Implement -list-thread-groups --available
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44
45 static void target_info (char *, int);
46
47 static void kill_or_be_killed (int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static int nosymbol (char *, CORE_ADDR *);
57
58 static void tcomplain (void) ATTR_NORETURN;
59
60 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
61
62 static int return_zero (void);
63
64 static int return_one (void);
65
66 static int return_minus_one (void);
67
68 void target_ignore (void);
69
70 static void target_command (char *, int);
71
72 static struct target_ops *find_default_run_target (char *);
73
74 static void nosupport_runtime (void);
75
76 static LONGEST default_xfer_partial (struct target_ops *ops,
77 enum target_object object,
78 const char *annex, gdb_byte *readbuf,
79 const gdb_byte *writebuf,
80 ULONGEST offset, LONGEST len);
81
82 static LONGEST current_xfer_partial (struct target_ops *ops,
83 enum target_object object,
84 const char *annex, gdb_byte *readbuf,
85 const gdb_byte *writebuf,
86 ULONGEST offset, LONGEST len);
87
88 static LONGEST target_xfer_partial (struct target_ops *ops,
89 enum target_object object,
90 const char *annex,
91 void *readbuf, const void *writebuf,
92 ULONGEST offset, LONGEST len);
93
94 static void init_dummy_target (void);
95
96 static struct target_ops debug_target;
97
98 static void debug_to_open (char *, int);
99
100 static void debug_to_close (int);
101
102 static void debug_to_attach (struct target_ops *ops, char *, int);
103
104 static void debug_to_detach (struct target_ops *ops, char *, int);
105
106 static void debug_to_resume (ptid_t, int, enum target_signal);
107
108 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
109
110 static void debug_to_fetch_registers (struct regcache *, int);
111
112 static void debug_to_store_registers (struct regcache *, int);
113
114 static void debug_to_prepare_to_store (struct regcache *);
115
116 static void debug_to_files_info (struct target_ops *);
117
118 static int debug_to_insert_breakpoint (struct bp_target_info *);
119
120 static int debug_to_remove_breakpoint (struct bp_target_info *);
121
122 static int debug_to_can_use_hw_breakpoint (int, int, int);
123
124 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
125
126 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
127
128 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
129
130 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
131
132 static int debug_to_stopped_by_watchpoint (void);
133
134 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
135
136 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
137 CORE_ADDR, CORE_ADDR, int);
138
139 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
140
141 static void debug_to_terminal_init (void);
142
143 static void debug_to_terminal_inferior (void);
144
145 static void debug_to_terminal_ours_for_output (void);
146
147 static void debug_to_terminal_save_ours (void);
148
149 static void debug_to_terminal_ours (void);
150
151 static void debug_to_terminal_info (char *, int);
152
153 static void debug_to_kill (void);
154
155 static void debug_to_load (char *, int);
156
157 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
158
159 static void debug_to_mourn_inferior (struct target_ops *);
160
161 static int debug_to_can_run (void);
162
163 static void debug_to_notice_signals (ptid_t);
164
165 static int debug_to_thread_alive (ptid_t);
166
167 static void debug_to_stop (ptid_t);
168
169 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
170 wierd and mysterious ways. Putting the variable here lets those
171 wierd and mysterious ways keep building while they are being
172 converted to the inferior inheritance structure. */
173 struct target_ops deprecated_child_ops;
174
175 /* Pointer to array of target architecture structures; the size of the
176 array; the current index into the array; the allocated size of the
177 array. */
178 struct target_ops **target_structs;
179 unsigned target_struct_size;
180 unsigned target_struct_index;
181 unsigned target_struct_allocsize;
182 #define DEFAULT_ALLOCSIZE 10
183
184 /* The initial current target, so that there is always a semi-valid
185 current target. */
186
187 static struct target_ops dummy_target;
188
189 /* Top of target stack. */
190
191 static struct target_ops *target_stack;
192
193 /* The target structure we are currently using to talk to a process
194 or file or whatever "inferior" we have. */
195
196 struct target_ops current_target;
197
198 /* Command list for target. */
199
200 static struct cmd_list_element *targetlist = NULL;
201
202 /* Nonzero if we should trust readonly sections from the
203 executable when reading memory. */
204
205 static int trust_readonly = 0;
206
207 /* Nonzero if we should show true memory content including
208 memory breakpoint inserted by gdb. */
209
210 static int show_memory_breakpoints = 0;
211
212 /* Non-zero if we want to see trace of target level stuff. */
213
214 static int targetdebug = 0;
215 static void
216 show_targetdebug (struct ui_file *file, int from_tty,
217 struct cmd_list_element *c, const char *value)
218 {
219 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
220 }
221
222 static void setup_target_debug (void);
223
224 DCACHE *target_dcache;
225
226 /* The user just typed 'target' without the name of a target. */
227
228 static void
229 target_command (char *arg, int from_tty)
230 {
231 fputs_filtered ("Argument required (target name). Try `help target'\n",
232 gdb_stdout);
233 }
234
235 /* Add a possible target architecture to the list. */
236
237 void
238 add_target (struct target_ops *t)
239 {
240 /* Provide default values for all "must have" methods. */
241 if (t->to_xfer_partial == NULL)
242 t->to_xfer_partial = default_xfer_partial;
243
244 if (!target_structs)
245 {
246 target_struct_allocsize = DEFAULT_ALLOCSIZE;
247 target_structs = (struct target_ops **) xmalloc
248 (target_struct_allocsize * sizeof (*target_structs));
249 }
250 if (target_struct_size >= target_struct_allocsize)
251 {
252 target_struct_allocsize *= 2;
253 target_structs = (struct target_ops **)
254 xrealloc ((char *) target_structs,
255 target_struct_allocsize * sizeof (*target_structs));
256 }
257 target_structs[target_struct_size++] = t;
258
259 if (targetlist == NULL)
260 add_prefix_cmd ("target", class_run, target_command, _("\
261 Connect to a target machine or process.\n\
262 The first argument is the type or protocol of the target machine.\n\
263 Remaining arguments are interpreted by the target protocol. For more\n\
264 information on the arguments for a particular protocol, type\n\
265 `help target ' followed by the protocol name."),
266 &targetlist, "target ", 0, &cmdlist);
267 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
268 }
269
270 /* Stub functions */
271
272 void
273 target_ignore (void)
274 {
275 }
276
277 void
278 target_load (char *arg, int from_tty)
279 {
280 dcache_invalidate (target_dcache);
281 (*current_target.to_load) (arg, from_tty);
282 }
283
284 void target_create_inferior (char *exec_file, char *args,
285 char **env, int from_tty)
286 {
287 struct target_ops *t;
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 {
290 if (t->to_create_inferior != NULL)
291 {
292 t->to_create_inferior (t, exec_file, args, env, from_tty);
293 return;
294 }
295 }
296
297 internal_error (__FILE__, __LINE__,
298 "could not find a target to create inferior");
299 }
300
301
302 static int
303 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
304 struct target_ops *t)
305 {
306 errno = EIO; /* Can't read/write this location */
307 return 0; /* No bytes handled */
308 }
309
310 static void
311 tcomplain (void)
312 {
313 error (_("You can't do that when your target is `%s'"),
314 current_target.to_shortname);
315 }
316
317 void
318 noprocess (void)
319 {
320 error (_("You can't do that without a process to debug."));
321 }
322
323 static int
324 nosymbol (char *name, CORE_ADDR *addrp)
325 {
326 return 1; /* Symbol does not exist in target env */
327 }
328
329 static void
330 nosupport_runtime (void)
331 {
332 if (ptid_equal (inferior_ptid, null_ptid))
333 noprocess ();
334 else
335 error (_("No run-time support for this"));
336 }
337
338
339 static void
340 default_terminal_info (char *args, int from_tty)
341 {
342 printf_unfiltered (_("No saved terminal information.\n"));
343 }
344
345 /* This is the default target_create_inferior and target_attach function.
346 If the current target is executing, it asks whether to kill it off.
347 If this function returns without calling error(), it has killed off
348 the target, and the operation should be attempted. */
349
350 static void
351 kill_or_be_killed (int from_tty)
352 {
353 if (target_has_execution)
354 {
355 printf_unfiltered (_("You are already running a program:\n"));
356 target_files_info ();
357 if (query ("Kill it? "))
358 {
359 target_kill ();
360 if (target_has_execution)
361 error (_("Killing the program did not help."));
362 return;
363 }
364 else
365 {
366 error (_("Program not killed."));
367 }
368 }
369 tcomplain ();
370 }
371
372 /* A default implementation for the to_get_ada_task_ptid target method.
373
374 This function builds the PTID by using both LWP and TID as part of
375 the PTID lwp and tid elements. The pid used is the pid of the
376 inferior_ptid. */
377
378 ptid_t
379 default_get_ada_task_ptid (long lwp, long tid)
380 {
381 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
382 }
383
384 /* Go through the target stack from top to bottom, copying over zero
385 entries in current_target, then filling in still empty entries. In
386 effect, we are doing class inheritance through the pushed target
387 vectors.
388
389 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
390 is currently implemented, is that it discards any knowledge of
391 which target an inherited method originally belonged to.
