a082957d5bd54bfdedbce857faa7ca7081c4ba0d
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50 #include "terminal.h"
51 #include <algorithm>
52 #include <unordered_map>
53
54 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
55
56 static void default_terminal_info (struct target_ops *, const char *, int);
57
58 static int default_watchpoint_addr_within_range (struct target_ops *,
59 CORE_ADDR, CORE_ADDR, int);
60
61 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
62 CORE_ADDR, int);
63
64 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
65
66 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
67 long lwp, long tid);
68
69 static int default_follow_fork (struct target_ops *self, int follow_child,
70 int detach_fork);
71
72 static void default_mourn_inferior (struct target_ops *self);
73
74 static int default_search_memory (struct target_ops *ops,
75 CORE_ADDR start_addr,
76 ULONGEST search_space_len,
77 const gdb_byte *pattern,
78 ULONGEST pattern_len,
79 CORE_ADDR *found_addrp);
80
81 static int default_verify_memory (struct target_ops *self,
82 const gdb_byte *data,
83 CORE_ADDR memaddr, ULONGEST size);
84
85 static struct address_space *default_thread_address_space
86 (struct target_ops *self, ptid_t ptid);
87
88 static void tcomplain (void) ATTRIBUTE_NORETURN;
89
90 static struct target_ops *find_default_run_target (const char *);
91
92 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
93 ptid_t ptid);
94
95 static int dummy_find_memory_regions (struct target_ops *self,
96 find_memory_region_ftype ignore1,
97 void *ignore2);
98
99 static char *dummy_make_corefile_notes (struct target_ops *self,
100 bfd *ignore1, int *ignore2);
101
102 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
103
104 static enum exec_direction_kind default_execution_direction
105 (struct target_ops *self);
106
107 /* Mapping between target_info objects (which have address identity)
108 and corresponding open/factory function/callback. Each add_target
109 call adds one entry to this map, and registers a "target
110 TARGET_NAME" command that when invoked calls the factory registered
111 here. The target_info object is associated with the command via
112 the command's context. */
113 static std::unordered_map<const target_info *, target_open_ftype *>
114 target_factories;
115
116 /* The initial current target, so that there is always a semi-valid
117 current target. */
118
119 static struct target_ops *the_dummy_target;
120 static struct target_ops *the_debug_target;
121
122 /* The target stack. */
123
124 static target_stack g_target_stack;
125
126 /* Top of target stack. */
127 /* The target structure we are currently using to talk to a process
128 or file or whatever "inferior" we have. */
129
130 target_ops *
131 current_top_target ()
132 {
133 return g_target_stack.top ();
134 }
135
136 /* Command list for target. */
137
138 static struct cmd_list_element *targetlist = NULL;
139
140 /* Nonzero if we should trust readonly sections from the
141 executable when reading memory. */
142
143 static int trust_readonly = 0;
144
145 /* Nonzero if we should show true memory content including
146 memory breakpoint inserted by gdb. */
147
148 static int show_memory_breakpoints = 0;
149
150 /* These globals control whether GDB attempts to perform these
151 operations; they are useful for targets that need to prevent
152 inadvertant disruption, such as in non-stop mode. */
153
154 int may_write_registers = 1;
155
156 int may_write_memory = 1;
157
158 int may_insert_breakpoints = 1;
159
160 int may_insert_tracepoints = 1;
161
162 int may_insert_fast_tracepoints = 1;
163
164 int may_stop = 1;
165
166 /* Non-zero if we want to see trace of target level stuff. */
167
168 static unsigned int targetdebug = 0;
169
170 static void
171 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
172 {
173 if (targetdebug)
174 push_target (the_debug_target);
175 else
176 unpush_target (the_debug_target);
177 }
178
179 static void
180 show_targetdebug (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
184 }
185
186 /* The user just typed 'target' without the name of a target. */
187
188 static void
189 target_command (const char *arg, int from_tty)
190 {
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193 }
194
195 #if GDB_SELF_TEST
196 namespace selftests {
197
198 /* A mock process_stratum target_ops that doesn't read/write registers
199 anywhere. */
200
201 static const target_info test_target_info = {
202 "test",
203 N_("unit tests target"),
204 N_("You should never see this"),
205 };
206
207 const target_info &
208 test_target_ops::info () const
209 {
210 return test_target_info;
211 }
212
213 } /* namespace selftests */
214 #endif /* GDB_SELF_TEST */
215
216 /* Default target_has_* methods for process_stratum targets. */
217
218 int
219 default_child_has_all_memory ()
220 {
221 /* If no inferior selected, then we can't read memory here. */
222 if (ptid_equal (inferior_ptid, null_ptid))
223 return 0;
224
225 return 1;
226 }
227
228 int
229 default_child_has_memory ()
230 {
231 /* If no inferior selected, then we can't read memory here. */
232 if (ptid_equal (inferior_ptid, null_ptid))
233 return 0;
234
235 return 1;
236 }
237
238 int
239 default_child_has_stack ()
240 {
241 /* If no inferior selected, there's no stack. */
242 if (ptid_equal (inferior_ptid, null_ptid))
243 return 0;
244
245 return 1;
246 }
247
248 int
249 default_child_has_registers ()
250 {
251 /* Can't read registers from no inferior. */
252 if (ptid_equal (inferior_ptid, null_ptid))
253 return 0;
254
255 return 1;
256 }
257
258 int
259 default_child_has_execution (ptid_t the_ptid)
260 {
261 /* If there's no thread selected, then we can't make it run through
262 hoops. */
263 if (ptid_equal (the_ptid, null_ptid))
264 return 0;
265
266 return 1;
267 }
268
269
270 int
271 target_has_all_memory_1 (void)
272 {
273 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
274 if (t->has_all_memory ())
275 return 1;
276
277 return 0;
278 }
279
280 int
281 target_has_memory_1 (void)
282 {
283 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
284 if (t->has_memory ())
285 return 1;
286
287 return 0;
288 }
289
290 int
291 target_has_stack_1 (void)
292 {
293 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
294 if (t->has_stack ())
295 return 1;
296
297 return 0;
298 }
299
300 int
301 target_has_registers_1 (void)
302 {
303 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
304 if (t->has_registers ())
305 return 1;
306
307 return 0;
308 }
309
310 int
311 target_has_execution_1 (ptid_t the_ptid)
312 {
313 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
314 if (t->has_execution (the_ptid))
315 return 1;
316
317 return 0;
318 }
319
320 int
321 target_has_execution_current (void)
322 {
323 return target_has_execution_1 (inferior_ptid);
324 }
325
326 /* This is used to implement the various target commands. */
327
328 static void
329 open_target (const char *args, int from_tty, struct cmd_list_element *command)
330 {
331 auto *ti = static_cast<target_info *> (get_cmd_context (command));
332 target_open_ftype *func = target_factories[ti];
333
334 if (targetdebug)
335 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
336 ti->shortname);
337
338 func (args, from_tty);
339
340 if (targetdebug)
341 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
342 ti->shortname, args, from_tty);
343 }
344
345 /* See target.h. */
346
347 void
348 add_target (const target_info &t, target_open_ftype *func,
349 completer_ftype *completer)
350 {
351 struct cmd_list_element *c;
352
353 auto &func_slot = target_factories[&t];
354 if (func_slot != nullptr)
355 internal_error (__FILE__, __LINE__,
356 _("target already added (\"%s\")."), t.shortname);
357 func_slot = func;
358
359 if (targetlist == NULL)
360 add_prefix_cmd ("target", class_run, target_command, _("\
361 Connect to a target machine or process.\n\
362 The first argument is the type or protocol of the target machine.\n\
363 Remaining arguments are interpreted by the target protocol. For more\n\
364 information on the arguments for a particular protocol, type\n\
365 `help target ' followed by the protocol name."),
366 &targetlist, "target ", 0, &cmdlist);
367 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
368 set_cmd_context (c, (void *) &t);
369 set_cmd_sfunc (c, open_target);
370 if (completer != NULL)
371 set_cmd_completer (c, completer);
372 }
373
374 /* See target.h. */
375
376 void
377 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
378 {
379 struct cmd_list_element *c;
380 char *alt;
381
382 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
383 see PR cli/15104. */
384 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
385 set_cmd_sfunc (c, open_target);
386 set_cmd_context (c, (void *) &tinfo);
387 alt = xstrprintf ("target %s", tinfo.shortname);
388 deprecate_cmd (c, alt);
389 }
390
391 /* Stub functions */
392
393 void
394 target_kill (void)
395 {
396 current_top_target ()->kill ();
397 }
398
399 void
400 target_load (const char *arg, int from_tty)
401 {
402 target_dcache_invalidate ();
403 current_top_target ()->load (arg, from_tty);
404 }
405
406 /* Define it. */
407
408 target_terminal_state target_terminal::m_terminal_state
409 = target_terminal_state::is_ours;
410
411 /* See target/target.h. */
412
413 void
414 target_terminal::init (void)
415 {
416 current_top_target ()->terminal_init ();
417
418 m_terminal_state = target_terminal_state::is_ours;
419 }
420
421 /* See target/target.h. */
422
423 void
424 target_terminal::inferior (void)
425 {
426 struct ui *ui = current_ui;
427
428 /* A background resume (``run&'') should leave GDB in control of the
429 terminal. */
430 if (ui->prompt_state != PROMPT_BLOCKED)
431 return;
432
433 /* Since we always run the inferior in the main console (unless "set
434 inferior-tty" is in effect), when some UI other than the main one
435 calls target_terminal::inferior, then we leave the main UI's
436 terminal settings as is. */
437 if (ui != main_ui)
438 return;
439
440 /* If GDB is resuming the inferior in the foreground, install
441 inferior's terminal modes. */
442
443 struct inferior *inf = current_inferior ();
444
445 if (inf->terminal_state != target_terminal_state::is_inferior)
446 {
447 current_top_target ()->terminal_inferior ();
448 inf->terminal_state = target_terminal_state::is_inferior;
449 }
450
451 m_terminal_state = target_terminal_state::is_inferior;
452
453 /* If the user hit C-c before, pretend that it was hit right
454 here. */
455 if (check_quit_flag ())
456 target_pass_ctrlc ();
457 }
458
459 /* See target/target.h. */
460
461 void
462 target_terminal::restore_inferior (void)
463 {
464 struct ui *ui = current_ui;
465
466 /* See target_terminal::inferior(). */
467 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
468 return;
469
470 /* Restore the terminal settings of inferiors that were in the
471 foreground but are now ours_for_output due to a temporary
472 target_target::ours_for_output() call. */
473
474 {
475 scoped_restore_current_inferior restore_inferior;
476 struct inferior *inf;
477
478 ALL_INFERIORS (inf)
479 {
480 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
481 {
482 set_current_inferior (inf);
483 current_top_target ()->terminal_inferior ();
484 inf->terminal_state = target_terminal_state::is_inferior;
485 }
486 }
487 }
488
489 m_terminal_state = target_terminal_state::is_inferior;
490
491 /* If the user hit C-c before, pretend that it was hit right
492 here. */
493 if (check_quit_flag ())
494 target_pass_ctrlc ();
495 }
496
497 /* Switch terminal state to DESIRED_STATE, either is_ours, or
498 is_ours_for_output. */
499
500 static void
501 target_terminal_is_ours_kind (target_terminal_state desired_state)
502 {
503 scoped_restore_current_inferior restore_inferior;
504 struct inferior *inf;
505
506 /* Must do this in two passes. First, have all inferiors save the
507 current terminal settings. Then, after all inferiors have add a
508 chance to safely save the terminal settings, restore GDB's
509 terminal settings. */
510
511 ALL_INFERIORS (inf)
512 {
513 if (inf->terminal_state == target_terminal_state::is_inferior)
514 {
515 set_current_inferior (inf);
516 current_top_target ()->terminal_save_inferior ();
517 }
518 }
519
520 ALL_INFERIORS (inf)
521 {
522 /* Note we don't check is_inferior here like above because we
523 need to handle 'is_ours_for_output -> is_ours' too. Careful
524 to never transition from 'is_ours' to 'is_ours_for_output',
525 though. */
526 if (inf->terminal_state != target_terminal_state::is_ours
527 && inf->terminal_state != desired_state)
528 {
529 set_current_inferior (inf);
530 if (desired_state == target_terminal_state::is_ours)
531 current_top_target ()->terminal_ours ();
532 else if (desired_state == target_terminal_state::is_ours_for_output)
533 current_top_target ()->terminal_ours_for_output ();
534 else
535 gdb_assert_not_reached ("unhandled desired state");
536 inf->terminal_state = desired_state;
537 }
538 }
539 }
540
541 /* See target/target.h. */
542
543 void
544 target_terminal::ours ()
545 {
546 struct ui *ui = current_ui;
547
548 /* See target_terminal::inferior. */
549 if (ui != main_ui)
550 return;
551
552 if (m_terminal_state == target_terminal_state::is_ours)
553 return;
554
555 target_terminal_is_ours_kind (target_terminal_state::is_ours);
556 m_terminal_state = target_terminal_state::is_ours;
557 }
558
559 /* See target/target.h. */
560
561 void
562 target_terminal::ours_for_output ()
563 {
564 struct ui *ui = current_ui;
565
566 /* See target_terminal::inferior. */
567 if (ui != main_ui)
568 return;
569
570 if (!target_terminal::is_inferior ())
571 return;
572
573 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
574 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
575 }
576
577 /* See target/target.h. */
578
579 void
580 target_terminal::info (const char *arg, int from_tty)
581 {
582 current_top_target ()->terminal_info (arg, from_tty);
583 }
584
585 /* See target.h. */
586
587 int
588 target_supports_terminal_ours (void)
589 {
590 return current_top_target ()->supports_terminal_ours ();
591 }
592
593 static void
594 tcomplain (void)
595 {
596 error (_("You can't do that when your target is `%s'"),
597 current_top_target ()->shortname ());
598 }
599
600 void
601 noprocess (void)
602 {
603 error (_("You can't do that without a process to debug."));
604 }
605
606 static void
607 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
608 {
609 printf_unfiltered (_("No saved terminal information.\n"));
610 }
611
612 /* A default implementation for the to_get_ada_task_ptid target method.
