Remove make_cleanup_defer_target_commit_resume
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50
51 static void info_target_command (char *, int);
52
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
55 static void default_terminal_info (struct target_ops *, const char *, int);
56
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
62
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static struct address_space *default_thread_address_space
85 (struct target_ops *self, ptid_t ptid);
86
87 static void tcomplain (void) ATTRIBUTE_NORETURN;
88
89 static int return_zero (struct target_ops *);
90
91 static int return_zero_has_execution (struct target_ops *, ptid_t);
92
93 static void target_command (char *, int);
94
95 static struct target_ops *find_default_run_target (const char *);
96
97 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
98 ptid_t ptid);
99
100 static int dummy_find_memory_regions (struct target_ops *self,
101 find_memory_region_ftype ignore1,
102 void *ignore2);
103
104 static char *dummy_make_corefile_notes (struct target_ops *self,
105 bfd *ignore1, int *ignore2);
106
107 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
108
109 static enum exec_direction_kind default_execution_direction
110 (struct target_ops *self);
111
112 static struct target_ops debug_target;
113
114 #include "target-delegates.c"
115
116 static void init_dummy_target (void);
117
118 static void update_current_target (void);
119
120 /* Vector of existing target structures. */
121 typedef struct target_ops *target_ops_p;
122 DEF_VEC_P (target_ops_p);
123 static VEC (target_ops_p) *target_structs;
124
125 /* The initial current target, so that there is always a semi-valid
126 current target. */
127
128 static struct target_ops dummy_target;
129
130 /* Top of target stack. */
131
132 static struct target_ops *target_stack;
133
134 /* The target structure we are currently using to talk to a process
135 or file or whatever "inferior" we have. */
136
137 struct target_ops current_target;
138
139 /* Command list for target. */
140
141 static struct cmd_list_element *targetlist = NULL;
142
143 /* Nonzero if we should trust readonly sections from the
144 executable when reading memory. */
145
146 static int trust_readonly = 0;
147
148 /* Nonzero if we should show true memory content including
149 memory breakpoint inserted by gdb. */
150
151 static int show_memory_breakpoints = 0;
152
153 /* These globals control whether GDB attempts to perform these
154 operations; they are useful for targets that need to prevent
155 inadvertant disruption, such as in non-stop mode. */
156
157 int may_write_registers = 1;
158
159 int may_write_memory = 1;
160
161 int may_insert_breakpoints = 1;
162
163 int may_insert_tracepoints = 1;
164
165 int may_insert_fast_tracepoints = 1;
166
167 int may_stop = 1;
168
169 /* Non-zero if we want to see trace of target level stuff. */
170
171 static unsigned int targetdebug = 0;
172
173 static void
174 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
175 {
176 update_current_target ();
177 }
178
179 static void
180 show_targetdebug (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
184 }
185
186 static void setup_target_debug (void);
187
188 /* The user just typed 'target' without the name of a target. */
189
190 static void
191 target_command (char *arg, int from_tty)
192 {
193 fputs_filtered ("Argument required (target name). Try `help target'\n",
194 gdb_stdout);
195 }
196
197 /* Default target_has_* methods for process_stratum targets. */
198
199 int
200 default_child_has_all_memory (struct target_ops *ops)
201 {
202 /* If no inferior selected, then we can't read memory here. */
203 if (ptid_equal (inferior_ptid, null_ptid))
204 return 0;
205
206 return 1;
207 }
208
209 int
210 default_child_has_memory (struct target_ops *ops)
211 {
212 /* If no inferior selected, then we can't read memory here. */
213 if (ptid_equal (inferior_ptid, null_ptid))
214 return 0;
215
216 return 1;
217 }
218
219 int
220 default_child_has_stack (struct target_ops *ops)
221 {
222 /* If no inferior selected, there's no stack. */
223 if (ptid_equal (inferior_ptid, null_ptid))
224 return 0;
225
226 return 1;
227 }
228
229 int
230 default_child_has_registers (struct target_ops *ops)
231 {
232 /* Can't read registers from no inferior. */
233 if (ptid_equal (inferior_ptid, null_ptid))
234 return 0;
235
236 return 1;
237 }
238
239 int
240 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
241 {
242 /* If there's no thread selected, then we can't make it run through
243 hoops. */
244 if (ptid_equal (the_ptid, null_ptid))
245 return 0;
246
247 return 1;
248 }
249
250
251 int
252 target_has_all_memory_1 (void)
253 {
254 struct target_ops *t;
255
256 for (t = current_target.beneath; t != NULL; t = t->beneath)
257 if (t->to_has_all_memory (t))
258 return 1;
259
260 return 0;
261 }
262
263 int
264 target_has_memory_1 (void)
265 {
266 struct target_ops *t;
267
268 for (t = current_target.beneath; t != NULL; t = t->beneath)
269 if (t->to_has_memory (t))
270 return 1;
271
272 return 0;
273 }
274
275 int
276 target_has_stack_1 (void)
277 {
278 struct target_ops *t;
279
280 for (t = current_target.beneath; t != NULL; t = t->beneath)
281 if (t->to_has_stack (t))
282 return 1;
283
284 return 0;
285 }
286
287 int
288 target_has_registers_1 (void)
289 {
290 struct target_ops *t;
291
292 for (t = current_target.beneath; t != NULL; t = t->beneath)
293 if (t->to_has_registers (t))
294 return 1;
295
296 return 0;
297 }
298
299 int
300 target_has_execution_1 (ptid_t the_ptid)
301 {
302 struct target_ops *t;
303
304 for (t = current_target.beneath; t != NULL; t = t->beneath)
305 if (t->to_has_execution (t, the_ptid))
306 return 1;
307
308 return 0;
309 }
310
311 int
312 target_has_execution_current (void)
313 {
314 return target_has_execution_1 (inferior_ptid);
315 }
316
317 /* Complete initialization of T. This ensures that various fields in
318 T are set, if needed by the target implementation. */
319
320 void
321 complete_target_initialization (struct target_ops *t)
322 {
323 /* Provide default values for all "must have" methods. */
324
325 if (t->to_has_all_memory == NULL)
326 t->to_has_all_memory = return_zero;
327
328 if (t->to_has_memory == NULL)
329 t->to_has_memory = return_zero;
330
331 if (t->to_has_stack == NULL)
332 t->to_has_stack = return_zero;
333
334 if (t->to_has_registers == NULL)
335 t->to_has_registers = return_zero;
336
337 if (t->to_has_execution == NULL)
338 t->to_has_execution = return_zero_has_execution;
339
340 /* These methods can be called on an unpushed target and so require
341 a default implementation if the target might plausibly be the
342 default run target. */
343 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
344 && t->to_supports_non_stop != NULL));
345
346 install_delegators (t);
347 }
348
349 /* This is used to implement the various target commands. */
350
351 static void
352 open_target (char *args, int from_tty, struct cmd_list_element *command)
353 {
354 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
355
356 if (targetdebug)
357 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
358 ops->to_shortname);
359
360 ops->to_open (args, from_tty);
361
362 if (targetdebug)
363 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
364 ops->to_shortname, args, from_tty);
365 }
366
367 /* Add possible target architecture T to the list and add a new
368 command 'target T->to_shortname'. Set COMPLETER as the command's
369 completer if not NULL. */
370
371 void
372 add_target_with_completer (struct target_ops *t,
373 completer_ftype *completer)
374 {
375 struct cmd_list_element *c;
376
377 complete_target_initialization (t);
378
379 VEC_safe_push (target_ops_p, target_structs, t);
380
381 if (targetlist == NULL)
382 add_prefix_cmd ("target", class_run, target_command, _("\
383 Connect to a target machine or process.\n\
384 The first argument is the type or protocol of the target machine.\n\
385 Remaining arguments are interpreted by the target protocol. For more\n\
386 information on the arguments for a particular protocol, type\n\
387 `help target ' followed by the protocol name."),
388 &targetlist, "target ", 0, &cmdlist);
389 c = add_cmd (t->to_shortname, no_class, t->to_doc, &targetlist);
390 set_cmd_sfunc (c, open_target);
391 set_cmd_context (c, t);
392 if (completer != NULL)
393 set_cmd_completer (c, completer);
394 }
395
396 /* Add a possible target architecture to the list. */
397
398 void
399 add_target (struct target_ops *t)
400 {
401 add_target_with_completer (t, NULL);
402 }
403
404 /* See target.h. */
405
406 void
407 add_deprecated_target_alias (struct target_ops *t, const char *alias)
408 {
409 struct cmd_list_element *c;
410 char *alt;
411
412 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
413 see PR cli/15104. */
414 c = add_cmd (alias, no_class, t->to_doc, &targetlist);
415 set_cmd_sfunc (c, open_target);
416 set_cmd_context (c, t);
417 alt = xstrprintf ("target %s", t->to_shortname);
418 deprecate_cmd (c, alt);
419 }
420
421 /* Stub functions */
422
423 void
424 target_kill (void)
425 {
426 current_target.to_kill (&current_target);
427 }
428
429 void
430 target_load (const char *arg, int from_tty)
431 {
432 target_dcache_invalidate ();
433 (*current_target.to_load) (&current_target, arg, from_tty);
434 }
435
436 /* Define it. */
437
438 enum target_terminal::terminal_state target_terminal::terminal_state
439 = target_terminal::terminal_is_ours;
440
441 /* See target/target.h. */
442
443 void
444 target_terminal::init (void)
445 {
446 (*current_target.to_terminal_init) (&current_target);
447
448 terminal_state = terminal_is_ours;
449 }
450
451 /* See target/target.h. */
452
453 void
454 target_terminal::inferior (void)
455 {
456 struct ui *ui = current_ui;
457
458 /* A background resume (``run&'') should leave GDB in control of the
459 terminal. */
460 if (ui->prompt_state != PROMPT_BLOCKED)
461 return;
462
463 /* Since we always run the inferior in the main console (unless "set
464 inferior-tty" is in effect), when some UI other than the main one
465 calls target_terminal::inferior, then we leave the main UI's
466 terminal settings as is. */
467 if (ui != main_ui)
468 return;
469
470 if (terminal_state == terminal_is_inferior)
471 return;
472
473 /* If GDB is resuming the inferior in the foreground, install
474 inferior's terminal modes. */
475 (*current_target.to_terminal_inferior) (&current_target);
476 terminal_state = terminal_is_inferior;
477
478 /* If the user hit C-c before, pretend that it was hit right
479 here. */
480 if (check_quit_flag ())
481 target_pass_ctrlc ();
482 }
483
484 /* See target/target.h. */
485
486 void
487 target_terminal::ours ()
488 {
489 struct ui *ui = current_ui;
490
491 /* See target_terminal::inferior. */
492 if (ui != main_ui)
493 return;
494
495 if (terminal_state == terminal_is_ours)
496 return;
497
498 (*current_target.to_terminal_ours) (&current_target);
499 terminal_state = terminal_is_ours;
500 }
501
502 /* See target/target.h. */
503
504 void
505 target_terminal::ours_for_output ()
506 {
507 struct ui *ui = current_ui;
508
509 /* See target_terminal::inferior. */
510 if (ui != main_ui)
511 return;
512
513 if (terminal_state != terminal_is_inferior)
514 return;
515 (*current_target.to_terminal_ours_for_output) (&current_target);
516 terminal_state = terminal_is_ours_for_output;
517 }
518
519 /* See target/target.h. */
520
521 void
522 target_terminal::info (const char *arg, int from_tty)
523 {
524 (*current_target.to_terminal_info) (&current_target, arg, from_tty);
525 }
526
527 /* See target.h. */
528
529 int
530 target_supports_terminal_ours (void)
531 {
532 struct target_ops *t;
533
534 for (t = current_target.beneath; t != NULL; t = t->beneath)
535 {
536 if (t->to_terminal_ours != delegate_terminal_ours
537 && t->to_terminal_ours != tdefault_terminal_ours)
538 return 1;
539 }
540
541 return 0;
542 }
543
544 static void
545 tcomplain (void)
546 {
547 error (_("You can't do that when your target is `%s'"),
548 current_target.to_shortname);
549 }
550
551 void
552 noprocess (void)
553 {
554 error (_("You can't do that without a process to debug."));
555 }
556
557 static void
558 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
559 {
560 printf_unfiltered (_("No saved terminal information.\n"));
561 }
562
563 /* A default implementation for the to_get_ada_task_ptid target method.
564
565 This function builds the PTID by using both LWP and TID as part of
566 the PTID lwp and tid elements. The pid used is the pid of the
567 inferior_ptid. */
568
569 static ptid_t
570 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
571 {
572 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
573 }
574
575 static enum exec_direction_kind
576 default_execution_direction (struct target_ops *self)
577 {
578 if (!target_can_execute_reverse)
579 return EXEC_FORWARD;
580 else if (!target_can_async_p ())
581 return EXEC_FORWARD;
582 else
583 gdb_assert_not_reached ("\
584 to_execution_direction must be implemented for reverse async");
585 }
586
587 /* Go through the target stack from top to bottom, copying over zero
588 entries in current_target, then filling in still empty entries. In
589 effect, we are doing class inheritance through the pushed target
590 vectors.
591
592 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
593 is currently implemented, is that it discards any knowledge of
594 which target an inherited method originally belonged to.
595 Consequently, new new target methods should instead explicitly and
596 locally search the target stack for the target that can handle the
597 request. */
598
599 static void
600 update_current_target (void)
601 {
602 struct target_ops *t;
603
604 /* First, reset current's contents. */
605 memset (&current_target, 0, sizeof (current_target));
606
607 /* Install the delegators. */
608 install_delegators (&current_target);
609
610 current_target.to_stratum = target_stack->to_stratum;
611
612 #define INHERIT(FIELD, TARGET) \
613 if (!current_target.FIELD) \
614 current_target.FIELD = (TARGET)->FIELD
615
616 /* Do not add any new INHERITs here. Instead, use the delegation
617 mechanism provided by make-target-delegates. */
618 for (t = target_stack; t; t = t->beneath)
619 {
620 INHERIT (to_shortname, t);
621 INHERIT (to_longname, t);
622 INHERIT (to_attach_no_wait, t);
623 INHERIT (to_have_steppable_watchpoint, t);
624 INHERIT (to_have_continuable_watchpoint, t);
625 INHERIT (to_has_thread_control, t);
626 }
627 #undef INHERIT
628
629 /* Finally, position the target-stack beneath the squashed
630 "current_target". That way code looking for a non-inherited
631 target method can quickly and simply find it. */
632 current_target.beneath = target_stack;
633
634 if (targetdebug)
635 setup_target_debug ();
636 }
637
638 /* Push a new target type into the stack of the existing target accessors,
639 possibly superseding some of the existing accessors.