392 Consequently, new new target methods should instead explicitly and
393 locally search the target stack for the target that can handle the
394 request. */
395
396 static void
397 update_current_target (void)
398 {
399 struct target_ops *t;
400
401 /* First, reset current's contents. */
402 memset (&current_target, 0, sizeof (current_target));
403
404 #define INHERIT(FIELD, TARGET) \
405 if (!current_target.FIELD) \
406 current_target.FIELD = (TARGET)->FIELD
407
408 for (t = target_stack; t; t = t->beneath)
409 {
410 INHERIT (to_shortname, t);
411 INHERIT (to_longname, t);
412 INHERIT (to_doc, t);
413 /* Do not inherit to_open. */
414 /* Do not inherit to_close. */
415 /* Do not inherit to_attach. */
416 INHERIT (to_post_attach, t);
417 INHERIT (to_attach_no_wait, t);
418 /* Do not inherit to_detach. */
419 /* Do not inherit to_disconnect. */
420 INHERIT (to_resume, t);
421 INHERIT (to_wait, t);
422 INHERIT (to_fetch_registers, t);
423 INHERIT (to_store_registers, t);
424 INHERIT (to_prepare_to_store, t);
425 INHERIT (deprecated_xfer_memory, t);
426 INHERIT (to_files_info, t);
427 INHERIT (to_insert_breakpoint, t);
428 INHERIT (to_remove_breakpoint, t);
429 INHERIT (to_can_use_hw_breakpoint, t);
430 INHERIT (to_insert_hw_breakpoint, t);
431 INHERIT (to_remove_hw_breakpoint, t);
432 INHERIT (to_insert_watchpoint, t);
433 INHERIT (to_remove_watchpoint, t);
434 INHERIT (to_stopped_data_address, t);
435 INHERIT (to_have_steppable_watchpoint, t);
436 INHERIT (to_have_continuable_watchpoint, t);
437 INHERIT (to_stopped_by_watchpoint, t);
438 INHERIT (to_watchpoint_addr_within_range, t);
439 INHERIT (to_region_ok_for_hw_watchpoint, t);
440 INHERIT (to_terminal_init, t);
441 INHERIT (to_terminal_inferior, t);
442 INHERIT (to_terminal_ours_for_output, t);
443 INHERIT (to_terminal_ours, t);
444 INHERIT (to_terminal_save_ours, t);
445 INHERIT (to_terminal_info, t);
446 INHERIT (to_kill, t);
447 INHERIT (to_load, t);
448 INHERIT (to_lookup_symbol, t);
449 /* Do no inherit to_create_inferior. */
450 INHERIT (to_post_startup_inferior, t);
451 INHERIT (to_acknowledge_created_inferior, t);
452 INHERIT (to_insert_fork_catchpoint, t);
453 INHERIT (to_remove_fork_catchpoint, t);
454 INHERIT (to_insert_vfork_catchpoint, t);
455 INHERIT (to_remove_vfork_catchpoint, t);
456 /* Do not inherit to_follow_fork. */
457 INHERIT (to_insert_exec_catchpoint, t);
458 INHERIT (to_remove_exec_catchpoint, t);
459 INHERIT (to_has_exited, t);
460 /* Do no inherit to_mourn_inferiour. */
461 INHERIT (to_can_run, t);
462 INHERIT (to_notice_signals, t);
463 INHERIT (to_thread_alive, t);
464 INHERIT (to_find_new_threads, t);
465 INHERIT (to_pid_to_str, t);
466 INHERIT (to_extra_thread_info, t);
467 INHERIT (to_stop, t);
468 /* Do not inherit to_xfer_partial. */
469 INHERIT (to_rcmd, t);
470 INHERIT (to_pid_to_exec_file, t);
471 INHERIT (to_log_command, t);
472 INHERIT (to_stratum, t);
473 INHERIT (to_has_all_memory, t);
474 INHERIT (to_has_memory, t);
475 INHERIT (to_has_stack, t);
476 INHERIT (to_has_registers, t);
477 INHERIT (to_has_execution, t);
478 INHERIT (to_has_thread_control, t);
479 INHERIT (to_sections, t);
480 INHERIT (to_sections_end, t);
481 INHERIT (to_can_async_p, t);
482 INHERIT (to_is_async_p, t);
483 INHERIT (to_async, t);
484 INHERIT (to_async_mask, t);
485 INHERIT (to_find_memory_regions, t);
486 INHERIT (to_make_corefile_notes, t);
487 INHERIT (to_get_thread_local_address, t);
488 INHERIT (to_can_execute_reverse, t);
489 /* Do not inherit to_read_description. */
490 INHERIT (to_get_ada_task_ptid, t);
491 /* Do not inherit to_search_memory. */
492 INHERIT (to_supports_multi_process, t);
493 INHERIT (to_magic, t);
494 /* Do not inherit to_memory_map. */
495 /* Do not inherit to_flash_erase. */
496 /* Do not inherit to_flash_done. */
497 }
498 #undef INHERIT
499
500 /* Clean up a target struct so it no longer has any zero pointers in
501 it. Some entries are defaulted to a method that print an error,
502 others are hard-wired to a standard recursive default. */
503
504 #define de_fault(field, value) \
505 if (!current_target.field) \
506 current_target.field = value
507
508 de_fault (to_open,
509 (void (*) (char *, int))
510 tcomplain);
511 de_fault (to_close,
512 (void (*) (int))
513 target_ignore);
514 de_fault (to_post_attach,
515 (void (*) (int))
516 target_ignore);
517 de_fault (to_resume,
518 (void (*) (ptid_t, int, enum target_signal))
519 noprocess);
520 de_fault (to_wait,
521 (ptid_t (*) (ptid_t, struct target_waitstatus *))
522 noprocess);
523 de_fault (to_fetch_registers,
524 (void (*) (struct regcache *, int))
525 target_ignore);
526 de_fault (to_store_registers,
527 (void (*) (struct regcache *, int))
528 noprocess);
529 de_fault (to_prepare_to_store,
530 (void (*) (struct regcache *))
531 noprocess);
532 de_fault (deprecated_xfer_memory,
533 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
534 nomemory);
535 de_fault (to_files_info,
536 (void (*) (struct target_ops *))
537 target_ignore);
538 de_fault (to_insert_breakpoint,
539 memory_insert_breakpoint);
540 de_fault (to_remove_breakpoint,
541 memory_remove_breakpoint);
542 de_fault (to_can_use_hw_breakpoint,
543 (int (*) (int, int, int))
544 return_zero);
545 de_fault (to_insert_hw_breakpoint,
546 (int (*) (struct bp_target_info *))
547 return_minus_one);
548 de_fault (to_remove_hw_breakpoint,
549 (int (*) (struct bp_target_info *))
550 return_minus_one);
551 de_fault (to_insert_watchpoint,
552 (int (*) (CORE_ADDR, int, int))
553 return_minus_one);
554 de_fault (to_remove_watchpoint,
555 (int (*) (CORE_ADDR, int, int))
556 return_minus_one);
557 de_fault (to_stopped_by_watchpoint,
558 (int (*) (void))
559 return_zero);
560 de_fault (to_stopped_data_address,
561 (int (*) (struct target_ops *, CORE_ADDR *))
562 return_zero);
563 de_fault (to_watchpoint_addr_within_range,
564 default_watchpoint_addr_within_range);
565 de_fault (to_region_ok_for_hw_watchpoint,
566 default_region_ok_for_hw_watchpoint);
567 de_fault (to_terminal_init,
568 (void (*) (void))
569 target_ignore);
570 de_fault (to_terminal_inferior,
571 (void (*) (void))
572 target_ignore);
573 de_fault (to_terminal_ours_for_output,
574 (void (*) (void))
575 target_ignore);
576 de_fault (to_terminal_ours,
577 (void (*) (void))
578 target_ignore);
579 de_fault (to_terminal_save_ours,
580 (void (*) (void))
581 target_ignore);
582 de_fault (to_terminal_info,
583 default_terminal_info);
584 de_fault (to_kill,
585 (void (*) (void))
586 noprocess);
587 de_fault (to_load,
588 (void (*) (char *, int))
589 tcomplain);
590 de_fault (to_lookup_symbol,
591 (int (*) (char *, CORE_ADDR *))
592 nosymbol);
593 de_fault (to_post_startup_inferior,
594 (void (*) (ptid_t))
595 target_ignore);
596 de_fault (to_acknowledge_created_inferior,
597 (void (*) (int))
598 target_ignore);
599 de_fault (to_insert_fork_catchpoint,
600 (void (*) (int))
601 tcomplain);
602 de_fault (to_remove_fork_catchpoint,
603 (int (*) (int))
604 tcomplain);
605 de_fault (to_insert_vfork_catchpoint,
606 (void (*) (int))
607 tcomplain);
608 de_fault (to_remove_vfork_catchpoint,
609 (int (*) (int))
610 tcomplain);
611 de_fault (to_insert_exec_catchpoint,
612 (void (*) (int))
613 tcomplain);
614 de_fault (to_remove_exec_catchpoint,
615 (int (*) (int))
616 tcomplain);
617 de_fault (to_has_exited,
618 (int (*) (int, int, int *))
619 return_zero);
620 de_fault (to_can_run,
621 return_zero);
622 de_fault (to_notice_signals,
623 (void (*) (ptid_t))
624 target_ignore);
625 de_fault (to_thread_alive,
626 (int (*) (ptid_t))
627 return_zero);
628 de_fault (to_find_new_threads,
629 (void (*) (void))
630 target_ignore);
631 de_fault (to_extra_thread_info,
632 (char *(*) (struct thread_info *))
633 return_zero);
634 de_fault (to_stop,
635 (void (*) (ptid_t))
636 target_ignore);
637 current_target.to_xfer_partial = current_xfer_partial;
638 de_fault (to_rcmd,
639 (void (*) (char *, struct ui_file *))
640 tcomplain);
641 de_fault (to_pid_to_exec_file,
642 (char *(*) (int))
643 return_zero);
644 de_fault (to_async,
645 (void (*) (void (*) (enum inferior_event_type, void*), void*))
646 tcomplain);
647 de_fault (to_async_mask,
648 (int (*) (int))
649 return_one);
650 current_target.to_read_description = NULL;
651 de_fault (to_get_ada_task_ptid,
652 (ptid_t (*) (long, long))
653 default_get_ada_task_ptid);
654 de_fault (to_supports_multi_process,
655 (int (*) (void))
656 return_zero);
657 #undef de_fault
658
659 /* Finally, position the target-stack beneath the squashed
660 "current_target". That way code looking for a non-inherited
661 target method can quickly and simply find it. */
662 current_target.beneath = target_stack;
663
664 if (targetdebug)
665 setup_target_debug ();
666 }
667
668 /* Mark OPS as a running target. This reverses the effect
669 of target_mark_exited. */
670
671 void
672 target_mark_running (struct target_ops *ops)
673 {
674 struct target_ops *t;
675
676 for (t = target_stack; t != NULL; t = t->beneath)
677 if (t == ops)
678 break;
679 if (t == NULL)
680 internal_error (__FILE__, __LINE__,
681 "Attempted to mark unpushed target \"%s\" as running",
682 ops->to_shortname);
683
684 ops->to_has_execution = 1;
685 ops->to_has_all_memory = 1;
686 ops->to_has_memory = 1;
687 ops->to_has_stack = 1;
688 ops->to_has_registers = 1;
689
690 update_current_target ();
691 }
692
693 /* Mark OPS as a non-running target. This reverses the effect
694 of target_mark_running. */
695
696 void
697 target_mark_exited (struct target_ops *ops)
698 {
699 struct target_ops *t;
700
701 for (t = target_stack; t != NULL; t = t->beneath)
702 if (t == ops)
703 break;
704 if (t == NULL)
705 internal_error (__FILE__, __LINE__,
706 "Attempted to mark unpushed target \"%s\" as running",
707 ops->to_shortname);
708
709 ops->to_has_execution = 0;
710 ops->to_has_all_memory = 0;
711 ops->to_has_memory = 0;
712 ops->to_has_stack = 0;
713 ops->to_has_registers = 0;
714
715 update_current_target ();
716 }
717
718 /* Push a new target type into the stack of the existing target accessors,
719 possibly superseding some of the existing accessors.
720
721 Result is zero if the pushed target ended up on top of the stack,
722 nonzero if at least one target is on top of it.
723
724 Rather than allow an empty stack, we always have the dummy target at
725 the bottom stratum, so we can call the function vectors without
726 checking them. */
727
728 int
729 push_target (struct target_ops *t)
730 {
731 struct target_ops **cur;
732
733 /* Check magic number. If wrong, it probably means someone changed
734 the struct definition, but not all the places that initialize one. */
735 if (t->to_magic != OPS_MAGIC)
736 {
737 fprintf_unfiltered (gdb_stderr,
738 "Magic number of %s target struct wrong\n",
739 t->to_shortname);
740 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
741 }
742
743 /* Find the proper stratum to install this target in. */
744 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
745 {
746 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
747 break;
748 }
749
750 /* If there's already targets at this stratum, remove them. */
751 /* FIXME: cagney/2003-10-15: I think this should be popping all
752 targets to CUR, and not just those at this stratum level. */
753 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
754 {
755 /* There's already something at this stratum level. Close it,
756 and un-hook it from the stack. */
757 struct target_ops *tmp = (*cur);
758 (*cur) = (*cur)->beneath;
759 tmp->beneath = NULL;
760 target_close (tmp, 0);
761 }
762
763 /* We have removed all targets in our stratum, now add the new one. */
764 t->beneath = (*cur);
765 (*cur) = t;
766
767 update_current_target ();
768
769 /* Not on top? */
770 return (t != target_stack);
771 }
772
773 /* Remove a target_ops vector from the stack, wherever it may be.
