9404025104f822a0461f9222c9aa9a338ea7dcfd
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50 #include "terminal.h"
51 #include <algorithm>
52 #include <unordered_map>
53
54 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
55
56 static void default_terminal_info (struct target_ops *, const char *, int);
57
58 static int default_watchpoint_addr_within_range (struct target_ops *,
59 CORE_ADDR, CORE_ADDR, int);
60
61 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
62 CORE_ADDR, int);
63
64 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
65
66 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
67 long lwp, long tid);
68
69 static int default_follow_fork (struct target_ops *self, int follow_child,
70 int detach_fork);
71
72 static void default_mourn_inferior (struct target_ops *self);
73
74 static int default_search_memory (struct target_ops *ops,
75 CORE_ADDR start_addr,
76 ULONGEST search_space_len,
77 const gdb_byte *pattern,
78 ULONGEST pattern_len,
79 CORE_ADDR *found_addrp);
80
81 static int default_verify_memory (struct target_ops *self,
82 const gdb_byte *data,
83 CORE_ADDR memaddr, ULONGEST size);
84
85 static struct address_space *default_thread_address_space
86 (struct target_ops *self, ptid_t ptid);
87
88 static void tcomplain (void) ATTRIBUTE_NORETURN;
89
90 static struct target_ops *find_default_run_target (const char *);
91
92 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
93 ptid_t ptid);
94
95 static int dummy_find_memory_regions (struct target_ops *self,
96 find_memory_region_ftype ignore1,
97 void *ignore2);
98
99 static char *dummy_make_corefile_notes (struct target_ops *self,
100 bfd *ignore1, int *ignore2);
101
102 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
103
104 static enum exec_direction_kind default_execution_direction
105 (struct target_ops *self);
106
107 /* Mapping between target_info objects (which have address identity)
108 and corresponding open/factory function/callback. Each add_target
109 call adds one entry to this map, and registers a "target
110 TARGET_NAME" command that when invoked calls the factory registered
111 here. The target_info object is associated with the command via
112 the command's context. */
113 static std::unordered_map<const target_info *, target_open_ftype *>
114 target_factories;
115
116 /* The initial current target, so that there is always a semi-valid
117 current target. */
118
119 static struct target_ops *the_dummy_target;
120 static struct target_ops *the_debug_target;
121
122 /* The target stack. */
123
124 static target_stack g_target_stack;
125
126 /* Top of target stack. */
127 /* The target structure we are currently using to talk to a process
128 or file or whatever "inferior" we have. */
129
130 target_ops *
131 current_top_target ()
132 {
133 return g_target_stack.top ();
134 }
135
136 /* Command list for target. */
137
138 static struct cmd_list_element *targetlist = NULL;
139
140 /* Nonzero if we should trust readonly sections from the
141 executable when reading memory. */
142
143 static int trust_readonly = 0;
144
145 /* Nonzero if we should show true memory content including
146 memory breakpoint inserted by gdb. */
147
148 static int show_memory_breakpoints = 0;
149
150 /* These globals control whether GDB attempts to perform these
151 operations; they are useful for targets that need to prevent
152 inadvertant disruption, such as in non-stop mode. */
153
154 int may_write_registers = 1;
155
156 int may_write_memory = 1;
157
158 int may_insert_breakpoints = 1;
159
160 int may_insert_tracepoints = 1;
161
162 int may_insert_fast_tracepoints = 1;
163
164 int may_stop = 1;
165
166 /* Non-zero if we want to see trace of target level stuff. */
167
168 static unsigned int targetdebug = 0;
169
170 static void
171 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
172 {
173 if (targetdebug)
174 push_target (the_debug_target);
175 else
176 unpush_target (the_debug_target);
177 }
178
179 static void
180 show_targetdebug (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
184 }
185
186 /* The user just typed 'target' without the name of a target. */
187
188 static void
189 target_command (const char *arg, int from_tty)
190 {
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193 }
194
195 #if GDB_SELF_TEST
196 namespace selftests {
197
198 /* A mock process_stratum target_ops that doesn't read/write registers
199 anywhere. */
200
201 static const target_info test_target_info = {
202 "test",
203 N_("unit tests target"),
204 N_("You should never see this"),
205 };
206
207 const target_info &
208 test_target_ops::info () const
209 {
210 return test_target_info;
211 }
212
213 } /* namespace selftests */
214 #endif /* GDB_SELF_TEST */
215
216 /* Default target_has_* methods for process_stratum targets. */
217
218 int
219 default_child_has_all_memory ()
220 {
221 /* If no inferior selected, then we can't read memory here. */
222 if (inferior_ptid == null_ptid)
223 return 0;
224
225 return 1;
226 }
227
228 int
229 default_child_has_memory ()
230 {
231 /* If no inferior selected, then we can't read memory here. */
232 if (inferior_ptid == null_ptid)
233 return 0;
234
235 return 1;
236 }
237
238 int
239 default_child_has_stack ()
240 {
241 /* If no inferior selected, there's no stack. */
242 if (inferior_ptid == null_ptid)
243 return 0;
244
245 return 1;
246 }
247
248 int
249 default_child_has_registers ()
250 {
251 /* Can't read registers from no inferior. */
252 if (inferior_ptid == null_ptid)
253 return 0;
254
255 return 1;
256 }
257
258 int
259 default_child_has_execution (ptid_t the_ptid)
260 {
261 /* If there's no thread selected, then we can't make it run through
262 hoops. */
263 if (the_ptid == null_ptid)
264 return 0;
265
266 return 1;
267 }
268
269
270 int
271 target_has_all_memory_1 (void)
272 {
273 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
274 if (t->has_all_memory ())
275 return 1;
276
277 return 0;
278 }
279
280 int
281 target_has_memory_1 (void)
282 {
283 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
284 if (t->has_memory ())
285 return 1;
286
287 return 0;
288 }
289
290 int
291 target_has_stack_1 (void)
292 {
293 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
294 if (t->has_stack ())
295 return 1;
296
297 return 0;
298 }
299
300 int
301 target_has_registers_1 (void)
302 {
303 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
304 if (t->has_registers ())
305 return 1;
306
307 return 0;
308 }
309
310 int
311 target_has_execution_1 (ptid_t the_ptid)
312 {
313 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
314 if (t->has_execution (the_ptid))
315 return 1;
316
317 return 0;
318 }
319
320 int
321 target_has_execution_current (void)
322 {
323 return target_has_execution_1 (inferior_ptid);
324 }
325
326 /* This is used to implement the various target commands. */
327
328 static void
329 open_target (const char *args, int from_tty, struct cmd_list_element *command)
330 {
331 auto *ti = static_cast<target_info *> (get_cmd_context (command));
332 target_open_ftype *func = target_factories[ti];
333
334 if (targetdebug)
335 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
336 ti->shortname);
337
338 func (args, from_tty);
339
340 if (targetdebug)
341 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
342 ti->shortname, args, from_tty);
343 }
344
345 /* See target.h. */
346
347 void
348 add_target (const target_info &t, target_open_ftype *func,
349 completer_ftype *completer)
350 {
351 struct cmd_list_element *c;
352
353 auto &func_slot = target_factories[&t];
354 if (func_slot != nullptr)
355 internal_error (__FILE__, __LINE__,
356 _("target already added (\"%s\")."), t.shortname);
357 func_slot = func;
358
359 if (targetlist == NULL)
360 add_prefix_cmd ("target", class_run, target_command, _("\
361 Connect to a target machine or process.\n\
362 The first argument is the type or protocol of the target machine.\n\
363 Remaining arguments are interpreted by the target protocol. For more\n\
364 information on the arguments for a particular protocol, type\n\
365 `help target ' followed by the protocol name."),
366 &targetlist, "target ", 0, &cmdlist);
367 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
368 set_cmd_context (c, (void *) &t);
369 set_cmd_sfunc (c, open_target);
370 if (completer != NULL)
371 set_cmd_completer (c, completer);
372 }
373
374 /* See target.h. */
375
376 void
377 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
378 {
379 struct cmd_list_element *c;
380 char *alt;
381
382 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
383 see PR cli/15104. */
384 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
385 set_cmd_sfunc (c, open_target);
386 set_cmd_context (c, (void *) &tinfo);
387 alt = xstrprintf ("target %s", tinfo.shortname);
388 deprecate_cmd (c, alt);
389 }
390
391 /* Stub functions */
392
393 void
394 target_kill (void)
395 {
396 current_top_target ()->kill ();
397 }
398
399 void
400 target_load (const char *arg, int from_tty)
401 {
402 target_dcache_invalidate ();
403 current_top_target ()->load (arg, from_tty);
404 }
405
406 /* Define it. */
407
408 target_terminal_state target_terminal::m_terminal_state
409 = target_terminal_state::is_ours;
410
411 /* See target/target.h. */
412
413 void
414 target_terminal::init (void)
415 {
416 current_top_target ()->terminal_init ();
417
418 m_terminal_state = target_terminal_state::is_ours;
419 }
420
421 /* See target/target.h. */
422
423 void
424 target_terminal::inferior (void)
425 {
426 struct ui *ui = current_ui;
427
428 /* A background resume (``run&'') should leave GDB in control of the
429 terminal. */
430 if (ui->prompt_state != PROMPT_BLOCKED)
431 return;
432
433 /* Since we always run the inferior in the main console (unless "set
434 inferior-tty" is in effect), when some UI other than the main one
435 calls target_terminal::inferior, then we leave the main UI's
436 terminal settings as is. */
437 if (ui != main_ui)
438 return;
439
440 /* If GDB is resuming the inferior in the foreground, install
441 inferior's terminal modes. */
442
443 struct inferior *inf = current_inferior ();
444
445 if (inf->terminal_state != target_terminal_state::is_inferior)
446 {
447 current_top_target ()->terminal_inferior ();
448 inf->terminal_state = target_terminal_state::is_inferior;
449 }
450
451 m_terminal_state = target_terminal_state::is_inferior;
452
453 /* If the user hit C-c before, pretend that it was hit right
454 here. */
455 if (check_quit_flag ())
456 target_pass_ctrlc ();
457 }
458
459 /* See target/target.h. */
460
461 void
462 target_terminal::restore_inferior (void)
463 {
464 struct ui *ui = current_ui;
465
466 /* See target_terminal::inferior(). */
467 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
468 return;
469
470 /* Restore the terminal settings of inferiors that were in the
471 foreground but are now ours_for_output due to a temporary
472 target_target::ours_for_output() call. */
473
474 {
475 scoped_restore_current_inferior restore_inferior;
476 struct inferior *inf;
477
478 ALL_INFERIORS (inf)
479 {
480 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
481 {
482 set_current_inferior (inf);
483 current_top_target ()->terminal_inferior ();
484 inf->terminal_state = target_terminal_state::is_inferior;
485 }
486 }
487 }
488
489 m_terminal_state = target_terminal_state::is_inferior;
490
491 /* If the user hit C-c before, pretend that it was hit right
492 here. */
493 if (check_quit_flag ())
494 target_pass_ctrlc ();
495 }
496
497 /* Switch terminal state to DESIRED_STATE, either is_ours, or
498 is_ours_for_output. */
499
500 static void
501 target_terminal_is_ours_kind (target_terminal_state desired_state)
502 {
503 scoped_restore_current_inferior restore_inferior;
504 struct inferior *inf;
505
506 /* Must do this in two passes. First, have all inferiors save the
507 current terminal settings. Then, after all inferiors have add a
508 chance to safely save the terminal settings, restore GDB's
509 terminal settings. */
510
511 ALL_INFERIORS (inf)
512 {
513 if (inf->terminal_state == target_terminal_state::is_inferior)
514 {
515 set_current_inferior (inf);
516 current_top_target ()->terminal_save_inferior ();
517 }
518 }
519
520 ALL_INFERIORS (inf)
521 {
522 /* Note we don't check is_inferior here like above because we
523 need to handle 'is_ours_for_output -> is_ours' too. Careful
524 to never transition from 'is_ours' to 'is_ours_for_output',
525 though. */
526 if (inf->terminal_state != target_terminal_state::is_ours
527 && inf->terminal_state != desired_state)
528 {
529 set_current_inferior (inf);
530 if (desired_state == target_terminal_state::is_ours)
531 current_top_target ()->terminal_ours ();
532 else if (desired_state == target_terminal_state::is_ours_for_output)
533 current_top_target ()->terminal_ours_for_output ();
534 else
535 gdb_assert_not_reached ("unhandled desired state");
536 inf->terminal_state = desired_state;
537 }
538 }
539 }
540
541 /* See target/target.h. */
542
543 void
544 target_terminal::ours ()
545 {
546 struct ui *ui = current_ui;
547
548 /* See target_terminal::inferior. */
549 if (ui != main_ui)
550 return;
551
552 if (m_terminal_state == target_terminal_state::is_ours)
553 return;
554
555 target_terminal_is_ours_kind (target_terminal_state::is_ours);
556 m_terminal_state = target_terminal_state::is_ours;
557 }
558
559 /* See target/target.h. */
560
561 void
562 target_terminal::ours_for_output ()
563 {
564 struct ui *ui = current_ui;
565
566 /* See target_terminal::inferior. */
567 if (ui != main_ui)
568 return;
569
570 if (!target_terminal::is_inferior ())
571 return;
572
573 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
574 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
575 }
576
577 /* See target/target.h. */
578
579 void
580 target_terminal::info (const char *arg, int from_tty)
581 {
582 current_top_target ()->terminal_info (arg, from_tty);
583 }
584
585 /* See target.h. */
586
587 bool
588 target_supports_terminal_ours (void)
589 {
590 /* This can be called before there is any target, so we must check
591 for nullptr here. */
592 target_ops *top = current_top_target ();
593
594 if (top == nullptr)
595 return false;
596 return top->supports_terminal_ours ();
597 }
598
599 static void
600 tcomplain (void)
601 {
602 error (_("You can't do that when your target is `%s'"),
603 current_top_target ()->shortname ());
604 }
605
606 void
607 noprocess (void)
608 {
609 error (_("You can't do that without a process to debug."));
610 }
611
612 static void
613 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
614 {
615 printf_unfiltered (_("No saved terminal information.\n"));
616 }
617
618 /* A default implementation for the to_get_ada_task_ptid target method.