640
641 Rather than allow an empty stack, we always have the dummy target at
642 the bottom stratum, so we can call the function vectors without
643 checking them. */
644
645 void
646 push_target (struct target_ops *t)
647 {
648 struct target_ops **cur;
649
650 /* Check magic number. If wrong, it probably means someone changed
651 the struct definition, but not all the places that initialize one. */
652 if (t->to_magic != OPS_MAGIC)
653 {
654 fprintf_unfiltered (gdb_stderr,
655 "Magic number of %s target struct wrong\n",
656 t->to_shortname);
657 internal_error (__FILE__, __LINE__,
658 _("failed internal consistency check"));
659 }
660
661 /* Find the proper stratum to install this target in. */
662 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
663 {
664 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
665 break;
666 }
667
668 /* If there's already targets at this stratum, remove them. */
669 /* FIXME: cagney/2003-10-15: I think this should be popping all
670 targets to CUR, and not just those at this stratum level. */
671 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
672 {
673 /* There's already something at this stratum level. Close it,
674 and un-hook it from the stack. */
675 struct target_ops *tmp = (*cur);
676
677 (*cur) = (*cur)->beneath;
678 tmp->beneath = NULL;
679 target_close (tmp);
680 }
681
682 /* We have removed all targets in our stratum, now add the new one. */
683 t->beneath = (*cur);
684 (*cur) = t;
685
686 update_current_target ();
687 }
688
689 /* Remove a target_ops vector from the stack, wherever it may be.
690 Return how many times it was removed (0 or 1). */
691
692 int
693 unpush_target (struct target_ops *t)
694 {
695 struct target_ops **cur;
696 struct target_ops *tmp;
697
698 if (t->to_stratum == dummy_stratum)
699 internal_error (__FILE__, __LINE__,
700 _("Attempt to unpush the dummy target"));
701
702 /* Look for the specified target. Note that we assume that a target
703 can only occur once in the target stack. */
704
705 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
706 {
707 if ((*cur) == t)
708 break;
709 }
710
711 /* If we don't find target_ops, quit. Only open targets should be
712 closed. */
713 if ((*cur) == NULL)
714 return 0;
715
716 /* Unchain the target. */
717 tmp = (*cur);
718 (*cur) = (*cur)->beneath;
719 tmp->beneath = NULL;
720
721 update_current_target ();
722
723 /* Finally close the target. Note we do this after unchaining, so
724 any target method calls from within the target_close
725 implementation don't end up in T anymore. */
726 target_close (t);
727
728 return 1;
729 }
730
731 /* Unpush TARGET and assert that it worked. */
732
733 static void
734 unpush_target_and_assert (struct target_ops *target)
735 {
736 if (!unpush_target (target))
737 {
738 fprintf_unfiltered (gdb_stderr,
739 "pop_all_targets couldn't find target %s\n",
740 target->to_shortname);
741 internal_error (__FILE__, __LINE__,
742 _("failed internal consistency check"));
743 }
744 }
745
746 void
747 pop_all_targets_above (enum strata above_stratum)
748 {
749 while ((int) (current_target.to_stratum) > (int) above_stratum)
750 unpush_target_and_assert (target_stack);
751 }
752
753 /* See target.h. */
754
755 void
756 pop_all_targets_at_and_above (enum strata stratum)
757 {
758 while ((int) (current_target.to_stratum) >= (int) stratum)
759 unpush_target_and_assert (target_stack);
760 }
761
762 void
763 pop_all_targets (void)
764 {
765 pop_all_targets_above (dummy_stratum);
766 }
767
768 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
769
770 int
771 target_is_pushed (struct target_ops *t)
772 {
773 struct target_ops *cur;
774
775 /* Check magic number. If wrong, it probably means someone changed
776 the struct definition, but not all the places that initialize one. */
777 if (t->to_magic != OPS_MAGIC)
778 {
779 fprintf_unfiltered (gdb_stderr,
780 "Magic number of %s target struct wrong\n",
781 t->to_shortname);
782 internal_error (__FILE__, __LINE__,
783 _("failed internal consistency check"));
784 }
785
786 for (cur = target_stack; cur != NULL; cur = cur->beneath)
787 if (cur == t)
788 return 1;
789
790 return 0;
791 }
792
793 /* Default implementation of to_get_thread_local_address. */
794
795 static void
796 generic_tls_error (void)
797 {
798 throw_error (TLS_GENERIC_ERROR,
799 _("Cannot find thread-local variables on this target"));
800 }
801
802 /* Using the objfile specified in OBJFILE, find the address for the
803 current thread's thread-local storage with offset OFFSET. */
804 CORE_ADDR
805 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
806 {
807 volatile CORE_ADDR addr = 0;
808 struct target_ops *target = &current_target;
809
810 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
811 {
812 ptid_t ptid = inferior_ptid;
813
814 TRY
815 {
816 CORE_ADDR lm_addr;
817
818 /* Fetch the load module address for this objfile. */
819 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
820 objfile);
821
822 addr = target->to_get_thread_local_address (target, ptid,
823 lm_addr, offset);
824 }
825 /* If an error occurred, print TLS related messages here. Otherwise,
826 throw the error to some higher catcher. */
827 CATCH (ex, RETURN_MASK_ALL)
828 {
829 int objfile_is_library = (objfile->flags & OBJF_SHARED);
830
831 switch (ex.error)
832 {
833 case TLS_NO_LIBRARY_SUPPORT_ERROR:
834 error (_("Cannot find thread-local variables "
835 "in this thread library."));
836 break;
837 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
838 if (objfile_is_library)
839 error (_("Cannot find shared library `%s' in dynamic"
840 " linker's load module list"), objfile_name (objfile));
841 else
842 error (_("Cannot find executable file `%s' in dynamic"
843 " linker's load module list"), objfile_name (objfile));
844 break;
845 case TLS_NOT_ALLOCATED_YET_ERROR:
846 if (objfile_is_library)
847 error (_("The inferior has not yet allocated storage for"
848 " thread-local variables in\n"
849 "the shared library `%s'\n"
850 "for %s"),
851 objfile_name (objfile), target_pid_to_str (ptid));
852 else
853 error (_("The inferior has not yet allocated storage for"
854 " thread-local variables in\n"
855 "the executable `%s'\n"
856 "for %s"),
857 objfile_name (objfile), target_pid_to_str (ptid));
858 break;
859 case TLS_GENERIC_ERROR:
860 if (objfile_is_library)
861 error (_("Cannot find thread-local storage for %s, "
862 "shared library %s:\n%s"),
863 target_pid_to_str (ptid),
864 objfile_name (objfile), ex.message);
865 else
866 error (_("Cannot find thread-local storage for %s, "
867 "executable file %s:\n%s"),
868 target_pid_to_str (ptid),
869 objfile_name (objfile), ex.message);
870 break;
871 default:
872 throw_exception (ex);
873 break;
874 }
875 }
876 END_CATCH
877 }
878 /* It wouldn't be wrong here to try a gdbarch method, too; finding
879 TLS is an ABI-specific thing. But we don't do that yet. */
880 else
881 error (_("Cannot find thread-local variables on this target"));
882
883 return addr;
884 }
885
886 const char *
887 target_xfer_status_to_string (enum target_xfer_status status)
888 {
889 #define CASE(X) case X: return #X
890 switch (status)
891 {
892 CASE(TARGET_XFER_E_IO);
893 CASE(TARGET_XFER_UNAVAILABLE);
894 default:
895 return "<unknown>";
896 }
897 #undef CASE
898 };
899
900
901 #undef MIN
902 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
903
904 /* target_read_string -- read a null terminated string, up to LEN bytes,
905 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
906 Set *STRING to a pointer to malloc'd memory containing the data; the caller
907 is responsible for freeing it. Return the number of bytes successfully
908 read. */
909
910 int
911 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
912 {
913 int tlen, offset, i;
914 gdb_byte buf[4];
915 int errcode = 0;
916 char *buffer;
917 int buffer_allocated;
918 char *bufptr;
919 unsigned int nbytes_read = 0;
920
921 gdb_assert (string);
922
923 /* Small for testing. */
924 buffer_allocated = 4;
925 buffer = (char *) xmalloc (buffer_allocated);
926 bufptr = buffer;
927
928 while (len > 0)
929 {
930 tlen = MIN (len, 4 - (memaddr & 3));
931 offset = memaddr & 3;
932
933 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
934 if (errcode != 0)
935 {
936 /* The transfer request might have crossed the boundary to an
937 unallocated region of memory. Retry the transfer, requesting
938 a single byte. */
939 tlen = 1;
940 offset = 0;
941 errcode = target_read_memory (memaddr, buf, 1);
942 if (errcode != 0)
943 goto done;
944 }
945
946 if (bufptr - buffer + tlen > buffer_allocated)
947 {
948 unsigned int bytes;
949
950 bytes = bufptr - buffer;
951 buffer_allocated *= 2;
952 buffer = (char *) xrealloc (buffer, buffer_allocated);
953 bufptr = buffer + bytes;
954 }
955
956 for (i = 0; i < tlen; i++)
957 {
958 *bufptr++ = buf[i + offset];
959 if (buf[i + offset] == '\000')
960 {
961 nbytes_read += i + 1;
962 goto done;
963 }
964 }
965
966 memaddr += tlen;
967 len -= tlen;
968 nbytes_read += tlen;
969 }
970 done:
971 *string = buffer;
972 if (errnop != NULL)
973 *errnop = errcode;
974 return nbytes_read;
975 }
976
977 struct target_section_table *
978 target_get_section_table (struct target_ops *target)
979 {
980 return (*target->to_get_section_table) (target);
981 }
982
983 /* Find a section containing ADDR. */
984
985 struct target_section *
986 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
987 {
988 struct target_section_table *table = target_get_section_table (target);
989 struct target_section *secp;
990
991 if (table == NULL)
992 return NULL;
993
994 for (secp = table->sections; secp < table->sections_end; secp++)
995 {
996 if (addr >= secp->addr && addr < secp->endaddr)
997 return secp;
998 }
999 return NULL;
1000 }
1001
1002
1003 /* Helper for the memory xfer routines. Checks the attributes of the
1004 memory region of MEMADDR against the read or write being attempted.
1005 If the access is permitted returns true, otherwise returns false.
1006 REGION_P is an optional output parameter. If not-NULL, it is
1007 filled with a pointer to the memory region of MEMADDR. REG_LEN
1008 returns LEN trimmed to the end of the region. This is how much the
1009 caller can continue requesting, if the access is permitted. A
1010 single xfer request must not straddle memory region boundaries. */
1011
1012 static int
1013 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1014 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1015 struct mem_region **region_p)
1016 {
1017 struct mem_region *region;
1018
1019 region = lookup_mem_region (memaddr);
1020
1021 if (region_p != NULL)
1022 *region_p = region;
1023
1024 switch (region->attrib.mode)
1025 {
1026 case MEM_RO:
1027 if (writebuf != NULL)
1028 return 0;
1029 break;
1030
1031 case MEM_WO:
1032 if (readbuf != NULL)
1033 return 0;
1034 break;
1035
1036 case MEM_FLASH:
1037 /* We only support writing to flash during "load" for now. */
1038 if (writebuf != NULL)
1039 error (_("Writing to flash memory forbidden in this context"));
1040 break;
1041
1042 case MEM_NONE:
1043 return 0;
1044 }
1045
1046 /* region->hi == 0 means there's no upper bound. */
1047 if (memaddr + len < region->hi || region->hi == 0)
1048 *reg_len = len;
1049 else
1050 *reg_len = region->hi - memaddr;
1051
1052 return 1;
1053 }
1054
1055 /* Read memory from more than one valid target. A core file, for
1056 instance, could have some of memory but delegate other bits to
1057 the target below it. So, we must manually try all targets. */
1058
1059 enum target_xfer_status
1060 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1061 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1062 ULONGEST *xfered_len)
1063 {
1064 enum target_xfer_status res;
1065
1066 do
1067 {
1068 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1069 readbuf, writebuf, memaddr, len,
1070 xfered_len);
1071 if (res == TARGET_XFER_OK)
1072 break;
1073
1074 /* Stop if the target reports that the memory is not available. */
1075 if (res == TARGET_XFER_UNAVAILABLE)
1076 break;
1077
1078 /* We want to continue past core files to executables, but not
1079 past a running target's memory. */
1080 if (ops->to_has_all_memory (ops))
1081 break;
1082
1083 ops = ops->beneath;
1084 }
1085 while (ops != NULL);
1086
1087 /* The cache works at the raw memory level. Make sure the cache
1088 gets updated with raw contents no matter what kind of memory
1089 object was originally being written. Note we do write-through
1090 first, so that if it fails, we don't write to the cache contents
1091 that never made it to the target. */
1092 if (writebuf != NULL
1093 && !ptid_equal (inferior_ptid, null_ptid)
1094 && target_dcache_init_p ()
1095 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1096 {
1097 DCACHE *dcache = target_dcache_get ();
1098
1099 /* Note that writing to an area of memory which wasn't present
1100 in the cache doesn't cause it to be loaded in. */
1101 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1102 }
1103
1104 return res;
1105 }
1106
1107 /* Perform a partial memory transfer.
1108 For docs see target.h, to_xfer_partial. */
1109
1110 static enum target_xfer_status
1111 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1112 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1113 ULONGEST len, ULONGEST *xfered_len)
1114 {
1115 enum target_xfer_status res;
1116 ULONGEST reg_len;
1117 struct mem_region *region;
1118 struct inferior *inf;
1119
1120 /* For accesses to unmapped overlay sections, read directly from
1121 files. Must do this first, as MEMADDR may need adjustment. */
1122 if (readbuf != NULL && overlay_debugging)
1123 {
1124 struct obj_section *section = find_pc_overlay (memaddr);
1125
1126 if (pc_in_unmapped_range (memaddr, section))
1127 {
1128 struct target_section_table *table
1129 = target_get_section_table (ops);
1130 const char *section_name = section->the_bfd_section->name;
1131
1132 memaddr = overlay_mapped_address (memaddr, section);
1133 return section_table_xfer_memory_partial (readbuf, writebuf,
1134 memaddr, len, xfered_len,
1135 table->sections,
1136 table->sections_end,
1137 section_name);
1138 }
1139 }
1140
1141 /* Try the executable files, if "trust-readonly-sections" is set. */
1142 if (readbuf != NULL && trust_readonly)
1143 {
1144 struct target_section *secp;
1145 struct target_section_table *table;
1146
1147 secp = target_section_by_addr (ops, memaddr);
1148 if (secp != NULL
1149 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1150 secp->the_bfd_section)
1151 & SEC_READONLY))
1152 {
1153 table = target_get_section_table (ops);
1154 return section_table_xfer_memory_partial (readbuf, writebuf,
1155 memaddr, len, xfered_len,
1156 table->sections,
1157 table->sections_end,
1158 NULL);
1159 }
1160 }
1161
1162 /* Try GDB's internal data cache. */
1163
1164 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1165 &region))
1166 return TARGET_XFER_E_IO;
1167
1168 if (!ptid_equal (inferior_ptid, null_ptid))
1169 inf = find_inferior_ptid (inferior_ptid);
1170 else
1171 inf = NULL;
1172
1173 if (inf != NULL
1174 && readbuf != NULL
1175 /* The dcache reads whole cache lines; that doesn't play well
1176 with reading from a trace buffer, because reading outside of
1177 the collected memory range fails. */
1178 && get_traceframe_number () == -1
1179 && (region->attrib.cache
1180 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1181 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1182 {
1183 DCACHE *dcache = target_dcache_get_or_init ();
1184
1185 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1186 reg_len, xfered_len);
1187 }
1188
1189 /* If none of those methods found the memory we wanted, fall back
1190 to a target partial transfer. Normally a single call to
1191 to_xfer_partial is enough; if it doesn't recognize an object
1192 it will call the to_xfer_partial of the next target down.