774 Return how many times it was removed (0 or 1). */
775
776 int
777 unpush_target (struct target_ops *t)
778 {
779 struct target_ops **cur;
780 struct target_ops *tmp;
781
782 if (t->to_stratum == dummy_stratum)
783 internal_error (__FILE__, __LINE__,
784 "Attempt to unpush the dummy target");
785
786 /* Look for the specified target. Note that we assume that a target
787 can only occur once in the target stack. */
788
789 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
790 {
791 if ((*cur) == t)
792 break;
793 }
794
795 if ((*cur) == NULL)
796 return 0; /* Didn't find target_ops, quit now */
797
798 /* NOTE: cagney/2003-12-06: In '94 the close call was made
799 unconditional by moving it to before the above check that the
800 target was in the target stack (something about "Change the way
801 pushing and popping of targets work to support target overlays
802 and inheritance"). This doesn't make much sense - only open
803 targets should be closed. */
804 target_close (t, 0);
805
806 /* Unchain the target */
807 tmp = (*cur);
808 (*cur) = (*cur)->beneath;
809 tmp->beneath = NULL;
810
811 update_current_target ();
812
813 return 1;
814 }
815
816 void
817 pop_target (void)
818 {
819 target_close (target_stack, 0); /* Let it clean up */
820 if (unpush_target (target_stack) == 1)
821 return;
822
823 fprintf_unfiltered (gdb_stderr,
824 "pop_target couldn't find target %s\n",
825 current_target.to_shortname);
826 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
827 }
828
829 void
830 pop_all_targets_above (enum strata above_stratum, int quitting)
831 {
832 while ((int) (current_target.to_stratum) > (int) above_stratum)
833 {
834 target_close (target_stack, quitting);
835 if (!unpush_target (target_stack))
836 {
837 fprintf_unfiltered (gdb_stderr,
838 "pop_all_targets couldn't find target %s\n",
839 target_stack->to_shortname);
840 internal_error (__FILE__, __LINE__,
841 _("failed internal consistency check"));
842 break;
843 }
844 }
845 }
846
847 void
848 pop_all_targets (int quitting)
849 {
850 pop_all_targets_above (dummy_stratum, quitting);
851 }
852
853 /* Using the objfile specified in OBJFILE, find the address for the
854 current thread's thread-local storage with offset OFFSET. */
855 CORE_ADDR
856 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
857 {
858 volatile CORE_ADDR addr = 0;
859
860 if (target_get_thread_local_address_p ()
861 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
862 {
863 ptid_t ptid = inferior_ptid;
864 volatile struct gdb_exception ex;
865
866 TRY_CATCH (ex, RETURN_MASK_ALL)
867 {
868 CORE_ADDR lm_addr;
869
870 /* Fetch the load module address for this objfile. */
871 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
872 objfile);
873 /* If it's 0, throw the appropriate exception. */
874 if (lm_addr == 0)
875 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
876 _("TLS load module not found"));
877
878 addr = target_get_thread_local_address (ptid, lm_addr, offset);
879 }
880 /* If an error occurred, print TLS related messages here. Otherwise,
881 throw the error to some higher catcher. */
882 if (ex.reason < 0)
883 {
884 int objfile_is_library = (objfile->flags & OBJF_SHARED);
885
886 switch (ex.error)
887 {
888 case TLS_NO_LIBRARY_SUPPORT_ERROR:
889 error (_("Cannot find thread-local variables in this thread library."));
890 break;
891 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
892 if (objfile_is_library)
893 error (_("Cannot find shared library `%s' in dynamic"
894 " linker's load module list"), objfile->name);
895 else
896 error (_("Cannot find executable file `%s' in dynamic"
897 " linker's load module list"), objfile->name);
898 break;
899 case TLS_NOT_ALLOCATED_YET_ERROR:
900 if (objfile_is_library)
901 error (_("The inferior has not yet allocated storage for"
902 " thread-local variables in\n"
903 "the shared library `%s'\n"
904 "for %s"),
905 objfile->name, target_pid_to_str (ptid));
906 else
907 error (_("The inferior has not yet allocated storage for"
908 " thread-local variables in\n"
909 "the executable `%s'\n"
910 "for %s"),
911 objfile->name, target_pid_to_str (ptid));
912 break;
913 case TLS_GENERIC_ERROR:
914 if (objfile_is_library)
915 error (_("Cannot find thread-local storage for %s, "
916 "shared library %s:\n%s"),
917 target_pid_to_str (ptid),
918 objfile->name, ex.message);
919 else
920 error (_("Cannot find thread-local storage for %s, "
921 "executable file %s:\n%s"),
922 target_pid_to_str (ptid),
923 objfile->name, ex.message);
924 break;
925 default:
926 throw_exception (ex);
927 break;
928 }
929 }
930 }
931 /* It wouldn't be wrong here to try a gdbarch method, too; finding
932 TLS is an ABI-specific thing. But we don't do that yet. */
933 else
934 error (_("Cannot find thread-local variables on this target"));
935
936 return addr;
937 }
938
939 #undef MIN
940 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
941
942 /* target_read_string -- read a null terminated string, up to LEN bytes,
943 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
944 Set *STRING to a pointer to malloc'd memory containing the data; the caller
945 is responsible for freeing it. Return the number of bytes successfully
946 read. */
947
948 int
949 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
950 {
951 int tlen, origlen, offset, i;
952 gdb_byte buf[4];
953 int errcode = 0;
954 char *buffer;
955 int buffer_allocated;
956 char *bufptr;
957 unsigned int nbytes_read = 0;
958
959 gdb_assert (string);
960
961 /* Small for testing. */
962 buffer_allocated = 4;
963 buffer = xmalloc (buffer_allocated);
964 bufptr = buffer;
965
966 origlen = len;
967
968 while (len > 0)
969 {
970 tlen = MIN (len, 4 - (memaddr & 3));
971 offset = memaddr & 3;
972
973 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
974 if (errcode != 0)
975 {
976 /* The transfer request might have crossed the boundary to an
977 unallocated region of memory. Retry the transfer, requesting
978 a single byte. */
979 tlen = 1;
980 offset = 0;
981 errcode = target_read_memory (memaddr, buf, 1);
982 if (errcode != 0)
983 goto done;
984 }
985
986 if (bufptr - buffer + tlen > buffer_allocated)
987 {
988 unsigned int bytes;
989 bytes = bufptr - buffer;
990 buffer_allocated *= 2;
991 buffer = xrealloc (buffer, buffer_allocated);
992 bufptr = buffer + bytes;
993 }
994
995 for (i = 0; i < tlen; i++)
996 {
997 *bufptr++ = buf[i + offset];
998 if (buf[i + offset] == '\000')
999 {
1000 nbytes_read += i + 1;
1001 goto done;
1002 }
1003 }
1004
1005 memaddr += tlen;
1006 len -= tlen;
1007 nbytes_read += tlen;
1008 }
1009 done:
1010 *string = buffer;
1011 if (errnop != NULL)
1012 *errnop = errcode;
1013 return nbytes_read;
1014 }
1015
1016 /* Find a section containing ADDR. */
1017 struct section_table *
1018 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1019 {
1020 struct section_table *secp;
1021 for (secp = target->to_sections;
1022 secp < target->to_sections_end;
1023 secp++)
1024 {
1025 if (addr >= secp->addr && addr < secp->endaddr)
1026 return secp;
1027 }
1028 return NULL;
1029 }
1030
1031 /* Perform a partial memory transfer. The arguments and return
1032 value are just as for target_xfer_partial. */
1033
1034 static LONGEST
1035 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
1036 ULONGEST memaddr, LONGEST len)
1037 {
1038 LONGEST res;
1039 int reg_len;
1040 struct mem_region *region;
1041
1042 /* Zero length requests are ok and require no work. */
1043 if (len == 0)
1044 return 0;
1045
1046 /* Try the executable file, if "trust-readonly-sections" is set. */
1047 if (readbuf != NULL && trust_readonly)
1048 {
1049 struct section_table *secp;
1050
1051 secp = target_section_by_addr (ops, memaddr);
1052 if (secp != NULL
1053 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1054 & SEC_READONLY))
1055 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1056 }
1057
1058 /* Likewise for accesses to unmapped overlay sections. */
1059 if (readbuf != NULL && overlay_debugging)
1060 {
1061 struct obj_section *section = find_pc_overlay (memaddr);
1062 if (pc_in_unmapped_range (memaddr, section))
1063 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1064 }
1065
1066 /* Try GDB's internal data cache. */
1067 region = lookup_mem_region (memaddr);
1068 /* region->hi == 0 means there's no upper bound. */
1069 if (memaddr + len < region->hi || region->hi == 0)
1070 reg_len = len;
1071 else
1072 reg_len = region->hi - memaddr;
1073
1074 switch (region->attrib.mode)
1075 {
1076 case MEM_RO:
1077 if (writebuf != NULL)
1078 return -1;
1079 break;
1080
1081 case MEM_WO:
1082 if (readbuf != NULL)
1083 return -1;
1084 break;
1085
1086 case MEM_FLASH:
1087 /* We only support writing to flash during "load" for now. */
1088 if (writebuf != NULL)
1089 error (_("Writing to flash memory forbidden in this context"));
1090 break;
1091
1092 case MEM_NONE:
1093 return -1;
1094 }
1095
1096 if (region->attrib.cache)
1097 {
1098 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1099 memory request will start back at current_target. */
1100 if (readbuf != NULL)
1101 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1102 reg_len, 0);
1103 else
1104 /* FIXME drow/2006-08-09: If we're going to preserve const
1105 correctness dcache_xfer_memory should take readbuf and
1106 writebuf. */
1107 res = dcache_xfer_memory (target_dcache, memaddr,
1108 (void *) writebuf,
1109 reg_len, 1);
1110 if (res <= 0)
1111 return -1;
1112 else
1113 {
1114 if (readbuf && !show_memory_breakpoints)
1115 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1116 return res;
1117 }
1118 }
1119
1120 /* If none of those methods found the memory we wanted, fall back
1121 to a target partial transfer. Normally a single call to
1122 to_xfer_partial is enough; if it doesn't recognize an object
1123 it will call the to_xfer_partial of the next target down.
1124 But for memory this won't do. Memory is the only target
1125 object which can be read from more than one valid target.
1126 A core file, for instance, could have some of memory but
1127 delegate other bits to the target below it. So, we must
1128 manually try all targets. */
1129
1130 do
1131 {
1132 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1133 readbuf, writebuf, memaddr, reg_len);
1134 if (res > 0)
1135 break;
1136
1137 /* We want to continue past core files to executables, but not
1138 past a running target's memory. */
1139 if (ops->to_has_all_memory)
1140 break;
1141
1142 ops = ops->beneath;
1143 }
1144 while (ops != NULL);
1145
1146 if (readbuf && !show_memory_breakpoints)
1147 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1148
1149 /* If we still haven't got anything, return the last error. We
1150 give up. */
1151 return res;
1152 }
1153
1154 static void
1155 restore_show_memory_breakpoints (void *arg)
1156 {
1157 show_memory_breakpoints = (uintptr_t) arg;
1158 }
1159
1160 struct cleanup *
1161 make_show_memory_breakpoints_cleanup (int show)
1162 {
1163 int current = show_memory_breakpoints;
1164 show_memory_breakpoints = show;
1165
1166 return make_cleanup (restore_show_memory_breakpoints,
1167 (void *) (uintptr_t) current);
1168 }
1169
1170 static LONGEST
1171 target_xfer_partial (struct target_ops *ops,
1172 enum target_object object, const char *annex,
1173 void *readbuf, const void *writebuf,
1174 ULONGEST offset, LONGEST len)
1175 {
1176 LONGEST retval;
1177
1178 gdb_assert (ops->to_xfer_partial != NULL);
1179
1180 /* If this is a memory transfer, let the memory-specific code
1181 have a look at it instead. Memory transfers are more
1182 complicated. */
1183 if (object == TARGET_OBJECT_MEMORY)
1184 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1185 else
1186 {
1187 enum target_object raw_object = object;
1188
1189 /* If this is a raw memory transfer, request the normal
1190 memory object from other layers. */
1191 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1192 raw_object = TARGET_OBJECT_MEMORY;
1193
1194 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1195 writebuf, offset, len);
1196 }
1197
1198 if (targetdebug)
1199 {
1200 const unsigned char *myaddr = NULL;
1201
1202 fprintf_unfiltered (gdb_stdlog,
1203 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, %s, %s) = %s",
1204 ops->to_shortname,
1205 (int) object,
1206 (annex ? annex : "(null)"),
1207 (long) readbuf, (long) writebuf,
1208 core_addr_to_string_nz (offset),
1209 plongest (len), plongest (retval));
1210
1211 if (readbuf)
1212 myaddr = readbuf;
1213 if (writebuf)
1214 myaddr = writebuf;
1215 if (retval > 0 && myaddr != NULL)
1216 {
1217 int i;
1218
1219 fputs_unfiltered (", bytes =", gdb_stdlog);
1220 for (i = 0; i < retval; i++)
1221 {
1222 if ((((long) &(myaddr[i])) & 0xf) == 0)
1223 {
1224 if (targetdebug < 2 && i > 0)
1225 {
1226 fprintf_unfiltered (gdb_stdlog, " ...");
1227 break;
1228 }
1229 fprintf_unfiltered (gdb_stdlog, "\n");
1230 }
1231
1232 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1233 }
1234 }
1235
1236 fputc_unfiltered ('\n', gdb_stdlog);
1237 }
1238 return retval;
1239 }
1240
1241 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1242 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1243 if any error occurs.