613
614 This function builds the PTID by using both LWP and TID as part of
615 the PTID lwp and tid elements. The pid used is the pid of the
616 inferior_ptid. */
617
618 static ptid_t
619 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
620 {
621 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
622 }
623
624 static enum exec_direction_kind
625 default_execution_direction (struct target_ops *self)
626 {
627 if (!target_can_execute_reverse)
628 return EXEC_FORWARD;
629 else if (!target_can_async_p ())
630 return EXEC_FORWARD;
631 else
632 gdb_assert_not_reached ("\
633 to_execution_direction must be implemented for reverse async");
634 }
635
636 /* See target.h. */
637
638 void
639 target_stack::push (target_ops *t)
640 {
641 /* If there's already a target at this stratum, remove it. */
642 if (m_stack[t->to_stratum] != NULL)
643 {
644 target_ops *prev = m_stack[t->to_stratum];
645 m_stack[t->to_stratum] = NULL;
646 target_close (prev);
647 }
648
649 /* Now add the new one. */
650 m_stack[t->to_stratum] = t;
651
652 if (m_top < t->to_stratum)
653 m_top = t->to_stratum;
654 }
655
656 /* See target.h. */
657
658 void
659 push_target (struct target_ops *t)
660 {
661 g_target_stack.push (t);
662 }
663
664 /* See target.h. */
665
666 int
667 unpush_target (struct target_ops *t)
668 {
669 return g_target_stack.unpush (t);
670 }
671
672 /* See target.h. */
673
674 bool
675 target_stack::unpush (target_ops *t)
676 {
677 struct target_ops **cur;
678 struct target_ops *tmp;
679
680 if (t->to_stratum == dummy_stratum)
681 internal_error (__FILE__, __LINE__,
682 _("Attempt to unpush the dummy target"));
683
684 gdb_assert (t != NULL);
685
686 /* Look for the specified target. Note that a target can only occur
687 once in the target stack. */
688
689 if (m_stack[t->to_stratum] != t)
690 {
691 /* If T wasn't pushed, quit. Only open targets should be
692 closed. */
693 return false;
694 }
695
696 /* Unchain the target. */
697 m_stack[t->to_stratum] = NULL;
698
699 if (m_top == t->to_stratum)
700 m_top = t->beneath ()->to_stratum;
701
702 /* Finally close the target. Note we do this after unchaining, so
703 any target method calls from within the target_close
704 implementation don't end up in T anymore. */
705 target_close (t);
706
707 return true;
708 }
709
710 /* Unpush TARGET and assert that it worked. */
711
712 static void
713 unpush_target_and_assert (struct target_ops *target)
714 {
715 if (!unpush_target (target))
716 {
717 fprintf_unfiltered (gdb_stderr,
718 "pop_all_targets couldn't find target %s\n",
719 target->shortname ());
720 internal_error (__FILE__, __LINE__,
721 _("failed internal consistency check"));
722 }
723 }
724
725 void
726 pop_all_targets_above (enum strata above_stratum)
727 {
728 while ((int) (current_top_target ()->to_stratum) > (int) above_stratum)
729 unpush_target_and_assert (current_top_target ());
730 }
731
732 /* See target.h. */
733
734 void
735 pop_all_targets_at_and_above (enum strata stratum)
736 {
737 while ((int) (current_top_target ()->to_stratum) >= (int) stratum)
738 unpush_target_and_assert (current_top_target ());
739 }
740
741 void
742 pop_all_targets (void)
743 {
744 pop_all_targets_above (dummy_stratum);
745 }
746
747 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
748
749 int
750 target_is_pushed (struct target_ops *t)
751 {
752 return g_target_stack.is_pushed (t);
753 }
754
755 /* Default implementation of to_get_thread_local_address. */
756
757 static void
758 generic_tls_error (void)
759 {
760 throw_error (TLS_GENERIC_ERROR,
761 _("Cannot find thread-local variables on this target"));
762 }
763
764 /* Using the objfile specified in OBJFILE, find the address for the
765 current thread's thread-local storage with offset OFFSET. */
766 CORE_ADDR
767 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
768 {
769 volatile CORE_ADDR addr = 0;
770 struct target_ops *target = current_top_target ();
771
772 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
773 {
774 ptid_t ptid = inferior_ptid;
775
776 TRY
777 {
778 CORE_ADDR lm_addr;
779
780 /* Fetch the load module address for this objfile. */
781 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
782 objfile);
783
784 addr = target->get_thread_local_address (ptid, lm_addr, offset);
785 }
786 /* If an error occurred, print TLS related messages here. Otherwise,
787 throw the error to some higher catcher. */
788 CATCH (ex, RETURN_MASK_ALL)
789 {
790 int objfile_is_library = (objfile->flags & OBJF_SHARED);
791
792 switch (ex.error)
793 {
794 case TLS_NO_LIBRARY_SUPPORT_ERROR:
795 error (_("Cannot find thread-local variables "
796 "in this thread library."));
797 break;
798 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
799 if (objfile_is_library)
800 error (_("Cannot find shared library `%s' in dynamic"
801 " linker's load module list"), objfile_name (objfile));
802 else
803 error (_("Cannot find executable file `%s' in dynamic"
804 " linker's load module list"), objfile_name (objfile));
805 break;
806 case TLS_NOT_ALLOCATED_YET_ERROR:
807 if (objfile_is_library)
808 error (_("The inferior has not yet allocated storage for"
809 " thread-local variables in\n"
810 "the shared library `%s'\n"
811 "for %s"),
812 objfile_name (objfile), target_pid_to_str (ptid));
813 else
814 error (_("The inferior has not yet allocated storage for"
815 " thread-local variables in\n"
816 "the executable `%s'\n"
817 "for %s"),
818 objfile_name (objfile), target_pid_to_str (ptid));
819 break;
820 case TLS_GENERIC_ERROR:
821 if (objfile_is_library)
822 error (_("Cannot find thread-local storage for %s, "
823 "shared library %s:\n%s"),
824 target_pid_to_str (ptid),
825 objfile_name (objfile), ex.message);
826 else
827 error (_("Cannot find thread-local storage for %s, "
828 "executable file %s:\n%s"),
829 target_pid_to_str (ptid),
830 objfile_name (objfile), ex.message);
831 break;
832 default:
833 throw_exception (ex);
834 break;
835 }
836 }
837 END_CATCH
838 }
839 /* It wouldn't be wrong here to try a gdbarch method, too; finding
840 TLS is an ABI-specific thing. But we don't do that yet. */
841 else
842 error (_("Cannot find thread-local variables on this target"));
843
844 return addr;
845 }
846
847 const char *
848 target_xfer_status_to_string (enum target_xfer_status status)
849 {
850 #define CASE(X) case X: return #X
851 switch (status)
852 {
853 CASE(TARGET_XFER_E_IO);
854 CASE(TARGET_XFER_UNAVAILABLE);
855 default:
856 return "<unknown>";
857 }
858 #undef CASE
859 };
860
861
862 #undef MIN
863 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
864
865 /* target_read_string -- read a null terminated string, up to LEN bytes,
866 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
867 Set *STRING to a pointer to malloc'd memory containing the data; the caller
868 is responsible for freeing it. Return the number of bytes successfully
869 read. */
870
871 int
872 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
873 int len, int *errnop)
874 {
875 int tlen, offset, i;
876 gdb_byte buf[4];
877 int errcode = 0;
878 char *buffer;
879 int buffer_allocated;
880 char *bufptr;
881 unsigned int nbytes_read = 0;
882
883 gdb_assert (string);
884
885 /* Small for testing. */
886 buffer_allocated = 4;
887 buffer = (char *) xmalloc (buffer_allocated);
888 bufptr = buffer;
889
890 while (len > 0)
891 {
892 tlen = MIN (len, 4 - (memaddr & 3));
893 offset = memaddr & 3;
894
895 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
896 if (errcode != 0)
897 {
898 /* The transfer request might have crossed the boundary to an
899 unallocated region of memory. Retry the transfer, requesting
900 a single byte. */
901 tlen = 1;
902 offset = 0;
903 errcode = target_read_memory (memaddr, buf, 1);
904 if (errcode != 0)
905 goto done;
906 }
907
908 if (bufptr - buffer + tlen > buffer_allocated)
909 {
910 unsigned int bytes;
911
912 bytes = bufptr - buffer;
913 buffer_allocated *= 2;
914 buffer = (char *) xrealloc (buffer, buffer_allocated);
915 bufptr = buffer + bytes;
916 }
917
918 for (i = 0; i < tlen; i++)
919 {
920 *bufptr++ = buf[i + offset];
921 if (buf[i + offset] == '\000')
922 {
923 nbytes_read += i + 1;
924 goto done;
925 }
926 }
927
928 memaddr += tlen;
929 len -= tlen;
930 nbytes_read += tlen;
931 }
932 done:
933 string->reset (buffer);
934 if (errnop != NULL)
935 *errnop = errcode;
936 return nbytes_read;
937 }
938
939 struct target_section_table *
940 target_get_section_table (struct target_ops *target)
941 {
942 return target->get_section_table ();
943 }
944
945 /* Find a section containing ADDR. */
946
947 struct target_section *
948 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
949 {
950 struct target_section_table *table = target_get_section_table (target);
951 struct target_section *secp;
952
953 if (table == NULL)
954 return NULL;
955
956 for (secp = table->sections; secp < table->sections_end; secp++)
957 {
958 if (addr >= secp->addr && addr < secp->endaddr)
959 return secp;
960 }
961 return NULL;
962 }
963
964
965 /* Helper for the memory xfer routines. Checks the attributes of the
966 memory region of MEMADDR against the read or write being attempted.
967 If the access is permitted returns true, otherwise returns false.
968 REGION_P is an optional output parameter. If not-NULL, it is
969 filled with a pointer to the memory region of MEMADDR. REG_LEN
970 returns LEN trimmed to the end of the region. This is how much the
971 caller can continue requesting, if the access is permitted. A
972 single xfer request must not straddle memory region boundaries. */
973
974 static int
975 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
976 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
977 struct mem_region **region_p)
978 {
979 struct mem_region *region;
980
981 region = lookup_mem_region (memaddr);
982
983 if (region_p != NULL)
984 *region_p = region;
985
986 switch (region->attrib.mode)
987 {
988 case MEM_RO:
989 if (writebuf != NULL)
990 return 0;
991 break;
992
993 case MEM_WO:
994 if (readbuf != NULL)
995 return 0;
996 break;
997
998 case MEM_FLASH:
999 /* We only support writing to flash during "load" for now. */
1000 if (writebuf != NULL)
1001 error (_("Writing to flash memory forbidden in this context"));
1002 break;
1003
1004 case MEM_NONE:
1005 return 0;
1006 }
1007
1008 /* region->hi == 0 means there's no upper bound. */
1009 if (memaddr + len < region->hi || region->hi == 0)
1010 *reg_len = len;
1011 else
1012 *reg_len = region->hi - memaddr;
1013
1014 return 1;
1015 }
1016
1017 /* Read memory from more than one valid target. A core file, for
1018 instance, could have some of memory but delegate other bits to
1019 the target below it. So, we must manually try all targets. */
1020
1021 enum target_xfer_status
1022 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1023 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1024 ULONGEST *xfered_len)
1025 {
1026 enum target_xfer_status res;
1027
1028 do
1029 {
1030 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
1031 readbuf, writebuf, memaddr, len,
1032 xfered_len);
1033 if (res == TARGET_XFER_OK)
1034 break;
1035
1036 /* Stop if the target reports that the memory is not available. */
1037 if (res == TARGET_XFER_UNAVAILABLE)
1038 break;
1039
1040 /* We want to continue past core files to executables, but not
1041 past a running target's memory. */
1042 if (ops->has_all_memory ())
1043 break;
1044
1045 ops = ops->beneath ();
1046 }
1047 while (ops != NULL);
1048
1049 /* The cache works at the raw memory level. Make sure the cache
1050 gets updated with raw contents no matter what kind of memory
1051 object was originally being written. Note we do write-through
1052 first, so that if it fails, we don't write to the cache contents
1053 that never made it to the target. */
1054 if (writebuf != NULL
1055 && !ptid_equal (inferior_ptid, null_ptid)
1056 && target_dcache_init_p ()
1057 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1058 {
1059 DCACHE *dcache = target_dcache_get ();
1060
1061 /* Note that writing to an area of memory which wasn't present
1062 in the cache doesn't cause it to be loaded in. */
1063 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1064 }
1065
1066 return res;
1067 }
1068
1069 /* Perform a partial memory transfer.
1070 For docs see target.h, to_xfer_partial. */
1071
1072 static enum target_xfer_status
1073 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1074 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1075 ULONGEST len, ULONGEST *xfered_len)
1076 {
1077 enum target_xfer_status res;
1078 ULONGEST reg_len;
1079 struct mem_region *region;
1080 struct inferior *inf;
1081
1082 /* For accesses to unmapped overlay sections, read directly from
1083 files. Must do this first, as MEMADDR may need adjustment. */
1084 if (readbuf != NULL && overlay_debugging)
1085 {
1086 struct obj_section *section = find_pc_overlay (memaddr);
1087
1088 if (pc_in_unmapped_range (memaddr, section))
1089 {
1090 struct target_section_table *table
1091 = target_get_section_table (ops);
1092 const char *section_name = section->the_bfd_section->name;
1093
1094 memaddr = overlay_mapped_address (memaddr, section);
1095 return section_table_xfer_memory_partial (readbuf, writebuf,
1096 memaddr, len, xfered_len,
1097 table->sections,
1098 table->sections_end,
1099 section_name);
1100 }
1101 }
1102
1103 /* Try the executable files, if "trust-readonly-sections" is set. */
1104 if (readbuf != NULL && trust_readonly)
1105 {
1106 struct target_section *secp;
1107 struct target_section_table *table;
1108
1109 secp = target_section_by_addr (ops, memaddr);
1110 if (secp != NULL
1111 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1112 secp->the_bfd_section)
1113 & SEC_READONLY))
1114 {
1115 table = target_get_section_table (ops);
1116 return section_table_xfer_memory_partial (readbuf, writebuf,
1117 memaddr, len, xfered_len,
1118 table->sections,
1119 table->sections_end,
1120 NULL);
1121 }
1122 }
1123
1124 /* Try GDB's internal data cache. */
1125
1126 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1127 &region))
1128 return TARGET_XFER_E_IO;
1129
1130 if (!ptid_equal (inferior_ptid, null_ptid))
1131 inf = current_inferior ();
1132 else
1133 inf = NULL;
1134
1135 if (inf != NULL
1136 && readbuf != NULL
1137 /* The dcache reads whole cache lines; that doesn't play well
1138 with reading from a trace buffer, because reading outside of
1139 the collected memory range fails. */
1140 && get_traceframe_number () == -1
1141 && (region->attrib.cache
1142 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1143 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1144 {
1145 DCACHE *dcache = target_dcache_get_or_init ();
1146
1147 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1148 reg_len, xfered_len);
1149 }
1150
1151 /* If none of those methods found the memory we wanted, fall back
1152 to a target partial transfer. Normally a single call to
1153 to_xfer_partial is enough; if it doesn't recognize an object
1154 it will call the to_xfer_partial of the next target down.