1193 But for memory this won't do. Memory is the only target
1194 object which can be read from more than one valid target.
1195 A core file, for instance, could have some of memory but
1196 delegate other bits to the target below it. So, we must
1197 manually try all targets. */
1198
1199 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1200 xfered_len);
1201
1202 /* If we still haven't got anything, return the last error. We
1203 give up. */
1204 return res;
1205 }
1206
1207 /* Perform a partial memory transfer. For docs see target.h,
1208 to_xfer_partial. */
1209
1210 static enum target_xfer_status
1211 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1212 gdb_byte *readbuf, const gdb_byte *writebuf,
1213 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1214 {
1215 enum target_xfer_status res;
1216
1217 /* Zero length requests are ok and require no work. */
1218 if (len == 0)
1219 return TARGET_XFER_EOF;
1220
1221 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1222 breakpoint insns, thus hiding out from higher layers whether
1223 there are software breakpoints inserted in the code stream. */
1224 if (readbuf != NULL)
1225 {
1226 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1227 xfered_len);
1228
1229 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1230 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1231 }
1232 else
1233 {
1234 /* A large write request is likely to be partially satisfied
1235 by memory_xfer_partial_1. We will continually malloc
1236 and free a copy of the entire write request for breakpoint
1237 shadow handling even though we only end up writing a small
1238 subset of it. Cap writes to a limit specified by the target
1239 to mitigate this. */
1240 len = std::min (ops->to_get_memory_xfer_limit (ops), len);
1241
1242 gdb::byte_vector buf (writebuf, writebuf + len);
1243 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1244 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1245 xfered_len);
1246 }
1247
1248 return res;
1249 }
1250
1251 scoped_restore_tmpl<int>
1252 make_scoped_restore_show_memory_breakpoints (int show)
1253 {
1254 return make_scoped_restore (&show_memory_breakpoints, show);
1255 }
1256
1257 /* For docs see target.h, to_xfer_partial. */
1258
1259 enum target_xfer_status
1260 target_xfer_partial (struct target_ops *ops,
1261 enum target_object object, const char *annex,
1262 gdb_byte *readbuf, const gdb_byte *writebuf,
1263 ULONGEST offset, ULONGEST len,
1264 ULONGEST *xfered_len)
1265 {
1266 enum target_xfer_status retval;
1267
1268 gdb_assert (ops->to_xfer_partial != NULL);
1269
1270 /* Transfer is done when LEN is zero. */
1271 if (len == 0)
1272 return TARGET_XFER_EOF;
1273
1274 if (writebuf && !may_write_memory)
1275 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1276 core_addr_to_string_nz (offset), plongest (len));
1277
1278 *xfered_len = 0;
1279
1280 /* If this is a memory transfer, let the memory-specific code
1281 have a look at it instead. Memory transfers are more
1282 complicated. */
1283 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1284 || object == TARGET_OBJECT_CODE_MEMORY)
1285 retval = memory_xfer_partial (ops, object, readbuf,
1286 writebuf, offset, len, xfered_len);
1287 else if (object == TARGET_OBJECT_RAW_MEMORY)
1288 {
1289 /* Skip/avoid accessing the target if the memory region
1290 attributes block the access. Check this here instead of in
1291 raw_memory_xfer_partial as otherwise we'd end up checking
1292 this twice in the case of the memory_xfer_partial path is
1293 taken; once before checking the dcache, and another in the
1294 tail call to raw_memory_xfer_partial. */
1295 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1296 NULL))
1297 return TARGET_XFER_E_IO;
1298
1299 /* Request the normal memory object from other layers. */
1300 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1301 xfered_len);
1302 }
1303 else
1304 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1305 writebuf, offset, len, xfered_len);
1306
1307 if (targetdebug)
1308 {
1309 const unsigned char *myaddr = NULL;
1310
1311 fprintf_unfiltered (gdb_stdlog,
1312 "%s:target_xfer_partial "
1313 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1314 ops->to_shortname,
1315 (int) object,
1316 (annex ? annex : "(null)"),
1317 host_address_to_string (readbuf),
1318 host_address_to_string (writebuf),
1319 core_addr_to_string_nz (offset),
1320 pulongest (len), retval,
1321 pulongest (*xfered_len));
1322
1323 if (readbuf)
1324 myaddr = readbuf;
1325 if (writebuf)
1326 myaddr = writebuf;
1327 if (retval == TARGET_XFER_OK && myaddr != NULL)
1328 {
1329 int i;
1330
1331 fputs_unfiltered (", bytes =", gdb_stdlog);
1332 for (i = 0; i < *xfered_len; i++)
1333 {
1334 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1335 {
1336 if (targetdebug < 2 && i > 0)
1337 {
1338 fprintf_unfiltered (gdb_stdlog, " ...");
1339 break;
1340 }
1341 fprintf_unfiltered (gdb_stdlog, "\n");
1342 }
1343
1344 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1345 }
1346 }
1347
1348 fputc_unfiltered ('\n', gdb_stdlog);
1349 }
1350
1351 /* Check implementations of to_xfer_partial update *XFERED_LEN
1352 properly. Do assertion after printing debug messages, so that we
1353 can find more clues on assertion failure from debugging messages. */
1354 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1355 gdb_assert (*xfered_len > 0);
1356
1357 return retval;
1358 }
1359
1360 /* Read LEN bytes of target memory at address MEMADDR, placing the
1361 results in GDB's memory at MYADDR. Returns either 0 for success or
1362 -1 if any error occurs.
1363
1364 If an error occurs, no guarantee is made about the contents of the data at
1365 MYADDR. In particular, the caller should not depend upon partial reads
1366 filling the buffer with good data. There is no way for the caller to know
1367 how much good data might have been transfered anyway. Callers that can
1368 deal with partial reads should call target_read (which will retry until
1369 it makes no progress, and then return how much was transferred). */
1370
1371 int
1372 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1373 {
1374 /* Dispatch to the topmost target, not the flattened current_target.
1375 Memory accesses check target->to_has_(all_)memory, and the
1376 flattened target doesn't inherit those. */
1377 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1378 myaddr, memaddr, len) == len)
1379 return 0;
1380 else
1381 return -1;
1382 }
1383
1384 /* See target/target.h. */
1385
1386 int
1387 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1388 {
1389 gdb_byte buf[4];
1390 int r;
1391
1392 r = target_read_memory (memaddr, buf, sizeof buf);
1393 if (r != 0)
1394 return r;
1395 *result = extract_unsigned_integer (buf, sizeof buf,
1396 gdbarch_byte_order (target_gdbarch ()));
1397 return 0;
1398 }
1399
1400 /* Like target_read_memory, but specify explicitly that this is a read
1401 from the target's raw memory. That is, this read bypasses the
1402 dcache, breakpoint shadowing, etc. */
1403
1404 int
1405 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1406 {
1407 /* See comment in target_read_memory about why the request starts at
1408 current_target.beneath. */
1409 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1410 myaddr, memaddr, len) == len)
1411 return 0;
1412 else
1413 return -1;
1414 }
1415
1416 /* Like target_read_memory, but specify explicitly that this is a read from
1417 the target's stack. This may trigger different cache behavior. */
1418
1419 int
1420 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1421 {
1422 /* See comment in target_read_memory about why the request starts at
1423 current_target.beneath. */
1424 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1425 myaddr, memaddr, len) == len)
1426 return 0;
1427 else
1428 return -1;
1429 }
1430
1431 /* Like target_read_memory, but specify explicitly that this is a read from
1432 the target's code. This may trigger different cache behavior. */
1433
1434 int
1435 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1436 {
1437 /* See comment in target_read_memory about why the request starts at
1438 current_target.beneath. */
1439 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1440 myaddr, memaddr, len) == len)
1441 return 0;
1442 else
1443 return -1;
1444 }
1445
1446 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1447 Returns either 0 for success or -1 if any error occurs. If an
1448 error occurs, no guarantee is made about how much data got written.
1449 Callers that can deal with partial writes should call
1450 target_write. */
1451
1452 int
1453 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1454 {
1455 /* See comment in target_read_memory about why the request starts at
1456 current_target.beneath. */
1457 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1458 myaddr, memaddr, len) == len)
1459 return 0;
1460 else
1461 return -1;
1462 }
1463
1464 /* Write LEN bytes from MYADDR to target raw memory at address
1465 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1466 If an error occurs, no guarantee is made about how much data got
1467 written. Callers that can deal with partial writes should call
1468 target_write. */
1469
1470 int
1471 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1472 {
1473 /* See comment in target_read_memory about why the request starts at
1474 current_target.beneath. */
1475 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1476 myaddr, memaddr, len) == len)
1477 return 0;
1478 else
1479 return -1;
1480 }
1481
1482 /* Fetch the target's memory map. */
1483
1484 VEC(mem_region_s) *
1485 target_memory_map (void)
1486 {
1487 VEC(mem_region_s) *result;
1488 struct mem_region *last_one, *this_one;
1489 int ix;
1490 result = current_target.to_memory_map (&current_target);
1491 if (result == NULL)
1492 return NULL;
1493
1494 qsort (VEC_address (mem_region_s, result),
1495 VEC_length (mem_region_s, result),
1496 sizeof (struct mem_region), mem_region_cmp);
1497
1498 /* Check that regions do not overlap. Simultaneously assign
1499 a numbering for the "mem" commands to use to refer to
1500 each region. */
1501 last_one = NULL;
1502 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1503 {
1504 this_one->number = ix;
1505
1506 if (last_one && last_one->hi > this_one->lo)
1507 {
1508 warning (_("Overlapping regions in memory map: ignoring"));
1509 VEC_free (mem_region_s, result);
1510 return NULL;
1511 }
1512 last_one = this_one;
1513 }
1514
1515 return result;
1516 }
1517
1518 void
1519 target_flash_erase (ULONGEST address, LONGEST length)
1520 {
1521 current_target.to_flash_erase (&current_target, address, length);
1522 }
1523
1524 void
1525 target_flash_done (void)
1526 {
1527 current_target.to_flash_done (&current_target);
1528 }
1529
1530 static void
1531 show_trust_readonly (struct ui_file *file, int from_tty,
1532 struct cmd_list_element *c, const char *value)
1533 {
1534 fprintf_filtered (file,
1535 _("Mode for reading from readonly sections is %s.\n"),
1536 value);
1537 }
1538
1539 /* Target vector read/write partial wrapper functions. */
1540
1541 static enum target_xfer_status
1542 target_read_partial (struct target_ops *ops,
1543 enum target_object object,
1544 const char *annex, gdb_byte *buf,
1545 ULONGEST offset, ULONGEST len,
1546 ULONGEST *xfered_len)
1547 {
1548 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1549 xfered_len);
1550 }
1551
1552 static enum target_xfer_status
1553 target_write_partial (struct target_ops *ops,
1554 enum target_object object,
1555 const char *annex, const gdb_byte *buf,
1556 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1557 {
1558 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1559 xfered_len);
1560 }
1561
1562 /* Wrappers to perform the full transfer. */
1563
1564 /* For docs on target_read see target.h. */
1565
1566 LONGEST
1567 target_read (struct target_ops *ops,
1568 enum target_object object,
1569 const char *annex, gdb_byte *buf,
1570 ULONGEST offset, LONGEST len)
1571 {
1572 LONGEST xfered_total = 0;
1573 int unit_size = 1;
1574
1575 /* If we are reading from a memory object, find the length of an addressable
1576 unit for that architecture. */
1577 if (object == TARGET_OBJECT_MEMORY
1578 || object == TARGET_OBJECT_STACK_MEMORY
1579 || object == TARGET_OBJECT_CODE_MEMORY
1580 || object == TARGET_OBJECT_RAW_MEMORY)
1581 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1582
1583 while (xfered_total < len)
1584 {
1585 ULONGEST xfered_partial;
1586 enum target_xfer_status status;
1587
1588 status = target_read_partial (ops, object, annex,
1589 buf + xfered_total * unit_size,
1590 offset + xfered_total, len - xfered_total,
1591 &xfered_partial);
1592
1593 /* Call an observer, notifying them of the xfer progress? */
1594 if (status == TARGET_XFER_EOF)
1595 return xfered_total;
1596 else if (status == TARGET_XFER_OK)
1597 {
1598 xfered_total += xfered_partial;
1599 QUIT;
1600 }
1601 else
1602 return TARGET_XFER_E_IO;
1603
1604 }
1605 return len;
1606 }
1607
1608 /* Assuming that the entire [begin, end) range of memory cannot be
1609 read, try to read whatever subrange is possible to read.
1610
1611 The function returns, in RESULT, either zero or one memory block.
1612 If there's a readable subrange at the beginning, it is completely
1613 read and returned. Any further readable subrange will not be read.
1614 Otherwise, if there's a readable subrange at the end, it will be
1615 completely read and returned. Any readable subranges before it
1616 (obviously, not starting at the beginning), will be ignored. In
1617 other cases -- either no readable subrange, or readable subrange(s)
1618 that is neither at the beginning, or end, nothing is returned.
1619
1620 The purpose of this function is to handle a read across a boundary
1621 of accessible memory in a case when memory map is not available.