1244
1245 If an error occurs, no guarantee is made about the contents of the data at
1246 MYADDR. In particular, the caller should not depend upon partial reads
1247 filling the buffer with good data. There is no way for the caller to know
1248 how much good data might have been transfered anyway. Callers that can
1249 deal with partial reads should call target_read (which will retry until
1250 it makes no progress, and then return how much was transferred). */
1251
1252 int
1253 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1254 {
1255 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1256 myaddr, memaddr, len) == len)
1257 return 0;
1258 else
1259 return EIO;
1260 }
1261
1262 int
1263 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1264 {
1265 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1266 myaddr, memaddr, len) == len)
1267 return 0;
1268 else
1269 return EIO;
1270 }
1271
1272 /* Fetch the target's memory map. */
1273
1274 VEC(mem_region_s) *
1275 target_memory_map (void)
1276 {
1277 VEC(mem_region_s) *result;
1278 struct mem_region *last_one, *this_one;
1279 int ix;
1280 struct target_ops *t;
1281
1282 if (targetdebug)
1283 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1284
1285 for (t = current_target.beneath; t != NULL; t = t->beneath)
1286 if (t->to_memory_map != NULL)
1287 break;
1288
1289 if (t == NULL)
1290 return NULL;
1291
1292 result = t->to_memory_map (t);
1293 if (result == NULL)
1294 return NULL;
1295
1296 qsort (VEC_address (mem_region_s, result),
1297 VEC_length (mem_region_s, result),
1298 sizeof (struct mem_region), mem_region_cmp);
1299
1300 /* Check that regions do not overlap. Simultaneously assign
1301 a numbering for the "mem" commands to use to refer to
1302 each region. */
1303 last_one = NULL;
1304 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1305 {
1306 this_one->number = ix;
1307
1308 if (last_one && last_one->hi > this_one->lo)
1309 {
1310 warning (_("Overlapping regions in memory map: ignoring"));
1311 VEC_free (mem_region_s, result);
1312 return NULL;
1313 }
1314 last_one = this_one;
1315 }
1316
1317 return result;
1318 }
1319
1320 void
1321 target_flash_erase (ULONGEST address, LONGEST length)
1322 {
1323 struct target_ops *t;
1324
1325 for (t = current_target.beneath; t != NULL; t = t->beneath)
1326 if (t->to_flash_erase != NULL)
1327 {
1328 if (targetdebug)
1329 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1330 paddr (address), phex (length, 0));
1331 t->to_flash_erase (t, address, length);
1332 return;
1333 }
1334
1335 tcomplain ();
1336 }
1337
1338 void
1339 target_flash_done (void)
1340 {
1341 struct target_ops *t;
1342
1343 for (t = current_target.beneath; t != NULL; t = t->beneath)
1344 if (t->to_flash_done != NULL)
1345 {
1346 if (targetdebug)
1347 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1348 t->to_flash_done (t);
1349 return;
1350 }
1351
1352 tcomplain ();
1353 }
1354
1355 #ifndef target_stopped_data_address_p
1356 int
1357 target_stopped_data_address_p (struct target_ops *target)
1358 {
1359 if (target->to_stopped_data_address
1360 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1361 return 0;
1362 if (target->to_stopped_data_address == debug_to_stopped_data_address
1363 && (debug_target.to_stopped_data_address
1364 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1365 return 0;
1366 return 1;
1367 }
1368 #endif
1369
1370 static void
1371 show_trust_readonly (struct ui_file *file, int from_tty,
1372 struct cmd_list_element *c, const char *value)
1373 {
1374 fprintf_filtered (file, _("\
1375 Mode for reading from readonly sections is %s.\n"),
1376 value);
1377 }
1378
1379 /* More generic transfers. */
1380
1381 static LONGEST
1382 default_xfer_partial (struct target_ops *ops, enum target_object object,
1383 const char *annex, gdb_byte *readbuf,
1384 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1385 {
1386 if (object == TARGET_OBJECT_MEMORY
1387 && ops->deprecated_xfer_memory != NULL)
1388 /* If available, fall back to the target's
1389 "deprecated_xfer_memory" method. */
1390 {
1391 int xfered = -1;
1392 errno = 0;
1393 if (writebuf != NULL)
1394 {
1395 void *buffer = xmalloc (len);
1396 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1397 memcpy (buffer, writebuf, len);
1398 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1399 1/*write*/, NULL, ops);
1400 do_cleanups (cleanup);
1401 }
1402 if (readbuf != NULL)
1403 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1404 0/*read*/, NULL, ops);
1405 if (xfered > 0)
1406 return xfered;
1407 else if (xfered == 0 && errno == 0)
1408 /* "deprecated_xfer_memory" uses 0, cross checked against
1409 ERRNO as one indication of an error. */
1410 return 0;
1411 else
1412 return -1;
1413 }
1414 else if (ops->beneath != NULL)
1415 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1416 readbuf, writebuf, offset, len);
1417 else
1418 return -1;
1419 }
1420
1421 /* The xfer_partial handler for the topmost target. Unlike the default,
1422 it does not need to handle memory specially; it just passes all
1423 requests down the stack. */
1424
1425 static LONGEST
1426 current_xfer_partial (struct target_ops *ops, enum target_object object,
1427 const char *annex, gdb_byte *readbuf,
1428 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1429 {
1430 if (ops->beneath != NULL)
1431 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1432 readbuf, writebuf, offset, len);
1433 else
1434 return -1;
1435 }
1436
1437 /* Target vector read/write partial wrapper functions.
1438
1439 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1440 (inbuf, outbuf)", instead of separate read/write methods, make life
1441 easier. */
1442
1443 static LONGEST
1444 target_read_partial (struct target_ops *ops,
1445 enum target_object object,
1446 const char *annex, gdb_byte *buf,
1447 ULONGEST offset, LONGEST len)
1448 {
1449 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1450 }
1451
1452 static LONGEST
1453 target_write_partial (struct target_ops *ops,
1454 enum target_object object,
1455 const char *annex, const gdb_byte *buf,
1456 ULONGEST offset, LONGEST len)
1457 {
1458 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1459 }
1460
1461 /* Wrappers to perform the full transfer. */
1462 LONGEST
1463 target_read (struct target_ops *ops,
1464 enum target_object object,
1465 const char *annex, gdb_byte *buf,
1466 ULONGEST offset, LONGEST len)
1467 {
1468 LONGEST xfered = 0;
1469 while (xfered < len)
1470 {
1471 LONGEST xfer = target_read_partial (ops, object, annex,
1472 (gdb_byte *) buf + xfered,
1473 offset + xfered, len - xfered);
1474 /* Call an observer, notifying them of the xfer progress? */
1475 if (xfer == 0)
1476 return xfered;
1477 if (xfer < 0)
1478 return -1;
1479 xfered += xfer;
1480 QUIT;
1481 }
1482 return len;
1483 }
1484
1485 LONGEST
1486 target_read_until_error (struct target_ops *ops,
1487 enum target_object object,
1488 const char *annex, gdb_byte *buf,
1489 ULONGEST offset, LONGEST len)
1490 {
1491 LONGEST xfered = 0;
1492 while (xfered < len)
1493 {
1494 LONGEST xfer = target_read_partial (ops, object, annex,
1495 (gdb_byte *) buf + xfered,
1496 offset + xfered, len - xfered);
1497 /* Call an observer, notifying them of the xfer progress? */
1498 if (xfer == 0)
1499 return xfered;
1500 if (xfer < 0)
1501 {
1502 /* We've got an error. Try to read in smaller blocks. */
1503 ULONGEST start = offset + xfered;
1504 ULONGEST remaining = len - xfered;
1505 ULONGEST half;
1506
1507 /* If an attempt was made to read a random memory address,
1508 it's likely that the very first byte is not accessible.
