 if (readbuf != NULL && trust_readonly)
1195 {
1196 struct target_section *secp;
1197 struct target_section_table *table;
1198
1199 secp = target_section_by_addr (ops, memaddr);
1200 if (secp != NULL
1201 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1202 secp->the_bfd_section)
1203 & SEC_READONLY))
1204 {
1205 table = target_get_section_table (ops);
1206 return section_table_xfer_memory_partial (readbuf, writebuf,
1207 memaddr, len, xfered_len,
1208 table->sections,
1209 table->sections_end,
1210 NULL);
1211 }
1212 }
1213
1214 /* Try GDB's internal data cache. */
1215
1216 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1217 &region))
1218 return TARGET_XFER_E_IO;
1219
1220 if (!ptid_equal (inferior_ptid, null_ptid))
1221 inf = find_inferior_ptid (inferior_ptid);
1222 else
1223 inf = NULL;
1224
1225 if (inf != NULL
1226 && readbuf != NULL
1227 /* The dcache reads whole cache lines; that doesn't play well
1228 with reading from a trace buffer, because reading outside of
1229 the collected memory range fails. */
1230 && get_traceframe_number () == -1
1231 && (region->attrib.cache
1232 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1233 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1234 {
1235 DCACHE *dcache = target_dcache_get_or_init ();
1236
1237 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1238 reg_len, xfered_len);
1239 }
1240
1241 /* If none of those methods found the memory we wanted, fall back
1242 to a target partial transfer. Normally a single call to
1243 to_xfer_partial is enough; if it doesn't recognize an object
1244 it will call the to_xfer_partial of the next target down.
1245 But for memory this won't do. Memory is the only target
1246 object which can be read from more than one valid target.
1247 A core file, for instance, could have some of memory but
1248 delegate other bits to the target below it. So, we must
1249 manually try all targets. */
1250
1251 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1252 xfered_len);
1253
1254 /* If we still haven't got anything, return the last error. We
1255 give up. */
1256 return res;
1257 }
1258
1259 /* Perform a partial memory transfer. For docs see target.h,
1260 to_xfer_partial. */
1261
1262 static enum target_xfer_status
1263 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1264 gdb_byte *readbuf, const gdb_byte *writebuf,
1265 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1266 {
1267 enum target_xfer_status res;
1268
1269 /* Zero length requests are ok and require no work. */
1270 if (len == 0)
1271 return TARGET_XFER_EOF;
1272
1273 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1274 breakpoint insns, thus hiding out from higher layers whether
1275 there are software breakpoints inserted in the code stream. */
1276 if (readbuf != NULL)
1277 {
1278 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1279 xfered_len);
1280
1281 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1282 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1283 }
1284 else
1285 {
1286 gdb_byte *buf;
1287 struct cleanup *old_chain;
1288
1289 /* A large write request is likely to be partially satisfied
1290 by memory_xfer_partial_1. We will continually malloc
1291 and free a copy of the entire write request for breakpoint
1292 shadow handling even though we only end up writing a small
1293 subset of it. Cap writes to a limit specified by the target
1294 to mitigate this. */
1295 len = min (ops->to_get_memory_xfer_limit (ops), len);
1296
1297 buf = (gdb_byte *) xmalloc (len);
1298 old_chain = make_cleanup (xfree, buf);
1299 memcpy (buf, writebuf, len);
1300
1301 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1302 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1303 xfered_len);
1304
1305 do_cleanups (old_chain);
1306 }
1307
1308 return res;
1309 }
1310
1311 static void
1312 restore_show_memory_breakpoints (void *arg)
1313 {
1314 show_memory_breakpoints = (uintptr_t) arg;
1315 }
1316
1317 struct cleanup *
1318 make_show_memory_breakpoints_cleanup (int show)
1319 {
1320 int current = show_memory_breakpoints;
1321
1322 show_memory_breakpoints = show;
1323 return make_cleanup (restore_show_memory_breakpoints,
1324 (void *) (uintptr_t) current);
1325 }
1326
1327 /* For docs see target.h, to_xfer_partial. */
1328
1329 enum target_xfer_status
1330 target_xfer_partial (struct target_ops *ops,
1331 enum target_object object, const char *annex,
1332 gdb_byte *readbuf, const gdb_byte *writebuf,
1333 ULONGEST offset, ULONGEST len,
1334 ULONGEST *xfered_len)
1335 {
1336 enum target_xfer_status retval;
1337
1338 gdb_assert (ops->to_xfer_partial != NULL);
1339
1340 /* Transfer is done when LEN is zero. */
1341 if (len == 0)
1342 return TARGET_XFER_EOF;
1343
1344 if (writebuf && !may_write_memory)
1345 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1346 core_addr_to_string_nz (offset), plongest (len));
1347
1348 *xfered_len = 0;
1349
1350 /* If this is a memory transfer, let the memory-specific code
1351 have a look at it instead. Memory transfers are more
1352 complicated. */
1353 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1354 || object == TARGET_OBJECT_CODE_MEMORY)
1355 retval = memory_xfer_partial (ops, object, readbuf,
1356 writebuf, offset, len, xfered_len);
1357 else if (object == TARGET_OBJECT_RAW_MEMORY)
1358 {
1359 /* Skip/avoid accessing the target if the memory region
1360 attributes block the access. Check this here instead of in
1361 raw_memory_xfer_partial as otherwise we'd end up checking
1362 this twice in the case of the memory_xfer_partial path is
1363 taken; once before checking the dcache, and another in the
1364 tail call to raw_memory_xfer_partial. */
1365 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1366 NULL))
1367 return TARGET_XFER_E_IO;
1368
1369 /* Request the normal memory object from other layers. */
1370 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1371 xfered_len);
1372 }
1373 else
1374 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1375 writebuf, offset, len, xfered_len);
1376
1377 if (targetdebug)
1378 {
1379 const unsigned char *myaddr = NULL;
1380
1381 fprintf_unfiltered (gdb_stdlog,
1382 "%s:target_xfer_partial "
1383 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1384 ops->to_shortname,
1385 (int) object,
1386 (annex ? annex : "(null)"),
1387 host_address_to_string (readbuf),
1388 host_address_to_string (writebuf),
1389 core_addr_to_string_nz (offset),
1390 pulongest (len), retval,
1391 pulongest (*xfered_len));
1392
1393 if (readbuf)
1394 myaddr = readbuf;
1395 if (writebuf)
1396 myaddr = writebuf;
1397 if (retval == TARGET_XFER_OK && myaddr != NULL)
1398 {
1399 int i;
1400
1401 fputs_unfiltered (", bytes =", gdb_stdlog);
1402 for (i = 0; i < *xfered_len; i++)
1403 {
1404 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1405 {
1406 if (targetdebug < 2 && i > 0)
1407 {
1408 fprintf_unfiltered (gdb_stdlog, " ...");
1409 break;
1410 }
1411 fprintf_unfiltered (gdb_stdlog, "\n");
1412 }
1413
1414 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1415 }
1416 }
1417
1418 fputc_unfiltered ('\n', gdb_stdlog);
1419 }
1420
1421 /* Check implementations of to_xfer_partial update *XFERED_LEN
1422 properly. Do assertion after printing debug messages, so that we
1423 can find more clues on assertion failure from debugging messages. */
1424 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1425 gdb_assert (*xfered_len > 0);
1426
1427 return retval;
1428 }
1429
1430 /* Read LEN bytes of target memory at address MEMADDR, placing the
1431 results in GDB's memory at MYADDR. Returns either 0 for success or
1432 -1 if any error occurs.
1433
1434 If an error occurs, no guarantee is made about the contents of the data at
1435 MYADDR. In particular, the caller should not depend upon partial reads
1436 filling the buffer with good data. There is no way for the caller to know
1437 how much good data might have been transfered anyway. Callers that can
1438 deal with partial reads should call target_read (which will retry until
1439 it makes no progress, and then return how much was transferred). */
1440
1441 int
1442 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1443 {
1444 /* Dispatch to the topmost target, not the flattened current_target.
1445 Memory accesses check target->to_has_(all_)memory, and the
1446 flattened target doesn't inherit those. */
1447 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1448 myaddr, memaddr, len) == len)
1449 return 0;
1450 else
1451 return -1;
1452 }
1453
1454 /* See target/target.h. */
1455
1456 int
1457 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1458 {
1459 gdb_byte buf[4];
1460 int r;
1461
1462 r = target_read_memory (memaddr, buf, sizeof buf);
1463 if (r != 0)
1464 return r;
1465 *result = extract_unsigned_integer (buf, sizeof buf,
1466 gdbarch_byte_order (target_gdbarch ()));
1467 return 0;
1468 }
1469
1470 /* Like target_read_memory, but specify explicitly that this is a read
1471 from the target's raw memory. That is, this read bypasses the
1472 dcache, breakpoint shadowing, etc. */
1473
1474 int
1475 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1476 {
1477 /* See comment in target_read_memory about why the request starts at
1478 current_target.beneath. */
1479 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1480 myaddr, memaddr, len) == len)
1481 return 0;
1482 else
1483 return -1;
1484 }
1485
1486 /* Like target_read_memory, but specify explicitly that this is a read from
1487 the target's stack. This may trigger different cache behavior. */
1488
1489 int
1490 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1491 {
1492 /* See comment in target_read_memory about why the request starts at
1493 current_target.beneath. */
1494 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1495 myaddr, memaddr, len) == len)
1496 return 0;
1497 else
1498 return -1;
1499 }
1500
1501 /* Like target_read_memory, but specify explicitly that this is a read from
1502 the target's code. This may trigger different cache behavior. */
1503
1504 int
1505 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1506 {
1507 /* See comment in target_read_memory about why the request starts at
1508 current_target.beneath. */
1509 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1510 myaddr, memaddr, len) == len)
1511 return 0;
1512 else
1513 return -1;
1514 }
1515
1516 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1517 Returns either 0 for success or -1 if any error occurs. If an
1518 error occurs, no guarantee is made about how much data got written.