1622 The above restrictions are fine for this case, but will give
1623 incorrect results if the memory is 'patchy'. However, supporting
1624 'patchy' memory would require trying to read every single byte,
1625 and it seems unacceptable solution. Explicit memory map is
1626 recommended for this case -- and target_read_memory_robust will
1627 take care of reading multiple ranges then. */
1628
1629 static void
1630 read_whatever_is_readable (struct target_ops *ops,
1631 const ULONGEST begin, const ULONGEST end,
1632 int unit_size,
1633 VEC(memory_read_result_s) **result)
1634 {
1635 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1636 ULONGEST current_begin = begin;
1637 ULONGEST current_end = end;
1638 int forward;
1639 memory_read_result_s r;
1640 ULONGEST xfered_len;
1641
1642 /* If we previously failed to read 1 byte, nothing can be done here. */
1643 if (end - begin <= 1)
1644 {
1645 xfree (buf);
1646 return;
1647 }
1648
1649 /* Check that either first or the last byte is readable, and give up
1650 if not. This heuristic is meant to permit reading accessible memory
1651 at the boundary of accessible region. */
1652 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1653 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1654 {
1655 forward = 1;
1656 ++current_begin;
1657 }
1658 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1659 buf + (end - begin) - 1, end - 1, 1,
1660 &xfered_len) == TARGET_XFER_OK)
1661 {
1662 forward = 0;
1663 --current_end;
1664 }
1665 else
1666 {
1667 xfree (buf);
1668 return;
1669 }
1670
1671 /* Loop invariant is that the [current_begin, current_end) was previously
1672 found to be not readable as a whole.
1673
1674 Note loop condition -- if the range has 1 byte, we can't divide the range
1675 so there's no point trying further. */
1676 while (current_end - current_begin > 1)
1677 {
1678 ULONGEST first_half_begin, first_half_end;
1679 ULONGEST second_half_begin, second_half_end;
1680 LONGEST xfer;
1681 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1682
1683 if (forward)
1684 {
1685 first_half_begin = current_begin;
1686 first_half_end = middle;
1687 second_half_begin = middle;
1688 second_half_end = current_end;
1689 }
1690 else
1691 {
1692 first_half_begin = middle;
1693 first_half_end = current_end;
1694 second_half_begin = current_begin;
1695 second_half_end = middle;
1696 }
1697
1698 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1699 buf + (first_half_begin - begin) * unit_size,
1700 first_half_begin,
1701 first_half_end - first_half_begin);
1702
1703 if (xfer == first_half_end - first_half_begin)
1704 {
1705 /* This half reads up fine. So, the error must be in the
1706 other half. */
1707 current_begin = second_half_begin;
1708 current_end = second_half_end;
1709 }
1710 else
1711 {
1712 /* This half is not readable. Because we've tried one byte, we
1713 know some part of this half if actually readable. Go to the next
1714 iteration to divide again and try to read.
1715
1716 We don't handle the other half, because this function only tries
1717 to read a single readable subrange. */
1718 current_begin = first_half_begin;
1719 current_end = first_half_end;
1720 }
1721 }
1722
1723 if (forward)
1724 {
1725 /* The [begin, current_begin) range has been read. */
1726 r.begin = begin;
1727 r.end = current_begin;
1728 r.data = buf;
1729 }
1730 else
1731 {
1732 /* The [current_end, end) range has been read. */
1733 LONGEST region_len = end - current_end;
1734
1735 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1736 memcpy (r.data, buf + (current_end - begin) * unit_size,
1737 region_len * unit_size);
1738 r.begin = current_end;
1739 r.end = end;
1740 xfree (buf);
1741 }
1742 VEC_safe_push(memory_read_result_s, (*result), &r);
1743 }
1744
1745 void
1746 free_memory_read_result_vector (void *x)
1747 {
1748 VEC(memory_read_result_s) **v = (VEC(memory_read_result_s) **) x;
1749 memory_read_result_s *current;
1750 int ix;
1751
1752 for (ix = 0; VEC_iterate (memory_read_result_s, *v, ix, current); ++ix)
1753 {
1754 xfree (current->data);
1755 }
1756 VEC_free (memory_read_result_s, *v);
1757 }
1758
1759 VEC(memory_read_result_s) *
1760 read_memory_robust (struct target_ops *ops,
1761 const ULONGEST offset, const LONGEST len)
1762 {
1763 VEC(memory_read_result_s) *result = 0;
1764 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1765 struct cleanup *cleanup = make_cleanup (free_memory_read_result_vector,
1766 &result);
1767
1768 LONGEST xfered_total = 0;
1769 while (xfered_total < len)
1770 {
1771 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1772 LONGEST region_len;
1773
1774 /* If there is no explicit region, a fake one should be created. */
1775 gdb_assert (region);
1776
1777 if (region->hi == 0)
1778 region_len = len - xfered_total;
1779 else
1780 region_len = region->hi - offset;
1781
1782 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1783 {
1784 /* Cannot read this region. Note that we can end up here only
1785 if the region is explicitly marked inaccessible, or
1786 'inaccessible-by-default' is in effect. */
1787 xfered_total += region_len;
1788 }
1789 else
1790 {
1791 LONGEST to_read = std::min (len - xfered_total, region_len);
1792 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1793 struct cleanup *inner_cleanup = make_cleanup (xfree, buffer);
1794
1795 LONGEST xfered_partial =
1796 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1797 (gdb_byte *) buffer,
1798 offset + xfered_total, to_read);
1799 /* Call an observer, notifying them of the xfer progress? */
1800 if (xfered_partial <= 0)
1801 {
1802 /* Got an error reading full chunk. See if maybe we can read
1803 some subrange. */
1804 do_cleanups (inner_cleanup);
1805 read_whatever_is_readable (ops, offset + xfered_total,
1806 offset + xfered_total + to_read,
1807 unit_size, &result);
1808 xfered_total += to_read;
1809 }
1810 else
1811 {
1812 struct memory_read_result r;
1813
1814 discard_cleanups (inner_cleanup);
1815 r.data = buffer;
1816 r.begin = offset + xfered_total;
1817 r.end = r.begin + xfered_partial;
1818 VEC_safe_push (memory_read_result_s, result, &r);
1819 xfered_total += xfered_partial;
1820 }
1821 QUIT;
1822 }
1823 }
1824
1825 discard_cleanups (cleanup);
1826 return result;
1827 }
1828
1829
1830 /* An alternative to target_write with progress callbacks. */
1831
1832 LONGEST
1833 target_write_with_progress (struct target_ops *ops,
1834 enum target_object object,
1835 const char *annex, const gdb_byte *buf,
1836 ULONGEST offset, LONGEST len,
1837 void (*progress) (ULONGEST, void *), void *baton)
1838 {
1839 LONGEST xfered_total = 0;
1840 int unit_size = 1;
1841
1842 /* If we are writing to a memory object, find the length of an addressable
1843 unit for that architecture. */
1844 if (object == TARGET_OBJECT_MEMORY
1845 || object == TARGET_OBJECT_STACK_MEMORY
1846 || object == TARGET_OBJECT_CODE_MEMORY
1847 || object == TARGET_OBJECT_RAW_MEMORY)
1848 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1849
1850 /* Give the progress callback a chance to set up. */
1851 if (progress)
1852 (*progress) (0, baton);
1853
1854 while (xfered_total < len)
1855 {
1856 ULONGEST xfered_partial;
1857 enum target_xfer_status status;
1858
1859 status = target_write_partial (ops, object, annex,
1860 buf + xfered_total * unit_size,
1861 offset + xfered_total, len - xfered_total,
1862 &xfered_partial);
1863
1864 if (status != TARGET_XFER_OK)
1865 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1866
1867 if (progress)
1868 (*progress) (xfered_partial, baton);
1869
1870 xfered_total += xfered_partial;
1871 QUIT;
1872 }
1873 return len;
1874 }
1875
1876 /* For docs on target_write see target.h. */
1877
1878 LONGEST
1879 target_write (struct target_ops *ops,
1880 enum target_object object,
1881 const char *annex, const gdb_byte *buf,
1882 ULONGEST offset, LONGEST len)
1883 {
1884 return target_write_with_progress (ops, object, annex, buf, offset, len,
1885 NULL, NULL);
1886 }
1887
1888 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1889 the size of the transferred data. PADDING additional bytes are
1890 available in *BUF_P. This is a helper function for
1891 target_read_alloc; see the declaration of that function for more
1892 information. */
1893
1894 static LONGEST
1895 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1896 const char *annex, gdb_byte **buf_p, int padding)
1897 {
1898 size_t buf_alloc, buf_pos;
1899 gdb_byte *buf;
1900
1901 /* This function does not have a length parameter; it reads the
1902 entire OBJECT). Also, it doesn't support objects fetched partly
1903 from one target and partly from another (in a different stratum,
1904 e.g. a core file and an executable). Both reasons make it
1905 unsuitable for reading memory. */
1906 gdb_assert (object != TARGET_OBJECT_MEMORY);
1907
1908 /* Start by reading up to 4K at a time. The target will throttle
1909 this number down if necessary. */
1910 buf_alloc = 4096;
1911 buf = (gdb_byte *) xmalloc (buf_alloc);
1912 buf_pos = 0;
1913 while (1)
1914 {
1915 ULONGEST xfered_len;
1916 enum target_xfer_status status;
1917
1918 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1919 buf_pos, buf_alloc - buf_pos - padding,
1920 &xfered_len);
1921
1922 if (status == TARGET_XFER_EOF)
1923 {
1924 /* Read all there was. */
1925 if (buf_pos == 0)
1926 xfree (buf);
1927 else
1928 *buf_p = buf;
1929 return buf_pos;
1930 }
1931 else if (status != TARGET_XFER_OK)
1932 {
1933 /* An error occurred. */
1934 xfree (buf);
1935 return TARGET_XFER_E_IO;
1936 }
1937
1938 buf_pos += xfered_len;
1939
1940 /* If the buffer is filling up, expand it. */
1941 if (buf_alloc < buf_pos * 2)
1942 {
1943 buf_alloc *= 2;
1944 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
1945 }
1946
1947 QUIT;
1948 }
1949 }
1950
1951 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1952 the size of the transferred data. See the declaration in "target.h"
1953 function for more information about the return value. */
1954
1955 LONGEST
1956 target_read_alloc (struct target_ops *ops, enum target_object object,
1957 const char *annex, gdb_byte **buf_p)
1958 {
1959 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1960 }
1961
1962 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1963 returned as a string, allocated using xmalloc. If an error occurs
1964 or the transfer is unsupported, NULL is returned. Empty objects
1965 are returned as allocated but empty strings. A warning is issued
1966 if the result contains any embedded NUL bytes. */
1967
1968 char *
1969 target_read_stralloc (struct target_ops *ops, enum target_object object,
1970 const char *annex)
1971 {
1972 gdb_byte *buffer;
1973 char *bufstr;
1974 LONGEST i, transferred;
1975
1976 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1977 bufstr = (char *) buffer;
1978
1979 if (transferred < 0)
1980 return NULL;
1981
1982 if (transferred == 0)
1983 return xstrdup ("");
1984
1985 bufstr[transferred] = 0;
1986
1987 /* Check for embedded NUL bytes; but allow trailing NULs. */
1988 for (i = strlen (bufstr); i < transferred; i++)
1989 if (bufstr[i] != 0)
1990 {
1991 warning (_("target object %d, annex %s, "
1992 "contained unexpected null characters"),
1993 (int) object, annex ? annex : "(none)");
1994 break;
1995 }
1996
1997 return bufstr;
1998 }
1999
2000 /* Memory transfer methods. */
2001
2002 void
2003 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2004 LONGEST len)
2005 {
2006 /* This method is used to read from an alternate, non-current
2007 target. This read must bypass the overlay support (as symbols
2008 don't match this target), and GDB's internal cache (wrong cache
2009 for this target). */
2010 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2011 != len)
2012 memory_error (TARGET_XFER_E_IO, addr);
2013 }
2014
2015 ULONGEST
2016 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2017 int len, enum bfd_endian byte_order)
2018 {
2019 gdb_byte buf[sizeof (ULONGEST)];
2020
2021 gdb_assert (len <= sizeof (buf));
2022 get_target_memory (ops, addr, buf, len);
2023 return extract_unsigned_integer (buf, len, byte_order);
2024 }
2025
2026 /* See target.h. */
2027
2028 int
2029 target_insert_breakpoint (struct gdbarch *gdbarch,
2030 struct bp_target_info *bp_tgt)
2031 {
2032 if (!may_insert_breakpoints)
2033 {
2034 warning (_("May not insert breakpoints"));
2035 return 1;
2036 }
2037
2038 return current_target.to_insert_breakpoint (&current_target,
2039 gdbarch, bp_tgt);
2040 }
2041
2042 /* See target.h. */
2043
2044 int
2045 target_remove_breakpoint (struct gdbarch *gdbarch,
2046 struct bp_target_info *bp_tgt,
2047 enum remove_bp_reason reason)
2048 {
2049 /* This is kind of a weird case to handle, but the permission might
2050 have been changed after breakpoints were inserted - in which case
2051 we should just take the user literally and assume that any
2052 breakpoints should be left in place. */
2053 if (!may_insert_breakpoints)
2054 {
2055 warning (_("May not remove breakpoints"));
2056 return 1;
2057 }
2058
2059 return current_target.to_remove_breakpoint (&current_target,
2060 gdbarch, bp_tgt, reason);
2061 }
2062
2063 static void
2064 info_target_command (char *args, int from_tty)
2065 {
2066 struct target_ops *t;
2067 int has_all_mem = 0;
2068
2069 if (symfile_objfile != NULL)
2070 printf_unfiltered (_("Symbols from \"%s\".\n"),
2071 objfile_name (symfile_objfile));
2072
2073 for (t = target_stack; t != NULL; t = t->beneath)
2074 {
2075 if (!(*t->to_has_memory) (t))
2076 continue;
2077
2078 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2079 continue;
2080 if (has_all_mem)
2081 printf_unfiltered (_("\tWhile running this, "
2082 "GDB does not access memory from...\n"));
2083 printf_unfiltered ("%s:\n", t->to_longname);
2084 (t->to_files_info) (t);
2085 has_all_mem = (*t->to_has_all_memory) (t);
2086 }
2087 }
2088
2089 /* This function is called before any new inferior is created, e.g.
2090 by running a program, attaching, or connecting to a target.
2091 It cleans up any state from previous invocations which might
2092 change between runs. This is a subset of what target_preopen
2093 resets (things which might change between targets). */
2094
2095 void
2096 target_pre_inferior (int from_tty)
2097 {
2098 /* Clear out solib state. Otherwise the solib state of the previous
2099 inferior might have survived and is entirely wrong for the new
2100 target. This has been observed on GNU/Linux using glibc 2.3. How
2101 to reproduce:
2102
2103 bash$ ./foo&
2104 [1] 4711
2105 bash$ ./foo&
2106 [1] 4712
2107 bash$ gdb ./foo
2108 [...]