1509 Try reading the first byte, to avoid doing log N tries
1510 below. */
1511 xfer = target_read_partial (ops, object, annex,
1512 (gdb_byte *) buf + xfered, start, 1);
1513 if (xfer <= 0)
1514 return xfered;
1515 start += 1;
1516 remaining -= 1;
1517 half = remaining/2;
1518
1519 while (half > 0)
1520 {
1521 xfer = target_read_partial (ops, object, annex,
1522 (gdb_byte *) buf + xfered,
1523 start, half);
1524 if (xfer == 0)
1525 return xfered;
1526 if (xfer < 0)
1527 {
1528 remaining = half;
1529 }
1530 else
1531 {
1532 /* We have successfully read the first half. So, the
1533 error must be in the second half. Adjust start and
1534 remaining to point at the second half. */
1535 xfered += xfer;
1536 start += xfer;
1537 remaining -= xfer;
1538 }
1539 half = remaining/2;
1540 }
1541
1542 return xfered;
1543 }
1544 xfered += xfer;
1545 QUIT;
1546 }
1547 return len;
1548 }
1549
1550
1551 /* An alternative to target_write with progress callbacks. */
1552
1553 LONGEST
1554 target_write_with_progress (struct target_ops *ops,
1555 enum target_object object,
1556 const char *annex, const gdb_byte *buf,
1557 ULONGEST offset, LONGEST len,
1558 void (*progress) (ULONGEST, void *), void *baton)
1559 {
1560 LONGEST xfered = 0;
1561
1562 /* Give the progress callback a chance to set up. */
1563 if (progress)
1564 (*progress) (0, baton);
1565
1566 while (xfered < len)
1567 {
1568 LONGEST xfer = target_write_partial (ops, object, annex,
1569 (gdb_byte *) buf + xfered,
1570 offset + xfered, len - xfered);
1571
1572 if (xfer == 0)
1573 return xfered;
1574 if (xfer < 0)
1575 return -1;
1576
1577 if (progress)
1578 (*progress) (xfer, baton);
1579
1580 xfered += xfer;
1581 QUIT;
1582 }
1583 return len;
1584 }
1585
1586 LONGEST
1587 target_write (struct target_ops *ops,
1588 enum target_object object,
1589 const char *annex, const gdb_byte *buf,
1590 ULONGEST offset, LONGEST len)
1591 {
1592 return target_write_with_progress (ops, object, annex, buf, offset, len,
1593 NULL, NULL);
1594 }
1595
1596 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1597 the size of the transferred data. PADDING additional bytes are
1598 available in *BUF_P. This is a helper function for
1599 target_read_alloc; see the declaration of that function for more
1600 information. */
1601
1602 static LONGEST
1603 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1604 const char *annex, gdb_byte **buf_p, int padding)
1605 {
1606 size_t buf_alloc, buf_pos;
1607 gdb_byte *buf;
1608 LONGEST n;
1609
1610 /* This function does not have a length parameter; it reads the
1611 entire OBJECT). Also, it doesn't support objects fetched partly
1612 from one target and partly from another (in a different stratum,
1613 e.g. a core file and an executable). Both reasons make it
1614 unsuitable for reading memory. */
1615 gdb_assert (object != TARGET_OBJECT_MEMORY);
1616
1617 /* Start by reading up to 4K at a time. The target will throttle
1618 this number down if necessary. */
1619 buf_alloc = 4096;
1620 buf = xmalloc (buf_alloc);
1621 buf_pos = 0;
1622 while (1)
1623 {
1624 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1625 buf_pos, buf_alloc - buf_pos - padding);
1626 if (n < 0)
1627 {
1628 /* An error occurred. */
1629 xfree (buf);
1630 return -1;
1631 }
1632 else if (n == 0)
1633 {
1634 /* Read all there was. */
1635 if (buf_pos == 0)
1636 xfree (buf);
1637 else
1638 *buf_p = buf;
1639 return buf_pos;
1640 }
1641
1642 buf_pos += n;
1643
1644 /* If the buffer is filling up, expand it. */
1645 if (buf_alloc < buf_pos * 2)
1646 {
1647 buf_alloc *= 2;
1648 buf = xrealloc (buf, buf_alloc);
1649 }
1650
1651 QUIT;
1652 }
1653 }
1654
1655 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1656 the size of the transferred data. See the declaration in "target.h"
1657 function for more information about the return value. */
1658
1659 LONGEST
1660 target_read_alloc (struct target_ops *ops, enum target_object object,
1661 const char *annex, gdb_byte **buf_p)
1662 {
1663 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1664 }
1665
1666 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1667 returned as a string, allocated using xmalloc. If an error occurs
1668 or the transfer is unsupported, NULL is returned. Empty objects
1669 are returned as allocated but empty strings. A warning is issued
1670 if the result contains any embedded NUL bytes. */
1671
1672 char *
1673 target_read_stralloc (struct target_ops *ops, enum target_object object,
1674 const char *annex)
1675 {
1676 gdb_byte *buffer;
1677 LONGEST transferred;
1678
1679 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1680
1681 if (transferred < 0)
1682 return NULL;
1683
1684 if (transferred == 0)
1685 return xstrdup ("");
1686
1687 buffer[transferred] = 0;
1688 if (strlen (buffer) < transferred)
1689 warning (_("target object %d, annex %s, "
1690 "contained unexpected null characters"),
1691 (int) object, annex ? annex : "(none)");
1692
1693 return (char *) buffer;
1694 }
1695
1696 /* Memory transfer methods. */
1697
1698 void
1699 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1700 LONGEST len)
1701 {
1702 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1703 != len)
1704 memory_error (EIO, addr);
1705 }
1706
1707 ULONGEST
1708 get_target_memory_unsigned (struct target_ops *ops,
1709 CORE_ADDR addr, int len)
1710 {
1711 gdb_byte buf[sizeof (ULONGEST)];
1712
1713 gdb_assert (len <= sizeof (buf));
1714 get_target_memory (ops, addr, buf, len);
1715 return extract_unsigned_integer (buf, len);
1716 }
1717
1718 static void
1719 target_info (char *args, int from_tty)
1720 {
1721 struct target_ops *t;
1722 int has_all_mem = 0;
1723
1724 if (symfile_objfile != NULL)
1725 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1726
1727 for (t = target_stack; t != NULL; t = t->beneath)
1728 {
1729 if (!t->to_has_memory)
1730 continue;
1731
1732 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1733 continue;
1734 if (has_all_mem)
1735 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1736 printf_unfiltered ("%s:\n", t->to_longname);
1737 (t->to_files_info) (t);
1738 has_all_mem = t->to_has_all_memory;
1739 }
1740 }
1741
1742 /* This function is called before any new inferior is created, e.g.
1743 by running a program, attaching, or connecting to a target.
1744 It cleans up any state from previous invocations which might
1745 change between runs. This is a subset of what target_preopen
1746 resets (things which might change between targets). */
1747
1748 void
1749 target_pre_inferior (int from_tty)
1750 {
1751 /* Clear out solib state. Otherwise the solib state of the previous
1752 inferior might have survived and is entirely wrong for the new
1753 target. This has been observed on GNU/Linux using glibc 2.3. How
1754 to reproduce:
1755
1756 bash$ ./foo&
1757 [1] 4711
1758 bash$ ./foo&
1759 [1] 4712
1760 bash$ gdb ./foo
1761 [...]
1762 (gdb) attach 4711
1763 (gdb) detach
1764 (gdb) attach 4712
1765 Cannot access memory at address 0xdeadbeef
1766 */
1767
1768 /* In some OSs, the shared library list is the same/global/shared
1769 across inferiors. If code is shared between processes, so are
1770 memory regions and features. */
1771 if (!gdbarch_has_global_solist (target_gdbarch))
1772 {
1773 no_shared_libraries (NULL, from_tty);
1774
1775 invalidate_target_mem_regions ();
1776
1777 target_clear_description ();
1778 }
1779 }
1780
1781 /* This is to be called by the open routine before it does
1782 anything. */
1783
1784 void
1785 target_preopen (int from_tty)
1786 {
1787 dont_repeat ();
1788
1789 if (target_has_execution)
1790 {
1791 if (!from_tty
1792 || query (_("A program is being debugged already. Kill it? ")))
1793 target_kill ();
1794 else
1795 error (_("Program not killed."));
1796 }
1797
1798 /* Calling target_kill may remove the target from the stack. But if
1799 it doesn't (which seems like a win for UDI), remove it now. */
1800 /* Leave the exec target, though. The user may be switching from a
1801 live process to a core of the same program. */
1802 pop_all_targets_above (file_stratum, 0);
1803
1804 target_pre_inferior (from_tty);
1805 }
1806
1807 /* Detach a target after doing deferred register stores. */
1808
1809 void
1810 target_detach (char *args, int from_tty)
1811 {
1812 struct target_ops* t;
1813
1814 if (gdbarch_has_global_solist (target_gdbarch))
1815 /* Don't remove global breakpoints here. They're removed on
1816 disconnection from the target. */
1817 ;
1818 else
1819 /* If we're in breakpoints-always-inserted mode, have to remove
1820 them before detaching. */
1821 remove_breakpoints ();
1822
1823 for (t = current_target.beneath; t != NULL; t = t->beneath)
1824 {
1825 if (t->to_detach != NULL)
1826 {
1827 t->to_detach (t, args, from_tty);
1828 return;
1829 }
1830 }
1831
1832 internal_error (__FILE__, __LINE__, "could not find a target to detach");
1833 }
1834
1835 void
1836 target_disconnect (char *args, int from_tty)
1837 {
1838 struct target_ops *t;
1839
1840 /* If we're in breakpoints-always-inserted mode or if breakpoints
1841 are global across processes, we have to remove them before
1842 disconnecting. */
1843 remove_breakpoints ();
1844
1845 for (t = current_target.beneath; t != NULL; t = t->beneath)
1846 if (t->to_disconnect != NULL)
1847 {
1848 if (targetdebug)
1849 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1850 args, from_tty);
1851 t->to_disconnect (t, args, from_tty);
1852 return;
1853 }
1854
1855 tcomplain ();
1856 }
1857
1858 void
1859 target_resume (ptid_t ptid, int step, enum target_signal signal)
1860 {
1861 dcache_invalidate (target_dcache);
1862 (*current_target.to_resume) (ptid, step, signal);
1863 set_executing (ptid, 1);
1864 set_running (ptid, 1);
1865 }
1866 /* Look through the list of possible targets for a target that can
1867 follow forks. */
1868
1869 int
1870 target_follow_fork (int follow_child)
1871 {
1872 struct target_ops *t;
1873
1874 for (t = current_target.beneath; t != NULL; t = t->beneath)
1875 {
1876 if (t->to_follow_fork != NULL)
1877 {
1878 int retval = t->to_follow_fork (t, follow_child);
1879 if (targetdebug)
1880 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1881 follow_child, retval);
1882 return retval;
1883 }
1884 }
1885
1886 /* Some target returned a fork event, but did not know how to follow it. */
1887 internal_error (__FILE__, __LINE__,
1888 "could not find a target to follow fork");
1889 }
1890
1891 void
1892 target_mourn_inferior (void)
1893 {
1894 struct target_ops *t;
1895 for (t = current_target.beneath; t != NULL; t = t->beneath)
1896 {
1897 if (t->to_mourn_inferior != NULL)
1898 {
1899 t->to_mourn_inferior (t);
1900 return;
1901 }
1902 }
1903
1904 internal_error (__FILE__, __LINE__,
1905 "could not find a target to follow mourn inferiour");
1906 }
1907
1908 /* Look for a target which can describe architectural features, starting
1909 from TARGET. If we find one, return its description. */
1910
1911 const struct target_desc *
1912 target_read_description (struct target_ops *target)
1913 {
1914 struct target_ops *t;
1915
1916 for (t = target; t != NULL; t = t->beneath)
1917 if (t->to_read_description != NULL)
1918 {
1919 const struct target_desc *tdesc;
1920
1921 tdesc = t->to_read_description (t);
1922 if (tdesc)
1923 return tdesc;
1924 }
1925
1926 return NULL;
1927 }
1928
1929 /* The default implementation of to_search_memory.
1930 This implements a basic search of memory, reading target memory and
1931 performing the search here (as opposed to performing the search in on the
1932 target side with, for example, gdbserver). */
1933
1934 int
1935 simple_search_memory (struct target_ops *ops,
1936 CORE_ADDR start_addr, ULONGEST search_space_len,
1937 const gdb_byte *pattern, ULONGEST pattern_len,
1938 CORE_ADDR *found_addrp)
1939 {
1940 /* NOTE: also defined in find.c testcase. */
1941 #define SEARCH_CHUNK_SIZE 16000
1942 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
1943 /* Buffer to hold memory contents for searching. */
1944 gdb_byte *search_buf;
1945 unsigned search_buf_size;
1946 struct cleanup *old_cleanups;
1947
1948 search_buf_size = chunk_size + pattern_len - 1;
1949
1950 /* No point in trying to allocate a buffer larger than the search space. */
1951 if (search_space_len < search_buf_size)
1952 search_buf_size = search_space_len;
1953
1954 search_buf = malloc (search_buf_size);
1955 if (search_buf == NULL)
1956 error (_("Unable to allocate memory to perform the search."));
1957 old_cleanups = make_cleanup (free_current_contents, &search_buf);
1958
1959 /* Prime the search buffer. */
1960
1961 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1962 search_buf, start_addr, search_buf_size) != search_buf_size)
1963 {
1964 warning (_("Unable to access target memory at %s, halting search."),
1965 hex_string (start_addr));
1966 do_cleanups (old_cleanups);
1967 return -1;
1968 }
1969
1970 /* Perform the search.
1971
1972 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
1973 When we've scanned N bytes we copy the trailing bytes to the start and
1974 read in another N bytes. */
1975
1976 while (search_space_len >= pattern_len)
1977 {
1978 gdb_byte *found_ptr;
1979 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
1980
1981 found_ptr = memmem (search_buf, nr_search_bytes,
1982 pattern, pattern_len);
1983
1984 if (found_ptr != NULL)
1985 {
1986 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
1987 *found_addrp = found_addr;
1988 do_cleanups (old_cleanups);
1989 return 1;
1990 }
1991
1992 /* Not found in this chunk, skip to next chunk. */
1993
1994 /* Don't let search_space_len wrap here, it's unsigned. */
1995 if (search_space_len >= chunk_size)
1996 search_space_len -= chunk_size;
1997 else
1998 search_space_len = 0;
1999
2000 if (search_space_len >= pattern_len)
2001 {
2002 unsigned keep_len = search_buf_size - chunk_size;
2003 CORE_ADDR read_addr = start_addr + keep_len;
2004 int nr_to_read;
2005
2006 /* Copy the trailing part of the previous iteration to the front
2007 of the buffer for the next iteration. */
2008 gdb_assert (keep_len == pattern_len - 1);
2009 memcpy (search_buf, search_buf + chunk_size, keep_len);
2010
2011 nr_to_read = min (search_space_len - keep_len, chunk_size);
2012
2013 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2014 search_buf + keep_len, read_addr,
2015 nr_to_read) != nr_to_read)
2016 {
2017 warning (_("Unable to access target memory at %s, halting search."),
2018 hex_string (read_addr));
2019 do_cleanups (old_cleanups);
2020 return -1;
2021 }
2022
2023 start_addr += chunk_size;
2024 }
2025 }
2026
2027 /* Not found. */
2028
2029 do_cleanups (old_cleanups);
2030 return 0;
2031 }
2032
2033 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2034 sequence of bytes in PATTERN with length PATTERN_LEN.