1519 Callers that can deal with partial writes should call
1520 target_write. */
1521
1522 int
1523 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1524 {
1525 /* See comment in target_read_memory about why the request starts at
1526 current_target.beneath. */
1527 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1528 myaddr, memaddr, len) == len)
1529 return 0;
1530 else
1531 return -1;
1532 }
1533
1534 /* Write LEN bytes from MYADDR to target raw memory at address
1535 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1536 If an error occurs, no guarantee is made about how much data got
1537 written. Callers that can deal with partial writes should call
1538 target_write. */
1539
1540 int
1541 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1542 {
1543 /* See comment in target_read_memory about why the request starts at
1544 current_target.beneath. */
1545 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1546 myaddr, memaddr, len) == len)
1547 return 0;
1548 else
1549 return -1;
1550 }
1551
1552 /* Fetch the target's memory map. */
1553
1554 VEC(mem_region_s) *
1555 target_memory_map (void)
1556 {
1557 VEC(mem_region_s) *result;
1558 struct mem_region *last_one, *this_one;
1559 int ix;
1560 result = current_target.to_memory_map (&current_target);
1561 if (result == NULL)
1562 return NULL;
1563
1564 qsort (VEC_address (mem_region_s, result),
1565 VEC_length (mem_region_s, result),
1566 sizeof (struct mem_region), mem_region_cmp);
1567
1568 /* Check that regions do not overlap. Simultaneously assign
1569 a numbering for the "mem" commands to use to refer to
1570 each region. */
1571 last_one = NULL;
1572 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1573 {
1574 this_one->number = ix;
1575
1576 if (last_one && last_one->hi > this_one->lo)
1577 {
1578 warning (_("Overlapping regions in memory map: ignoring"));
1579 VEC_free (mem_region_s, result);
1580 return NULL;
1581 }
1582 last_one = this_one;
1583 }
1584
1585 return result;
1586 }
1587
1588 void
1589 target_flash_erase (ULONGEST address, LONGEST length)
1590 {
1591 current_target.to_flash_erase (&current_target, address, length);
1592 }
1593
1594 void
1595 target_flash_done (void)
1596 {
1597 current_target.to_flash_done (&current_target);
1598 }
1599
1600 static void
1601 show_trust_readonly (struct ui_file *file, int from_tty,
1602 struct cmd_list_element *c, const char *value)
1603 {
1604 fprintf_filtered (file,
1605 _("Mode for reading from readonly sections is %s.\n"),
1606 value);
1607 }
1608
1609 /* Target vector read/write partial wrapper functions. */
1610
1611 static enum target_xfer_status
1612 target_read_partial (struct target_ops *ops,
1613 enum target_object object,
1614 const char *annex, gdb_byte *buf,
1615 ULONGEST offset, ULONGEST len,
1616 ULONGEST *xfered_len)
1617 {
1618 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1619 xfered_len);
1620 }
1621
1622 static enum target_xfer_status
1623 target_write_partial (struct target_ops *ops,
1624 enum target_object object,
1625 const char *annex, const gdb_byte *buf,
1626 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1627 {
1628 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1629 xfered_len);
1630 }
1631
1632 /* Wrappers to perform the full transfer. */
1633
1634 /* For docs on target_read see target.h. */
1635
1636 LONGEST
1637 target_read (struct target_ops *ops,
1638 enum target_object object,
1639 const char *annex, gdb_byte *buf,
1640 ULONGEST offset, LONGEST len)
1641 {
1642 LONGEST xfered_total = 0;
1643 int unit_size = 1;
1644
1645 /* If we are reading from a memory object, find the length of an addressable
1646 unit for that architecture. */
1647 if (object == TARGET_OBJECT_MEMORY
1648 || object == TARGET_OBJECT_STACK_MEMORY
1649 || object == TARGET_OBJECT_CODE_MEMORY
1650 || object == TARGET_OBJECT_RAW_MEMORY)
1651 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1652
1653 while (xfered_total < len)
1654 {
1655 ULONGEST xfered_partial;
1656 enum target_xfer_status status;
1657
1658 status = target_read_partial (ops, object, annex,
1659 buf + xfered_total * unit_size,
1660 offset + xfered_total, len - xfered_total,
1661 &xfered_partial);
1662
1663 /* Call an observer, notifying them of the xfer progress? */
1664 if (status == TARGET_XFER_EOF)
1665 return xfered_total;
1666 else if (status == TARGET_XFER_OK)
1667 {
1668 xfered_total += xfered_partial;
1669 QUIT;
1670 }
1671 else
1672 return TARGET_XFER_E_IO;
1673
1674 }
1675 return len;
1676 }
1677
1678 /* Assuming that the entire [begin, end) range of memory cannot be
1679 read, try to read whatever subrange is possible to read.
1680
1681 The function returns, in RESULT, either zero or one memory block.
1682 If there's a readable subrange at the beginning, it is completely
1683 read and returned. Any further readable subrange will not be read.
1684 Otherwise, if there's a readable subrange at the end, it will be
1685 completely read and returned. Any readable subranges before it
1686 (obviously, not starting at the beginning), will be ignored. In
1687 other cases -- either no readable subrange, or readable subrange(s)
1688 that is neither at the beginning, or end, nothing is returned.
1689
1690 The purpose of this function is to handle a read across a boundary
1691 of accessible memory in a case when memory map is not available.
1692 The above restrictions are fine for this case, but will give
1693 incorrect results if the memory is 'patchy'. However, supporting
1694 'patchy' memory would require trying to read every single byte,
1695 and it seems unacceptable solution. Explicit memory map is
1696 recommended for this case -- and target_read_memory_robust will
1697 take care of reading multiple ranges then. */
1698
1699 static void
1700 read_whatever_is_readable (struct target_ops *ops,
1701 const ULONGEST begin, const ULONGEST end,
1702 int unit_size,
1703 VEC(memory_read_result_s) **result)
1704 {
1705 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1706 ULONGEST current_begin = begin;
1707 ULONGEST current_end = end;
1708 int forward;
1709 memory_read_result_s r;
1710 ULONGEST xfered_len;
1711
1712 /* If we previously failed to read 1 byte, nothing can be done here. */
1713 if (end - begin <= 1)
1714 {
1715 xfree (buf);
1716 return;
1717 }
1718
1719 /* Check that either first or the last byte is readable, and give up
1720 if not. This heuristic is meant to permit reading accessible memory
1721 at the boundary of accessible region. */
1722 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1723 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1724 {
1725 forward = 1;
1726 ++current_begin;
1727 }
1728 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1729 buf + (end - begin) - 1, end - 1, 1,
1730 &xfered_len) == TARGET_XFER_OK)
1731 {
1732 forward = 0;
1733 --current_end;
1734 }
1735 else
1736 {
1737 xfree (buf);
1738 return;
1739 }
1740
1741 /* Loop invariant is that the [current_begin, current_end) was previously
1742 found to be not readable as a whole.
1743
1744 Note loop condition -- if the range has 1 byte, we can't divide the range
1745 so there's no point trying further. */
1746 while (current_end - current_begin > 1)
1747 {
1748 ULONGEST first_half_begin, first_half_end;
1749 ULONGEST second_half_begin, second_half_end;
1750 LONGEST xfer;
1751 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1752
1753 if (forward)
1754 {
1755 first_half_begin = current_begin;
1756 first_half_end = middle;
1757 second_half_begin = middle;
1758 second_half_end = current_end;
1759 }
1760 else
1761 {
1762 first_half_begin = middle;
1763 first_half_end = current_end;
1764 second_half_begin = current_begin;
1765 second_half_end = middle;
1766 }
1767
1768 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1769 buf + (first_half_begin - begin) * unit_size,
1770 first_half_begin,
1771 first_half_end - first_half_begin);
1772
1773 if (xfer == first_half_end - first_half_begin)
1774 {
1775 /* This half reads up fine. So, the error must be in the
1776 other half. */
1777 current_begin = second_half_begin;
1778 current_end = second_half_end;
1779 }
1780 else
1781 {
1782 /* This half is not readable. Because we've tried one byte, we
1783 know some part of this half if actually readable. Go to the next
1784 iteration to divide again and try to read.
1785
1786 We don't handle the other half, because this function only tries
1787 to read a single readable subrange. */
1788 current_begin = first_half_begin;
1789 current_end = first_half_end;
1790 }
1791 }
1792
1793 if (forward)
1794 {
1795 /* The [begin, current_begin) range has been read. */
1796 r.begin = begin;
1797 r.end = current_begin;
1798 r.data = buf;
1799 }
1800 else
1801 {
1802 /* The [current_end, end) range has been read. */
1803 LONGEST region_len = end - current_end;
1804
1805 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1806 memcpy (r.data, buf + (current_end - begin) * unit_size,
1807 region_len * unit_size);
1808 r.begin = current_end;
1809 r.end = end;
1810 xfree (buf);
1811 }
1812 VEC_safe_push(memory_read_result_s, (*result), &r);
1813 }
1814
1815 void
1816 free_memory_read_result_vector (void *x)
1817 {
1818 VEC(memory_read_result_s) **v = (VEC(memory_read_result_s) **) x;
1819 memory_read_result_s *current;
1820 int ix;
1821
1822 for (ix = 0; VEC_iterate (memory_read_result_s, *v, ix, current); ++ix)
1823 {
1824 xfree (current->data);
1825 }
1826 VEC_free (memory_read_result_s, *v);
1827 }
1828
1829 VEC(memory_read_result_s) *
1830 read_memory_robust (struct target_ops *ops,
1831 const ULONGEST offset, const LONGEST len)
1832 {
1833 VEC(memory_read_result_s) *result = 0;
1834 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1835 struct cleanup *cleanup = make_cleanup (free_memory_read_result_vector,
1836 &result);
1837
1838 LONGEST xfered_total = 0;
1839 while (xfered_total < len)
1840 {
1841 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1842 LONGEST region_len;