619
620 This function builds the PTID by using both LWP and TID as part of
621 the PTID lwp and tid elements. The pid used is the pid of the
622 inferior_ptid. */
623
624 static ptid_t
625 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
626 {
627 return ptid_t (inferior_ptid.pid (), lwp, tid);
628 }
629
630 static enum exec_direction_kind
631 default_execution_direction (struct target_ops *self)
632 {
633 if (!target_can_execute_reverse)
634 return EXEC_FORWARD;
635 else if (!target_can_async_p ())
636 return EXEC_FORWARD;
637 else
638 gdb_assert_not_reached ("\
639 to_execution_direction must be implemented for reverse async");
640 }
641
642 /* See target.h. */
643
644 void
645 target_stack::push (target_ops *t)
646 {
647 /* If there's already a target at this stratum, remove it. */
648 if (m_stack[t->to_stratum] != NULL)
649 {
650 target_ops *prev = m_stack[t->to_stratum];
651 m_stack[t->to_stratum] = NULL;
652 target_close (prev);
653 }
654
655 /* Now add the new one. */
656 m_stack[t->to_stratum] = t;
657
658 if (m_top < t->to_stratum)
659 m_top = t->to_stratum;
660 }
661
662 /* See target.h. */
663
664 void
665 push_target (struct target_ops *t)
666 {
667 g_target_stack.push (t);
668 }
669
670 /* See target.h. */
671
672 int
673 unpush_target (struct target_ops *t)
674 {
675 return g_target_stack.unpush (t);
676 }
677
678 /* See target.h. */
679
680 bool
681 target_stack::unpush (target_ops *t)
682 {
683 if (t->to_stratum == dummy_stratum)
684 internal_error (__FILE__, __LINE__,
685 _("Attempt to unpush the dummy target"));
686
687 gdb_assert (t != NULL);
688
689 /* Look for the specified target. Note that a target can only occur
690 once in the target stack. */
691
692 if (m_stack[t->to_stratum] != t)
693 {
694 /* If T wasn't pushed, quit. Only open targets should be
695 closed. */
696 return false;
697 }
698
699 /* Unchain the target. */
700 m_stack[t->to_stratum] = NULL;
701
702 if (m_top == t->to_stratum)
703 m_top = t->beneath ()->to_stratum;
704
705 /* Finally close the target. Note we do this after unchaining, so
706 any target method calls from within the target_close
707 implementation don't end up in T anymore. */
708 target_close (t);
709
710 return true;
711 }
712
713 /* Unpush TARGET and assert that it worked. */
714
715 static void
716 unpush_target_and_assert (struct target_ops *target)
717 {
718 if (!unpush_target (target))
719 {
720 fprintf_unfiltered (gdb_stderr,
721 "pop_all_targets couldn't find target %s\n",
722 target->shortname ());
723 internal_error (__FILE__, __LINE__,
724 _("failed internal consistency check"));
725 }
726 }
727
728 void
729 pop_all_targets_above (enum strata above_stratum)
730 {
731 while ((int) (current_top_target ()->to_stratum) > (int) above_stratum)
732 unpush_target_and_assert (current_top_target ());
733 }
734
735 /* See target.h. */
736
737 void
738 pop_all_targets_at_and_above (enum strata stratum)
739 {
740 while ((int) (current_top_target ()->to_stratum) >= (int) stratum)
741 unpush_target_and_assert (current_top_target ());
742 }
743
744 void
745 pop_all_targets (void)
746 {
747 pop_all_targets_above (dummy_stratum);
748 }
749
750 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
751
752 int
753 target_is_pushed (struct target_ops *t)
754 {
755 return g_target_stack.is_pushed (t);
756 }
757
758 /* Default implementation of to_get_thread_local_address. */
759
760 static void
761 generic_tls_error (void)
762 {
763 throw_error (TLS_GENERIC_ERROR,
764 _("Cannot find thread-local variables on this target"));
765 }
766
767 /* Using the objfile specified in OBJFILE, find the address for the
768 current thread's thread-local storage with offset OFFSET. */
769 CORE_ADDR
770 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
771 {
772 volatile CORE_ADDR addr = 0;
773 struct target_ops *target = current_top_target ();
774
775 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
776 {
777 ptid_t ptid = inferior_ptid;
778
779 TRY
780 {
781 CORE_ADDR lm_addr;
782
783 /* Fetch the load module address for this objfile. */
784 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
785 objfile);
786
787 addr = target->get_thread_local_address (ptid, lm_addr, offset);
788 }
789 /* If an error occurred, print TLS related messages here. Otherwise,
790 throw the error to some higher catcher. */
791 CATCH (ex, RETURN_MASK_ALL)
792 {
793 int objfile_is_library = (objfile->flags & OBJF_SHARED);
794
795 switch (ex.error)
796 {
797 case TLS_NO_LIBRARY_SUPPORT_ERROR:
798 error (_("Cannot find thread-local variables "
799 "in this thread library."));
800 break;
801 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
802 if (objfile_is_library)
803 error (_("Cannot find shared library `%s' in dynamic"
804 " linker's load module list"), objfile_name (objfile));
805 else
806 error (_("Cannot find executable file `%s' in dynamic"
807 " linker's load module list"), objfile_name (objfile));
808 break;
809 case TLS_NOT_ALLOCATED_YET_ERROR:
810 if (objfile_is_library)
811 error (_("The inferior has not yet allocated storage for"
812 " thread-local variables in\n"
813 "the shared library `%s'\n"
814 "for %s"),
815 objfile_name (objfile), target_pid_to_str (ptid));
816 else
817 error (_("The inferior has not yet allocated storage for"
818 " thread-local variables in\n"
819 "the executable `%s'\n"
820 "for %s"),
821 objfile_name (objfile), target_pid_to_str (ptid));
822 break;
823 case TLS_GENERIC_ERROR:
824 if (objfile_is_library)
825 error (_("Cannot find thread-local storage for %s, "
826 "shared library %s:\n%s"),
827 target_pid_to_str (ptid),
828 objfile_name (objfile), ex.message);
829 else
830 error (_("Cannot find thread-local storage for %s, "
831 "executable file %s:\n%s"),
832 target_pid_to_str (ptid),
833 objfile_name (objfile), ex.message);
834 break;
835 default:
836 throw_exception (ex);
837 break;
838 }
839 }
840 END_CATCH
841 }
842 /* It wouldn't be wrong here to try a gdbarch method, too; finding
843 TLS is an ABI-specific thing. But we don't do that yet. */
844 else
845 error (_("Cannot find thread-local variables on this target"));
846
847 return addr;
848 }
849
850 const char *
851 target_xfer_status_to_string (enum target_xfer_status status)
852 {
853 #define CASE(X) case X: return #X
854 switch (status)
855 {
856 CASE(TARGET_XFER_E_IO);
857 CASE(TARGET_XFER_UNAVAILABLE);
858 default:
859 return "<unknown>";
860 }
861 #undef CASE
862 };
863
864
865 #undef MIN
866 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
867
868 /* target_read_string -- read a null terminated string, up to LEN bytes,
869 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
870 Set *STRING to a pointer to malloc'd memory containing the data; the caller
871 is responsible for freeing it. Return the number of bytes successfully
872 read. */
873
874 int
875 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
876 int len, int *errnop)
877 {
878 int tlen, offset, i;
879 gdb_byte buf[4];
880 int errcode = 0;
881 char *buffer;
882 int buffer_allocated;
883 char *bufptr;
884 unsigned int nbytes_read = 0;
885
886 gdb_assert (string);
887
888 /* Small for testing. */
889 buffer_allocated = 4;
890 buffer = (char *) xmalloc (buffer_allocated);
891 bufptr = buffer;
892
893 while (len > 0)
894 {
895 tlen = MIN (len, 4 - (memaddr & 3));
896 offset = memaddr & 3;
897
898 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
899 if (errcode != 0)
900 {
901 /* The transfer request might have crossed the boundary to an
902 unallocated region of memory. Retry the transfer, requesting
903 a single byte. */
904 tlen = 1;
905 offset = 0;
906 errcode = target_read_memory (memaddr, buf, 1);
907 if (errcode != 0)
908 goto done;
909 }
910
911 if (bufptr - buffer + tlen > buffer_allocated)
912 {
913 unsigned int bytes;
914
915 bytes = bufptr - buffer;
916 buffer_allocated *= 2;
917 buffer = (char *) xrealloc (buffer, buffer_allocated);
918 bufptr = buffer + bytes;
919 }
920
921 for (i = 0; i < tlen; i++)
922 {
923 *bufptr++ = buf[i + offset];
924 if (buf[i + offset] == '\000')
925 {
926 nbytes_read += i + 1;
927 goto done;
928 }
929 }
930
931 memaddr += tlen;
932 len -= tlen;
933 nbytes_read += tlen;
934 }
935 done:
936 string->reset (buffer);
937 if (errnop != NULL)
938 *errnop = errcode;
939 return nbytes_read;
940 }
941
942 struct target_section_table *
943 target_get_section_table (struct target_ops *target)
944 {
945 return target->get_section_table ();
946 }
947
948 /* Find a section containing ADDR. */
949
950 struct target_section *
951 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
952 {
953 struct target_section_table *table = target_get_section_table (target);
954 struct target_section *secp;
955
956 if (table == NULL)
957 return NULL;
958
959 for (secp = table->sections; secp < table->sections_end; secp++)
960 {
961 if (addr >= secp->addr && addr < secp->endaddr)
962 return secp;
963 }
964 return NULL;
965 }
966
967
968 /* Helper for the memory xfer routines. Checks the attributes of the
969 memory region of MEMADDR against the read or write being attempted.
970 If the access is permitted returns true, otherwise returns false.
971 REGION_P is an optional output parameter. If not-NULL, it is
972 filled with a pointer to the memory region of MEMADDR. REG_LEN
973 returns LEN trimmed to the end of the region. This is how much the
974 caller can continue requesting, if the access is permitted. A
975 single xfer request must not straddle memory region boundaries. */
976
977 static int
978 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
979 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
980 struct mem_region **region_p)
981 {
982 struct mem_region *region;
983
984 region = lookup_mem_region (memaddr);
985
986 if (region_p != NULL)
987 *region_p = region;
988
989 switch (region->attrib.mode)
990 {
991 case MEM_RO:
992 if (writebuf != NULL)
993 return 0;
994 break;
995
996 case MEM_WO:
997 if (readbuf != NULL)
998 return 0;
999 break;
1000
1001 case MEM_FLASH:
1002 /* We only support writing to flash during "load" for now. */
1003 if (writebuf != NULL)
1004 error (_("Writing to flash memory forbidden in this context"));
1005 break;
1006
1007 case MEM_NONE:
1008 return 0;
1009 }
1010
1011 /* region->hi == 0 means there's no upper bound. */
1012 if (memaddr + len < region->hi || region->hi == 0)
1013 *reg_len = len;
1014 else
1015 *reg_len = region->hi - memaddr;
1016
1017 return 1;
1018 }
1019
1020 /* Read memory from more than one valid target. A core file, for
1021 instance, could have some of memory but delegate other bits to
1022 the target below it. So, we must manually try all targets. */
1023
1024 enum target_xfer_status
1025 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1026 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1027 ULONGEST *xfered_len)
1028 {
1029 enum target_xfer_status res;
1030
1031 do
1032 {
1033 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
1034 readbuf, writebuf, memaddr, len,
1035 xfered_len);
1036 if (res == TARGET_XFER_OK)
1037 break;
1038
1039 /* Stop if the target reports that the memory is not available. */
1040 if (res == TARGET_XFER_UNAVAILABLE)
1041 break;
1042
1043 /* We want to continue past core files to executables, but not
1044 past a running target's memory. */
1045 if (ops->has_all_memory ())
1046 break;
1047
1048 ops = ops->beneath ();
1049 }
1050 while (ops != NULL);
1051
1052 /* The cache works at the raw memory level. Make sure the cache
1053 gets updated with raw contents no matter what kind of memory
1054 object was originally being written. Note we do write-through
1055 first, so that if it fails, we don't write to the cache contents
1056 that never made it to the target. */
1057 if (writebuf != NULL
1058 && inferior_ptid != null_ptid
1059 && target_dcache_init_p ()
1060 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1061 {
1062 DCACHE *dcache = target_dcache_get ();
1063
1064 /* Note that writing to an area of memory which wasn't present
1065 in the cache doesn't cause it to be loaded in. */
1066 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1067 }
1068
1069 return res;
1070 }
1071
1072 /* Perform a partial memory transfer.
1073 For docs see target.h, to_xfer_partial. */
1074
1075 static enum target_xfer_status
1076 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1077 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1078 ULONGEST len, ULONGEST *xfered_len)
1079 {
1080 enum target_xfer_status res;
1081 ULONGEST reg_len;
1082 struct mem_region *region;
1083 struct inferior *inf;
1084
1085 /* For accesses to unmapped overlay sections, read directly from
1086 files. Must do this first, as MEMADDR may need adjustment. */
1087 if (readbuf != NULL && overlay_debugging)
1088 {
1089 struct obj_section *section = find_pc_overlay (memaddr);
1090
1091 if (pc_in_unmapped_range (memaddr, section))
1092 {
1093 struct target_section_table *table
1094 = target_get_section_table (ops);
1095 const char *section_name = section->the_bfd_section->name;
1096
1097 memaddr = overlay_mapped_address (memaddr, section);
1098 return section_table_xfer_memory_partial (readbuf, writebuf,
1099 memaddr, len, xfered_len,
1100 table->sections,
1101 table->sections_end,
1102 section_name);
1103 }
1104 }
1105
1106 /* Try the executable files, if "trust-readonly-sections" is set. */
1107 if (readbuf != NULL && trust_readonly)
1108 {
1109 struct target_section *secp;
1110 struct target_section_table *table;
1111
1112 secp = target_section_by_addr (ops, memaddr);
1113 if (secp != NULL
1114 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1115 secp->the_bfd_section)
1116 & SEC_READONLY))
1117 {
1118 table = target_get_section_table (ops);
1119 return section_table_xfer_memory_partial (readbuf, writebuf,
1120 memaddr, len, xfered_len,
1121 table->sections,
1122 table->sections_end,
1123 NULL);
1124 }
1125 }
1126
1127 /* Try GDB's internal data cache. */
1128
1129 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1130 &region))
1131 return TARGET_XFER_E_IO;
1132
1133 if (inferior_ptid != null_ptid)
1134 inf = current_inferior ();
1135 else
1136 inf = NULL;
1137
1138 if (inf != NULL
1139 && readbuf != NULL
1140 /* The dcache reads whole cache lines; that doesn't play well
1141 with reading from a trace buffer, because reading outside of
1142 the collected memory range fails. */
1143 && get_traceframe_number () == -1
1144 && (region->attrib.cache
1145 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1146 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1147 {
1148 DCACHE *dcache = target_dcache_get_or_init ();
1149
1150 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1151 reg_len, xfered_len);
1152 }
1153
1154 /* If none of those methods found the memory we wanted, fall back
1155 to a target partial transfer. Normally a single call to
1156 to_xfer_partial is enough; if it doesn't recognize an object
1157 it will call the to_xfer_partial of the next target down.