1155 But for memory this won't do. Memory is the only target
1156 object which can be read from more than one valid target.
1157 A core file, for instance, could have some of memory but
1158 delegate other bits to the target below it. So, we must
1159 manually try all targets. */
1160
1161 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1162 xfered_len);
1163
1164 /* If we still haven't got anything, return the last error. We
1165 give up. */
1166 return res;
1167 }
1168
1169 /* Perform a partial memory transfer. For docs see target.h,
1170 to_xfer_partial. */
1171
1172 static enum target_xfer_status
1173 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1174 gdb_byte *readbuf, const gdb_byte *writebuf,
1175 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1176 {
1177 enum target_xfer_status res;
1178
1179 /* Zero length requests are ok and require no work. */
1180 if (len == 0)
1181 return TARGET_XFER_EOF;
1182
1183 memaddr = address_significant (target_gdbarch (), memaddr);
1184
1185 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1186 breakpoint insns, thus hiding out from higher layers whether
1187 there are software breakpoints inserted in the code stream. */
1188 if (readbuf != NULL)
1189 {
1190 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1191 xfered_len);
1192
1193 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1194 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1195 }
1196 else
1197 {
1198 /* A large write request is likely to be partially satisfied
1199 by memory_xfer_partial_1. We will continually malloc
1200 and free a copy of the entire write request for breakpoint
1201 shadow handling even though we only end up writing a small
1202 subset of it. Cap writes to a limit specified by the target
1203 to mitigate this. */
1204 len = std::min (ops->get_memory_xfer_limit (), len);
1205
1206 gdb::byte_vector buf (writebuf, writebuf + len);
1207 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1208 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1209 xfered_len);
1210 }
1211
1212 return res;
1213 }
1214
1215 scoped_restore_tmpl<int>
1216 make_scoped_restore_show_memory_breakpoints (int show)
1217 {
1218 return make_scoped_restore (&show_memory_breakpoints, show);
1219 }
1220
1221 /* For docs see target.h, to_xfer_partial. */
1222
1223 enum target_xfer_status
1224 target_xfer_partial (struct target_ops *ops,
1225 enum target_object object, const char *annex,
1226 gdb_byte *readbuf, const gdb_byte *writebuf,
1227 ULONGEST offset, ULONGEST len,
1228 ULONGEST *xfered_len)
1229 {
1230 enum target_xfer_status retval;
1231
1232 /* Transfer is done when LEN is zero. */
1233 if (len == 0)
1234 return TARGET_XFER_EOF;
1235
1236 if (writebuf && !may_write_memory)
1237 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1238 core_addr_to_string_nz (offset), plongest (len));
1239
1240 *xfered_len = 0;
1241
1242 /* If this is a memory transfer, let the memory-specific code
1243 have a look at it instead. Memory transfers are more
1244 complicated. */
1245 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1246 || object == TARGET_OBJECT_CODE_MEMORY)
1247 retval = memory_xfer_partial (ops, object, readbuf,
1248 writebuf, offset, len, xfered_len);
1249 else if (object == TARGET_OBJECT_RAW_MEMORY)
1250 {
1251 /* Skip/avoid accessing the target if the memory region
1252 attributes block the access. Check this here instead of in
1253 raw_memory_xfer_partial as otherwise we'd end up checking
1254 this twice in the case of the memory_xfer_partial path is
1255 taken; once before checking the dcache, and another in the
1256 tail call to raw_memory_xfer_partial. */
1257 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1258 NULL))
1259 return TARGET_XFER_E_IO;
1260
1261 /* Request the normal memory object from other layers. */
1262 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1263 xfered_len);
1264 }
1265 else
1266 retval = ops->xfer_partial (object, annex, readbuf,
1267 writebuf, offset, len, xfered_len);
1268
1269 if (targetdebug)
1270 {
1271 const unsigned char *myaddr = NULL;
1272
1273 fprintf_unfiltered (gdb_stdlog,
1274 "%s:target_xfer_partial "
1275 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1276 ops->shortname (),
1277 (int) object,
1278 (annex ? annex : "(null)"),
1279 host_address_to_string (readbuf),
1280 host_address_to_string (writebuf),
1281 core_addr_to_string_nz (offset),
1282 pulongest (len), retval,
1283 pulongest (*xfered_len));
1284
1285 if (readbuf)
1286 myaddr = readbuf;
1287 if (writebuf)
1288 myaddr = writebuf;
1289 if (retval == TARGET_XFER_OK && myaddr != NULL)
1290 {
1291 int i;
1292
1293 fputs_unfiltered (", bytes =", gdb_stdlog);
1294 for (i = 0; i < *xfered_len; i++)
1295 {
1296 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1297 {
1298 if (targetdebug < 2 && i > 0)
1299 {
1300 fprintf_unfiltered (gdb_stdlog, " ...");
1301 break;
1302 }
1303 fprintf_unfiltered (gdb_stdlog, "\n");
1304 }
1305
1306 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1307 }
1308 }
1309
1310 fputc_unfiltered ('\n', gdb_stdlog);
1311 }
1312
1313 /* Check implementations of to_xfer_partial update *XFERED_LEN
1314 properly. Do assertion after printing debug messages, so that we
1315 can find more clues on assertion failure from debugging messages. */
1316 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1317 gdb_assert (*xfered_len > 0);
1318
1319 return retval;
1320 }
1321
1322 /* Read LEN bytes of target memory at address MEMADDR, placing the
1323 results in GDB's memory at MYADDR. Returns either 0 for success or
1324 -1 if any error occurs.
1325
1326 If an error occurs, no guarantee is made about the contents of the data at
1327 MYADDR. In particular, the caller should not depend upon partial reads
1328 filling the buffer with good data. There is no way for the caller to know
1329 how much good data might have been transfered anyway. Callers that can
1330 deal with partial reads should call target_read (which will retry until
1331 it makes no progress, and then return how much was transferred). */
1332
1333 int
1334 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1335 {
1336 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1337 myaddr, memaddr, len) == len)
1338 return 0;
1339 else
1340 return -1;
1341 }
1342
1343 /* See target/target.h. */
1344
1345 int
1346 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1347 {
1348 gdb_byte buf[4];
1349 int r;
1350
1351 r = target_read_memory (memaddr, buf, sizeof buf);
1352 if (r != 0)
1353 return r;
1354 *result = extract_unsigned_integer (buf, sizeof buf,
1355 gdbarch_byte_order (target_gdbarch ()));
1356 return 0;
1357 }
1358
1359 /* Like target_read_memory, but specify explicitly that this is a read
1360 from the target's raw memory. That is, this read bypasses the
1361 dcache, breakpoint shadowing, etc. */
1362
1363 int
1364 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1365 {
1366 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1367 myaddr, memaddr, len) == len)
1368 return 0;
1369 else
1370 return -1;
1371 }
1372
1373 /* Like target_read_memory, but specify explicitly that this is a read from
1374 the target's stack. This may trigger different cache behavior. */
1375
1376 int
1377 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1378 {
1379 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1380 myaddr, memaddr, len) == len)
1381 return 0;
1382 else
1383 return -1;
1384 }
1385
1386 /* Like target_read_memory, but specify explicitly that this is a read from
1387 the target's code. This may trigger different cache behavior. */
1388
1389 int
1390 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1391 {
1392 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1393 myaddr, memaddr, len) == len)
1394 return 0;
1395 else
1396 return -1;
1397 }
1398
1399 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1400 Returns either 0 for success or -1 if any error occurs. If an
1401 error occurs, no guarantee is made about how much data got written.
1402 Callers that can deal with partial writes should call
1403 target_write. */
1404
1405 int
1406 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1407 {
1408 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1409 myaddr, memaddr, len) == len)
1410 return 0;
1411 else
1412 return -1;
1413 }
1414
1415 /* Write LEN bytes from MYADDR to target raw memory at address
1416 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1417 If an error occurs, no guarantee is made about how much data got
1418 written. Callers that can deal with partial writes should call
1419 target_write. */
1420
1421 int
1422 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1423 {
1424 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1425 myaddr, memaddr, len) == len)
1426 return 0;
1427 else
1428 return -1;
1429 }
1430
1431 /* Fetch the target's memory map. */
1432
1433 std::vector<mem_region>
1434 target_memory_map (void)
1435 {
1436 std::vector<mem_region> result = current_top_target ()->memory_map ();
1437 if (result.empty ())
1438 return result;
1439
1440 std::sort (result.begin (), result.end ());
1441
1442 /* Check that regions do not overlap. Simultaneously assign
1443 a numbering for the "mem" commands to use to refer to
1444 each region. */
1445 mem_region *last_one = NULL;
1446 for (size_t ix = 0; ix < result.size (); ix++)
1447 {
1448 mem_region *this_one = &result[ix];
1449 this_one->number = ix;
1450
1451 if (last_one != NULL && last_one->hi > this_one->lo)
1452 {
1453 warning (_("Overlapping regions in memory map: ignoring"));
1454 return std::vector<mem_region> ();
1455 }
1456
1457 last_one = this_one;
1458 }
1459
1460 return result;
1461 }
1462
1463 void
1464 target_flash_erase (ULONGEST address, LONGEST length)
1465 {
1466 current_top_target ()->flash_erase (address, length);
1467 }
1468
1469 void
1470 target_flash_done (void)
1471 {
1472 current_top_target ()->flash_done ();
1473 }
1474
1475 static void
1476 show_trust_readonly (struct ui_file *file, int from_tty,
1477 struct cmd_list_element *c, const char *value)
1478 {
1479 fprintf_filtered (file,
1480 _("Mode for reading from readonly sections is %s.\n"),
1481 value);
1482 }
1483
1484 /* Target vector read/write partial wrapper functions. */
1485
1486 static enum target_xfer_status
1487 target_read_partial (struct target_ops *ops,
1488 enum target_object object,
1489 const char *annex, gdb_byte *buf,
1490 ULONGEST offset, ULONGEST len,
1491 ULONGEST *xfered_len)
1492 {
1493 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1494 xfered_len);
1495 }
1496
1497 static enum target_xfer_status
1498 target_write_partial (struct target_ops *ops,
1499 enum target_object object,
1500 const char *annex, const gdb_byte *buf,
1501 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1502 {
1503 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1504 xfered_len);
1505 }
1506
1507 /* Wrappers to perform the full transfer. */
1508
1509 /* For docs on target_read see target.h. */
1510
1511 LONGEST
1512 target_read (struct target_ops *ops,
1513 enum target_object object,
1514 const char *annex, gdb_byte *buf,
1515 ULONGEST offset, LONGEST len)
1516 {
1517 LONGEST xfered_total = 0;
1518 int unit_size = 1;
1519
1520 /* If we are reading from a memory object, find the length of an addressable
1521 unit for that architecture. */
1522 if (object == TARGET_OBJECT_MEMORY
1523 || object == TARGET_OBJECT_STACK_MEMORY
1524 || object == TARGET_OBJECT_CODE_MEMORY
1525 || object == TARGET_OBJECT_RAW_MEMORY)
1526 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1527
1528 while (xfered_total < len)
1529 {
1530 ULONGEST xfered_partial;
1531 enum target_xfer_status status;
1532
1533 status = target_read_partial (ops, object, annex,
1534 buf + xfered_total * unit_size,
1535 offset + xfered_total, len - xfered_total,
1536 &xfered_partial);
1537
1538 /* Call an observer, notifying them of the xfer progress? */
1539 if (status == TARGET_XFER_EOF)
1540 return xfered_total;
1541 else if (status == TARGET_XFER_OK)
1542 {
1543 xfered_total += xfered_partial;
1544 QUIT;
1545 }
1546 else
1547 return TARGET_XFER_E_IO;
1548
1549 }
1550 return len;
1551 }
1552
1553 /* Assuming that the entire [begin, end) range of memory cannot be
1554 read, try to read whatever subrange is possible to read.
1555
1556 The function returns, in RESULT, either zero or one memory block.
1557 If there's a readable subrange at the beginning, it is completely
1558 read and returned. Any further readable subrange will not be read.
1559 Otherwise, if there's a readable subrange at the end, it will be
1560 completely read and returned. Any readable subranges before it
1561 (obviously, not starting at the beginning), will be ignored. In
1562 other cases -- either no readable subrange, or readable subrange(s)
1563 that is neither at the beginning, or end, nothing is returned.
1564
1565 The purpose of this function is to handle a read across a boundary
1566 of accessible memory in a case when memory map is not available.
1567 The above restrictions are fine for this case, but will give
1568 incorrect results if the memory is 'patchy'. However, supporting
1569 'patchy' memory would require trying to read every single byte,
1570 and it seems unacceptable solution. Explicit memory map is
1571 recommended for this case -- and target_read_memory_robust will
1572 take care of reading multiple ranges then. */
1573
1574 static void
1575 read_whatever_is_readable (struct target_ops *ops,
1576 const ULONGEST begin, const ULONGEST end,
1577 int unit_size,
1578 std::vector<memory_read_result> *result)
1579 {
1580 ULONGEST current_begin = begin;
1581 ULONGEST current_end = end;
1582 int forward;
1583 ULONGEST xfered_len;
1584
1585 /* If we previously failed to read 1 byte, nothing can be done here. */
1586 if (end - begin <= 1)
1587 return;
1588
1589 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1590
1591 /* Check that either first or the last byte is readable, and give up
1592 if not. This heuristic is meant to permit reading accessible memory
1593 at the boundary of accessible region. */
1594 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1595 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1596 {
1597 forward = 1;
1598 ++current_begin;
1599 }
1600 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1601 buf.get () + (end - begin) - 1, end - 1, 1,
1602 &xfered_len) == TARGET_XFER_OK)
1603 {
1604 forward = 0;
1605 --current_end;
1606 }
1607 else
1608 return;
1609
1610 /* Loop invariant is that the [current_begin, current_end) was previously
1611 found to be not readable as a whole.