1843
1844 /* If there is no explicit region, a fake one should be created. */
1845 gdb_assert (region);
1846
1847 if (region->hi == 0)
1848 region_len = len - xfered_total;
1849 else
1850 region_len = region->hi - offset;
1851
1852 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1853 {
1854 /* Cannot read this region. Note that we can end up here only
1855 if the region is explicitly marked inaccessible, or
1856 'inaccessible-by-default' is in effect. */
1857 xfered_total += region_len;
1858 }
1859 else
1860 {
1861 LONGEST to_read = min (len - xfered_total, region_len);
1862 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1863 struct cleanup *inner_cleanup = make_cleanup (xfree, buffer);
1864
1865 LONGEST xfered_partial =
1866 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1867 (gdb_byte *) buffer,
1868 offset + xfered_total, to_read);
1869 /* Call an observer, notifying them of the xfer progress? */
1870 if (xfered_partial <= 0)
1871 {
1872 /* Got an error reading full chunk. See if maybe we can read
1873 some subrange. */
1874 do_cleanups (inner_cleanup);
1875 read_whatever_is_readable (ops, offset + xfered_total,
1876 offset + xfered_total + to_read,
1877 unit_size, &result);
1878 xfered_total += to_read;
1879 }
1880 else
1881 {
1882 struct memory_read_result r;
1883
1884 discard_cleanups (inner_cleanup);
1885 r.data = buffer;
1886 r.begin = offset + xfered_total;
1887 r.end = r.begin + xfered_partial;
1888 VEC_safe_push (memory_read_result_s, result, &r);
1889 xfered_total += xfered_partial;
1890 }
1891 QUIT;
1892 }
1893 }
1894
1895 discard_cleanups (cleanup);
1896 return result;
1897 }
1898
1899
1900 /* An alternative to target_write with progress callbacks. */
1901
1902 LONGEST
1903 target_write_with_progress (struct target_ops *ops,
1904 enum target_object object,
1905 const char *annex, const gdb_byte *buf,
1906 ULONGEST offset, LONGEST len,
1907 void (*progress) (ULONGEST, void *), void *baton)
1908 {
1909 LONGEST xfered_total = 0;
1910 int unit_size = 1;
1911
1912 /* If we are writing to a memory object, find the length of an addressable
1913 unit for that architecture. */
1914 if (object == TARGET_OBJECT_MEMORY
1915 || object == TARGET_OBJECT_STACK_MEMORY
1916 || object == TARGET_OBJECT_CODE_MEMORY
1917 || object == TARGET_OBJECT_RAW_MEMORY)
1918 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1919
1920 /* Give the progress callback a chance to set up. */
1921 if (progress)
1922 (*progress) (0, baton);
1923
1924 while (xfered_total < len)
1925 {
1926 ULONGEST xfered_partial;
1927 enum target_xfer_status status;
1928
1929 status = target_write_partial (ops, object, annex,
1930 buf + xfered_total * unit_size,
1931 offset + xfered_total, len - xfered_total,
1932 &xfered_partial);
1933
1934 if (status != TARGET_XFER_OK)
1935 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1936
1937 if (progress)
1938 (*progress) (xfered_partial, baton);
1939
1940 xfered_total += xfered_partial;
1941 QUIT;
1942 }
1943 return len;
1944 }
1945
1946 /* For docs on target_write see target.h. */
1947
1948 LONGEST
1949 target_write (struct target_ops *ops,
1950 enum target_object object,
1951 const char *annex, const gdb_byte *buf,
1952 ULONGEST offset, LONGEST len)
1953 {
1954 return target_write_with_progress (ops, object, annex, buf, offset, len,
1955 NULL, NULL);
1956 }
1957
1958 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1959 the size of the transferred data. PADDING additional bytes are
1960 available in *BUF_P. This is a helper function for
1961 target_read_alloc; see the declaration of that function for more
1962 information. */
1963
1964 static LONGEST
1965 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1966 const char *annex, gdb_byte **buf_p, int padding)
1967 {
1968 size_t buf_alloc, buf_pos;
1969 gdb_byte *buf;
1970
1971 /* This function does not have a length parameter; it reads the
1972 entire OBJECT). Also, it doesn't support objects fetched partly
1973 from one target and partly from another (in a different stratum,
1974 e.g. a core file and an executable). Both reasons make it
1975 unsuitable for reading memory. */
1976 gdb_assert (object != TARGET_OBJECT_MEMORY);
1977
1978 /* Start by reading up to 4K at a time. The target will throttle
1979 this number down if necessary. */
1980 buf_alloc = 4096;
1981 buf = (gdb_byte *) xmalloc (buf_alloc);
1982 buf_pos = 0;
1983 while (1)
1984 {
1985 ULONGEST xfered_len;
1986 enum target_xfer_status status;
1987
1988 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1989 buf_pos, buf_alloc - buf_pos - padding,
1990 &xfered_len);
1991
1992 if (status == TARGET_XFER_EOF)
1993 {
1994 /* Read all there was. */
1995 if (buf_pos == 0)
1996 xfree (buf);
1997 else
1998 *buf_p = buf;
1999 return buf_pos;
2000 }
2001 else if (status != TARGET_XFER_OK)
2002 {
2003 /* An error occurred. */
2004 xfree (buf);
2005 return TARGET_XFER_E_IO;
2006 }
2007
2008 buf_pos += xfered_len;
2009
2010 /* If the buffer is filling up, expand it. */
2011 if (buf_alloc < buf_pos * 2)
2012 {
2013 buf_alloc *= 2;
2014 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
2015 }
2016
2017 QUIT;
2018 }
2019 }
2020
2021 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2022 the size of the transferred data. See the declaration in "target.h"
2023 function for more information about the return value. */
2024
2025 LONGEST
2026 target_read_alloc (struct target_ops *ops, enum target_object object,
2027 const char *annex, gdb_byte **buf_p)
2028 {
2029 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2030 }
2031
2032 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2033 returned as a string, allocated using xmalloc. If an error occurs
2034 or the transfer is unsupported, NULL is returned. Empty objects
2035 are returned as allocated but empty strings. A warning is issued
2036 if the result contains any embedded NUL bytes. */
2037
2038 char *
2039 target_read_stralloc (struct target_ops *ops, enum target_object object,
2040 const char *annex)
2041 {
2042 gdb_byte *buffer;
2043 char *bufstr;
2044 LONGEST i, transferred;
2045
2046 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2047 bufstr = (char *) buffer;
2048
2049 if (transferred < 0)
2050 return NULL;
2051
2052 if (transferred == 0)
2053 return xstrdup ("");
2054
2055 bufstr[transferred] = 0;
2056
2057 /* Check for embedded NUL bytes; but allow trailing NULs. */
2058 for (i = strlen (bufstr); i < transferred; i++)
2059 if (bufstr[i] != 0)
2060 {
2061 warning (_("target object %d, annex %s, "
2062 "contained unexpected null characters"),
2063 (int) object, annex ? annex : "(none)");
2064 break;
2065 }
2066
2067 return bufstr;
2068 }
2069
2070 /* Memory transfer methods. */
2071
2072 void
2073 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2074 LONGEST len)
2075 {
2076 /* This method is used to read from an alternate, non-current
2077 target. This read must bypass the overlay support (as symbols
2078 don't match this target), and GDB's internal cache (wrong cache
2079 for this target). */
2080 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2081 != len)
2082 memory_error (TARGET_XFER_E_IO, addr);
2083 }
2084
2085 ULONGEST
2086 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2087 int len, enum bfd_endian byte_order)
2088 {
2089 gdb_byte buf[sizeof (ULONGEST)];
2090
2091 gdb_assert (len <= sizeof (buf));
2092 get_target_memory (ops, addr, buf, len);
2093 return extract_unsigned_integer (buf, len, byte_order);
2094 }
2095
2096 /* See target.h. */
2097
2098 int
2099 target_insert_breakpoint (struct gdbarch *gdbarch,
2100 struct bp_target_info *bp_tgt)
2101 {
2102 if (!may_insert_breakpoints)
2103 {
2104 warning (_("May not insert breakpoints"));
2105 return 1;
2106 }
2107
2108 return current_target.to_insert_breakpoint (&current_target,
2109 gdbarch, bp_tgt);
2110 }
2111
2112 /* See target.h. */
2113
2114 int
2115 target_remove_breakpoint (struct gdbarch *gdbarch,
2116 struct bp_target_info *bp_tgt,
2117 enum remove_bp_reason reason)
2118 {
2119 /* This is kind of a weird case to handle, but the permission might
2120 have been changed after breakpoints were inserted - in which case
2121 we should just take the user literally and assume that any
2122 breakpoints should be left in place. */
2123 if (!may_insert_breakpoints)
2124 {
2125 warning (_("May not remove breakpoints"));
2126 return 1;
2127 }
2128
2129 return current_target.to_remove_breakpoint (&current_target,
2130 gdbarch, bp_tgt, reason);
2131 }
2132
2133 static void
2134 target_info (char *args, int from_tty)
2135 {
2136 struct target_ops *t;
2137 int has_all_mem = 0;
2138
2139 if (symfile_objfile != NULL)
2140 printf_unfiltered (_("Symbols from \"%s\".\n"),
2141 objfile_name (symfile_objfile));
2142
2143 for (t = target_stack; t != NULL; t = t->beneath)
2144 {
2145 if (!(*t->to_has_memory) (t))
2146 continue;
2147
2148 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2149 continue;
2150 if (has_all_mem)
2151 printf_unfiltered (_("\tWhile running this, "
2152 "GDB does not access memory from...\n"));
2153 printf_unfiltered ("%s:\n", t->to_longname);
2154 (t->to_files_info) (t);
2155 has_all_mem = (*t->to_has_all_memory) (t);
2156 }
2157 }
2158
2159 /* This function is called before any new inferior is created, e.g.
2160 by running a program, attaching, or connecting to a target.
2161 It cleans up any state from previous invocations which might
2162 change between runs. This is a subset of what target_preopen
2163 resets (things which might change between targets). */
2164
2165 void
2166 target_pre_inferior (int from_tty)
2167 {
2168 /* Clear out solib state. Otherwise the solib state of the previous
2169 inferior might have survived and is entirely wrong for the new
2170 target. This has been observed on GNU/Linux using glibc 2.3. How
2171 to reproduce:
2172
2173 bash$ ./foo&
2174 [1] 4711
2175 bash$ ./foo&
2176 [1] 4712
2177 bash$ gdb ./foo
2178 [...]