1158 But for memory this won't do. Memory is the only target
1159 object which can be read from more than one valid target.
1160 A core file, for instance, could have some of memory but
1161 delegate other bits to the target below it. So, we must
1162 manually try all targets. */
1163
1164 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1165 xfered_len);
1166
1167 /* If we still haven't got anything, return the last error. We
1168 give up. */
1169 return res;
1170 }
1171
1172 /* Perform a partial memory transfer. For docs see target.h,
1173 to_xfer_partial. */
1174
1175 static enum target_xfer_status
1176 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1177 gdb_byte *readbuf, const gdb_byte *writebuf,
1178 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1179 {
1180 enum target_xfer_status res;
1181
1182 /* Zero length requests are ok and require no work. */
1183 if (len == 0)
1184 return TARGET_XFER_EOF;
1185
1186 memaddr = address_significant (target_gdbarch (), memaddr);
1187
1188 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1189 breakpoint insns, thus hiding out from higher layers whether
1190 there are software breakpoints inserted in the code stream. */
1191 if (readbuf != NULL)
1192 {
1193 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1194 xfered_len);
1195
1196 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1197 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1198 }
1199 else
1200 {
1201 /* A large write request is likely to be partially satisfied
1202 by memory_xfer_partial_1. We will continually malloc
1203 and free a copy of the entire write request for breakpoint
1204 shadow handling even though we only end up writing a small
1205 subset of it. Cap writes to a limit specified by the target
1206 to mitigate this. */
1207 len = std::min (ops->get_memory_xfer_limit (), len);
1208
1209 gdb::byte_vector buf (writebuf, writebuf + len);
1210 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1211 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1212 xfered_len);
1213 }
1214
1215 return res;
1216 }
1217
1218 scoped_restore_tmpl<int>
1219 make_scoped_restore_show_memory_breakpoints (int show)
1220 {
1221 return make_scoped_restore (&show_memory_breakpoints, show);
1222 }
1223
1224 /* For docs see target.h, to_xfer_partial. */
1225
1226 enum target_xfer_status
1227 target_xfer_partial (struct target_ops *ops,
1228 enum target_object object, const char *annex,
1229 gdb_byte *readbuf, const gdb_byte *writebuf,
1230 ULONGEST offset, ULONGEST len,
1231 ULONGEST *xfered_len)
1232 {
1233 enum target_xfer_status retval;
1234
1235 /* Transfer is done when LEN is zero. */
1236 if (len == 0)
1237 return TARGET_XFER_EOF;
1238
1239 if (writebuf && !may_write_memory)
1240 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1241 core_addr_to_string_nz (offset), plongest (len));
1242
1243 *xfered_len = 0;
1244
1245 /* If this is a memory transfer, let the memory-specific code
1246 have a look at it instead. Memory transfers are more
1247 complicated. */
1248 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1249 || object == TARGET_OBJECT_CODE_MEMORY)
1250 retval = memory_xfer_partial (ops, object, readbuf,
1251 writebuf, offset, len, xfered_len);
1252 else if (object == TARGET_OBJECT_RAW_MEMORY)
1253 {
1254 /* Skip/avoid accessing the target if the memory region
1255 attributes block the access. Check this here instead of in
1256 raw_memory_xfer_partial as otherwise we'd end up checking
1257 this twice in the case of the memory_xfer_partial path is
1258 taken; once before checking the dcache, and another in the
1259 tail call to raw_memory_xfer_partial. */
1260 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1261 NULL))
1262 return TARGET_XFER_E_IO;
1263
1264 /* Request the normal memory object from other layers. */
1265 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1266 xfered_len);
1267 }
1268 else
1269 retval = ops->xfer_partial (object, annex, readbuf,
1270 writebuf, offset, len, xfered_len);
1271
1272 if (targetdebug)
1273 {
1274 const unsigned char *myaddr = NULL;
1275
1276 fprintf_unfiltered (gdb_stdlog,
1277 "%s:target_xfer_partial "
1278 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1279 ops->shortname (),
1280 (int) object,
1281 (annex ? annex : "(null)"),
1282 host_address_to_string (readbuf),
1283 host_address_to_string (writebuf),
1284 core_addr_to_string_nz (offset),
1285 pulongest (len), retval,
1286 pulongest (*xfered_len));
1287
1288 if (readbuf)
1289 myaddr = readbuf;
1290 if (writebuf)
1291 myaddr = writebuf;
1292 if (retval == TARGET_XFER_OK && myaddr != NULL)
1293 {
1294 int i;
1295
1296 fputs_unfiltered (", bytes =", gdb_stdlog);
1297 for (i = 0; i < *xfered_len; i++)
1298 {
1299 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1300 {
1301 if (targetdebug < 2 && i > 0)
1302 {
1303 fprintf_unfiltered (gdb_stdlog, " ...");
1304 break;
1305 }
1306 fprintf_unfiltered (gdb_stdlog, "\n");
1307 }
1308
1309 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1310 }
1311 }
1312
1313 fputc_unfiltered ('\n', gdb_stdlog);
1314 }
1315
1316 /* Check implementations of to_xfer_partial update *XFERED_LEN
1317 properly. Do assertion after printing debug messages, so that we
1318 can find more clues on assertion failure from debugging messages. */
1319 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1320 gdb_assert (*xfered_len > 0);
1321
1322 return retval;
1323 }
1324
1325 /* Read LEN bytes of target memory at address MEMADDR, placing the
1326 results in GDB's memory at MYADDR. Returns either 0 for success or
1327 -1 if any error occurs.
1328
1329 If an error occurs, no guarantee is made about the contents of the data at
1330 MYADDR. In particular, the caller should not depend upon partial reads
1331 filling the buffer with good data. There is no way for the caller to know
1332 how much good data might have been transfered anyway. Callers that can
1333 deal with partial reads should call target_read (which will retry until
1334 it makes no progress, and then return how much was transferred). */
1335
1336 int
1337 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1338 {
1339 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1340 myaddr, memaddr, len) == len)
1341 return 0;
1342 else
1343 return -1;
1344 }
1345
1346 /* See target/target.h. */
1347
1348 int
1349 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1350 {
1351 gdb_byte buf[4];
1352 int r;
1353
1354 r = target_read_memory (memaddr, buf, sizeof buf);
1355 if (r != 0)
1356 return r;
1357 *result = extract_unsigned_integer (buf, sizeof buf,
1358 gdbarch_byte_order (target_gdbarch ()));
1359 return 0;
1360 }
1361
1362 /* Like target_read_memory, but specify explicitly that this is a read
1363 from the target's raw memory. That is, this read bypasses the
1364 dcache, breakpoint shadowing, etc. */
1365
1366 int
1367 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1368 {
1369 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1370 myaddr, memaddr, len) == len)
1371 return 0;
1372 else
1373 return -1;
1374 }
1375
1376 /* Like target_read_memory, but specify explicitly that this is a read from
1377 the target's stack. This may trigger different cache behavior. */
1378
1379 int
1380 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1381 {
1382 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1383 myaddr, memaddr, len) == len)
1384 return 0;
1385 else
1386 return -1;
1387 }
1388
1389 /* Like target_read_memory, but specify explicitly that this is a read from
1390 the target's code. This may trigger different cache behavior. */
1391
1392 int
1393 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1394 {
1395 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1396 myaddr, memaddr, len) == len)
1397 return 0;
1398 else
1399 return -1;
1400 }
1401
1402 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1403 Returns either 0 for success or -1 if any error occurs. If an
1404 error occurs, no guarantee is made about how much data got written.
1405 Callers that can deal with partial writes should call
1406 target_write. */
1407
1408 int
1409 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1410 {
1411 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1412 myaddr, memaddr, len) == len)
1413 return 0;
1414 else
1415 return -1;
1416 }
1417
1418 /* Write LEN bytes from MYADDR to target raw memory at address
1419 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1420 If an error occurs, no guarantee is made about how much data got
1421 written. Callers that can deal with partial writes should call
1422 target_write. */
1423
1424 int
1425 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1426 {
1427 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1428 myaddr, memaddr, len) == len)
1429 return 0;
1430 else
1431 return -1;
1432 }
1433
1434 /* Fetch the target's memory map. */
1435
1436 std::vector<mem_region>
1437 target_memory_map (void)
1438 {
1439 std::vector<mem_region> result = current_top_target ()->memory_map ();
1440 if (result.empty ())
1441 return result;
1442
1443 std::sort (result.begin (), result.end ());
1444
1445 /* Check that regions do not overlap. Simultaneously assign
1446 a numbering for the "mem" commands to use to refer to
1447 each region. */
1448 mem_region *last_one = NULL;
1449 for (size_t ix = 0; ix < result.size (); ix++)
1450 {
1451 mem_region *this_one = &result[ix];
1452 this_one->number = ix;
1453
1454 if (last_one != NULL && last_one->hi > this_one->lo)
1455 {
1456 warning (_("Overlapping regions in memory map: ignoring"));
1457 return std::vector<mem_region> ();
1458 }
1459
1460 last_one = this_one;
1461 }
1462
1463 return result;
1464 }
1465
1466 void
1467 target_flash_erase (ULONGEST address, LONGEST length)
1468 {
1469 current_top_target ()->flash_erase (address, length);
1470 }
1471
1472 void
1473 target_flash_done (void)
1474 {
1475 current_top_target ()->flash_done ();
1476 }
1477
1478 static void
1479 show_trust_readonly (struct ui_file *file, int from_tty,
1480 struct cmd_list_element *c, const char *value)
1481 {
1482 fprintf_filtered (file,
1483 _("Mode for reading from readonly sections is %s.\n"),
1484 value);
1485 }
1486
1487 /* Target vector read/write partial wrapper functions. */
1488
1489 static enum target_xfer_status
1490 target_read_partial (struct target_ops *ops,
1491 enum target_object object,
1492 const char *annex, gdb_byte *buf,
1493 ULONGEST offset, ULONGEST len,
1494 ULONGEST *xfered_len)
1495 {
1496 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1497 xfered_len);
1498 }
1499
1500 static enum target_xfer_status
1501 target_write_partial (struct target_ops *ops,
1502 enum target_object object,
1503 const char *annex, const gdb_byte *buf,
1504 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1505 {
1506 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1507 xfered_len);
1508 }
1509
1510 /* Wrappers to perform the full transfer. */
1511
1512 /* For docs on target_read see target.h. */
1513
1514 LONGEST
1515 target_read (struct target_ops *ops,
1516 enum target_object object,
1517 const char *annex, gdb_byte *buf,
1518 ULONGEST offset, LONGEST len)
1519 {
1520 LONGEST xfered_total = 0;
1521 int unit_size = 1;
1522
1523 /* If we are reading from a memory object, find the length of an addressable
1524 unit for that architecture. */
1525 if (object == TARGET_OBJECT_MEMORY
1526 || object == TARGET_OBJECT_STACK_MEMORY
1527 || object == TARGET_OBJECT_CODE_MEMORY
1528 || object == TARGET_OBJECT_RAW_MEMORY)
1529 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1530
1531 while (xfered_total < len)
1532 {
1533 ULONGEST xfered_partial;
1534 enum target_xfer_status status;
1535
1536 status = target_read_partial (ops, object, annex,
1537 buf + xfered_total * unit_size,
1538 offset + xfered_total, len - xfered_total,
1539 &xfered_partial);
1540
1541 /* Call an observer, notifying them of the xfer progress? */
1542 if (status == TARGET_XFER_EOF)
1543 return xfered_total;
1544 else if (status == TARGET_XFER_OK)
1545 {
1546 xfered_total += xfered_partial;
1547 QUIT;
1548 }
1549 else
1550 return TARGET_XFER_E_IO;
1551
1552 }
1553 return len;
1554 }
1555
1556 /* Assuming that the entire [begin, end) range of memory cannot be
1557 read, try to read whatever subrange is possible to read.
1558
1559 The function returns, in RESULT, either zero or one memory block.
1560 If there's a readable subrange at the beginning, it is completely
1561 read and returned. Any further readable subrange will not be read.
1562 Otherwise, if there's a readable subrange at the end, it will be
1563 completely read and returned. Any readable subranges before it
1564 (obviously, not starting at the beginning), will be ignored. In
1565 other cases -- either no readable subrange, or readable subrange(s)
1566 that is neither at the beginning, or end, nothing is returned.
1567
1568 The purpose of this function is to handle a read across a boundary
1569 of accessible memory in a case when memory map is not available.
1570 The above restrictions are fine for this case, but will give
1571 incorrect results if the memory is 'patchy'. However, supporting
1572 'patchy' memory would require trying to read every single byte,
1573 and it seems unacceptable solution. Explicit memory map is
1574 recommended for this case -- and target_read_memory_robust will
1575 take care of reading multiple ranges then. */
1576
1577 static void
1578 read_whatever_is_readable (struct target_ops *ops,
1579 const ULONGEST begin, const ULONGEST end,
1580 int unit_size,
1581 std::vector<memory_read_result> *result)
1582 {
1583 ULONGEST current_begin = begin;
1584 ULONGEST current_end = end;
1585 int forward;
1586 ULONGEST xfered_len;
1587
1588 /* If we previously failed to read 1 byte, nothing can be done here. */
1589 if (end - begin <= 1)
1590 return;
1591
1592 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1593
1594 /* Check that either first or the last byte is readable, and give up
1595 if not. This heuristic is meant to permit reading accessible memory
1596 at the boundary of accessible region. */
1597 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1598 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1599 {
1600 forward = 1;
1601 ++current_begin;
1602 }
1603 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1604 buf.get () + (end - begin) - 1, end - 1, 1,
1605 &xfered_len) == TARGET_XFER_OK)
1606 {
1607 forward = 0;
1608 --current_end;
1609 }
1610 else
1611 return;
1612
1613 /* Loop invariant is that the [current_begin, current_end) was previously
1614 found to be not readable as a whole.
