PR gdb/13987:
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include "gdb_string.h"
25 #include "target.h"
26 #include "gdbcmd.h"
27 #include "symtab.h"
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdb_assert.h"
36 #include "gdbcore.h"
37 #include "exceptions.h"
38 #include "target-descriptions.h"
39 #include "gdbthread.h"
40 #include "solib.h"
41 #include "exec.h"
42 #include "inline-frame.h"
43 #include "tracepoint.h"
44 #include "gdb/fileio.h"
45 #include "agent.h"
46
47 static void target_info (char *, int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static void tcomplain (void) ATTRIBUTE_NORETURN;
57
58 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
59
60 static int return_zero (void);
61
62 static int return_one (void);
63
64 static int return_minus_one (void);
65
66 void target_ignore (void);
67
68 static void target_command (char *, int);
69
70 static struct target_ops *find_default_run_target (char *);
71
72 static LONGEST default_xfer_partial (struct target_ops *ops,
73 enum target_object object,
74 const char *annex, gdb_byte *readbuf,
75 const gdb_byte *writebuf,
76 ULONGEST offset, LONGEST len);
77
78 static LONGEST current_xfer_partial (struct target_ops *ops,
79 enum target_object object,
80 const char *annex, gdb_byte *readbuf,
81 const gdb_byte *writebuf,
82 ULONGEST offset, LONGEST len);
83
84 static LONGEST target_xfer_partial (struct target_ops *ops,
85 enum target_object object,
86 const char *annex,
87 void *readbuf, const void *writebuf,
88 ULONGEST offset, LONGEST len);
89
90 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
91 ptid_t ptid);
92
93 static void init_dummy_target (void);
94
95 static struct target_ops debug_target;
96
97 static void debug_to_open (char *, int);
98
99 static void debug_to_prepare_to_store (struct regcache *);
100
101 static void debug_to_files_info (struct target_ops *);
102
103 static int debug_to_insert_breakpoint (struct gdbarch *,
104 struct bp_target_info *);
105
106 static int debug_to_remove_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_can_use_hw_breakpoint (int, int, int);
110
111 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
112 struct bp_target_info *);
113
114 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
118 struct expression *);
119
120 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
121 struct expression *);
122
123 static int debug_to_stopped_by_watchpoint (void);
124
125 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
126
127 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
128 CORE_ADDR, CORE_ADDR, int);
129
130 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
131
132 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
133 struct expression *);
134
135 static void debug_to_terminal_init (void);
136
137 static void debug_to_terminal_inferior (void);
138
139 static void debug_to_terminal_ours_for_output (void);
140
141 static void debug_to_terminal_save_ours (void);
142
143 static void debug_to_terminal_ours (void);
144
145 static void debug_to_terminal_info (char *, int);
146
147 static void debug_to_load (char *, int);
148
149 static int debug_to_can_run (void);
150
151 static void debug_to_stop (ptid_t);
152
153 /* Pointer to array of target architecture structures; the size of the
154 array; the current index into the array; the allocated size of the
155 array. */
156 struct target_ops **target_structs;
157 unsigned target_struct_size;
158 unsigned target_struct_index;
159 unsigned target_struct_allocsize;
160 #define DEFAULT_ALLOCSIZE 10
161
162 /* The initial current target, so that there is always a semi-valid
163 current target. */
164
165 static struct target_ops dummy_target;
166
167 /* Top of target stack. */
168
169 static struct target_ops *target_stack;
170
171 /* The target structure we are currently using to talk to a process
172 or file or whatever "inferior" we have. */
173
174 struct target_ops current_target;
175
176 /* Command list for target. */
177
178 static struct cmd_list_element *targetlist = NULL;
179
180 /* Nonzero if we should trust readonly sections from the
181 executable when reading memory. */
182
183 static int trust_readonly = 0;
184
185 /* Nonzero if we should show true memory content including
186 memory breakpoint inserted by gdb. */
187
188 static int show_memory_breakpoints = 0;
189
190 /* These globals control whether GDB attempts to perform these
191 operations; they are useful for targets that need to prevent
192 inadvertant disruption, such as in non-stop mode. */
193
194 int may_write_registers = 1;
195
196 int may_write_memory = 1;
197
198 int may_insert_breakpoints = 1;
199
200 int may_insert_tracepoints = 1;
201
202 int may_insert_fast_tracepoints = 1;
203
204 int may_stop = 1;
205
206 /* Non-zero if we want to see trace of target level stuff. */
207
208 static unsigned int targetdebug = 0;
209 static void
210 show_targetdebug (struct ui_file *file, int from_tty,
211 struct cmd_list_element *c, const char *value)
212 {
213 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
214 }
215
216 static void setup_target_debug (void);
217
218 /* The option sets this. */
219 static int stack_cache_enabled_p_1 = 1;
220 /* And set_stack_cache_enabled_p updates this.
221 The reason for the separation is so that we don't flush the cache for
222 on->on transitions. */
223 static int stack_cache_enabled_p = 1;
224
225 /* This is called *after* the stack-cache has been set.
226 Flush the cache for off->on and on->off transitions.
227 There's no real need to flush the cache for on->off transitions,
228 except cleanliness. */
229
230 static void
231 set_stack_cache_enabled_p (char *args, int from_tty,
232 struct cmd_list_element *c)
233 {
234 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
235 target_dcache_invalidate ();
236
237 stack_cache_enabled_p = stack_cache_enabled_p_1;
238 }
239
240 static void
241 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
242 struct cmd_list_element *c, const char *value)
243 {
244 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
245 }
246
247 /* Cache of memory operations, to speed up remote access. */
248 static DCACHE *target_dcache;
249
250 /* Invalidate the target dcache. */
251
252 void
253 target_dcache_invalidate (void)
254 {
255 dcache_invalidate (target_dcache);
256 }
257
258 /* The user just typed 'target' without the name of a target. */
259
260 static void
261 target_command (char *arg, int from_tty)
262 {
263 fputs_filtered ("Argument required (target name). Try `help target'\n",
264 gdb_stdout);
265 }
266
267 /* Default target_has_* methods for process_stratum targets. */
268
269 int
270 default_child_has_all_memory (struct target_ops *ops)
271 {
272 /* If no inferior selected, then we can't read memory here. */
273 if (ptid_equal (inferior_ptid, null_ptid))
274 return 0;
275
276 return 1;
277 }
278
279 int
280 default_child_has_memory (struct target_ops *ops)
281 {
282 /* If no inferior selected, then we can't read memory here. */
283 if (ptid_equal (inferior_ptid, null_ptid))
284 return 0;
285
286 return 1;
287 }
288
289 int
290 default_child_has_stack (struct target_ops *ops)
291 {
292 /* If no inferior selected, there's no stack. */
293 if (ptid_equal (inferior_ptid, null_ptid))
294 return 0;
295
296 return 1;
297 }
298
299 int
300 default_child_has_registers (struct target_ops *ops)
301 {
302 /* Can't read registers from no inferior. */
303 if (ptid_equal (inferior_ptid, null_ptid))
304 return 0;
305
306 return 1;
307 }
308
309 int
310 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
311 {
312 /* If there's no thread selected, then we can't make it run through
313 hoops. */
314 if (ptid_equal (the_ptid, null_ptid))
315 return 0;
316
317 return 1;
318 }
319
320
321 int
322 target_has_all_memory_1 (void)
323 {
324 struct target_ops *t;
325
326 for (t = current_target.beneath; t != NULL; t = t->beneath)
327 if (t->to_has_all_memory (t))
328 return 1;
329
330 return 0;
331 }
332
333 int
334 target_has_memory_1 (void)
335 {
336 struct target_ops *t;
337
338 for (t = current_target.beneath; t != NULL; t = t->beneath)
339 if (t->to_has_memory (t))
340 return 1;
341
342 return 0;
343 }
344
345 int
346 target_has_stack_1 (void)
347 {
348 struct target_ops *t;
349
350 for (t = current_target.beneath; t != NULL; t = t->beneath)
351 if (t->to_has_stack (t))
352 return 1;
353
354 return 0;
355 }
356
357 int
358 target_has_registers_1 (void)
359 {
360 struct target_ops *t;
361
362 for (t = current_target.beneath; t != NULL; t = t->beneath)
363 if (t->to_has_registers (t))
364 return 1;
365
366 return 0;
367 }
368
369 int
370 target_has_execution_1 (ptid_t the_ptid)
371 {
372 struct target_ops *t;
373
374 for (t = current_target.beneath; t != NULL; t = t->beneath)
375 if (t->to_has_execution (t, the_ptid))
376 return 1;
377
378 return 0;
379 }
380
381 int
382 target_has_execution_current (void)
383 {
384 return target_has_execution_1 (inferior_ptid);
385 }
386
387 /* Add a possible target architecture to the list. */
388
389 void
390 add_target (struct target_ops *t)
391 {
392 /* Provide default values for all "must have" methods. */
393 if (t->to_xfer_partial == NULL)
394 t->to_xfer_partial = default_xfer_partial;
395
396 if (t->to_has_all_memory == NULL)
397 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
398
399 if (t->to_has_memory == NULL)
400 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
401
402 if (t->to_has_stack == NULL)
403 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
404
405 if (t->to_has_registers == NULL)
406 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
407
408 if (t->to_has_execution == NULL)
409 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
410
411 if (!target_structs)
412 {
413 target_struct_allocsize = DEFAULT_ALLOCSIZE;
414 target_structs = (struct target_ops **) xmalloc
415 (target_struct_allocsize * sizeof (*target_structs));
416 }
417 if (target_struct_size >= target_struct_allocsize)
418 {
419 target_struct_allocsize *= 2;
420 target_structs = (struct target_ops **)
421 xrealloc ((char *) target_structs,
422 target_struct_allocsize * sizeof (*target_structs));
423 }
424 target_structs[target_struct_size++] = t;
425
426 if (targetlist == NULL)
427 add_prefix_cmd ("target", class_run, target_command, _("\
428 Connect to a target machine or process.\n\
429 The first argument is the type or protocol of the target machine.\n\
430 Remaining arguments are interpreted by the target protocol. For more\n\
431 information on the arguments for a particular protocol, type\n\
432 `help target ' followed by the protocol name."),
433 &targetlist, "target ", 0, &cmdlist);
434 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
435 }
436
437 /* Stub functions */
438
439 void
440 target_ignore (void)
441 {
442 }
443
444 void
445 target_kill (void)
446 {
447 struct target_ops *t;
448
449 for (t = current_target.beneath; t != NULL; t = t->beneath)
450 if (t->to_kill != NULL)
451 {
452 if (targetdebug)
453 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
454
455 t->to_kill (t);
456 return;
457 }
458
459 noprocess ();
460 }
461
462 void
463 target_load (char *arg, int from_tty)
464 {
465 target_dcache_invalidate ();
466 (*current_target.to_load) (arg, from_tty);
467 }
468
469 void
470 target_create_inferior (char *exec_file, char *args,
471 char **env, int from_tty)
472 {
473 struct target_ops *t;
474
475 for (t = current_target.beneath; t != NULL; t = t->beneath)
476 {
477 if (t->to_create_inferior != NULL)
478 {
479 t->to_create_inferior (t, exec_file, args, env, from_tty);
480 if (targetdebug)
481 fprintf_unfiltered (gdb_stdlog,
482 "target_create_inferior (%s, %s, xxx, %d)\n",
483 exec_file, args, from_tty);
484 return;
485 }
486 }
487
488 internal_error (__FILE__, __LINE__,
489 _("could not find a target to create inferior"));
490 }
491
492 void
493 target_terminal_inferior (void)
494 {
495 /* A background resume (``run&'') should leave GDB in control of the
496 terminal. Use target_can_async_p, not target_is_async_p, since at
497 this point the target is not async yet. However, if sync_execution
498 is not set, we know it will become async prior to resume. */
499 if (target_can_async_p () && !sync_execution)
500 return;
501
502 /* If GDB is resuming the inferior in the foreground, install
503 inferior's terminal modes. */
504 (*current_target.to_terminal_inferior) ();
505 }
506
507 static int
508 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
509 struct target_ops *t)
510 {
511 errno = EIO; /* Can't read/write this location. */
512 return 0; /* No bytes handled. */
513 }
514
515 static void
516 tcomplain (void)
517 {
518 error (_("You can't do that when your target is `%s'"),
519 current_target.to_shortname);
520 }
521
522 void
523 noprocess (void)
524 {
525 error (_("You can't do that without a process to debug."));
526 }
527
528 static void
529 default_terminal_info (char *args, int from_tty)
530 {
531 printf_unfiltered (_("No saved terminal information.\n"));
532 }
533
534 /* A default implementation for the to_get_ada_task_ptid target method.
535
536 This function builds the PTID by using both LWP and TID as part of
537 the PTID lwp and tid elements. The pid used is the pid of the
538 inferior_ptid. */
539
540 static ptid_t
541 default_get_ada_task_ptid (long lwp, long tid)
542 {
543 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
544 }
545
546 static enum exec_direction_kind
547 default_execution_direction (void)
548 {
549 if (!target_can_execute_reverse)
550 return EXEC_FORWARD;
551 else if (!target_can_async_p ())
552 return EXEC_FORWARD;
553 else
554 gdb_assert_not_reached ("\
555 to_execution_direction must be implemented for reverse async");
556 }
557
558 /* Go through the target stack from top to bottom, copying over zero
559 entries in current_target, then filling in still empty entries. In
560 effect, we are doing class inheritance through the pushed target
561 vectors.
562
563 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
564 is currently implemented, is that it discards any knowledge of
565 which target an inherited method originally belonged to.