1612
1613 Note loop condition -- if the range has 1 byte, we can't divide the range
1614 so there's no point trying further. */
1615 while (current_end - current_begin > 1)
1616 {
1617 ULONGEST first_half_begin, first_half_end;
1618 ULONGEST second_half_begin, second_half_end;
1619 LONGEST xfer;
1620 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1621
1622 if (forward)
1623 {
1624 first_half_begin = current_begin;
1625 first_half_end = middle;
1626 second_half_begin = middle;
1627 second_half_end = current_end;
1628 }
1629 else
1630 {
1631 first_half_begin = middle;
1632 first_half_end = current_end;
1633 second_half_begin = current_begin;
1634 second_half_end = middle;
1635 }
1636
1637 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1638 buf.get () + (first_half_begin - begin) * unit_size,
1639 first_half_begin,
1640 first_half_end - first_half_begin);
1641
1642 if (xfer == first_half_end - first_half_begin)
1643 {
1644 /* This half reads up fine. So, the error must be in the
1645 other half. */
1646 current_begin = second_half_begin;
1647 current_end = second_half_end;
1648 }
1649 else
1650 {
1651 /* This half is not readable. Because we've tried one byte, we
1652 know some part of this half if actually readable. Go to the next
1653 iteration to divide again and try to read.
1654
1655 We don't handle the other half, because this function only tries
1656 to read a single readable subrange. */
1657 current_begin = first_half_begin;
1658 current_end = first_half_end;
1659 }
1660 }
1661
1662 if (forward)
1663 {
1664 /* The [begin, current_begin) range has been read. */
1665 result->emplace_back (begin, current_end, std::move (buf));
1666 }
1667 else
1668 {
1669 /* The [current_end, end) range has been read. */
1670 LONGEST region_len = end - current_end;
1671
1672 gdb::unique_xmalloc_ptr<gdb_byte> data
1673 ((gdb_byte *) xmalloc (region_len * unit_size));
1674 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1675 region_len * unit_size);
1676 result->emplace_back (current_end, end, std::move (data));
1677 }
1678 }
1679
1680 std::vector<memory_read_result>
1681 read_memory_robust (struct target_ops *ops,
1682 const ULONGEST offset, const LONGEST len)
1683 {
1684 std::vector<memory_read_result> result;
1685 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1686
1687 LONGEST xfered_total = 0;
1688 while (xfered_total < len)
1689 {
1690 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1691 LONGEST region_len;
1692
1693 /* If there is no explicit region, a fake one should be created. */
1694 gdb_assert (region);
1695
1696 if (region->hi == 0)
1697 region_len = len - xfered_total;
1698 else
1699 region_len = region->hi - offset;
1700
1701 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1702 {
1703 /* Cannot read this region. Note that we can end up here only
1704 if the region is explicitly marked inaccessible, or
1705 'inaccessible-by-default' is in effect. */
1706 xfered_total += region_len;
1707 }
1708 else
1709 {
1710 LONGEST to_read = std::min (len - xfered_total, region_len);
1711 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1712 ((gdb_byte *) xmalloc (to_read * unit_size));
1713
1714 LONGEST xfered_partial =
1715 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1716 offset + xfered_total, to_read);
1717 /* Call an observer, notifying them of the xfer progress? */
1718 if (xfered_partial <= 0)
1719 {
1720 /* Got an error reading full chunk. See if maybe we can read
1721 some subrange. */
1722 read_whatever_is_readable (ops, offset + xfered_total,
1723 offset + xfered_total + to_read,
1724 unit_size, &result);
1725 xfered_total += to_read;
1726 }
1727 else
1728 {
1729 result.emplace_back (offset + xfered_total,
1730 offset + xfered_total + xfered_partial,
1731 std::move (buffer));
1732 xfered_total += xfered_partial;
1733 }
1734 QUIT;
1735 }
1736 }
1737
1738 return result;
1739 }
1740
1741
1742 /* An alternative to target_write with progress callbacks. */
1743
1744 LONGEST
1745 target_write_with_progress (struct target_ops *ops,
1746 enum target_object object,
1747 const char *annex, const gdb_byte *buf,
1748 ULONGEST offset, LONGEST len,
1749 void (*progress) (ULONGEST, void *), void *baton)
1750 {
1751 LONGEST xfered_total = 0;
1752 int unit_size = 1;
1753
1754 /* If we are writing to a memory object, find the length of an addressable
1755 unit for that architecture. */
1756 if (object == TARGET_OBJECT_MEMORY
1757 || object == TARGET_OBJECT_STACK_MEMORY
1758 || object == TARGET_OBJECT_CODE_MEMORY
1759 || object == TARGET_OBJECT_RAW_MEMORY)
1760 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1761
1762 /* Give the progress callback a chance to set up. */
1763 if (progress)
1764 (*progress) (0, baton);
1765
1766 while (xfered_total < len)
1767 {
1768 ULONGEST xfered_partial;
1769 enum target_xfer_status status;
1770
1771 status = target_write_partial (ops, object, annex,
1772 buf + xfered_total * unit_size,
1773 offset + xfered_total, len - xfered_total,
1774 &xfered_partial);
1775
1776 if (status != TARGET_XFER_OK)
1777 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1778
1779 if (progress)
1780 (*progress) (xfered_partial, baton);
1781
1782 xfered_total += xfered_partial;
1783 QUIT;
1784 }
1785 return len;
1786 }
1787
1788 /* For docs on target_write see target.h. */
1789
1790 LONGEST
1791 target_write (struct target_ops *ops,
1792 enum target_object object,
1793 const char *annex, const gdb_byte *buf,
1794 ULONGEST offset, LONGEST len)
1795 {
1796 return target_write_with_progress (ops, object, annex, buf, offset, len,
1797 NULL, NULL);
1798 }
1799
1800 /* Help for target_read_alloc and target_read_stralloc. See their comments
1801 for details. */
1802
1803 template <typename T>
1804 gdb::optional<gdb::def_vector<T>>
1805 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1806 const char *annex)
1807 {
1808 gdb::def_vector<T> buf;
1809 size_t buf_pos = 0;
1810 const int chunk = 4096;
1811
1812 /* This function does not have a length parameter; it reads the
1813 entire OBJECT). Also, it doesn't support objects fetched partly
1814 from one target and partly from another (in a different stratum,
1815 e.g. a core file and an executable). Both reasons make it
1816 unsuitable for reading memory. */
1817 gdb_assert (object != TARGET_OBJECT_MEMORY);
1818
1819 /* Start by reading up to 4K at a time. The target will throttle
1820 this number down if necessary. */
1821 while (1)
1822 {
1823 ULONGEST xfered_len;
1824 enum target_xfer_status status;
1825
1826 buf.resize (buf_pos + chunk);
1827
1828 status = target_read_partial (ops, object, annex,
1829 (gdb_byte *) &buf[buf_pos],
1830 buf_pos, chunk,
1831 &xfered_len);
1832
1833 if (status == TARGET_XFER_EOF)
1834 {
1835 /* Read all there was. */
1836 buf.resize (buf_pos);
1837 return buf;
1838 }
1839 else if (status != TARGET_XFER_OK)
1840 {
1841 /* An error occurred. */
1842 return {};
1843 }
1844
1845 buf_pos += xfered_len;
1846
1847 QUIT;
1848 }
1849 }
1850
1851 /* See target.h */
1852
1853 gdb::optional<gdb::byte_vector>
1854 target_read_alloc (struct target_ops *ops, enum target_object object,
1855 const char *annex)
1856 {
1857 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1858 }
1859
1860 /* See target.h. */
1861
1862 gdb::optional<gdb::char_vector>
1863 target_read_stralloc (struct target_ops *ops, enum target_object object,
1864 const char *annex)
1865 {
1866 gdb::optional<gdb::char_vector> buf
1867 = target_read_alloc_1<char> (ops, object, annex);
1868
1869 if (!buf)
1870 return {};
1871
1872 if (buf->back () != '\0')
1873 buf->push_back ('\0');
1874
1875 /* Check for embedded NUL bytes; but allow trailing NULs. */
1876 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1877 it != buf->end (); it++)
1878 if (*it != '\0')
1879 {
1880 warning (_("target object %d, annex %s, "
1881 "contained unexpected null characters"),
1882 (int) object, annex ? annex : "(none)");
1883 break;
1884 }
1885
1886 return buf;
1887 }
1888
1889 /* Memory transfer methods. */
1890
1891 void
1892 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1893 LONGEST len)
1894 {
1895 /* This method is used to read from an alternate, non-current
1896 target. This read must bypass the overlay support (as symbols
1897 don't match this target), and GDB's internal cache (wrong cache
1898 for this target). */
1899 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1900 != len)
1901 memory_error (TARGET_XFER_E_IO, addr);
1902 }
1903
1904 ULONGEST
1905 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1906 int len, enum bfd_endian byte_order)
1907 {
1908 gdb_byte buf[sizeof (ULONGEST)];
1909
1910 gdb_assert (len <= sizeof (buf));
1911 get_target_memory (ops, addr, buf, len);
1912 return extract_unsigned_integer (buf, len, byte_order);
1913 }
1914
1915 /* See target.h. */
1916
1917 int
1918 target_insert_breakpoint (struct gdbarch *gdbarch,
1919 struct bp_target_info *bp_tgt)
1920 {
1921 if (!may_insert_breakpoints)
1922 {
1923 warning (_("May not insert breakpoints"));
1924 return 1;
1925 }
1926
1927 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1928 }
1929
1930 /* See target.h. */
1931
1932 int
1933 target_remove_breakpoint (struct gdbarch *gdbarch,
1934 struct bp_target_info *bp_tgt,
1935 enum remove_bp_reason reason)
1936 {
1937 /* This is kind of a weird case to handle, but the permission might
1938 have been changed after breakpoints were inserted - in which case
1939 we should just take the user literally and assume that any
1940 breakpoints should be left in place. */
1941 if (!may_insert_breakpoints)
1942 {
1943 warning (_("May not remove breakpoints"));
1944 return 1;
1945 }
1946
1947 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1948 }
1949
1950 static void
1951 info_target_command (const char *args, int from_tty)
1952 {
1953 int has_all_mem = 0;
1954
1955 if (symfile_objfile != NULL)
1956 printf_unfiltered (_("Symbols from \"%s\".\n"),
1957 objfile_name (symfile_objfile));
1958
1959 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1960 {
1961 if (!t->has_memory ())
1962 continue;
1963
1964 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1965 continue;
1966 if (has_all_mem)
1967 printf_unfiltered (_("\tWhile running this, "
1968 "GDB does not access memory from...\n"));
1969 printf_unfiltered ("%s:\n", t->longname ());
1970 t->files_info ();
1971 has_all_mem = t->has_all_memory ();
1972 }
1973 }
1974
1975 /* This function is called before any new inferior is created, e.g.
1976 by running a program, attaching, or connecting to a target.
1977 It cleans up any state from previous invocations which might
1978 change between runs. This is a subset of what target_preopen
1979 resets (things which might change between targets). */
1980
1981 void
1982 target_pre_inferior (int from_tty)
1983 {
1984 /* Clear out solib state. Otherwise the solib state of the previous
1985 inferior might have survived and is entirely wrong for the new
1986 target. This has been observed on GNU/Linux using glibc 2.3. How
1987 to reproduce:
1988
1989 bash$ ./foo&
1990 [1] 4711
1991 bash$ ./foo&
1992 [1] 4712
1993 bash$ gdb ./foo
1994 [...]