1615
1616 Note loop condition -- if the range has 1 byte, we can't divide the range
1617 so there's no point trying further. */
1618 while (current_end - current_begin > 1)
1619 {
1620 ULONGEST first_half_begin, first_half_end;
1621 ULONGEST second_half_begin, second_half_end;
1622 LONGEST xfer;
1623 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1624
1625 if (forward)
1626 {
1627 first_half_begin = current_begin;
1628 first_half_end = middle;
1629 second_half_begin = middle;
1630 second_half_end = current_end;
1631 }
1632 else
1633 {
1634 first_half_begin = middle;
1635 first_half_end = current_end;
1636 second_half_begin = current_begin;
1637 second_half_end = middle;
1638 }
1639
1640 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1641 buf.get () + (first_half_begin - begin) * unit_size,
1642 first_half_begin,
1643 first_half_end - first_half_begin);
1644
1645 if (xfer == first_half_end - first_half_begin)
1646 {
1647 /* This half reads up fine. So, the error must be in the
1648 other half. */
1649 current_begin = second_half_begin;
1650 current_end = second_half_end;
1651 }
1652 else
1653 {
1654 /* This half is not readable. Because we've tried one byte, we
1655 know some part of this half if actually readable. Go to the next
1656 iteration to divide again and try to read.
1657
1658 We don't handle the other half, because this function only tries
1659 to read a single readable subrange. */
1660 current_begin = first_half_begin;
1661 current_end = first_half_end;
1662 }
1663 }
1664
1665 if (forward)
1666 {
1667 /* The [begin, current_begin) range has been read. */
1668 result->emplace_back (begin, current_end, std::move (buf));
1669 }
1670 else
1671 {
1672 /* The [current_end, end) range has been read. */
1673 LONGEST region_len = end - current_end;
1674
1675 gdb::unique_xmalloc_ptr<gdb_byte> data
1676 ((gdb_byte *) xmalloc (region_len * unit_size));
1677 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1678 region_len * unit_size);
1679 result->emplace_back (current_end, end, std::move (data));
1680 }
1681 }
1682
1683 std::vector<memory_read_result>
1684 read_memory_robust (struct target_ops *ops,
1685 const ULONGEST offset, const LONGEST len)
1686 {
1687 std::vector<memory_read_result> result;
1688 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1689
1690 LONGEST xfered_total = 0;
1691 while (xfered_total < len)
1692 {
1693 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1694 LONGEST region_len;
1695
1696 /* If there is no explicit region, a fake one should be created. */
1697 gdb_assert (region);
1698
1699 if (region->hi == 0)
1700 region_len = len - xfered_total;
1701 else
1702 region_len = region->hi - offset;
1703
1704 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1705 {
1706 /* Cannot read this region. Note that we can end up here only
1707 if the region is explicitly marked inaccessible, or
1708 'inaccessible-by-default' is in effect. */
1709 xfered_total += region_len;
1710 }
1711 else
1712 {
1713 LONGEST to_read = std::min (len - xfered_total, region_len);
1714 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1715 ((gdb_byte *) xmalloc (to_read * unit_size));
1716
1717 LONGEST xfered_partial =
1718 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1719 offset + xfered_total, to_read);
1720 /* Call an observer, notifying them of the xfer progress? */
1721 if (xfered_partial <= 0)
1722 {
1723 /* Got an error reading full chunk. See if maybe we can read
1724 some subrange. */
1725 read_whatever_is_readable (ops, offset + xfered_total,
1726 offset + xfered_total + to_read,
1727 unit_size, &result);
1728 xfered_total += to_read;
1729 }
1730 else
1731 {
1732 result.emplace_back (offset + xfered_total,
1733 offset + xfered_total + xfered_partial,
1734 std::move (buffer));
1735 xfered_total += xfered_partial;
1736 }
1737 QUIT;
1738 }
1739 }
1740
1741 return result;
1742 }
1743
1744
1745 /* An alternative to target_write with progress callbacks. */
1746
1747 LONGEST
1748 target_write_with_progress (struct target_ops *ops,
1749 enum target_object object,
1750 const char *annex, const gdb_byte *buf,
1751 ULONGEST offset, LONGEST len,
1752 void (*progress) (ULONGEST, void *), void *baton)
1753 {
1754 LONGEST xfered_total = 0;
1755 int unit_size = 1;
1756
1757 /* If we are writing to a memory object, find the length of an addressable
1758 unit for that architecture. */
1759 if (object == TARGET_OBJECT_MEMORY
1760 || object == TARGET_OBJECT_STACK_MEMORY
1761 || object == TARGET_OBJECT_CODE_MEMORY
1762 || object == TARGET_OBJECT_RAW_MEMORY)
1763 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1764
1765 /* Give the progress callback a chance to set up. */
1766 if (progress)
1767 (*progress) (0, baton);
1768
1769 while (xfered_total < len)
1770 {
1771 ULONGEST xfered_partial;
1772 enum target_xfer_status status;
1773
1774 status = target_write_partial (ops, object, annex,
1775 buf + xfered_total * unit_size,
1776 offset + xfered_total, len - xfered_total,
1777 &xfered_partial);
1778
1779 if (status != TARGET_XFER_OK)
1780 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1781
1782 if (progress)
1783 (*progress) (xfered_partial, baton);
1784
1785 xfered_total += xfered_partial;
1786 QUIT;
1787 }
1788 return len;
1789 }
1790
1791 /* For docs on target_write see target.h. */
1792
1793 LONGEST
1794 target_write (struct target_ops *ops,
1795 enum target_object object,
1796 const char *annex, const gdb_byte *buf,
1797 ULONGEST offset, LONGEST len)
1798 {
1799 return target_write_with_progress (ops, object, annex, buf, offset, len,
1800 NULL, NULL);
1801 }
1802
1803 /* Help for target_read_alloc and target_read_stralloc. See their comments
1804 for details. */
1805
1806 template <typename T>
1807 gdb::optional<gdb::def_vector<T>>
1808 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1809 const char *annex)
1810 {
1811 gdb::def_vector<T> buf;
1812 size_t buf_pos = 0;
1813 const int chunk = 4096;
1814
1815 /* This function does not have a length parameter; it reads the
1816 entire OBJECT). Also, it doesn't support objects fetched partly
1817 from one target and partly from another (in a different stratum,
1818 e.g. a core file and an executable). Both reasons make it
1819 unsuitable for reading memory. */
1820 gdb_assert (object != TARGET_OBJECT_MEMORY);
1821
1822 /* Start by reading up to 4K at a time. The target will throttle
1823 this number down if necessary. */
1824 while (1)
1825 {
1826 ULONGEST xfered_len;
1827 enum target_xfer_status status;
1828
1829 buf.resize (buf_pos + chunk);
1830
1831 status = target_read_partial (ops, object, annex,
1832 (gdb_byte *) &buf[buf_pos],
1833 buf_pos, chunk,
1834 &xfered_len);
1835
1836 if (status == TARGET_XFER_EOF)
1837 {
1838 /* Read all there was. */
1839 buf.resize (buf_pos);
1840 return buf;
1841 }
1842 else if (status != TARGET_XFER_OK)
1843 {
1844 /* An error occurred. */
1845 return {};
1846 }
1847
1848 buf_pos += xfered_len;
1849
1850 QUIT;
1851 }
1852 }
1853
1854 /* See target.h */
1855
1856 gdb::optional<gdb::byte_vector>
1857 target_read_alloc (struct target_ops *ops, enum target_object object,
1858 const char *annex)
1859 {
1860 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1861 }
1862
1863 /* See target.h. */
1864
1865 gdb::optional<gdb::char_vector>
1866 target_read_stralloc (struct target_ops *ops, enum target_object object,
1867 const char *annex)
1868 {
1869 gdb::optional<gdb::char_vector> buf
1870 = target_read_alloc_1<char> (ops, object, annex);
1871
1872 if (!buf)
1873 return {};
1874
1875 if (buf->back () != '\0')
1876 buf->push_back ('\0');
1877
1878 /* Check for embedded NUL bytes; but allow trailing NULs. */
1879 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1880 it != buf->end (); it++)
1881 if (*it != '\0')
1882 {
1883 warning (_("target object %d, annex %s, "
1884 "contained unexpected null characters"),
1885 (int) object, annex ? annex : "(none)");
1886 break;
1887 }
1888
1889 return buf;
1890 }
1891
1892 /* Memory transfer methods. */
1893
1894 void
1895 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1896 LONGEST len)
1897 {
1898 /* This method is used to read from an alternate, non-current
1899 target. This read must bypass the overlay support (as symbols
1900 don't match this target), and GDB's internal cache (wrong cache
1901 for this target). */
1902 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1903 != len)
1904 memory_error (TARGET_XFER_E_IO, addr);
1905 }
1906
1907 ULONGEST
1908 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1909 int len, enum bfd_endian byte_order)
1910 {
1911 gdb_byte buf[sizeof (ULONGEST)];
1912
1913 gdb_assert (len <= sizeof (buf));
1914 get_target_memory (ops, addr, buf, len);
1915 return extract_unsigned_integer (buf, len, byte_order);
1916 }
1917
1918 /* See target.h. */
1919
1920 int
1921 target_insert_breakpoint (struct gdbarch *gdbarch,
1922 struct bp_target_info *bp_tgt)
1923 {
1924 if (!may_insert_breakpoints)
1925 {
1926 warning (_("May not insert breakpoints"));
1927 return 1;
1928 }
1929
1930 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1931 }
1932
1933 /* See target.h. */
1934
1935 int
1936 target_remove_breakpoint (struct gdbarch *gdbarch,
1937 struct bp_target_info *bp_tgt,
1938 enum remove_bp_reason reason)
1939 {
1940 /* This is kind of a weird case to handle, but the permission might
1941 have been changed after breakpoints were inserted - in which case
1942 we should just take the user literally and assume that any
1943 breakpoints should be left in place. */
1944 if (!may_insert_breakpoints)
1945 {
1946 warning (_("May not remove breakpoints"));
1947 return 1;
1948 }
1949
1950 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1951 }
1952
1953 static void
1954 info_target_command (const char *args, int from_tty)
1955 {
1956 int has_all_mem = 0;
1957
1958 if (symfile_objfile != NULL)
1959 printf_unfiltered (_("Symbols from \"%s\".\n"),
1960 objfile_name (symfile_objfile));
1961
1962 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1963 {
1964 if (!t->has_memory ())
1965 continue;
1966
1967 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1968 continue;
1969 if (has_all_mem)
1970 printf_unfiltered (_("\tWhile running this, "
1971 "GDB does not access memory from...\n"));
1972 printf_unfiltered ("%s:\n", t->longname ());
1973 t->files_info ();
1974 has_all_mem = t->has_all_memory ();
1975 }
1976 }
1977
1978 /* This function is called before any new inferior is created, e.g.
1979 by running a program, attaching, or connecting to a target.
1980 It cleans up any state from previous invocations which might
1981 change between runs. This is a subset of what target_preopen
1982 resets (things which might change between targets). */
1983
1984 void
1985 target_pre_inferior (int from_tty)
1986 {
1987 /* Clear out solib state. Otherwise the solib state of the previous
1988 inferior might have survived and is entirely wrong for the new
1989 target. This has been observed on GNU/Linux using glibc 2.3. How
1990 to reproduce:
1991
1992 bash$ ./foo&
1993 [1] 4711
1994 bash$ ./foo&
1995 [1] 4712
1996 bash$ gdb ./foo
1997 [...]