566 Consequently, new new target methods should instead explicitly and
567 locally search the target stack for the target that can handle the
568 request. */
569
570 static void
571 update_current_target (void)
572 {
573 struct target_ops *t;
574
575 /* First, reset current's contents. */
576 memset (&current_target, 0, sizeof (current_target));
577
578 #define INHERIT(FIELD, TARGET) \
579 if (!current_target.FIELD) \
580 current_target.FIELD = (TARGET)->FIELD
581
582 for (t = target_stack; t; t = t->beneath)
583 {
584 INHERIT (to_shortname, t);
585 INHERIT (to_longname, t);
586 INHERIT (to_doc, t);
587 /* Do not inherit to_open. */
588 /* Do not inherit to_close. */
589 /* Do not inherit to_attach. */
590 INHERIT (to_post_attach, t);
591 INHERIT (to_attach_no_wait, t);
592 /* Do not inherit to_detach. */
593 /* Do not inherit to_disconnect. */
594 /* Do not inherit to_resume. */
595 /* Do not inherit to_wait. */
596 /* Do not inherit to_fetch_registers. */
597 /* Do not inherit to_store_registers. */
598 INHERIT (to_prepare_to_store, t);
599 INHERIT (deprecated_xfer_memory, t);
600 INHERIT (to_files_info, t);
601 INHERIT (to_insert_breakpoint, t);
602 INHERIT (to_remove_breakpoint, t);
603 INHERIT (to_can_use_hw_breakpoint, t);
604 INHERIT (to_insert_hw_breakpoint, t);
605 INHERIT (to_remove_hw_breakpoint, t);
606 /* Do not inherit to_ranged_break_num_registers. */
607 INHERIT (to_insert_watchpoint, t);
608 INHERIT (to_remove_watchpoint, t);
609 /* Do not inherit to_insert_mask_watchpoint. */
610 /* Do not inherit to_remove_mask_watchpoint. */
611 INHERIT (to_stopped_data_address, t);
612 INHERIT (to_have_steppable_watchpoint, t);
613 INHERIT (to_have_continuable_watchpoint, t);
614 INHERIT (to_stopped_by_watchpoint, t);
615 INHERIT (to_watchpoint_addr_within_range, t);
616 INHERIT (to_region_ok_for_hw_watchpoint, t);
617 INHERIT (to_can_accel_watchpoint_condition, t);
618 /* Do not inherit to_masked_watch_num_registers. */
619 INHERIT (to_terminal_init, t);
620 INHERIT (to_terminal_inferior, t);
621 INHERIT (to_terminal_ours_for_output, t);
622 INHERIT (to_terminal_ours, t);
623 INHERIT (to_terminal_save_ours, t);
624 INHERIT (to_terminal_info, t);
625 /* Do not inherit to_kill. */
626 INHERIT (to_load, t);
627 /* Do no inherit to_create_inferior. */
628 INHERIT (to_post_startup_inferior, t);
629 INHERIT (to_insert_fork_catchpoint, t);
630 INHERIT (to_remove_fork_catchpoint, t);
631 INHERIT (to_insert_vfork_catchpoint, t);
632 INHERIT (to_remove_vfork_catchpoint, t);
633 /* Do not inherit to_follow_fork. */
634 INHERIT (to_insert_exec_catchpoint, t);
635 INHERIT (to_remove_exec_catchpoint, t);
636 INHERIT (to_set_syscall_catchpoint, t);
637 INHERIT (to_has_exited, t);
638 /* Do not inherit to_mourn_inferior. */
639 INHERIT (to_can_run, t);
640 /* Do not inherit to_pass_signals. */
641 /* Do not inherit to_program_signals. */
642 /* Do not inherit to_thread_alive. */
643 /* Do not inherit to_find_new_threads. */
644 /* Do not inherit to_pid_to_str. */
645 INHERIT (to_extra_thread_info, t);
646 INHERIT (to_thread_name, t);
647 INHERIT (to_stop, t);
648 /* Do not inherit to_xfer_partial. */
649 INHERIT (to_rcmd, t);
650 INHERIT (to_pid_to_exec_file, t);
651 INHERIT (to_log_command, t);
652 INHERIT (to_stratum, t);
653 /* Do not inherit to_has_all_memory. */
654 /* Do not inherit to_has_memory. */
655 /* Do not inherit to_has_stack. */
656 /* Do not inherit to_has_registers. */
657 /* Do not inherit to_has_execution. */
658 INHERIT (to_has_thread_control, t);
659 INHERIT (to_can_async_p, t);
660 INHERIT (to_is_async_p, t);
661 INHERIT (to_async, t);
662 INHERIT (to_find_memory_regions, t);
663 INHERIT (to_make_corefile_notes, t);
664 INHERIT (to_get_bookmark, t);
665 INHERIT (to_goto_bookmark, t);
666 /* Do not inherit to_get_thread_local_address. */
667 INHERIT (to_can_execute_reverse, t);
668 INHERIT (to_execution_direction, t);
669 INHERIT (to_thread_architecture, t);
670 /* Do not inherit to_read_description. */
671 INHERIT (to_get_ada_task_ptid, t);
672 /* Do not inherit to_search_memory. */
673 INHERIT (to_supports_multi_process, t);
674 INHERIT (to_supports_enable_disable_tracepoint, t);
675 INHERIT (to_supports_string_tracing, t);
676 INHERIT (to_trace_init, t);
677 INHERIT (to_download_tracepoint, t);
678 INHERIT (to_can_download_tracepoint, t);
679 INHERIT (to_download_trace_state_variable, t);
680 INHERIT (to_enable_tracepoint, t);
681 INHERIT (to_disable_tracepoint, t);
682 INHERIT (to_trace_set_readonly_regions, t);
683 INHERIT (to_trace_start, t);
684 INHERIT (to_get_trace_status, t);
685 INHERIT (to_get_tracepoint_status, t);
686 INHERIT (to_trace_stop, t);
687 INHERIT (to_trace_find, t);
688 INHERIT (to_get_trace_state_variable_value, t);
689 INHERIT (to_save_trace_data, t);
690 INHERIT (to_upload_tracepoints, t);
691 INHERIT (to_upload_trace_state_variables, t);
692 INHERIT (to_get_raw_trace_data, t);
693 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
694 INHERIT (to_set_disconnected_tracing, t);
695 INHERIT (to_set_circular_trace_buffer, t);
696 INHERIT (to_set_trace_notes, t);
697 INHERIT (to_get_tib_address, t);
698 INHERIT (to_set_permissions, t);
699 INHERIT (to_static_tracepoint_marker_at, t);
700 INHERIT (to_static_tracepoint_markers_by_strid, t);
701 INHERIT (to_traceframe_info, t);
702 INHERIT (to_use_agent, t);
703 INHERIT (to_can_use_agent, t);
704 INHERIT (to_magic, t);
705 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
706 INHERIT (to_can_run_breakpoint_commands, t);
707 /* Do not inherit to_memory_map. */
708 /* Do not inherit to_flash_erase. */
709 /* Do not inherit to_flash_done. */
710 }
711 #undef INHERIT
712
713 /* Clean up a target struct so it no longer has any zero pointers in
714 it. Some entries are defaulted to a method that print an error,
715 others are hard-wired to a standard recursive default. */
716
717 #define de_fault(field, value) \
718 if (!current_target.field) \
719 current_target.field = value
720
721 de_fault (to_open,
722 (void (*) (char *, int))
723 tcomplain);
724 de_fault (to_close,
725 (void (*) (int))
726 target_ignore);
727 de_fault (to_post_attach,
728 (void (*) (int))
729 target_ignore);
730 de_fault (to_prepare_to_store,
731 (void (*) (struct regcache *))
732 noprocess);
733 de_fault (deprecated_xfer_memory,
734 (int (*) (CORE_ADDR, gdb_byte *, int, int,
735 struct mem_attrib *, struct target_ops *))
736 nomemory);
737 de_fault (to_files_info,
738 (void (*) (struct target_ops *))
739 target_ignore);
740 de_fault (to_insert_breakpoint,
741 memory_insert_breakpoint);
742 de_fault (to_remove_breakpoint,
743 memory_remove_breakpoint);
744 de_fault (to_can_use_hw_breakpoint,
745 (int (*) (int, int, int))
746 return_zero);
747 de_fault (to_insert_hw_breakpoint,
748 (int (*) (struct gdbarch *, struct bp_target_info *))
749 return_minus_one);
750 de_fault (to_remove_hw_breakpoint,
751 (int (*) (struct gdbarch *, struct bp_target_info *))
752 return_minus_one);
753 de_fault (to_insert_watchpoint,
754 (int (*) (CORE_ADDR, int, int, struct expression *))
755 return_minus_one);
756 de_fault (to_remove_watchpoint,
757 (int (*) (CORE_ADDR, int, int, struct expression *))
758 return_minus_one);
759 de_fault (to_stopped_by_watchpoint,
760 (int (*) (void))
761 return_zero);
762 de_fault (to_stopped_data_address,
763 (int (*) (struct target_ops *, CORE_ADDR *))
764 return_zero);
765 de_fault (to_watchpoint_addr_within_range,
766 default_watchpoint_addr_within_range);
767 de_fault (to_region_ok_for_hw_watchpoint,
768 default_region_ok_for_hw_watchpoint);
769 de_fault (to_can_accel_watchpoint_condition,
770 (int (*) (CORE_ADDR, int, int, struct expression *))
771 return_zero);
772 de_fault (to_terminal_init,
773 (void (*) (void))
774 target_ignore);
775 de_fault (to_terminal_inferior,
776 (void (*) (void))
777 target_ignore);
778 de_fault (to_terminal_ours_for_output,
779 (void (*) (void))
780 target_ignore);
781 de_fault (to_terminal_ours,
782 (void (*) (void))
783 target_ignore);
784 de_fault (to_terminal_save_ours,
785 (void (*) (void))
786 target_ignore);
787 de_fault (to_terminal_info,
788 default_terminal_info);
789 de_fault (to_load,
790 (void (*) (char *, int))
791 tcomplain);
792 de_fault (to_post_startup_inferior,
793 (void (*) (ptid_t))
794 target_ignore);
795 de_fault (to_insert_fork_catchpoint,
796 (int (*) (int))
797 return_one);
798 de_fault (to_remove_fork_catchpoint,
799 (int (*) (int))
800 return_one);
801 de_fault (to_insert_vfork_catchpoint,
802 (int (*) (int))
803 return_one);
804 de_fault (to_remove_vfork_catchpoint,
805 (int (*) (int))
806 return_one);
807 de_fault (to_insert_exec_catchpoint,
808 (int (*) (int))
809 return_one);
810 de_fault (to_remove_exec_catchpoint,
811 (int (*) (int))
812 return_one);
813 de_fault (to_set_syscall_catchpoint,
814 (int (*) (int, int, int, int, int *))
815 return_one);
816 de_fault (to_has_exited,
817 (int (*) (int, int, int *))
818 return_zero);
819 de_fault (to_can_run,
820 return_zero);
821 de_fault (to_extra_thread_info,
822 (char *(*) (struct thread_info *))
823 return_zero);
824 de_fault (to_thread_name,
825 (char *(*) (struct thread_info *))
826 return_zero);
827 de_fault (to_stop,
828 (void (*) (ptid_t))
829 target_ignore);
830 current_target.to_xfer_partial = current_xfer_partial;
831 de_fault (to_rcmd,
832 (void (*) (char *, struct ui_file *))
833 tcomplain);
834 de_fault (to_pid_to_exec_file,
835 (char *(*) (int))
836 return_zero);
837 de_fault (to_async,
838 (void (*) (void (*) (enum inferior_event_type, void*), void*))
839 tcomplain);
840 de_fault (to_thread_architecture,
841 default_thread_architecture);
842 current_target.to_read_description = NULL;
843 de_fault (to_get_ada_task_ptid,
844 (ptid_t (*) (long, long))
845 default_get_ada_task_ptid);
846 de_fault (to_supports_multi_process,
847 (int (*) (void))
848 return_zero);
849 de_fault (to_supports_enable_disable_tracepoint,
850 (int (*) (void))
851 return_zero);
852 de_fault (to_supports_string_tracing,
853 (int (*) (void))
854 return_zero);
855 de_fault (to_trace_init,
856 (void (*) (void))
857 tcomplain);
858 de_fault (to_download_tracepoint,
859 (void (*) (struct bp_location *))
860 tcomplain);
861 de_fault (to_can_download_tracepoint,
862 (int (*) (void))
863 return_zero);
864 de_fault (to_download_trace_state_variable,
865 (void (*) (struct trace_state_variable *))
866 tcomplain);
867 de_fault (to_enable_tracepoint,
868 (void (*) (struct bp_location *))
869 tcomplain);
870 de_fault (to_disable_tracepoint,
871 (void (*) (struct bp_location *))
872 tcomplain);
873 de_fault (to_trace_set_readonly_regions,
874 (void (*) (void))
875 tcomplain);
876 de_fault (to_trace_start,
877 (void (*) (void))
878 tcomplain);
879 de_fault (to_get_trace_status,
880 (int (*) (struct trace_status *))
881 return_minus_one);
882 de_fault (to_get_tracepoint_status,
883 (void (*) (struct breakpoint *, struct uploaded_tp *))
884 tcomplain);
885 de_fault (to_trace_stop,
886 (void (*) (void))
887 tcomplain);
888 de_fault (to_trace_find,
889 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
890 return_minus_one);
891 de_fault (to_get_trace_state_variable_value,
892 (int (*) (int, LONGEST *))
893 return_zero);
894 de_fault (to_save_trace_data,
895 (int (*) (const char *))
896 tcomplain);
897 de_fault (to_upload_tracepoints,
898 (int (*) (struct uploaded_tp **))
899 return_zero);
900 de_fault (to_upload_trace_state_variables,
901 (int (*) (struct uploaded_tsv **))
902 return_zero);
903 de_fault (to_get_raw_trace_data,
904 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
905 tcomplain);
906 de_fault (to_get_min_fast_tracepoint_insn_len,
907 (int (*) (void))
908 return_minus_one);
909 de_fault (to_set_disconnected_tracing,
910 (void (*) (int))
911 target_ignore);
912 de_fault (to_set_circular_trace_buffer,
913 (void (*) (int))
914 target_ignore);
915 de_fault (to_set_trace_notes,
916 (int (*) (char *, char *, char *))
917 return_zero);
918 de_fault (to_get_tib_address,
919 (int (*) (ptid_t, CORE_ADDR *))
920 tcomplain);
921 de_fault (to_set_permissions,
922 (void (*) (void))
923 target_ignore);
924 de_fault (to_static_tracepoint_marker_at,
925 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
926 return_zero);
927 de_fault (to_static_tracepoint_markers_by_strid,
928 (VEC(static_tracepoint_marker_p) * (*) (const char *))
929 tcomplain);
930 de_fault (to_traceframe_info,
931 (struct traceframe_info * (*) (void))
932 tcomplain);
933 de_fault (to_supports_evaluation_of_breakpoint_conditions,
934 (int (*) (void))
935 return_zero);
936 de_fault (to_can_run_breakpoint_commands,
937 (int (*) (void))
938 return_zero);
939 de_fault (to_use_agent,
940 (int (*) (int))
941 tcomplain);
942 de_fault (to_can_use_agent,
943 (int (*) (void))
944 return_zero);
945 de_fault (to_execution_direction, default_execution_direction);
946
947 #undef de_fault
948
949 /* Finally, position the target-stack beneath the squashed
950 "current_target". That way code looking for a non-inherited
951 target method can quickly and simply find it. */
952 current_target.beneath = target_stack;
953
954 if (targetdebug)
955 setup_target_debug ();
956 }
957
958 /* Push a new target type into the stack of the existing target accessors,
959 possibly superseding some of the existing accessors.
960
961 Rather than allow an empty stack, we always have the dummy target at
962 the bottom stratum, so we can call the function vectors without
963 checking them. */
964
965 void
966 push_target (struct target_ops *t)
967 {
968 struct target_ops **cur;
969
970 /* Check magic number. If wrong, it probably means someone changed
971 the struct definition, but not all the places that initialize one. */
972 if (t->to_magic != OPS_MAGIC)
973 {
974 fprintf_unfiltered (gdb_stderr,
975 "Magic number of %s target struct wrong\n",
976 t->to_shortname);
977 internal_error (__FILE__, __LINE__,
978 _("failed internal consistency check"));
979 }
980
981 /* Find the proper stratum to install this target in. */
982 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
983 {
984 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
985 break;
986 }
987
988 /* If there's already targets at this stratum, remove them. */
989 /* FIXME: cagney/2003-10-15: I think this should be popping all
990 targets to CUR, and not just those at this stratum level. */
991 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
992 {
993 /* There's already something at this stratum level. Close it,
994 and un-hook it from the stack. */
995 struct target_ops *tmp = (*cur);
996
997 (*cur) = (*cur)->beneath;
998 tmp->beneath = NULL;
999 target_close (tmp, 0);
1000 }
1001
1002 /* We have removed all targets in our stratum, now add the new one. */
1003 t->beneath = (*cur);
1004 (*cur) = t;
1005
1006 update_current_target ();
1007 }
1008
1009 /* Remove a target_ops vector from the stack, wherever it may be.
1010 Return how many times it was removed (0 or 1). */
1011
1012 int
1013 unpush_target (struct target_ops *t)
1014 {
1015 struct target_ops **cur;
1016 struct target_ops *tmp;
1017
1018 if (t->to_stratum == dummy_stratum)
1019 internal_error (__FILE__, __LINE__,
1020 _("Attempt to unpush the dummy target"));
1021
1022 /* Look for the specified target. Note that we assume that a target
1023 can only occur once in the target stack. */
1024
1025 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1026 {
1027 if ((*cur) == t)
1028 break;
1029 }
1030
1031 /* If we don't find target_ops, quit. Only open targets should be
1032 closed. */
1033 if ((*cur) == NULL)
1034 return 0;
1035
1036 /* Unchain the target. */
1037 tmp = (*cur);
1038 (*cur) = (*cur)->beneath;
1039 tmp->beneath = NULL;
1040
1041 update_current_target ();
1042
1043 /* Finally close the target. Note we do this after unchaining, so
1044 any target method calls from within the target_close
1045 implementation don't end up in T anymore. */
1046 target_close (t, 0);
1047
1048 return 1;
1049 }
1050
1051 void
1052 pop_target (void)
1053 {
1054 target_close (target_stack, 0); /* Let it clean up. */
1055 if (unpush_target (target_stack) == 1)
1056 return;
1057
1058 fprintf_unfiltered (gdb_stderr,
1059 "pop_target couldn't find target %s\n",
1060 current_target.to_shortname);
1061 internal_error (__FILE__, __LINE__,
1062 _("failed internal consistency check"));
1063 }
1064
1065 void
1066 pop_all_targets_above (enum strata above_stratum, int quitting)
1067 {
1068 while ((int) (current_target.to_stratum) > (int) above_stratum)
1069 {
1070 target_close (target_stack, quitting);
1071 if (!unpush_target (target_stack))
1072 {
1073 fprintf_unfiltered (gdb_stderr,
1074 "pop_all_targets couldn't find target %s\n",
1075 target_stack->to_shortname);
1076 internal_error (__FILE__, __LINE__,
1077 _("failed internal consistency check"));
1078 break;
1079 }
1080 }
1081 }
1082
1083 void
1084 pop_all_targets (int quitting)
1085 {
1086 pop_all_targets_above (dummy_stratum, quitting);
1087 }
1088
1089 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1090
1091 int
1092 target_is_pushed (struct target_ops *t)
1093 {
1094 struct target_ops **cur;
1095
1096 /* Check magic number. If wrong, it probably means someone changed
1097 the struct definition, but not all the places that initialize one. */
1098 if (t->to_magic != OPS_MAGIC)
1099 {
1100 fprintf_unfiltered (gdb_stderr,
1101 "Magic number of %s target struct wrong\n",
1102 t->to_shortname);
1103 internal_error (__FILE__, __LINE__,
1104 _("failed internal consistency check"));
1105 }
1106
1107 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1108 if (*cur == t)
1109 return 1;
1110
1111 return 0;
1112 }
1113
1114 /* Using the objfile specified in OBJFILE, find the address for the
1115 current thread's thread-local storage with offset OFFSET. */
1116 CORE_ADDR
1117 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1118 {
1119 volatile CORE_ADDR addr = 0;
1120 struct target_ops *target;
1121
1122 for (target = current_target.beneath;
1123 target != NULL;
1124 target = target->beneath)
1125 {
1126 if (target->to_get_thread_local_address != NULL)
1127 break;
1128 }
1129
1130 if (target != NULL
1131 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
1132 {
1133 ptid_t ptid = inferior_ptid;
1134 volatile struct gdb_exception ex;
1135
1136 TRY_CATCH (ex, RETURN_MASK_ALL)
1137 {
1138 CORE_ADDR lm_addr;
1139
1140 /* Fetch the load module address for this objfile. */
1141 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
1142 objfile);
1143 /* If it's 0, throw the appropriate exception. */
1144 if (lm_addr == 0)
1145 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1146 _("TLS load module not found"));
1147
1148 addr = target->to_get_thread_local_address (target, ptid,
1149 lm_addr, offset);
1150 }
1151 /* If an error occurred, print TLS related messages here. Otherwise,
1152 throw the error to some higher catcher. */
1153 if (ex.reason < 0)
1154 {
1155 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1156
1157 switch (ex.error)
1158 {
1159 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1160 error (_("Cannot find thread-local variables "
1161 "in this thread library."));
1162 break;
1163 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1164 if (objfile_is_library)
1165 error (_("Cannot find shared library `%s' in dynamic"
1166 " linker's load module list"), objfile->name);
1167 else
1168 error (_("Cannot find executable file `%s' in dynamic"
1169 " linker's load module list"), objfile->name);
1170 break;
1171 case TLS_NOT_ALLOCATED_YET_ERROR:
1172 if (objfile_is_library)
1173 error (_("The inferior has not yet allocated storage for"
1174 " thread-local variables in\n"
1175 "the shared library `%s'\n"
1176 "for %s"),
1177 objfile->name, target_pid_to_str (ptid));
1178 else
1179 error (_("The inferior has not yet allocated storage for"
1180 " thread-local variables in\n"
1181 "the executable `%s'\n"
1182 "for %s"),
1183 objfile->name, target_pid_to_str (ptid));
1184 break;
1185 case TLS_GENERIC_ERROR:
1186 if (objfile_is_library)
1187 error (_("Cannot find thread-local storage for %s, "
1188 "shared library %s:\n%s"),
1189 target_pid_to_str (ptid),
1190 objfile->name, ex.message);
1191 else
1192 error (_("Cannot find thread-local storage for %s, "
1193 "executable file %s:\n%s"),
1194 target_pid_to_str (ptid),
1195 objfile->name, ex.message);
1196 break;
1197 default:
1198 throw_exception (ex);
1199 break;
1200 }
1201 }
1202 }
1203 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1204 TLS is an ABI-specific thing. But we don't do that yet. */
1205 else
1206 error (_("Cannot find thread-local variables on this target"));
1207
1208 return addr;
1209 }
1210
1211 #undef MIN
1212 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1213
1214 /* target_read_string -- read a null terminated string, up to LEN bytes,
1215 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1216 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1217 is responsible for freeing it. Return the number of bytes successfully
1218 read. */
1219
1220 int
1221 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1222 {
1223 int tlen, offset, i;
1224 gdb_byte buf[4];
1225 int errcode = 0;
1226 char *buffer;
1227 int buffer_allocated;
1228 char *bufptr;
1229 unsigned int nbytes_read = 0;
1230
1231 gdb_assert (string);
1232
1233 /* Small for testing. */
1234 buffer_allocated = 4;
1235 buffer = xmalloc (buffer_allocated);
1236 bufptr = buffer;
1237
1238 while (len > 0)
1239 {
1240 tlen = MIN (len, 4 - (memaddr & 3));
1241 offset = memaddr & 3;
1242
1243 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1244 if (errcode != 0)
1245 {
1246 /* The transfer request might have crossed the boundary to an
1247 unallocated region of memory. Retry the transfer, requesting
1248 a single byte. */
1249 tlen = 1;
1250 offset = 0;
1251 errcode = target_read_memory (memaddr, buf, 1);
1252 if (errcode != 0)
1253 goto done;
1254 }
1255
1256 if (bufptr - buffer + tlen > buffer_allocated)
1257 {
1258 unsigned int bytes;
1259
1260 bytes = bufptr - buffer;
1261 buffer_allocated *= 2;
1262 buffer = xrealloc (buffer, buffer_allocated);
1263 bufptr = buffer + bytes;
1264 }
1265
1266 for (i = 0; i < tlen; i++)
1267 {
1268 *bufptr++ = buf[i + offset];
1269 if (buf[i + offset] == '\000')
1270 {
1271 nbytes_read += i + 1;
1272 goto done;
1273 }
1274 }
1275
1276 memaddr += tlen;
1277 len -= tlen;
1278 nbytes_read += tlen;
1279 }
1280 done:
1281 *string = buffer;
1282 if (errnop != NULL)
1283 *errnop = errcode;
1284 return nbytes_read;
1285 }
1286
1287 struct target_section_table *
1288 target_get_section_table (struct target_ops *target)
1289 {
1290 struct target_ops *t;
1291
1292 if (targetdebug)
1293 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1294
1295 for (t = target; t != NULL; t = t->beneath)
1296 if (t->to_get_section_table != NULL)
1297 return (*t->to_get_section_table) (t);
1298
1299 return NULL;
1300 }
1301
1302 /* Find a section containing ADDR. */
1303
1304 struct target_section *
1305 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1306 {
1307 struct target_section_table *table = target_get_section_table (target);
1308 struct target_section *secp;
1309
1310 if (table == NULL)
1311 return NULL;
1312
1313 for (secp = table->sections; secp < table->sections_end; secp++)
1314 {
1315 if (addr >= secp->addr && addr < secp->endaddr)
1316 return secp;
1317 }
1318 return NULL;
1319 }
1320
1321 /* Read memory from the live target, even if currently inspecting a
1322 traceframe. The return is the same as that of target_read. */
1323
1324 static LONGEST
1325 target_read_live_memory (enum target_object object,
1326 ULONGEST memaddr, gdb_byte *myaddr, LONGEST len)
1327 {
1328 int ret;
1329 struct cleanup *cleanup;
1330
1331 /* Switch momentarily out of tfind mode so to access live memory.