2179 (gdb) attach 4711
2180 (gdb) detach
2181 (gdb) attach 4712
2182 Cannot access memory at address 0xdeadbeef
2183 */
2184
2185 /* In some OSs, the shared library list is the same/global/shared
2186 across inferiors. If code is shared between processes, so are
2187 memory regions and features. */
2188 if (!gdbarch_has_global_solist (target_gdbarch ()))
2189 {
2190 no_shared_libraries (NULL, from_tty);
2191
2192 invalidate_target_mem_regions ();
2193
2194 target_clear_description ();
2195 }
2196
2197 /* attach_flag may be set if the previous process associated with
2198 the inferior was attached to. */
2199 current_inferior ()->attach_flag = 0;
2200
2201 current_inferior ()->highest_thread_num = 0;
2202
2203 agent_capability_invalidate ();
2204 }
2205
2206 /* Callback for iterate_over_inferiors. Gets rid of the given
2207 inferior. */
2208
2209 static int
2210 dispose_inferior (struct inferior *inf, void *args)
2211 {
2212 struct thread_info *thread;
2213
2214 thread = any_thread_of_process (inf->pid);
2215 if (thread)
2216 {
2217 switch_to_thread (thread->ptid);
2218
2219 /* Core inferiors actually should be detached, not killed. */
2220 if (target_has_execution)
2221 target_kill ();
2222 else
2223 target_detach (NULL, 0);
2224 }
2225
2226 return 0;
2227 }
2228
2229 /* This is to be called by the open routine before it does
2230 anything. */
2231
2232 void
2233 target_preopen (int from_tty)
2234 {
2235 dont_repeat ();
2236
2237 if (have_inferiors ())
2238 {
2239 if (!from_tty
2240 || !have_live_inferiors ()
2241 || query (_("A program is being debugged already. Kill it? ")))
2242 iterate_over_inferiors (dispose_inferior, NULL);
2243 else
2244 error (_("Program not killed."));
2245 }
2246
2247 /* Calling target_kill may remove the target from the stack. But if
2248 it doesn't (which seems like a win for UDI), remove it now. */
2249 /* Leave the exec target, though. The user may be switching from a
2250 live process to a core of the same program. */
2251 pop_all_targets_above (file_stratum);
2252
2253 target_pre_inferior (from_tty);
2254 }
2255
2256 /* Detach a target after doing deferred register stores. */
2257
2258 void
2259 target_detach (const char *args, int from_tty)
2260 {
2261 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2262 /* Don't remove global breakpoints here. They're removed on
2263 disconnection from the target. */
2264 ;
2265 else
2266 /* If we're in breakpoints-always-inserted mode, have to remove
2267 them before detaching. */
2268 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2269
2270 prepare_for_detach ();
2271
2272 current_target.to_detach (&current_target, args, from_tty);
2273 }
2274
2275 void
2276 target_disconnect (const char *args, int from_tty)
2277 {
2278 /* If we're in breakpoints-always-inserted mode or if breakpoints
2279 are global across processes, we have to remove them before
2280 disconnecting. */
2281 remove_breakpoints ();
2282
2283 current_target.to_disconnect (&current_target, args, from_tty);
2284 }
2285
2286 ptid_t
2287 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2288 {
2289 return (current_target.to_wait) (&current_target, ptid, status, options);
2290 }
2291
2292 /* See target.h. */
2293
2294 ptid_t
2295 default_target_wait (struct target_ops *ops,
2296 ptid_t ptid, struct target_waitstatus *status,
2297 int options)
2298 {
2299 status->kind = TARGET_WAITKIND_IGNORE;
2300 return minus_one_ptid;
2301 }
2302
2303 char *
2304 target_pid_to_str (ptid_t ptid)
2305 {
2306 return (*current_target.to_pid_to_str) (&current_target, ptid);
2307 }
2308
2309 const char *
2310 target_thread_name (struct thread_info *info)
2311 {
2312 return current_target.to_thread_name (&current_target, info);
2313 }
2314
2315 void
2316 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2317 {
2318 target_dcache_invalidate ();
2319
2320 current_target.to_resume (&current_target, ptid, step, signal);
2321
2322 registers_changed_ptid (ptid);
2323 /* We only set the internal executing state here. The user/frontend
2324 running state is set at a higher level. */
2325 set_executing (ptid, 1);
2326 clear_inline_frame_state (ptid);
2327 }
2328
2329 void
2330 target_pass_signals (int numsigs, unsigned char *pass_signals)
2331 {
2332 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2333 }
2334
2335 void
2336 target_program_signals (int numsigs, unsigned char *program_signals)
2337 {
2338 (*current_target.to_program_signals) (&current_target,
2339 numsigs, program_signals);
2340 }
2341
2342 static int
2343 default_follow_fork (struct target_ops *self, int follow_child,
2344 int detach_fork)
2345 {
2346 /* Some target returned a fork event, but did not know how to follow it. */
2347 internal_error (__FILE__, __LINE__,
2348 _("could not find a target to follow fork"));
2349 }
2350
2351 /* Look through the list of possible targets for a target that can
2352 follow forks. */
2353
2354 int
2355 target_follow_fork (int follow_child, int detach_fork)
2356 {
2357 return current_target.to_follow_fork (&current_target,
2358 follow_child, detach_fork);
2359 }
2360
2361 /* Target wrapper for follow exec hook. */
2362
2363 void
2364 target_follow_exec (struct inferior *inf, char *execd_pathname)
2365 {
2366 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2367 }
2368
2369 static void
2370 default_mourn_inferior (struct target_ops *self)
2371 {
2372 internal_error (__FILE__, __LINE__,
2373 _("could not find a target to follow mourn inferior"));
2374 }
2375
2376 void
2377 target_mourn_inferior (void)
2378 {
2379 current_target.to_mourn_inferior (&current_target);
2380
2381 /* We no longer need to keep handles on any of the object files.
2382 Make sure to release them to avoid unnecessarily locking any
2383 of them while we're not actually debugging. */
2384 bfd_cache_close_all ();
2385 }
2386
2387 /* Look for a target which can describe architectural features, starting
2388 from TARGET. If we find one, return its description. */
2389
2390 const struct target_desc *
2391 target_read_description (struct target_ops *target)
2392 {
2393 return target->to_read_description (target);
2394 }
2395
2396 /* This implements a basic search of memory, reading target memory and
2397 performing the search here (as opposed to performing the search in on the
2398 target side with, for example, gdbserver). */
2399
2400 int
2401 simple_search_memory (struct target_ops *ops,
2402 CORE_ADDR start_addr, ULONGEST search_space_len,
2403 const gdb_byte *pattern, ULONGEST pattern_len,
2404 CORE_ADDR *found_addrp)
2405 {
2406 /* NOTE: also defined in find.c testcase. */
2407 #define SEARCH_CHUNK_SIZE 16000
2408 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2409 /* Buffer to hold memory contents for searching. */
2410 gdb_byte *search_buf;
2411 unsigned search_buf_size;
2412 struct cleanup *old_cleanups;
2413
2414 search_buf_size = chunk_size + pattern_len - 1;
2415
2416 /* No point in trying to allocate a buffer larger than the search space. */
2417 if (search_space_len < search_buf_size)
2418 search_buf_size = search_space_len;
2419
2420 search_buf = (gdb_byte *) malloc (search_buf_size);
2421 if (search_buf == NULL)
2422 error (_("Unable to allocate memory to perform the search."));
2423 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2424
2425 /* Prime the search buffer. */
2426
2427 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2428 search_buf, start_addr, search_buf_size) != search_buf_size)
2429 {
2430 warning (_("Unable to access %s bytes of target "
2431 "memory at %s, halting search."),
2432 pulongest (search_buf_size), hex_string (start_addr));
2433 do_cleanups (old_cleanups);
2434 return -1;
2435 }
2436
2437 /* Perform the search.
2438
2439 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2440 When we've scanned N bytes we copy the trailing bytes to the start and
2441 read in another N bytes. */
2442
2443 while (search_space_len >= pattern_len)
2444 {
2445 gdb_byte *found_ptr;
2446 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2447
2448 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2449 pattern, pattern_len);
2450
2451 if (found_ptr != NULL)
2452 {
2453 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2454
2455 *found_addrp = found_addr;
2456 do_cleanups (old_cleanups);
2457 return 1;
2458 }
2459
2460 /* Not found in this chunk, skip to next chunk. */
2461
2462 /* Don't let search_space_len wrap here, it's unsigned. */
2463 if (search_space_len >= chunk_size)
2464 search_space_len -= chunk_size;
2465 else
2466 search_space_len = 0;
2467
2468 if (search_space_len >= pattern_len)
2469 {
2470 unsigned keep_len = search_buf_size - chunk_size;
2471 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2472 int nr_to_read;
2473
2474 /* Copy the trailing part of the previous iteration to the front
2475 of the buffer for the next iteration. */
2476 gdb_assert (keep_len == pattern_len - 1);
2477 memcpy (search_buf, search_buf + chunk_size, keep_len);
2478
2479 nr_to_read = min (search_space_len - keep_len, chunk_size);
2480
2481 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2482 search_buf + keep_len, read_addr,
2483 nr_to_read) != nr_to_read)
2484 {
2485 warning (_("Unable to access %s bytes of target "
2486 "memory at %s, halting search."),
2487 plongest (nr_to_read),
2488 hex_string (read_addr));
2489 do_cleanups (old_cleanups);
2490 return -1;
2491 }
2492
2493 start_addr += chunk_size;
2494 }
2495 }
2496
2497 /* Not found. */
2498
2499 do_cleanups (old_cleanups);
2500 return 0;
2501 }
2502
2503 /* Default implementation of memory-searching. */
2504
2505 static int
2506 default_search_memory (struct target_ops *self,
2507 CORE_ADDR start_addr, ULONGEST search_space_len,
2508 const gdb_byte *pattern, ULONGEST pattern_len,
2509 CORE_ADDR *found_addrp)
2510 {
2511 /* Start over from the top of the target stack. */
2512 return simple_search_memory (current_target.beneath,
2513 start_addr, search_space_len,
2514 pattern, pattern_len, found_addrp);
2515 }
2516
2517 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2518 sequence of bytes in PATTERN with length PATTERN_LEN.
2519
2520 The result is 1 if found, 0 if not found, and -1 if there was an error
2521 requiring halting of the search (e.g. memory read error).
2522 If the pattern is found the address is recorded in FOUND_ADDRP. */
2523
2524 int
2525 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2526 const gdb_byte *pattern, ULONGEST pattern_len,
2527 CORE_ADDR *found_addrp)
2528 {
2529 return current_target.to_search_memory (&current_target, start_addr,
2530 search_space_len,
2531 pattern, pattern_len, found_addrp);
2532 }
2533
2534 /* Look through the currently pushed targets. If none of them will
2535 be able to restart the currently running process, issue an error
2536 message. */
2537
2538 void
2539 target_require_runnable (void)
2540 {
2541 struct target_ops *t;
2542
2543 for (t = target_stack; t != NULL; t = t->beneath)
2544 {
2545 /* If this target knows how to create a new program, then
2546 assume we will still be able to after killing the current
2547 one. Either killing and mourning will not pop T, or else
2548 find_default_run_target will find it again. */
2549 if (t->to_create_inferior != NULL)
2550 return;
2551
2552 /* Do not worry about targets at certain strata that can not
2553 create inferiors. Assume they will be pushed again if
2554 necessary, and continue to the process_stratum. */
2555 if (t->to_stratum == thread_stratum
2556 || t->to_stratum == record_stratum
2557 || t->to_stratum == arch_stratum)
2558 continue;
2559
2560 error (_("The \"%s\" target does not support \"run\". "
2561 "Try \"help target\" or \"continue\"."),
2562 t->to_shortname);
2563 }
2564
2565 /* This function is only called if the target is running. In that
2566 case there should have been a process_stratum target and it
2567 should either know how to create inferiors, or not... */
2568 internal_error (__FILE__, __LINE__, _("No targets found"));
2569 }
2570
2571 /* Whether GDB is allowed to fall back to the default run target for
2572 "run", "attach", etc. when no target is connected yet. */
2573 static int auto_connect_native_target = 1;
2574
2575 static void
2576 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2577 struct cmd_list_element *c, const char *value)
2578 {
2579 fprintf_filtered (file,
2580 _("Whether GDB may automatically connect to the "
2581 "native target is %s.\n"),
2582 value);
2583 }
2584
2585 /* Look through the list of possible targets for a target that can
2586 execute a run or attach command without any other data. This is
2587 used to locate the default process stratum.