1995 (gdb) attach 4711
1996 (gdb) detach
1997 (gdb) attach 4712
1998 Cannot access memory at address 0xdeadbeef
1999 */
2000
2001 /* In some OSs, the shared library list is the same/global/shared
2002 across inferiors. If code is shared between processes, so are
2003 memory regions and features. */
2004 if (!gdbarch_has_global_solist (target_gdbarch ()))
2005 {
2006 no_shared_libraries (NULL, from_tty);
2007
2008 invalidate_target_mem_regions ();
2009
2010 target_clear_description ();
2011 }
2012
2013 /* attach_flag may be set if the previous process associated with
2014 the inferior was attached to. */
2015 current_inferior ()->attach_flag = 0;
2016
2017 current_inferior ()->highest_thread_num = 0;
2018
2019 agent_capability_invalidate ();
2020 }
2021
2022 /* Callback for iterate_over_inferiors. Gets rid of the given
2023 inferior. */
2024
2025 static int
2026 dispose_inferior (struct inferior *inf, void *args)
2027 {
2028 thread_info *thread = any_thread_of_inferior (inf);
2029 if (thread != NULL)
2030 {
2031 switch_to_thread (thread);
2032
2033 /* Core inferiors actually should be detached, not killed. */
2034 if (target_has_execution)
2035 target_kill ();
2036 else
2037 target_detach (inf, 0);
2038 }
2039
2040 return 0;
2041 }
2042
2043 /* This is to be called by the open routine before it does
2044 anything. */
2045
2046 void
2047 target_preopen (int from_tty)
2048 {
2049 dont_repeat ();
2050
2051 if (have_inferiors ())
2052 {
2053 if (!from_tty
2054 || !have_live_inferiors ()
2055 || query (_("A program is being debugged already. Kill it? ")))
2056 iterate_over_inferiors (dispose_inferior, NULL);
2057 else
2058 error (_("Program not killed."));
2059 }
2060
2061 /* Calling target_kill may remove the target from the stack. But if
2062 it doesn't (which seems like a win for UDI), remove it now. */
2063 /* Leave the exec target, though. The user may be switching from a
2064 live process to a core of the same program. */
2065 pop_all_targets_above (file_stratum);
2066
2067 target_pre_inferior (from_tty);
2068 }
2069
2070 /* See target.h. */
2071
2072 void
2073 target_detach (inferior *inf, int from_tty)
2074 {
2075 /* As long as some to_detach implementations rely on the current_inferior
2076 (either directly, or indirectly, like through target_gdbarch or by
2077 reading memory), INF needs to be the current inferior. When that
2078 requirement will become no longer true, then we can remove this
2079 assertion. */
2080 gdb_assert (inf == current_inferior ());
2081
2082 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2083 /* Don't remove global breakpoints here. They're removed on
2084 disconnection from the target. */
2085 ;
2086 else
2087 /* If we're in breakpoints-always-inserted mode, have to remove
2088 breakpoints before detaching. */
2089 remove_breakpoints_inf (current_inferior ());
2090
2091 prepare_for_detach ();
2092
2093 current_top_target ()->detach (inf, from_tty);
2094 }
2095
2096 void
2097 target_disconnect (const char *args, int from_tty)
2098 {
2099 /* If we're in breakpoints-always-inserted mode or if breakpoints
2100 are global across processes, we have to remove them before
2101 disconnecting. */
2102 remove_breakpoints ();
2103
2104 current_top_target ()->disconnect (args, from_tty);
2105 }
2106
2107 /* See target/target.h. */
2108
2109 ptid_t
2110 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2111 {
2112 return current_top_target ()->wait (ptid, status, options);
2113 }
2114
2115 /* See target.h. */
2116
2117 ptid_t
2118 default_target_wait (struct target_ops *ops,
2119 ptid_t ptid, struct target_waitstatus *status,
2120 int options)
2121 {
2122 status->kind = TARGET_WAITKIND_IGNORE;
2123 return minus_one_ptid;
2124 }
2125
2126 const char *
2127 target_pid_to_str (ptid_t ptid)
2128 {
2129 return current_top_target ()->pid_to_str (ptid);
2130 }
2131
2132 const char *
2133 target_thread_name (struct thread_info *info)
2134 {
2135 return current_top_target ()->thread_name (info);
2136 }
2137
2138 struct thread_info *
2139 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2140 int handle_len,
2141 struct inferior *inf)
2142 {
2143 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2144 handle_len, inf);
2145 }
2146
2147 void
2148 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2149 {
2150 target_dcache_invalidate ();
2151
2152 current_top_target ()->resume (ptid, step, signal);
2153
2154 registers_changed_ptid (ptid);
2155 /* We only set the internal executing state here. The user/frontend
2156 running state is set at a higher level. */
2157 set_executing (ptid, 1);
2158 clear_inline_frame_state (ptid);
2159 }
2160
2161 /* If true, target_commit_resume is a nop. */
2162 static int defer_target_commit_resume;
2163
2164 /* See target.h. */
2165
2166 void
2167 target_commit_resume (void)
2168 {
2169 if (defer_target_commit_resume)
2170 return;
2171
2172 current_top_target ()->commit_resume ();
2173 }
2174
2175 /* See target.h. */
2176
2177 scoped_restore_tmpl<int>
2178 make_scoped_defer_target_commit_resume ()
2179 {
2180 return make_scoped_restore (&defer_target_commit_resume, 1);
2181 }
2182
2183 void
2184 target_pass_signals (int numsigs, unsigned char *pass_signals)
2185 {
2186 current_top_target ()->pass_signals (numsigs, pass_signals);
2187 }
2188
2189 void
2190 target_program_signals (int numsigs, unsigned char *program_signals)
2191 {
2192 current_top_target ()->program_signals (numsigs, program_signals);
2193 }
2194
2195 static int
2196 default_follow_fork (struct target_ops *self, int follow_child,
2197 int detach_fork)
2198 {
2199 /* Some target returned a fork event, but did not know how to follow it. */
2200 internal_error (__FILE__, __LINE__,
2201 _("could not find a target to follow fork"));
2202 }
2203
2204 /* Look through the list of possible targets for a target that can
2205 follow forks. */
2206
2207 int
2208 target_follow_fork (int follow_child, int detach_fork)
2209 {
2210 return current_top_target ()->follow_fork (follow_child, detach_fork);
2211 }
2212
2213 /* Target wrapper for follow exec hook. */
2214
2215 void
2216 target_follow_exec (struct inferior *inf, char *execd_pathname)
2217 {
2218 current_top_target ()->follow_exec (inf, execd_pathname);
2219 }
2220
2221 static void
2222 default_mourn_inferior (struct target_ops *self)
2223 {
2224 internal_error (__FILE__, __LINE__,
2225 _("could not find a target to follow mourn inferior"));
2226 }
2227
2228 void
2229 target_mourn_inferior (ptid_t ptid)
2230 {
2231 gdb_assert (ptid_equal (ptid, inferior_ptid));
2232 current_top_target ()->mourn_inferior ();
2233
2234 /* We no longer need to keep handles on any of the object files.
2235 Make sure to release them to avoid unnecessarily locking any
2236 of them while we're not actually debugging. */
2237 bfd_cache_close_all ();
2238 }
2239
2240 /* Look for a target which can describe architectural features, starting
2241 from TARGET. If we find one, return its description. */
2242
2243 const struct target_desc *
2244 target_read_description (struct target_ops *target)
2245 {
2246 return target->read_description ();
2247 }
2248
2249 /* This implements a basic search of memory, reading target memory and
2250 performing the search here (as opposed to performing the search in on the
2251 target side with, for example, gdbserver). */
2252
2253 int
2254 simple_search_memory (struct target_ops *ops,
2255 CORE_ADDR start_addr, ULONGEST search_space_len,
2256 const gdb_byte *pattern, ULONGEST pattern_len,
2257 CORE_ADDR *found_addrp)
2258 {
2259 /* NOTE: also defined in find.c testcase. */
2260 #define SEARCH_CHUNK_SIZE 16000
2261 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2262 /* Buffer to hold memory contents for searching. */
2263 unsigned search_buf_size;
2264
2265 search_buf_size = chunk_size + pattern_len - 1;
2266
2267 /* No point in trying to allocate a buffer larger than the search space. */
2268 if (search_space_len < search_buf_size)
2269 search_buf_size = search_space_len;
2270
2271 gdb::byte_vector search_buf (search_buf_size);
2272
2273 /* Prime the search buffer. */
2274
2275 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2276 search_buf.data (), start_addr, search_buf_size)
2277 != search_buf_size)
2278 {
2279 warning (_("Unable to access %s bytes of target "
2280 "memory at %s, halting search."),
2281 pulongest (search_buf_size), hex_string (start_addr));
2282 return -1;
2283 }
2284
2285 /* Perform the search.
2286
2287 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2288 When we've scanned N bytes we copy the trailing bytes to the start and
2289 read in another N bytes. */
2290
2291 while (search_space_len >= pattern_len)
2292 {
2293 gdb_byte *found_ptr;
2294 unsigned nr_search_bytes
2295 = std::min (search_space_len, (ULONGEST) search_buf_size);
2296
2297 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2298 pattern, pattern_len);
2299
2300 if (found_ptr != NULL)
2301 {
2302 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2303
2304 *found_addrp = found_addr;
2305 return 1;
2306 }
2307
2308 /* Not found in this chunk, skip to next chunk. */
2309
2310 /* Don't let search_space_len wrap here, it's unsigned. */
2311 if (search_space_len >= chunk_size)
2312 search_space_len -= chunk_size;
2313 else
2314 search_space_len = 0;
2315
2316 if (search_space_len >= pattern_len)
2317 {
2318 unsigned keep_len = search_buf_size - chunk_size;
2319 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2320 int nr_to_read;
2321
2322 /* Copy the trailing part of the previous iteration to the front
2323 of the buffer for the next iteration. */
2324 gdb_assert (keep_len == pattern_len - 1);
2325 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2326
2327 nr_to_read = std::min (search_space_len - keep_len,
2328 (ULONGEST) chunk_size);
2329
2330 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2331 &search_buf[keep_len], read_addr,
2332 nr_to_read) != nr_to_read)
2333 {
2334 warning (_("Unable to access %s bytes of target "
2335 "memory at %s, halting search."),
2336 plongest (nr_to_read),
2337 hex_string (read_addr));
2338 return -1;
2339 }
2340
2341 start_addr += chunk_size;
2342 }
2343 }
2344
2345 /* Not found. */
2346
2347 return 0;
2348 }
2349
2350 /* Default implementation of memory-searching. */
2351
2352 static int
2353 default_search_memory (struct target_ops *self,
2354 CORE_ADDR start_addr, ULONGEST search_space_len,
2355 const gdb_byte *pattern, ULONGEST pattern_len,
2356 CORE_ADDR *found_addrp)
2357 {
2358 /* Start over from the top of the target stack. */
2359 return simple_search_memory (current_top_target (),
2360 start_addr, search_space_len,
2361 pattern, pattern_len, found_addrp);
2362 }
2363
2364 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2365 sequence of bytes in PATTERN with length PATTERN_LEN.
2366
2367 The result is 1 if found, 0 if not found, and -1 if there was an error
2368 requiring halting of the search (e.g. memory read error).
2369 If the pattern is found the address is recorded in FOUND_ADDRP. */
2370
2371 int
2372 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2373 const gdb_byte *pattern, ULONGEST pattern_len,
2374 CORE_ADDR *found_addrp)
2375 {
2376 return current_top_target ()->search_memory (start_addr, search_space_len,
2377 pattern, pattern_len, found_addrp);
2378 }
2379
2380 /* Look through the currently pushed targets. If none of them will
2381 be able to restart the currently running process, issue an error
2382 message. */
2383
2384 void
2385 target_require_runnable (void)
2386 {
2387 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2388 {
2389 /* If this target knows how to create a new program, then
2390 assume we will still be able to after killing the current
2391 one. Either killing and mourning will not pop T, or else
2392 find_default_run_target will find it again. */
2393 if (t->can_create_inferior ())
2394 return;
2395
2396 /* Do not worry about targets at certain strata that can not
2397 create inferiors. Assume they will be pushed again if
2398 necessary, and continue to the process_stratum. */
2399 if (t->to_stratum > process_stratum)
2400 continue;
2401
2402 error (_("The \"%s\" target does not support \"run\". "
2403 "Try \"help target\" or \"continue\"."),
2404 t->shortname ());
2405 }
2406
2407 /* This function is only called if the target is running. In that
2408 case there should have been a process_stratum target and it
2409 should either know how to create inferiors, or not... */
2410 internal_error (__FILE__, __LINE__, _("No targets found"));
2411 }
2412
2413 /* Whether GDB is allowed to fall back to the default run target for
2414 "run", "attach", etc. when no target is connected yet. */
2415 static int auto_connect_native_target = 1;
2416
2417 static void
2418 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2419 struct cmd_list_element *c, const char *value)
2420 {
2421 fprintf_filtered (file,
2422 _("Whether GDB may automatically connect to the "
2423 "native target is %s.\n"),
2424 value);
2425 }
2426
2427 /* A pointer to the target that can respond to "run" or "attach".
2428 Native targets are always singletons and instantiated early at GDB
2429 startup. */
2430 static target_ops *the_native_target;
2431
2432 /* See target.h. */
2433
2434 void
2435 set_native_target (target_ops *target)
2436 {
2437 if (the_native_target != NULL)
2438 internal_error (__FILE__, __LINE__,
2439 _("native target already set (\"%s\")."),
2440 the_native_target->longname ());
2441
2442 the_native_target = target;
2443 }
2444
2445 /* See target.h. */
2446
2447 target_ops *
2448 get_native_target ()
2449 {
2450 return the_native_target;
2451 }
2452
2453 /* Look through the list of possible targets for a target that can
2454 execute a run or attach command without any other data. This is
2455 used to locate the default process stratum.