1998 (gdb) attach 4711
1999 (gdb) detach
2000 (gdb) attach 4712
2001 Cannot access memory at address 0xdeadbeef
2002 */
2003
2004 /* In some OSs, the shared library list is the same/global/shared
2005 across inferiors. If code is shared between processes, so are
2006 memory regions and features. */
2007 if (!gdbarch_has_global_solist (target_gdbarch ()))
2008 {
2009 no_shared_libraries (NULL, from_tty);
2010
2011 invalidate_target_mem_regions ();
2012
2013 target_clear_description ();
2014 }
2015
2016 /* attach_flag may be set if the previous process associated with
2017 the inferior was attached to. */
2018 current_inferior ()->attach_flag = 0;
2019
2020 current_inferior ()->highest_thread_num = 0;
2021
2022 agent_capability_invalidate ();
2023 }
2024
2025 /* Callback for iterate_over_inferiors. Gets rid of the given
2026 inferior. */
2027
2028 static int
2029 dispose_inferior (struct inferior *inf, void *args)
2030 {
2031 /* Not all killed inferiors can, or will ever be, removed from the
2032 inferior list. Killed inferiors clearly don't need to be killed
2033 again, so, we're done. */
2034 if (inf->pid == 0)
2035 return 0;
2036
2037 thread_info *thread = any_thread_of_inferior (inf);
2038 if (thread != NULL)
2039 {
2040 switch_to_thread (thread);
2041
2042 /* Core inferiors actually should be detached, not killed. */
2043 if (target_has_execution)
2044 target_kill ();
2045 else
2046 target_detach (inf, 0);
2047 }
2048
2049 return 0;
2050 }
2051
2052 /* This is to be called by the open routine before it does
2053 anything. */
2054
2055 void
2056 target_preopen (int from_tty)
2057 {
2058 dont_repeat ();
2059
2060 if (have_inferiors ())
2061 {
2062 if (!from_tty
2063 || !have_live_inferiors ()
2064 || query (_("A program is being debugged already. Kill it? ")))
2065 iterate_over_inferiors (dispose_inferior, NULL);
2066 else
2067 error (_("Program not killed."));
2068 }
2069
2070 /* Calling target_kill may remove the target from the stack. But if
2071 it doesn't (which seems like a win for UDI), remove it now. */
2072 /* Leave the exec target, though. The user may be switching from a
2073 live process to a core of the same program. */
2074 pop_all_targets_above (file_stratum);
2075
2076 target_pre_inferior (from_tty);
2077 }
2078
2079 /* See target.h. */
2080
2081 void
2082 target_detach (inferior *inf, int from_tty)
2083 {
2084 /* As long as some to_detach implementations rely on the current_inferior
2085 (either directly, or indirectly, like through target_gdbarch or by
2086 reading memory), INF needs to be the current inferior. When that
2087 requirement will become no longer true, then we can remove this
2088 assertion. */
2089 gdb_assert (inf == current_inferior ());
2090
2091 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2092 /* Don't remove global breakpoints here. They're removed on
2093 disconnection from the target. */
2094 ;
2095 else
2096 /* If we're in breakpoints-always-inserted mode, have to remove
2097 breakpoints before detaching. */
2098 remove_breakpoints_inf (current_inferior ());
2099
2100 prepare_for_detach ();
2101
2102 current_top_target ()->detach (inf, from_tty);
2103 }
2104
2105 void
2106 target_disconnect (const char *args, int from_tty)
2107 {
2108 /* If we're in breakpoints-always-inserted mode or if breakpoints
2109 are global across processes, we have to remove them before
2110 disconnecting. */
2111 remove_breakpoints ();
2112
2113 current_top_target ()->disconnect (args, from_tty);
2114 }
2115
2116 /* See target/target.h. */
2117
2118 ptid_t
2119 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2120 {
2121 return current_top_target ()->wait (ptid, status, options);
2122 }
2123
2124 /* See target.h. */
2125
2126 ptid_t
2127 default_target_wait (struct target_ops *ops,
2128 ptid_t ptid, struct target_waitstatus *status,
2129 int options)
2130 {
2131 status->kind = TARGET_WAITKIND_IGNORE;
2132 return minus_one_ptid;
2133 }
2134
2135 const char *
2136 target_pid_to_str (ptid_t ptid)
2137 {
2138 return current_top_target ()->pid_to_str (ptid);
2139 }
2140
2141 const char *
2142 target_thread_name (struct thread_info *info)
2143 {
2144 return current_top_target ()->thread_name (info);
2145 }
2146
2147 struct thread_info *
2148 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2149 int handle_len,
2150 struct inferior *inf)
2151 {
2152 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2153 handle_len, inf);
2154 }
2155
2156 void
2157 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2158 {
2159 target_dcache_invalidate ();
2160
2161 current_top_target ()->resume (ptid, step, signal);
2162
2163 registers_changed_ptid (ptid);
2164 /* We only set the internal executing state here. The user/frontend
2165 running state is set at a higher level. This also clears the
2166 thread's stop_pc as side effect. */
2167 set_executing (ptid, 1);
2168 clear_inline_frame_state (ptid);
2169 }
2170
2171 /* If true, target_commit_resume is a nop. */
2172 static int defer_target_commit_resume;
2173
2174 /* See target.h. */
2175
2176 void
2177 target_commit_resume (void)
2178 {
2179 if (defer_target_commit_resume)
2180 return;
2181
2182 current_top_target ()->commit_resume ();
2183 }
2184
2185 /* See target.h. */
2186
2187 scoped_restore_tmpl<int>
2188 make_scoped_defer_target_commit_resume ()
2189 {
2190 return make_scoped_restore (&defer_target_commit_resume, 1);
2191 }
2192
2193 void
2194 target_pass_signals (int numsigs, unsigned char *pass_signals)
2195 {
2196 current_top_target ()->pass_signals (numsigs, pass_signals);
2197 }
2198
2199 void
2200 target_program_signals (int numsigs, unsigned char *program_signals)
2201 {
2202 current_top_target ()->program_signals (numsigs, program_signals);
2203 }
2204
2205 static int
2206 default_follow_fork (struct target_ops *self, int follow_child,
2207 int detach_fork)
2208 {
2209 /* Some target returned a fork event, but did not know how to follow it. */
2210 internal_error (__FILE__, __LINE__,
2211 _("could not find a target to follow fork"));
2212 }
2213
2214 /* Look through the list of possible targets for a target that can
2215 follow forks. */
2216
2217 int
2218 target_follow_fork (int follow_child, int detach_fork)
2219 {
2220 return current_top_target ()->follow_fork (follow_child, detach_fork);
2221 }
2222
2223 /* Target wrapper for follow exec hook. */
2224
2225 void
2226 target_follow_exec (struct inferior *inf, char *execd_pathname)
2227 {
2228 current_top_target ()->follow_exec (inf, execd_pathname);
2229 }
2230
2231 static void
2232 default_mourn_inferior (struct target_ops *self)
2233 {
2234 internal_error (__FILE__, __LINE__,
2235 _("could not find a target to follow mourn inferior"));
2236 }
2237
2238 void
2239 target_mourn_inferior (ptid_t ptid)
2240 {
2241 gdb_assert (ptid == inferior_ptid);
2242 current_top_target ()->mourn_inferior ();
2243
2244 /* We no longer need to keep handles on any of the object files.
2245 Make sure to release them to avoid unnecessarily locking any
2246 of them while we're not actually debugging. */
2247 bfd_cache_close_all ();
2248 }
2249
2250 /* Look for a target which can describe architectural features, starting
2251 from TARGET. If we find one, return its description. */
2252
2253 const struct target_desc *
2254 target_read_description (struct target_ops *target)
2255 {
2256 return target->read_description ();
2257 }
2258
2259 /* This implements a basic search of memory, reading target memory and
2260 performing the search here (as opposed to performing the search in on the
2261 target side with, for example, gdbserver). */
2262
2263 int
2264 simple_search_memory (struct target_ops *ops,
2265 CORE_ADDR start_addr, ULONGEST search_space_len,
2266 const gdb_byte *pattern, ULONGEST pattern_len,
2267 CORE_ADDR *found_addrp)
2268 {
2269 /* NOTE: also defined in find.c testcase. */
2270 #define SEARCH_CHUNK_SIZE 16000
2271 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2272 /* Buffer to hold memory contents for searching. */
2273 unsigned search_buf_size;
2274
2275 search_buf_size = chunk_size + pattern_len - 1;
2276
2277 /* No point in trying to allocate a buffer larger than the search space. */
2278 if (search_space_len < search_buf_size)
2279 search_buf_size = search_space_len;
2280
2281 gdb::byte_vector search_buf (search_buf_size);
2282
2283 /* Prime the search buffer. */
2284
2285 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2286 search_buf.data (), start_addr, search_buf_size)
2287 != search_buf_size)
2288 {
2289 warning (_("Unable to access %s bytes of target "
2290 "memory at %s, halting search."),
2291 pulongest (search_buf_size), hex_string (start_addr));
2292 return -1;
2293 }
2294
2295 /* Perform the search.
2296
2297 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2298 When we've scanned N bytes we copy the trailing bytes to the start and
2299 read in another N bytes. */
2300
2301 while (search_space_len >= pattern_len)
2302 {
2303 gdb_byte *found_ptr;
2304 unsigned nr_search_bytes
2305 = std::min (search_space_len, (ULONGEST) search_buf_size);
2306
2307 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2308 pattern, pattern_len);
2309
2310 if (found_ptr != NULL)
2311 {
2312 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2313
2314 *found_addrp = found_addr;
2315 return 1;
2316 }
2317
2318 /* Not found in this chunk, skip to next chunk. */
2319
2320 /* Don't let search_space_len wrap here, it's unsigned. */
2321 if (search_space_len >= chunk_size)
2322 search_space_len -= chunk_size;
2323 else
2324 search_space_len = 0;
2325
2326 if (search_space_len >= pattern_len)
2327 {
2328 unsigned keep_len = search_buf_size - chunk_size;
2329 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2330 int nr_to_read;
2331
2332 /* Copy the trailing part of the previous iteration to the front
2333 of the buffer for the next iteration. */
2334 gdb_assert (keep_len == pattern_len - 1);
2335 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2336
2337 nr_to_read = std::min (search_space_len - keep_len,
2338 (ULONGEST) chunk_size);
2339
2340 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2341 &search_buf[keep_len], read_addr,
2342 nr_to_read) != nr_to_read)
2343 {
2344 warning (_("Unable to access %s bytes of target "
2345 "memory at %s, halting search."),
2346 plongest (nr_to_read),
2347 hex_string (read_addr));
2348 return -1;
2349 }
2350
2351 start_addr += chunk_size;
2352 }
2353 }
2354
2355 /* Not found. */
2356
2357 return 0;
2358 }
2359
2360 /* Default implementation of memory-searching. */
2361
2362 static int
2363 default_search_memory (struct target_ops *self,
2364 CORE_ADDR start_addr, ULONGEST search_space_len,
2365 const gdb_byte *pattern, ULONGEST pattern_len,
2366 CORE_ADDR *found_addrp)
2367 {
2368 /* Start over from the top of the target stack. */
2369 return simple_search_memory (current_top_target (),
2370 start_addr, search_space_len,
2371 pattern, pattern_len, found_addrp);
2372 }
2373
2374 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2375 sequence of bytes in PATTERN with length PATTERN_LEN.
2376
2377 The result is 1 if found, 0 if not found, and -1 if there was an error
2378 requiring halting of the search (e.g. memory read error).
2379 If the pattern is found the address is recorded in FOUND_ADDRP. */
2380
2381 int
2382 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2383 const gdb_byte *pattern, ULONGEST pattern_len,
2384 CORE_ADDR *found_addrp)
2385 {
2386 return current_top_target ()->search_memory (start_addr, search_space_len,
2387 pattern, pattern_len, found_addrp);
2388 }
2389
2390 /* Look through the currently pushed targets. If none of them will
2391 be able to restart the currently running process, issue an error
2392 message. */
2393
2394 void
2395 target_require_runnable (void)
2396 {
2397 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2398 {
2399 /* If this target knows how to create a new program, then
2400 assume we will still be able to after killing the current
2401 one. Either killing and mourning will not pop T, or else
2402 find_default_run_target will find it again. */
2403 if (t->can_create_inferior ())
2404 return;
2405
2406 /* Do not worry about targets at certain strata that can not
2407 create inferiors. Assume they will be pushed again if
2408 necessary, and continue to the process_stratum. */
2409 if (t->to_stratum > process_stratum)
2410 continue;
2411
2412 error (_("The \"%s\" target does not support \"run\". "
2413 "Try \"help target\" or \"continue\"."),
2414 t->shortname ());
2415 }
2416
2417 /* This function is only called if the target is running. In that
2418 case there should have been a process_stratum target and it
2419 should either know how to create inferiors, or not... */
2420 internal_error (__FILE__, __LINE__, _("No targets found"));
2421 }
2422
2423 /* Whether GDB is allowed to fall back to the default run target for
2424 "run", "attach", etc. when no target is connected yet. */
2425 static int auto_connect_native_target = 1;
2426
2427 static void
2428 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2429 struct cmd_list_element *c, const char *value)
2430 {
2431 fprintf_filtered (file,
2432 _("Whether GDB may automatically connect to the "
2433 "native target is %s.\n"),
2434 value);
2435 }
2436
2437 /* A pointer to the target that can respond to "run" or "attach".
2438 Native targets are always singletons and instantiated early at GDB
2439 startup. */
2440 static target_ops *the_native_target;
2441
2442 /* See target.h. */
2443
2444 void
2445 set_native_target (target_ops *target)
2446 {
2447 if (the_native_target != NULL)
2448 internal_error (__FILE__, __LINE__,
2449 _("native target already set (\"%s\")."),
2450 the_native_target->longname ());
2451
2452 the_native_target = target;
2453 }
2454
2455 /* See target.h. */
2456
2457 target_ops *
2458 get_native_target ()
2459 {
2460 return the_native_target;
2461 }
2462
2463 /* Look through the list of possible targets for a target that can
2464 execute a run or attach command without any other data. This is
2465 used to locate the default process stratum.