2588
2589 If DO_MESG is not NULL, the result is always valid (error() is
2590 called for errors); else, return NULL on error. */
2591
2592 static struct target_ops *
2593 find_default_run_target (char *do_mesg)
2594 {
2595 struct target_ops *runable = NULL;
2596
2597 if (auto_connect_native_target)
2598 {
2599 struct target_ops *t;
2600 int count = 0;
2601 int i;
2602
2603 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2604 {
2605 if (t->to_can_run != delegate_can_run && target_can_run (t))
2606 {
2607 runable = t;
2608 ++count;
2609 }
2610 }
2611
2612 if (count != 1)
2613 runable = NULL;
2614 }
2615
2616 if (runable == NULL)
2617 {
2618 if (do_mesg)
2619 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2620 else
2621 return NULL;
2622 }
2623
2624 return runable;
2625 }
2626
2627 /* See target.h. */
2628
2629 struct target_ops *
2630 find_attach_target (void)
2631 {
2632 struct target_ops *t;
2633
2634 /* If a target on the current stack can attach, use it. */
2635 for (t = current_target.beneath; t != NULL; t = t->beneath)
2636 {
2637 if (t->to_attach != NULL)
2638 break;
2639 }
2640
2641 /* Otherwise, use the default run target for attaching. */
2642 if (t == NULL)
2643 t = find_default_run_target ("attach");
2644
2645 return t;
2646 }
2647
2648 /* See target.h. */
2649
2650 struct target_ops *
2651 find_run_target (void)
2652 {
2653 struct target_ops *t;
2654
2655 /* If a target on the current stack can attach, use it. */
2656 for (t = current_target.beneath; t != NULL; t = t->beneath)
2657 {
2658 if (t->to_create_inferior != NULL)
2659 break;
2660 }
2661
2662 /* Otherwise, use the default run target. */
2663 if (t == NULL)
2664 t = find_default_run_target ("run");
2665
2666 return t;
2667 }
2668
2669 /* Implement the "info proc" command. */
2670
2671 int
2672 target_info_proc (const char *args, enum info_proc_what what)
2673 {
2674 struct target_ops *t;
2675
2676 /* If we're already connected to something that can get us OS
2677 related data, use it. Otherwise, try using the native
2678 target. */
2679 if (current_target.to_stratum >= process_stratum)
2680 t = current_target.beneath;
2681 else
2682 t = find_default_run_target (NULL);
2683
2684 for (; t != NULL; t = t->beneath)
2685 {
2686 if (t->to_info_proc != NULL)
2687 {
2688 t->to_info_proc (t, args, what);
2689
2690 if (targetdebug)
2691 fprintf_unfiltered (gdb_stdlog,
2692 "target_info_proc (\"%s\", %d)\n", args, what);
2693
2694 return 1;
2695 }
2696 }
2697
2698 return 0;
2699 }
2700
2701 static int
2702 find_default_supports_disable_randomization (struct target_ops *self)
2703 {
2704 struct target_ops *t;
2705
2706 t = find_default_run_target (NULL);
2707 if (t && t->to_supports_disable_randomization)
2708 return (t->to_supports_disable_randomization) (t);
2709 return 0;
2710 }
2711
2712 int
2713 target_supports_disable_randomization (void)
2714 {
2715 struct target_ops *t;
2716
2717 for (t = &current_target; t != NULL; t = t->beneath)
2718 if (t->to_supports_disable_randomization)
2719 return t->to_supports_disable_randomization (t);
2720
2721 return 0;
2722 }
2723
2724 char *
2725 target_get_osdata (const char *type)
2726 {
2727 struct target_ops *t;
2728
2729 /* If we're already connected to something that can get us OS
2730 related data, use it. Otherwise, try using the native
2731 target. */
2732 if (current_target.to_stratum >= process_stratum)
2733 t = current_target.beneath;
2734 else
2735 t = find_default_run_target ("get OS data");
2736
2737 if (!t)
2738 return NULL;
2739
2740 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2741 }
2742
2743 static struct address_space *
2744 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2745 {
2746 struct inferior *inf;
2747
2748 /* Fall-back to the "main" address space of the inferior. */
2749 inf = find_inferior_ptid (ptid);
2750
2751 if (inf == NULL || inf->aspace == NULL)
2752 internal_error (__FILE__, __LINE__,
2753 _("Can't determine the current "
2754 "address space of thread %s\n"),
2755 target_pid_to_str (ptid));
2756
2757 return inf->aspace;
2758 }
2759
2760 /* Determine the current address space of thread PTID. */
2761
2762 struct address_space *
2763 target_thread_address_space (ptid_t ptid)
2764 {
2765 struct address_space *aspace;
2766
2767 aspace = current_target.to_thread_address_space (&current_target, ptid);
2768 gdb_assert (aspace != NULL);
2769
2770 return aspace;
2771 }
2772
2773
2774 /* Target file operations. */
2775
2776 static struct target_ops *
2777 default_fileio_target (void)
2778 {
2779 /* If we're already connected to something that can perform
2780 file I/O, use it. Otherwise, try using the native target. */
2781 if (current_target.to_stratum >= process_stratum)
2782 return current_target.beneath;
2783 else
2784 return find_default_run_target ("file I/O");
2785 }
2786
2787 /* File handle for target file operations. */
2788
2789 typedef struct
2790 {
2791 /* The target on which this file is open. */
2792 struct target_ops *t;
2793
2794 /* The file descriptor on the target. */
2795 int fd;
2796 } fileio_fh_t;
2797
2798 DEF_VEC_O (fileio_fh_t);
2799
2800 /* Vector of currently open file handles. The value returned by
2801 target_fileio_open and passed as the FD argument to other
2802 target_fileio_* functions is an index into this vector. This
2803 vector's entries are never freed; instead, files are marked as
2804 closed, and the handle becomes available for reuse. */
2805 static VEC (fileio_fh_t) *fileio_fhandles;
2806
2807 /* Macro to check whether a fileio_fh_t represents a closed file. */
2808 #define is_closed_fileio_fh(fd) ((fd) < 0)
2809
2810 /* Index into fileio_fhandles of the lowest handle that might be
2811 closed. This permits handle reuse without searching the whole
2812 list each time a new file is opened. */
2813 static int lowest_closed_fd;
2814
2815 /* Acquire a target fileio file descriptor. */
2816
2817 static int
2818 acquire_fileio_fd (struct target_ops *t, int fd)
2819 {
2820 fileio_fh_t *fh;
2821
2822 gdb_assert (!is_closed_fileio_fh (fd));
2823
2824 /* Search for closed handles to reuse. */
2825 for (;
2826 VEC_iterate (fileio_fh_t, fileio_fhandles,
2827 lowest_closed_fd, fh);
2828 lowest_closed_fd++)
2829 if (is_closed_fileio_fh (fh->fd))
2830 break;
2831
2832 /* Push a new handle if no closed handles were found. */
2833 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2834 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2835
2836 /* Fill in the handle. */
2837 fh->t = t;
2838 fh->fd = fd;
2839
2840 /* Return its index, and start the next lookup at
2841 the next index. */
2842 return lowest_closed_fd++;
2843 }
2844
2845 /* Release a target fileio file descriptor. */
2846
2847 static void
2848 release_fileio_fd (int fd, fileio_fh_t *fh)
2849 {
2850 fh->fd = -1;
2851 lowest_closed_fd = min (lowest_closed_fd, fd);
2852 }
2853
2854 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2855
2856 #define fileio_fd_to_fh(fd) \
2857 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2858
2859 /* Helper for target_fileio_open and
2860 target_fileio_open_warn_if_slow. */
2861
2862 static int
2863 target_fileio_open_1 (struct inferior *inf, const char *filename,
2864 int flags, int mode, int warn_if_slow,
2865 int *target_errno)
2866 {
2867 struct target_ops *t;
2868
2869 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2870 {
2871 if (t->to_fileio_open != NULL)
2872 {
2873 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2874 warn_if_slow, target_errno);
2875
2876 if (fd < 0)
2877 fd = -1;
2878 else
2879 fd = acquire_fileio_fd (t, fd);
2880
2881 if (targetdebug)
2882 fprintf_unfiltered (gdb_stdlog,
2883 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2884 " = %d (%d)\n",
2885 inf == NULL ? 0 : inf->num,
2886 filename, flags, mode,
2887 warn_if_slow, fd,
2888 fd != -1 ? 0 : *target_errno);
2889 return fd;
2890 }
2891 }
2892
2893 *target_errno = FILEIO_ENOSYS;
2894 return -1;
2895 }
2896
2897 /* See target.h. */
2898
2899 int
2900 target_fileio_open (struct inferior *inf, const char *filename,
2901 int flags, int mode, int *target_errno)
2902 {
2903 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2904 target_errno);
2905 }
2906
2907 /* See target.h. */
2908
2909 int
2910 target_fileio_open_warn_if_slow (struct inferior *inf,
2911 const char *filename,
2912 int flags, int mode, int *target_errno)
2913 {
2914 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2915 target_errno);
2916 }
2917
2918 /* See target.h. */
2919
2920 int
2921 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2922 ULONGEST offset, int *target_errno)
2923 {
2924 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2925 int ret = -1;
2926
2927 if (is_closed_fileio_fh (fh->fd))
2928 *target_errno = EBADF;
2929 else
2930 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2931 len, offset, target_errno);
2932
2933 if (targetdebug)
2934 fprintf_unfiltered (gdb_stdlog,
2935 "target_fileio_pwrite (%d,...,%d,%s) "
2936 "= %d (%d)\n",
2937 fd, len, pulongest (offset),
2938 ret, ret != -1 ? 0 : *target_errno);
2939 return ret;
2940 }
2941
2942 /* See target.h. */
2943
2944 int
2945 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2946 ULONGEST offset, int *target_errno)
2947 {
2948 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2949 int ret = -1;
2950
2951 if (is_closed_fileio_fh (fh->fd))
2952 *target_errno = EBADF;
2953 else
2954 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2955 len, offset, target_errno);
2956
2957 if (targetdebug)
2958 fprintf_unfiltered (gdb_stdlog,
2959 "target_fileio_pread (%d,...,%d,%s) "
2960 "= %d (%d)\n",
2961 fd, len, pulongest (offset),
2962 ret, ret != -1 ? 0 : *target_errno);
2963 return ret;
2964 }
2965
2966 /* See target.h. */
2967
2968 int
2969 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2970 {
2971 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2972 int ret = -1;
2973
2974 if (is_closed_fileio_fh (fh->fd))
2975 *target_errno = EBADF;
2976 else
2977 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2978
2979 if (targetdebug)
2980 fprintf_unfiltered (gdb_stdlog,
2981 "target_fileio_fstat (%d) = %d (%d)\n",
2982 fd, ret, ret != -1 ? 0 : *target_errno);
2983 return ret;
2984 }
2985
2986 /* See target.h. */
2987
2988 int
2989 target_fileio_close (int fd, int *target_errno)
2990 {
2991 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2992 int ret = -1;
2993
2994 if (is_closed_fileio_fh (fh->fd))
2995 *target_errno = EBADF;
2996 else
2997 {
2998 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2999 release_fileio_fd (fd, fh);
3000 }
3001
3002 if (targetdebug)
3003 fprintf_unfiltered (gdb_stdlog,
3004 "target_fileio_close (%d) = %d (%d)\n",
3005 fd, ret, ret != -1 ? 0 : *target_errno);
3006 return ret;
3007 }
3008
3009 /* See target.h. */
3010
3011 int
3012 target_fileio_unlink (struct inferior *inf, const char *filename,
3013 int *target_errno)
3014 {