2109 (gdb) attach 4711
2110 (gdb) detach
2111 (gdb) attach 4712
2112 Cannot access memory at address 0xdeadbeef
2113 */
2114
2115 /* In some OSs, the shared library list is the same/global/shared
2116 across inferiors. If code is shared between processes, so are
2117 memory regions and features. */
2118 if (!gdbarch_has_global_solist (target_gdbarch ()))
2119 {
2120 no_shared_libraries (NULL, from_tty);
2121
2122 invalidate_target_mem_regions ();
2123
2124 target_clear_description ();
2125 }
2126
2127 /* attach_flag may be set if the previous process associated with
2128 the inferior was attached to. */
2129 current_inferior ()->attach_flag = 0;
2130
2131 current_inferior ()->highest_thread_num = 0;
2132
2133 agent_capability_invalidate ();
2134 }
2135
2136 /* Callback for iterate_over_inferiors. Gets rid of the given
2137 inferior. */
2138
2139 static int
2140 dispose_inferior (struct inferior *inf, void *args)
2141 {
2142 struct thread_info *thread;
2143
2144 thread = any_thread_of_process (inf->pid);
2145 if (thread)
2146 {
2147 switch_to_thread (thread->ptid);
2148
2149 /* Core inferiors actually should be detached, not killed. */
2150 if (target_has_execution)
2151 target_kill ();
2152 else
2153 target_detach (NULL, 0);
2154 }
2155
2156 return 0;
2157 }
2158
2159 /* This is to be called by the open routine before it does
2160 anything. */
2161
2162 void
2163 target_preopen (int from_tty)
2164 {
2165 dont_repeat ();
2166
2167 if (have_inferiors ())
2168 {
2169 if (!from_tty
2170 || !have_live_inferiors ()
2171 || query (_("A program is being debugged already. Kill it? ")))
2172 iterate_over_inferiors (dispose_inferior, NULL);
2173 else
2174 error (_("Program not killed."));
2175 }
2176
2177 /* Calling target_kill may remove the target from the stack. But if
2178 it doesn't (which seems like a win for UDI), remove it now. */
2179 /* Leave the exec target, though. The user may be switching from a
2180 live process to a core of the same program. */
2181 pop_all_targets_above (file_stratum);
2182
2183 target_pre_inferior (from_tty);
2184 }
2185
2186 /* Detach a target after doing deferred register stores. */
2187
2188 void
2189 target_detach (const char *args, int from_tty)
2190 {
2191 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2192 /* Don't remove global breakpoints here. They're removed on
2193 disconnection from the target. */
2194 ;
2195 else
2196 /* If we're in breakpoints-always-inserted mode, have to remove
2197 them before detaching. */
2198 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2199
2200 prepare_for_detach ();
2201
2202 current_target.to_detach (&current_target, args, from_tty);
2203 }
2204
2205 void
2206 target_disconnect (const char *args, int from_tty)
2207 {
2208 /* If we're in breakpoints-always-inserted mode or if breakpoints
2209 are global across processes, we have to remove them before
2210 disconnecting. */
2211 remove_breakpoints ();
2212
2213 current_target.to_disconnect (&current_target, args, from_tty);
2214 }
2215
2216 /* See target/target.h. */
2217
2218 ptid_t
2219 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2220 {
2221 return (current_target.to_wait) (&current_target, ptid, status, options);
2222 }
2223
2224 /* See target.h. */
2225
2226 ptid_t
2227 default_target_wait (struct target_ops *ops,
2228 ptid_t ptid, struct target_waitstatus *status,
2229 int options)
2230 {
2231 status->kind = TARGET_WAITKIND_IGNORE;
2232 return minus_one_ptid;
2233 }
2234
2235 const char *
2236 target_pid_to_str (ptid_t ptid)
2237 {
2238 return (*current_target.to_pid_to_str) (&current_target, ptid);
2239 }
2240
2241 const char *
2242 target_thread_name (struct thread_info *info)
2243 {
2244 return current_target.to_thread_name (&current_target, info);
2245 }
2246
2247 struct thread_info *
2248 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2249 int handle_len,
2250 struct inferior *inf)
2251 {
2252 return current_target.to_thread_handle_to_thread_info
2253 (&current_target, thread_handle, handle_len, inf);
2254 }
2255
2256 void
2257 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2258 {
2259 target_dcache_invalidate ();
2260
2261 current_target.to_resume (&current_target, ptid, step, signal);
2262
2263 registers_changed_ptid (ptid);
2264 /* We only set the internal executing state here. The user/frontend
2265 running state is set at a higher level. */
2266 set_executing (ptid, 1);
2267 clear_inline_frame_state (ptid);
2268 }
2269
2270 /* If true, target_commit_resume is a nop. */
2271 static int defer_target_commit_resume;
2272
2273 /* See target.h. */
2274
2275 void
2276 target_commit_resume (void)
2277 {
2278 struct target_ops *t;
2279
2280 if (defer_target_commit_resume)
2281 return;
2282
2283 current_target.to_commit_resume (&current_target);
2284 }
2285
2286 /* See target.h. */
2287
2288 scoped_restore_tmpl<int>
2289 make_scoped_defer_target_commit_resume ()
2290 {
2291 return make_scoped_restore (&defer_target_commit_resume, 1);
2292 }
2293
2294 void
2295 target_pass_signals (int numsigs, unsigned char *pass_signals)
2296 {
2297 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2298 }
2299
2300 void
2301 target_program_signals (int numsigs, unsigned char *program_signals)
2302 {
2303 (*current_target.to_program_signals) (&current_target,
2304 numsigs, program_signals);
2305 }
2306
2307 static int
2308 default_follow_fork (struct target_ops *self, int follow_child,
2309 int detach_fork)
2310 {
2311 /* Some target returned a fork event, but did not know how to follow it. */
2312 internal_error (__FILE__, __LINE__,
2313 _("could not find a target to follow fork"));
2314 }
2315
2316 /* Look through the list of possible targets for a target that can
2317 follow forks. */
2318
2319 int
2320 target_follow_fork (int follow_child, int detach_fork)
2321 {
2322 return current_target.to_follow_fork (&current_target,
2323 follow_child, detach_fork);
2324 }
2325
2326 /* Target wrapper for follow exec hook. */
2327
2328 void
2329 target_follow_exec (struct inferior *inf, char *execd_pathname)
2330 {
2331 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2332 }
2333
2334 static void
2335 default_mourn_inferior (struct target_ops *self)
2336 {
2337 internal_error (__FILE__, __LINE__,
2338 _("could not find a target to follow mourn inferior"));
2339 }
2340
2341 void
2342 target_mourn_inferior (ptid_t ptid)
2343 {
2344 gdb_assert (ptid_equal (ptid, inferior_ptid));
2345 current_target.to_mourn_inferior (&current_target);
2346
2347 /* We no longer need to keep handles on any of the object files.
2348 Make sure to release them to avoid unnecessarily locking any
2349 of them while we're not actually debugging. */
2350 bfd_cache_close_all ();
2351 }
2352
2353 /* Look for a target which can describe architectural features, starting
2354 from TARGET. If we find one, return its description. */
2355
2356 const struct target_desc *
2357 target_read_description (struct target_ops *target)
2358 {
2359 return target->to_read_description (target);
2360 }
2361
2362 /* This implements a basic search of memory, reading target memory and
2363 performing the search here (as opposed to performing the search in on the
2364 target side with, for example, gdbserver). */
2365
2366 int
2367 simple_search_memory (struct target_ops *ops,
2368 CORE_ADDR start_addr, ULONGEST search_space_len,
2369 const gdb_byte *pattern, ULONGEST pattern_len,
2370 CORE_ADDR *found_addrp)
2371 {
2372 /* NOTE: also defined in find.c testcase. */
2373 #define SEARCH_CHUNK_SIZE 16000
2374 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2375 /* Buffer to hold memory contents for searching. */
2376 unsigned search_buf_size;
2377
2378 search_buf_size = chunk_size + pattern_len - 1;
2379
2380 /* No point in trying to allocate a buffer larger than the search space. */
2381 if (search_space_len < search_buf_size)
2382 search_buf_size = search_space_len;
2383
2384 gdb::byte_vector search_buf (search_buf_size);
2385
2386 /* Prime the search buffer. */
2387
2388 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2389 search_buf.data (), start_addr, search_buf_size)
2390 != search_buf_size)
2391 {
2392 warning (_("Unable to access %s bytes of target "
2393 "memory at %s, halting search."),
2394 pulongest (search_buf_size), hex_string (start_addr));
2395 return -1;
2396 }
2397
2398 /* Perform the search.
2399
2400 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2401 When we've scanned N bytes we copy the trailing bytes to the start and
2402 read in another N bytes. */
2403
2404 while (search_space_len >= pattern_len)
2405 {
2406 gdb_byte *found_ptr;
2407 unsigned nr_search_bytes
2408 = std::min (search_space_len, (ULONGEST) search_buf_size);
2409
2410 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2411 pattern, pattern_len);
2412
2413 if (found_ptr != NULL)
2414 {
2415 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2416
2417 *found_addrp = found_addr;
2418 return 1;
2419 }
2420
2421 /* Not found in this chunk, skip to next chunk. */
2422
2423 /* Don't let search_space_len wrap here, it's unsigned. */
2424 if (search_space_len >= chunk_size)
2425 search_space_len -= chunk_size;
2426 else
2427 search_space_len = 0;
2428
2429 if (search_space_len >= pattern_len)
2430 {
2431 unsigned keep_len = search_buf_size - chunk_size;
2432 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2433 int nr_to_read;
2434
2435 /* Copy the trailing part of the previous iteration to the front
2436 of the buffer for the next iteration. */
2437 gdb_assert (keep_len == pattern_len - 1);
2438 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2439
2440 nr_to_read = std::min (search_space_len - keep_len,
2441 (ULONGEST) chunk_size);
2442
2443 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2444 &search_buf[keep_len], read_addr,
2445 nr_to_read) != nr_to_read)
2446 {
2447 warning (_("Unable to access %s bytes of target "
2448 "memory at %s, halting search."),
2449 plongest (nr_to_read),
2450 hex_string (read_addr));
2451 return -1;
2452 }
2453
2454 start_addr += chunk_size;
2455 }
2456 }
2457
2458 /* Not found. */
2459
2460 return 0;
2461 }
2462
2463 /* Default implementation of memory-searching. */
2464
2465 static int
2466 default_search_memory (struct target_ops *self,
2467 CORE_ADDR start_addr, ULONGEST search_space_len,
2468 const gdb_byte *pattern, ULONGEST pattern_len,
2469 CORE_ADDR *found_addrp)
2470 {
2471 /* Start over from the top of the target stack. */
2472 return simple_search_memory (current_target.beneath,
2473 start_addr, search_space_len,
2474 pattern, pattern_len, found_addrp);
2475 }
2476
2477 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2478 sequence of bytes in PATTERN with length PATTERN_LEN.
2479
2480 The result is 1 if found, 0 if not found, and -1 if there was an error
2481 requiring halting of the search (e.g. memory read error).
2482 If the pattern is found the address is recorded in FOUND_ADDRP. */
2483
2484 int
2485 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2486 const gdb_byte *pattern, ULONGEST pattern_len,
2487 CORE_ADDR *found_addrp)
2488 {
2489 return current_target.to_search_memory (&current_target, start_addr,
2490 search_space_len,
2491 pattern, pattern_len, found_addrp);
2492 }
2493
2494 /* Look through the currently pushed targets. If none of them will
2495 be able to restart the currently running process, issue an error
2496 message. */
2497
2498 void
2499 target_require_runnable (void)
2500 {
2501 struct target_ops *t;
2502
2503 for (t = target_stack; t != NULL; t = t->beneath)
2504 {
2505 /* If this target knows how to create a new program, then
2506 assume we will still be able to after killing the current
2507 one. Either killing and mourning will not pop T, or else
2508 find_default_run_target will find it again. */
2509 if (t->to_create_inferior != NULL)
2510 return;
2511
2512 /* Do not worry about targets at certain strata that can not
2513 create inferiors. Assume they will be pushed again if
2514 necessary, and continue to the process_stratum. */
2515 if (t->to_stratum == thread_stratum
2516 || t->to_stratum == record_stratum
2517 || t->to_stratum == arch_stratum)
2518 continue;
2519
2520 error (_("The \"%s\" target does not support \"run\". "
2521 "Try \"help target\" or \"continue\"."),
2522 t->to_shortname);
2523 }
2524
2525 /* This function is only called if the target is running. In that
2526 case there should have been a process_stratum target and it
2527 should either know how to create inferiors, or not... */
2528 internal_error (__FILE__, __LINE__, _("No targets found"));
2529 }
2530
2531 /* Whether GDB is allowed to fall back to the default run target for
2532 "run", "attach", etc. when no target is connected yet. */
2533 static int auto_connect_native_target = 1;
2534
2535 static void
2536 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2537 struct cmd_list_element *c, const char *value)
2538 {
2539 fprintf_filtered (file,
2540 _("Whether GDB may automatically connect to the "
2541 "native target is %s.\n"),
2542 value);
2543 }
2544
2545 /* Look through the list of possible targets for a target that can
2546 execute a run or attach command without any other data. This is
2547 used to locate the default process stratum.