2466
2467 If DO_MESG is not NULL, the result is always valid (error() is
2468 called for errors); else, return NULL on error. */
2469
2470 static struct target_ops *
2471 find_default_run_target (const char *do_mesg)
2472 {
2473 if (auto_connect_native_target && the_native_target != NULL)
2474 return the_native_target;
2475
2476 if (do_mesg != NULL)
2477 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2478 return NULL;
2479 }
2480
2481 /* See target.h. */
2482
2483 struct target_ops *
2484 find_attach_target (void)
2485 {
2486 /* If a target on the current stack can attach, use it. */
2487 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2488 {
2489 if (t->can_attach ())
2490 return t;
2491 }
2492
2493 /* Otherwise, use the default run target for attaching. */
2494 return find_default_run_target ("attach");
2495 }
2496
2497 /* See target.h. */
2498
2499 struct target_ops *
2500 find_run_target (void)
2501 {
2502 /* If a target on the current stack can run, use it. */
2503 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2504 {
2505 if (t->can_create_inferior ())
2506 return t;
2507 }
2508
2509 /* Otherwise, use the default run target. */
2510 return find_default_run_target ("run");
2511 }
2512
2513 bool
2514 target_ops::info_proc (const char *args, enum info_proc_what what)
2515 {
2516 return false;
2517 }
2518
2519 /* Implement the "info proc" command. */
2520
2521 int
2522 target_info_proc (const char *args, enum info_proc_what what)
2523 {
2524 struct target_ops *t;
2525
2526 /* If we're already connected to something that can get us OS
2527 related data, use it. Otherwise, try using the native
2528 target. */
2529 t = find_target_at (process_stratum);
2530 if (t == NULL)
2531 t = find_default_run_target (NULL);
2532
2533 for (; t != NULL; t = t->beneath ())
2534 {
2535 if (t->info_proc (args, what))
2536 {
2537 if (targetdebug)
2538 fprintf_unfiltered (gdb_stdlog,
2539 "target_info_proc (\"%s\", %d)\n", args, what);
2540
2541 return 1;
2542 }
2543 }
2544
2545 return 0;
2546 }
2547
2548 static int
2549 find_default_supports_disable_randomization (struct target_ops *self)
2550 {
2551 struct target_ops *t;
2552
2553 t = find_default_run_target (NULL);
2554 if (t != NULL)
2555 return t->supports_disable_randomization ();
2556 return 0;
2557 }
2558
2559 int
2560 target_supports_disable_randomization (void)
2561 {
2562 return current_top_target ()->supports_disable_randomization ();
2563 }
2564
2565 /* See target/target.h. */
2566
2567 int
2568 target_supports_multi_process (void)
2569 {
2570 return current_top_target ()->supports_multi_process ();
2571 }
2572
2573 /* See target.h. */
2574
2575 gdb::optional<gdb::char_vector>
2576 target_get_osdata (const char *type)
2577 {
2578 struct target_ops *t;
2579
2580 /* If we're already connected to something that can get us OS
2581 related data, use it. Otherwise, try using the native
2582 target. */
2583 t = find_target_at (process_stratum);
2584 if (t == NULL)
2585 t = find_default_run_target ("get OS data");
2586
2587 if (!t)
2588 return {};
2589
2590 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2591 }
2592
2593 static struct address_space *
2594 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2595 {
2596 struct inferior *inf;
2597
2598 /* Fall-back to the "main" address space of the inferior. */
2599 inf = find_inferior_ptid (ptid);
2600
2601 if (inf == NULL || inf->aspace == NULL)
2602 internal_error (__FILE__, __LINE__,
2603 _("Can't determine the current "
2604 "address space of thread %s\n"),
2605 target_pid_to_str (ptid));
2606
2607 return inf->aspace;
2608 }
2609
2610 /* Determine the current address space of thread PTID. */
2611
2612 struct address_space *
2613 target_thread_address_space (ptid_t ptid)
2614 {
2615 struct address_space *aspace;
2616
2617 aspace = current_top_target ()->thread_address_space (ptid);
2618 gdb_assert (aspace != NULL);
2619
2620 return aspace;
2621 }
2622
2623 /* See target.h. */
2624
2625 target_ops *
2626 target_ops::beneath () const
2627 {
2628 return g_target_stack.find_beneath (this);
2629 }
2630
2631 void
2632 target_ops::close ()
2633 {
2634 }
2635
2636 bool
2637 target_ops::can_attach ()
2638 {
2639 return 0;
2640 }
2641
2642 void
2643 target_ops::attach (const char *, int)
2644 {
2645 gdb_assert_not_reached ("target_ops::attach called");
2646 }
2647
2648 bool
2649 target_ops::can_create_inferior ()
2650 {
2651 return 0;
2652 }
2653
2654 void
2655 target_ops::create_inferior (const char *, const std::string &,
2656 char **, int)
2657 {
2658 gdb_assert_not_reached ("target_ops::create_inferior called");
2659 }
2660
2661 bool
2662 target_ops::can_run ()
2663 {
2664 return false;
2665 }
2666
2667 int
2668 target_can_run ()
2669 {
2670 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2671 {
2672 if (t->can_run ())
2673 return 1;
2674 }
2675
2676 return 0;
2677 }
2678
2679 /* Target file operations. */
2680
2681 static struct target_ops *
2682 default_fileio_target (void)
2683 {
2684 struct target_ops *t;
2685
2686 /* If we're already connected to something that can perform
2687 file I/O, use it. Otherwise, try using the native target. */
2688 t = find_target_at (process_stratum);
2689 if (t != NULL)
2690 return t;
2691 return find_default_run_target ("file I/O");
2692 }
2693
2694 /* File handle for target file operations. */
2695
2696 struct fileio_fh_t
2697 {
2698 /* The target on which this file is open. NULL if the target is
2699 meanwhile closed while the handle is open. */
2700 target_ops *target;
2701
2702 /* The file descriptor on the target. */
2703 int target_fd;
2704
2705 /* Check whether this fileio_fh_t represents a closed file. */
2706 bool is_closed ()
2707 {
2708 return target_fd < 0;
2709 }
2710 };
2711
2712 /* Vector of currently open file handles. The value returned by
2713 target_fileio_open and passed as the FD argument to other
2714 target_fileio_* functions is an index into this vector. This
2715 vector's entries are never freed; instead, files are marked as
2716 closed, and the handle becomes available for reuse. */
2717 static std::vector<fileio_fh_t> fileio_fhandles;
2718
2719 /* Index into fileio_fhandles of the lowest handle that might be
2720 closed. This permits handle reuse without searching the whole
2721 list each time a new file is opened. */
2722 static int lowest_closed_fd;
2723
2724 /* Invalidate the target associated with open handles that were open
2725 on target TARG, since we're about to close (and maybe destroy) the
2726 target. The handles remain open from the client's perspective, but
2727 trying to do anything with them other than closing them will fail
2728 with EIO. */
2729
2730 static void
2731 fileio_handles_invalidate_target (target_ops *targ)
2732 {
2733 for (fileio_fh_t &fh : fileio_fhandles)
2734 if (fh.target == targ)
2735 fh.target = NULL;
2736 }
2737
2738 /* Acquire a target fileio file descriptor. */
2739
2740 static int
2741 acquire_fileio_fd (target_ops *target, int target_fd)
2742 {
2743 /* Search for closed handles to reuse. */
2744 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2745 {
2746 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2747
2748 if (fh.is_closed ())
2749 break;
2750 }
2751
2752 /* Push a new handle if no closed handles were found. */
2753 if (lowest_closed_fd == fileio_fhandles.size ())
2754 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2755 else
2756 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2757
2758 /* Should no longer be marked closed. */
2759 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2760
2761 /* Return its index, and start the next lookup at
2762 the next index. */
2763 return lowest_closed_fd++;
2764 }
2765
2766 /* Release a target fileio file descriptor. */
2767
2768 static void
2769 release_fileio_fd (int fd, fileio_fh_t *fh)
2770 {
2771 fh->target_fd = -1;
2772 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2773 }
2774
2775 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2776
2777 static fileio_fh_t *
2778 fileio_fd_to_fh (int fd)
2779 {
2780 return &fileio_fhandles[fd];
2781 }
2782
2783
2784 /* Default implementations of file i/o methods. We don't want these
2785 to delegate automatically, because we need to know which target
2786 supported the method, in order to call it directly from within
2787 pread/pwrite, etc. */
2788
2789 int
2790 target_ops::fileio_open (struct inferior *inf, const char *filename,
2791 int flags, int mode, int warn_if_slow,
2792 int *target_errno)
2793 {
2794 *target_errno = FILEIO_ENOSYS;
2795 return -1;
2796 }
2797
2798 int
2799 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2800 ULONGEST offset, int *target_errno)
2801 {
2802 *target_errno = FILEIO_ENOSYS;
2803 return -1;
2804 }
2805
2806 int
2807 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2808 ULONGEST offset, int *target_errno)
2809 {
2810 *target_errno = FILEIO_ENOSYS;
2811 return -1;
2812 }
2813
2814 int
2815 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2816 {
2817 *target_errno = FILEIO_ENOSYS;
2818 return -1;
2819 }
2820
2821 int
2822 target_ops::fileio_close (int fd, int *target_errno)
2823 {
2824 *target_errno = FILEIO_ENOSYS;
2825 return -1;
2826 }
2827
2828 int
2829 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2830 int *target_errno)
2831 {
2832 *target_errno = FILEIO_ENOSYS;
2833 return -1;
2834 }
2835
2836 gdb::optional<std::string>
2837 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2838 int *target_errno)
2839 {
2840 *target_errno = FILEIO_ENOSYS;
2841 return {};
2842 }
2843
2844 /* Helper for target_fileio_open and
2845 target_fileio_open_warn_if_slow. */
2846
2847 static int
2848 target_fileio_open_1 (struct inferior *inf, const char *filename,
2849 int flags, int mode, int warn_if_slow,
2850 int *target_errno)
2851 {
2852 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2853 {
2854 int fd = t->fileio_open (inf, filename, flags, mode,
2855 warn_if_slow, target_errno);
2856
2857 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2858 continue;
2859
2860 if (fd < 0)
2861 fd = -1;
2862 else
2863 fd = acquire_fileio_fd (t, fd);
2864
2865 if (targetdebug)
2866 fprintf_unfiltered (gdb_stdlog,
2867 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2868 " = %d (%d)\n",
2869 inf == NULL ? 0 : inf->num,
2870 filename, flags, mode,
2871 warn_if_slow, fd,
2872 fd != -1 ? 0 : *target_errno);
2873 return fd;
2874 }
2875
2876 *target_errno = FILEIO_ENOSYS;
2877 return -1;
2878 }
2879
2880 /* See target.h. */
2881
2882 int
2883 target_fileio_open (struct inferior *inf, const char *filename,
2884 int flags, int mode, int *target_errno)
2885 {
2886 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2887 target_errno);
2888 }
2889
2890 /* See target.h. */
2891
2892 int
2893 target_fileio_open_warn_if_slow (struct inferior *inf,
2894 const char *filename,
2895 int flags, int mode, int *target_errno)
2896 {
2897 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2898 target_errno);
2899 }
2900
2901 /* See target.h. */
2902
2903 int
2904 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2905 ULONGEST offset, int *target_errno)
2906 {
2907 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2908 int ret = -1;
2909
2910 if (fh->is_closed ())
2911 *target_errno = EBADF;
2912 else if (fh->target == NULL)
2913 *target_errno = EIO;
2914 else
2915 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2916 len, offset, target_errno);
2917
2918 if (targetdebug)
2919 fprintf_unfiltered (gdb_stdlog,
2920 "target_fileio_pwrite (%d,...,%d,%s) "
2921 "= %d (%d)\n",
2922 fd, len, pulongest (offset),
2923 ret, ret != -1 ? 0 : *target_errno);
2924 return ret;
2925 }
2926
2927 /* See target.h. */
2928
2929 int
2930 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2931 ULONGEST offset, int *target_errno)
2932 {
2933 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2934 int ret = -1;
2935
2936 if (fh->is_closed ())
2937 *target_errno = EBADF;
2938 else if (fh->target == NULL)
2939 *target_errno = EIO;
2940 else
2941 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2942 len, offset, target_errno);
2943
2944 if (targetdebug)
2945 fprintf_unfiltered (gdb_stdlog,
2946 "target_fileio_pread (%d,...,%d,%s) "
2947 "= %d (%d)\n",
2948 fd, len, pulongest (offset),
2949 ret, ret != -1 ? 0 : *target_errno);
2950 return ret;
2951 }
2952
2953 /* See target.h. */
2954
2955 int
2956 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2957 {
2958 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2959 int ret = -1;
2960
2961 if (fh->is_closed ())
2962 *target_errno = EBADF;
2963 else if (fh->target == NULL)
2964 *target_errno = EIO;
2965 else
2966 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2967
2968 if (targetdebug)
2969 fprintf_unfiltered (gdb_stdlog,
2970 "target_fileio_fstat (%d) = %d (%d)\n",
2971 fd, ret, ret != -1 ? 0 : *target_errno);
2972 return ret;
2973 }
2974
2975 /* See target.h. */
2976
2977 int
2978 target_fileio_close (int fd, int *target_errno)
2979 {
2980 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2981 int ret = -1;
2982
2983 if (fh->is_closed ())
2984 *target_errno = EBADF;
2985 else
2986 {
2987 if (fh->target != NULL)
2988 ret = fh->target->fileio_close (fh->target_fd,
2989 target_errno);
2990 else
2991 ret = 0;
2992 release_fileio_fd (fd, fh);
2993 }
2994
2995 if (targetdebug)
2996 fprintf_unfiltered (gdb_stdlog,
2997 "target_fileio_close (%d) = %d (%d)\n",
2998 fd, ret, ret != -1 ? 0 : *target_errno);
2999 return ret;
3000 }
3001
3002 /* See target.h. */
3003
3004 int
3005 target_fileio_unlink (struct inferior *inf, const char *filename,
3006 int *target_errno)
3007 {
3008 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3009 {
3010 int ret = t->fileio_unlink (inf, filename, target_errno);
3011
3012 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
3013 continue;
3014
3015 if (targetdebug)
3016 fprintf_unfiltered (gdb_stdlog,
3017 "target_fileio_unlink (%d,%s)"
3018 " = %d (%d)\n",
3019 inf == NULL ? 0 : inf->num, filename,
3020 ret, ret != -1 ? 0 : *target_errno);
3021 return ret;
3022 }
3023
3024 *target_errno = FILEIO_ENOSYS;
3025 return -1;
3026 }
3027
3028 /* See target.h. */
3029
3030 gdb::optional<std::string>
3031 target_fileio_readlink (struct inferior *inf, const char *filename,
3032 int *target_errno)
3033 {
3034 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3035 {
3036 gdb::optional<std::string> ret
3037 = t->fileio_readlink (inf, filename, target_errno);
3038
3039 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
3040 continue;
3041
3042 if (targetdebug)
3043 fprintf_unfiltered (gdb_stdlog,
3044 "target_fileio_readlink (%d,%s)"
3045 " = %s (%d)\n",
3046 inf == NULL ? 0 : inf->num,
3047 filename, ret ? ret->c_str () : "(nil)",
3048 ret ? 0 : *target_errno);
3049 return ret;
3050 }
3051
3052 *target_errno = FILEIO_ENOSYS;
3053 return {};
3054 }
3055
3056 /* Like scoped_fd, but specific to target fileio. */
3057
3058 class scoped_target_fd
3059 {
3060 public:
3061 explicit scoped_target_fd (int fd) noexcept
3062 : m_fd (fd)
3063 {
3064 }
3065
3066 ~scoped_target_fd ()
3067 {
3068 if (m_fd >= 0)
3069 {
3070 int target_errno;
3071