3015 struct target_ops *t;
3016
3017 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3018 {
3019 if (t->to_fileio_unlink != NULL)
3020 {
3021 int ret = t->to_fileio_unlink (t, inf, filename,
3022 target_errno);
3023
3024 if (targetdebug)
3025 fprintf_unfiltered (gdb_stdlog,
3026 "target_fileio_unlink (%d,%s)"
3027 " = %d (%d)\n",
3028 inf == NULL ? 0 : inf->num, filename,
3029 ret, ret != -1 ? 0 : *target_errno);
3030 return ret;
3031 }
3032 }
3033
3034 *target_errno = FILEIO_ENOSYS;
3035 return -1;
3036 }
3037
3038 /* See target.h. */
3039
3040 char *
3041 target_fileio_readlink (struct inferior *inf, const char *filename,
3042 int *target_errno)
3043 {
3044 struct target_ops *t;
3045
3046 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3047 {
3048 if (t->to_fileio_readlink != NULL)
3049 {
3050 char *ret = t->to_fileio_readlink (t, inf, filename,
3051 target_errno);
3052
3053 if (targetdebug)
3054 fprintf_unfiltered (gdb_stdlog,
3055 "target_fileio_readlink (%d,%s)"
3056 " = %s (%d)\n",
3057 inf == NULL ? 0 : inf->num,
3058 filename, ret? ret : "(nil)",
3059 ret? 0 : *target_errno);
3060 return ret;
3061 }
3062 }
3063
3064 *target_errno = FILEIO_ENOSYS;
3065 return NULL;
3066 }
3067
3068 static void
3069 target_fileio_close_cleanup (void *opaque)
3070 {
3071 int fd = *(int *) opaque;
3072 int target_errno;
3073
3074 target_fileio_close (fd, &target_errno);
3075 }
3076
3077 /* Read target file FILENAME, in the filesystem as seen by INF. If
3078 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3079 remote targets, the remote stub). Store the result in *BUF_P and
3080 return the size of the transferred data. PADDING additional bytes
3081 are available in *BUF_P. This is a helper function for
3082 target_fileio_read_alloc; see the declaration of that function for
3083 more information. */
3084
3085 static LONGEST
3086 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3087 gdb_byte **buf_p, int padding)
3088 {
3089 struct cleanup *close_cleanup;
3090 size_t buf_alloc, buf_pos;
3091 gdb_byte *buf;
3092 LONGEST n;
3093 int fd;
3094 int target_errno;
3095
3096 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3097 &target_errno);
3098 if (fd == -1)
3099 return -1;
3100
3101 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3102
3103 /* Start by reading up to 4K at a time. The target will throttle
3104 this number down if necessary. */
3105 buf_alloc = 4096;
3106 buf = (gdb_byte *) xmalloc (buf_alloc);
3107 buf_pos = 0;
3108 while (1)
3109 {
3110 n = target_fileio_pread (fd, &buf[buf_pos],
3111 buf_alloc - buf_pos - padding, buf_pos,
3112 &target_errno);
3113 if (n < 0)
3114 {
3115 /* An error occurred. */
3116 do_cleanups (close_cleanup);
3117 xfree (buf);
3118 return -1;
3119 }
3120 else if (n == 0)
3121 {
3122 /* Read all there was. */
3123 do_cleanups (close_cleanup);
3124 if (buf_pos == 0)
3125 xfree (buf);
3126 else
3127 *buf_p = buf;
3128 return buf_pos;
3129 }
3130
3131 buf_pos += n;
3132
3133 /* If the buffer is filling up, expand it. */
3134 if (buf_alloc < buf_pos * 2)
3135 {
3136 buf_alloc *= 2;
3137 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3138 }
3139
3140 QUIT;
3141 }
3142 }
3143
3144 /* See target.h. */
3145
3146 LONGEST
3147 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3148 gdb_byte **buf_p)
3149 {
3150 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3151 }
3152
3153 /* See target.h. */
3154
3155 char *
3156 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3157 {
3158 gdb_byte *buffer;
3159 char *bufstr;
3160 LONGEST i, transferred;
3161
3162 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3163 bufstr = (char *) buffer;
3164
3165 if (transferred < 0)
3166 return NULL;
3167
3168 if (transferred == 0)
3169 return xstrdup ("");
3170
3171 bufstr[transferred] = 0;
3172
3173 /* Check for embedded NUL bytes; but allow trailing NULs. */
3174 for (i = strlen (bufstr); i < transferred; i++)
3175 if (bufstr[i] != 0)
3176 {
3177 warning (_("target file %s "
3178 "contained unexpected null characters"),
3179 filename);
3180 break;
3181 }
3182
3183 return bufstr;
3184 }
3185
3186
3187 static int
3188 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3189 CORE_ADDR addr, int len)
3190 {
3191 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3192 }
3193
3194 static int
3195 default_watchpoint_addr_within_range (struct target_ops *target,
3196 CORE_ADDR addr,
3197 CORE_ADDR start, int length)
3198 {
3199 return addr >= start && addr < start + length;
3200 }
3201
3202 static struct gdbarch *
3203 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3204 {
3205 return target_gdbarch ();
3206 }
3207
3208 static int
3209 return_zero (struct target_ops *ignore)
3210 {
3211 return 0;
3212 }
3213
3214 static int
3215 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3216 {
3217 return 0;
3218 }
3219
3220 /*
3221 * Find the next target down the stack from the specified target.
3222 */
3223
3224 struct target_ops *
3225 find_target_beneath (struct target_ops *t)
3226 {
3227 return t->beneath;
3228 }
3229
3230 /* See target.h. */
3231
3232 struct target_ops *
3233 find_target_at (enum strata stratum)
3234 {
3235 struct target_ops *t;
3236
3237 for (t = current_target.beneath; t != NULL; t = t->beneath)
3238 if (t->to_stratum == stratum)
3239 return t;
3240
3241 return NULL;
3242 }
3243
3244 \f
3245
3246 /* See target.h */
3247
3248 void
3249 target_announce_detach (int from_tty)
3250 {
3251 pid_t pid;
3252 char *exec_file;
3253
3254 if (!from_tty)
3255 return;
3256
3257 exec_file = get_exec_file (0);
3258 if (exec_file == NULL)
3259 exec_file = "";
3260
3261 pid = ptid_get_pid (inferior_ptid);
3262 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3263 target_pid_to_str (pid_to_ptid (pid)));
3264 gdb_flush (gdb_stdout);
3265 }
3266
3267 /* The inferior process has died. Long live the inferior! */
3268
3269 void
3270 generic_mourn_inferior (void)
3271 {
3272 ptid_t ptid;
3273
3274 ptid = inferior_ptid;
3275 inferior_ptid = null_ptid;
3276
3277 /* Mark breakpoints uninserted in case something tries to delete a
3278 breakpoint while we delete the inferior's threads (which would
3279 fail, since the inferior is long gone). */
3280 mark_breakpoints_out ();
3281
3282 if (!ptid_equal (ptid, null_ptid))
3283 {
3284 int pid = ptid_get_pid (ptid);
3285 exit_inferior (pid);
3286 }
3287
3288 /* Note this wipes step-resume breakpoints, so needs to be done
3289 after exit_inferior, which ends up referencing the step-resume
3290 breakpoints through clear_thread_inferior_resources. */
3291 breakpoint_init_inferior (inf_exited);
3292
3293 registers_changed ();
3294
3295 reopen_exec_file ();
3296 reinit_frame_cache ();
3297
3298 if (deprecated_detach_hook)
3299 deprecated_detach_hook ();
3300 }
3301 \f
3302 /* Convert a normal process ID to a string. Returns the string in a
3303 static buffer. */
3304
3305 char *
3306 normal_pid_to_str (ptid_t ptid)
3307 {
3308 static char buf[32];
3309
3310 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3311 return buf;
3312 }
3313
3314 static char *
3315 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3316 {
3317 return normal_pid_to_str (ptid);
3318 }
3319
3320 /* Error-catcher for target_find_memory_regions. */
3321 static int
3322 dummy_find_memory_regions (struct target_ops *self,
3323 find_memory_region_ftype ignore1, void *ignore2)
3324 {
3325 error (_("Command not implemented for this target."));
3326 return 0;
3327 }
3328
3329 /* Error-catcher for target_make_corefile_notes. */
3330 static char *
3331 dummy_make_corefile_notes (struct target_ops *self,
3332 bfd *ignore1, int *ignore2)
3333 {
3334 error (_("Command not implemented for this target."));
3335 return NULL;
3336 }
3337
3338 /* Set up the handful of non-empty slots needed by the dummy target
3339 vector. */
3340
3341 static void
3342 init_dummy_target (void)
3343 {
3344 dummy_target.to_shortname = "None";
3345 dummy_target.to_longname = "None";
3346 dummy_target.to_doc = "";
3347 dummy_target.to_supports_disable_randomization
3348 = find_default_supports_disable_randomization;
3349 dummy_target.to_stratum = dummy_stratum;
3350 dummy_target.to_has_all_memory = return_zero;
3351 dummy_target.to_has_memory = return_zero;
3352 dummy_target.to_has_stack = return_zero;
3353 dummy_target.to_has_registers = return_zero;
3354 dummy_target.to_has_execution = return_zero_has_execution;
3355 dummy_target.to_magic = OPS_MAGIC;
3356
3357 install_dummy_methods (&dummy_target);
3358 }
3359 \f
3360
3361 void
3362 target_close (struct target_ops *targ)
3363 {
3364 gdb_assert (!target_is_pushed (targ));
3365
3366 if (targ->to_xclose != NULL)
3367 targ->to_xclose (targ);
3368 else if (targ->to_close != NULL)
3369 targ->to_close (targ);
3370
3371 if (targetdebug)
3372 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3373 }
3374
3375 int
3376 target_thread_alive (ptid_t ptid)
3377 {
3378 return current_target.to_thread_alive (&current_target, ptid);
3379 }
3380
3381 void
3382 target_update_thread_list (void)
3383 {
3384 current_target.to_update_thread_list (&current_target);
3385 }
3386
3387 void
3388 target_stop (ptid_t ptid)
3389 {
3390 if (!may_stop)
3391 {
3392 warning (_("May not interrupt or stop the target, ignoring attempt"));
3393 return;
3394 }
3395
3396 (*current_target.to_stop) (&current_target, ptid);
3397 }
3398
3399 void
3400 target_interrupt (ptid_t ptid)
3401 {
3402 if (!may_stop)
3403 {
3404 warning (_("May not interrupt or stop the target, ignoring attempt"));
3405 return;
3406 }
3407
3408 (*current_target.to_interrupt) (&current_target, ptid);
3409 }
3410
3411 /* See target.h. */
3412
3413 void
3414 target_pass_ctrlc (void)
3415 {
3416 (*current_target.to_pass_ctrlc) (&current_target);
3417 }
3418
3419 /* See target.h. */
3420
3421 void
3422 default_target_pass_ctrlc (struct target_ops *ops)
3423 {
3424 target_interrupt (inferior_ptid);
3425 }
3426
3427 /* See target/target.h. */
3428
3429 void
3430 target_stop_and_wait (ptid_t ptid)
3431 {
3432 struct target_waitstatus status;
3433 int was_non_stop = non_stop;
3434
3435 non_stop = 1;
3436 target_stop (ptid);
3437
3438 memset (&status, 0, sizeof (status));
3439 target_wait (ptid, &status, 0);
3440
3441 non_stop = was_non_stop;
3442 }
3443
3444 /* See target/target.h. */
3445
3446 void
3447 target_continue_no_signal (ptid_t ptid)
3448 {
3449 target_resume (ptid, 0, GDB_SIGNAL_0);
3450 }
3451
3452 /* See target/target.h. */
3453
3454 void
3455 target_continue (ptid_t ptid, enum gdb_signal signal)
3456 {
3457 target_resume (ptid, 0, signal);
3458 }
3459
3460 /* Concatenate ELEM to LIST, a comma separate list, and return the
3461 result. The LIST incoming argument is released. */
3462
3463 static char *
3464 str_comma_list_concat_elem (char *list, const char *elem)
3465 {
3466 if (list == NULL)
3467 return xstrdup (elem);
3468 else
3469 return reconcat (list, list, ", ", elem, (char *) NULL);
3470 }
3471