2548
2549 If DO_MESG is not NULL, the result is always valid (error() is
2550 called for errors); else, return NULL on error. */
2551
2552 static struct target_ops *
2553 find_default_run_target (const char *do_mesg)
2554 {
2555 struct target_ops *runable = NULL;
2556
2557 if (auto_connect_native_target)
2558 {
2559 struct target_ops *t;
2560 int count = 0;
2561 int i;
2562
2563 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2564 {
2565 if (t->to_can_run != delegate_can_run && target_can_run (t))
2566 {
2567 runable = t;
2568 ++count;
2569 }
2570 }
2571
2572 if (count != 1)
2573 runable = NULL;
2574 }
2575
2576 if (runable == NULL)
2577 {
2578 if (do_mesg)
2579 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2580 else
2581 return NULL;
2582 }
2583
2584 return runable;
2585 }
2586
2587 /* See target.h. */
2588
2589 struct target_ops *
2590 find_attach_target (void)
2591 {
2592 struct target_ops *t;
2593
2594 /* If a target on the current stack can attach, use it. */
2595 for (t = current_target.beneath; t != NULL; t = t->beneath)
2596 {
2597 if (t->to_attach != NULL)
2598 break;
2599 }
2600
2601 /* Otherwise, use the default run target for attaching. */
2602 if (t == NULL)
2603 t = find_default_run_target ("attach");
2604
2605 return t;
2606 }
2607
2608 /* See target.h. */
2609
2610 struct target_ops *
2611 find_run_target (void)
2612 {
2613 struct target_ops *t;
2614
2615 /* If a target on the current stack can attach, use it. */
2616 for (t = current_target.beneath; t != NULL; t = t->beneath)
2617 {
2618 if (t->to_create_inferior != NULL)
2619 break;
2620 }
2621
2622 /* Otherwise, use the default run target. */
2623 if (t == NULL)
2624 t = find_default_run_target ("run");
2625
2626 return t;
2627 }
2628
2629 /* Implement the "info proc" command. */
2630
2631 int
2632 target_info_proc (const char *args, enum info_proc_what what)
2633 {
2634 struct target_ops *t;
2635
2636 /* If we're already connected to something that can get us OS
2637 related data, use it. Otherwise, try using the native
2638 target. */
2639 if (current_target.to_stratum >= process_stratum)
2640 t = current_target.beneath;
2641 else
2642 t = find_default_run_target (NULL);
2643
2644 for (; t != NULL; t = t->beneath)
2645 {
2646 if (t->to_info_proc != NULL)
2647 {
2648 t->to_info_proc (t, args, what);
2649
2650 if (targetdebug)
2651 fprintf_unfiltered (gdb_stdlog,
2652 "target_info_proc (\"%s\", %d)\n", args, what);
2653
2654 return 1;
2655 }
2656 }
2657
2658 return 0;
2659 }
2660
2661 static int
2662 find_default_supports_disable_randomization (struct target_ops *self)
2663 {
2664 struct target_ops *t;
2665
2666 t = find_default_run_target (NULL);
2667 if (t && t->to_supports_disable_randomization)
2668 return (t->to_supports_disable_randomization) (t);
2669 return 0;
2670 }
2671
2672 int
2673 target_supports_disable_randomization (void)
2674 {
2675 struct target_ops *t;
2676
2677 for (t = &current_target; t != NULL; t = t->beneath)
2678 if (t->to_supports_disable_randomization)
2679 return t->to_supports_disable_randomization (t);
2680
2681 return 0;
2682 }
2683
2684 /* See target/target.h. */
2685
2686 int
2687 target_supports_multi_process (void)
2688 {
2689 return (*current_target.to_supports_multi_process) (&current_target);
2690 }
2691
2692 char *
2693 target_get_osdata (const char *type)
2694 {
2695 struct target_ops *t;
2696
2697 /* If we're already connected to something that can get us OS
2698 related data, use it. Otherwise, try using the native
2699 target. */
2700 if (current_target.to_stratum >= process_stratum)
2701 t = current_target.beneath;
2702 else
2703 t = find_default_run_target ("get OS data");
2704
2705 if (!t)
2706 return NULL;
2707
2708 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2709 }
2710
2711 static struct address_space *
2712 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2713 {
2714 struct inferior *inf;
2715
2716 /* Fall-back to the "main" address space of the inferior. */
2717 inf = find_inferior_ptid (ptid);
2718
2719 if (inf == NULL || inf->aspace == NULL)
2720 internal_error (__FILE__, __LINE__,
2721 _("Can't determine the current "
2722 "address space of thread %s\n"),
2723 target_pid_to_str (ptid));
2724
2725 return inf->aspace;
2726 }
2727
2728 /* Determine the current address space of thread PTID. */
2729
2730 struct address_space *
2731 target_thread_address_space (ptid_t ptid)
2732 {
2733 struct address_space *aspace;
2734
2735 aspace = current_target.to_thread_address_space (&current_target, ptid);
2736 gdb_assert (aspace != NULL);
2737
2738 return aspace;
2739 }
2740
2741
2742 /* Target file operations. */
2743
2744 static struct target_ops *
2745 default_fileio_target (void)
2746 {
2747 /* If we're already connected to something that can perform
2748 file I/O, use it. Otherwise, try using the native target. */
2749 if (current_target.to_stratum >= process_stratum)
2750 return current_target.beneath;
2751 else
2752 return find_default_run_target ("file I/O");
2753 }
2754
2755 /* File handle for target file operations. */
2756
2757 typedef struct
2758 {
2759 /* The target on which this file is open. */
2760 struct target_ops *t;
2761
2762 /* The file descriptor on the target. */
2763 int fd;
2764 } fileio_fh_t;
2765
2766 DEF_VEC_O (fileio_fh_t);
2767
2768 /* Vector of currently open file handles. The value returned by
2769 target_fileio_open and passed as the FD argument to other
2770 target_fileio_* functions is an index into this vector. This
2771 vector's entries are never freed; instead, files are marked as
2772 closed, and the handle becomes available for reuse. */
2773 static VEC (fileio_fh_t) *fileio_fhandles;
2774
2775 /* Macro to check whether a fileio_fh_t represents a closed file. */
2776 #define is_closed_fileio_fh(fd) ((fd) < 0)
2777
2778 /* Index into fileio_fhandles of the lowest handle that might be
2779 closed. This permits handle reuse without searching the whole
2780 list each time a new file is opened. */
2781 static int lowest_closed_fd;
2782
2783 /* Acquire a target fileio file descriptor. */
2784
2785 static int
2786 acquire_fileio_fd (struct target_ops *t, int fd)
2787 {
2788 fileio_fh_t *fh;
2789
2790 gdb_assert (!is_closed_fileio_fh (fd));
2791
2792 /* Search for closed handles to reuse. */
2793 for (;
2794 VEC_iterate (fileio_fh_t, fileio_fhandles,
2795 lowest_closed_fd, fh);
2796 lowest_closed_fd++)
2797 if (is_closed_fileio_fh (fh->fd))
2798 break;
2799
2800 /* Push a new handle if no closed handles were found. */
2801 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2802 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2803
2804 /* Fill in the handle. */
2805 fh->t = t;
2806 fh->fd = fd;
2807
2808 /* Return its index, and start the next lookup at
2809 the next index. */
2810 return lowest_closed_fd++;
2811 }
2812
2813 /* Release a target fileio file descriptor. */
2814
2815 static void
2816 release_fileio_fd (int fd, fileio_fh_t *fh)
2817 {
2818 fh->fd = -1;
2819 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2820 }
2821
2822 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2823
2824 #define fileio_fd_to_fh(fd) \
2825 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2826
2827 /* Helper for target_fileio_open and
2828 target_fileio_open_warn_if_slow. */
2829
2830 static int
2831 target_fileio_open_1 (struct inferior *inf, const char *filename,
2832 int flags, int mode, int warn_if_slow,
2833 int *target_errno)
2834 {
2835 struct target_ops *t;
2836
2837 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2838 {
2839 if (t->to_fileio_open != NULL)
2840 {
2841 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2842 warn_if_slow, target_errno);
2843
2844 if (fd < 0)
2845 fd = -1;
2846 else
2847 fd = acquire_fileio_fd (t, fd);
2848
2849 if (targetdebug)
2850 fprintf_unfiltered (gdb_stdlog,
2851 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2852 " = %d (%d)\n",
2853 inf == NULL ? 0 : inf->num,
2854 filename, flags, mode,
2855 warn_if_slow, fd,
2856 fd != -1 ? 0 : *target_errno);
2857 return fd;
2858 }
2859 }
2860
2861 *target_errno = FILEIO_ENOSYS;
2862 return -1;
2863 }
2864
2865 /* See target.h. */
2866
2867 int
2868 target_fileio_open (struct inferior *inf, const char *filename,
2869 int flags, int mode, int *target_errno)
2870 {
2871 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2872 target_errno);
2873 }
2874
2875 /* See target.h. */
2876
2877 int
2878 target_fileio_open_warn_if_slow (struct inferior *inf,
2879 const char *filename,
2880 int flags, int mode, int *target_errno)
2881 {
2882 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2883 target_errno);
2884 }
2885
2886 /* See target.h. */
2887
2888 int
2889 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2890 ULONGEST offset, int *target_errno)
2891 {
2892 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2893 int ret = -1;
2894
2895 if (is_closed_fileio_fh (fh->fd))
2896 *target_errno = EBADF;
2897 else
2898 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2899 len, offset, target_errno);
2900
2901 if (targetdebug)
2902 fprintf_unfiltered (gdb_stdlog,
2903 "target_fileio_pwrite (%d,...,%d,%s) "
2904 "= %d (%d)\n",
2905 fd, len, pulongest (offset),
2906 ret, ret != -1 ? 0 : *target_errno);
2907 return ret;
2908 }
2909
2910 /* See target.h. */
2911
2912 int
2913 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2914 ULONGEST offset, int *target_errno)
2915 {
2916 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2917 int ret = -1;
2918
2919 if (is_closed_fileio_fh (fh->fd))
2920 *target_errno = EBADF;
2921 else
2922 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2923 len, offset, target_errno);
2924
2925 if (targetdebug)
2926 fprintf_unfiltered (gdb_stdlog,
2927 "target_fileio_pread (%d,...,%d,%s) "
2928 "= %d (%d)\n",
2929 fd, len, pulongest (offset),
2930 ret, ret != -1 ? 0 : *target_errno);
2931 return ret;
2932 }
2933
2934 /* See target.h. */
2935
2936 int
2937 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2938 {
2939 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2940 int ret = -1;
2941
2942 if (is_closed_fileio_fh (fh->fd))
2943 *target_errno = EBADF;
2944 else
2945 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2946
2947 if (targetdebug)
2948 fprintf_unfiltered (gdb_stdlog,
2949 "target_fileio_fstat (%d) = %d (%d)\n",
2950 fd, ret, ret != -1 ? 0 : *target_errno);
2951 return ret;
2952 }
2953
2954 /* See target.h. */
2955
2956 int
2957 target_fileio_close (int fd, int *target_errno)
2958 {
2959 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2960 int ret = -1;
2961
2962 if (is_closed_fileio_fh (fh->fd))
2963 *target_errno = EBADF;
2964 else
2965 {
2966 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2967 release_fileio_fd (fd, fh);
2968 }
2969
2970 if (targetdebug)
2971 fprintf_unfiltered (gdb_stdlog,
2972 "target_fileio_close (%d) = %d (%d)\n",
2973 fd, ret, ret != -1 ? 0 : *target_errno);
2974 return ret;
2975 }
2976
2977 /* See target.h. */
2978
2979 int
2980 target_fileio_unlink (struct inferior *inf, const char *filename,
2981 int *target_errno)
2982 {
2983 struct target_ops *t;
2984
2985 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2986 {
2987 if (t->to_fileio_unlink != NULL)
2988 {
2989 int ret = t->to_fileio_unlink (t, inf, filename,
2990 target_errno);
2991
2992 if (targetdebug)
2993 fprintf_unfiltered (gdb_stdlog,
2994 "target_fileio_unlink (%d,%s)"
2995 " = %d (%d)\n",
2996 inf == NULL ? 0 : inf->num, filename,
2997 ret, ret != -1 ? 0 : *target_errno);
2998 return ret;
2999 }
3000 }
3001
3002 *target_errno = FILEIO_ENOSYS;
3003 return -1;
3004 }
3005
3006 /* See target.h. */
3007
3008 char *
3009 target_fileio_readlink (struct inferior *inf, const char *filename,
3010 int *target_errno)
3011 {
3012 struct target_ops *t;
3013
3014 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3015 {
3016 if (t->to_fileio_readlink != NULL)
3017 {
3018 char *ret = t->to_fileio_readlink (t, inf, filename,
3019 target_errno);
3020
3021 if (targetdebug)
3022 fprintf_unfiltered (gdb_stdlog,
3023 "target_fileio_readlink (%d,%s)"
3024 " = %s (%d)\n",
3025 inf == NULL ? 0 : inf->num,
3026 filename, ret? ret : "(nil)",
3027 ret? 0 : *target_errno);
3028 return ret;
3029 }
3030 }
3031
3032 *target_errno = FILEIO_ENOSYS;
3033 return NULL;
3034 }
3035
3036 static void
3037 target_fileio_close_cleanup (void *opaque)
3038 {
3039 int fd = *(int *) opaque;
3040 int target_errno;
3041
3042 target_fileio_close (fd, &target_errno);
3043 }
3044
3045 /* Read target file FILENAME, in the filesystem as seen by INF. If
3046 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3047 remote targets, the remote stub). Store the result in *BUF_P and
3048 return the size of the transferred data. PADDING additional bytes
3049 are available in *BUF_P. This is a helper function for
3050 target_fileio_read_alloc; see the declaration of that function for
3051 more information. */
3052
3053 static LONGEST
3054 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3055 gdb_byte **buf_p, int padding)
3056 {
3057 struct cleanup *close_cleanup;
3058 size_t buf_alloc, buf_pos;
3059 gdb_byte *buf;
3060 LONGEST n;
3061 int fd;
3062 int target_errno;
3063
3064 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3065 &target_errno);
3066 if (fd == -1)
3067 return -1;
3068
3069 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3070
3071 /* Start by reading up to 4K at a time. The target will throttle
3072 this number down if necessary. */
3073 buf_alloc = 4096;
3074 buf = (gdb_byte *) xmalloc (buf_alloc);
3075 buf_pos = 0;
3076 while (1)
3077 {
3078 n = target_fileio_pread (fd, &buf[buf_pos],
3079 buf_alloc - buf_pos - padding, buf_pos,
3080 &target_errno);
3081 if (n < 0)
3082 {
3083 /* An error occurred. */
3084 do_cleanups (close_cleanup);
3085 xfree (buf);
3086 return -1;
3087 }
3088 else if (n == 0)
3089 {
3090 /* Read all there was. */
3091 do_cleanups (close_cleanup);
3092 if (buf_pos == 0)
3093 xfree (buf);
3094 else
3095 *buf_p = buf;
3096 return buf_pos;
3097 }
3098
3099 buf_pos += n;
3100
3101 /* If the buffer is filling up, expand it. */
3102 if (buf_alloc < buf_pos * 2)
3103 {
3104 buf_alloc *= 2;
3105 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3106 }
3107
3108 QUIT;
3109 }
3110 }
3111
3112 /* See target.h. */
3113
3114 LONGEST
3115 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3116 gdb_byte **buf_p)
3117 {
3118 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3119 }
3120
3121 /* See target.h. */
3122
3123 char *
3124 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3125 {
3126 gdb_byte *buffer;
3127 char *bufstr;
3128 LONGEST i, transferred;
3129
3130 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3131 bufstr = (char *) buffer;
3132
3133 if (transferred < 0)
3134 return NULL;
3135
3136 if (transferred == 0)
3137 return xstrdup ("");
3138
3139 bufstr[transferred] = 0;
3140
3141 /* Check for embedded NUL bytes; but allow trailing NULs. */
3142 for (i = strlen (bufstr); i < transferred; i++)
3143 if (bufstr[i] != 0)
3144 {
3145 warning (_("target file %s "
3146 "contained unexpected null characters"),
3147 filename);
3148 break;
3149 }
3150
3151 return bufstr;
3152 }
3153
3154
3155 static int
3156 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3157 CORE_ADDR addr, int len)
3158 {
3159 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3160 }
3161
3162 static int
3163 default_watchpoint_addr_within_range (struct target_ops *target,
3164 CORE_ADDR addr,
3165 CORE_ADDR start, int length)
3166 {
3167 return addr >= start && addr < start + length;
3168 }
3169
3170 static struct gdbarch *
3171 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3172 {
3173 return target_gdbarch ();
3174 }
3175
3176 static int
3177 return_zero (struct target_ops *ignore)
3178 {
3179 return 0;
3180 }
3181
3182 static int
3183 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3184 {
3185 return 0;
3186 }
3187
3188 /*
3189 * Find the next target down the stack from the specified target.