3072 target_fileio_close (m_fd, &target_errno);
3073 }
3074 }
3075
3076 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3077
3078 int get () const noexcept
3079 {
3080 return m_fd;
3081 }
3082
3083 private:
3084 int m_fd;
3085 };
3086
3087 /* Read target file FILENAME, in the filesystem as seen by INF. If
3088 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3089 remote targets, the remote stub). Store the result in *BUF_P and
3090 return the size of the transferred data. PADDING additional bytes
3091 are available in *BUF_P. This is a helper function for
3092 target_fileio_read_alloc; see the declaration of that function for
3093 more information. */
3094
3095 static LONGEST
3096 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3097 gdb_byte **buf_p, int padding)
3098 {
3099 size_t buf_alloc, buf_pos;
3100 gdb_byte *buf;
3101 LONGEST n;
3102 int target_errno;
3103
3104 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3105 0700, &target_errno));
3106 if (fd.get () == -1)
3107 return -1;
3108
3109 /* Start by reading up to 4K at a time. The target will throttle
3110 this number down if necessary. */
3111 buf_alloc = 4096;
3112 buf = (gdb_byte *) xmalloc (buf_alloc);
3113 buf_pos = 0;
3114 while (1)
3115 {
3116 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3117 buf_alloc - buf_pos - padding, buf_pos,
3118 &target_errno);
3119 if (n < 0)
3120 {
3121 /* An error occurred. */
3122 xfree (buf);
3123 return -1;
3124 }
3125 else if (n == 0)
3126 {
3127 /* Read all there was. */
3128 if (buf_pos == 0)
3129 xfree (buf);
3130 else
3131 *buf_p = buf;
3132 return buf_pos;
3133 }
3134
3135 buf_pos += n;
3136
3137 /* If the buffer is filling up, expand it. */
3138 if (buf_alloc < buf_pos * 2)
3139 {
3140 buf_alloc *= 2;
3141 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3142 }
3143
3144 QUIT;
3145 }
3146 }
3147
3148 /* See target.h. */
3149
3150 LONGEST
3151 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3152 gdb_byte **buf_p)
3153 {
3154 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3155 }
3156
3157 /* See target.h. */
3158
3159 gdb::unique_xmalloc_ptr<char>
3160 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3161 {
3162 gdb_byte *buffer;
3163 char *bufstr;
3164 LONGEST i, transferred;
3165
3166 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3167 bufstr = (char *) buffer;
3168
3169 if (transferred < 0)
3170 return gdb::unique_xmalloc_ptr<char> (nullptr);
3171
3172 if (transferred == 0)
3173 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3174
3175 bufstr[transferred] = 0;
3176
3177 /* Check for embedded NUL bytes; but allow trailing NULs. */
3178 for (i = strlen (bufstr); i < transferred; i++)
3179 if (bufstr[i] != 0)
3180 {
3181 warning (_("target file %s "
3182 "contained unexpected null characters"),
3183 filename);
3184 break;
3185 }
3186
3187 return gdb::unique_xmalloc_ptr<char> (bufstr);
3188 }
3189
3190
3191 static int
3192 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3193 CORE_ADDR addr, int len)
3194 {
3195 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3196 }
3197
3198 static int
3199 default_watchpoint_addr_within_range (struct target_ops *target,
3200 CORE_ADDR addr,
3201 CORE_ADDR start, int length)
3202 {
3203 return addr >= start && addr < start + length;
3204 }
3205
3206 static struct gdbarch *
3207 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3208 {
3209 inferior *inf = find_inferior_ptid (ptid);
3210 gdb_assert (inf != NULL);
3211 return inf->gdbarch;
3212 }
3213
3214 /* See target.h. */
3215
3216 target_ops *
3217 target_stack::find_beneath (const target_ops *t) const
3218 {
3219 /* Look for a non-empty slot at stratum levels beneath T's. */
3220 for (int stratum = t->to_stratum - 1; stratum >= 0; --stratum)
3221 if (m_stack[stratum] != NULL)
3222 return m_stack[stratum];
3223
3224 return NULL;
3225 }
3226
3227 /* See target.h. */
3228
3229 struct target_ops *
3230 find_target_at (enum strata stratum)
3231 {
3232 return g_target_stack.at (stratum);
3233 }
3234
3235 \f
3236
3237 /* See target.h */
3238
3239 void
3240 target_announce_detach (int from_tty)
3241 {
3242 pid_t pid;
3243 const char *exec_file;
3244
3245 if (!from_tty)
3246 return;
3247
3248 exec_file = get_exec_file (0);
3249 if (exec_file == NULL)
3250 exec_file = "";
3251
3252 pid = inferior_ptid.pid ();
3253 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3254 target_pid_to_str (ptid_t (pid)));
3255 gdb_flush (gdb_stdout);
3256 }
3257
3258 /* The inferior process has died. Long live the inferior! */
3259
3260 void
3261 generic_mourn_inferior (void)
3262 {
3263 inferior *inf = current_inferior ();
3264
3265 inferior_ptid = null_ptid;
3266
3267 /* Mark breakpoints uninserted in case something tries to delete a
3268 breakpoint while we delete the inferior's threads (which would
3269 fail, since the inferior is long gone). */
3270 mark_breakpoints_out ();
3271
3272 if (inf->pid != 0)
3273 exit_inferior (inf);
3274
3275 /* Note this wipes step-resume breakpoints, so needs to be done
3276 after exit_inferior, which ends up referencing the step-resume
3277 breakpoints through clear_thread_inferior_resources. */
3278 breakpoint_init_inferior (inf_exited);
3279
3280 registers_changed ();
3281
3282 reopen_exec_file ();
3283 reinit_frame_cache ();
3284
3285 if (deprecated_detach_hook)
3286 deprecated_detach_hook ();
3287 }
3288 \f
3289 /* Convert a normal process ID to a string. Returns the string in a
3290 static buffer. */
3291
3292 const char *
3293 normal_pid_to_str (ptid_t ptid)
3294 {
3295 static char buf[32];
3296
3297 xsnprintf (buf, sizeof buf, "process %d", ptid.pid ());
3298 return buf;
3299 }
3300
3301 static const char *
3302 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3303 {
3304 return normal_pid_to_str (ptid);
3305 }
3306
3307 /* Error-catcher for target_find_memory_regions. */
3308 static int
3309 dummy_find_memory_regions (struct target_ops *self,
3310 find_memory_region_ftype ignore1, void *ignore2)
3311 {
3312 error (_("Command not implemented for this target."));
3313 return 0;
3314 }
3315
3316 /* Error-catcher for target_make_corefile_notes. */
3317 static char *
3318 dummy_make_corefile_notes (struct target_ops *self,
3319 bfd *ignore1, int *ignore2)
3320 {
3321 error (_("Command not implemented for this target."));
3322 return NULL;
3323 }
3324
3325 #include "target-delegates.c"
3326
3327
3328 static const target_info dummy_target_info = {
3329 "None",
3330 N_("None"),
3331 ""
3332 };
3333
3334 dummy_target::dummy_target ()
3335 {
3336 to_stratum = dummy_stratum;
3337 }
3338
3339 debug_target::debug_target ()
3340 {
3341 to_stratum = debug_stratum;
3342 }
3343
3344 const target_info &
3345 dummy_target::info () const
3346 {
3347 return dummy_target_info;
3348 }
3349
3350 const target_info &
3351 debug_target::info () const
3352 {
3353 return beneath ()->info ();
3354 }
3355
3356 \f
3357
3358 void
3359 target_close (struct target_ops *targ)
3360 {
3361 gdb_assert (!target_is_pushed (targ));
3362
3363 fileio_handles_invalidate_target (targ);
3364
3365 targ->close ();
3366
3367 if (targetdebug)
3368 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3369 }
3370
3371 int
3372 target_thread_alive (ptid_t ptid)
3373 {
3374 return current_top_target ()->thread_alive (ptid);
3375 }
3376
3377 void
3378 target_update_thread_list (void)
3379 {
3380 current_top_target ()->update_thread_list ();
3381 }
3382
3383 void
3384 target_stop (ptid_t ptid)
3385 {
3386 if (!may_stop)
3387 {
3388 warning (_("May not interrupt or stop the target, ignoring attempt"));
3389 return;
3390 }
3391
3392 current_top_target ()->stop (ptid);
3393 }
3394
3395 void
3396 target_interrupt ()
3397 {
3398 if (!may_stop)
3399 {
3400 warning (_("May not interrupt or stop the target, ignoring attempt"));
3401 return;
3402 }
3403
3404 current_top_target ()->interrupt ();
3405 }
3406
3407 /* See target.h. */
3408
3409 void
3410 target_pass_ctrlc (void)
3411 {
3412 current_top_target ()->pass_ctrlc ();
3413 }
3414
3415 /* See target.h. */
3416
3417 void
3418 default_target_pass_ctrlc (struct target_ops *ops)
3419 {
3420 target_interrupt ();
3421 }
3422
3423 /* See target/target.h. */
3424
3425 void
3426 target_stop_and_wait (ptid_t ptid)
3427 {
3428 struct target_waitstatus status;
3429 int was_non_stop = non_stop;
3430
3431 non_stop = 1;
3432 target_stop (ptid);
3433
3434 memset (&status, 0, sizeof (status));
3435 target_wait (ptid, &status, 0);
3436
3437 non_stop = was_non_stop;
3438 }
3439
3440 /* See target/target.h. */
3441
3442 void
3443 target_continue_no_signal (ptid_t ptid)
3444 {
3445 target_resume (ptid, 0, GDB_SIGNAL_0);
3446 }
3447
3448 /* See target/target.h. */
3449
3450 void
3451 target_continue (ptid_t ptid, enum gdb_signal signal)
3452 {
3453 target_resume (ptid, 0, signal);
3454 }
3455
3456 /* Concatenate ELEM to LIST, a comma-separated list. */
3457
3458 static void
3459 str_comma_list_concat_elem (std::string *list, const char *elem)
3460 {
3461 if (!list->empty ())
3462 list->append (", ");
3463
3464 list->append (elem);
3465 }
3466
3467 /* Helper for target_options_to_string. If OPT is present in
3468 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3469 OPT is removed from TARGET_OPTIONS. */
3470
3471 static void
3472 do_option (int *target_options, std::string *ret,
3473 int opt, const char *opt_str)
3474 {
3475 if ((*target_options & opt) != 0)
3476 {
3477 str_comma_list_concat_elem (ret, opt_str);
3478 *target_options &= ~opt;
3479 }
3480 }
3481
3482 /* See target.h. */
3483
3484 std::string
3485 target_options_to_string (int target_options)
3486 {
3487 std::string ret;
3488
3489 #define DO_TARG_OPTION(OPT) \
3490 do_option (&target_options, &ret, OPT, #OPT)
3491
3492 DO_TARG_OPTION (TARGET_WNOHANG);
3493
3494 if (target_options != 0)
3495 str_comma_list_concat_elem (&ret, "unknown???");
3496
3497 return ret;
3498 }
3499
3500 void
3501 target_fetch_registers (struct regcache *regcache, int regno)
3502 {
3503 current_top_target ()->fetch_registers (regcache, regno);
3504 if (targetdebug)
3505 regcache->debug_print_register ("target_fetch_registers", regno);
3506 }
3507
3508 void
3509 target_store_registers (struct regcache *regcache, int regno)
3510 {
3511 if (!may_write_registers)
3512 error (_("Writing to registers is not allowed (regno %d)"), regno);
3513
3514 current_top_target ()->store_registers (regcache, regno);
3515 if (targetdebug)
3516 {
3517 regcache->debug_print_register ("target_store_registers", regno);
3518 }
3519 }
3520
3521 int
3522 target_core_of_thread (ptid_t ptid)
3523 {
3524 return current_top_target ()->core_of_thread (ptid);
3525 }
3526
3527 int
3528 simple_verify_memory (struct target_ops *ops,
3529 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3530 {
3531 LONGEST total_xfered = 0;
3532
3533 while (total_xfered < size)
3534 {
3535 ULONGEST xfered_len;
3536 enum target_xfer_status status;
3537 gdb_byte buf[1024];
3538 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3539
3540 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3541 buf, NULL, lma + total_xfered, howmuch,
3542 &xfered_len);
3543 if (status == TARGET_XFER_OK
3544 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3545 {
3546 total_xfered += xfered_len;
3547 QUIT;
3548 }
3549 else
3550 return 0;
3551 }
3552 return 1;
3553 }
3554
3555 /* Default implementation of memory verification. */
3556
3557 static int
3558 default_verify_memory (struct target_ops *self,
3559 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3560 {
3561 /* Start over from the top of the target stack. */
3562 return simple_verify_memory (current_top_target (),
3563 data, memaddr, size);
3564 }
3565
3566 int
3567 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3568 {
3569 return current_top_target ()->verify_memory (data, memaddr, size);
3570 }
3571
3572 /* The documentation for this function is in its prototype declaration in
3573 target.h. */
3574
3575 int
3576 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3577 enum target_hw_bp_type rw)
3578 {
3579 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3580 }
3581
3582 /* The documentation for this function is in its prototype declaration in
3583 target.h. */
3584
3585 int
3586 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3587 enum target_hw_bp_type rw)
3588 {
3589 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3590 }
3591
3592 /* The documentation for this function is in its prototype declaration
3593 in target.h. */
3594
3595 int
3596 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3597 {
3598 return current_top_target ()->masked_watch_num_registers (addr, mask);
3599 }
3600
3601 /* The documentation for this function is in its prototype declaration
3602 in target.h. */
3603
3604 int
3605 target_ranged_break_num_registers (void)
3606 {
3607 return current_top_target ()->ranged_break_num_registers ();
3608 }
3609
3610 /* See target.h. */
3611
3612 struct btrace_target_info *
3613 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3614 {
3615 return current_top_target ()->enable_btrace (ptid, conf);
3616 }
3617
3618 /* See target.h. */
3619
3620 void
3621 target_disable_btrace (struct btrace_target_info *btinfo)
3622 {
3623 current_top_target ()->disable_btrace (btinfo);
3624 }
3625
3626 /* See target.h. */
3627
3628 void
3629 target_teardown_btrace (struct btrace_target_info *btinfo)
3630 {
3631 current_top_target ()->teardown_btrace (btinfo);
3632 }
3633
3634 /* See target.h. */
3635
3636 enum btrace_error
3637 target_read_btrace (struct btrace_data *btrace,
3638 struct btrace_target_info *btinfo,
3639 enum btrace_read_type type)
3640 {
3641 return current_top_target ()->read_btrace (btrace, btinfo, type);
3642 }
3643
3644 /* See target.h. */
3645
3646 const struct btrace_config *
3647 target_btrace_conf (const struct btrace_target_info *btinfo)
3648 {
3649 return current_top_target ()->btrace_conf (btinfo);
3650 }
3651
3652 /* See target.h. */
3653
3654 void
3655 target_stop_recording (void)
3656 {
3657 current_top_target ()->stop_recording ();
3658 }
3659
3660 /* See target.h. */
3661
3662 void
3663 target_save_record (const char *filename)
3664 {
3665 current_top_target ()->save_record (filename);
3666 }
3667
3668 /* See target.h. */
3669
3670 int
3671 target_supports_delete_record ()
3672 {
3673 return current_top_target ()->supports_delete_record ();
3674 }
3675
3676 /* See target.h. */
3677
3678 void
3679 target_delete_record (void)
3680 {
3681 current_top_target ()->delete_record ();
3682 }
3683
3684 /* See target.h. */
3685
3686 enum record_method
3687 target_record_method (ptid_t ptid)
3688 {
3689 return current_top_target ()->record_method (ptid);
3690 }
3691
3692 /* See target.h. */
3693
3694 int
3695 target_record_is_replaying (ptid_t ptid)
3696 {
3697 return current_top_target ()->record_is_replaying (ptid);
3698 }
3699
3700 /* See target.h. */
3701
3702 int
3703 target_record_will_replay (ptid_t ptid, int dir)
3704 {
3705 return current_top_target ()->record_will_replay (ptid, dir);
3706 }
3707
3708 /* See target.h. */
3709
3710 void
3711 target_record_stop_replaying (void)
3712 {
3713 current_top_target ()->record_stop_replaying ();