1332 Note that this must not clear global state, such as the frame
1333 cache, which must still remain valid for the previous traceframe.
1334 We may be _building_ the frame cache at this point. */
1335 cleanup = make_cleanup_restore_traceframe_number ();
1336 set_traceframe_number (-1);
1337
1338 ret = target_read (current_target.beneath, object, NULL,
1339 myaddr, memaddr, len);
1340
1341 do_cleanups (cleanup);
1342 return ret;
1343 }
1344
1345 /* Using the set of read-only target sections of OPS, read live
1346 read-only memory. Note that the actual reads start from the
1347 top-most target again.
1348
1349 For interface/parameters/return description see target.h,
1350 to_xfer_partial. */
1351
1352 static LONGEST
1353 memory_xfer_live_readonly_partial (struct target_ops *ops,
1354 enum target_object object,
1355 gdb_byte *readbuf, ULONGEST memaddr,
1356 LONGEST len)
1357 {
1358 struct target_section *secp;
1359 struct target_section_table *table;
1360
1361 secp = target_section_by_addr (ops, memaddr);
1362 if (secp != NULL
1363 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1364 & SEC_READONLY))
1365 {
1366 struct target_section *p;
1367 ULONGEST memend = memaddr + len;
1368
1369 table = target_get_section_table (ops);
1370
1371 for (p = table->sections; p < table->sections_end; p++)
1372 {
1373 if (memaddr >= p->addr)
1374 {
1375 if (memend <= p->endaddr)
1376 {
1377 /* Entire transfer is within this section. */
1378 return target_read_live_memory (object, memaddr,
1379 readbuf, len);
1380 }
1381 else if (memaddr >= p->endaddr)
1382 {
1383 /* This section ends before the transfer starts. */
1384 continue;
1385 }
1386 else
1387 {
1388 /* This section overlaps the transfer. Just do half. */
1389 len = p->endaddr - memaddr;
1390 return target_read_live_memory (object, memaddr,
1391 readbuf, len);
1392 }
1393 }
1394 }
1395 }
1396
1397 return 0;
1398 }
1399
1400 /* Perform a partial memory transfer.
1401 For docs see target.h, to_xfer_partial. */
1402
1403 static LONGEST
1404 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1405 void *readbuf, const void *writebuf, ULONGEST memaddr,
1406 LONGEST len)
1407 {
1408 LONGEST res;
1409 int reg_len;
1410 struct mem_region *region;
1411 struct inferior *inf;
1412
1413 /* For accesses to unmapped overlay sections, read directly from
1414 files. Must do this first, as MEMADDR may need adjustment. */
1415 if (readbuf != NULL && overlay_debugging)
1416 {
1417 struct obj_section *section = find_pc_overlay (memaddr);
1418
1419 if (pc_in_unmapped_range (memaddr, section))
1420 {
1421 struct target_section_table *table
1422 = target_get_section_table (ops);
1423 const char *section_name = section->the_bfd_section->name;
1424
1425 memaddr = overlay_mapped_address (memaddr, section);
1426 return section_table_xfer_memory_partial (readbuf, writebuf,
1427 memaddr, len,
1428 table->sections,
1429 table->sections_end,
1430 section_name);
1431 }
1432 }
1433
1434 /* Try the executable files, if "trust-readonly-sections" is set. */
1435 if (readbuf != NULL && trust_readonly)
1436 {
1437 struct target_section *secp;
1438 struct target_section_table *table;
1439
1440 secp = target_section_by_addr (ops, memaddr);
1441 if (secp != NULL
1442 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1443 & SEC_READONLY))
1444 {
1445 table = target_get_section_table (ops);
1446 return section_table_xfer_memory_partial (readbuf, writebuf,
1447 memaddr, len,
1448 table->sections,
1449 table->sections_end,
1450 NULL);
1451 }
1452 }
1453
1454 /* If reading unavailable memory in the context of traceframes, and
1455 this address falls within a read-only section, fallback to
1456 reading from live memory. */
1457 if (readbuf != NULL && get_traceframe_number () != -1)
1458 {
1459 VEC(mem_range_s) *available;
1460
1461 /* If we fail to get the set of available memory, then the
1462 target does not support querying traceframe info, and so we
1463 attempt reading from the traceframe anyway (assuming the
1464 target implements the old QTro packet then). */
1465 if (traceframe_available_memory (&available, memaddr, len))
1466 {
1467 struct cleanup *old_chain;
1468
1469 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1470
1471 if (VEC_empty (mem_range_s, available)
1472 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1473 {
1474 /* Don't read into the traceframe's available
1475 memory. */
1476 if (!VEC_empty (mem_range_s, available))
1477 {
1478 LONGEST oldlen = len;
1479
1480 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1481 gdb_assert (len <= oldlen);
1482 }
1483
1484 do_cleanups (old_chain);
1485
1486 /* This goes through the topmost target again. */
1487 res = memory_xfer_live_readonly_partial (ops, object,
1488 readbuf, memaddr, len);
1489 if (res > 0)
1490 return res;
1491
1492 /* No use trying further, we know some memory starting
1493 at MEMADDR isn't available. */
1494 return -1;
1495 }
1496
1497 /* Don't try to read more than how much is available, in
1498 case the target implements the deprecated QTro packet to
1499 cater for older GDBs (the target's knowledge of read-only
1500 sections may be outdated by now). */
1501 len = VEC_index (mem_range_s, available, 0)->length;
1502
1503 do_cleanups (old_chain);
1504 }
1505 }
1506
1507 /* Try GDB's internal data cache. */
1508 region = lookup_mem_region (memaddr);
1509 /* region->hi == 0 means there's no upper bound. */
1510 if (memaddr + len < region->hi || region->hi == 0)
1511 reg_len = len;
1512 else
1513 reg_len = region->hi - memaddr;
1514
1515 switch (region->attrib.mode)
1516 {
1517 case MEM_RO:
1518 if (writebuf != NULL)
1519 return -1;
1520 break;
1521
1522 case MEM_WO:
1523 if (readbuf != NULL)
1524 return -1;
1525 break;
1526
1527 case MEM_FLASH:
1528 /* We only support writing to flash during "load" for now. */
1529 if (writebuf != NULL)
1530 error (_("Writing to flash memory forbidden in this context"));
1531 break;
1532
1533 case MEM_NONE:
1534 return -1;
1535 }
1536
1537 if (!ptid_equal (inferior_ptid, null_ptid))
1538 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1539 else
1540 inf = NULL;
1541
1542 if (inf != NULL
1543 /* The dcache reads whole cache lines; that doesn't play well
1544 with reading from a trace buffer, because reading outside of
1545 the collected memory range fails. */
1546 && get_traceframe_number () == -1
1547 && (region->attrib.cache
1548 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1549 {
1550 if (readbuf != NULL)
1551 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1552 reg_len, 0);
1553 else
1554 /* FIXME drow/2006-08-09: If we're going to preserve const
1555 correctness dcache_xfer_memory should take readbuf and
1556 writebuf. */
1557 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1558 (void *) writebuf,
1559 reg_len, 1);
1560 if (res <= 0)
1561 return -1;
1562 else
1563 return res;
1564 }
1565
1566 /* If none of those methods found the memory we wanted, fall back
1567 to a target partial transfer. Normally a single call to
1568 to_xfer_partial is enough; if it doesn't recognize an object
1569 it will call the to_xfer_partial of the next target down.
1570 But for memory this won't do. Memory is the only target
1571 object which can be read from more than one valid target.
1572 A core file, for instance, could have some of memory but
1573 delegate other bits to the target below it. So, we must
1574 manually try all targets. */
1575
1576 do
1577 {
1578 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1579 readbuf, writebuf, memaddr, reg_len);
1580 if (res > 0)
1581 break;
1582
1583 /* We want to continue past core files to executables, but not
1584 past a running target's memory. */
1585 if (ops->to_has_all_memory (ops))
1586 break;
1587
1588 ops = ops->beneath;
1589 }
1590 while (ops != NULL);
1591
1592 /* Make sure the cache gets updated no matter what - if we are writing
1593 to the stack. Even if this write is not tagged as such, we still need
1594 to update the cache. */
1595
1596 if (res > 0
1597 && inf != NULL
1598 && writebuf != NULL
1599 && !region->attrib.cache
1600 && stack_cache_enabled_p
1601 && object != TARGET_OBJECT_STACK_MEMORY)
1602 {
1603 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1604 }
1605
1606 /* If we still haven't got anything, return the last error. We
1607 give up. */
1608 return res;
1609 }
1610
1611 /* Perform a partial memory transfer. For docs see target.h,
1612 to_xfer_partial. */
1613
1614 static LONGEST
1615 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1616 void *readbuf, const void *writebuf, ULONGEST memaddr,
1617 LONGEST len)
1618 {
1619 int res;
1620
1621 /* Zero length requests are ok and require no work. */
1622 if (len == 0)
1623 return 0;
1624
1625 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1626 breakpoint insns, thus hiding out from higher layers whether
1627 there are software breakpoints inserted in the code stream. */
1628 if (readbuf != NULL)
1629 {
1630 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len);
1631
1632 if (res > 0 && !show_memory_breakpoints)
1633 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1634 }
1635 else
1636 {
1637 void *buf;
1638 struct cleanup *old_chain;
1639
1640 buf = xmalloc (len);
1641 old_chain = make_cleanup (xfree, buf);
1642 memcpy (buf, writebuf, len);
1643
1644 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1645 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len);
1646
1647 do_cleanups (old_chain);
1648 }
1649
1650 return res;
1651 }
1652
1653 static void
1654 restore_show_memory_breakpoints (void *arg)
1655 {
1656 show_memory_breakpoints = (uintptr_t) arg;
1657 }
1658
1659 struct cleanup *
1660 make_show_memory_breakpoints_cleanup (int show)
1661 {
1662 int current = show_memory_breakpoints;
1663
1664 show_memory_breakpoints = show;
1665 return make_cleanup (restore_show_memory_breakpoints,
1666 (void *) (uintptr_t) current);
1667 }
1668
1669 /* For docs see target.h, to_xfer_partial. */
1670
1671 static LONGEST
1672 target_xfer_partial (struct target_ops *ops,
1673 enum target_object object, const char *annex,
1674 void *readbuf, const void *writebuf,
1675 ULONGEST offset, LONGEST len)
1676 {
1677 LONGEST retval;
1678
1679 gdb_assert (ops->to_xfer_partial != NULL);
1680
1681 if (writebuf && !may_write_memory)
1682 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1683 core_addr_to_string_nz (offset), plongest (len));
1684
1685 /* If this is a memory transfer, let the memory-specific code
1686 have a look at it instead. Memory transfers are more
1687 complicated. */
1688 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1689 retval = memory_xfer_partial (ops, object, readbuf,
1690 writebuf, offset, len);
1691 else
1692 {
1693 enum target_object raw_object = object;
1694
1695 /* If this is a raw memory transfer, request the normal
1696 memory object from other layers. */
1697 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1698 raw_object = TARGET_OBJECT_MEMORY;
1699
1700 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1701 writebuf, offset, len);
1702 }
1703
1704 if (targetdebug)
1705 {
1706 const unsigned char *myaddr = NULL;
1707
1708 fprintf_unfiltered (gdb_stdlog,
1709 "%s:target_xfer_partial "
1710 "(%d, %s, %s, %s, %s, %s) = %s",
1711 ops->to_shortname,
1712 (int) object,
1713 (annex ? annex : "(null)"),
1714 host_address_to_string (readbuf),
1715 host_address_to_string (writebuf),
1716 core_addr_to_string_nz (offset),
1717 plongest (len), plongest (retval));
1718
1719 if (readbuf)
1720 myaddr = readbuf;
1721 if (writebuf)
1722 myaddr = writebuf;
1723 if (retval > 0 && myaddr != NULL)
1724 {
1725 int i;
1726
1727 fputs_unfiltered (", bytes =", gdb_stdlog);
1728 for (i = 0; i < retval; i++)
1729 {
1730 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1731 {
1732 if (targetdebug < 2 && i > 0)
1733 {
1734 fprintf_unfiltered (gdb_stdlog, " ...");
1735 break;
1736 }
1737 fprintf_unfiltered (gdb_stdlog, "\n");
1738 }
1739
1740 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1741 }
1742 }
1743
1744 fputc_unfiltered ('\n', gdb_stdlog);
1745 }
1746 return retval;
1747 }
1748
1749 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1750 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1751 if any error occurs.
1752
1753 If an error occurs, no guarantee is made about the contents of the data at
1754 MYADDR. In particular, the caller should not depend upon partial reads
1755 filling the buffer with good data. There is no way for the caller to know
1756 how much good data might have been transfered anyway. Callers that can
1757 deal with partial reads should call target_read (which will retry until
1758 it makes no progress, and then return how much was transferred). */
1759
1760 int
1761 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1762 {
1763 /* Dispatch to the topmost target, not the flattened current_target.
1764 Memory accesses check target->to_has_(all_)memory, and the
1765 flattened target doesn't inherit those. */
1766 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1767 myaddr, memaddr, len) == len)
1768 return 0;
1769 else
1770 return EIO;
1771 }
1772
1773 /* Like target_read_memory, but specify explicitly that this is a read from
1774 the target's stack. This may trigger different cache behavior. */
1775
1776 int
1777 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1778 {
1779 /* Dispatch to the topmost target, not the flattened current_target.