2035
2036 The result is 1 if found, 0 if not found, and -1 if there was an error
2037 requiring halting of the search (e.g. memory read error).
2038 If the pattern is found the address is recorded in FOUND_ADDRP. */
2039
2040 int
2041 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2042 const gdb_byte *pattern, ULONGEST pattern_len,
2043 CORE_ADDR *found_addrp)
2044 {
2045 struct target_ops *t;
2046 int found;
2047
2048 /* We don't use INHERIT to set current_target.to_search_memory,
2049 so we have to scan the target stack and handle targetdebug
2050 ourselves. */
2051
2052 if (targetdebug)
2053 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2054 hex_string (start_addr));
2055
2056 for (t = current_target.beneath; t != NULL; t = t->beneath)
2057 if (t->to_search_memory != NULL)
2058 break;
2059
2060 if (t != NULL)
2061 {
2062 found = t->to_search_memory (t, start_addr, search_space_len,
2063 pattern, pattern_len, found_addrp);
2064 }
2065 else
2066 {
2067 /* If a special version of to_search_memory isn't available, use the
2068 simple version. */
2069 found = simple_search_memory (&current_target,
2070 start_addr, search_space_len,
2071 pattern, pattern_len, found_addrp);
2072 }
2073
2074 if (targetdebug)
2075 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2076
2077 return found;
2078 }
2079
2080 /* Look through the currently pushed targets. If none of them will
2081 be able to restart the currently running process, issue an error
2082 message. */
2083
2084 void
2085 target_require_runnable (void)
2086 {
2087 struct target_ops *t;
2088
2089 for (t = target_stack; t != NULL; t = t->beneath)
2090 {
2091 /* If this target knows how to create a new program, then
2092 assume we will still be able to after killing the current
2093 one. Either killing and mourning will not pop T, or else
2094 find_default_run_target will find it again. */
2095 if (t->to_create_inferior != NULL)
2096 return;
2097
2098 /* Do not worry about thread_stratum targets that can not
2099 create inferiors. Assume they will be pushed again if
2100 necessary, and continue to the process_stratum. */
2101 if (t->to_stratum == thread_stratum)
2102 continue;
2103
2104 error (_("\
2105 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2106 t->to_shortname);
2107 }
2108
2109 /* This function is only called if the target is running. In that
2110 case there should have been a process_stratum target and it
2111 should either know how to create inferiors, or not... */
2112 internal_error (__FILE__, __LINE__, "No targets found");
2113 }
2114
2115 /* Look through the list of possible targets for a target that can
2116 execute a run or attach command without any other data. This is
2117 used to locate the default process stratum.
2118
2119 If DO_MESG is not NULL, the result is always valid (error() is
2120 called for errors); else, return NULL on error. */
2121
2122 static struct target_ops *
2123 find_default_run_target (char *do_mesg)
2124 {
2125 struct target_ops **t;
2126 struct target_ops *runable = NULL;
2127 int count;
2128
2129 count = 0;
2130
2131 for (t = target_structs; t < target_structs + target_struct_size;
2132 ++t)
2133 {
2134 if ((*t)->to_can_run && target_can_run (*t))
2135 {
2136 runable = *t;
2137 ++count;
2138 }
2139 }
2140
2141 if (count != 1)
2142 {
2143 if (do_mesg)
2144 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2145 else
2146 return NULL;
2147 }
2148
2149 return runable;
2150 }
2151
2152 void
2153 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2154 {
2155 struct target_ops *t;
2156
2157 t = find_default_run_target ("attach");
2158 (t->to_attach) (t, args, from_tty);
2159 return;
2160 }
2161
2162 void
2163 find_default_create_inferior (struct target_ops *ops,
2164 char *exec_file, char *allargs, char **env,
2165 int from_tty)
2166 {
2167 struct target_ops *t;
2168
2169 t = find_default_run_target ("run");
2170 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2171 return;
2172 }
2173
2174 int
2175 find_default_can_async_p (void)
2176 {
2177 struct target_ops *t;
2178
2179 /* This may be called before the target is pushed on the stack;
2180 look for the default process stratum. If there's none, gdb isn't
2181 configured with a native debugger, and target remote isn't
2182 connected yet. */
2183 t = find_default_run_target (NULL);
2184 if (t && t->to_can_async_p)
2185 return (t->to_can_async_p) ();
2186 return 0;
2187 }
2188
2189 int
2190 find_default_is_async_p (void)
2191 {
2192 struct target_ops *t;
2193
2194 /* This may be called before the target is pushed on the stack;
2195 look for the default process stratum. If there's none, gdb isn't
2196 configured with a native debugger, and target remote isn't
2197 connected yet. */
2198 t = find_default_run_target (NULL);
2199 if (t && t->to_is_async_p)
2200 return (t->to_is_async_p) ();
2201 return 0;
2202 }
2203
2204 int
2205 find_default_supports_non_stop (void)
2206 {
2207 struct target_ops *t;
2208
2209 t = find_default_run_target (NULL);
2210 if (t && t->to_supports_non_stop)
2211 return (t->to_supports_non_stop) ();
2212 return 0;
2213 }
2214
2215 int
2216 target_supports_non_stop ()
2217 {
2218 struct target_ops *t;
2219 for (t = &current_target; t != NULL; t = t->beneath)
2220 if (t->to_supports_non_stop)
2221 return t->to_supports_non_stop ();
2222
2223 return 0;
2224 }
2225
2226
2227 char *
2228 target_get_osdata (const char *type)
2229 {
2230 char *document;
2231 struct target_ops *t;
2232
2233 if (target_can_run (&current_target))
2234 t = &current_target;
2235 else
2236 t = find_default_run_target ("get OS data");
2237
2238 if (!t)
2239 return NULL;
2240
2241 document = target_read_stralloc (t,
2242 TARGET_OBJECT_OSDATA,
2243 type);
2244 return document;
2245 }
2246
2247 static int
2248 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2249 {
2250 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2251 }
2252
2253 static int
2254 default_watchpoint_addr_within_range (struct target_ops *target,
2255 CORE_ADDR addr,
2256 CORE_ADDR start, int length)
2257 {
2258 return addr >= start && addr < start + length;
2259 }
2260
2261 static int
2262 return_zero (void)
2263 {
2264 return 0;
2265 }
2266
2267 static int
2268 return_one (void)
2269 {
2270 return 1;
2271 }
2272
2273 static int
2274 return_minus_one (void)
2275 {
2276 return -1;
2277 }
2278
2279 /*
2280 * Resize the to_sections pointer. Also make sure that anyone that
2281 * was holding on to an old value of it gets updated.
2282 * Returns the old size.
2283 */
2284
2285 int
2286 target_resize_to_sections (struct target_ops *target, int num_added)
2287 {
2288 struct target_ops **t;
2289 struct section_table *old_value;
2290 int old_count;
2291
2292 old_value = target->to_sections;
2293
2294 if (target->to_sections)
2295 {
2296 old_count = target->to_sections_end - target->to_sections;
2297 target->to_sections = (struct section_table *)
2298 xrealloc ((char *) target->to_sections,
2299 (sizeof (struct section_table)) * (num_added + old_count));
2300 }
2301 else
2302 {
2303 old_count = 0;
2304 target->to_sections = (struct section_table *)
2305 xmalloc ((sizeof (struct section_table)) * num_added);
2306 }
2307 target->to_sections_end = target->to_sections + (num_added + old_count);
2308
2309 /* Check to see if anyone else was pointing to this structure.
2310 If old_value was null, then no one was. */
2311
2312 if (old_value)
2313 {
2314 for (t = target_structs; t < target_structs + target_struct_size;
2315 ++t)
2316 {
2317 if ((*t)->to_sections == old_value)
2318 {
2319 (*t)->to_sections = target->to_sections;
2320 (*t)->to_sections_end = target->to_sections_end;
2321 }
2322 }
2323 /* There is a flattened view of the target stack in current_target,
2324 so its to_sections pointer might also need updating. */
2325 if (current_target.to_sections == old_value)
2326 {
2327 current_target.to_sections = target->to_sections;
2328 current_target.to_sections_end = target->to_sections_end;
2329 }
2330 }
2331
2332 return old_count;
2333
2334 }
2335
2336 /* Remove all target sections taken from ABFD.
2337
2338 Scan the current target stack for targets whose section tables
2339 refer to sections from BFD, and remove those sections. We use this
2340 when we notice that the inferior has unloaded a shared object, for
2341 example. */
2342 void
2343 remove_target_sections (bfd *abfd)
2344 {
2345 struct target_ops **t;
2346
2347 for (t = target_structs; t < target_structs + target_struct_size; t++)
2348 {
2349 struct section_table *src, *dest;
2350
2351 dest = (*t)->to_sections;
2352 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
2353 if (src->bfd != abfd)
2354 {
2355 /* Keep this section. */
2356 if (dest < src) *dest = *src;
2357 dest++;
2358 }
2359
2360 /* If we've dropped any sections, resize the section table. */
2361 if (dest < src)
2362 target_resize_to_sections (*t, dest - src);
2363 }
2364 }
2365
2366
2367
2368
2369 /* Find a single runnable target in the stack and return it. If for
2370 some reason there is more than one, return NULL. */
2371
2372 struct target_ops *
2373 find_run_target (void)
2374 {
2375 struct target_ops **t;
2376 struct target_ops *runable = NULL;
2377 int count;
2378
2379 count = 0;
2380
2381 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2382 {
2383 if ((*t)->to_can_run && target_can_run (*t))
2384 {
2385 runable = *t;
2386 ++count;
2387 }
2388 }
2389
2390 return (count == 1 ? runable : NULL);
2391 }
2392
2393 /* Find a single core_stratum target in the list of targets and return it.
2394 If for some reason there is more than one, return NULL. */
2395
2396 struct target_ops *
2397 find_core_target (void)
2398 {
2399 struct target_ops **t;
2400 struct target_ops *runable = NULL;
2401 int count;
2402
2403 count = 0;
2404
2405 for (t = target_structs; t < target_structs + target_struct_size;
2406 ++t)
2407 {
2408 if ((*t)->to_stratum == core_stratum)
2409 {
2410 runable = *t;
2411 ++count;
2412 }
2413 }
2414
2415 return (count == 1 ? runable : NULL);
2416 }
2417
2418 /*
2419 * Find the next target down the stack from the specified target.
2420 */
2421
2422 struct target_ops *
2423 find_target_beneath (struct target_ops *t)
2424 {
2425 return t->beneath;
2426 }
2427
2428 \f
2429 /* The inferior process has died. Long live the inferior! */
2430
2431 void
2432 generic_mourn_inferior (void)
2433 {
2434 ptid_t ptid;
2435
2436 ptid = inferior_ptid;
2437 inferior_ptid = null_ptid;
2438
2439 if (!ptid_equal (ptid, null_ptid))
2440 {
2441 int pid = ptid_get_pid (ptid);
2442 delete_inferior (pid);
2443 }
2444
2445 breakpoint_init_inferior (inf_exited);
2446 registers_changed ();
2447
2448 reopen_exec_file ();
2449 reinit_frame_cache ();
2450
2451 if (deprecated_detach_hook)
2452 deprecated_detach_hook ();
2453 }
2454 \f
2455 /* Helper function for child_wait and the derivatives of child_wait.