3714 }
3715
3716 /* See target.h. */
3717
3718 void
3719 target_goto_record_begin (void)
3720 {
3721 current_top_target ()->goto_record_begin ();
3722 }
3723
3724 /* See target.h. */
3725
3726 void
3727 target_goto_record_end (void)
3728 {
3729 current_top_target ()->goto_record_end ();
3730 }
3731
3732 /* See target.h. */
3733
3734 void
3735 target_goto_record (ULONGEST insn)
3736 {
3737 current_top_target ()->goto_record (insn);
3738 }
3739
3740 /* See target.h. */
3741
3742 void
3743 target_insn_history (int size, gdb_disassembly_flags flags)
3744 {
3745 current_top_target ()->insn_history (size, flags);
3746 }
3747
3748 /* See target.h. */
3749
3750 void
3751 target_insn_history_from (ULONGEST from, int size,
3752 gdb_disassembly_flags flags)
3753 {
3754 current_top_target ()->insn_history_from (from, size, flags);
3755 }
3756
3757 /* See target.h. */
3758
3759 void
3760 target_insn_history_range (ULONGEST begin, ULONGEST end,
3761 gdb_disassembly_flags flags)
3762 {
3763 current_top_target ()->insn_history_range (begin, end, flags);
3764 }
3765
3766 /* See target.h. */
3767
3768 void
3769 target_call_history (int size, record_print_flags flags)
3770 {
3771 current_top_target ()->call_history (size, flags);
3772 }
3773
3774 /* See target.h. */
3775
3776 void
3777 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3778 {
3779 current_top_target ()->call_history_from (begin, size, flags);
3780 }
3781
3782 /* See target.h. */
3783
3784 void
3785 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3786 {
3787 current_top_target ()->call_history_range (begin, end, flags);
3788 }
3789
3790 /* See target.h. */
3791
3792 const struct frame_unwind *
3793 target_get_unwinder (void)
3794 {
3795 return current_top_target ()->get_unwinder ();
3796 }
3797
3798 /* See target.h. */
3799
3800 const struct frame_unwind *
3801 target_get_tailcall_unwinder (void)
3802 {
3803 return current_top_target ()->get_tailcall_unwinder ();
3804 }
3805
3806 /* See target.h. */
3807
3808 void
3809 target_prepare_to_generate_core (void)
3810 {
3811 current_top_target ()->prepare_to_generate_core ();
3812 }
3813
3814 /* See target.h. */
3815
3816 void
3817 target_done_generating_core (void)
3818 {
3819 current_top_target ()->done_generating_core ();
3820 }
3821
3822 \f
3823
3824 static char targ_desc[] =
3825 "Names of targets and files being debugged.\nShows the entire \
3826 stack of targets currently in use (including the exec-file,\n\
3827 core-file, and process, if any), as well as the symbol file name.";
3828
3829 static void
3830 default_rcmd (struct target_ops *self, const char *command,
3831 struct ui_file *output)
3832 {
3833 error (_("\"monitor\" command not supported by this target."));
3834 }
3835
3836 static void
3837 do_monitor_command (const char *cmd, int from_tty)
3838 {
3839 target_rcmd (cmd, gdb_stdtarg);
3840 }
3841
3842 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3843 ignored. */
3844
3845 void
3846 flash_erase_command (const char *cmd, int from_tty)
3847 {
3848 /* Used to communicate termination of flash operations to the target. */
3849 bool found_flash_region = false;
3850 struct gdbarch *gdbarch = target_gdbarch ();
3851
3852 std::vector<mem_region> mem_regions = target_memory_map ();
3853
3854 /* Iterate over all memory regions. */
3855 for (const mem_region &m : mem_regions)
3856 {
3857 /* Is this a flash memory region? */
3858 if (m.attrib.mode == MEM_FLASH)
3859 {
3860 found_flash_region = true;
3861 target_flash_erase (m.lo, m.hi - m.lo);
3862
3863 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3864
3865 current_uiout->message (_("Erasing flash memory region at address "));
3866 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3867 current_uiout->message (", size = ");
3868 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3869 current_uiout->message ("\n");
3870 }
3871 }
3872
3873 /* Did we do any flash operations? If so, we need to finalize them. */
3874 if (found_flash_region)
3875 target_flash_done ();
3876 else
3877 current_uiout->message (_("No flash memory regions found.\n"));
3878 }
3879
3880 /* Print the name of each layers of our target stack. */
3881
3882 static void
3883 maintenance_print_target_stack (const char *cmd, int from_tty)
3884 {
3885 printf_filtered (_("The current target stack is:\n"));
3886
3887 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3888 {
3889 if (t->to_stratum == debug_stratum)
3890 continue;
3891 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3892 }
3893 }
3894
3895 /* See target.h. */
3896
3897 void
3898 target_async (int enable)
3899 {
3900 infrun_async (enable);
3901 current_top_target ()->async (enable);
3902 }
3903
3904 /* See target.h. */
3905
3906 void
3907 target_thread_events (int enable)
3908 {
3909 current_top_target ()->thread_events (enable);
3910 }
3911
3912 /* Controls if targets can report that they can/are async. This is
3913 just for maintainers to use when debugging gdb. */
3914 int target_async_permitted = 1;
3915
3916 /* The set command writes to this variable. If the inferior is
3917 executing, target_async_permitted is *not* updated. */
3918 static int target_async_permitted_1 = 1;
3919
3920 static void
3921 maint_set_target_async_command (const char *args, int from_tty,
3922 struct cmd_list_element *c)
3923 {
3924 if (have_live_inferiors ())
3925 {
3926 target_async_permitted_1 = target_async_permitted;
3927 error (_("Cannot change this setting while the inferior is running."));
3928 }
3929
3930 target_async_permitted = target_async_permitted_1;
3931 }
3932
3933 static void
3934 maint_show_target_async_command (struct ui_file *file, int from_tty,
3935 struct cmd_list_element *c,
3936 const char *value)
3937 {
3938 fprintf_filtered (file,
3939 _("Controlling the inferior in "
3940 "asynchronous mode is %s.\n"), value);
3941 }
3942
3943 /* Return true if the target operates in non-stop mode even with "set
3944 non-stop off". */
3945
3946 static int
3947 target_always_non_stop_p (void)
3948 {
3949 return current_top_target ()->always_non_stop_p ();
3950 }
3951
3952 /* See target.h. */
3953
3954 int
3955 target_is_non_stop_p (void)
3956 {
3957 return (non_stop
3958 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3959 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3960 && target_always_non_stop_p ()));
3961 }
3962
3963 /* Controls if targets can report that they always run in non-stop
3964 mode. This is just for maintainers to use when debugging gdb. */
3965 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3966
3967 /* The set command writes to this variable. If the inferior is
3968 executing, target_non_stop_enabled is *not* updated. */
3969 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3970
3971 /* Implementation of "maint set target-non-stop". */
3972
3973 static void
3974 maint_set_target_non_stop_command (const char *args, int from_tty,
3975 struct cmd_list_element *c)
3976 {
3977 if (have_live_inferiors ())
3978 {
3979 target_non_stop_enabled_1 = target_non_stop_enabled;
3980 error (_("Cannot change this setting while the inferior is running."));
3981 }
3982
3983 target_non_stop_enabled = target_non_stop_enabled_1;
3984 }
3985
3986 /* Implementation of "maint show target-non-stop". */
3987
3988 static void
3989 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3990 struct cmd_list_element *c,
3991 const char *value)
3992 {
3993 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3994 fprintf_filtered (file,
3995 _("Whether the target is always in non-stop mode "
3996 "is %s (currently %s).\n"), value,
3997 target_always_non_stop_p () ? "on" : "off");
3998 else
3999 fprintf_filtered (file,
4000 _("Whether the target is always in non-stop mode "
4001 "is %s.\n"), value);
4002 }
4003
4004 /* Temporary copies of permission settings. */
4005
4006 static int may_write_registers_1 = 1;
4007 static int may_write_memory_1 = 1;
4008 static int may_insert_breakpoints_1 = 1;
4009 static int may_insert_tracepoints_1 = 1;
4010 static int may_insert_fast_tracepoints_1 = 1;
4011 static int may_stop_1 = 1;
4012
4013 /* Make the user-set values match the real values again. */
4014
4015 void
4016 update_target_permissions (void)
4017 {
4018 may_write_registers_1 = may_write_registers;
4019 may_write_memory_1 = may_write_memory;
4020 may_insert_breakpoints_1 = may_insert_breakpoints;
4021 may_insert_tracepoints_1 = may_insert_tracepoints;
4022 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4023 may_stop_1 = may_stop;
4024 }
4025
4026 /* The one function handles (most of) the permission flags in the same
4027 way. */
4028
4029 static void
4030 set_target_permissions (const char *args, int from_tty,
4031 struct cmd_list_element *c)
4032 {
4033 if (target_has_execution)
4034 {
4035 update_target_permissions ();
4036 error (_("Cannot change this setting while the inferior is running."));
4037 }
4038
4039 /* Make the real values match the user-changed values. */
4040 may_write_registers = may_write_registers_1;
4041 may_insert_breakpoints = may_insert_breakpoints_1;
4042 may_insert_tracepoints = may_insert_tracepoints_1;
4043 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4044 may_stop = may_stop_1;
4045 update_observer_mode ();
4046 }
4047
4048 /* Set memory write permission independently of observer mode. */
4049
4050 static void
4051 set_write_memory_permission (const char *args, int from_tty,
4052 struct cmd_list_element *c)
4053 {
4054 /* Make the real values match the user-changed values. */
4055 may_write_memory = may_write_memory_1;
4056 update_observer_mode ();
4057 }
4058
4059 void
4060 initialize_targets (void)
4061 {
4062 the_dummy_target = new dummy_target ();
4063 push_target (the_dummy_target);
4064
4065 the_debug_target = new debug_target ();
4066
4067 add_info ("target", info_target_command, targ_desc);
4068 add_info ("files", info_target_command, targ_desc);
4069
4070 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4071 Set target debugging."), _("\
4072 Show target debugging."), _("\
4073 When non-zero, target debugging is enabled. Higher numbers are more\n\
4074 verbose."),
4075 set_targetdebug,
4076 show_targetdebug,
4077 &setdebuglist, &showdebuglist);
4078
4079 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4080 &trust_readonly, _("\
4081 Set mode for reading from readonly sections."), _("\
4082 Show mode for reading from readonly sections."), _("\
4083 When this mode is on, memory reads from readonly sections (such as .text)\n\
4084 will be read from the object file instead of from the target. This will\n\
4085 result in significant performance improvement for remote targets."),
4086 NULL,
4087 show_trust_readonly,
4088 &setlist, &showlist);
4089
4090 add_com ("monitor", class_obscure, do_monitor_command,
4091 _("Send a command to the remote monitor (remote targets only)."));
4092
4093 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4094 _("Print the name of each layer of the internal target stack."),
4095 &maintenanceprintlist);
4096
4097 add_setshow_boolean_cmd ("target-async", no_class,
4098 &target_async_permitted_1, _("\
4099 Set whether gdb controls the inferior in asynchronous mode."), _("\
4100 Show whether gdb controls the inferior in asynchronous mode."), _("\
4101 Tells gdb whether to control the inferior in asynchronous mode."),
4102 maint_set_target_async_command,
4103 maint_show_target_async_command,
4104 &maintenance_set_cmdlist,
4105 &maintenance_show_cmdlist);
4106
4107 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4108 &target_non_stop_enabled_1, _("\
4109 Set whether gdb always controls the inferior in non-stop mode."), _("\
4110 Show whether gdb always controls the inferior in non-stop mode."), _("\
4111 Tells gdb whether to control the inferior in non-stop mode."),
4112 maint_set_target_non_stop_command,
4113 maint_show_target_non_stop_command,
4114 &maintenance_set_cmdlist,
4115 &maintenance_show_cmdlist);
4116
4117 add_setshow_boolean_cmd ("may-write-registers", class_support,
4118 &may_write_registers_1, _("\
4119 Set permission to write into registers."), _("\
4120 Show permission to write into registers."), _("\
4121 When this permission is on, GDB may write into the target's registers.\n\
4122 Otherwise, any sort of write attempt will result in an error."),
4123 set_target_permissions, NULL,
4124 &setlist, &showlist);
4125
4126 add_setshow_boolean_cmd ("may-write-memory", class_support,
4127 &may_write_memory_1, _("\
4128 Set permission to write into target memory."), _("\
4129 Show permission to write into target memory."), _("\
4130 When this permission is on, GDB may write into the target's memory.\n\
4131 Otherwise, any sort of write attempt will result in an error."),
4132 set_write_memory_permission, NULL,
4133 &setlist, &showlist);
4134
4135 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4136 &may_insert_breakpoints_1, _("\
4137 Set permission to insert breakpoints in the target."), _("\
4138 Show permission to insert breakpoints in the target."), _("\
4139 When this permission is on, GDB may insert breakpoints in the program.\n\
4140 Otherwise, any sort of insertion attempt will result in an error."),
4141 set_target_permissions, NULL,
4142 &setlist, &showlist);
4143
4144 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4145 &may_insert_tracepoints_1, _("\
4146 Set permission to insert tracepoints in the target."), _("\
4147 Show permission to insert tracepoints in the target."), _("\
4148 When this permission is on, GDB may insert tracepoints in the program.\n\
4149 Otherwise, any sort of insertion attempt will result in an error."),
4150 set_target_permissions, NULL,
4151 &setlist, &showlist);
4152
4153 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4154 &may_insert_fast_tracepoints_1, _("\
4155 Set permission to insert fast tracepoints in the target."), _("\
4156 Show permission to insert fast tracepoints in the target."), _("\
4157 When this permission is on, GDB may insert fast tracepoints.\n\
4158 Otherwise, any sort of insertion attempt will result in an error."),
4159 set_target_permissions, NULL,
4160 &setlist, &showlist);
4161
4162 add_setshow_boolean_cmd ("may-interrupt", class_support,
4163 &may_stop_1, _("\
4164 Set permission to interrupt or signal the target."), _("\
4165 Show permission to interrupt or signal the target."), _("\
4166 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4167 Otherwise, any attempt to interrupt or stop will be ignored."),
4168 set_target_permissions, NULL,
4169 &setlist, &showlist);
4170
4171 add_com ("flash-erase", no_class, flash_erase_command,
4172 _("Erase all flash memory regions."));
4173
4174 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4175 &auto_connect_native_target, _("\
4176 Set whether GDB may automatically connect to the native target."), _("\
4177 Show whether GDB may automatically connect to the native target."), _("\
4178 When on, and GDB is not connected to a target yet, GDB\n\
4179 attempts \"run\" and other commands with the native target."),
4180 NULL, show_auto_connect_native_target,
4181 &setlist, &showlist);
4182 }
This page took 0.11874 seconds and 4 git commands to generate.