1780 Memory accesses check target->to_has_(all_)memory, and the
1781 flattened target doesn't inherit those. */
1782
1783 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1784 myaddr, memaddr, len) == len)
1785 return 0;
1786 else
1787 return EIO;
1788 }
1789
1790 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1791 Returns either 0 for success or an errno value if any error occurs.
1792 If an error occurs, no guarantee is made about how much data got written.
1793 Callers that can deal with partial writes should call target_write. */
1794
1795 int
1796 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1797 {
1798 /* Dispatch to the topmost target, not the flattened current_target.
1799 Memory accesses check target->to_has_(all_)memory, and the
1800 flattened target doesn't inherit those. */
1801 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1802 myaddr, memaddr, len) == len)
1803 return 0;
1804 else
1805 return EIO;
1806 }
1807
1808 /* Write LEN bytes from MYADDR to target raw memory at address
1809 MEMADDR. Returns either 0 for success or an errno value if any
1810 error occurs. If an error occurs, no guarantee is made about how
1811 much data got written. Callers that can deal with partial writes
1812 should call target_write. */
1813
1814 int
1815 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1816 {
1817 /* Dispatch to the topmost target, not the flattened current_target.
1818 Memory accesses check target->to_has_(all_)memory, and the
1819 flattened target doesn't inherit those. */
1820 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1821 myaddr, memaddr, len) == len)
1822 return 0;
1823 else
1824 return EIO;
1825 }
1826
1827 /* Fetch the target's memory map. */
1828
1829 VEC(mem_region_s) *
1830 target_memory_map (void)
1831 {
1832 VEC(mem_region_s) *result;
1833 struct mem_region *last_one, *this_one;
1834 int ix;
1835 struct target_ops *t;
1836
1837 if (targetdebug)
1838 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1839
1840 for (t = current_target.beneath; t != NULL; t = t->beneath)
1841 if (t->to_memory_map != NULL)
1842 break;
1843
1844 if (t == NULL)
1845 return NULL;
1846
1847 result = t->to_memory_map (t);
1848 if (result == NULL)
1849 return NULL;
1850
1851 qsort (VEC_address (mem_region_s, result),
1852 VEC_length (mem_region_s, result),
1853 sizeof (struct mem_region), mem_region_cmp);
1854
1855 /* Check that regions do not overlap. Simultaneously assign
1856 a numbering for the "mem" commands to use to refer to
1857 each region. */
1858 last_one = NULL;
1859 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1860 {
1861 this_one->number = ix;
1862
1863 if (last_one && last_one->hi > this_one->lo)
1864 {
1865 warning (_("Overlapping regions in memory map: ignoring"));
1866 VEC_free (mem_region_s, result);
1867 return NULL;
1868 }
1869 last_one = this_one;
1870 }
1871
1872 return result;
1873 }
1874
1875 void
1876 target_flash_erase (ULONGEST address, LONGEST length)
1877 {
1878 struct target_ops *t;
1879
1880 for (t = current_target.beneath; t != NULL; t = t->beneath)
1881 if (t->to_flash_erase != NULL)
1882 {
1883 if (targetdebug)
1884 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1885 hex_string (address), phex (length, 0));
1886 t->to_flash_erase (t, address, length);
1887 return;
1888 }
1889
1890 tcomplain ();
1891 }
1892
1893 void
1894 target_flash_done (void)
1895 {
1896 struct target_ops *t;
1897
1898 for (t = current_target.beneath; t != NULL; t = t->beneath)
1899 if (t->to_flash_done != NULL)
1900 {
1901 if (targetdebug)
1902 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1903 t->to_flash_done (t);
1904 return;
1905 }
1906
1907 tcomplain ();
1908 }
1909
1910 static void
1911 show_trust_readonly (struct ui_file *file, int from_tty,
1912 struct cmd_list_element *c, const char *value)
1913 {
1914 fprintf_filtered (file,
1915 _("Mode for reading from readonly sections is %s.\n"),
1916 value);
1917 }
1918
1919 /* More generic transfers. */
1920
1921 static LONGEST
1922 default_xfer_partial (struct target_ops *ops, enum target_object object,
1923 const char *annex, gdb_byte *readbuf,
1924 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1925 {
1926 if (object == TARGET_OBJECT_MEMORY
1927 && ops->deprecated_xfer_memory != NULL)
1928 /* If available, fall back to the target's
1929 "deprecated_xfer_memory" method. */
1930 {
1931 int xfered = -1;
1932
1933 errno = 0;
1934 if (writebuf != NULL)
1935 {
1936 void *buffer = xmalloc (len);
1937 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1938
1939 memcpy (buffer, writebuf, len);
1940 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1941 1/*write*/, NULL, ops);
1942 do_cleanups (cleanup);
1943 }
1944 if (readbuf != NULL)
1945 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1946 0/*read*/, NULL, ops);
1947 if (xfered > 0)
1948 return xfered;
1949 else if (xfered == 0 && errno == 0)
1950 /* "deprecated_xfer_memory" uses 0, cross checked against
1951 ERRNO as one indication of an error. */
1952 return 0;
1953 else
1954 return -1;
1955 }
1956 else if (ops->beneath != NULL)
1957 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1958 readbuf, writebuf, offset, len);
1959 else
1960 return -1;
1961 }
1962
1963 /* The xfer_partial handler for the topmost target. Unlike the default,
1964 it does not need to handle memory specially; it just passes all
1965 requests down the stack. */
1966
1967 static LONGEST
1968 current_xfer_partial (struct target_ops *ops, enum target_object object,
1969 const char *annex, gdb_byte *readbuf,
1970 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1971 {
1972 if (ops->beneath != NULL)
1973 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1974 readbuf, writebuf, offset, len);
1975 else
1976 return -1;
1977 }
1978
1979 /* Target vector read/write partial wrapper functions. */
1980
1981 static LONGEST
1982 target_read_partial (struct target_ops *ops,
1983 enum target_object object,
1984 const char *annex, gdb_byte *buf,
1985 ULONGEST offset, LONGEST len)
1986 {
1987 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1988 }
1989
1990 static LONGEST
1991 target_write_partial (struct target_ops *ops,
1992 enum target_object object,
1993 const char *annex, const gdb_byte *buf,
1994 ULONGEST offset, LONGEST len)
1995 {
1996 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1997 }
1998
1999 /* Wrappers to perform the full transfer. */
2000
2001 /* For docs on target_read see target.h. */
2002
2003 LONGEST
2004 target_read (struct target_ops *ops,
2005 enum target_object object,
2006 const char *annex, gdb_byte *buf,
2007 ULONGEST offset, LONGEST len)
2008 {
2009 LONGEST xfered = 0;
2010
2011 while (xfered < len)
2012 {
2013 LONGEST xfer = target_read_partial (ops, object, annex,
2014 (gdb_byte *) buf + xfered,
2015 offset + xfered, len - xfered);
2016
2017 /* Call an observer, notifying them of the xfer progress? */
2018 if (xfer == 0)
2019 return xfered;
2020 if (xfer < 0)
2021 return -1;
2022 xfered += xfer;
2023 QUIT;
2024 }
2025 return len;
2026 }
2027
2028 /* Assuming that the entire [begin, end) range of memory cannot be
2029 read, try to read whatever subrange is possible to read.
2030
2031 The function returns, in RESULT, either zero or one memory block.
2032 If there's a readable subrange at the beginning, it is completely
2033 read and returned. Any further readable subrange will not be read.
2034 Otherwise, if there's a readable subrange at the end, it will be
2035 completely read and returned. Any readable subranges before it
2036 (obviously, not starting at the beginning), will be ignored. In
2037 other cases -- either no readable subrange, or readable subrange(s)
2038 that is neither at the beginning, or end, nothing is returned.
2039
2040 The purpose of this function is to handle a read across a boundary
2041 of accessible memory in a case when memory map is not available.
2042 The above restrictions are fine for this case, but will give
2043 incorrect results if the memory is 'patchy'. However, supporting
2044 'patchy' memory would require trying to read every single byte,
2045 and it seems unacceptable solution. Explicit memory map is
2046 recommended for this case -- and target_read_memory_robust will
2047 take care of reading multiple ranges then. */
2048
2049 static void
2050 read_whatever_is_readable (struct target_ops *ops,
2051 ULONGEST begin, ULONGEST end,
2052 VEC(memory_read_result_s) **result)
2053 {
2054 gdb_byte *buf = xmalloc (end - begin);
2055 ULONGEST current_begin = begin;
2056 ULONGEST current_end = end;
2057 int forward;
2058 memory_read_result_s r;
2059
2060 /* If we previously failed to read 1 byte, nothing can be done here. */
2061 if (end - begin <= 1)
2062 {
2063 xfree (buf);
2064 return;
2065 }
2066
2067 /* Check that either first or the last byte is readable, and give up
2068 if not. This heuristic is meant to permit reading accessible memory
2069 at the boundary of accessible region. */
2070 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2071 buf, begin, 1) == 1)
2072 {
2073 forward = 1;
2074 ++current_begin;
2075 }
2076 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2077 buf + (end-begin) - 1, end - 1, 1) == 1)
2078 {
2079 forward = 0;
2080 --current_end;
2081 }
2082 else
2083 {
2084 xfree (buf);
2085 return;
2086 }
2087
2088 /* Loop invariant is that the [current_begin, current_end) was previously
2089 found to be not readable as a whole.
2090
2091 Note loop condition -- if the range has 1 byte, we can't divide the range
2092 so there's no point trying further. */
2093 while (current_end - current_begin > 1)
2094 {
2095 ULONGEST first_half_begin, first_half_end;
2096 ULONGEST second_half_begin, second_half_end;
2097 LONGEST xfer;
2098 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2099
2100 if (forward)
2101 {
2102 first_half_begin = current_begin;
2103 first_half_end = middle;
2104 second_half_begin = middle;
2105 second_half_end = current_end;
2106 }
2107 else
2108 {
2109 first_half_begin = middle;
2110 first_half_end = current_end;
2111 second_half_begin = current_begin;
2112 second_half_end = middle;
2113 }
2114
2115 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2116 buf + (first_half_begin - begin),
2117 first_half_begin,
2118 first_half_end - first_half_begin);
2119
2120 if (xfer == first_half_end - first_half_begin)
2121 {
2122 /* This half reads up fine. So, the error must be in the
2123 other half. */
2124 current_begin = second_half_begin;
2125 current_end = second_half_end;
2126 }
2127 else
2128 {
2129 /* This half is not readable. Because we've tried one byte, we
2130 know some part of this half if actually redable. Go to the next
2131 iteration to divide again and try to read.
2132
2133 We don't handle the other half, because this function only tries
2134 to read a single readable subrange. */
2135 current_begin = first_half_begin;
2136 current_end = first_half_end;
2137 }
2138 }
2139
2140 if (forward)
2141 {
2142 /* The [begin, current_begin) range has been read. */
2143 r.begin = begin;
2144 r.end = current_begin;
2145 r.data = buf;
2146 }
2147 else
2148 {
2149 /* The [current_end, end) range has been read. */
2150 LONGEST rlen = end - current_end;
2151
2152 r.data = xmalloc (rlen);
2153 memcpy (r.data, buf + current_end - begin, rlen);
2154 r.begin = current_end;
2155 r.end = end;
2156 xfree (buf);
2157 }
2158 VEC_safe_push(memory_read_result_s, (*result), &r);
2159 }
2160
2161 void
2162 free_memory_read_result_vector (void *x)
2163 {
2164 VEC(memory_read_result_s) *v = x;
2165 memory_read_result_s *current;
2166 int ix;
2167
2168 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2169 {
2170 xfree (current->data);
2171 }
2172 VEC_free (memory_read_result_s, v);
2173 }
2174
2175 VEC(memory_read_result_s) *
2176 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2177 {
2178 VEC(memory_read_result_s) *result = 0;
2179
2180 LONGEST xfered = 0;
2181 while (xfered < len)
2182 {
2183 struct mem_region *region = lookup_mem_region (offset + xfered);
2184 LONGEST rlen;
2185
2186 /* If there is no explicit region, a fake one should be created. */
2187 gdb_assert (region);
2188
2189 if (region->hi == 0)
2190 rlen = len - xfered;
2191 else
2192 rlen = region->hi - offset;
2193
2194 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2195 {
2196 /* Cannot read this region. Note that we can end up here only
2197 if the region is explicitly marked inaccessible, or
2198 'inaccessible-by-default' is in effect. */
2199 xfered += rlen;
2200 }
2201 else
2202 {
2203 LONGEST to_read = min (len - xfered, rlen);
2204 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2205
2206 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2207 (gdb_byte *) buffer,
2208 offset + xfered, to_read);
2209 /* Call an observer, notifying them of the xfer progress? */
2210 if (xfer <= 0)
2211 {
2212 /* Got an error reading full chunk. See if maybe we can read
2213 some subrange. */
2214 xfree (buffer);
2215 read_whatever_is_readable (ops, offset + xfered,
2216 offset + xfered + to_read, &result);
2217 xfered += to_read;
2218 }
2219 else
2220 {
2221 struct memory_read_result r;
2222 r.data = buffer;
2223 r.begin = offset + xfered;
2224 r.end = r.begin + xfer;
2225 VEC_safe_push (memory_read_result_s, result, &r);
2226 xfered += xfer;
2227 }
2228 QUIT;
2229 }
2230 }
2231 return result;
2232 }
2233
2234
2235 /* An alternative to target_write with progress callbacks. */
2236
2237 LONGEST
2238 target_write_with_progress (struct target_ops *ops,
2239 enum target_object object,
2240 const char *annex, const gdb_byte *buf,
2241 ULONGEST offset, LONGEST len,
2242 void (*progress) (ULONGEST, void *), void *baton)
2243 {
2244 LONGEST xfered = 0;
2245
2246 /* Give the progress callback a chance to set up. */
2247 if (progress)
2248 (*progress) (0, baton);
2249
2250 while (xfered < len)
2251 {
2252 LONGEST xfer = target_write_partial (ops, object, annex,
2253 (gdb_byte *) buf + xfered,
2254 offset + xfered, len - xfered);
2255
2256 if (xfer == 0)
2257 return xfered;
2258 if (xfer < 0)
2259 return -1;
2260
2261 if (progress)
2262 (*progress) (xfer, baton);
2263
2264 xfered += xfer;
2265 QUIT;
2266 }
2267 return len;
2268 }
2269
2270 /* For docs on target_write see target.h. */
2271
2272 LONGEST
2273 target_write (struct target_ops *ops,
2274 enum target_object object,
2275 const char *annex, const gdb_byte *buf,
2276 ULONGEST offset, LONGEST len)
2277 {
2278 return target_write_with_progress (ops, object, annex, buf, offset, len,
2279 NULL, NULL);
2280 }
2281
2282 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2283 the size of the transferred data. PADDING additional bytes are
2284 available in *BUF_P. This is a helper function for
2285 target_read_alloc; see the declaration of that function for more
2286 information. */
2287
2288 static LONGEST
2289 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2290 const char *annex, gdb_byte **buf_p, int padding)
2291 {
2292 size_t buf_alloc, buf_pos;
2293 gdb_byte *buf;
2294 LONGEST n;
2295
2296 /* This function does not have a length parameter; it reads the
2297 entire OBJECT). Also, it doesn't support objects fetched partly
2298 from one target and partly from another (in a different stratum,
2299 e.g. a core file and an executable). Both reasons make it
2300 unsuitable for reading memory. */
2301 gdb_assert (object != TARGET_OBJECT_MEMORY);
2302
2303 /* Start by reading up to 4K at a time. The target will throttle
2304 this number down if necessary. */
2305 buf_alloc = 4096;
2306 buf = xmalloc (buf_alloc);
2307 buf_pos = 0;
2308 while (1)
2309 {
2310 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2311 buf_pos, buf_alloc - buf_pos - padding);
2312 if (n < 0)
2313 {
2314 /* An error occurred. */
2315 xfree (buf);
2316 return -1;
2317 }
2318 else if (n == 0)
2319 {
2320 /* Read all there was. */
2321 if (buf_pos == 0)
2322 xfree (buf);
2323 else
2324 *buf_p = buf;
2325 return buf_pos;
2326 }
2327
2328 buf_pos += n;
2329
2330 /* If the buffer is filling up, expand it. */
2331 if (buf_alloc < buf_pos * 2)
2332 {
2333 buf_alloc *= 2;
2334 buf = xrealloc (buf, buf_alloc);
2335 }
2336
2337 QUIT;
2338 }
2339 }
2340
2341 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2342 the size of the transferred data. See the declaration in "target.h"
2343 function for more information about the return value. */
2344
2345 LONGEST
2346 target_read_alloc (struct target_ops *ops, enum target_object object,
2347 const char *annex, gdb_byte **buf_p)
2348 {
2349 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2350 }
2351
2352 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2353 returned as a string, allocated using xmalloc. If an error occurs
2354 or the transfer is unsupported, NULL is returned. Empty objects
2355 are returned as allocated but empty strings. A warning is issued
2356 if the result contains any embedded NUL bytes. */
2357
2358 char *
2359 target_read_stralloc (struct target_ops *ops, enum target_object object,
2360 const char *annex)
2361 {
2362 gdb_byte *buffer;
2363 LONGEST i, transferred;
2364
2365 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2366
2367 if (transferred < 0)
2368 return NULL;
2369
2370 if (transferred == 0)
2371 return xstrdup ("");
2372
2373 buffer[transferred] = 0;
2374
2375 /* Check for embedded NUL bytes; but allow trailing NULs. */
2376 for (i = strlen (buffer); i < transferred; i++)
2377 if (buffer[i] != 0)
2378 {
2379 warning (_("target object %d, annex %s, "
2380 "contained unexpected null characters"),
2381 (int) object, annex ? annex : "(none)");
2382 break;
2383 }
2384
2385 return (char *) buffer;
2386 }
2387
2388 /* Memory transfer methods. */
2389
2390 void
2391 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2392 LONGEST len)
2393 {
2394 /* This method is used to read from an alternate, non-current
2395 target. This read must bypass the overlay support (as symbols
2396 don't match this target), and GDB's internal cache (wrong cache
2397 for this target). */
2398 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2399 != len)
2400 memory_error (EIO, addr);
2401 }
2402
2403 ULONGEST
2404 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2405 int len, enum bfd_endian byte_order)
2406 {
2407 gdb_byte buf[sizeof (ULONGEST)];
2408
2409 gdb_assert (len <= sizeof (buf));
2410 get_target_memory (ops, addr, buf, len);
2411 return extract_unsigned_integer (buf, len, byte_order);
2412 }
2413
2414 int
2415 target_insert_breakpoint (struct gdbarch *gdbarch,
2416 struct bp_target_info *bp_tgt)
2417 {
2418 if (!may_insert_breakpoints)
2419 {
2420 warning (_("May not insert breakpoints"));
2421 return 1;
2422 }
2423
2424 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2425 }
2426
2427 int
2428 target_remove_breakpoint (struct gdbarch *gdbarch,
2429 struct bp_target_info *bp_tgt)
2430 {
2431 /* This is kind of a weird case to handle, but the permission might
2432 have been changed after breakpoints were inserted - in which case
2433 we should just take the user literally and assume that any
2434 breakpoints should be left in place. */
2435 if (!may_insert_breakpoints)
2436 {
2437 warning (_("May not remove breakpoints"));
2438 return 1;
2439 }
2440
2441 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2442 }
2443
2444 static void
2445 target_info (char *args, int from_tty)
2446 {
2447 struct target_ops *t;
2448 int has_all_mem = 0;
2449
2450 if (symfile_objfile != NULL)
2451 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2452
2453 for (t = target_stack; t != NULL; t = t->beneath)
2454 {
2455 if (!(*t->to_has_memory) (t))
2456 continue;
2457
2458 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2459 continue;
2460 if (has_all_mem)
2461 printf_unfiltered (_("\tWhile running this, "
2462 "GDB does not access memory from...\n"));
2463 printf_unfiltered ("%s:\n", t->to_longname);
2464 (t->to_files_info) (t);
2465 has_all_mem = (*t->to_has_all_memory) (t);
2466 }
2467 }
2468
2469 /* This function is called before any new inferior is created, e.g.