2456
2457 If DO_MESG is not NULL, the result is always valid (error() is
2458 called for errors); else, return NULL on error. */
2459
2460 static struct target_ops *
2461 find_default_run_target (const char *do_mesg)
2462 {
2463 if (auto_connect_native_target && the_native_target != NULL)
2464 return the_native_target;
2465
2466 if (do_mesg != NULL)
2467 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2468 return NULL;
2469 }
2470
2471 /* See target.h. */
2472
2473 struct target_ops *
2474 find_attach_target (void)
2475 {
2476 /* If a target on the current stack can attach, use it. */
2477 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2478 {
2479 if (t->can_attach ())
2480 return t;
2481 }
2482
2483 /* Otherwise, use the default run target for attaching. */
2484 return find_default_run_target ("attach");
2485 }
2486
2487 /* See target.h. */
2488
2489 struct target_ops *
2490 find_run_target (void)
2491 {
2492 /* If a target on the current stack can run, use it. */
2493 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2494 {
2495 if (t->can_create_inferior ())
2496 return t;
2497 }
2498
2499 /* Otherwise, use the default run target. */
2500 return find_default_run_target ("run");
2501 }
2502
2503 bool
2504 target_ops::info_proc (const char *args, enum info_proc_what what)
2505 {
2506 return false;
2507 }
2508
2509 /* Implement the "info proc" command. */
2510
2511 int
2512 target_info_proc (const char *args, enum info_proc_what what)
2513 {
2514 struct target_ops *t;
2515
2516 /* If we're already connected to something that can get us OS
2517 related data, use it. Otherwise, try using the native
2518 target. */
2519 t = find_target_at (process_stratum);
2520 if (t == NULL)
2521 t = find_default_run_target (NULL);
2522
2523 for (; t != NULL; t = t->beneath ())
2524 {
2525 if (t->info_proc (args, what))
2526 {
2527 if (targetdebug)
2528 fprintf_unfiltered (gdb_stdlog,
2529 "target_info_proc (\"%s\", %d)\n", args, what);
2530
2531 return 1;
2532 }
2533 }
2534
2535 return 0;
2536 }
2537
2538 static int
2539 find_default_supports_disable_randomization (struct target_ops *self)
2540 {
2541 struct target_ops *t;
2542
2543 t = find_default_run_target (NULL);
2544 if (t != NULL)
2545 return t->supports_disable_randomization ();
2546 return 0;
2547 }
2548
2549 int
2550 target_supports_disable_randomization (void)
2551 {
2552 return current_top_target ()->supports_disable_randomization ();
2553 }
2554
2555 /* See target/target.h. */
2556
2557 int
2558 target_supports_multi_process (void)
2559 {
2560 return current_top_target ()->supports_multi_process ();
2561 }
2562
2563 /* See target.h. */
2564
2565 gdb::optional<gdb::char_vector>
2566 target_get_osdata (const char *type)
2567 {
2568 struct target_ops *t;
2569
2570 /* If we're already connected to something that can get us OS
2571 related data, use it. Otherwise, try using the native
2572 target. */
2573 t = find_target_at (process_stratum);
2574 if (t == NULL)
2575 t = find_default_run_target ("get OS data");
2576
2577 if (!t)
2578 return {};
2579
2580 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2581 }
2582
2583 static struct address_space *
2584 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2585 {
2586 struct inferior *inf;
2587
2588 /* Fall-back to the "main" address space of the inferior. */
2589 inf = find_inferior_ptid (ptid);
2590
2591 if (inf == NULL || inf->aspace == NULL)
2592 internal_error (__FILE__, __LINE__,
2593 _("Can't determine the current "
2594 "address space of thread %s\n"),
2595 target_pid_to_str (ptid));
2596
2597 return inf->aspace;
2598 }
2599
2600 /* Determine the current address space of thread PTID. */
2601
2602 struct address_space *
2603 target_thread_address_space (ptid_t ptid)
2604 {
2605 struct address_space *aspace;
2606
2607 aspace = current_top_target ()->thread_address_space (ptid);
2608 gdb_assert (aspace != NULL);
2609
2610 return aspace;
2611 }
2612
2613 /* See target.h. */
2614
2615 target_ops *
2616 target_ops::beneath () const
2617 {
2618 return g_target_stack.find_beneath (this);
2619 }
2620
2621 void
2622 target_ops::close ()
2623 {
2624 }
2625
2626 bool
2627 target_ops::can_attach ()
2628 {
2629 return 0;
2630 }
2631
2632 void
2633 target_ops::attach (const char *, int)
2634 {
2635 gdb_assert_not_reached ("target_ops::attach called");
2636 }
2637
2638 bool
2639 target_ops::can_create_inferior ()
2640 {
2641 return 0;
2642 }
2643
2644 void
2645 target_ops::create_inferior (const char *, const std::string &,
2646 char **, int)
2647 {
2648 gdb_assert_not_reached ("target_ops::create_inferior called");
2649 }
2650
2651 bool
2652 target_ops::can_run ()
2653 {
2654 return false;
2655 }
2656
2657 int
2658 target_can_run ()
2659 {
2660 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2661 {
2662 if (t->can_run ())
2663 return 1;
2664 }
2665
2666 return 0;
2667 }
2668
2669 /* Target file operations. */
2670
2671 static struct target_ops *
2672 default_fileio_target (void)
2673 {
2674 struct target_ops *t;
2675
2676 /* If we're already connected to something that can perform
2677 file I/O, use it. Otherwise, try using the native target. */
2678 t = find_target_at (process_stratum);
2679 if (t != NULL)
2680 return t;
2681 return find_default_run_target ("file I/O");
2682 }
2683
2684 /* File handle for target file operations. */
2685
2686 struct fileio_fh_t
2687 {
2688 /* The target on which this file is open. NULL if the target is
2689 meanwhile closed while the handle is open. */
2690 target_ops *target;
2691
2692 /* The file descriptor on the target. */
2693 int target_fd;
2694
2695 /* Check whether this fileio_fh_t represents a closed file. */
2696 bool is_closed ()
2697 {
2698 return target_fd < 0;
2699 }
2700 };
2701
2702 /* Vector of currently open file handles. The value returned by
2703 target_fileio_open and passed as the FD argument to other
2704 target_fileio_* functions is an index into this vector. This
2705 vector's entries are never freed; instead, files are marked as
2706 closed, and the handle becomes available for reuse. */
2707 static std::vector<fileio_fh_t> fileio_fhandles;
2708
2709 /* Index into fileio_fhandles of the lowest handle that might be
2710 closed. This permits handle reuse without searching the whole
2711 list each time a new file is opened. */
2712 static int lowest_closed_fd;
2713
2714 /* Invalidate the target associated with open handles that were open
2715 on target TARG, since we're about to close (and maybe destroy) the
2716 target. The handles remain open from the client's perspective, but
2717 trying to do anything with them other than closing them will fail
2718 with EIO. */
2719
2720 static void
2721 fileio_handles_invalidate_target (target_ops *targ)
2722 {
2723 for (fileio_fh_t &fh : fileio_fhandles)
2724 if (fh.target == targ)
2725 fh.target = NULL;
2726 }
2727
2728 /* Acquire a target fileio file descriptor. */
2729
2730 static int
2731 acquire_fileio_fd (target_ops *target, int target_fd)
2732 {
2733 /* Search for closed handles to reuse. */
2734 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2735 {
2736 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2737
2738 if (fh.is_closed ())
2739 break;
2740 }
2741
2742 /* Push a new handle if no closed handles were found. */
2743 if (lowest_closed_fd == fileio_fhandles.size ())
2744 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2745 else
2746 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2747
2748 /* Should no longer be marked closed. */
2749 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2750
2751 /* Return its index, and start the next lookup at
2752 the next index. */
2753 return lowest_closed_fd++;
2754 }
2755
2756 /* Release a target fileio file descriptor. */
2757
2758 static void
2759 release_fileio_fd (int fd, fileio_fh_t *fh)
2760 {
2761 fh->target_fd = -1;
2762 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2763 }
2764
2765 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2766
2767 static fileio_fh_t *
2768 fileio_fd_to_fh (int fd)
2769 {
2770 return &fileio_fhandles[fd];
2771 }
2772
2773
2774 /* Default implementations of file i/o methods. We don't want these
2775 to delegate automatically, because we need to know which target
2776 supported the method, in order to call it directly from within
2777 pread/pwrite, etc. */
2778
2779 int
2780 target_ops::fileio_open (struct inferior *inf, const char *filename,
2781 int flags, int mode, int warn_if_slow,
2782 int *target_errno)
2783 {
2784 *target_errno = FILEIO_ENOSYS;
2785 return -1;
2786 }
2787
2788 int
2789 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2790 ULONGEST offset, int *target_errno)
2791 {
2792 *target_errno = FILEIO_ENOSYS;
2793 return -1;
2794 }
2795
2796 int
2797 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2798 ULONGEST offset, int *target_errno)
2799 {
2800 *target_errno = FILEIO_ENOSYS;
2801 return -1;
2802 }
2803
2804 int
2805 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2806 {
2807 *target_errno = FILEIO_ENOSYS;
2808 return -1;
2809 }
2810
2811 int
2812 target_ops::fileio_close (int fd, int *target_errno)
2813 {
2814 *target_errno = FILEIO_ENOSYS;
2815 return -1;
2816 }
2817
2818 int
2819 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2820 int *target_errno)
2821 {
2822 *target_errno = FILEIO_ENOSYS;
2823 return -1;
2824 }
2825
2826 gdb::optional<std::string>
2827 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2828 int *target_errno)
2829 {
2830 *target_errno = FILEIO_ENOSYS;
2831 return {};
2832 }
2833
2834 /* Helper for target_fileio_open and
2835 target_fileio_open_warn_if_slow. */
2836
2837 static int
2838 target_fileio_open_1 (struct inferior *inf, const char *filename,
2839 int flags, int mode, int warn_if_slow,
2840 int *target_errno)
2841 {
2842 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2843 {
2844 int fd = t->fileio_open (inf, filename, flags, mode,
2845 warn_if_slow, target_errno);
2846
2847 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2848 continue;
2849
2850 if (fd < 0)
2851 fd = -1;
2852 else
2853 fd = acquire_fileio_fd (t, fd);
2854
2855 if (targetdebug)
2856 fprintf_unfiltered (gdb_stdlog,
2857 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2858 " = %d (%d)\n",
2859 inf == NULL ? 0 : inf->num,
2860 filename, flags, mode,
2861 warn_if_slow, fd,
2862 fd != -1 ? 0 : *target_errno);
2863 return fd;
2864 }
2865
2866 *target_errno = FILEIO_ENOSYS;
2867 return -1;
2868 }
2869
2870 /* See target.h. */
2871
2872 int
2873 target_fileio_open (struct inferior *inf, const char *filename,
2874 int flags, int mode, int *target_errno)
2875 {
2876 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2877 target_errno);
2878 }
2879
2880 /* See target.h. */
2881
2882 int
2883 target_fileio_open_warn_if_slow (struct inferior *inf,
2884 const char *filename,
2885 int flags, int mode, int *target_errno)
2886 {
2887 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2888 target_errno);
2889 }
2890
2891 /* See target.h. */
2892
2893 int
2894 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2895 ULONGEST offset, int *target_errno)
2896 {
2897 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2898 int ret = -1;
2899
2900 if (fh->is_closed ())
2901 *target_errno = EBADF;
2902 else if (fh->target == NULL)
2903 *target_errno = EIO;
2904 else
2905 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2906 len, offset, target_errno);
2907
2908 if (targetdebug)
2909 fprintf_unfiltered (gdb_stdlog,
2910 "target_fileio_pwrite (%d,...,%d,%s) "
2911 "= %d (%d)\n",
2912 fd, len, pulongest (offset),
2913 ret, ret != -1 ? 0 : *target_errno);
2914 return ret;
2915 }
2916
2917 /* See target.h. */
2918
2919 int
2920 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2921 ULONGEST offset, int *target_errno)
2922 {
2923 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2924 int ret = -1;
2925
2926 if (fh->is_closed ())
2927 *target_errno = EBADF;
2928 else if (fh->target == NULL)
2929 *target_errno = EIO;
2930 else
2931 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2932 len, offset, target_errno);
2933
2934 if (targetdebug)
2935 fprintf_unfiltered (gdb_stdlog,
2936 "target_fileio_pread (%d,...,%d,%s) "
2937 "= %d (%d)\n",
2938 fd, len, pulongest (offset),
2939 ret, ret != -1 ? 0 : *target_errno);
2940 return ret;
2941 }
2942
2943 /* See target.h. */
2944
2945 int
2946 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2947 {
2948 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2949 int ret = -1;
2950
2951 if (fh->is_closed ())
2952 *target_errno = EBADF;
2953 else if (fh->target == NULL)
2954 *target_errno = EIO;
2955 else
2956 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2957
2958 if (targetdebug)
2959 fprintf_unfiltered (gdb_stdlog,
2960 "target_fileio_fstat (%d) = %d (%d)\n",
2961 fd, ret, ret != -1 ? 0 : *target_errno);
2962 return ret;
2963 }
2964
2965 /* See target.h. */
2966
2967 int
2968 target_fileio_close (int fd, int *target_errno)
2969 {
2970 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2971 int ret = -1;
2972
2973 if (fh->is_closed ())
2974 *target_errno = EBADF;
2975 else
2976 {
2977 if (fh->target != NULL)
2978 ret = fh->target->fileio_close (fh->target_fd,
2979 target_errno);
2980 else
2981 ret = 0;
2982 release_fileio_fd (fd, fh);
2983 }
2984
2985 if (targetdebug)
2986 fprintf_unfiltered (gdb_stdlog,
2987 "target_fileio_close (%d) = %d (%d)\n",
2988 fd, ret, ret != -1 ? 0 : *target_errno);
2989 return ret;
2990 }
2991
2992 /* See target.h. */
2993
2994 int
2995 target_fileio_unlink (struct inferior *inf, const char *filename,
2996 int *target_errno)
2997 {
2998 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2999 {
3000 int ret = t->fileio_unlink (inf, filename, target_errno);
3001
3002 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
3003 continue;
3004
3005 if (targetdebug)
3006 fprintf_unfiltered (gdb_stdlog,
3007 "target_fileio_unlink (%d,%s)"
3008 " = %d (%d)\n",
3009 inf == NULL ? 0 : inf->num, filename,
3010 ret, ret != -1 ? 0 : *target_errno);
3011 return ret;
3012 }
3013
3014 *target_errno = FILEIO_ENOSYS;
3015 return -1;
3016 }
3017
3018 /* See target.h. */
3019
3020 gdb::optional<std::string>
3021 target_fileio_readlink (struct inferior *inf, const char *filename,
3022 int *target_errno)
3023 {
3024 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3025 {
3026 gdb::optional<std::string> ret
3027 = t->fileio_readlink (inf, filename, target_errno);
3028
3029 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
3030 continue;
3031
3032 if (targetdebug)
3033 fprintf_unfiltered (gdb_stdlog,
3034 "target_fileio_readlink (%d,%s)"
3035 " = %s (%d)\n",
3036 inf == NULL ? 0 : inf->num,
3037 filename, ret ? ret->c_str () : "(nil)",
3038 ret ? 0 : *target_errno);
3039 return ret;
3040 }
3041
3042 *target_errno = FILEIO_ENOSYS;
3043 return {};
3044 }
3045
3046 /* Like scoped_fd, but specific to target fileio. */
3047
3048 class scoped_target_fd
3049 {
3050 public:
3051 explicit scoped_target_fd (int fd) noexcept
3052 : m_fd (fd)
3053 {
3054 }
3055
3056 ~scoped_target_fd ()
3057 {
3058 if (m_fd >= 0)
3059 {
3060 int target_errno;
3061
3062 target_fileio_close (m_fd, &target_errno);
3063 }
3064 }
3065