3472 /* Helper for target_options_to_string. If OPT is present in
3473 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3474 Returns the new resulting string. OPT is removed from
3475 TARGET_OPTIONS. */
3476
3477 static char *
3478 do_option (int *target_options, char *ret,
3479 int opt, char *opt_str)
3480 {
3481 if ((*target_options & opt) != 0)
3482 {
3483 ret = str_comma_list_concat_elem (ret, opt_str);
3484 *target_options &= ~opt;
3485 }
3486
3487 return ret;
3488 }
3489
3490 char *
3491 target_options_to_string (int target_options)
3492 {
3493 char *ret = NULL;
3494
3495 #define DO_TARG_OPTION(OPT) \
3496 ret = do_option (&target_options, ret, OPT, #OPT)
3497
3498 DO_TARG_OPTION (TARGET_WNOHANG);
3499
3500 if (target_options != 0)
3501 ret = str_comma_list_concat_elem (ret, "unknown???");
3502
3503 if (ret == NULL)
3504 ret = xstrdup ("");
3505 return ret;
3506 }
3507
3508 static void
3509 debug_print_register (const char * func,
3510 struct regcache *regcache, int regno)
3511 {
3512 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3513
3514 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3515 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3516 && gdbarch_register_name (gdbarch, regno) != NULL
3517 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3518 fprintf_unfiltered (gdb_stdlog, "(%s)",
3519 gdbarch_register_name (gdbarch, regno));
3520 else
3521 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3522 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3523 {
3524 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3525 int i, size = register_size (gdbarch, regno);
3526 gdb_byte buf[MAX_REGISTER_SIZE];
3527
3528 regcache_raw_collect (regcache, regno, buf);
3529 fprintf_unfiltered (gdb_stdlog, " = ");
3530 for (i = 0; i < size; i++)
3531 {
3532 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3533 }
3534 if (size <= sizeof (LONGEST))
3535 {
3536 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3537
3538 fprintf_unfiltered (gdb_stdlog, " %s %s",
3539 core_addr_to_string_nz (val), plongest (val));
3540 }
3541 }
3542 fprintf_unfiltered (gdb_stdlog, "\n");
3543 }
3544
3545 void
3546 target_fetch_registers (struct regcache *regcache, int regno)
3547 {
3548 current_target.to_fetch_registers (&current_target, regcache, regno);
3549 if (targetdebug)
3550 debug_print_register ("target_fetch_registers", regcache, regno);
3551 }
3552
3553 void
3554 target_store_registers (struct regcache *regcache, int regno)
3555 {
3556 if (!may_write_registers)
3557 error (_("Writing to registers is not allowed (regno %d)"), regno);
3558
3559 current_target.to_store_registers (&current_target, regcache, regno);
3560 if (targetdebug)
3561 {
3562 debug_print_register ("target_store_registers", regcache, regno);
3563 }
3564 }
3565
3566 int
3567 target_core_of_thread (ptid_t ptid)
3568 {
3569 return current_target.to_core_of_thread (&current_target, ptid);
3570 }
3571
3572 int
3573 simple_verify_memory (struct target_ops *ops,
3574 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3575 {
3576 LONGEST total_xfered = 0;
3577
3578 while (total_xfered < size)
3579 {
3580 ULONGEST xfered_len;
3581 enum target_xfer_status status;
3582 gdb_byte buf[1024];
3583 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3584
3585 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3586 buf, NULL, lma + total_xfered, howmuch,
3587 &xfered_len);
3588 if (status == TARGET_XFER_OK
3589 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3590 {
3591 total_xfered += xfered_len;
3592 QUIT;
3593 }
3594 else
3595 return 0;
3596 }
3597 return 1;
3598 }
3599
3600 /* Default implementation of memory verification. */
3601
3602 static int
3603 default_verify_memory (struct target_ops *self,
3604 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3605 {
3606 /* Start over from the top of the target stack. */
3607 return simple_verify_memory (current_target.beneath,
3608 data, memaddr, size);
3609 }
3610
3611 int
3612 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3613 {
3614 return current_target.to_verify_memory (&current_target,
3615 data, memaddr, size);
3616 }
3617
3618 /* The documentation for this function is in its prototype declaration in
3619 target.h. */
3620
3621 int
3622 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3623 enum target_hw_bp_type rw)
3624 {
3625 return current_target.to_insert_mask_watchpoint (&current_target,
3626 addr, mask, rw);
3627 }
3628
3629 /* The documentation for this function is in its prototype declaration in
3630 target.h. */
3631
3632 int
3633 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3634 enum target_hw_bp_type rw)
3635 {
3636 return current_target.to_remove_mask_watchpoint (&current_target,
3637 addr, mask, rw);
3638 }
3639
3640 /* The documentation for this function is in its prototype declaration
3641 in target.h. */
3642
3643 int
3644 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3645 {
3646 return current_target.to_masked_watch_num_registers (&current_target,
3647 addr, mask);
3648 }
3649
3650 /* The documentation for this function is in its prototype declaration
3651 in target.h. */
3652
3653 int
3654 target_ranged_break_num_registers (void)
3655 {
3656 return current_target.to_ranged_break_num_registers (&current_target);
3657 }
3658
3659 /* See target.h. */
3660
3661 int
3662 target_supports_btrace (enum btrace_format format)
3663 {
3664 return current_target.to_supports_btrace (&current_target, format);
3665 }
3666
3667 /* See target.h. */
3668
3669 struct btrace_target_info *
3670 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3671 {
3672 return current_target.to_enable_btrace (&current_target, ptid, conf);
3673 }
3674
3675 /* See target.h. */
3676
3677 void
3678 target_disable_btrace (struct btrace_target_info *btinfo)
3679 {
3680 current_target.to_disable_btrace (&current_target, btinfo);
3681 }
3682
3683 /* See target.h. */
3684
3685 void
3686 target_teardown_btrace (struct btrace_target_info *btinfo)
3687 {
3688 current_target.to_teardown_btrace (&current_target, btinfo);
3689 }
3690
3691 /* See target.h. */
3692
3693 enum btrace_error
3694 target_read_btrace (struct btrace_data *btrace,
3695 struct btrace_target_info *btinfo,
3696 enum btrace_read_type type)
3697 {
3698 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3699 }
3700
3701 /* See target.h. */
3702
3703 const struct btrace_config *
3704 target_btrace_conf (const struct btrace_target_info *btinfo)
3705 {
3706 return current_target.to_btrace_conf (&current_target, btinfo);
3707 }
3708
3709 /* See target.h. */
3710
3711 void
3712 target_stop_recording (void)
3713 {
3714 current_target.to_stop_recording (&current_target);
3715 }
3716
3717 /* See target.h. */
3718
3719 void
3720 target_save_record (const char *filename)
3721 {
3722 current_target.to_save_record (&current_target, filename);
3723 }
3724
3725 /* See target.h. */
3726
3727 int
3728 target_supports_delete_record (void)
3729 {
3730 struct target_ops *t;
3731
3732 for (t = current_target.beneath; t != NULL; t = t->beneath)
3733 if (t->to_delete_record != delegate_delete_record
3734 && t->to_delete_record != tdefault_delete_record)
3735 return 1;
3736
3737 return 0;
3738 }
3739
3740 /* See target.h. */
3741
3742 void
3743 target_delete_record (void)
3744 {
3745 current_target.to_delete_record (&current_target);
3746 }
3747
3748 /* See target.h. */
3749
3750 int
3751 target_record_is_replaying (ptid_t ptid)
3752 {
3753 return current_target.to_record_is_replaying (&current_target, ptid);
3754 }
3755
3756 /* See target.h. */
3757
3758 int
3759 target_record_will_replay (ptid_t ptid, int dir)
3760 {
3761 return current_target.to_record_will_replay (&current_target, ptid, dir);
3762 }
3763
3764 /* See target.h. */
3765
3766 void
3767 target_record_stop_replaying (void)
3768 {
3769 current_target.to_record_stop_replaying (&current_target);
3770 }
3771
3772 /* See target.h. */
3773
3774 void
3775 target_goto_record_begin (void)
3776 {
3777 current_target.to_goto_record_begin (&current_target);
3778 }
3779
3780 /* See target.h. */
3781
3782 void
3783 target_goto_record_end (void)
3784 {
3785 current_target.to_goto_record_end (&current_target);
3786 }
3787
3788 /* See target.h. */
3789
3790 void
3791 target_goto_record (ULONGEST insn)
3792 {
3793 current_target.to_goto_record (&current_target, insn);
3794 }
3795
3796 /* See target.h. */
3797
3798 void
3799 target_insn_history (int size, int flags)
3800 {
3801 current_target.to_insn_history (&current_target, size, flags);
3802 }
3803
3804 /* See target.h. */
3805
3806 void
3807 target_insn_history_from (ULONGEST from, int size, int flags)
3808 {
3809 current_target.to_insn_history_from (&current_target, from, size, flags);
3810 }
3811
3812 /* See target.h. */
3813
3814 void
3815 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3816 {
3817 current_target.to_insn_history_range (&current_target, begin, end, flags);
3818 }
3819
3820 /* See target.h. */
3821
3822 void
3823 target_call_history (int size, int flags)
3824 {
3825 current_target.to_call_history (&current_target, size, flags);
3826 }
3827
3828 /* See target.h. */
3829
3830 void
3831 target_call_history_from (ULONGEST begin, int size, int flags)
3832 {
3833 current_target.to_call_history_from (&current_target, begin, size, flags);
3834 }
3835
3836 /* See target.h. */
3837
3838 void
3839 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3840 {
3841 current_target.to_call_history_range (&current_target, begin, end, flags);
3842 }
3843
3844 /* See target.h. */
3845
3846 const struct frame_unwind *
3847 target_get_unwinder (void)
3848 {
3849 return current_target.to_get_unwinder (&current_target);
3850 }
3851
3852 /* See target.h. */
3853
3854 const struct frame_unwind *
3855 target_get_tailcall_unwinder (void)
3856 {
3857 return current_target.to_get_tailcall_unwinder (&current_target);
3858 }
3859
3860 /* See target.h. */
3861
3862 void
3863 target_prepare_to_generate_core (void)
3864 {
3865 current_target.to_prepare_to_generate_core (&current_target);
3866 }
3867
3868 /* See target.h. */
3869
3870 void
3871 target_done_generating_core (void)
3872 {
3873 current_target.to_done_generating_core (&current_target);
3874 }
3875
3876 static void
3877 setup_target_debug (void)
3878 {
3879 memcpy (&debug_target, &current_target, sizeof debug_target);
3880
3881 init_debug_target (&current_target);
3882 }
3883 \f
3884
3885 static char targ_desc[] =
3886 "Names of targets and files being debugged.\nShows the entire \
3887 stack of targets currently in use (including the exec-file,\n\
3888 core-file, and process, if any), as well as the symbol file name.";
3889
3890 static void
3891 default_rcmd (struct target_ops *self, const char *command,
3892 struct ui_file *output)
3893 {
3894 error (_("\"monitor\" command not supported by this target."));
3895 }
3896
3897 static void
3898 do_monitor_command (char *cmd,
3899 int from_tty)