2470 by running a program, attaching, or connecting to a target.
2471 It cleans up any state from previous invocations which might
2472 change between runs. This is a subset of what target_preopen
2473 resets (things which might change between targets). */
2474
2475 void
2476 target_pre_inferior (int from_tty)
2477 {
2478 /* Clear out solib state. Otherwise the solib state of the previous
2479 inferior might have survived and is entirely wrong for the new
2480 target. This has been observed on GNU/Linux using glibc 2.3. How
2481 to reproduce:
2482
2483 bash$ ./foo&
2484 [1] 4711
2485 bash$ ./foo&
2486 [1] 4712
2487 bash$ gdb ./foo
2488 [...]
2489 (gdb) attach 4711
2490 (gdb) detach
2491 (gdb) attach 4712
2492 Cannot access memory at address 0xdeadbeef
2493 */
2494
2495 /* In some OSs, the shared library list is the same/global/shared
2496 across inferiors. If code is shared between processes, so are
2497 memory regions and features. */
2498 if (!gdbarch_has_global_solist (target_gdbarch ()))
2499 {
2500 no_shared_libraries (NULL, from_tty);
2501
2502 invalidate_target_mem_regions ();
2503
2504 target_clear_description ();
2505 }
2506
2507 agent_capability_invalidate ();
2508 }
2509
2510 /* Callback for iterate_over_inferiors. Gets rid of the given
2511 inferior. */
2512
2513 static int
2514 dispose_inferior (struct inferior *inf, void *args)
2515 {
2516 struct thread_info *thread;
2517
2518 thread = any_thread_of_process (inf->pid);
2519 if (thread)
2520 {
2521 switch_to_thread (thread->ptid);
2522
2523 /* Core inferiors actually should be detached, not killed. */
2524 if (target_has_execution)
2525 target_kill ();
2526 else
2527 target_detach (NULL, 0);
2528 }
2529
2530 return 0;
2531 }
2532
2533 /* This is to be called by the open routine before it does
2534 anything. */
2535
2536 void
2537 target_preopen (int from_tty)
2538 {
2539 dont_repeat ();
2540
2541 if (have_inferiors ())
2542 {
2543 if (!from_tty
2544 || !have_live_inferiors ()
2545 || query (_("A program is being debugged already. Kill it? ")))
2546 iterate_over_inferiors (dispose_inferior, NULL);
2547 else
2548 error (_("Program not killed."));
2549 }
2550
2551 /* Calling target_kill may remove the target from the stack. But if
2552 it doesn't (which seems like a win for UDI), remove it now. */
2553 /* Leave the exec target, though. The user may be switching from a
2554 live process to a core of the same program. */
2555 pop_all_targets_above (file_stratum, 0);
2556
2557 target_pre_inferior (from_tty);
2558 }
2559
2560 /* Detach a target after doing deferred register stores. */
2561
2562 void
2563 target_detach (char *args, int from_tty)
2564 {
2565 struct target_ops* t;
2566
2567 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2568 /* Don't remove global breakpoints here. They're removed on
2569 disconnection from the target. */
2570 ;
2571 else
2572 /* If we're in breakpoints-always-inserted mode, have to remove
2573 them before detaching. */
2574 remove_breakpoints_pid (PIDGET (inferior_ptid));
2575
2576 prepare_for_detach ();
2577
2578 for (t = current_target.beneath; t != NULL; t = t->beneath)
2579 {
2580 if (t->to_detach != NULL)
2581 {
2582 t->to_detach (t, args, from_tty);
2583 if (targetdebug)
2584 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2585 args, from_tty);
2586 return;
2587 }
2588 }
2589
2590 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2591 }
2592
2593 void
2594 target_disconnect (char *args, int from_tty)
2595 {
2596 struct target_ops *t;
2597
2598 /* If we're in breakpoints-always-inserted mode or if breakpoints
2599 are global across processes, we have to remove them before
2600 disconnecting. */
2601 remove_breakpoints ();
2602
2603 for (t = current_target.beneath; t != NULL; t = t->beneath)
2604 if (t->to_disconnect != NULL)
2605 {
2606 if (targetdebug)
2607 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2608 args, from_tty);
2609 t->to_disconnect (t, args, from_tty);
2610 return;
2611 }
2612
2613 tcomplain ();
2614 }
2615
2616 ptid_t
2617 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2618 {
2619 struct target_ops *t;
2620
2621 for (t = current_target.beneath; t != NULL; t = t->beneath)
2622 {
2623 if (t->to_wait != NULL)
2624 {
2625 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2626
2627 if (targetdebug)
2628 {
2629 char *status_string;
2630 char *options_string;
2631
2632 status_string = target_waitstatus_to_string (status);
2633 options_string = target_options_to_string (options);
2634 fprintf_unfiltered (gdb_stdlog,
2635 "target_wait (%d, status, options={%s})"
2636 " = %d, %s\n",
2637 PIDGET (ptid), options_string,
2638 PIDGET (retval), status_string);
2639 xfree (status_string);
2640 xfree (options_string);
2641 }
2642
2643 return retval;
2644 }
2645 }
2646
2647 noprocess ();
2648 }
2649
2650 char *
2651 target_pid_to_str (ptid_t ptid)
2652 {
2653 struct target_ops *t;
2654
2655 for (t = current_target.beneath; t != NULL; t = t->beneath)
2656 {
2657 if (t->to_pid_to_str != NULL)
2658 return (*t->to_pid_to_str) (t, ptid);
2659 }
2660
2661 return normal_pid_to_str (ptid);
2662 }
2663
2664 char *
2665 target_thread_name (struct thread_info *info)
2666 {
2667 struct target_ops *t;
2668
2669 for (t = current_target.beneath; t != NULL; t = t->beneath)
2670 {
2671 if (t->to_thread_name != NULL)
2672 return (*t->to_thread_name) (info);
2673 }
2674
2675 return NULL;
2676 }
2677
2678 void
2679 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2680 {
2681 struct target_ops *t;
2682
2683 target_dcache_invalidate ();
2684
2685 for (t = current_target.beneath; t != NULL; t = t->beneath)
2686 {
2687 if (t->to_resume != NULL)
2688 {
2689 t->to_resume (t, ptid, step, signal);
2690 if (targetdebug)
2691 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2692 PIDGET (ptid),
2693 step ? "step" : "continue",
2694 gdb_signal_to_name (signal));
2695
2696 registers_changed_ptid (ptid);
2697 set_executing (ptid, 1);
2698 set_running (ptid, 1);
2699 clear_inline_frame_state (ptid);
2700 return;
2701 }
2702 }
2703
2704 noprocess ();
2705 }
2706
2707 void
2708 target_pass_signals (int numsigs, unsigned char *pass_signals)
2709 {
2710 struct target_ops *t;
2711
2712 for (t = current_target.beneath; t != NULL; t = t->beneath)
2713 {
2714 if (t->to_pass_signals != NULL)
2715 {
2716 if (targetdebug)
2717 {
2718 int i;
2719
2720 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2721 numsigs);
2722
2723 for (i = 0; i < numsigs; i++)
2724 if (pass_signals[i])
2725 fprintf_unfiltered (gdb_stdlog, " %s",
2726 gdb_signal_to_name (i));
2727
2728 fprintf_unfiltered (gdb_stdlog, " })\n");
2729 }
2730
2731 (*t->to_pass_signals) (numsigs, pass_signals);
2732 return;
2733 }
2734 }
2735 }
2736
2737 void
2738 target_program_signals (int numsigs, unsigned char *program_signals)
2739 {
2740 struct target_ops *t;
2741
2742 for (t = current_target.beneath; t != NULL; t = t->beneath)
2743 {
2744 if (t->to_program_signals != NULL)
2745 {
2746 if (targetdebug)
2747 {
2748 int i;
2749
2750 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2751 numsigs);
2752
2753 for (i = 0; i < numsigs; i++)
2754 if (program_signals[i])
2755 fprintf_unfiltered (gdb_stdlog, " %s",
2756 gdb_signal_to_name (i));
2757
2758 fprintf_unfiltered (gdb_stdlog, " })\n");
2759 }
2760
2761 (*t->to_program_signals) (numsigs, program_signals);
2762 return;
2763 }
2764 }
2765 }
2766
2767 /* Look through the list of possible targets for a target that can
2768 follow forks. */
2769
2770 int
2771 target_follow_fork (int follow_child)
2772 {
2773 struct target_ops *t;
2774
2775 for (t = current_target.beneath; t != NULL; t = t->beneath)
2776 {
2777 if (t->to_follow_fork != NULL)
2778 {
2779 int retval = t->to_follow_fork (t, follow_child);
2780
2781 if (targetdebug)
2782 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2783 follow_child, retval);
2784 return retval;
2785 }
2786 }
2787
2788 /* Some target returned a fork event, but did not know how to follow it. */
2789 internal_error (__FILE__, __LINE__,
2790 _("could not find a target to follow fork"));
2791 }
2792
2793 void
2794 target_mourn_inferior (void)
2795 {
2796 struct target_ops *t;
2797
2798 for (t = current_target.beneath; t != NULL; t = t->beneath)
2799 {
2800 if (t->to_mourn_inferior != NULL)
2801 {
2802 t->to_mourn_inferior (t);
2803 if (targetdebug)
2804 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2805
2806 /* We no longer need to keep handles on any of the object files.
2807 Make sure to release them to avoid unnecessarily locking any
2808 of them while we're not actually debugging. */
2809 bfd_cache_close_all ();
2810
2811 return;
2812 }
2813 }
2814
2815 internal_error (__FILE__, __LINE__,
2816 _("could not find a target to follow mourn inferior"));
2817 }
2818
2819 /* Look for a target which can describe architectural features, starting
2820 from TARGET. If we find one, return its description. */
2821
2822 const struct target_desc *
2823 target_read_description (struct target_ops *target)
2824 {
2825 struct target_ops *t;
2826
2827 for (t = target; t != NULL; t = t->beneath)
2828 if (t->to_read_description != NULL)
2829 {
2830 const struct target_desc *tdesc;
2831
2832 tdesc = t->to_read_description (t);
2833 if (tdesc)
2834 return tdesc;
2835 }
2836
2837 return NULL;
2838 }
2839
2840 /* The default implementation of to_search_memory.
2841 This implements a basic search of memory, reading target memory and
2842 performing the search here (as opposed to performing the search in on the
2843 target side with, for example, gdbserver). */
2844
2845 int
2846 simple_search_memory (struct target_ops *ops,
2847 CORE_ADDR start_addr, ULONGEST search_space_len,
2848 const gdb_byte *pattern, ULONGEST pattern_len,
2849 CORE_ADDR *found_addrp)
2850 {
2851 /* NOTE: also defined in find.c testcase. */
2852 #define SEARCH_CHUNK_SIZE 16000
2853 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2854 /* Buffer to hold memory contents for searching. */
2855 gdb_byte *search_buf;
2856 unsigned search_buf_size;
2857 struct cleanup *old_cleanups;
2858
2859 search_buf_size = chunk_size + pattern_len - 1;
2860
2861 /* No point in trying to allocate a buffer larger than the search space. */
2862 if (search_space_len < search_buf_size)
2863 search_buf_size = search_space_len;
2864
2865 search_buf = malloc (search_buf_size);
2866 if (search_buf == NULL)
2867 error (_("Unable to allocate memory to perform the search."));
2868 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2869
2870 /* Prime the search buffer. */
2871
2872 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2873 search_buf, start_addr, search_buf_size) != search_buf_size)
2874 {
2875 warning (_("Unable to access %s bytes of target "
2876 "memory at %s, halting search."),
2877 pulongest (search_buf_size), hex_string (start_addr));
2878 do_cleanups (old_cleanups);
2879 return -1;
2880 }
2881
2882 /* Perform the search.
2883
2884 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2885 When we've scanned N bytes we copy the trailing bytes to the start and
2886 read in another N bytes. */
2887
2888 while (search_space_len >= pattern_len)
2889 {
2890 gdb_byte *found_ptr;
2891 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2892
2893 found_ptr = memmem (search_buf, nr_search_bytes,
2894 pattern, pattern_len);
2895
2896 if (found_ptr != NULL)
2897 {
2898 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2899
2900 *found_addrp = found_addr;
2901 do_cleanups (old_cleanups);
2902 return 1;
2903 }
2904
2905 /* Not found in this chunk, skip to next chunk. */
2906
2907 /* Don't let search_space_len wrap here, it's unsigned. */
2908 if (search_space_len >= chunk_size)
2909 search_space_len -= chunk_size;
2910 else
2911 search_space_len = 0;
2912
2913 if (search_space_len >= pattern_len)
2914 {
2915 unsigned keep_len = search_buf_size - chunk_size;
2916 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2917 int nr_to_read;
2918
2919 /* Copy the trailing part of the previous iteration to the front
2920 of the buffer for the next iteration. */
2921 gdb_assert (keep_len == pattern_len - 1);
2922 memcpy (search_buf, search_buf + chunk_size, keep_len);
2923
2924 nr_to_read = min (search_space_len - keep_len, chunk_size);
2925
2926 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2927 search_buf + keep_len, read_addr,
2928 nr_to_read) != nr_to_read)
2929 {
2930 warning (_("Unable to access %s bytes of target "
2931 "memory at %s, halting search."),
2932 plongest (nr_to_read),
2933 hex_string (read_addr));
2934 do_cleanups (old_cleanups);
2935 return -1;
2936 }
2937
2938 start_addr += chunk_size;
2939 }
2940 }
2941
2942 /* Not found. */
2943
2944 do_cleanups (old_cleanups);
2945 return 0;
2946 }
2947
2948 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2949 sequence of bytes in PATTERN with length PATTERN_LEN.
2950
2951 The result is 1 if found, 0 if not found, and -1 if there was an error
2952 requiring halting of the search (e.g. memory read error).
2953 If the pattern is found the address is recorded in FOUND_ADDRP. */
2954
2955 int
2956 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2957 const gdb_byte *pattern, ULONGEST pattern_len,
2958 CORE_ADDR *found_addrp)
2959 {
2960 struct target_ops *t;
2961 int found;
2962
2963 /* We don't use INHERIT to set current_target.to_search_memory,
2964 so we have to scan the target stack and handle targetdebug
2965 ourselves. */
2966
2967 if (targetdebug)
2968 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2969 hex_string (start_addr));
2970
2971 for (t = current_target.beneath; t != NULL; t = t->beneath)
2972 if (t->to_search_memory != NULL)
2973 break;
2974
2975 if (t != NULL)
2976 {
2977 found = t->to_search_memory (t, start_addr, search_space_len,
2978 pattern, pattern_len, found_addrp);
2979 }
2980 else
2981 {
2982 /* If a special version of to_search_memory isn't available, use the
2983 simple version. */
2984 found = simple_search_memory (current_target.beneath,
2985 start_addr, search_space_len,
2986 pattern, pattern_len, found_addrp);
2987 }
2988
2989 if (targetdebug)
2990 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2991
2992 return found;
2993 }
2994
2995 /* Look through the currently pushed targets. If none of them will
2996 be able to restart the currently running process, issue an error
2997 message. */
2998
2999 void
3000 target_require_runnable (void)
3001 {
3002 struct target_ops *t;
3003
3004 for (t = target_stack; t != NULL; t = t->beneath)
3005 {
3006 /* If this target knows how to create a new program, then
3007 assume we will still be able to after killing the current
3008 one. Either killing and mourning will not pop T, or else
3009 find_default_run_target will find it again. */
3010 if (t->to_create_inferior != NULL)
3011 return;
3012
3013 /* Do not worry about thread_stratum targets that can not
3014 create inferiors. Assume they will be pushed again if
3015 necessary, and continue to the process_stratum. */
3016 if (t->to_stratum == thread_stratum
3017 || t->to_stratum == arch_stratum)
3018 continue;
3019
3020 error (_("The \"%s\" target does not support \"run\". "
3021 "Try \"help target\" or \"continue\"."),
3022 t->to_shortname);
3023 }
3024
3025 /* This function is only called if the target is running. In that
3026 case there should have been a process_stratum target and it
3027 should either know how to create inferiors, or not... */
3028 internal_error (__FILE__, __LINE__, _("No targets found"));
3029 }
3030
3031 /* Look through the list of possible targets for a target that can
3032 execute a run or attach command without any other data. This is
3033 used to locate the default process stratum.