2456 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2457 translation of that in OURSTATUS. */
2458 void
2459 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2460 {
2461 if (WIFEXITED (hoststatus))
2462 {
2463 ourstatus->kind = TARGET_WAITKIND_EXITED;
2464 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2465 }
2466 else if (!WIFSTOPPED (hoststatus))
2467 {
2468 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2469 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2470 }
2471 else
2472 {
2473 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2474 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2475 }
2476 }
2477 \f
2478 /* Returns zero to leave the inferior alone, one to interrupt it. */
2479 int (*target_activity_function) (void);
2480 int target_activity_fd;
2481 \f
2482 /* Convert a normal process ID to a string. Returns the string in a
2483 static buffer. */
2484
2485 char *
2486 normal_pid_to_str (ptid_t ptid)
2487 {
2488 static char buf[32];
2489
2490 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2491 return buf;
2492 }
2493
2494 /* Error-catcher for target_find_memory_regions */
2495 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2496 {
2497 error (_("No target."));
2498 return 0;
2499 }
2500
2501 /* Error-catcher for target_make_corefile_notes */
2502 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2503 {
2504 error (_("No target."));
2505 return NULL;
2506 }
2507
2508 /* Set up the handful of non-empty slots needed by the dummy target
2509 vector. */
2510
2511 static void
2512 init_dummy_target (void)
2513 {
2514 dummy_target.to_shortname = "None";
2515 dummy_target.to_longname = "None";
2516 dummy_target.to_doc = "";
2517 dummy_target.to_attach = find_default_attach;
2518 dummy_target.to_detach =
2519 (void (*)(struct target_ops *, char *, int))target_ignore;
2520 dummy_target.to_create_inferior = find_default_create_inferior;
2521 dummy_target.to_can_async_p = find_default_can_async_p;
2522 dummy_target.to_is_async_p = find_default_is_async_p;
2523 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
2524 dummy_target.to_pid_to_str = normal_pid_to_str;
2525 dummy_target.to_stratum = dummy_stratum;
2526 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2527 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2528 dummy_target.to_xfer_partial = default_xfer_partial;
2529 dummy_target.to_magic = OPS_MAGIC;
2530 }
2531 \f
2532 static void
2533 debug_to_open (char *args, int from_tty)
2534 {
2535 debug_target.to_open (args, from_tty);
2536
2537 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2538 }
2539
2540 static void
2541 debug_to_close (int quitting)
2542 {
2543 target_close (&debug_target, quitting);
2544 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2545 }
2546
2547 void
2548 target_close (struct target_ops *targ, int quitting)
2549 {
2550 if (targ->to_xclose != NULL)
2551 targ->to_xclose (targ, quitting);
2552 else if (targ->to_close != NULL)
2553 targ->to_close (quitting);
2554 }
2555
2556 void
2557 target_attach (char *args, int from_tty)
2558 {
2559 struct target_ops *t;
2560 for (t = current_target.beneath; t != NULL; t = t->beneath)
2561 {
2562 if (t->to_attach != NULL)
2563 {
2564 t->to_attach (t, args, from_tty);
2565 return;
2566 }
2567 }
2568
2569 internal_error (__FILE__, __LINE__,
2570 "could not find a target to attach");
2571 }
2572
2573
2574 static void
2575 debug_to_attach (struct target_ops *ops, char *args, int from_tty)
2576 {
2577 debug_target.to_attach (&debug_target, args, from_tty);
2578
2579 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2580 }
2581
2582
2583 static void
2584 debug_to_post_attach (int pid)
2585 {
2586 debug_target.to_post_attach (pid);
2587
2588 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2589 }
2590
2591 static void
2592 debug_to_detach (struct target_ops *ops, char *args, int from_tty)
2593 {
2594 debug_target.to_detach (&debug_target, args, from_tty);
2595
2596 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2597 }
2598
2599 static void
2600 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2601 {
2602 debug_target.to_resume (ptid, step, siggnal);
2603
2604 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2605 step ? "step" : "continue",
2606 target_signal_to_name (siggnal));
2607 }
2608
2609 static ptid_t
2610 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2611 {
2612 ptid_t retval;
2613
2614 retval = debug_target.to_wait (ptid, status);
2615
2616 fprintf_unfiltered (gdb_stdlog,
2617 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2618 PIDGET (retval));
2619 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2620 switch (status->kind)
2621 {
2622 case TARGET_WAITKIND_EXITED:
2623 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2624 status->value.integer);
2625 break;
2626 case TARGET_WAITKIND_STOPPED:
2627 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2628 target_signal_to_name (status->value.sig));
2629 break;
2630 case TARGET_WAITKIND_SIGNALLED:
2631 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2632 target_signal_to_name (status->value.sig));
2633 break;
2634 case TARGET_WAITKIND_LOADED:
2635 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2636 break;
2637 case TARGET_WAITKIND_FORKED:
2638 fprintf_unfiltered (gdb_stdlog, "forked\n");
2639 break;
2640 case TARGET_WAITKIND_VFORKED:
2641 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2642 break;
2643 case TARGET_WAITKIND_EXECD:
2644 fprintf_unfiltered (gdb_stdlog, "execd\n");
2645 break;
2646 case TARGET_WAITKIND_SPURIOUS:
2647 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2648 break;
2649 default:
2650 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2651 break;
2652 }
2653
2654 return retval;
2655 }
2656
2657 static void
2658 debug_print_register (const char * func,
2659 struct regcache *regcache, int regno)
2660 {
2661 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2662 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2663 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2664 && gdbarch_register_name (gdbarch, regno) != NULL
2665 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2666 fprintf_unfiltered (gdb_stdlog, "(%s)",
2667 gdbarch_register_name (gdbarch, regno));
2668 else
2669 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2670 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
2671 {
2672 int i, size = register_size (gdbarch, regno);
2673 unsigned char buf[MAX_REGISTER_SIZE];
2674 regcache_raw_collect (regcache, regno, buf);
2675 fprintf_unfiltered (gdb_stdlog, " = ");
2676 for (i = 0; i < size; i++)
2677 {
2678 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2679 }
2680 if (size <= sizeof (LONGEST))
2681 {
2682 ULONGEST val = extract_unsigned_integer (buf, size);
2683 fprintf_unfiltered (gdb_stdlog, " %s %s",
2684 core_addr_to_string_nz (val), plongest (val));
2685 }
2686 }
2687 fprintf_unfiltered (gdb_stdlog, "\n");
2688 }
2689
2690 static void
2691 debug_to_fetch_registers (struct regcache *regcache, int regno)
2692 {
2693 debug_target.to_fetch_registers (regcache, regno);
2694 debug_print_register ("target_fetch_registers", regcache, regno);
2695 }
2696
2697 static void
2698 debug_to_store_registers (struct regcache *regcache, int regno)
2699 {
2700 debug_target.to_store_registers (regcache, regno);
2701 debug_print_register ("target_store_registers", regcache, regno);
2702 fprintf_unfiltered (gdb_stdlog, "\n");
2703 }
2704
2705 static void
2706 debug_to_prepare_to_store (struct regcache *regcache)
2707 {
2708 debug_target.to_prepare_to_store (regcache);
2709
2710 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2711 }
2712
2713 static int
2714 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2715 int write, struct mem_attrib *attrib,
2716 struct target_ops *target)
2717 {
2718 int retval;
2719
2720 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2721 attrib, target);
2722
2723 fprintf_unfiltered (gdb_stdlog,
2724 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2725 (unsigned int) memaddr, /* possable truncate long long */
2726 len, write ? "write" : "read", retval);
2727
2728 if (retval > 0)
2729 {
2730 int i;
2731
2732 fputs_unfiltered (", bytes =", gdb_stdlog);
2733 for (i = 0; i < retval; i++)
2734 {
2735 if ((((long) &(myaddr[i])) & 0xf) == 0)
2736 {
2737 if (targetdebug < 2 && i > 0)
2738 {
2739 fprintf_unfiltered (gdb_stdlog, " ...");
2740 break;
2741 }
2742 fprintf_unfiltered (gdb_stdlog, "\n");
2743 }
2744
2745 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2746 }
2747 }
2748
2749 fputc_unfiltered ('\n', gdb_stdlog);
2750
2751 return retval;
2752 }
2753
2754 static void
2755 debug_to_files_info (struct target_ops *target)
2756 {
2757 debug_target.to_files_info (target);
2758
2759 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2760 }
2761
2762 static int
2763 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2764 {
2765 int retval;
2766
2767 retval = debug_target.to_insert_breakpoint (bp_tgt);
2768
2769 fprintf_unfiltered (gdb_stdlog,
2770 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2771 (unsigned long) bp_tgt->placed_address,
2772 (unsigned long) retval);
2773 return retval;
2774 }
2775
2776 static int
2777 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2778 {
2779 int retval;
2780
2781 retval = debug_target.to_remove_breakpoint (bp_tgt);
2782
2783 fprintf_unfiltered (gdb_stdlog,
2784 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2785 (unsigned long) bp_tgt->placed_address,
2786 (unsigned long) retval);
2787 return retval;
2788 }
2789
2790 static int
2791 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2792 {
2793 int retval;
2794
2795 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2796
2797 fprintf_unfiltered (gdb_stdlog,
2798 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2799 (unsigned long) type,
2800 (unsigned long) cnt,
2801 (unsigned long) from_tty,
2802 (unsigned long) retval);
2803 return retval;
2804 }
2805
2806 static int
2807 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2808 {
2809 CORE_ADDR retval;
2810
2811 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2812
2813 fprintf_unfiltered (gdb_stdlog,
2814 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2815 (unsigned long) addr,
2816 (unsigned long) len,
2817 (unsigned long) retval);
2818 return retval;
2819 }
2820
2821 static int
2822 debug_to_stopped_by_watchpoint (void)
2823 {
2824 int retval;
2825
2826 retval = debug_target.to_stopped_by_watchpoint ();
2827
2828 fprintf_unfiltered (gdb_stdlog,
2829 "STOPPED_BY_WATCHPOINT () = %ld\n",
2830 (unsigned long) retval);
2831 return retval;
2832 }
2833
2834 static int
2835 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2836 {
2837 int retval;
2838
2839 retval = debug_target.to_stopped_data_address (target, addr);
2840
2841 fprintf_unfiltered (gdb_stdlog,
2842 "target_stopped_data_address ([0x%lx]) = %ld\n",
2843 (unsigned long)*addr,
2844 (unsigned long)retval);
2845 return retval;
2846 }
2847
2848 static int
2849 debug_to_watchpoint_addr_within_range (struct target_ops *target,
2850 CORE_ADDR addr,
2851 CORE_ADDR start, int length)
2852 {
2853 int retval;
2854
2855 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
2856 start, length);
2857
2858 fprintf_filtered (gdb_stdlog,
2859 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
2860 (unsigned long) addr, (unsigned long) start, length,
2861 retval);
2862 return retval;
2863 }
2864
2865 static int
2866 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2867 {
2868 int retval;
2869
2870 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2871
2872 fprintf_unfiltered (gdb_stdlog,
2873 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2874 (unsigned long) bp_tgt->placed_address,
2875 (unsigned long) retval);
2876 return retval;
2877 }
2878
2879 static int
2880 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2881 {
2882 int retval;
2883
2884 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2885
2886 fprintf_unfiltered (gdb_stdlog,
2887 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2888 (unsigned long) bp_tgt->placed_address,
2889 (unsigned long) retval);
2890 return retval;
2891 }
2892
2893 static int
2894 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2895 {
2896 int retval;
2897
2898 retval = debug_target.to_insert_watchpoint (addr, len, type);
2899
2900 fprintf_unfiltered (gdb_stdlog,
2901 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2902 (unsigned long) addr, len, type, (unsigned long) retval);
2903 return retval;
2904 }
2905
2906 static int
2907 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2908 {
2909 int retval;
2910
2911 retval = debug_target.to_remove_watchpoint (addr, len, type);
2912
2913 fprintf_unfiltered (gdb_stdlog,
2914 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2915 (unsigned long) addr, len, type, (unsigned long) retval);
2916 return retval;