3066 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3067
3068 int get () const noexcept
3069 {
3070 return m_fd;
3071 }
3072
3073 private:
3074 int m_fd;
3075 };
3076
3077 /* Read target file FILENAME, in the filesystem as seen by INF. If
3078 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3079 remote targets, the remote stub). Store the result in *BUF_P and
3080 return the size of the transferred data. PADDING additional bytes
3081 are available in *BUF_P. This is a helper function for
3082 target_fileio_read_alloc; see the declaration of that function for
3083 more information. */
3084
3085 static LONGEST
3086 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3087 gdb_byte **buf_p, int padding)
3088 {
3089 size_t buf_alloc, buf_pos;
3090 gdb_byte *buf;
3091 LONGEST n;
3092 int target_errno;
3093
3094 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3095 0700, &target_errno));
3096 if (fd.get () == -1)
3097 return -1;
3098
3099 /* Start by reading up to 4K at a time. The target will throttle
3100 this number down if necessary. */
3101 buf_alloc = 4096;
3102 buf = (gdb_byte *) xmalloc (buf_alloc);
3103 buf_pos = 0;
3104 while (1)
3105 {
3106 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3107 buf_alloc - buf_pos - padding, buf_pos,
3108 &target_errno);
3109 if (n < 0)
3110 {
3111 /* An error occurred. */
3112 xfree (buf);
3113 return -1;
3114 }
3115 else if (n == 0)
3116 {
3117 /* Read all there was. */
3118 if (buf_pos == 0)
3119 xfree (buf);
3120 else
3121 *buf_p = buf;
3122 return buf_pos;
3123 }
3124
3125 buf_pos += n;
3126
3127 /* If the buffer is filling up, expand it. */
3128 if (buf_alloc < buf_pos * 2)
3129 {
3130 buf_alloc *= 2;
3131 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3132 }
3133
3134 QUIT;
3135 }
3136 }
3137
3138 /* See target.h. */
3139
3140 LONGEST
3141 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3142 gdb_byte **buf_p)
3143 {
3144 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3145 }
3146
3147 /* See target.h. */
3148
3149 gdb::unique_xmalloc_ptr<char>
3150 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3151 {
3152 gdb_byte *buffer;
3153 char *bufstr;
3154 LONGEST i, transferred;
3155
3156 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3157 bufstr = (char *) buffer;
3158
3159 if (transferred < 0)
3160 return gdb::unique_xmalloc_ptr<char> (nullptr);
3161
3162 if (transferred == 0)
3163 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3164
3165 bufstr[transferred] = 0;
3166
3167 /* Check for embedded NUL bytes; but allow trailing NULs. */
3168 for (i = strlen (bufstr); i < transferred; i++)
3169 if (bufstr[i] != 0)
3170 {
3171 warning (_("target file %s "
3172 "contained unexpected null characters"),
3173 filename);
3174 break;
3175 }
3176
3177 return gdb::unique_xmalloc_ptr<char> (bufstr);
3178 }
3179
3180
3181 static int
3182 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3183 CORE_ADDR addr, int len)
3184 {
3185 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3186 }
3187
3188 static int
3189 default_watchpoint_addr_within_range (struct target_ops *target,
3190 CORE_ADDR addr,
3191 CORE_ADDR start, int length)
3192 {
3193 return addr >= start && addr < start + length;
3194 }
3195
3196 static struct gdbarch *
3197 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3198 {
3199 inferior *inf = find_inferior_ptid (ptid);
3200 gdb_assert (inf != NULL);
3201 return inf->gdbarch;
3202 }
3203
3204 /* See target.h. */
3205
3206 target_ops *
3207 target_stack::find_beneath (const target_ops *t) const
3208 {
3209 /* Look for a non-empty slot at stratum levels beneath T's. */
3210 for (int stratum = t->to_stratum - 1; stratum >= 0; --stratum)
3211 if (m_stack[stratum] != NULL)
3212 return m_stack[stratum];
3213
3214 return NULL;
3215 }
3216
3217 /* See target.h. */
3218
3219 struct target_ops *
3220 find_target_at (enum strata stratum)
3221 {
3222 return g_target_stack.at (stratum);
3223 }
3224
3225 \f
3226
3227 /* See target.h */
3228
3229 void
3230 target_announce_detach (int from_tty)
3231 {
3232 pid_t pid;
3233 const char *exec_file;
3234
3235 if (!from_tty)
3236 return;
3237
3238 exec_file = get_exec_file (0);
3239 if (exec_file == NULL)
3240 exec_file = "";
3241
3242 pid = ptid_get_pid (inferior_ptid);
3243 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3244 target_pid_to_str (pid_to_ptid (pid)));
3245 gdb_flush (gdb_stdout);
3246 }
3247
3248 /* The inferior process has died. Long live the inferior! */
3249
3250 void
3251 generic_mourn_inferior (void)
3252 {
3253 inferior *inf = current_inferior ();
3254
3255 inferior_ptid = null_ptid;
3256
3257 /* Mark breakpoints uninserted in case something tries to delete a
3258 breakpoint while we delete the inferior's threads (which would
3259 fail, since the inferior is long gone). */
3260 mark_breakpoints_out ();
3261
3262 if (inf->pid != 0)
3263 exit_inferior (inf);
3264
3265 /* Note this wipes step-resume breakpoints, so needs to be done
3266 after exit_inferior, which ends up referencing the step-resume
3267 breakpoints through clear_thread_inferior_resources. */
3268 breakpoint_init_inferior (inf_exited);
3269
3270 registers_changed ();
3271
3272 reopen_exec_file ();
3273 reinit_frame_cache ();
3274
3275 if (deprecated_detach_hook)
3276 deprecated_detach_hook ();
3277 }
3278 \f
3279 /* Convert a normal process ID to a string. Returns the string in a
3280 static buffer. */
3281
3282 const char *
3283 normal_pid_to_str (ptid_t ptid)
3284 {
3285 static char buf[32];
3286
3287 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3288 return buf;
3289 }
3290
3291 static const char *
3292 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3293 {
3294 return normal_pid_to_str (ptid);
3295 }
3296
3297 /* Error-catcher for target_find_memory_regions. */
3298 static int
3299 dummy_find_memory_regions (struct target_ops *self,
3300 find_memory_region_ftype ignore1, void *ignore2)
3301 {
3302 error (_("Command not implemented for this target."));
3303 return 0;
3304 }
3305
3306 /* Error-catcher for target_make_corefile_notes. */
3307 static char *
3308 dummy_make_corefile_notes (struct target_ops *self,
3309 bfd *ignore1, int *ignore2)
3310 {
3311 error (_("Command not implemented for this target."));
3312 return NULL;
3313 }
3314
3315 #include "target-delegates.c"
3316
3317
3318 static const target_info dummy_target_info = {
3319 "None",
3320 N_("None"),
3321 ""
3322 };
3323
3324 dummy_target::dummy_target ()
3325 {
3326 to_stratum = dummy_stratum;
3327 }
3328
3329 debug_target::debug_target ()
3330 {
3331 to_stratum = debug_stratum;
3332 }
3333
3334 const target_info &
3335 dummy_target::info () const
3336 {
3337 return dummy_target_info;
3338 }
3339
3340 const target_info &
3341 debug_target::info () const
3342 {
3343 return beneath ()->info ();
3344 }
3345
3346 \f
3347
3348 void
3349 target_close (struct target_ops *targ)
3350 {
3351 gdb_assert (!target_is_pushed (targ));
3352
3353 fileio_handles_invalidate_target (targ);
3354
3355 targ->close ();
3356
3357 if (targetdebug)
3358 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3359 }
3360
3361 int
3362 target_thread_alive (ptid_t ptid)
3363 {
3364 return current_top_target ()->thread_alive (ptid);
3365 }
3366
3367 void
3368 target_update_thread_list (void)
3369 {
3370 current_top_target ()->update_thread_list ();
3371 }
3372
3373 void
3374 target_stop (ptid_t ptid)
3375 {
3376 if (!may_stop)
3377 {
3378 warning (_("May not interrupt or stop the target, ignoring attempt"));
3379 return;
3380 }
3381
3382 current_top_target ()->stop (ptid);
3383 }
3384
3385 void
3386 target_interrupt ()
3387 {
3388 if (!may_stop)
3389 {
3390 warning (_("May not interrupt or stop the target, ignoring attempt"));
3391 return;
3392 }
3393
3394 current_top_target ()->interrupt ();
3395 }
3396
3397 /* See target.h. */
3398
3399 void
3400 target_pass_ctrlc (void)
3401 {
3402 current_top_target ()->pass_ctrlc ();
3403 }
3404
3405 /* See target.h. */
3406
3407 void
3408 default_target_pass_ctrlc (struct target_ops *ops)
3409 {
3410 target_interrupt ();
3411 }
3412
3413 /* See target/target.h. */
3414
3415 void
3416 target_stop_and_wait (ptid_t ptid)
3417 {
3418 struct target_waitstatus status;
3419 int was_non_stop = non_stop;
3420
3421 non_stop = 1;
3422 target_stop (ptid);
3423
3424 memset (&status, 0, sizeof (status));
3425 target_wait (ptid, &status, 0);
3426
3427 non_stop = was_non_stop;
3428 }
3429
3430 /* See target/target.h. */
3431
3432 void
3433 target_continue_no_signal (ptid_t ptid)
3434 {
3435 target_resume (ptid, 0, GDB_SIGNAL_0);
3436 }
3437
3438 /* See target/target.h. */
3439
3440 void
3441 target_continue (ptid_t ptid, enum gdb_signal signal)
3442 {
3443 target_resume (ptid, 0, signal);
3444 }
3445
3446 /* Concatenate ELEM to LIST, a comma separate list, and return the
3447 result. The LIST incoming argument is released. */
3448
3449 static char *
3450 str_comma_list_concat_elem (char *list, const char *elem)
3451 {
3452 if (list == NULL)
3453 return xstrdup (elem);
3454 else
3455 return reconcat (list, list, ", ", elem, (char *) NULL);
3456 }
3457
3458 /* Helper for target_options_to_string. If OPT is present in
3459 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3460 Returns the new resulting string. OPT is removed from
3461 TARGET_OPTIONS. */
3462
3463 static char *
3464 do_option (int *target_options, char *ret,
3465 int opt, const char *opt_str)
3466 {
3467 if ((*target_options & opt) != 0)
3468 {
3469 ret = str_comma_list_concat_elem (ret, opt_str);
3470 *target_options &= ~opt;
3471 }
3472
3473 return ret;
3474 }
3475
3476 char *
3477 target_options_to_string (int target_options)
3478 {
3479 char *ret = NULL;
3480
3481 #define DO_TARG_OPTION(OPT) \
3482 ret = do_option (&target_options, ret, OPT, #OPT)
3483
3484 DO_TARG_OPTION (TARGET_WNOHANG);
3485
3486 if (target_options != 0)
3487 ret = str_comma_list_concat_elem (ret, "unknown???");
3488
3489 if (ret == NULL)
3490 ret = xstrdup ("");
3491 return ret;
3492 }
3493
3494 void
3495 target_fetch_registers (struct regcache *regcache, int regno)
3496 {
3497 current_top_target ()->fetch_registers (regcache, regno);
3498 if (targetdebug)
3499 regcache->debug_print_register ("target_fetch_registers", regno);
3500 }
3501
3502 void
3503 target_store_registers (struct regcache *regcache, int regno)
3504 {
3505 if (!may_write_registers)
3506 error (_("Writing to registers is not allowed (regno %d)"), regno);
3507
3508 current_top_target ()->store_registers (regcache, regno);
3509 if (targetdebug)
3510 {
3511 regcache->debug_print_register ("target_store_registers", regno);
3512 }
3513 }
3514
3515 int
3516 target_core_of_thread (ptid_t ptid)
3517 {
3518 return current_top_target ()->core_of_thread (ptid);
3519 }
3520
3521 int
3522 simple_verify_memory (struct target_ops *ops,
3523 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3524 {
3525 LONGEST total_xfered = 0;
3526
3527 while (total_xfered < size)
3528 {
3529 ULONGEST xfered_len;
3530 enum target_xfer_status status;
3531 gdb_byte buf[1024];
3532 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3533
3534 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3535 buf, NULL, lma + total_xfered, howmuch,
3536 &xfered_len);
3537 if (status == TARGET_XFER_OK
3538 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3539 {
3540 total_xfered += xfered_len;
3541 QUIT;
3542 }
3543 else
3544 return 0;
3545 }
3546 return 1;
3547 }
3548
3549 /* Default implementation of memory verification. */
3550
3551 static int
3552 default_verify_memory (struct target_ops *self,
3553 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3554 {
3555 /* Start over from the top of the target stack. */
3556 return simple_verify_memory (current_top_target (),
3557 data, memaddr, size);
3558 }
3559
3560 int
3561 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3562 {
3563 return current_top_target ()->verify_memory (data, memaddr, size);
3564 }
3565
3566 /* The documentation for this function is in its prototype declaration in
3567 target.h. */
3568
3569 int
3570 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3571 enum target_hw_bp_type rw)
3572 {
3573 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3574 }
3575
3576 /* The documentation for this function is in its prototype declaration in
3577 target.h. */
3578
3579 int
3580 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3581 enum target_hw_bp_type rw)
3582 {
3583 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3584 }
3585
3586 /* The documentation for this function is in its prototype declaration
3587 in target.h. */
3588
3589 int
3590 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3591 {
3592 return current_top_target ()->masked_watch_num_registers (addr, mask);
3593 }
3594
3595 /* The documentation for this function is in its prototype declaration
3596 in target.h. */
3597
3598 int
3599 target_ranged_break_num_registers (void)
3600 {
3601 return current_top_target ()->ranged_break_num_registers ();
3602 }
3603
3604 /* See target.h. */
3605
3606 struct btrace_target_info *
3607 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3608 {
3609 return current_top_target ()->enable_btrace (ptid, conf);
3610 }
3611
3612 /* See target.h. */
3613
3614 void
3615 target_disable_btrace (struct btrace_target_info *btinfo)
3616 {
3617 current_top_target ()->disable_btrace (btinfo);
3618 }
3619
3620 /* See target.h. */
3621
3622 void
3623 target_teardown_btrace (struct btrace_target_info *btinfo)
3624 {
3625 current_top_target ()->teardown_btrace (btinfo);
3626 }
3627
3628 /* See target.h. */
3629
3630 enum btrace_error
3631 target_read_btrace (struct btrace_data *btrace,
3632 struct btrace_target_info *btinfo,
3633 enum btrace_read_type type)
3634 {
3635 return current_top_target ()->read_btrace (btrace, btinfo, type);
3636 }
3637
3638 /* See target.h. */
3639
3640 const struct btrace_config *
3641 target_btrace_conf (const struct btrace_target_info *btinfo)
3642 {
3643 return current_top_target ()->btrace_conf (btinfo);
3644 }
3645
3646 /* See target.h. */
3647
3648 void
3649 target_stop_recording (void)
3650 {
3651 current_top_target ()->stop_recording ();
3652 }
3653
3654 /* See target.h. */
3655
3656 void
3657 target_save_record (const char *filename)
3658 {
3659 current_top_target ()->save_record (filename);
3660 }
3661
3662 /* See target.h. */
3663
3664 int
3665 target_supports_delete_record ()
3666 {
3667 return current_top_target ()->supports_delete_record ();
3668 }
3669
3670 /* See target.h. */
3671
3672 void
3673 target_delete_record (void)
3674 {
3675 current_top_target ()->delete_record ();
3676 }
3677
3678 /* See target.h. */
3679
3680 enum record_method
3681 target_record_method (ptid_t ptid)
3682 {
3683 return current_top_target ()->record_method (ptid);
3684 }
3685
3686 /* See target.h. */
3687
3688 int
3689 target_record_is_replaying (ptid_t ptid)
3690 {
3691 return current_top_target ()->record_is_replaying (ptid);
3692 }
3693
3694 /* See target.h. */
3695
3696 int
3697 target_record_will_replay (ptid_t ptid, int dir)
3698 {
3699 return current_top_target ()->record_will_replay (ptid, dir);
3700 }
3701
3702 /* See target.h. */
3703
3704 void
3705 target_record_stop_replaying (void)