3034
3035 If DO_MESG is not NULL, the result is always valid (error() is
3036 called for errors); else, return NULL on error. */
3037
3038 static struct target_ops *
3039 find_default_run_target (char *do_mesg)
3040 {
3041 struct target_ops **t;
3042 struct target_ops *runable = NULL;
3043 int count;
3044
3045 count = 0;
3046
3047 for (t = target_structs; t < target_structs + target_struct_size;
3048 ++t)
3049 {
3050 if ((*t)->to_can_run && target_can_run (*t))
3051 {
3052 runable = *t;
3053 ++count;
3054 }
3055 }
3056
3057 if (count != 1)
3058 {
3059 if (do_mesg)
3060 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3061 else
3062 return NULL;
3063 }
3064
3065 return runable;
3066 }
3067
3068 void
3069 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3070 {
3071 struct target_ops *t;
3072
3073 t = find_default_run_target ("attach");
3074 (t->to_attach) (t, args, from_tty);
3075 return;
3076 }
3077
3078 void
3079 find_default_create_inferior (struct target_ops *ops,
3080 char *exec_file, char *allargs, char **env,
3081 int from_tty)
3082 {
3083 struct target_ops *t;
3084
3085 t = find_default_run_target ("run");
3086 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3087 return;
3088 }
3089
3090 static int
3091 find_default_can_async_p (void)
3092 {
3093 struct target_ops *t;
3094
3095 /* This may be called before the target is pushed on the stack;
3096 look for the default process stratum. If there's none, gdb isn't
3097 configured with a native debugger, and target remote isn't
3098 connected yet. */
3099 t = find_default_run_target (NULL);
3100 if (t && t->to_can_async_p)
3101 return (t->to_can_async_p) ();
3102 return 0;
3103 }
3104
3105 static int
3106 find_default_is_async_p (void)
3107 {
3108 struct target_ops *t;
3109
3110 /* This may be called before the target is pushed on the stack;
3111 look for the default process stratum. If there's none, gdb isn't
3112 configured with a native debugger, and target remote isn't
3113 connected yet. */
3114 t = find_default_run_target (NULL);
3115 if (t && t->to_is_async_p)
3116 return (t->to_is_async_p) ();
3117 return 0;
3118 }
3119
3120 static int
3121 find_default_supports_non_stop (void)
3122 {
3123 struct target_ops *t;
3124
3125 t = find_default_run_target (NULL);
3126 if (t && t->to_supports_non_stop)
3127 return (t->to_supports_non_stop) ();
3128 return 0;
3129 }
3130
3131 int
3132 target_supports_non_stop (void)
3133 {
3134 struct target_ops *t;
3135
3136 for (t = &current_target; t != NULL; t = t->beneath)
3137 if (t->to_supports_non_stop)
3138 return t->to_supports_non_stop ();
3139
3140 return 0;
3141 }
3142
3143 /* Implement the "info proc" command. */
3144
3145 int
3146 target_info_proc (char *args, enum info_proc_what what)
3147 {
3148 struct target_ops *t;
3149
3150 /* If we're already connected to something that can get us OS
3151 related data, use it. Otherwise, try using the native
3152 target. */
3153 if (current_target.to_stratum >= process_stratum)
3154 t = current_target.beneath;
3155 else
3156 t = find_default_run_target (NULL);
3157
3158 for (; t != NULL; t = t->beneath)
3159 {
3160 if (t->to_info_proc != NULL)
3161 {
3162 t->to_info_proc (t, args, what);
3163
3164 if (targetdebug)
3165 fprintf_unfiltered (gdb_stdlog,
3166 "target_info_proc (\"%s\", %d)\n", args, what);
3167
3168 return 1;
3169 }
3170 }
3171
3172 return 0;
3173 }
3174
3175 static int
3176 find_default_supports_disable_randomization (void)
3177 {
3178 struct target_ops *t;
3179
3180 t = find_default_run_target (NULL);
3181 if (t && t->to_supports_disable_randomization)
3182 return (t->to_supports_disable_randomization) ();
3183 return 0;
3184 }
3185
3186 int
3187 target_supports_disable_randomization (void)
3188 {
3189 struct target_ops *t;
3190
3191 for (t = &current_target; t != NULL; t = t->beneath)
3192 if (t->to_supports_disable_randomization)
3193 return t->to_supports_disable_randomization ();
3194
3195 return 0;
3196 }
3197
3198 char *
3199 target_get_osdata (const char *type)
3200 {
3201 struct target_ops *t;
3202
3203 /* If we're already connected to something that can get us OS
3204 related data, use it. Otherwise, try using the native
3205 target. */
3206 if (current_target.to_stratum >= process_stratum)
3207 t = current_target.beneath;
3208 else
3209 t = find_default_run_target ("get OS data");
3210
3211 if (!t)
3212 return NULL;
3213
3214 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3215 }
3216
3217 /* Determine the current address space of thread PTID. */
3218
3219 struct address_space *
3220 target_thread_address_space (ptid_t ptid)
3221 {
3222 struct address_space *aspace;
3223 struct inferior *inf;
3224 struct target_ops *t;
3225
3226 for (t = current_target.beneath; t != NULL; t = t->beneath)
3227 {
3228 if (t->to_thread_address_space != NULL)
3229 {
3230 aspace = t->to_thread_address_space (t, ptid);
3231 gdb_assert (aspace);
3232
3233 if (targetdebug)
3234 fprintf_unfiltered (gdb_stdlog,
3235 "target_thread_address_space (%s) = %d\n",
3236 target_pid_to_str (ptid),
3237 address_space_num (aspace));
3238 return aspace;
3239 }
3240 }
3241
3242 /* Fall-back to the "main" address space of the inferior. */
3243 inf = find_inferior_pid (ptid_get_pid (ptid));
3244
3245 if (inf == NULL || inf->aspace == NULL)
3246 internal_error (__FILE__, __LINE__,
3247 _("Can't determine the current "
3248 "address space of thread %s\n"),
3249 target_pid_to_str (ptid));
3250
3251 return inf->aspace;
3252 }
3253
3254
3255 /* Target file operations. */
3256
3257 static struct target_ops *
3258 default_fileio_target (void)
3259 {
3260 /* If we're already connected to something that can perform
3261 file I/O, use it. Otherwise, try using the native target. */
3262 if (current_target.to_stratum >= process_stratum)
3263 return current_target.beneath;
3264 else
3265 return find_default_run_target ("file I/O");
3266 }
3267
3268 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3269 target file descriptor, or -1 if an error occurs (and set
3270 *TARGET_ERRNO). */
3271 int
3272 target_fileio_open (const char *filename, int flags, int mode,
3273 int *target_errno)
3274 {
3275 struct target_ops *t;
3276
3277 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3278 {
3279 if (t->to_fileio_open != NULL)
3280 {
3281 int fd = t->to_fileio_open (filename, flags, mode, target_errno);
3282
3283 if (targetdebug)
3284 fprintf_unfiltered (gdb_stdlog,
3285 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3286 filename, flags, mode,
3287 fd, fd != -1 ? 0 : *target_errno);
3288 return fd;
3289 }
3290 }
3291
3292 *target_errno = FILEIO_ENOSYS;
3293 return -1;
3294 }
3295
3296 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3297 Return the number of bytes written, or -1 if an error occurs
3298 (and set *TARGET_ERRNO). */
3299 int
3300 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3301 ULONGEST offset, int *target_errno)
3302 {
3303 struct target_ops *t;
3304
3305 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3306 {
3307 if (t->to_fileio_pwrite != NULL)
3308 {
3309 int ret = t->to_fileio_pwrite (fd, write_buf, len, offset,
3310 target_errno);
3311
3312 if (targetdebug)
3313 fprintf_unfiltered (gdb_stdlog,
3314 "target_fileio_pwrite (%d,...,%d,%s) "
3315 "= %d (%d)\n",
3316 fd, len, pulongest (offset),
3317 ret, ret != -1 ? 0 : *target_errno);
3318 return ret;
3319 }
3320 }
3321
3322 *target_errno = FILEIO_ENOSYS;
3323 return -1;
3324 }
3325
3326 /* Read up to LEN bytes FD on the target into READ_BUF.
3327 Return the number of bytes read, or -1 if an error occurs
3328 (and set *TARGET_ERRNO). */
3329 int
3330 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3331 ULONGEST offset, int *target_errno)
3332 {
3333 struct target_ops *t;
3334
3335 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3336 {
3337 if (t->to_fileio_pread != NULL)
3338 {
3339 int ret = t->to_fileio_pread (fd, read_buf, len, offset,
3340 target_errno);
3341
3342 if (targetdebug)
3343 fprintf_unfiltered (gdb_stdlog,
3344 "target_fileio_pread (%d,...,%d,%s) "
3345 "= %d (%d)\n",
3346 fd, len, pulongest (offset),
3347 ret, ret != -1 ? 0 : *target_errno);
3348 return ret;
3349 }
3350 }
3351
3352 *target_errno = FILEIO_ENOSYS;
3353 return -1;
3354 }
3355
3356 /* Close FD on the target. Return 0, or -1 if an error occurs
3357 (and set *TARGET_ERRNO). */
3358 int
3359 target_fileio_close (int fd, int *target_errno)
3360 {
3361 struct target_ops *t;
3362
3363 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3364 {
3365 if (t->to_fileio_close != NULL)
3366 {
3367 int ret = t->to_fileio_close (fd, target_errno);
3368
3369 if (targetdebug)
3370 fprintf_unfiltered (gdb_stdlog,
3371 "target_fileio_close (%d) = %d (%d)\n",
3372 fd, ret, ret != -1 ? 0 : *target_errno);
3373 return ret;
3374 }
3375 }
3376
3377 *target_errno = FILEIO_ENOSYS;
3378 return -1;
3379 }
3380
3381 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3382 occurs (and set *TARGET_ERRNO). */
3383 int
3384 target_fileio_unlink (const char *filename, int *target_errno)
3385 {
3386 struct target_ops *t;
3387
3388 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3389 {
3390 if (t->to_fileio_unlink != NULL)
3391 {
3392 int ret = t->to_fileio_unlink (filename, target_errno);
3393
3394 if (targetdebug)
3395 fprintf_unfiltered (gdb_stdlog,
3396 "target_fileio_unlink (%s) = %d (%d)\n",
3397 filename, ret, ret != -1 ? 0 : *target_errno);
3398 return ret;
3399 }
3400 }
3401
3402 *target_errno = FILEIO_ENOSYS;
3403 return -1;
3404 }
3405
3406 /* Read value of symbolic link FILENAME on the target. Return a
3407 null-terminated string allocated via xmalloc, or NULL if an error
3408 occurs (and set *TARGET_ERRNO). */
3409 char *
3410 target_fileio_readlink (const char *filename, int *target_errno)
3411 {
3412 struct target_ops *t;
3413
3414 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3415 {
3416 if (t->to_fileio_readlink != NULL)
3417 {
3418 char *ret = t->to_fileio_readlink (filename, target_errno);
3419
3420 if (targetdebug)
3421 fprintf_unfiltered (gdb_stdlog,
3422 "target_fileio_readlink (%s) = %s (%d)\n",
3423 filename, ret? ret : "(nil)",
3424 ret? 0 : *target_errno);
3425 return ret;
3426 }
3427 }
3428
3429 *target_errno = FILEIO_ENOSYS;
3430 return NULL;
3431 }
3432
3433 static void
3434 target_fileio_close_cleanup (void *opaque)
3435 {
3436 int fd = *(int *) opaque;
3437 int target_errno;
3438
3439 target_fileio_close (fd, &target_errno);
3440 }
3441
3442 /* Read target file FILENAME. Store the result in *BUF_P and
3443 return the size of the transferred data. PADDING additional bytes are
3444 available in *BUF_P. This is a helper function for
3445 target_fileio_read_alloc; see the declaration of that function for more
3446 information. */
3447
3448 static LONGEST
3449 target_fileio_read_alloc_1 (const char *filename,
3450 gdb_byte **buf_p, int padding)
3451 {
3452 struct cleanup *close_cleanup;
3453 size_t buf_alloc, buf_pos;
3454 gdb_byte *buf;
3455 LONGEST n;
3456 int fd;
3457 int target_errno;
3458
3459 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3460 if (fd == -1)
3461 return -1;
3462
3463 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3464
3465 /* Start by reading up to 4K at a time. The target will throttle
3466 this number down if necessary. */
3467 buf_alloc = 4096;
3468 buf = xmalloc (buf_alloc);
3469 buf_pos = 0;
3470 while (1)
3471 {
3472 n = target_fileio_pread (fd, &buf[buf_pos],
3473 buf_alloc - buf_pos - padding, buf_pos,
3474 &target_errno);
3475 if (n < 0)
3476 {
3477 /* An error occurred. */
3478 do_cleanups (close_cleanup);
3479 xfree (buf);
3480 return -1;
3481 }
3482 else if (n == 0)
3483 {
3484 /* Read all there was. */
3485 do_cleanups (close_cleanup);
3486 if (buf_pos == 0)
3487 xfree (buf);
3488 else
3489 *buf_p = buf;
3490 return buf_pos;
3491 }
3492
3493 buf_pos += n;
3494
3495 /* If the buffer is filling up, expand it. */
3496 if (buf_alloc < buf_pos * 2)
3497 {
3498 buf_alloc *= 2;
3499 buf = xrealloc (buf, buf_alloc);
3500 }
3501
3502 QUIT;
3503 }
3504 }
3505
3506 /* Read target file FILENAME. Store the result in *BUF_P and return
3507 the size of the transferred data. See the declaration in "target.h"
3508 function for more information about the return value. */
3509
3510 LONGEST
3511 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3512 {
3513 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3514 }
3515
3516 /* Read target file FILENAME. The result is NUL-terminated and
3517 returned as a string, allocated using xmalloc. If an error occurs
3518 or the transfer is unsupported, NULL is returned. Empty objects
3519 are returned as allocated but empty strings. A warning is issued
3520 if the result contains any embedded NUL bytes. */
3521
3522 char *
3523 target_fileio_read_stralloc (const char *filename)
3524 {
3525 gdb_byte *buffer;
3526 LONGEST i, transferred;
3527
3528 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3529
3530 if (transferred < 0)
3531 return NULL;
3532
3533 if (transferred == 0)
3534 return xstrdup ("");
3535
3536 buffer[transferred] = 0;
3537
3538 /* Check for embedded NUL bytes; but allow trailing NULs. */
3539 for (i = strlen (buffer); i < transferred; i++)
3540 if (buffer[i] != 0)
3541 {
3542 warning (_("target file %s "
3543 "contained unexpected null characters"),
3544 filename);
3545 break;
3546 }
3547
3548 return (char *) buffer;
3549 }
3550
3551
3552 static int
3553 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3554 {
3555 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3556 }
3557
3558 static int
3559 default_watchpoint_addr_within_range (struct target_ops *target,
3560 CORE_ADDR addr,
3561 CORE_ADDR start, int length)
3562 {
3563 return addr >= start && addr < start + length;
3564 }
3565
3566 static struct gdbarch *
3567 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3568 {
3569 return target_gdbarch ();
3570 }
3571
3572 static int
3573 return_zero (void)
3574 {
3575 return 0;
3576 }
3577
3578 static int
3579 return_one (void)
3580 {
3581 return 1;
3582 }
3583
3584 static int
3585 return_minus_one (void)
3586 {
3587 return -1;
3588 }
3589
3590 /* Find a single runnable target in the stack and return it. If for
3591 some reason there is more than one, return NULL. */
3592
3593 struct target_ops *
3594 find_run_target (void)
3595 {
3596 struct target_ops **t;
3597 struct target_ops *runable = NULL;
3598 int count;
3599
3600 count = 0;
3601
3602 for (t = target_structs; t < target_structs + target_struct_size; ++t)
3603 {
3604 if ((*t)->to_can_run && target_can_run (*t))
3605 {
3606 runable = *t;
3607 ++count;
3608 }
3609 }
3610
3611 return (count == 1 ? runable : NULL);
3612 }
3613
3614 /*
3615 * Find the next target down the stack from the specified target.