2917 }
2918
2919 static void
2920 debug_to_terminal_init (void)
2921 {
2922 debug_target.to_terminal_init ();
2923
2924 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2925 }
2926
2927 static void
2928 debug_to_terminal_inferior (void)
2929 {
2930 debug_target.to_terminal_inferior ();
2931
2932 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2933 }
2934
2935 static void
2936 debug_to_terminal_ours_for_output (void)
2937 {
2938 debug_target.to_terminal_ours_for_output ();
2939
2940 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2941 }
2942
2943 static void
2944 debug_to_terminal_ours (void)
2945 {
2946 debug_target.to_terminal_ours ();
2947
2948 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2949 }
2950
2951 static void
2952 debug_to_terminal_save_ours (void)
2953 {
2954 debug_target.to_terminal_save_ours ();
2955
2956 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2957 }
2958
2959 static void
2960 debug_to_terminal_info (char *arg, int from_tty)
2961 {
2962 debug_target.to_terminal_info (arg, from_tty);
2963
2964 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2965 from_tty);
2966 }
2967
2968 static void
2969 debug_to_kill (void)
2970 {
2971 debug_target.to_kill ();
2972
2973 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2974 }
2975
2976 static void
2977 debug_to_load (char *args, int from_tty)
2978 {
2979 debug_target.to_load (args, from_tty);
2980
2981 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2982 }
2983
2984 static int
2985 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2986 {
2987 int retval;
2988
2989 retval = debug_target.to_lookup_symbol (name, addrp);
2990
2991 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2992
2993 return retval;
2994 }
2995
2996 static void
2997 debug_to_create_inferior (struct target_ops *ops,
2998 char *exec_file, char *args, char **env,
2999 int from_tty)
3000 {
3001 debug_target.to_create_inferior (ops, exec_file, args, env, from_tty);
3002
3003 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
3004 exec_file, args, from_tty);
3005 }
3006
3007 static void
3008 debug_to_post_startup_inferior (ptid_t ptid)
3009 {
3010 debug_target.to_post_startup_inferior (ptid);
3011
3012 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3013 PIDGET (ptid));
3014 }
3015
3016 static void
3017 debug_to_acknowledge_created_inferior (int pid)
3018 {
3019 debug_target.to_acknowledge_created_inferior (pid);
3020
3021 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
3022 pid);
3023 }
3024
3025 static void
3026 debug_to_insert_fork_catchpoint (int pid)
3027 {
3028 debug_target.to_insert_fork_catchpoint (pid);
3029
3030 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
3031 pid);
3032 }
3033
3034 static int
3035 debug_to_remove_fork_catchpoint (int pid)
3036 {
3037 int retval;
3038
3039 retval = debug_target.to_remove_fork_catchpoint (pid);
3040
3041 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3042 pid, retval);
3043
3044 return retval;
3045 }
3046
3047 static void
3048 debug_to_insert_vfork_catchpoint (int pid)
3049 {
3050 debug_target.to_insert_vfork_catchpoint (pid);
3051
3052 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
3053 pid);
3054 }
3055
3056 static int
3057 debug_to_remove_vfork_catchpoint (int pid)
3058 {
3059 int retval;
3060
3061 retval = debug_target.to_remove_vfork_catchpoint (pid);
3062
3063 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3064 pid, retval);
3065
3066 return retval;
3067 }
3068
3069 static void
3070 debug_to_insert_exec_catchpoint (int pid)
3071 {
3072 debug_target.to_insert_exec_catchpoint (pid);
3073
3074 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
3075 pid);
3076 }
3077
3078 static int
3079 debug_to_remove_exec_catchpoint (int pid)
3080 {
3081 int retval;
3082
3083 retval = debug_target.to_remove_exec_catchpoint (pid);
3084
3085 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3086 pid, retval);
3087
3088 return retval;
3089 }
3090
3091 static int
3092 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3093 {
3094 int has_exited;
3095
3096 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3097
3098 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3099 pid, wait_status, *exit_status, has_exited);
3100
3101 return has_exited;
3102 }
3103
3104 static void
3105 debug_to_mourn_inferior (struct target_ops *ops)
3106 {
3107 debug_target.to_mourn_inferior (&debug_target);
3108
3109 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
3110 }
3111
3112 static int
3113 debug_to_can_run (void)
3114 {
3115 int retval;
3116
3117 retval = debug_target.to_can_run ();
3118
3119 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3120
3121 return retval;
3122 }
3123
3124 static void
3125 debug_to_notice_signals (ptid_t ptid)
3126 {
3127 debug_target.to_notice_signals (ptid);
3128
3129 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3130 PIDGET (ptid));
3131 }
3132
3133 static int
3134 debug_to_thread_alive (ptid_t ptid)
3135 {
3136 int retval;
3137
3138 retval = debug_target.to_thread_alive (ptid);
3139
3140 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3141 PIDGET (ptid), retval);
3142
3143 return retval;
3144 }
3145
3146 static void
3147 debug_to_find_new_threads (void)
3148 {
3149 debug_target.to_find_new_threads ();
3150
3151 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
3152 }
3153
3154 static void
3155 debug_to_stop (ptid_t ptid)
3156 {
3157 debug_target.to_stop (ptid);
3158
3159 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3160 target_pid_to_str (ptid));
3161 }
3162
3163 static void
3164 debug_to_rcmd (char *command,
3165 struct ui_file *outbuf)
3166 {
3167 debug_target.to_rcmd (command, outbuf);
3168 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3169 }
3170
3171 static char *
3172 debug_to_pid_to_exec_file (int pid)
3173 {
3174 char *exec_file;
3175
3176 exec_file = debug_target.to_pid_to_exec_file (pid);
3177
3178 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3179 pid, exec_file);
3180
3181 return exec_file;
3182 }
3183
3184 static void
3185 setup_target_debug (void)
3186 {
3187 memcpy (&debug_target, &current_target, sizeof debug_target);
3188
3189 current_target.to_open = debug_to_open;
3190 current_target.to_close = debug_to_close;
3191 current_target.to_attach = debug_to_attach;
3192 current_target.to_post_attach = debug_to_post_attach;
3193 current_target.to_detach = debug_to_detach;
3194 current_target.to_resume = debug_to_resume;
3195 current_target.to_wait = debug_to_wait;
3196 current_target.to_fetch_registers = debug_to_fetch_registers;
3197 current_target.to_store_registers = debug_to_store_registers;
3198 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3199 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3200 current_target.to_files_info = debug_to_files_info;
3201 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3202 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3203 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3204 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3205 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3206 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3207 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3208 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3209 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3210 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3211 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3212 current_target.to_terminal_init = debug_to_terminal_init;
3213 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3214 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3215 current_target.to_terminal_ours = debug_to_terminal_ours;
3216 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3217 current_target.to_terminal_info = debug_to_terminal_info;
3218 current_target.to_kill = debug_to_kill;
3219 current_target.to_load = debug_to_load;
3220 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3221 current_target.to_create_inferior = debug_to_create_inferior;
3222 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3223 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3224 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3225 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3226 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3227 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3228 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3229 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3230 current_target.to_has_exited = debug_to_has_exited;
3231 current_target.to_mourn_inferior = debug_to_mourn_inferior;
3232 current_target.to_can_run = debug_to_can_run;
3233 current_target.to_notice_signals = debug_to_notice_signals;
3234 current_target.to_thread_alive = debug_to_thread_alive;
3235 current_target.to_find_new_threads = debug_to_find_new_threads;
3236 current_target.to_stop = debug_to_stop;
3237 current_target.to_rcmd = debug_to_rcmd;
3238 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3239 }
3240 \f
3241
3242 static char targ_desc[] =
3243 "Names of targets and files being debugged.\n\
3244 Shows the entire stack of targets currently in use (including the exec-file,\n\
3245 core-file, and process, if any), as well as the symbol file name.";
3246
3247 static void
3248 do_monitor_command (char *cmd,
3249 int from_tty)
3250 {
3251 if ((current_target.to_rcmd
3252 == (void (*) (char *, struct ui_file *)) tcomplain)
3253 || (current_target.to_rcmd == debug_to_rcmd
3254 && (debug_target.to_rcmd
3255 == (void (*) (char *, struct ui_file *)) tcomplain)))
3256 error (_("\"monitor\" command not supported by this target."));
3257 target_rcmd (cmd, gdb_stdtarg);
3258 }
3259
3260 /* Print the name of each layers of our target stack. */
3261
3262 static void
3263 maintenance_print_target_stack (char *cmd, int from_tty)
3264 {
3265 struct target_ops *t;
3266
3267 printf_filtered (_("The current target stack is:\n"));
3268
3269 for (t = target_stack; t != NULL; t = t->beneath)
3270 {
3271 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3272 }
3273 }
3274
3275 /* Controls if async mode is permitted. */
3276 int target_async_permitted = 0;
3277
3278 /* The set command writes to this variable. If the inferior is
3279 executing, linux_nat_async_permitted is *not* updated. */
3280 static int target_async_permitted_1 = 0;
3281
3282 static void
3283 set_maintenance_target_async_permitted (char *args, int from_tty,
3284 struct cmd_list_element *c)
3285 {
3286 if (target_has_execution)
3287 {
3288 target_async_permitted_1 = target_async_permitted;
3289 error (_("Cannot change this setting while the inferior is running."));
3290 }
3291
3292 target_async_permitted = target_async_permitted_1;
3293 }
3294
3295 static void
3296 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3297 struct cmd_list_element *c,
3298 const char *value)
3299 {
3300 fprintf_filtered (file, _("\
3301 Controlling the inferior in asynchronous mode is %s.\n"), value);
3302 }
3303
3304 void
3305 initialize_targets (void)
3306 {
3307 init_dummy_target ();
3308 push_target (&dummy_target);
3309
3310 add_info ("target", target_info, targ_desc);
3311 add_info ("files", target_info, targ_desc);
3312
3313 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3314 Set target debugging."), _("\
3315 Show target debugging."), _("\
3316 When non-zero, target debugging is enabled. Higher numbers are more\n\
3317 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3318 command."),
3319 NULL,
3320 show_targetdebug,
3321 &setdebuglist, &showdebuglist);
3322
3323 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3324 &trust_readonly, _("\
3325 Set mode for reading from readonly sections."), _("\
3326 Show mode for reading from readonly sections."), _("\
3327 When this mode is on, memory reads from readonly sections (such as .text)\n\
3328 will be read from the object file instead of from the target. This will\n\
3329 result in significant performance improvement for remote targets."),
3330 NULL,
3331 show_trust_readonly,
3332 &setlist, &showlist);
3333
3334 add_com ("monitor", class_obscure, do_monitor_command,
3335 _("Send a command to the remote monitor (remote targets only)."));
3336
3337 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3338 _("Print the name of each layer of the internal target stack."),
3339 &maintenanceprintlist);
3340
3341 add_setshow_boolean_cmd ("target-async", no_class,
3342 &target_async_permitted_1, _("\
3343 Set whether gdb controls the inferior in asynchronous mode."), _("\
3344 Show whether gdb controls the inferior in asynchronous mode."), _("\
3345 Tells gdb whether to control the inferior in asynchronous mode."),
3346 set_maintenance_target_async_permitted,
3347 show_maintenance_target_async_permitted,
3348 &setlist,
3349 &showlist);
3350
3351 target_dcache = dcache_init ();
3352 }
This page took 0.110108 seconds and 4 git commands to generate.