3190 */
3191
3192 struct target_ops *
3193 find_target_beneath (struct target_ops *t)
3194 {
3195 return t->beneath;
3196 }
3197
3198 /* See target.h. */
3199
3200 struct target_ops *
3201 find_target_at (enum strata stratum)
3202 {
3203 struct target_ops *t;
3204
3205 for (t = current_target.beneath; t != NULL; t = t->beneath)
3206 if (t->to_stratum == stratum)
3207 return t;
3208
3209 return NULL;
3210 }
3211
3212 \f
3213
3214 /* See target.h */
3215
3216 void
3217 target_announce_detach (int from_tty)
3218 {
3219 pid_t pid;
3220 const char *exec_file;
3221
3222 if (!from_tty)
3223 return;
3224
3225 exec_file = get_exec_file (0);
3226 if (exec_file == NULL)
3227 exec_file = "";
3228
3229 pid = ptid_get_pid (inferior_ptid);
3230 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3231 target_pid_to_str (pid_to_ptid (pid)));
3232 gdb_flush (gdb_stdout);
3233 }
3234
3235 /* The inferior process has died. Long live the inferior! */
3236
3237 void
3238 generic_mourn_inferior (void)
3239 {
3240 ptid_t ptid;
3241
3242 ptid = inferior_ptid;
3243 inferior_ptid = null_ptid;
3244
3245 /* Mark breakpoints uninserted in case something tries to delete a
3246 breakpoint while we delete the inferior's threads (which would
3247 fail, since the inferior is long gone). */
3248 mark_breakpoints_out ();
3249
3250 if (!ptid_equal (ptid, null_ptid))
3251 {
3252 int pid = ptid_get_pid (ptid);
3253 exit_inferior (pid);
3254 }
3255
3256 /* Note this wipes step-resume breakpoints, so needs to be done
3257 after exit_inferior, which ends up referencing the step-resume
3258 breakpoints through clear_thread_inferior_resources. */
3259 breakpoint_init_inferior (inf_exited);
3260
3261 registers_changed ();
3262
3263 reopen_exec_file ();
3264 reinit_frame_cache ();
3265
3266 if (deprecated_detach_hook)
3267 deprecated_detach_hook ();
3268 }
3269 \f
3270 /* Convert a normal process ID to a string. Returns the string in a
3271 static buffer. */
3272
3273 const char *
3274 normal_pid_to_str (ptid_t ptid)
3275 {
3276 static char buf[32];
3277
3278 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3279 return buf;
3280 }
3281
3282 static const char *
3283 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3284 {
3285 return normal_pid_to_str (ptid);
3286 }
3287
3288 /* Error-catcher for target_find_memory_regions. */
3289 static int
3290 dummy_find_memory_regions (struct target_ops *self,
3291 find_memory_region_ftype ignore1, void *ignore2)
3292 {
3293 error (_("Command not implemented for this target."));
3294 return 0;
3295 }
3296
3297 /* Error-catcher for target_make_corefile_notes. */
3298 static char *
3299 dummy_make_corefile_notes (struct target_ops *self,
3300 bfd *ignore1, int *ignore2)
3301 {
3302 error (_("Command not implemented for this target."));
3303 return NULL;
3304 }
3305
3306 /* Set up the handful of non-empty slots needed by the dummy target
3307 vector. */
3308
3309 static void
3310 init_dummy_target (void)
3311 {
3312 dummy_target.to_shortname = "None";
3313 dummy_target.to_longname = "None";
3314 dummy_target.to_doc = "";
3315 dummy_target.to_supports_disable_randomization
3316 = find_default_supports_disable_randomization;
3317 dummy_target.to_stratum = dummy_stratum;
3318 dummy_target.to_has_all_memory = return_zero;
3319 dummy_target.to_has_memory = return_zero;
3320 dummy_target.to_has_stack = return_zero;
3321 dummy_target.to_has_registers = return_zero;
3322 dummy_target.to_has_execution = return_zero_has_execution;
3323 dummy_target.to_magic = OPS_MAGIC;
3324
3325 install_dummy_methods (&dummy_target);
3326 }
3327 \f
3328
3329 void
3330 target_close (struct target_ops *targ)
3331 {
3332 gdb_assert (!target_is_pushed (targ));
3333
3334 if (targ->to_xclose != NULL)
3335 targ->to_xclose (targ);
3336 else if (targ->to_close != NULL)
3337 targ->to_close (targ);
3338
3339 if (targetdebug)
3340 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3341 }
3342
3343 int
3344 target_thread_alive (ptid_t ptid)
3345 {
3346 return current_target.to_thread_alive (&current_target, ptid);
3347 }
3348
3349 void
3350 target_update_thread_list (void)
3351 {
3352 current_target.to_update_thread_list (&current_target);
3353 }
3354
3355 void
3356 target_stop (ptid_t ptid)
3357 {
3358 if (!may_stop)
3359 {
3360 warning (_("May not interrupt or stop the target, ignoring attempt"));
3361 return;
3362 }
3363
3364 (*current_target.to_stop) (&current_target, ptid);
3365 }
3366
3367 void
3368 target_interrupt (ptid_t ptid)
3369 {
3370 if (!may_stop)
3371 {
3372 warning (_("May not interrupt or stop the target, ignoring attempt"));
3373 return;
3374 }
3375
3376 (*current_target.to_interrupt) (&current_target, ptid);
3377 }
3378
3379 /* See target.h. */
3380
3381 void
3382 target_pass_ctrlc (void)
3383 {
3384 (*current_target.to_pass_ctrlc) (&current_target);
3385 }
3386
3387 /* See target.h. */
3388
3389 void
3390 default_target_pass_ctrlc (struct target_ops *ops)
3391 {
3392 target_interrupt (inferior_ptid);
3393 }
3394
3395 /* See target/target.h. */
3396
3397 void
3398 target_stop_and_wait (ptid_t ptid)
3399 {
3400 struct target_waitstatus status;
3401 int was_non_stop = non_stop;
3402
3403 non_stop = 1;
3404 target_stop (ptid);
3405
3406 memset (&status, 0, sizeof (status));
3407 target_wait (ptid, &status, 0);
3408
3409 non_stop = was_non_stop;
3410 }
3411
3412 /* See target/target.h. */
3413
3414 void
3415 target_continue_no_signal (ptid_t ptid)
3416 {
3417 target_resume (ptid, 0, GDB_SIGNAL_0);
3418 }
3419
3420 /* See target/target.h. */
3421
3422 void
3423 target_continue (ptid_t ptid, enum gdb_signal signal)
3424 {
3425 target_resume (ptid, 0, signal);
3426 }
3427
3428 /* Concatenate ELEM to LIST, a comma separate list, and return the
3429 result. The LIST incoming argument is released. */
3430
3431 static char *
3432 str_comma_list_concat_elem (char *list, const char *elem)
3433 {
3434 if (list == NULL)
3435 return xstrdup (elem);
3436 else
3437 return reconcat (list, list, ", ", elem, (char *) NULL);
3438 }
3439
3440 /* Helper for target_options_to_string. If OPT is present in
3441 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3442 Returns the new resulting string. OPT is removed from
3443 TARGET_OPTIONS. */
3444
3445 static char *
3446 do_option (int *target_options, char *ret,
3447 int opt, const char *opt_str)
3448 {
3449 if ((*target_options & opt) != 0)
3450 {
3451 ret = str_comma_list_concat_elem (ret, opt_str);
3452 *target_options &= ~opt;
3453 }
3454
3455 return ret;
3456 }
3457
3458 char *
3459 target_options_to_string (int target_options)
3460 {
3461 char *ret = NULL;
3462
3463 #define DO_TARG_OPTION(OPT) \
3464 ret = do_option (&target_options, ret, OPT, #OPT)
3465
3466 DO_TARG_OPTION (TARGET_WNOHANG);
3467
3468 if (target_options != 0)
3469 ret = str_comma_list_concat_elem (ret, "unknown???");
3470
3471 if (ret == NULL)
3472 ret = xstrdup ("");
3473 return ret;
3474 }
3475
3476 void
3477 target_fetch_registers (struct regcache *regcache, int regno)
3478 {
3479 current_target.to_fetch_registers (&current_target, regcache, regno);
3480 if (targetdebug)
3481 regcache->debug_print_register ("target_fetch_registers", regno);
3482 }
3483
3484 void
3485 target_store_registers (struct regcache *regcache, int regno)
3486 {
3487 if (!may_write_registers)
3488 error (_("Writing to registers is not allowed (regno %d)"), regno);
3489
3490 current_target.to_store_registers (&current_target, regcache, regno);
3491 if (targetdebug)
3492 {
3493 regcache->debug_print_register ("target_store_registers", regno);
3494 }
3495 }
3496
3497 int
3498 target_core_of_thread (ptid_t ptid)
3499 {
3500 return current_target.to_core_of_thread (&current_target, ptid);
3501 }
3502
3503 int
3504 simple_verify_memory (struct target_ops *ops,
3505 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3506 {
3507 LONGEST total_xfered = 0;
3508
3509 while (total_xfered < size)
3510 {
3511 ULONGEST xfered_len;
3512 enum target_xfer_status status;
3513 gdb_byte buf[1024];
3514 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3515
3516 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3517 buf, NULL, lma + total_xfered, howmuch,
3518 &xfered_len);
3519 if (status == TARGET_XFER_OK
3520 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3521 {
3522 total_xfered += xfered_len;
3523 QUIT;
3524 }
3525 else
3526 return 0;
3527 }
3528 return 1;
3529 }
3530
3531 /* Default implementation of memory verification. */
3532
3533 static int
3534 default_verify_memory (struct target_ops *self,
3535 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3536 {
3537 /* Start over from the top of the target stack. */
3538 return simple_verify_memory (current_target.beneath,
3539 data, memaddr, size);
3540 }
3541
3542 int
3543 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3544 {
3545 return current_target.to_verify_memory (&current_target,
3546 data, memaddr, size);
3547 }
3548
3549 /* The documentation for this function is in its prototype declaration in
3550 target.h. */
3551
3552 int
3553 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3554 enum target_hw_bp_type rw)
3555 {
3556 return current_target.to_insert_mask_watchpoint (&current_target,
3557 addr, mask, rw);
3558 }
3559
3560 /* The documentation for this function is in its prototype declaration in
3561 target.h. */
3562
3563 int
3564 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3565 enum target_hw_bp_type rw)
3566 {
3567 return current_target.to_remove_mask_watchpoint (&current_target,
3568 addr, mask, rw);
3569 }
3570
3571 /* The documentation for this function is in its prototype declaration
3572 in target.h. */
3573
3574 int
3575 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3576 {
3577 return current_target.to_masked_watch_num_registers (&current_target,
3578 addr, mask);
3579 }
3580
3581 /* The documentation for this function is in its prototype declaration
3582 in target.h. */
3583
3584 int
3585 target_ranged_break_num_registers (void)
3586 {
3587 return current_target.to_ranged_break_num_registers (&current_target);
3588 }
3589
3590 /* See target.h. */
3591
3592 int
3593 target_supports_btrace (enum btrace_format format)
3594 {
3595 return current_target.to_supports_btrace (&current_target, format);
3596 }
3597
3598 /* See target.h. */
3599
3600 struct btrace_target_info *
3601 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3602 {
3603 return current_target.to_enable_btrace (&current_target, ptid, conf);
3604 }
3605
3606 /* See target.h. */
3607
3608 void
3609 target_disable_btrace (struct btrace_target_info *btinfo)
3610 {
3611 current_target.to_disable_btrace (&current_target, btinfo);
3612 }
3613
3614 /* See target.h. */
3615
3616 void
3617 target_teardown_btrace (struct btrace_target_info *btinfo)
3618 {
3619 current_target.to_teardown_btrace (&current_target, btinfo);
3620 }
3621
3622 /* See target.h. */
3623
3624 enum btrace_error
3625 target_read_btrace (struct btrace_data *btrace,
3626 struct btrace_target_info *btinfo,
3627 enum btrace_read_type type)
3628 {
3629 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3630 }
3631
3632 /* See target.h. */
3633
3634 const struct btrace_config *
3635 target_btrace_conf (const struct btrace_target_info *btinfo)
3636 {
3637 return current_target.to_btrace_conf (&current_target, btinfo);
3638 }
3639
3640 /* See target.h. */
3641
3642 void
3643 target_stop_recording (void)
3644 {
3645 current_target.to_stop_recording (&current_target);
3646 }
3647
3648 /* See target.h. */
3649
3650 void
3651 target_save_record (const char *filename)
3652 {
3653 current_target.to_save_record (&current_target, filename);
3654 }
3655
3656 /* See target.h. */
3657
3658 int
3659 target_supports_delete_record (void)
3660 {
3661 struct target_ops *t;
3662
3663 for (t = current_target.beneath; t != NULL; t = t->beneath)
3664 if (t->to_delete_record != delegate_delete_record
3665 && t->to_delete_record != tdefault_delete_record)
3666 return 1;
3667
3668 return 0;
3669 }
3670
3671 /* See target.h. */
3672
3673 void
3674 target_delete_record (void)
3675 {
3676 current_target.to_delete_record (&current_target);
3677 }
3678
3679 /* See target.h. */
3680
3681 enum record_method
3682 target_record_method (ptid_t ptid)
3683 {
3684 return current_target.to_record_method (&current_target, ptid);
3685 }
3686
3687 /* See target.h. */
3688
3689 int
3690 target_record_is_replaying (ptid_t ptid)
3691 {
3692 return current_target.to_record_is_replaying (&current_target, ptid);
3693 }
3694
3695 /* See target.h. */
3696
3697 int
3698 target_record_will_replay (ptid_t ptid, int dir)
3699 {
3700 return current_target.to_record_will_replay (&current_target, ptid, dir);
3701 }
3702
3703 /* See target.h. */
3704
3705 void
3706 target_record_stop_replaying (void)
3707 {
3708 current_target.to_record_stop_replaying (&current_target);
3709 }
3710
3711 /* See target.h. */
3712
3713 void
3714 target_goto_record_begin (void)
3715 {
3716 current_target.to_goto_record_begin (&current_target);
3717 }
3718
3719 /* See target.h. */
3720
3721 void
3722 target_goto_record_end (void)
3723 {
3724 current_target.to_goto_record_end (&current_target);
3725 }
3726
3727 /* See target.h. */
3728
3729 void
3730 target_goto_record (ULONGEST insn)
3731 {
3732 current_target.to_goto_record (&current_target, insn);
3733 }
3734
3735 /* See target.h. */
3736
3737 void
3738 target_insn_history (int size, gdb_disassembly_flags flags)
3739 {
3740 current_target.to_insn_history (&current_target, size, flags);
3741 }
3742
3743 /* See target.h. */
3744
3745 void
3746 target_insn_history_from (ULONGEST from, int size,
3747 gdb_disassembly_flags flags)
3748 {
3749 current_target.to_insn_history_from (&current_target, from, size, flags);
3750 }
3751
3752 /* See target.h. */
3753
3754 void
3755 target_insn_history_range (ULONGEST begin, ULONGEST end,
3756 gdb_disassembly_flags flags)
3757 {
3758 current_target.to_insn_history_range (&current_target, begin, end, flags);
3759 }
3760
3761 /* See target.h. */
3762
3763 void
3764 target_call_history (int size, int flags)
3765 {
3766 current_target.to_call_history (&current_target, size, flags);
3767 }
3768
3769 /* See target.h. */
3770
3771 void