3900 {
3901 target_rcmd (cmd, gdb_stdtarg);
3902 }
3903
3904 /* Print the name of each layers of our target stack. */
3905
3906 static void
3907 maintenance_print_target_stack (char *cmd, int from_tty)
3908 {
3909 struct target_ops *t;
3910
3911 printf_filtered (_("The current target stack is:\n"));
3912
3913 for (t = target_stack; t != NULL; t = t->beneath)
3914 {
3915 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3916 }
3917 }
3918
3919 /* See target.h. */
3920
3921 void
3922 target_async (int enable)
3923 {
3924 infrun_async (enable);
3925 current_target.to_async (&current_target, enable);
3926 }
3927
3928 /* See target.h. */
3929
3930 void
3931 target_thread_events (int enable)
3932 {
3933 current_target.to_thread_events (&current_target, enable);
3934 }
3935
3936 /* Controls if targets can report that they can/are async. This is
3937 just for maintainers to use when debugging gdb. */
3938 int target_async_permitted = 1;
3939
3940 /* The set command writes to this variable. If the inferior is
3941 executing, target_async_permitted is *not* updated. */
3942 static int target_async_permitted_1 = 1;
3943
3944 static void
3945 maint_set_target_async_command (char *args, int from_tty,
3946 struct cmd_list_element *c)
3947 {
3948 if (have_live_inferiors ())
3949 {
3950 target_async_permitted_1 = target_async_permitted;
3951 error (_("Cannot change this setting while the inferior is running."));
3952 }
3953
3954 target_async_permitted = target_async_permitted_1;
3955 }
3956
3957 static void
3958 maint_show_target_async_command (struct ui_file *file, int from_tty,
3959 struct cmd_list_element *c,
3960 const char *value)
3961 {
3962 fprintf_filtered (file,
3963 _("Controlling the inferior in "
3964 "asynchronous mode is %s.\n"), value);
3965 }
3966
3967 /* Return true if the target operates in non-stop mode even with "set
3968 non-stop off". */
3969
3970 static int
3971 target_always_non_stop_p (void)
3972 {
3973 return current_target.to_always_non_stop_p (&current_target);
3974 }
3975
3976 /* See target.h. */
3977
3978 int
3979 target_is_non_stop_p (void)
3980 {
3981 return (non_stop
3982 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3983 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3984 && target_always_non_stop_p ()));
3985 }
3986
3987 /* Controls if targets can report that they always run in non-stop
3988 mode. This is just for maintainers to use when debugging gdb. */
3989 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3990
3991 /* The set command writes to this variable. If the inferior is
3992 executing, target_non_stop_enabled is *not* updated. */
3993 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3994
3995 /* Implementation of "maint set target-non-stop". */
3996
3997 static void
3998 maint_set_target_non_stop_command (char *args, int from_tty,
3999 struct cmd_list_element *c)
4000 {
4001 if (have_live_inferiors ())
4002 {
4003 target_non_stop_enabled_1 = target_non_stop_enabled;
4004 error (_("Cannot change this setting while the inferior is running."));
4005 }
4006
4007 target_non_stop_enabled = target_non_stop_enabled_1;
4008 }
4009
4010 /* Implementation of "maint show target-non-stop". */
4011
4012 static void
4013 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
4014 struct cmd_list_element *c,
4015 const char *value)
4016 {
4017 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4018 fprintf_filtered (file,
4019 _("Whether the target is always in non-stop mode "
4020 "is %s (currently %s).\n"), value,
4021 target_always_non_stop_p () ? "on" : "off");
4022 else
4023 fprintf_filtered (file,
4024 _("Whether the target is always in non-stop mode "
4025 "is %s.\n"), value);
4026 }
4027
4028 /* Temporary copies of permission settings. */
4029
4030 static int may_write_registers_1 = 1;
4031 static int may_write_memory_1 = 1;
4032 static int may_insert_breakpoints_1 = 1;
4033 static int may_insert_tracepoints_1 = 1;
4034 static int may_insert_fast_tracepoints_1 = 1;
4035 static int may_stop_1 = 1;
4036
4037 /* Make the user-set values match the real values again. */
4038
4039 void
4040 update_target_permissions (void)
4041 {
4042 may_write_registers_1 = may_write_registers;
4043 may_write_memory_1 = may_write_memory;
4044 may_insert_breakpoints_1 = may_insert_breakpoints;
4045 may_insert_tracepoints_1 = may_insert_tracepoints;
4046 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4047 may_stop_1 = may_stop;
4048 }
4049
4050 /* The one function handles (most of) the permission flags in the same
4051 way. */
4052
4053 static void
4054 set_target_permissions (char *args, int from_tty,
4055 struct cmd_list_element *c)
4056 {
4057 if (target_has_execution)
4058 {
4059 update_target_permissions ();
4060 error (_("Cannot change this setting while the inferior is running."));
4061 }
4062
4063 /* Make the real values match the user-changed values. */
4064 may_write_registers = may_write_registers_1;
4065 may_insert_breakpoints = may_insert_breakpoints_1;
4066 may_insert_tracepoints = may_insert_tracepoints_1;
4067 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4068 may_stop = may_stop_1;
4069 update_observer_mode ();
4070 }
4071
4072 /* Set memory write permission independently of observer mode. */
4073
4074 static void
4075 set_write_memory_permission (char *args, int from_tty,
4076 struct cmd_list_element *c)
4077 {
4078 /* Make the real values match the user-changed values. */
4079 may_write_memory = may_write_memory_1;
4080 update_observer_mode ();
4081 }
4082
4083
4084 void
4085 initialize_targets (void)
4086 {
4087 init_dummy_target ();
4088 push_target (&dummy_target);
4089
4090 add_info ("target", target_info, targ_desc);
4091 add_info ("files", target_info, targ_desc);
4092
4093 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4094 Set target debugging."), _("\
4095 Show target debugging."), _("\
4096 When non-zero, target debugging is enabled. Higher numbers are more\n\
4097 verbose."),
4098 set_targetdebug,
4099 show_targetdebug,
4100 &setdebuglist, &showdebuglist);
4101
4102 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4103 &trust_readonly, _("\
4104 Set mode for reading from readonly sections."), _("\
4105 Show mode for reading from readonly sections."), _("\
4106 When this mode is on, memory reads from readonly sections (such as .text)\n\
4107 will be read from the object file instead of from the target. This will\n\
4108 result in significant performance improvement for remote targets."),
4109 NULL,
4110 show_trust_readonly,
4111 &setlist, &showlist);
4112
4113 add_com ("monitor", class_obscure, do_monitor_command,
4114 _("Send a command to the remote monitor (remote targets only)."));
4115
4116 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4117 _("Print the name of each layer of the internal target stack."),
4118 &maintenanceprintlist);
4119
4120 add_setshow_boolean_cmd ("target-async", no_class,
4121 &target_async_permitted_1, _("\
4122 Set whether gdb controls the inferior in asynchronous mode."), _("\
4123 Show whether gdb controls the inferior in asynchronous mode."), _("\
4124 Tells gdb whether to control the inferior in asynchronous mode."),
4125 maint_set_target_async_command,
4126 maint_show_target_async_command,
4127 &maintenance_set_cmdlist,
4128 &maintenance_show_cmdlist);
4129
4130 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4131 &target_non_stop_enabled_1, _("\
4132 Set whether gdb always controls the inferior in non-stop mode."), _("\
4133 Show whether gdb always controls the inferior in non-stop mode."), _("\
4134 Tells gdb whether to control the inferior in non-stop mode."),
4135 maint_set_target_non_stop_command,
4136 maint_show_target_non_stop_command,
4137 &maintenance_set_cmdlist,
4138 &maintenance_show_cmdlist);
4139
4140 add_setshow_boolean_cmd ("may-write-registers", class_support,
4141 &may_write_registers_1, _("\
4142 Set permission to write into registers."), _("\
4143 Show permission to write into registers."), _("\
4144 When this permission is on, GDB may write into the target's registers.\n\
4145 Otherwise, any sort of write attempt will result in an error."),
4146 set_target_permissions, NULL,
4147 &setlist, &showlist);
4148
4149 add_setshow_boolean_cmd ("may-write-memory", class_support,
4150 &may_write_memory_1, _("\
4151 Set permission to write into target memory."), _("\
4152 Show permission to write into target memory."), _("\
4153 When this permission is on, GDB may write into the target's memory.\n\
4154 Otherwise, any sort of write attempt will result in an error."),
4155 set_write_memory_permission, NULL,
4156 &setlist, &showlist);
4157
4158 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4159 &may_insert_breakpoints_1, _("\
4160 Set permission to insert breakpoints in the target."), _("\
4161 Show permission to insert breakpoints in the target."), _("\
4162 When this permission is on, GDB may insert breakpoints in the program.\n\
4163 Otherwise, any sort of insertion attempt will result in an error."),
4164 set_target_permissions, NULL,
4165 &setlist, &showlist);
4166
4167 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4168 &may_insert_tracepoints_1, _("\
4169 Set permission to insert tracepoints in the target."), _("\
4170 Show permission to insert tracepoints in the target."), _("\
4171 When this permission is on, GDB may insert tracepoints in the program.\n\
4172 Otherwise, any sort of insertion attempt will result in an error."),
4173 set_target_permissions, NULL,
4174 &setlist, &showlist);
4175
4176 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4177 &may_insert_fast_tracepoints_1, _("\
4178 Set permission to insert fast tracepoints in the target."), _("\
4179 Show permission to insert fast tracepoints in the target."), _("\
4180 When this permission is on, GDB may insert fast tracepoints.\n\
4181 Otherwise, any sort of insertion attempt will result in an error."),
4182 set_target_permissions, NULL,
4183 &setlist, &showlist);
4184
4185 add_setshow_boolean_cmd ("may-interrupt", class_support,
4186 &may_stop_1, _("\
4187 Set permission to interrupt or signal the target."), _("\
4188 Show permission to interrupt or signal the target."), _("\
4189 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4190 Otherwise, any attempt to interrupt or stop will be ignored."),
4191 set_target_permissions, NULL,
4192 &setlist, &showlist);
4193
4194 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4195 &auto_connect_native_target, _("\
4196 Set whether GDB may automatically connect to the native target."), _("\
4197 Show whether GDB may automatically connect to the native target."), _("\
4198 When on, and GDB is not connected to a target yet, GDB\n\
4199 attempts \"run\" and other commands with the native target."),
4200 NULL, show_auto_connect_native_target,
4201 &setlist, &showlist);
4202 }
This page took 0.115033 seconds and 4 git commands to generate.