3616 */
3617
3618 struct target_ops *
3619 find_target_beneath (struct target_ops *t)
3620 {
3621 return t->beneath;
3622 }
3623
3624 \f
3625 /* The inferior process has died. Long live the inferior! */
3626
3627 void
3628 generic_mourn_inferior (void)
3629 {
3630 ptid_t ptid;
3631
3632 ptid = inferior_ptid;
3633 inferior_ptid = null_ptid;
3634
3635 /* Mark breakpoints uninserted in case something tries to delete a
3636 breakpoint while we delete the inferior's threads (which would
3637 fail, since the inferior is long gone). */
3638 mark_breakpoints_out ();
3639
3640 if (!ptid_equal (ptid, null_ptid))
3641 {
3642 int pid = ptid_get_pid (ptid);
3643 exit_inferior (pid);
3644 }
3645
3646 /* Note this wipes step-resume breakpoints, so needs to be done
3647 after exit_inferior, which ends up referencing the step-resume
3648 breakpoints through clear_thread_inferior_resources. */
3649 breakpoint_init_inferior (inf_exited);
3650
3651 registers_changed ();
3652
3653 reopen_exec_file ();
3654 reinit_frame_cache ();
3655
3656 if (deprecated_detach_hook)
3657 deprecated_detach_hook ();
3658 }
3659 \f
3660 /* Convert a normal process ID to a string. Returns the string in a
3661 static buffer. */
3662
3663 char *
3664 normal_pid_to_str (ptid_t ptid)
3665 {
3666 static char buf[32];
3667
3668 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3669 return buf;
3670 }
3671
3672 static char *
3673 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3674 {
3675 return normal_pid_to_str (ptid);
3676 }
3677
3678 /* Error-catcher for target_find_memory_regions. */
3679 static int
3680 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3681 {
3682 error (_("Command not implemented for this target."));
3683 return 0;
3684 }
3685
3686 /* Error-catcher for target_make_corefile_notes. */
3687 static char *
3688 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3689 {
3690 error (_("Command not implemented for this target."));
3691 return NULL;
3692 }
3693
3694 /* Error-catcher for target_get_bookmark. */
3695 static gdb_byte *
3696 dummy_get_bookmark (char *ignore1, int ignore2)
3697 {
3698 tcomplain ();
3699 return NULL;
3700 }
3701
3702 /* Error-catcher for target_goto_bookmark. */
3703 static void
3704 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3705 {
3706 tcomplain ();
3707 }
3708
3709 /* Set up the handful of non-empty slots needed by the dummy target
3710 vector. */
3711
3712 static void
3713 init_dummy_target (void)
3714 {
3715 dummy_target.to_shortname = "None";
3716 dummy_target.to_longname = "None";
3717 dummy_target.to_doc = "";
3718 dummy_target.to_attach = find_default_attach;
3719 dummy_target.to_detach =
3720 (void (*)(struct target_ops *, char *, int))target_ignore;
3721 dummy_target.to_create_inferior = find_default_create_inferior;
3722 dummy_target.to_can_async_p = find_default_can_async_p;
3723 dummy_target.to_is_async_p = find_default_is_async_p;
3724 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3725 dummy_target.to_supports_disable_randomization
3726 = find_default_supports_disable_randomization;
3727 dummy_target.to_pid_to_str = dummy_pid_to_str;
3728 dummy_target.to_stratum = dummy_stratum;
3729 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3730 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3731 dummy_target.to_get_bookmark = dummy_get_bookmark;
3732 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3733 dummy_target.to_xfer_partial = default_xfer_partial;
3734 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3735 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3736 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3737 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3738 dummy_target.to_has_execution
3739 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3740 dummy_target.to_stopped_by_watchpoint = return_zero;
3741 dummy_target.to_stopped_data_address =
3742 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3743 dummy_target.to_magic = OPS_MAGIC;
3744 }
3745 \f
3746 static void
3747 debug_to_open (char *args, int from_tty)
3748 {
3749 debug_target.to_open (args, from_tty);
3750
3751 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3752 }
3753
3754 void
3755 target_close (struct target_ops *targ, int quitting)
3756 {
3757 if (targ->to_xclose != NULL)
3758 targ->to_xclose (targ, quitting);
3759 else if (targ->to_close != NULL)
3760 targ->to_close (quitting);
3761
3762 if (targetdebug)
3763 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
3764 }
3765
3766 void
3767 target_attach (char *args, int from_tty)
3768 {
3769 struct target_ops *t;
3770
3771 for (t = current_target.beneath; t != NULL; t = t->beneath)
3772 {
3773 if (t->to_attach != NULL)
3774 {
3775 t->to_attach (t, args, from_tty);
3776 if (targetdebug)
3777 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3778 args, from_tty);
3779 return;
3780 }
3781 }
3782
3783 internal_error (__FILE__, __LINE__,
3784 _("could not find a target to attach"));
3785 }
3786
3787 int
3788 target_thread_alive (ptid_t ptid)
3789 {
3790 struct target_ops *t;
3791
3792 for (t = current_target.beneath; t != NULL; t = t->beneath)
3793 {
3794 if (t->to_thread_alive != NULL)
3795 {
3796 int retval;
3797
3798 retval = t->to_thread_alive (t, ptid);
3799 if (targetdebug)
3800 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3801 PIDGET (ptid), retval);
3802
3803 return retval;
3804 }
3805 }
3806
3807 return 0;
3808 }
3809
3810 void
3811 target_find_new_threads (void)
3812 {
3813 struct target_ops *t;
3814
3815 for (t = current_target.beneath; t != NULL; t = t->beneath)
3816 {
3817 if (t->to_find_new_threads != NULL)
3818 {
3819 t->to_find_new_threads (t);
3820 if (targetdebug)
3821 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3822
3823 return;
3824 }
3825 }
3826 }
3827
3828 void
3829 target_stop (ptid_t ptid)
3830 {
3831 if (!may_stop)
3832 {
3833 warning (_("May not interrupt or stop the target, ignoring attempt"));
3834 return;
3835 }
3836
3837 (*current_target.to_stop) (ptid);
3838 }
3839
3840 static void
3841 debug_to_post_attach (int pid)
3842 {
3843 debug_target.to_post_attach (pid);
3844
3845 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3846 }
3847
3848 /* Return a pretty printed form of target_waitstatus.
3849 Space for the result is malloc'd, caller must free. */
3850
3851 char *
3852 target_waitstatus_to_string (const struct target_waitstatus *ws)
3853 {
3854 const char *kind_str = "status->kind = ";
3855
3856 switch (ws->kind)
3857 {
3858 case TARGET_WAITKIND_EXITED:
3859 return xstrprintf ("%sexited, status = %d",
3860 kind_str, ws->value.integer);
3861 case TARGET_WAITKIND_STOPPED:
3862 return xstrprintf ("%sstopped, signal = %s",
3863 kind_str, gdb_signal_to_name (ws->value.sig));
3864 case TARGET_WAITKIND_SIGNALLED:
3865 return xstrprintf ("%ssignalled, signal = %s",
3866 kind_str, gdb_signal_to_name (ws->value.sig));
3867 case TARGET_WAITKIND_LOADED:
3868 return xstrprintf ("%sloaded", kind_str);
3869 case TARGET_WAITKIND_FORKED:
3870 return xstrprintf ("%sforked", kind_str);
3871 case TARGET_WAITKIND_VFORKED:
3872 return xstrprintf ("%svforked", kind_str);
3873 case TARGET_WAITKIND_EXECD:
3874 return xstrprintf ("%sexecd", kind_str);
3875 case TARGET_WAITKIND_VFORK_DONE:
3876 return xstrprintf ("%svfork-done", kind_str);
3877 case TARGET_WAITKIND_SYSCALL_ENTRY:
3878 return xstrprintf ("%sentered syscall", kind_str);
3879 case TARGET_WAITKIND_SYSCALL_RETURN:
3880 return xstrprintf ("%sexited syscall", kind_str);
3881 case TARGET_WAITKIND_SPURIOUS:
3882 return xstrprintf ("%sspurious", kind_str);
3883 case TARGET_WAITKIND_IGNORE:
3884 return xstrprintf ("%signore", kind_str);
3885 case TARGET_WAITKIND_NO_HISTORY:
3886 return xstrprintf ("%sno-history", kind_str);
3887 case TARGET_WAITKIND_NO_RESUMED:
3888 return xstrprintf ("%sno-resumed", kind_str);
3889 default:
3890 return xstrprintf ("%sunknown???", kind_str);
3891 }
3892 }
3893
3894 /* Concatenate ELEM to LIST, a comma separate list, and return the
3895 result. The LIST incoming argument is released. */
3896
3897 static char *
3898 str_comma_list_concat_elem (char *list, const char *elem)
3899 {
3900 if (list == NULL)
3901 return xstrdup (elem);
3902 else
3903 return reconcat (list, list, ", ", elem, (char *) NULL);
3904 }
3905
3906 /* Helper for target_options_to_string. If OPT is present in
3907 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3908 Returns the new resulting string. OPT is removed from
3909 TARGET_OPTIONS. */
3910
3911 static char *
3912 do_option (int *target_options, char *ret,
3913 int opt, char *opt_str)
3914 {
3915 if ((*target_options & opt) != 0)
3916 {
3917 ret = str_comma_list_concat_elem (ret, opt_str);
3918 *target_options &= ~opt;
3919 }
3920
3921 return ret;
3922 }
3923
3924 char *
3925 target_options_to_string (int target_options)
3926 {
3927 char *ret = NULL;
3928
3929 #define DO_TARG_OPTION(OPT) \
3930 ret = do_option (&target_options, ret, OPT, #OPT)
3931
3932 DO_TARG_OPTION (TARGET_WNOHANG);
3933
3934 if (target_options != 0)
3935 ret = str_comma_list_concat_elem (ret, "unknown???");
3936
3937 if (ret == NULL)
3938 ret = xstrdup ("");
3939 return ret;
3940 }
3941
3942 static void
3943 debug_print_register (const char * func,
3944 struct regcache *regcache, int regno)
3945 {
3946 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3947
3948 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3949 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3950 && gdbarch_register_name (gdbarch, regno) != NULL
3951 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3952 fprintf_unfiltered (gdb_stdlog, "(%s)",
3953 gdbarch_register_name (gdbarch, regno));
3954 else
3955 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3956 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3957 {
3958 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3959 int i, size = register_size (gdbarch, regno);
3960 unsigned char buf[MAX_REGISTER_SIZE];
3961
3962 regcache_raw_collect (regcache, regno, buf);
3963 fprintf_unfiltered (gdb_stdlog, " = ");
3964 for (i = 0; i < size; i++)
3965 {
3966 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3967 }
3968 if (size <= sizeof (LONGEST))
3969 {
3970 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3971
3972 fprintf_unfiltered (gdb_stdlog, " %s %s",
3973 core_addr_to_string_nz (val), plongest (val));
3974 }
3975 }
3976 fprintf_unfiltered (gdb_stdlog, "\n");
3977 }
3978
3979 void
3980 target_fetch_registers (struct regcache *regcache, int regno)
3981 {
3982 struct target_ops *t;
3983
3984 for (t = current_target.beneath; t != NULL; t = t->beneath)
3985 {
3986 if (t->to_fetch_registers != NULL)
3987 {
3988 t->to_fetch_registers (t, regcache, regno);
3989 if (targetdebug)
3990 debug_print_register ("target_fetch_registers", regcache, regno);
3991 return;
3992 }
3993 }
3994 }
3995
3996 void
3997 target_store_registers (struct regcache *regcache, int regno)
3998 {
3999 struct target_ops *t;
4000
4001 if (!may_write_registers)
4002 error (_("Writing to registers is not allowed (regno %d)"), regno);
4003
4004 for (t = current_target.beneath; t != NULL; t = t->beneath)
4005 {
4006 if (t->to_store_registers != NULL)
4007 {
4008 t->to_store_registers (t, regcache, regno);
4009 if (targetdebug)
4010 {
4011 debug_print_register ("target_store_registers", regcache, regno);
4012 }
4013 return;
4014 }
4015 }
4016
4017 noprocess ();
4018 }
4019
4020 int
4021 target_core_of_thread (ptid_t ptid)
4022 {
4023 struct target_ops *t;
4024
4025 for (t = current_target.beneath; t != NULL; t = t->beneath)
4026 {
4027 if (t->to_core_of_thread != NULL)
4028 {
4029 int retval = t->to_core_of_thread (t, ptid);
4030
4031 if (targetdebug)
4032 fprintf_unfiltered (gdb_stdlog,
4033 "target_core_of_thread (%d) = %d\n",
4034 PIDGET (ptid), retval);
4035 return retval;
4036 }
4037 }
4038
4039 return -1;
4040 }
4041
4042 int
4043 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
4044 {
4045 struct target_ops *t;
4046
4047 for (t = current_target.beneath; t != NULL; t = t->beneath)
4048 {
4049 if (t->to_verify_memory != NULL)
4050 {
4051 int retval = t->to_verify_memory (t, data, memaddr, size);
4052
4053 if (targetdebug)
4054 fprintf_unfiltered (gdb_stdlog,
4055 "target_verify_memory (%s, %s) = %d\n",
4056 paddress (target_gdbarch (), memaddr),
4057 pulongest (size),
4058 retval);
4059 return retval;
4060 }
4061 }
4062
4063 tcomplain ();
4064 }
4065
4066 /* The documentation for this function is in its prototype declaration in
4067 target.h. */
4068
4069 int
4070 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4071 {
4072 struct target_ops *t;
4073
4074 for (t = current_target.beneath; t != NULL; t = t->beneath)
4075 if (t->to_insert_mask_watchpoint != NULL)
4076 {
4077 int ret;
4078
4079 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
4080
4081 if (targetdebug)
4082 fprintf_unfiltered (gdb_stdlog, "\
4083 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
4084 core_addr_to_string (addr),
4085 core_addr_to_string (mask), rw, ret);
4086
4087 return ret;
4088 }
4089
4090 return 1;
4091 }
4092
4093 /* The documentation for this function is in its prototype declaration in
4094 target.h. */
4095
4096 int
4097 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4098 {
4099 struct target_ops *t;
4100
4101 for (t = current_target.beneath; t != NULL; t = t->beneath)
4102 if (t->to_remove_mask_watchpoint != NULL)
4103 {
4104 int ret;
4105
4106 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
4107
4108 if (targetdebug)
4109 fprintf_unfiltered (gdb_stdlog, "\
4110 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
4111 core_addr_to_string (addr),
4112 core_addr_to_string (mask), rw, ret);
4113
4114 return ret;
4115 }
4116
4117 return 1;
4118 }
4119
4120 /* The documentation for this function is in its prototype declaration
4121 in target.h. */
4122
4123 int
4124 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4125 {
4126 struct target_ops *t;
4127
4128 for (t = current_target.beneath; t != NULL; t = t->beneath)
4129 if (t->to_masked_watch_num_registers != NULL)
4130 return t->to_masked_watch_num_registers (t, addr, mask);
4131
4132 return -1;
4133 }
4134
4135 /* The documentation for this function is in its prototype declaration
4136 in target.h. */
4137
4138 int
4139 target_ranged_break_num_registers (void)
4140 {
4141 struct target_ops *t;
4142
4143 for (t = current_target.beneath; t != NULL; t = t->beneath)
4144 if (t->to_ranged_break_num_registers != NULL)
4145 return t->to_ranged_break_num_registers (t);
4146
4147 return -1;
4148 }
4149
4150 static void
4151 debug_to_prepare_to_store (struct regcache *regcache)
4152 {
4153 debug_target.to_prepare_to_store (regcache);
4154
4155 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4156 }
4157
4158 static int
4159 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4160 int write, struct mem_attrib *attrib,
4161 struct target_ops *target)
4162 {
4163 int retval;
4164
4165 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4166 attrib, target);
4167
4168 fprintf_unfiltered (gdb_stdlog,
4169 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4170 paddress (target_gdbarch (), memaddr), len,
4171 write ? "write" : "read", retval);
4172
4173 if (retval > 0)
4174 {
4175 int i;
4176
4177 fputs_unfiltered (", bytes =", gdb_stdlog);
4178 for (i = 0; i < retval; i++)
4179 {
4180 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4181 {
4182 if (targetdebug < 2 && i > 0)
4183 {
4184 fprintf_unfiltered (gdb_stdlog, " ...");
4185 break;
4186 }
4187 fprintf_unfiltered (gdb_stdlog, "\n");
4188 }
4189
4190 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4191 }
4192 }
4193
4194 fputc_unfiltered ('\n', gdb_stdlog);
4195
4196 return retval;
4197 }
4198
4199 static void
4200 debug_to_files_info (struct target_ops *target)
4201 {
4202 debug_target.to_files_info (target);
4203
4204 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4205 }
4206
4207 static int
4208 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
4209 struct bp_target_info *bp_tgt)
4210 {
4211 int retval;
4212
4213 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
4214
4215 fprintf_unfiltered (gdb_stdlog,
4216 "target_insert_breakpoint (%s, xxx) = %ld\n",
4217 core_addr_to_string (bp_tgt->placed_address),
4218 (unsigned long) retval);
4219 return retval;
4220 }
4221
4222 static int
4223 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
4224 struct bp_target_info *bp_tgt)
4225 {
4226 int retval;
4227
4228 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
4229
4230 fprintf_unfiltered (gdb_stdlog,
4231 "target_remove_breakpoint (%s, xxx) = %ld\n",
4232 core_addr_to_string (bp_tgt->placed_address),
4233 (unsigned long) retval);
4234 return retval;
4235 }
4236
4237 static int
4238 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
4239 {
4240 int retval;
4241
4242 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
4243
4244 fprintf_unfiltered (gdb_stdlog,
4245 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4246 (unsigned long) type,
4247 (unsigned long) cnt,
4248 (unsigned long) from_tty,
4249 (unsigned long) retval);
4250 return retval;
4251 }
4252
4253 static int
4254 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
4255 {
4256 CORE_ADDR retval;
4257
4258 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
4259
4260 fprintf_unfiltered (gdb_stdlog,
4261 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4262 core_addr_to_string (addr), (unsigned long) len,
4263 core_addr_to_string (retval));
4264 return retval;
4265 }
4266
4267 static int
4268 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
4269 struct expression *cond)
4270 {
4271 int retval;
4272
4273 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
4274 rw, cond);
4275
4276 fprintf_unfiltered (gdb_stdlog,
4277 "target_can_accel_watchpoint_condition "
4278 "(%s, %d, %d, %s) = %ld\n",
4279 core_addr_to_string (addr), len, rw,
4280 host_address_to_string (cond), (unsigned long) retval);
4281 return retval;
4282 }
4283
4284 static int
4285 debug_to_stopped_by_watchpoint (void)
4286 {
4287 int retval;
4288
4289 retval = debug_target.to_stopped_by_watchpoint ();
4290
4291 fprintf_unfiltered (gdb_stdlog,
4292 "target_stopped_by_watchpoint () = %ld\n",
4293 (unsigned long) retval);
4294 return retval;
4295 }
4296
4297 static int
4298 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4299 {
4300 int retval;
4301