3772 target_call_history_from (ULONGEST begin, int size, int flags)
3773 {
3774 current_target.to_call_history_from (&current_target, begin, size, flags);
3775 }
3776
3777 /* See target.h. */
3778
3779 void
3780 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3781 {
3782 current_target.to_call_history_range (&current_target, begin, end, flags);
3783 }
3784
3785 /* See target.h. */
3786
3787 const struct frame_unwind *
3788 target_get_unwinder (void)
3789 {
3790 return current_target.to_get_unwinder (&current_target);
3791 }
3792
3793 /* See target.h. */
3794
3795 const struct frame_unwind *
3796 target_get_tailcall_unwinder (void)
3797 {
3798 return current_target.to_get_tailcall_unwinder (&current_target);
3799 }
3800
3801 /* See target.h. */
3802
3803 void
3804 target_prepare_to_generate_core (void)
3805 {
3806 current_target.to_prepare_to_generate_core (&current_target);
3807 }
3808
3809 /* See target.h. */
3810
3811 void
3812 target_done_generating_core (void)
3813 {
3814 current_target.to_done_generating_core (&current_target);
3815 }
3816
3817 static void
3818 setup_target_debug (void)
3819 {
3820 memcpy (&debug_target, &current_target, sizeof debug_target);
3821
3822 init_debug_target (&current_target);
3823 }
3824 \f
3825
3826 static char targ_desc[] =
3827 "Names of targets and files being debugged.\nShows the entire \
3828 stack of targets currently in use (including the exec-file,\n\
3829 core-file, and process, if any), as well as the symbol file name.";
3830
3831 static void
3832 default_rcmd (struct target_ops *self, const char *command,
3833 struct ui_file *output)
3834 {
3835 error (_("\"monitor\" command not supported by this target."));
3836 }
3837
3838 static void
3839 do_monitor_command (char *cmd,
3840 int from_tty)
3841 {
3842 target_rcmd (cmd, gdb_stdtarg);
3843 }
3844
3845 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3846 ignored. */
3847
3848 void
3849 flash_erase_command (char *cmd, int from_tty)
3850 {
3851 /* Used to communicate termination of flash operations to the target. */
3852 bool found_flash_region = false;
3853 struct mem_region *m;
3854 struct gdbarch *gdbarch = target_gdbarch ();
3855
3856 VEC(mem_region_s) *mem_regions = target_memory_map ();
3857
3858 /* Iterate over all memory regions. */
3859 for (int i = 0; VEC_iterate (mem_region_s, mem_regions, i, m); i++)
3860 {
3861 /* Fetch the memory attribute. */
3862 struct mem_attrib *attrib = &m->attrib;
3863
3864 /* Is this a flash memory region? */
3865 if (attrib->mode == MEM_FLASH)
3866 {
3867 found_flash_region = true;
3868 target_flash_erase (m->lo, m->hi - m->lo);
3869
3870 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3871
3872 current_uiout->message (_("Erasing flash memory region at address "));
3873 current_uiout->field_fmt ("address", "%s", paddress (gdbarch,
3874 m->lo));
3875 current_uiout->message (", size = ");
3876 current_uiout->field_fmt ("size", "%s", hex_string (m->hi - m->lo));
3877 current_uiout->message ("\n");
3878 }
3879 }
3880
3881 /* Did we do any flash operations? If so, we need to finalize them. */
3882 if (found_flash_region)
3883 target_flash_done ();
3884 else
3885 current_uiout->message (_("No flash memory regions found.\n"));
3886 }
3887
3888 /* Print the name of each layers of our target stack. */
3889
3890 static void
3891 maintenance_print_target_stack (const char *cmd, int from_tty)
3892 {
3893 struct target_ops *t;
3894
3895 printf_filtered (_("The current target stack is:\n"));
3896
3897 for (t = target_stack; t != NULL; t = t->beneath)
3898 {
3899 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3900 }
3901 }
3902
3903 /* See target.h. */
3904
3905 void
3906 target_async (int enable)
3907 {
3908 infrun_async (enable);
3909 current_target.to_async (&current_target, enable);
3910 }
3911
3912 /* See target.h. */
3913
3914 void
3915 target_thread_events (int enable)
3916 {
3917 current_target.to_thread_events (&current_target, enable);
3918 }
3919
3920 /* Controls if targets can report that they can/are async. This is
3921 just for maintainers to use when debugging gdb. */
3922 int target_async_permitted = 1;
3923
3924 /* The set command writes to this variable. If the inferior is
3925 executing, target_async_permitted is *not* updated. */
3926 static int target_async_permitted_1 = 1;
3927
3928 static void
3929 maint_set_target_async_command (char *args, int from_tty,
3930 struct cmd_list_element *c)
3931 {
3932 if (have_live_inferiors ())
3933 {
3934 target_async_permitted_1 = target_async_permitted;
3935 error (_("Cannot change this setting while the inferior is running."));
3936 }
3937
3938 target_async_permitted = target_async_permitted_1;
3939 }
3940
3941 static void
3942 maint_show_target_async_command (struct ui_file *file, int from_tty,
3943 struct cmd_list_element *c,
3944 const char *value)
3945 {
3946 fprintf_filtered (file,
3947 _("Controlling the inferior in "
3948 "asynchronous mode is %s.\n"), value);
3949 }
3950
3951 /* Return true if the target operates in non-stop mode even with "set
3952 non-stop off". */
3953
3954 static int
3955 target_always_non_stop_p (void)
3956 {
3957 return current_target.to_always_non_stop_p (&current_target);
3958 }
3959
3960 /* See target.h. */
3961
3962 int
3963 target_is_non_stop_p (void)
3964 {
3965 return (non_stop
3966 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3967 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3968 && target_always_non_stop_p ()));
3969 }
3970
3971 /* Controls if targets can report that they always run in non-stop
3972 mode. This is just for maintainers to use when debugging gdb. */
3973 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3974
3975 /* The set command writes to this variable. If the inferior is
3976 executing, target_non_stop_enabled is *not* updated. */
3977 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3978
3979 /* Implementation of "maint set target-non-stop". */
3980
3981 static void
3982 maint_set_target_non_stop_command (char *args, int from_tty,
3983 struct cmd_list_element *c)
3984 {
3985 if (have_live_inferiors ())
3986 {
3987 target_non_stop_enabled_1 = target_non_stop_enabled;
3988 error (_("Cannot change this setting while the inferior is running."));
3989 }
3990
3991 target_non_stop_enabled = target_non_stop_enabled_1;
3992 }
3993
3994 /* Implementation of "maint show target-non-stop". */
3995
3996 static void
3997 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3998 struct cmd_list_element *c,
3999 const char *value)
4000 {
4001 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4002 fprintf_filtered (file,
4003 _("Whether the target is always in non-stop mode "
4004 "is %s (currently %s).\n"), value,
4005 target_always_non_stop_p () ? "on" : "off");
4006 else
4007 fprintf_filtered (file,
4008 _("Whether the target is always in non-stop mode "
4009 "is %s.\n"), value);
4010 }
4011
4012 /* Temporary copies of permission settings. */
4013
4014 static int may_write_registers_1 = 1;
4015 static int may_write_memory_1 = 1;
4016 static int may_insert_breakpoints_1 = 1;
4017 static int may_insert_tracepoints_1 = 1;
4018 static int may_insert_fast_tracepoints_1 = 1;
4019 static int may_stop_1 = 1;
4020
4021 /* Make the user-set values match the real values again. */
4022
4023 void
4024 update_target_permissions (void)
4025 {
4026 may_write_registers_1 = may_write_registers;
4027 may_write_memory_1 = may_write_memory;
4028 may_insert_breakpoints_1 = may_insert_breakpoints;
4029 may_insert_tracepoints_1 = may_insert_tracepoints;
4030 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4031 may_stop_1 = may_stop;
4032 }
4033
4034 /* The one function handles (most of) the permission flags in the same
4035 way. */
4036
4037 static void
4038 set_target_permissions (char *args, int from_tty,
4039 struct cmd_list_element *c)
4040 {
4041 if (target_has_execution)
4042 {
4043 update_target_permissions ();
4044 error (_("Cannot change this setting while the inferior is running."));
4045 }
4046
4047 /* Make the real values match the user-changed values. */
4048 may_write_registers = may_write_registers_1;
4049 may_insert_breakpoints = may_insert_breakpoints_1;
4050 may_insert_tracepoints = may_insert_tracepoints_1;
4051 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4052 may_stop = may_stop_1;
4053 update_observer_mode ();
4054 }
4055
4056 /* Set memory write permission independently of observer mode. */
4057
4058 static void
4059 set_write_memory_permission (char *args, int from_tty,
4060 struct cmd_list_element *c)
4061 {
4062 /* Make the real values match the user-changed values. */
4063 may_write_memory = may_write_memory_1;
4064 update_observer_mode ();
4065 }
4066
4067
4068 void
4069 initialize_targets (void)
4070 {
4071 init_dummy_target ();
4072 push_target (&dummy_target);
4073
4074 add_info ("target", info_target_command, targ_desc);
4075 add_info ("files", info_target_command, targ_desc);
4076
4077 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4078 Set target debugging."), _("\
4079 Show target debugging."), _("\
4080 When non-zero, target debugging is enabled. Higher numbers are more\n\
4081 verbose."),
4082 set_targetdebug,
4083 show_targetdebug,
4084 &setdebuglist, &showdebuglist);
4085
4086 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4087 &trust_readonly, _("\
4088 Set mode for reading from readonly sections."), _("\
4089 Show mode for reading from readonly sections."), _("\
4090 When this mode is on, memory reads from readonly sections (such as .text)\n\
4091 will be read from the object file instead of from the target. This will\n\
4092 result in significant performance improvement for remote targets."),
4093 NULL,
4094 show_trust_readonly,
4095 &setlist, &showlist);
4096
4097 add_com ("monitor", class_obscure, do_monitor_command,
4098 _("Send a command to the remote monitor (remote targets only)."));
4099
4100 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4101 _("Print the name of each layer of the internal target stack."),
4102 &maintenanceprintlist);
4103
4104 add_setshow_boolean_cmd ("target-async", no_class,
4105 &target_async_permitted_1, _("\
4106 Set whether gdb controls the inferior in asynchronous mode."), _("\
4107 Show whether gdb controls the inferior in asynchronous mode."), _("\
4108 Tells gdb whether to control the inferior in asynchronous mode."),
4109 maint_set_target_async_command,
4110 maint_show_target_async_command,
4111 &maintenance_set_cmdlist,
4112 &maintenance_show_cmdlist);
4113
4114 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4115 &target_non_stop_enabled_1, _("\
4116 Set whether gdb always controls the inferior in non-stop mode."), _("\
4117 Show whether gdb always controls the inferior in non-stop mode."), _("\
4118 Tells gdb whether to control the inferior in non-stop mode."),
4119 maint_set_target_non_stop_command,
4120 maint_show_target_non_stop_command,
4121 &maintenance_set_cmdlist,
4122 &maintenance_show_cmdlist);
4123
4124 add_setshow_boolean_cmd ("may-write-registers", class_support,
4125 &may_write_registers_1, _("\
4126 Set permission to write into registers."), _("\
4127 Show permission to write into registers."), _("\
4128 When this permission is on, GDB may write into the target's registers.\n\
4129 Otherwise, any sort of write attempt will result in an error."),
4130 set_target_permissions, NULL,
4131 &setlist, &showlist);
4132
4133 add_setshow_boolean_cmd ("may-write-memory", class_support,
4134 &may_write_memory_1, _("\
4135 Set permission to write into target memory."), _("\
4136 Show permission to write into target memory."), _("\
4137 When this permission is on, GDB may write into the target's memory.\n\
4138 Otherwise, any sort of write attempt will result in an error."),
4139 set_write_memory_permission, NULL,
4140 &setlist, &showlist);
4141
4142 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4143 &may_insert_breakpoints_1, _("\
4144 Set permission to insert breakpoints in the target."), _("\
4145 Show permission to insert breakpoints in the target."), _("\
4146 When this permission is on, GDB may insert breakpoints in the program.\n\
4147 Otherwise, any sort of insertion attempt will result in an error."),
4148 set_target_permissions, NULL,
4149 &setlist, &showlist);
4150
4151 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4152 &may_insert_tracepoints_1, _("\
4153 Set permission to insert tracepoints in the target."), _("\
4154 Show permission to insert tracepoints in the target."), _("\
4155 When this permission is on, GDB may insert tracepoints in the program.\n\
4156 Otherwise, any sort of insertion attempt will result in an error."),
4157 set_target_permissions, NULL,
4158 &setlist, &showlist);
4159
4160 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4161 &may_insert_fast_tracepoints_1, _("\
4162 Set permission to insert fast tracepoints in the target."), _("\
4163 Show permission to insert fast tracepoints in the target."), _("\
4164 When this permission is on, GDB may insert fast tracepoints.\n\
4165 Otherwise, any sort of insertion attempt will result in an error."),
4166 set_target_permissions, NULL,
4167 &setlist, &showlist);
4168
4169 add_setshow_boolean_cmd ("may-interrupt", class_support,
4170 &may_stop_1, _("\
4171 Set permission to interrupt or signal the target."), _("\
4172 Show permission to interrupt or signal the target."), _("\
4173 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4174 Otherwise, any attempt to interrupt or stop will be ignored."),
4175 set_target_permissions, NULL,
4176 &setlist, &showlist);
4177
4178 add_com ("flash-erase", no_class, flash_erase_command,
4179 _("Erase all flash memory regions."));
4180
4181 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4182 &auto_connect_native_target, _("\
4183 Set whether GDB may automatically connect to the native target."), _("\
4184 Show whether GDB may automatically connect to the native target."), _("\
4185 When on, and GDB is not connected to a target yet, GDB\n\
4186 attempts \"run\" and other commands with the native target."),
4187 NULL, show_auto_connect_native_target,
4188 &setlist, &showlist);
4189 }
This page took 0.119594 seconds and 4 git commands to generate.