3706 {
3707 current_top_target ()->record_stop_replaying ();
3708 }
3709
3710 /* See target.h. */
3711
3712 void
3713 target_goto_record_begin (void)
3714 {
3715 current_top_target ()->goto_record_begin ();
3716 }
3717
3718 /* See target.h. */
3719
3720 void
3721 target_goto_record_end (void)
3722 {
3723 current_top_target ()->goto_record_end ();
3724 }
3725
3726 /* See target.h. */
3727
3728 void
3729 target_goto_record (ULONGEST insn)
3730 {
3731 current_top_target ()->goto_record (insn);
3732 }
3733
3734 /* See target.h. */
3735
3736 void
3737 target_insn_history (int size, gdb_disassembly_flags flags)
3738 {
3739 current_top_target ()->insn_history (size, flags);
3740 }
3741
3742 /* See target.h. */
3743
3744 void
3745 target_insn_history_from (ULONGEST from, int size,
3746 gdb_disassembly_flags flags)
3747 {
3748 current_top_target ()->insn_history_from (from, size, flags);
3749 }
3750
3751 /* See target.h. */
3752
3753 void
3754 target_insn_history_range (ULONGEST begin, ULONGEST end,
3755 gdb_disassembly_flags flags)
3756 {
3757 current_top_target ()->insn_history_range (begin, end, flags);
3758 }
3759
3760 /* See target.h. */
3761
3762 void
3763 target_call_history (int size, record_print_flags flags)
3764 {
3765 current_top_target ()->call_history (size, flags);
3766 }
3767
3768 /* See target.h. */
3769
3770 void
3771 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3772 {
3773 current_top_target ()->call_history_from (begin, size, flags);
3774 }
3775
3776 /* See target.h. */
3777
3778 void
3779 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3780 {
3781 current_top_target ()->call_history_range (begin, end, flags);
3782 }
3783
3784 /* See target.h. */
3785
3786 const struct frame_unwind *
3787 target_get_unwinder (void)
3788 {
3789 return current_top_target ()->get_unwinder ();
3790 }
3791
3792 /* See target.h. */
3793
3794 const struct frame_unwind *
3795 target_get_tailcall_unwinder (void)
3796 {
3797 return current_top_target ()->get_tailcall_unwinder ();
3798 }
3799
3800 /* See target.h. */
3801
3802 void
3803 target_prepare_to_generate_core (void)
3804 {
3805 current_top_target ()->prepare_to_generate_core ();
3806 }
3807
3808 /* See target.h. */
3809
3810 void
3811 target_done_generating_core (void)
3812 {
3813 current_top_target ()->done_generating_core ();
3814 }
3815
3816 \f
3817
3818 static char targ_desc[] =
3819 "Names of targets and files being debugged.\nShows the entire \
3820 stack of targets currently in use (including the exec-file,\n\
3821 core-file, and process, if any), as well as the symbol file name.";
3822
3823 static void
3824 default_rcmd (struct target_ops *self, const char *command,
3825 struct ui_file *output)
3826 {
3827 error (_("\"monitor\" command not supported by this target."));
3828 }
3829
3830 static void
3831 do_monitor_command (const char *cmd, int from_tty)
3832 {
3833 target_rcmd (cmd, gdb_stdtarg);
3834 }
3835
3836 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3837 ignored. */
3838
3839 void
3840 flash_erase_command (const char *cmd, int from_tty)
3841 {
3842 /* Used to communicate termination of flash operations to the target. */
3843 bool found_flash_region = false;
3844 struct gdbarch *gdbarch = target_gdbarch ();
3845
3846 std::vector<mem_region> mem_regions = target_memory_map ();
3847
3848 /* Iterate over all memory regions. */
3849 for (const mem_region &m : mem_regions)
3850 {
3851 /* Is this a flash memory region? */
3852 if (m.attrib.mode == MEM_FLASH)
3853 {
3854 found_flash_region = true;
3855 target_flash_erase (m.lo, m.hi - m.lo);
3856
3857 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3858
3859 current_uiout->message (_("Erasing flash memory region at address "));
3860 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3861 current_uiout->message (", size = ");
3862 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3863 current_uiout->message ("\n");
3864 }
3865 }
3866
3867 /* Did we do any flash operations? If so, we need to finalize them. */
3868 if (found_flash_region)
3869 target_flash_done ();
3870 else
3871 current_uiout->message (_("No flash memory regions found.\n"));
3872 }
3873
3874 /* Print the name of each layers of our target stack. */
3875
3876 static void
3877 maintenance_print_target_stack (const char *cmd, int from_tty)
3878 {
3879 printf_filtered (_("The current target stack is:\n"));
3880
3881 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3882 {
3883 if (t->to_stratum == debug_stratum)
3884 continue;
3885 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3886 }
3887 }
3888
3889 /* See target.h. */
3890
3891 void
3892 target_async (int enable)
3893 {
3894 infrun_async (enable);
3895 current_top_target ()->async (enable);
3896 }
3897
3898 /* See target.h. */
3899
3900 void
3901 target_thread_events (int enable)
3902 {
3903 current_top_target ()->thread_events (enable);
3904 }
3905
3906 /* Controls if targets can report that they can/are async. This is
3907 just for maintainers to use when debugging gdb. */
3908 int target_async_permitted = 1;
3909
3910 /* The set command writes to this variable. If the inferior is
3911 executing, target_async_permitted is *not* updated. */
3912 static int target_async_permitted_1 = 1;
3913
3914 static void
3915 maint_set_target_async_command (const char *args, int from_tty,
3916 struct cmd_list_element *c)
3917 {
3918 if (have_live_inferiors ())
3919 {
3920 target_async_permitted_1 = target_async_permitted;
3921 error (_("Cannot change this setting while the inferior is running."));
3922 }
3923
3924 target_async_permitted = target_async_permitted_1;
3925 }
3926
3927 static void
3928 maint_show_target_async_command (struct ui_file *file, int from_tty,
3929 struct cmd_list_element *c,
3930 const char *value)
3931 {
3932 fprintf_filtered (file,
3933 _("Controlling the inferior in "
3934 "asynchronous mode is %s.\n"), value);
3935 }
3936
3937 /* Return true if the target operates in non-stop mode even with "set
3938 non-stop off". */
3939
3940 static int
3941 target_always_non_stop_p (void)
3942 {
3943 return current_top_target ()->always_non_stop_p ();
3944 }
3945
3946 /* See target.h. */
3947
3948 int
3949 target_is_non_stop_p (void)
3950 {
3951 return (non_stop
3952 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3953 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3954 && target_always_non_stop_p ()));
3955 }
3956
3957 /* Controls if targets can report that they always run in non-stop
3958 mode. This is just for maintainers to use when debugging gdb. */
3959 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3960
3961 /* The set command writes to this variable. If the inferior is
3962 executing, target_non_stop_enabled is *not* updated. */
3963 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3964
3965 /* Implementation of "maint set target-non-stop". */
3966
3967 static void
3968 maint_set_target_non_stop_command (const char *args, int from_tty,
3969 struct cmd_list_element *c)
3970 {
3971 if (have_live_inferiors ())
3972 {
3973 target_non_stop_enabled_1 = target_non_stop_enabled;
3974 error (_("Cannot change this setting while the inferior is running."));
3975 }
3976
3977 target_non_stop_enabled = target_non_stop_enabled_1;
3978 }
3979
3980 /* Implementation of "maint show target-non-stop". */
3981
3982 static void
3983 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3984 struct cmd_list_element *c,
3985 const char *value)
3986 {
3987 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3988 fprintf_filtered (file,
3989 _("Whether the target is always in non-stop mode "
3990 "is %s (currently %s).\n"), value,
3991 target_always_non_stop_p () ? "on" : "off");
3992 else
3993 fprintf_filtered (file,
3994 _("Whether the target is always in non-stop mode "
3995 "is %s.\n"), value);
3996 }
3997
3998 /* Temporary copies of permission settings. */
3999
4000 static int may_write_registers_1 = 1;
4001 static int may_write_memory_1 = 1;
4002 static int may_insert_breakpoints_1 = 1;
4003 static int may_insert_tracepoints_1 = 1;
4004 static int may_insert_fast_tracepoints_1 = 1;
4005 static int may_stop_1 = 1;
4006
4007 /* Make the user-set values match the real values again. */
4008
4009 void
4010 update_target_permissions (void)
4011 {
4012 may_write_registers_1 = may_write_registers;
4013 may_write_memory_1 = may_write_memory;
4014 may_insert_breakpoints_1 = may_insert_breakpoints;
4015 may_insert_tracepoints_1 = may_insert_tracepoints;
4016 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4017 may_stop_1 = may_stop;
4018 }
4019
4020 /* The one function handles (most of) the permission flags in the same
4021 way. */
4022
4023 static void
4024 set_target_permissions (const char *args, int from_tty,
4025 struct cmd_list_element *c)
4026 {
4027 if (target_has_execution)
4028 {
4029 update_target_permissions ();
4030 error (_("Cannot change this setting while the inferior is running."));
4031 }
4032
4033 /* Make the real values match the user-changed values. */
4034 may_write_registers = may_write_registers_1;
4035 may_insert_breakpoints = may_insert_breakpoints_1;
4036 may_insert_tracepoints = may_insert_tracepoints_1;
4037 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4038 may_stop = may_stop_1;
4039 update_observer_mode ();
4040 }
4041
4042 /* Set memory write permission independently of observer mode. */
4043
4044 static void
4045 set_write_memory_permission (const char *args, int from_tty,
4046 struct cmd_list_element *c)
4047 {
4048 /* Make the real values match the user-changed values. */
4049 may_write_memory = may_write_memory_1;
4050 update_observer_mode ();
4051 }
4052
4053 void
4054 initialize_targets (void)
4055 {
4056 the_dummy_target = new dummy_target ();
4057 push_target (the_dummy_target);
4058
4059 the_debug_target = new debug_target ();
4060
4061 add_info ("target", info_target_command, targ_desc);
4062 add_info ("files", info_target_command, targ_desc);
4063
4064 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4065 Set target debugging."), _("\
4066 Show target debugging."), _("\
4067 When non-zero, target debugging is enabled. Higher numbers are more\n\
4068 verbose."),
4069 set_targetdebug,
4070 show_targetdebug,
4071 &setdebuglist, &showdebuglist);
4072
4073 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4074 &trust_readonly, _("\
4075 Set mode for reading from readonly sections."), _("\
4076 Show mode for reading from readonly sections."), _("\
4077 When this mode is on, memory reads from readonly sections (such as .text)\n\
4078 will be read from the object file instead of from the target. This will\n\
4079 result in significant performance improvement for remote targets."),
4080 NULL,
4081 show_trust_readonly,
4082 &setlist, &showlist);
4083
4084 add_com ("monitor", class_obscure, do_monitor_command,
4085 _("Send a command to the remote monitor (remote targets only)."));
4086
4087 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4088 _("Print the name of each layer of the internal target stack."),
4089 &maintenanceprintlist);
4090
4091 add_setshow_boolean_cmd ("target-async", no_class,
4092 &target_async_permitted_1, _("\
4093 Set whether gdb controls the inferior in asynchronous mode."), _("\
4094 Show whether gdb controls the inferior in asynchronous mode."), _("\
4095 Tells gdb whether to control the inferior in asynchronous mode."),
4096 maint_set_target_async_command,
4097 maint_show_target_async_command,
4098 &maintenance_set_cmdlist,
4099 &maintenance_show_cmdlist);
4100
4101 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4102 &target_non_stop_enabled_1, _("\
4103 Set whether gdb always controls the inferior in non-stop mode."), _("\
4104 Show whether gdb always controls the inferior in non-stop mode."), _("\
4105 Tells gdb whether to control the inferior in non-stop mode."),
4106 maint_set_target_non_stop_command,
4107 maint_show_target_non_stop_command,
4108 &maintenance_set_cmdlist,
4109 &maintenance_show_cmdlist);
4110
4111 add_setshow_boolean_cmd ("may-write-registers", class_support,
4112 &may_write_registers_1, _("\
4113 Set permission to write into registers."), _("\
4114 Show permission to write into registers."), _("\
4115 When this permission is on, GDB may write into the target's registers.\n\
4116 Otherwise, any sort of write attempt will result in an error."),
4117 set_target_permissions, NULL,
4118 &setlist, &showlist);
4119
4120 add_setshow_boolean_cmd ("may-write-memory", class_support,
4121 &may_write_memory_1, _("\
4122 Set permission to write into target memory."), _("\
4123 Show permission to write into target memory."), _("\
4124 When this permission is on, GDB may write into the target's memory.\n\
4125 Otherwise, any sort of write attempt will result in an error."),
4126 set_write_memory_permission, NULL,
4127 &setlist, &showlist);
4128
4129 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4130 &may_insert_breakpoints_1, _("\
4131 Set permission to insert breakpoints in the target."), _("\
4132 Show permission to insert breakpoints in the target."), _("\
4133 When this permission is on, GDB may insert breakpoints in the program.\n\
4134 Otherwise, any sort of insertion attempt will result in an error."),
4135 set_target_permissions, NULL,
4136 &setlist, &showlist);
4137
4138 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4139 &may_insert_tracepoints_1, _("\
4140 Set permission to insert tracepoints in the target."), _("\
4141 Show permission to insert tracepoints in the target."), _("\
4142 When this permission is on, GDB may insert tracepoints in the program.\n\
4143 Otherwise, any sort of insertion attempt will result in an error."),
4144 set_target_permissions, NULL,
4145 &setlist, &showlist);
4146
4147 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4148 &may_insert_fast_tracepoints_1, _("\
4149 Set permission to insert fast tracepoints in the target."), _("\
4150 Show permission to insert fast tracepoints in the target."), _("\
4151 When this permission is on, GDB may insert fast tracepoints.\n\
4152 Otherwise, any sort of insertion attempt will result in an error."),
4153 set_target_permissions, NULL,
4154 &setlist, &showlist);
4155
4156 add_setshow_boolean_cmd ("may-interrupt", class_support,
4157 &may_stop_1, _("\
4158 Set permission to interrupt or signal the target."), _("\
4159 Show permission to interrupt or signal the target."), _("\
4160 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4161 Otherwise, any attempt to interrupt or stop will be ignored."),
4162 set_target_permissions, NULL,
4163 &setlist, &showlist);
4164
4165 add_com ("flash-erase", no_class, flash_erase_command,
4166 _("Erase all flash memory regions."));
4167
4168 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4169 &auto_connect_native_target, _("\
4170 Set whether GDB may automatically connect to the native target."), _("\
4171 Show whether GDB may automatically connect to the native target."), _("\
4172 When on, and GDB is not connected to a target yet, GDB\n\
4173 attempts \"run\" and other commands with the native target."),
4174 NULL, show_auto_connect_native_target,
4175 &setlist, &showlist);
4176 }
This page took 0.133342 seconds and 4 git commands to generate.