4302 retval = debug_target.to_stopped_data_address (target, addr);
4303
4304 fprintf_unfiltered (gdb_stdlog,
4305 "target_stopped_data_address ([%s]) = %ld\n",
4306 core_addr_to_string (*addr),
4307 (unsigned long)retval);
4308 return retval;
4309 }
4310
4311 static int
4312 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4313 CORE_ADDR addr,
4314 CORE_ADDR start, int length)
4315 {
4316 int retval;
4317
4318 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4319 start, length);
4320
4321 fprintf_filtered (gdb_stdlog,
4322 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4323 core_addr_to_string (addr), core_addr_to_string (start),
4324 length, retval);
4325 return retval;
4326 }
4327
4328 static int
4329 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
4330 struct bp_target_info *bp_tgt)
4331 {
4332 int retval;
4333
4334 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
4335
4336 fprintf_unfiltered (gdb_stdlog,
4337 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4338 core_addr_to_string (bp_tgt->placed_address),
4339 (unsigned long) retval);
4340 return retval;
4341 }
4342
4343 static int
4344 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
4345 struct bp_target_info *bp_tgt)
4346 {
4347 int retval;
4348
4349 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
4350
4351 fprintf_unfiltered (gdb_stdlog,
4352 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4353 core_addr_to_string (bp_tgt->placed_address),
4354 (unsigned long) retval);
4355 return retval;
4356 }
4357
4358 static int
4359 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
4360 struct expression *cond)
4361 {
4362 int retval;
4363
4364 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
4365
4366 fprintf_unfiltered (gdb_stdlog,
4367 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4368 core_addr_to_string (addr), len, type,
4369 host_address_to_string (cond), (unsigned long) retval);
4370 return retval;
4371 }
4372
4373 static int
4374 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
4375 struct expression *cond)
4376 {
4377 int retval;
4378
4379 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
4380
4381 fprintf_unfiltered (gdb_stdlog,
4382 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4383 core_addr_to_string (addr), len, type,
4384 host_address_to_string (cond), (unsigned long) retval);
4385 return retval;
4386 }
4387
4388 static void
4389 debug_to_terminal_init (void)
4390 {
4391 debug_target.to_terminal_init ();
4392
4393 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4394 }
4395
4396 static void
4397 debug_to_terminal_inferior (void)
4398 {
4399 debug_target.to_terminal_inferior ();
4400
4401 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4402 }
4403
4404 static void
4405 debug_to_terminal_ours_for_output (void)
4406 {
4407 debug_target.to_terminal_ours_for_output ();
4408
4409 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4410 }
4411
4412 static void
4413 debug_to_terminal_ours (void)
4414 {
4415 debug_target.to_terminal_ours ();
4416
4417 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4418 }
4419
4420 static void
4421 debug_to_terminal_save_ours (void)
4422 {
4423 debug_target.to_terminal_save_ours ();
4424
4425 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4426 }
4427
4428 static void
4429 debug_to_terminal_info (char *arg, int from_tty)
4430 {
4431 debug_target.to_terminal_info (arg, from_tty);
4432
4433 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4434 from_tty);
4435 }
4436
4437 static void
4438 debug_to_load (char *args, int from_tty)
4439 {
4440 debug_target.to_load (args, from_tty);
4441
4442 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4443 }
4444
4445 static void
4446 debug_to_post_startup_inferior (ptid_t ptid)
4447 {
4448 debug_target.to_post_startup_inferior (ptid);
4449
4450 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4451 PIDGET (ptid));
4452 }
4453
4454 static int
4455 debug_to_insert_fork_catchpoint (int pid)
4456 {
4457 int retval;
4458
4459 retval = debug_target.to_insert_fork_catchpoint (pid);
4460
4461 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4462 pid, retval);
4463
4464 return retval;
4465 }
4466
4467 static int
4468 debug_to_remove_fork_catchpoint (int pid)
4469 {
4470 int retval;
4471
4472 retval = debug_target.to_remove_fork_catchpoint (pid);
4473
4474 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4475 pid, retval);
4476
4477 return retval;
4478 }
4479
4480 static int
4481 debug_to_insert_vfork_catchpoint (int pid)
4482 {
4483 int retval;
4484
4485 retval = debug_target.to_insert_vfork_catchpoint (pid);
4486
4487 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4488 pid, retval);
4489
4490 return retval;
4491 }
4492
4493 static int
4494 debug_to_remove_vfork_catchpoint (int pid)
4495 {
4496 int retval;
4497
4498 retval = debug_target.to_remove_vfork_catchpoint (pid);
4499
4500 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4501 pid, retval);
4502
4503 return retval;
4504 }
4505
4506 static int
4507 debug_to_insert_exec_catchpoint (int pid)
4508 {
4509 int retval;
4510
4511 retval = debug_target.to_insert_exec_catchpoint (pid);
4512
4513 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4514 pid, retval);
4515
4516 return retval;
4517 }
4518
4519 static int
4520 debug_to_remove_exec_catchpoint (int pid)
4521 {
4522 int retval;
4523
4524 retval = debug_target.to_remove_exec_catchpoint (pid);
4525
4526 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4527 pid, retval);
4528
4529 return retval;
4530 }
4531
4532 static int
4533 debug_to_has_exited (int pid, int wait_status, int *exit_status)
4534 {
4535 int has_exited;
4536
4537 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
4538
4539 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4540 pid, wait_status, *exit_status, has_exited);
4541
4542 return has_exited;
4543 }
4544
4545 static int
4546 debug_to_can_run (void)
4547 {
4548 int retval;
4549
4550 retval = debug_target.to_can_run ();
4551
4552 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4553
4554 return retval;
4555 }
4556
4557 static struct gdbarch *
4558 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4559 {
4560 struct gdbarch *retval;
4561
4562 retval = debug_target.to_thread_architecture (ops, ptid);
4563
4564 fprintf_unfiltered (gdb_stdlog,
4565 "target_thread_architecture (%s) = %s [%s]\n",
4566 target_pid_to_str (ptid),
4567 host_address_to_string (retval),
4568 gdbarch_bfd_arch_info (retval)->printable_name);
4569 return retval;
4570 }
4571
4572 static void
4573 debug_to_stop (ptid_t ptid)
4574 {
4575 debug_target.to_stop (ptid);
4576
4577 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4578 target_pid_to_str (ptid));
4579 }
4580
4581 static void
4582 debug_to_rcmd (char *command,
4583 struct ui_file *outbuf)
4584 {
4585 debug_target.to_rcmd (command, outbuf);
4586 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4587 }
4588
4589 static char *
4590 debug_to_pid_to_exec_file (int pid)
4591 {
4592 char *exec_file;
4593
4594 exec_file = debug_target.to_pid_to_exec_file (pid);
4595
4596 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4597 pid, exec_file);
4598
4599 return exec_file;
4600 }
4601
4602 static void
4603 setup_target_debug (void)
4604 {
4605 memcpy (&debug_target, &current_target, sizeof debug_target);
4606
4607 current_target.to_open = debug_to_open;
4608 current_target.to_post_attach = debug_to_post_attach;
4609 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4610 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4611 current_target.to_files_info = debug_to_files_info;
4612 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4613 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4614 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4615 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4616 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4617 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4618 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4619 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4620 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4621 current_target.to_watchpoint_addr_within_range
4622 = debug_to_watchpoint_addr_within_range;
4623 current_target.to_region_ok_for_hw_watchpoint
4624 = debug_to_region_ok_for_hw_watchpoint;
4625 current_target.to_can_accel_watchpoint_condition
4626 = debug_to_can_accel_watchpoint_condition;
4627 current_target.to_terminal_init = debug_to_terminal_init;
4628 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4629 current_target.to_terminal_ours_for_output
4630 = debug_to_terminal_ours_for_output;
4631 current_target.to_terminal_ours = debug_to_terminal_ours;
4632 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4633 current_target.to_terminal_info = debug_to_terminal_info;
4634 current_target.to_load = debug_to_load;
4635 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4636 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4637 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4638 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4639 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4640 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4641 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4642 current_target.to_has_exited = debug_to_has_exited;
4643 current_target.to_can_run = debug_to_can_run;
4644 current_target.to_stop = debug_to_stop;
4645 current_target.to_rcmd = debug_to_rcmd;
4646 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4647 current_target.to_thread_architecture = debug_to_thread_architecture;
4648 }
4649 \f
4650
4651 static char targ_desc[] =
4652 "Names of targets and files being debugged.\nShows the entire \
4653 stack of targets currently in use (including the exec-file,\n\
4654 core-file, and process, if any), as well as the symbol file name.";
4655
4656 static void
4657 do_monitor_command (char *cmd,
4658 int from_tty)
4659 {
4660 if ((current_target.to_rcmd
4661 == (void (*) (char *, struct ui_file *)) tcomplain)
4662 || (current_target.to_rcmd == debug_to_rcmd
4663 && (debug_target.to_rcmd
4664 == (void (*) (char *, struct ui_file *)) tcomplain)))
4665 error (_("\"monitor\" command not supported by this target."));
4666 target_rcmd (cmd, gdb_stdtarg);
4667 }
4668
4669 /* Print the name of each layers of our target stack. */
4670
4671 static void
4672 maintenance_print_target_stack (char *cmd, int from_tty)
4673 {
4674 struct target_ops *t;
4675
4676 printf_filtered (_("The current target stack is:\n"));
4677
4678 for (t = target_stack; t != NULL; t = t->beneath)
4679 {
4680 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4681 }
4682 }
4683
4684 /* Controls if async mode is permitted. */
4685 int target_async_permitted = 0;
4686
4687 /* The set command writes to this variable. If the inferior is
4688 executing, linux_nat_async_permitted is *not* updated. */
4689 static int target_async_permitted_1 = 0;
4690
4691 static void
4692 set_target_async_command (char *args, int from_tty,
4693 struct cmd_list_element *c)
4694 {
4695 if (have_live_inferiors ())
4696 {
4697 target_async_permitted_1 = target_async_permitted;
4698 error (_("Cannot change this setting while the inferior is running."));
4699 }
4700
4701 target_async_permitted = target_async_permitted_1;
4702 }
4703
4704 static void
4705 show_target_async_command (struct ui_file *file, int from_tty,
4706 struct cmd_list_element *c,
4707 const char *value)
4708 {
4709 fprintf_filtered (file,
4710 _("Controlling the inferior in "
4711 "asynchronous mode is %s.\n"), value);
4712 }
4713
4714 /* Temporary copies of permission settings. */
4715
4716 static int may_write_registers_1 = 1;
4717 static int may_write_memory_1 = 1;
4718 static int may_insert_breakpoints_1 = 1;
4719 static int may_insert_tracepoints_1 = 1;
4720 static int may_insert_fast_tracepoints_1 = 1;
4721 static int may_stop_1 = 1;
4722
4723 /* Make the user-set values match the real values again. */
4724
4725 void
4726 update_target_permissions (void)
4727 {
4728 may_write_registers_1 = may_write_registers;
4729 may_write_memory_1 = may_write_memory;
4730 may_insert_breakpoints_1 = may_insert_breakpoints;
4731 may_insert_tracepoints_1 = may_insert_tracepoints;
4732 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4733 may_stop_1 = may_stop;
4734 }
4735
4736 /* The one function handles (most of) the permission flags in the same
4737 way. */
4738
4739 static void
4740 set_target_permissions (char *args, int from_tty,
4741 struct cmd_list_element *c)
4742 {
4743 if (target_has_execution)
4744 {
4745 update_target_permissions ();
4746 error (_("Cannot change this setting while the inferior is running."));
4747 }
4748
4749 /* Make the real values match the user-changed values. */
4750 may_write_registers = may_write_registers_1;
4751 may_insert_breakpoints = may_insert_breakpoints_1;
4752 may_insert_tracepoints = may_insert_tracepoints_1;
4753 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4754 may_stop = may_stop_1;
4755 update_observer_mode ();
4756 }
4757
4758 /* Set memory write permission independently of observer mode. */
4759
4760 static void
4761 set_write_memory_permission (char *args, int from_tty,
4762 struct cmd_list_element *c)
4763 {
4764 /* Make the real values match the user-changed values. */
4765 may_write_memory = may_write_memory_1;
4766 update_observer_mode ();
4767 }
4768
4769
4770 void
4771 initialize_targets (void)
4772 {
4773 init_dummy_target ();
4774 push_target (&dummy_target);
4775
4776 add_info ("target", target_info, targ_desc);
4777 add_info ("files", target_info, targ_desc);
4778
4779 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4780 Set target debugging."), _("\
4781 Show target debugging."), _("\
4782 When non-zero, target debugging is enabled. Higher numbers are more\n\
4783 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4784 command."),
4785 NULL,
4786 show_targetdebug,
4787 &setdebuglist, &showdebuglist);
4788
4789 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4790 &trust_readonly, _("\
4791 Set mode for reading from readonly sections."), _("\
4792 Show mode for reading from readonly sections."), _("\
4793 When this mode is on, memory reads from readonly sections (such as .text)\n\
4794 will be read from the object file instead of from the target. This will\n\
4795 result in significant performance improvement for remote targets."),
4796 NULL,
4797 show_trust_readonly,
4798 &setlist, &showlist);
4799
4800 add_com ("monitor", class_obscure, do_monitor_command,
4801 _("Send a command to the remote monitor (remote targets only)."));
4802
4803 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4804 _("Print the name of each layer of the internal target stack."),
4805 &maintenanceprintlist);
4806
4807 add_setshow_boolean_cmd ("target-async", no_class,
4808 &target_async_permitted_1, _("\
4809 Set whether gdb controls the inferior in asynchronous mode."), _("\
4810 Show whether gdb controls the inferior in asynchronous mode."), _("\
4811 Tells gdb whether to control the inferior in asynchronous mode."),
4812 set_target_async_command,
4813 show_target_async_command,
4814 &setlist,
4815 &showlist);
4816
4817 add_setshow_boolean_cmd ("stack-cache", class_support,
4818 &stack_cache_enabled_p_1, _("\
4819 Set cache use for stack access."), _("\
4820 Show cache use for stack access."), _("\
4821 When on, use the data cache for all stack access, regardless of any\n\
4822 configured memory regions. This improves remote performance significantly.\n\
4823 By default, caching for stack access is on."),
4824 set_stack_cache_enabled_p,
4825 show_stack_cache_enabled_p,
4826 &setlist, &showlist);
4827
4828 add_setshow_boolean_cmd ("may-write-registers", class_support,
4829 &may_write_registers_1, _("\
4830 Set permission to write into registers."), _("\
4831 Show permission to write into registers."), _("\
4832 When this permission is on, GDB may write into the target's registers.\n\
4833 Otherwise, any sort of write attempt will result in an error."),
4834 set_target_permissions, NULL,
4835 &setlist, &showlist);
4836
4837 add_setshow_boolean_cmd ("may-write-memory", class_support,
4838 &may_write_memory_1, _("\
4839 Set permission to write into target memory."), _("\
4840 Show permission to write into target memory."), _("\
4841 When this permission is on, GDB may write into the target's memory.\n\
4842 Otherwise, any sort of write attempt will result in an error."),
4843 set_write_memory_permission, NULL,
4844 &setlist, &showlist);
4845
4846 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4847 &may_insert_breakpoints_1, _("\
4848 Set permission to insert breakpoints in the target."), _("\
4849 Show permission to insert breakpoints in the target."), _("\
4850 When this permission is on, GDB may insert breakpoints in the program.\n\
4851 Otherwise, any sort of insertion attempt will result in an error."),
4852 set_target_permissions, NULL,
4853 &setlist, &showlist);
4854
4855 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4856 &may_insert_tracepoints_1, _("\
4857 Set permission to insert tracepoints in the target."), _("\
4858 Show permission to insert tracepoints in the target."), _("\
4859 When this permission is on, GDB may insert tracepoints in the program.\n\
4860 Otherwise, any sort of insertion attempt will result in an error."),
4861 set_target_permissions, NULL,
4862 &setlist, &showlist);
4863
4864 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4865 &may_insert_fast_tracepoints_1, _("\
4866 Set permission to insert fast tracepoints in the target."), _("\
4867 Show permission to insert fast tracepoints in the target."), _("\
4868 When this permission is on, GDB may insert fast tracepoints.\n\
4869 Otherwise, any sort of insertion attempt will result in an error."),
4870 set_target_permissions, NULL,
4871 &setlist, &showlist);
4872
4873 add_setshow_boolean_cmd ("may-interrupt", class_support,
4874 &may_stop_1, _("\
4875 Set permission to interrupt or signal the target."), _("\
4876 Show permission to interrupt or signal the target."), _("\
4877 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4878 Otherwise, any attempt to interrupt or stop will be ignored."),
4879 set_target_permissions, NULL,
4880 &setlist, &showlist);
4881
4882
4883 target_dcache = dcache_init ();
4884 }
This page took 0.148955 seconds and 4 git commands to generate.